Science.gov

Sample records for erectness improves plant

  1. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation

    PubMed Central

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-01-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to ‘Beniazuma’, one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  2. Breeding erect plant type sweetpotato lines using cross breeding and gamma-ray irradiation.

    PubMed

    Kuranouchi, Toshikazu; Kumazaki, Tadashi; Kumagai, Toru; Nakatani, Makoto

    2016-06-01

    Few sweetpotato (Ipomoea batatas Lam.) cultivars with erect plant type are available despite their advantages over spreading type, such as simplicity of cultivation and ability to adapt to limited space. One of the reasons is insufficiency of their agronomic characteristics for table use. So, it is important to overcome these drawbacks of ER-type lines. We attempted to breed new erect plant type sweetpotato lines having good agronomic traits using cross breeding and mutation breeding with gamma-ray irradiation. With cross breeding we successfully developed new erect plant type lines with almost equal levels of yield as compared to 'Beniazuma', one of the leading cultivars in Japan. However, mutation breeding failed to develop any promising lines because we could not obtain distinct erect plant type lines. In the future larger numbers of plants should be used for mutation breeding, and irradiation methods should be improved. PMID:27436957

  3. 42. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR THE CARBIDE MILL ROOM, APRIL 23, 1918. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  4. 43. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. U.S. NITRATE PLANT UNDER CONSTRUCTION, STEEL BEING ERECTED FOR THE MACHINE SHOP, FEBRUARY 28, 1918. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  5. Population structure and association analysis of bolting, plant height, and leaf erectness in spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spinach (Spinacia oleracea L.) is an important vegetable worldwide with high nutritional and health-promoting compounds. Bolting is an important trait to consider in order to grow spinach in different seasons and regions. Plant height and leaf erectness are important traits for machine-harvesting. B...

  6. 26 CFR 1.109-1 - Exclusion from gross income of lessor of real property of value of improvements erected by lessee.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... property of value of improvements erected by lessee. 1.109-1 Section 1.109-1 Internal Revenue INTERNAL... property of value of improvements erected by lessee. (a) Income derived by a lessor of real property upon... which may be realized by the lessor upon the termination of the lease but not attributable to the...

  7. Pneumatically erected rigid habitat

    NASA Technical Reports Server (NTRS)

    Salles, Bradley

    1992-01-01

    The pneumatically erected rigid habitat concept consists of a structure based on an overexpanded metal bellows. The basic concept incorporates the advantages of both inflatable and rigid structures. The design and erection detail are presented with viewgraphs.

  8. [The physiology of erection].

    PubMed

    Hora, M; Vozeh, F

    1997-06-12

    The majority of contemporary knowledge on the physiology of erection was assembled during the past thirty years. Today we consider erection as a multifactorial process. Mechanically it can be compared to an electromechanically controlled hydraulic system. Its function is conditioned by a number of mutually coordinated processes. As to nervous processes they include autonomous (parasympathetic and sympathetic) innervation, as well as somatic innervation (sensory and motor pathways). The control function is exerted by spinal as well as cerebral centres. As to mediators, in particular acetylcholine, nitrous oxide (NO) released from the endothelium are involved, noradrenaline, VIP (vasoactive intestinal polypeptide), CGRP (calcitonin gene-related peptide) and prostaglandins. The most important roles in the phase of erection are played by nitrous oxide and VIP. Erection can be either reflex erection, psychogenic or nocturnal or morning. It usually takes place in six stages (at rest, latent, the tumescence stage, complete erection, rigid erection and subsequently the stage of detumescence). Except for neurohumoral mechanisms an essential prerequisite for the development of erection are the arterial supply of the genital and the so-called venoocclusive mechanism. Erection takes the following course (simplified): erotogenic stimuli lead to the stimulation of the parasympathetic nerve-->vasodilating substances are released-->the s inusoids are filled with blood (tumescence stage)-->the venoocclusive mechanism starts to work: thus complete erection occurs. Then the contractions of the musculature of the perineum compress the proximal portions of the corpora cavernosa: this leads to rigid erection. Detumescence which occurs as a rule after ejaculation) is due to released noradrenaline (active stage) and the reduced tonus of the smooth muscles of the blood vessels (released endothelin and neuropeptide Y). Knowledge of the physiological mechanisms of erection made clinical

  9. Electrostimulation and penile erection.

    PubMed

    Lue, T F; Schmidt, R A; Tanagho, E A

    1985-01-01

    Electrostimulation was used to study the neuroanatomy and physiology of penile erection in dogs and monkeys. The canine spinal nuclei responsible for penile erection, identified by the retrograde horseradish peroxidase transport technique after verification of the cavernous nerves with neurostimulation, were mediolateral autonomic neurons at T12-L3 and S1-S3. The erection induced by electrostimulation of the cavernous nerves is the result of increased arterial flow, relaxation of cavernous muscles, and venous outflow restriction. Study of electrostimulation in dogs and monkeys is invaluable for the understanding of the complex neurophysiology of human penile erection. PMID:3976090

  10. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  11. 93. View showing erection traveler erecting 190 foot span over ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. View showing erection traveler erecting 190 foot span over Southern Pacific Company's main line track. This is the last span of the steel approach to the main bridge spans. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  12. General view of crane with legs erected temporary erection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of crane with legs erected - temporary erection towers still in place. Taken June 20, 1940. Fourteenth Naval District Photo Collection Item No. 13779 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Bridge Gantry Crane No. 1, Welding slab along Third Street, near intersection with Avenue G, Pearl City, Honolulu County, HI

  13. Hemodynamics of erection in man

    SciTech Connect

    Shirai, M.; Ishii, N.

    1981-02-01

    Inquiry was made into the theory that closure of the efferent vein from the corpora cavernosa is essential for erection of the human penis. To determine whether the venous closure is indeed a prerequisite to human penile erection, two tests were carried out in men: (1) direct infusion in 133Xe into corpora cavernosa and (2) performance of carvernosography. In each case, penile erection was induced by providing the subject with sexual stimulation. The behavioral changes were studied through the 133Xe clearance curve and the contrast medium, respectively. When the penis remained flaccid, the 133Xe clearance curve followed a gentle path and the contrast medium could be noted within the penis for a relatively long period. However, on erection with sexual stimulation, the 133Xe clearance curve fell rapidly instead of following the gentle course expected in the case of venous closure. Also, the contrast medium quickly flowed out of the corpora cavernosa. The human penis therefore can well erect without closure of the efferent vein from the corpora cavernosa.

  14. Melanocortinergic control of penile erection

    PubMed Central

    Wessells, H.; Blevins, J.E.; Vanderah, T.W.

    2016-01-01

    Melanocortin receptors in the forebrain and spinal cord can be activated by endogenous or synthetic ligands to induce penile erection in rats and human subjects. To better understand how melanocortin circuits play a role in sex behavior, we review the contribution of melanocortin receptors and/or neurons in the hypothalamus, hindbrain, spinal cord and peripheral nerves to erectile function. New information regarding neuropeptides that mediate penile erection has extended our understanding of the central control of sex behavior, and melanocortin agonists may provide alternatives to existing treatment for highly prevalent problems including erectile dysfunction. PMID:15992962

  15. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species.

    PubMed

    Wang, Zhe; Liu, Xin; Bao, Weikai

    2016-02-01

    Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (N(mass)) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chl(mass)), light-saturated assimilation rate (A(mass)) and photosynthetic nitrogen/phosphorus use efficiency. N(mass), Chl(mass) and A(mass) were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of N(mass) versus Chl(mass) was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chl(mass) and A(mass). In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale. PMID:26552378

  16. Improvements in plant performance [Sequoyah Nuclear Plant

    SciTech Connect

    Lorek, M.J.

    1999-11-01

    The improvements in plant reliability and performance at Sequoyah in the last two years can be directly attributed to ten key ingredients; teamwork, management stability, a management team that believes in teamwork, clear direction from the top, a strong focus on human performance, the company wide STAR 7 initiative, strong succession planning, a very seasoned and effective outage management organization, an infrastructure that ensures that the station is focused on the right hardware priorities, and a very strong line organization owned self-assessment program. Continued focus on these key ingredients and realization on a daily basis that good performance can lead to complacency will ensure that performance at Sequoyah will remain at a very high level well into the 21st century.

  17. Registration of two allelic erect leaf mutants of sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two allelic sorghum [Sorghum bicolor (L.) Moench] erect leaf (erl) mutants were isolated from an Annotated Individually-pedigreed Mutagenized Sorghum (AIMS) mutant library developed at the Plant Stress and Germplasm Development Unit, at Lubbock, Texas. The two mutants, erl1-1 and erl1-2, were isol...

  18. Potential of hypocotyl diameter in family selection aiming at plant architecture improvement of common bean.

    PubMed

    Oliveira, A M C; Batista, R O; Carneiro, P C S; Carneiro, J E S; Cruz, C D

    2015-01-01

    Cultivars of common bean with more erect plant architecture and greater tolerance to degree of lodging are required by producers. Thus, to evaluate the potential of hypocotyl diameter (HD) in family selection for plant architecture improvement of common bean, the HDs of 32 F2 plants were measured in 3 distinct populations, and the characteristics related to plant architecture were analyzed in their progenies. Ninety-six F2:3 families and 4 controls were evaluated in a randomized block design, with 3 replications, analyzing plant architecture grade, HD, and grain yield during the winter 2010 and drought 2011 seasons. We found that the correlation between the HD of F2 plants and traits related to plant architecture of F2:3 progenies were of low magnitude compared to the estimates for correlations considering the parents, indicating a high environmental influence on HD in bean plants. There was a predominance of additive genetic effects on the determination of hypocotyl diameter, which showed higher precision and accuracy compared to plant architecture grade. Thus, this characteristic can be used to select progenies in plant architecture improvement of common beans; however, selection must be based on the means of at least 39 plants in the plot, according to the results of repeatability analysis. PMID:26436392

  19. ESP IMPROVEMENTS AT POWER PLANTS

    EPA Science Inventory

    An on-going ORD and OIA collaborative project in the Newly Independent States (NIS) is designed to upgrade ESPs used in NIS power plants and has laid the foundation for implementing cost-effective ESP modernization efforts at power plants. Thus far, state-of-the-art ESP performan...

  20. Steel erected at A-3 Test Stand

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Workers erect the first fabricated steel girders to arrive at the A-3 Test Stand at Stennis Space Center. Steel work began at the construction site Oct. 29 and is scheduled to continue into next spring.

  1. Dopamine-oxytocin interactions in penile erection.

    PubMed

    Baskerville, T A; Allard, J; Wayman, C; Douglas, A J

    2009-12-01

    Dopamine and oxytocin have established roles in the central regulation of penile erection in rats; however, the neural circuitries involved in a specific erectile context and the interaction between dopamine and oxytocin mechanisms remain to be elucidated. The medial preoptic area (MPOA), supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus may serve as candidate sites because they contain oxytocin cells, receive dopaminergic inputs and have been implicated in mediating masculine sexual behavior. Double immunofluorescence revealed that substantial numbers of oxytocin cells in the MPOA, SON and PVN possess dopamine D(2), D(3) and D(4) receptors. In anaesthetized rats, using intracavernous pressure as a physiological indicator of erection, blockade of lumbosacral oxytocin receptors (UK, 427843) reduced erectile responses to a nonselective dopamine agonist (apomorphine), suggesting that dopamine recruits a paraventriculospinal oxytocin pathway. In conscious males in the absence of a female, penile erection elicited by a D(2)/D(3) (Quinelorane) but not D(4) (PD168077) agonist was associated with activation of medial parvocellular PVN oxytocin cells. In another experiment where males were given full access to a receptive female, a D(4) (L-745870) but not D(2) or D(3) antagonist (L-741626; nafadotride) inhibited penile erection (intromission), and this was correlated with SON magnocellular oxytocin neuron activation. Together, the data suggest dopamine's effects on hypothalamic oxytocin cells during penile erection are context-specific. Dopamine may act via different parvocellular and magnocellular oxytocin subpopulations to elicit erectile responses, depending upon whether intromission is performed. This study demonstrates the potential existence of interaction between central dopamine and oxytocin pathways during penile erection, with the SON and PVN serving as integrative sites. PMID:20128851

  2. Atlas SOHO Booster and Centaur Erection

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The launch vehicle for the Solar Heliospheric Observatory (SOHO) mission is a two stage Atlas-IIAS (Atlas/Centaur). The Atlas, consists of a solid rocket booster stage powered by four Thiokol Castor IVA solid rocket boosters (SRB) and a core vehicle stage (booster and sustainer) powered by Rocketdyne MA-5A liquid propellant engines (RP-1 fuel and liquid oxygen). The multiple firing Centaur is powered by two Pratt and Whitney (RL10A-4) liquid hydrogen and liquid oxygen engines with extendible nozzles. This video shows the erection of the Atlas booster and transportation (to 36-B launching pad) and erection of the Centaur.

  3. Automatic Erection System for Antenna Masts

    NASA Technical Reports Server (NTRS)

    Dotson, R. D.; Jacquemin, G. G.

    1985-01-01

    A telescoping mast does not require the payout of guy wires under tension. Erection system is built into stack of telescoping mast elements and is thereby protected from the weather. Concept is based on a telescoping tube mast, it is also applicable to an open truss with only minor modifications.

  4. Power plant productivity improvement in New York

    SciTech Connect

    1981-03-01

    The New York Public Service Commission (PSC), under contract with the US Department of Energy (DOE), began a joint program in September 1978 to improve the productivity of coal and nuclear electric generating units in New York State. The project had dual objectives: to ensure that the utilities in New York State have or develop a systematic permanent, cost-effective productivity improvement program based on sound engineering and economic considerations, and to develop a model program for Power Plant Productivity Improvement, which, through DOE, can also be utilized by other regulatory commissions in the country. To accomplish these objectives, the program was organized into the following sequence of activities: compilation and analysis of power plant performance data; evaluation and comparison of utility responses to outage/derating events; power plant productivity improvement project cost-benefit analysis; and evaluation of regulatory procedures and policies for improving productivity. The program that developed for improving the productivity of coal units is substantially different than for nuclear units. Each program is presented, and recommendations are made for activities of both the utilities and regulatory agencies which will promote improved productivity.

  5. View looking southeast to the Erecting Shop on the corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking southeast to the Erecting Shop on the corner of Spruce Street and Market Street (similar to HAER No. NJ-3-A-2) - Rogers Locomotive & Machine Works, Erecting Shop, Spruce & Market Streets, Paterson, Passaic County, NJ

  6. ERECTING SHOP, EAST SIDE, LOOKING SOUTH. LEFT FOREGROUND BREAK IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTING SHOP, EAST SIDE, LOOKING SOUTH. LEFT FOREGROUND BREAK IN WALL IS FOR PASSAGE OF STEAM-POWERED BELTING FROM POWERHOUSE. - Southern Pacific, Sacramento Shops, Erecting Shop, 111 I Street, Sacramento, Sacramento County, CA

  7. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  8. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  9. Improving plant transformation using Agrobacterium tumefaciens.

    PubMed

    Ribeiro Neto, L V; Oliveira, A P; Lourenço, M V; Bertoni, B W; França, S C; Rosa-Santos, T M; Zingaretti, S M

    2015-01-01

    Here, we report a quick and low-cost method to improve plant transformation using Agrobacterium tumefaciens. This method involves the use of physical wounding, ultrasound, and an increase in exposure time to the bacteria. We show how the transformation rate increased from 0 to 14% when an ultrasound pulse of 10 s was used in conjunction with 96 h of bacterial exposure in Eclipta alba explants. PMID:26125878

  10. Erection rehabilitation following prostatectomy - current strategies and future directions.

    PubMed

    Sopko, Nikolai A; Burnett, Arthur L

    2016-04-01

    Despite continued advances in urological surgery, erectile dysfunction (ED) remains a serious adverse effect of radical prostatectomy. In this setting, ED is predominantly caused by injury to the neurovascular bundles, which lie alongside the prostate and are responsible for initiating and maintaining the erectile response. Most men will experience some degree of ED after radical prostatectomy, although erectile function outcomes have already remarkably improved since the development of nerve-sparing surgical techniques. To further improve outcomes, erection rehabilitation strategies are being investigated, which emphasize early treatment regimens with the aim of preventing adverse remodelling after surgery and preserving erectile function. Strategies include pharmacological therapy, mechanical therapy and psychosocial support. In addition, novel therapeutic approaches involving new targets for small-molecule treatments and regenerative medicine therapies are being developed to aid in restoring erectile function. Although ED treatments can be effective following radical prostatectomy, no specific erection rehabilitation regimen has currently been shown to be superior to other investigated rehabilitation regimens. Nevertheless, the different strategies rightfully remain an area of intensive research, as preservation of erectile function is a critical part of providing comprehensive care for men with prostate cancer to ensure their overall well-being, in contrast to just treating a patient's tumour. PMID:26976244

  11. A case of sleep-related painful erections with chronic daytime genital discomfort.

    PubMed

    Mellado, Miguel

    2015-01-01

    Sleep-related painful erections (SRPE) are an uncommon condition characterized by recurrent nocturnal penile tumescence accompanied by penile pain without penile pathology, which occurs during the rapid eye movement (REM) sleep stage. A report of a 59-year-old patient with SRPE is described. Turgid painful erections (five to seven episodes of tumescence) during the sleep hours caused pain together with burning and tingling sensations in the penis and perineal zone during the daytime hours. Swelling of the pubic and perineal area was recurrent. Sleep loss, chronic fatigue, mild anxiety, lack of concentration and decreased work occurred along with this condition. Polysomnographic findings indicated REM sleep fragmentation. Attempts to treat this condition with muscle relaxants or anxiolytics did not prompt an improvement of this disorder, but a single daily dose of gabapentin 300 mg in combination with 1 mg clonazepam at bedtime improved total sleep time and reduced full sleep erections. PMID:24803352

  12. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  13. Idaho Chemical Processing Plant Process Efficiency improvements

    SciTech Connect

    Griebenow, B.

    1996-03-01

    In response to decreasing funding levels available to support activities at the Idaho Chemical Processing Plant (ICPP) and a desire to be cost competitive, the Department of Energy Idaho Operations Office (DOE-ID) and Lockheed Idaho Technologies Company have increased their emphasis on cost-saving measures. The ICPP Effectiveness Improvement Initiative involves many activities to improve cost effectiveness and competitiveness. This report documents the methodology and results of one of those cost cutting measures, the Process Efficiency Improvement Activity. The Process Efficiency Improvement Activity performed a systematic review of major work processes at the ICPP to increase productivity and to identify nonvalue-added requirements. A two-phase approach was selected for the activity to allow for near-term implementation of relatively easy process modifications in the first phase while obtaining long-term continuous improvement in the second phase and beyond. Phase I of the initiative included a concentrated review of processes that had a high potential for cost savings with the intent of realizing savings in Fiscal Year 1996 (FY-96.) Phase II consists of implementing long-term strategies too complex for Phase I implementation and evaluation of processes not targeted for Phase I review. The Phase II effort is targeted for realizing cost savings in FY-97 and beyond.

  14. 20. 'Erection Plan, Renewal of Bridge 210 C over Sacramento ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. 'Erection Plan, Renewal of Bridge 210 C over Sacramento River near Tehama, Calif., 3 140'-0' S. T. Riveted Thru Truss Spans, 17'-9' C. to C. Trusses, 31'-0' C. To C. Chords. U.S.S. P. Co. Pacific Coast Dept., Order No. SF 604, Southern Pacific Co., Order No. 51168-P-38428, 1925 Specifications, Scale in. ft., American Bridge Co., Ambridge Plant, Dwgs. made at Ambridge No. 5 in charge of Reehl, Detailed by W.F.R., Date, Checked by L.A.E., Date 1/5/29, Fld. conn. chk. by ENN, Date 3/9/29, Order No. F5659, Sheet No. E3.' - Southern Pacific Railroad Shasta Route, Bridge No. 210.52, Milepost 210.52, Tehama, Tehama County, CA

  15. Method to improve drought tolerance in plants

    DOEpatents

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  16. Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs

    PubMed Central

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  17. Switchable Wettability of the Honeybee's Tongue Surface Regulated by Erectable Glossal Hairs.

    PubMed

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee's glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  18. Biotechnological interventions to improve plant developmental traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental traits are coordinated at various levels in a plant and involve organ to organ communications via long distance signaling processes that integrate transcription, hormonal action and environmental cues. Thus, plant architecture, root-soil-microbe interactions, flowering, fruit (and seed...

  19. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  20. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants

    PubMed Central

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2⋅¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  1. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    PubMed

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion ([Formula: see text]) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  2. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  3. Compositions and methods for improved plant feedstock

    DOEpatents

    Shen, Hui; Chen, Fang; Dixon, Richard A

    2014-12-02

    The invention provides methods for modifying lignin content and composition in plants and achieving associated benefits therefrom involving altered expression of newly discovered MYB4 transcription factors. Nucleic acid constructs for modifying MYB4 transcription factor expression are described. By over-expressing the identified MYB4 transcription factors, for example, an accompanying decrease in lignin content may be achieved. Plants are provided by the invention comprising such modifications, as are methods for their preparation and use.

  4. 72. VIEW SHOWING THE ERECTION OF A TAINTER GATE TRUSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VIEW SHOWING THE ERECTION OF A TAINTER GATE TRUSS ON TRUNNION PIN ON WEST SIDE OF BAY 9, LOOKING NORTHWEST. Taken on August 17, 1935. - Upper Mississippi River 9-Foot Channel, Lock & Dam No. 10, Guttenberg, Clayton County, IA

  5. First Structural Steel Erected at NSLS-II

    SciTech Connect

    2009-09-14

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  6. First Structural Steel Erected at NSLS-II

    ScienceCinema

    None

    2010-01-08

    Ten steel columns were incorporated into the ever-growing framework for the National Synchrotron Light Source II last week, the first structural steel erected for the future 400,000-square-foot facility.

  7. 7. Detail of the Grant Locomotive Works Erecting Shop looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of the Grant Locomotive Works Erecting Shop looking southwest showing ruined wall and entrance of a single story addition. - Grant Locomotive Works, Market & Spruce Streets, Paterson, Passaic County, NJ

  8. 14. VIEW OF SOUTH FACE OF MST, FULLY ERECTED UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF SOUTH FACE OF MST, FULLY ERECTED UMBILICAL MAST, LAUNCHER, AND FLAME BUCKET - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Erection mechanism of glossal hairs during honeybee feeding.

    PubMed

    Zhao, Jieliang; Wu, Jianing; Yan, Shaoze

    2015-12-01

    Many animals use their mouthparts or tongue to feed themselves rapidly and efficiently. Honeybees have evolved specialized tongues to collect nectar from flowers. Nectar-intake movements consist of rapid protraction and retraction of glossa from a tube formed by the maxillae and labial palps. We establish a physical model to reveal the driving mechanism of hair erection. Results indicate that the glossa of honeybees is similar to a compression spring. Experimental results show that hair erection is generated by the tension of hyaline rod and the elasticity of segmental sheath. The retractor muscle of hyaline rod is contracted at first, which compresses the sheath of pigmented rings and flattens the hairs. While the retractor muscle of hyaline rod relaxes, the elastic energy storage in the compressed glossal sheath will release to change the equivalent stiffness of glossal sheath and erect glossal hairs. These results explain the erection mechanism of glossal hairs during honeybee feeding. PMID:26403500

  10. 12. VIEW OF NORTH FACE OF MST AND PARTIALLY ERECTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF NORTH FACE OF MST AND PARTIALLY ERECTED UMBILICAL MAST. UMBILICAL MAST TRENCH AND DOORS IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. BASE OF UMBILICAL MAST FROM UMBILICAL MAST TRENCH. ERECTION AND RETRACTION CYLINDERS BETWEEN MAST AND TRENCH WALL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. 26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PULLEY SYSTEM FOR ERECTION OF ATLAS H LAUNCH VEHICLES AT SOUTH SIDE OF MST, FROM STATION 93 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. 37. ERECTION ASSEMBLY FOR ATLAS H LAUNCH VEHICLE AT STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ERECTION ASSEMBLY FOR ATLAS H LAUNCH VEHICLE AT STATION 124 OF MST, SOUTH SIDE - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. STEEL ERECTION. View of upstream side of bridge, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEEL ERECTION. View of upstream side of bridge, looking north from the old suspension bridge at unjoined cantilever arms - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  15. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 2, APALACHICOLA RIVER BRIDGE, SHEET 5507-8-E1 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  16. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 3, APALACHICOLA RIVER BRIDGE, SHEET 5507-8-E2 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  17. ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 106 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 106 TO BENT NO. 141 AT WEST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E4 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  18. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 5, APALACHICOLA RIVER BRIDGE, SHEET 5505-6-E2 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  19. ERECTION PLAN FOR BEAM SPANS FROM PIER 6 TO BENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM PIER 6 TO BENT NO. 185 AT EAST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E6 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  20. ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 71 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 71 TO BENT NO. 106 AT WEST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E3 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  1. ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 36 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 36 TO BENT NO. 71 AT WEST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E2 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  2. ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 185 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 185 TO EAST ABUTMENT AT EAST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E7 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  3. ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 141 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM BENT NO. 141 TO PIER 1 AT WEST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E5 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  4. ERECTION PLAN FOR BEAM SPANS FROM WEST ABUTMENT TO BENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLAN FOR BEAM SPANS FROM WEST ABUTMENT TO BENT NO. 36 AT WEST APPROACH, APALACHICOLA RIVER BRIDGE, SHEET 5509-E1 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  5. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 1, APALACHICOLA RIVER BRIDGE, SHEET 5505-6-E1 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  6. ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ERECTION PLANS (TOP AND BOTTOM), ELEVATION AND SECTIONS FOR STEEL TRUSS AT SPAN 4, APALACHICOLA RIVER BRIDGE, SHEET 5507-8-E3 - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  7. 74. ERECTION AND WELDING OF WEST BOILER CHAMBER, DECEMBER 21, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. ERECTION AND WELDING OF WEST BOILER CHAMBER, DECEMBER 21, 1955 (LOOKING NORTHEAST) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  8. Erection of the Apollo Service Module in High Bay #3

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Erection of the Apollo Service module in High Bay #3 of the Vehicle Assembly Building (VAB) at Kennedy Space Center (KSC). This view is of the aft bulkhead showing the high-gain antenna and engine bell.

  9. Improved Economics of Nuclear Plant Life Management

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Jarrell, Donald B.; Bond, Joseph W D.

    2007-07-31

    The adoption of new on-line monitoring, diagnostic and eventually prognostics technologies has the potential to impact the economics of the existing nuclear power plant fleet, new plants and future advanced designs. To move from periodic inspection to on-line monitoring for condition based maintenance and eventually prognostics will require advances in sensors, better understanding of what and how to measure within the plant; enhanced data interrogation, communication and integration; new predictive models for damage/aging evolution; system integration for real world deployments; quantification of uncertainties in what are inherently ill-posed problems and integration of enhanced condition based maintenance/prognostics philosophies into new plant designs, operation and O&M approaches. The move to digital systems in petrochemical, process and fossil fuel power plants is enabling major advances to occur in the instrumentation, controls and monitoring systems and approaches employed. The adoption within the nuclear power community of advanced on-line monitoring and advanced diagnostics has the potential for the reduction in costly periodic surveillance that requires plant shut-down , more accurate cost-benefit analysis, “just-in-time” maintenance, pre-staging of maintenance tasks, move towards true “operation without failures” and a jump start on advanced technologies for new plant concepts, such as those under the International Gen IV Program. There are significant opportunities to adopt condition-based maintenance when upgrades are implemented at existing facilities. The economic benefit from a predictive maintenance program based upon advanced on-line monitoring and advanced diagnostics can be demonstrated from a cost/benefit analysis. An analysis of the 104 US legacy systems has indicated potential savings at over $1B per year when applied to all key equipment; a summary of the supporting analysis is provided in this paper.

  10. [Genetic analysis of dense and erect panicle 2 allele DEP2-1388 and its application in hybrid rice breeding].

    PubMed

    Hu, Yungao; Guo, Lianan; Yang, Guotao; Qin, Peng; Fan, Cunliu; Peng, Youlin; Yan, Wei; He, Hang; Li, Shigui

    2016-01-01

    Using ethyl methanesulfonate (EMS) mutagenesis, we isolated an erect panicle mutant, R1338, from indica heavy-panicle restorer Shuhui498. Compared with wild type control, the mutant displayed dwarfism, erect and short panicle, short primary panicle branch, increased grain density, short grain length and increased grain thickness. In addition, the erect panicle architecture of R1388 resulted in significant decreased bending moment and increased resistance to panicle bending. Histocytological analysis indicated that the diameter of uppermost internode, cellulose content and lignin content play important roles in resistance to panicle bending. Genetic analysis revealed that the mutant phenotype was controlled by a semi-dominant nuclear gene. With resequencing and MutMap analysis strategy, we found that one SNP from A to G at the seventh exon of DEP2 resulted in the 928(th) amino acid substitution from arginine (AGG) to glycine (GGG) in R1338 mutant. Considering the phenotype of other dep2 mutants, the phenotype of R1338 was likely to be caused by the SNP in DEP2. The mutant R1338 and wild type were crossed with several sterile lines which respectively had different panicle types, the combinations generated from R1338 and curve panicle sterile lines showed semi-erect panicle, higher seed setting percentage and heterosis, and the combinations generated from R1388 and erect panicle sterile line with DEP1 showed erect panicle by gene additive effect. Moreover, the combinations with semi-erect panicle had superior light transmittance and stronger light intensity, which improved efficiency of light utilization to intermediate and subjacent leaves compared to the combinations with curved panicle. This study provides a good strategy to solve the problem of population density in three-line hybrid rice. PMID:26787525

  11. Pharmacologic erection: time-dependent changes in the corporal environment.

    PubMed

    Broderick, G A; Harkaway, R

    1994-03-01

    Priapism is a persistent erection which fails to subside after climax and is accompanied by penile pain and tenderness. The most common form of priapism to confront contemporary urologists is persistence of erection following pharmacologic stimulation. We reviewed our experience over 18 months with initial diagnostic intracavernous challenges of prostaglandin E1. Three-hundred and sixty-six new impotence patients presented to our center and underwent PGE1/color duplex Doppler assessment; 14 patients developed persistent rigidity of two or more hours accompanied by penile discomfort. Each of these patients was successfully managed with penile aspiration and direct corporal instillation of the alpha-adrenergic agonist phenylephrine. The mean PGE1 dosage injected was 6 micrograms and mean duration of erection preceding aspiration 180 minutes. Penile blood gases were obtained from the initial aspirate in all cases. The duration of pharmacologic erections were correlated with the partial pressures of oxygen, carbon dioxide, bicarbonate and the pH using linear regression analysis. There was a clear trend towards deoxygenation, acidosis, and hypercarbia with prolonged erection (105-342 minutes). The relationship between duration of pharmacologic erection and acidosis/hypercarbia was highly significant. PMID:8019618

  12. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Site layout, site-specific erection plan and construction... Steel Erection § 1926.752 Site layout, site-specific erection plan and construction sequence. (a... strength or sufficient strength to support the loads imposed during steel erection. (c) Site layout....

  13. Sleep-Related Painful Erections in a Patient With Obstructive Sleep Apnea Syndrome.

    PubMed

    Abouda, Maher; Jomni, Taieb; Yangui, Ferdaws; Charfi, Mohamed Ridha; Arnulf, Isabelle

    2016-01-01

    Sleep-related painful erection (SRPE) is a rare sleep disorder characterized by recurrent, painful penile erections occurring when awakening from rapid eye movement sleep, while erections are painless during wakefulness. Almost 35 cases have been reported worldwide, and only two of them had an associated obstructive sleep apnea syndrome (OSAS). We report a new case of a 61-year-old man suffering from SRPE associated with OSAS. The adequate treatment of respiratory events with continuous positive airway pressure did not alleviate the SRPE symptoms and excessive daytime sleepiness. The SRPE diagnosis was made by polysomnography coupled with video surveillance when the patient was referred to the sleep laboratory for residual excessive daytime sleepiness. The patient had 2-4 episodes of SRPE/night. Beta-blocker did not alleviate the SRPE, but a transient improvement was noted when the patient was treated with paroxetine. In contrast with the two previously published cases of SRPE plus OSAS, continuous positive airway treatment did not improve SRPE symptoms in our patient. PMID:26392186

  14. Improved plant performance through evaporative steam condensing

    SciTech Connect

    Hutton, D.

    1998-07-01

    Combining an open cooling tower and a steam condenser into one common unit is a proven technology with many advantages in power generation application, including reduced first cost of equipment, reduced parasitic energy consumption, simplified design, reduced maintenance, and simplified water treatment, Performance of the steam turbine benefits from the direct approach to wet bulb temperature, and operating flexibility and reliability improve compared to a system with a cooling tower and surface condenser. System comparisons and case histories will be presented to substantiate improved systems economies.

  15. Nutritional improvements in plants: Time to bite on biofortified foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern breeding, molecular genetic and biotechnology studies frequently describe changes in plant metabolism to improve nutritional content; however, this is often where the process of assessing biofortification ends. Ideally, these modified plants need to be used in controlled animal and human feed...

  16. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  17. Quantification of risks from technology for improved plant reliability

    SciTech Connect

    Rode, D.M.

    1996-12-31

    One of the least understood and therefore appreciated threats to profitability are risks from power plant technologies such as steam generators, turbines, and electrical systems. To effectively manage technological risks, business decisions need to be based on knowledge. The scope of the paper describes a quantification or risk process that combines technical knowledge and judgments with commercial consequences. The three principle alternatives to manage risks as well as risk mitigation techniques for significant equipment within a power plant are reported. The result is to equip the decision maker with a comprehensive picture of the risk exposures enabling cost effective activities to be undertaken to improve a plant`s reliability.

  18. Clinical Neuroanatomy and Neurotransmitter-Mediated Regulation of Penile Erection

    PubMed Central

    Jo, Hyun Woo; Kwon, Hyunseob

    2014-01-01

    Erectile dysfunction (ED) has an adverse impact on men's quality of life. Penile erection, which is regulated by nerves that are innervated into the erectile tissue, can be affected by functional or anatomical trauma of the perineal region, including specific structures of the penis, causing ED. Penile erection is neurologically controlled by the autonomic nervous system. Therefore, it is of utmost importance to understand the neurogenic structure of the erectile tissue and the types of neurotransmitters involved in the penile erection process. Here, we highlight the basic clinical anatomy and erectile function of the penis. Understanding the clinical connotation of the relationship between penile erectile structure and function may provide fresh insights for identifying the main mechanisms involved in ED and help develop surgical techniques for the treatment of ED. PMID:24987557

  19. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  20. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  1. Strategies for Improving Potassium Use Efficiency in Plants

    PubMed Central

    Shin, Ryoung

    2014-01-01

    Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci. PMID:24938230

  2. Strategies for improving potassium use efficiency in plants.

    PubMed

    Shin, Ryoung

    2014-08-01

    Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci. PMID:24938230

  3. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  4. 104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. Photocopied August 1978. CYLINDER USED IN THE ERECTION OF THE INCLINED BUTTRESSES FOR POWER HOUSE REINFORCEMENT IN 1916. AN AIR LOCK WAS PLACED ON TOP OF THE CYLINDER: THE LOWER PORTION OF THE VERTICAL ELEMENT RESTED ON THE POWER HOUSE FOUNDATION APRON: THE INCLINED ELEMENT WAS CUT LEVEL WITH THE RIVER BED. THE INCLINED PORTION OF THE CYLINDER CONTAINED THE SHIELD USED TO BEGIN THE ERECTION OF THE SEGMENTED INCLINED CAST IRON BUTTRESSES. (764) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  5. 29. (Credit JTL) Low service pump pit in background erected ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. (Credit JTL) Low service pump pit in background erected in 1911-1912 on the banks of Cross Bayou (a Worthington compound duplex steam engine was placed inside this structure.) In the foreground is the receiving well (also erected in 1911-1912) which received water from the Red River siphon. After 1926 this well received water, instead, from Cross Lake via a 30-inch conduit. A concrete platform was installed in 1960 for #6 electric low service pump which has been superceded by newer 1977 installation. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  6. Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology

    SciTech Connect

    Not Available

    1981-09-15

    As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

  7. 6. AERIAL VIEW LOOKING NORTHWEST SHOWING SALVAGE ARCHAEOLOGY TRENCH, ERECTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AERIAL VIEW LOOKING NORTHWEST SHOWING SALVAGE ARCHAEOLOGY TRENCH, ERECTING SHOP, ADMINISTRATION BUILDING, FITTING SHOP, MILLWRIGHT SHOP. DOLPHIN MANUFACTURING CO. AND BARBOUR FLAX SPINNING CO. IN LOWER LEFT, SUM HYDROELECTRIC IN UPPER RIGHT. - Rogers Locomotive & Machine Works, Spruce & Market Streets, Paterson, Passaic County, NJ

  8. 18. Photocopy of drawing, Erection Plan, North Truss, Bridge at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of drawing, Erection Plan, North Truss, Bridge at Main and Washington Sts., Norwalk, Ct., Contract No. 3000, Berlin Iron Bridge Company, dated July 12, 1895. Original on file with Metro North Commuter Railroad. - South Norwalk Railroad Bridge, South Main & Washington Streets, Norwalk, Fairfield County, CT

  9. 17. Photocopy of drawing, Erection Plan of Top Lateral Bracing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Photocopy of drawing, Erection Plan of Top Lateral Bracing of Bridge at South Norwalk for the N.Y., N.H. and H.R.R., dated June 12, 1895. Original on file with Metro North Commuter Railroad. - South Norwalk Railroad Bridge, South Main & Washington Streets, Norwalk, Fairfield County, CT

  10. 75 FR 27428 - Safety Standards for Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Labor's Order 5-2007 (72 FR 31160), and 29 CFR part 1911. Signed at Washington, DC, on May 4, 2010... (65 FR 50017), 5-2002 (67 FR 65008), and 5-2007 (72 FR 31160); and 29 CFR part 1911. 0 2. Amend Sec... Occupational Safety and Health Administration 29 CFR Part 1926 Safety Standards for Steel Erection...

  11. RETENTION BASIN. ERECTING REINFORCING STEEL FOR CONCRETE DECK. STACK RISES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RETENTION BASIN. ERECTING REINFORCING STEEL FOR CONCRETE DECK. STACK RISES AT TOP LEFT. CAMERA FACES WEST. INL NEGATIVE NO. 2581. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. 1. Historic American Buildings Survey Erected 1822. Built by Colonel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Erected 1822. Built by Colonel William Rhodes. His wife Paulina Clay was the daughter of General Green Clay and sister of General Cassius Marcellus Clay, Ambassador to Russia under President Lincoln. - Woodlawn, Richmond, Madison County, KY

  13. 11. VIEW, LOOKING SOUTHEAST, OF GALLERY D UNDER ERECTION March ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW, LOOKING SOUTHEAST, OF GALLERY D UNDER ERECTION March 20, 1922 (Original negative destroyed; print in Barge Canal Construction Photographs, Box 12, Series 501, Accession No. 336-85) - New York Barge Canal, Gowanus Bay Terminal Pier, East of bulkhead supporting Columbia Street, Brooklyn, Kings County, NY

  14. Prey transport in "palatine-erecting" elapid snakes.

    PubMed

    Deufel, Alexandra; Cundall, David

    2003-12-01

    Cobras and mambas are members of a group of elapid snakes supposedly united by the morphology and inferred behavior of their palatine bone during prey transport (palatine erectors). The palatine erectors investigated (Dendroaspis polylepis, Naja pallida, Ophiophagus hannah, Aspidelaps scutatus, A. lubricus) show differences in the morphology of their feeding apparatus that do not affect the overall behavior of the system. We delineated the structures directly involved in producing palatine erection during prey transport. Palatine erection can be achieved by a colubroid muscle contraction pattern acting on a palato-pterygoid bar with a movable palato-pterygoid joint and a palatine that is stabilized against the snout. The palatine characters originally proposed to cause palatine erection are not required to produce the behavior and actually impede it in Naja pallida. Palatine-erecting elapids share a fundamental design of the palato-maxillary apparatus with all higher snakes. A set of plesiomorphic core characters is functionally integrated to function in prey transport using the pterygoid walk. Variant characters are either part of a structural periphery unrelated to the core structures that define function or patterns of variation are subordinate character sets operating within functional thresholds of a single system. PMID:14584037

  15. Steel Erection Safety. Module SH-39. Safety and Health.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on steel erection safety is one of 50 modules concerned with job safety and health. This module identifies typical jobsite hazards encountered by steel erectors, as well as providing safe job procedures for general and specific construction activities. Following the introduction, 11 objectives (each keyed to a page in the text)…

  16. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  17. Improving the safety of LWR power plants. Final report

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs (improving or maintaining level of safety with simpler systems or in a more cost-effective manner).

  18. Integrating New Technology Solutions to Improve Plant Operations

    SciTech Connect

    HEAVIN, ERIC

    2004-06-29

    Continuing advancements in software and hardware technology are providing facilities the opportunity for improvements in the areas of safety, regulatory compliance, administrative control, data collection, and reporting. Implementing these changes to improve plant operating efficiency can also create many challenges which include but are not limited to: justifying cost, planning for scalability, implementing applications across varied platforms, integrating multitudes of proprietary vendor applications, and creating a common vision for diverse process improvement projects. The Defense Programs (DP) facility at the Savannah River Site meets these challenges on a daily basis. Like many other plants, DP, has room for improvement when it comes to effective and clear communication, data entry, data storage, and system integration. Specific examples of areas targeted for improvement include: shift turnover meetings using system status data one to two hours old, lockouts and alarm inhibits performed on points on the Distributed Control System (DCS) and tracked in a paper logbook, disconnected systems preventing preemptive correction of regulatory compliance issues, and countless examples of additional task and data duplication on independent systems. Investment of time, money, and careful planning addressing these issues are already providing returns in the form of increased efficiency, improved plant tracking and reduced cost of implementing the next process improvement. Specific examples of improving plant operations through thoroughly planned Rapid Application Development of new applications are discussed. Integration of dissimilar and independent data sources (NovaTech D/3 DCS, SQL Server, Access, Filemaker Pro, etc.) is also explored. The tangible benefits of the implementation of the different programs to solve the operational problems previously described are analyzed in an in-depth and comparative manner.

  19. New catalyst improves sulfur recovery at Canadian plant

    SciTech Connect

    Nasato, E. ); MacDougall, R.S. ); Lagas, J.A. )

    1994-02-28

    Installation at Mobil Oil Canada Ltd.'s Lone Pine Creek, Alta., gas plant of a second-generation Superclaus catalyst has, combined with the first-generation catalyst, resulted in higher overall sulfur recovery at lower reactor temperatures. Superclaus reactor inlet temperatures have been reduced from 255 to 200 C. and as a result have saved on utility costs and reduced tail-gas flow and CO[sub 2] emissions. Initial results indicate overall plant sulfur recovery has improved to the 98.7--98.9% range, up from the 98.0--98.3% first-generation catalyst performance level. The enhanced second-generation catalyst has also proven more operationally flexible than the first-generation catalyst. The paper describes the improved catalyst, the Superclaus process, catalyst performance, catalyst loading, equipment modifications, and performance of the plant.

  20. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants.

    PubMed

    Nongpiur, Ramsong Chantre; Singla-Pareek, Sneh Lata; Pareek, Ashwani

    2016-08-01

    Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops. PMID:27499683

  1. Neuroanatomy of penile erection: its relevance to iatrogenic impotence.

    PubMed

    Lue, T F; Zeineh, S J; Schmidt, R A; Tanagho, E A

    1984-02-01

    The neuroanatomy of erection in men is not well defined. Recently, we isolated successfully the cavernous nerves for acute and chronic neurostimulation to induce penile erection in dogs and monkeys. We then investigated the anatomy of these nerves in humans by cadaveric dissection and serial histologic sectioning. Our experience in tracing the spinal nuclei responsible for vesical and urethral function by transportation of horseradish peroxidase enabled us to explore the location and organization of the spinal center for erection. Thus, systemic knowledge of the neuroanatomy of erection was accumulated. The spinal nuclei for control of erection are located in the intermediolateral gray matter at the S1 to S3 and T12 to L3 levels in dogs, and the S2 to S4 and T10 to L2 levels in humans. From these sacral nuclei axons issue ventrally and join the axons of the nuclei for the bladder and rectum to form the sacral visceral efferent fibers. These fibers emerge from the anterior root of S2 to S4, and join the sympathetic fibers to form the pelvic plexus, which then branches out to innervate the bladder, rectum and penis. The fibers innervating the penis (cavernous nerves) travel along the posterolateral aspect of the seminal vesicle and prostate, and then accompany the membranous urethra through the genitourinary diaphragm. These fibers are located on the lateral aspect of the membranous urethra and ascend gradually to the 1 and 11 o'clock positions in the proximal bulbous urethra. Some of the fibers penetrate the tunica albuginea of the corpus spongiosum, while others spread to the trifurcation of the terminal internal pudendal artery and innervate the dorsal, deep and urethral arteries. Shortly before the 2 corpora cavernosa merge the cavernous nerves penetrate the tunica albuginea along with the deep artery and cavernous vein. The terminal branches of these nerves innervate the helicine arteries and the erectile tissue within the corpora cavernosa. Because of the

  2. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    NASA Astrophysics Data System (ADS)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  3. Development of assembly and joint concepts for erectable space structures

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.; Bluck, R. M.; Grotbeck, G. H.; Johnson, R. R.

    1980-01-01

    The technology associated with the on-orbit assembly of tetrahedral truss platforms erected of graphite epoxy tapered columns is examined. Associated with the assembly process is the design and fabrication of nine member node joints. Two such joints demonstrating somewhat different technology were designed and fabricated. Two methods of automatic assembly using the node designs were investigated, and the time of assembly of tetrahedral truss structures up to 1 square km in size was estimated. The effect of column and node joint packaging on the Space Shuttle cargo bay is examined. A brief discussion is included of operating cost considerations and the selection of energy sources. Consideration was given to the design assembly machines from 5 m to 20 m. The smaller machines, mounted on the Space Shuttle, are deployable and restowable. They provide a means of demonstrating the capabilities of the concept and of erecting small specialized platforms on relatively short notice.

  4. Hybrid deployable/erectable solar dynamic box truss system

    NASA Technical Reports Server (NTRS)

    Coyner, J. V., Jr.; Irvine, T. B.

    1986-01-01

    The design of a hybrid deployable/erectable solar dynamic box truss power generation system for the initial operation capability (IOC) of the Space Shuttle is examined. An organic Rankine cycle heat engine for IOC solar power generation is studied. The design configuration is a simple parabolic concentration where the receiver is located in the focal plane with its aperture at the focal point. The relationship between concentrator size and collection efficiency is analyzed. The geometry of the deployable graphite/epoxy box truss ring and the reflective panels of the system are described. Mass properties and dynamic analyses are performed to evaluate the center of gravity location and moments of inertia characteristics of the energy conversion subsystem (ECS). The deployable/erectable truss is applicable for large IR space telescopes and center and offset fed ECSs.

  5. Volume-dependent intracavernous hemodilution during pharmacologically induced penile erections.

    PubMed

    Siraj, Q H; Hilson, A J; Bomanji, J; Ahmed, M

    1992-11-01

    The change in the cavernous hematocrit following induction of pharmacological erection by an intracavernous injection of papaverine hydrochloride was documented in normal controls and patients with impotence. Blood samples taken from the penile cavernosa showed a significantly lower hematocrit compared to the systemic venous blood in all normal subjects. The decrease in the cavernous hematocrit was attributable to dilution of the cavernous blood pool by the injected volume of the drug, since this was not observed in erections produced by visual sexual stimulation. It appears that a restriction of the cavernous venous outflow in response to papaverine injection causes sequestration of the diluted blood in the cavernous compartment. The degree of cavernous hemodilution was found to aid in the differential diagnosis and was especially valuable in differentiating patients with arteriogenic impotence from those with venous leakage. PMID:1433546

  6. Brain potentials related to the human penile erection.

    PubMed

    Ponseti, J; Kropp, P; Bosinski, H A

    2009-01-01

    The aim of this study was to elucidate the brain processes preceding penile responses. Electroencephalographic (EEG) potentials and penile circumference were recorded simultaneously while male subjects were exposed to visual sexual stimuli (VSS). The trials were sorted by the penile response of the subjects (erection, maintenance or detumescence). The corresponding EEG recordings were then subjected to independent component analysis. We found that 200 ms after VSS onset brain potentials differ according to the genital response to follow. Whereas early posterior negativity (EPN) was predominantly related to erection and maintenance, P3-like activity was found to precede detumescence. EPN indicates a more 'emotional' processing state of the brain, whereas P3-like activity related to detumescence indicates a more 'cognitive' processing state. The latter is assumed to reflect activity of the locus coeruleus-norepinephrine system. Further research should evaluate the contribution of P3-related brain activity to psychogenic erectile dysfunction. PMID:19587685

  7. Engineering performance monitoring: Sustained contributions to plant performance improvement

    SciTech Connect

    Bebko, J.J. )

    1992-01-01

    With the aim of achieving excellence in an engineering department that makes both individual project-by-project contributions to plant performance improvement and sustained overall contributions to plant performance, the Niagara Mohawk Nuclear Engineering Department went back to the basics of running a business and established an Engineering Performance Monitoring System. This system focused on the unique products and services of the department and their cost, schedule, and quality parameters. The goals were to provide the best possible service to customers and the generation department and to be one of the best engineering departments in the industry.

  8. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  9. 16. 'Erection Plan for 1 236' Single Tr. Thro' Draw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. 'Erection Plan for 1 236' Single Tr. Thro' Draw Span over Sacramento River at Tehama Cal., Southern Pacific Co., The Phoenix Bridge Co., City Order: 952, Drawing No.: 2, Scale: 3/16' to 1', Engineer: F.G. Lippert, Drawn by: F.E. King, Date: May 20 98.' - Southern Pacific Railroad Shasta Route, Bridge No. 210.52, Milepost 210.52, Tehama, Tehama County, CA

  10. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  11. Erectable/deployable concepts for large space system technology

    NASA Technical Reports Server (NTRS)

    Agan, W. E.

    1980-01-01

    Erectable/deployable space structure concepts particularly relating to the development of a science and applications space platform are presented. Design and operating features for an automatic coupler clevis joint, a side latching detent joint, and a module-to-module auto lock coupler are given. An analysis of the packaging characteristics of stacked subassembly, single fold, hybrid, and double fold concepts is given for various platform structure configurations. Payload carrier systems and assembly techniques are also discussed.

  12. Deployable-erectable trade study for space station truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Wright, A. S., Jr.; Bush, H. G.; Watson, J. J.; Dean, E. B.; Twigg, L. T.; Rhodes, M. D.; Cooper, P. A.; Dorsey, J. T.; Lake, M. S.

    1985-01-01

    The results of a trade study on truss structures for constructing the space station are presented. Although this study was conducted for the reference gravity gradient space station, the results are generally applicable to other configurations. The four truss approaches for constructing the space station considered in this paper were the 9 foot single fold deployable, the 15 foot erectable, the 10 foot double fold tetrahedral, and the 15 foot PACTRUSS. The primary rational for considering a 9 foot single-fold deployable truss (9 foot is the largest uncollapsed cross-section that will fit in the Shuttle cargo bay) is that of ease of initial on-orbit construction and preintegration of utility lines and subsystems. The primary rational for considering the 15 foot erectable truss is that the truss bay size will accommodate Shuttle size payloads and growth of the initial station in any dimension is a simple extension of the initial construction process. The primary rational for considering the double-fold 10 foot tetrahedral truss is that a relatively large amount of truss structure can be deployed from a single Shuttle flight to provide a large number of nodal attachments which present a pegboard for attaching a wide variety of payloads. The 15 foot double-fold PACTRUSS was developed to incorporate the best features of the erectable truss and the tetrahedral truss.

  13. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method. PMID:17434170

  14. MAPK transgenic circuit to improve plant stress-tolerance?

    PubMed Central

    Moustafa, Khaled

    2014-01-01

    Thanks to their distinctive mode of action in a coordinated switch-like way, their multi-tiered signaling cascades and their involvement in cell responses to multiple internal and external stimuli, MAP kinases offer a remarkable possibility to be assembled into what we can call “MAPK transgenic circuits” to improve cell functions. Such circuit could be used to enhance cell signaling efficiency and boost cell functions for several purposes in plant biotechnology, medicine, and pharmaceutical industry. PMID:25482799

  15. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  16. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  17. Plant exomics: Concepts, applications and methodologies in crop improvement

    PubMed Central

    Hashmi, Uzair; Shafqat, Samia; Khan, Faria; Majid, Misbah; Hussain, Harris; Kazi, Alvina Gul; John, Riffat; Ahmad, Parvaiz

    2015-01-01

    Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops. PMID:25482786

  18. Structure determination and improved model of plant photosystem I.

    PubMed

    Amunts, Alexey; Toporik, Hila; Borovikova, Anna; Nelson, Nathan

    2010-01-29

    Photosystem I functions as a sunlight energy converter, catalyzing one of the initial steps in driving oxygenic photosynthesis in cyanobacteria, algae, and higher plants. Functionally, Photosystem I captures sunlight and transfers the excitation energy through an intricate and precisely organized antenna system, consisting of a pigment network, to the center of the molecule, where it is used in the transmembrane electron transfer reaction. Our current understanding of the sophisticated mechanisms underlying these processes has profited greatly from elucidation of the crystal structures of the Photosystem I complex. In this report, we describe the developments that ultimately led to enhanced structural information of plant Photosystem I. In addition, we report an improved crystallographic model at 3.3-A resolution, which allows analysis of the structure in more detail. An improved electron density map yielded identification and tracing of subunit PsaK. The location of an additional ten beta-carotenes as well as five chlorophylls and several loop regions, which were previously uninterpretable, are now modeled. This represents the most complete plant Photosystem I structure obtained thus far, revealing the locations of and interactions among 17 protein subunits and 193 non-covalently bound photochemical cofactors. Using the new crystal structure, we examine the network of contacts among the protein subunits from the structural perspective, which provide the basis for elucidating the functional organization of the complex. PMID:19923216

  19. Plant exomics: concepts, applications and methodologies in crop improvement.

    PubMed

    Hashmi, Uzair; Shafqat, Samia; Khan, Faria; Majid, Misbah; Hussain, Harris; Kazi, Alvina Gul; John, Riffat; Ahmad, Parvaiz

    2015-01-01

    Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops. PMID:25482786

  20. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. PMID:27372277

  1. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  2. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  3. Improving Nutritional Quality of Plant Proteins Through Genetic Engineering.

    PubMed

    Le, Dung Tien; Chu, Ha Duc; Le, Ngoc Quynh

    2016-06-01

    Humans and animals are unable to synthesize essential amino acids such as branch chain amino acids methionine (Met), lysine (Lys) and tryptophan (Trp). Therefore, these amino acids need to be supplied through the diets. Several essential amino acids are deficient or completely lacking among crops used for human food and animal feed. For example, soybean is deficient in Met; Lys and Trp are lacking in maize. In this mini review, we will first summarize the roles of essential amino acids in animal nutrition. Next, we will address the question: "What are the amino acids deficient in various plants and their biosynthesis pathways?" And: "What approaches are being used to improve the availability of essential amino acids in plants?" The potential targets for metabolic engineering will also be discussed, including what has already been done and what remains to be tested. PMID:27252589

  4. 208. Several of these checking stations, erected for feecollection purposes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    208. Several of these checking stations, erected for fee-collection purposes but never authorized to operate as such, were constructed on the parkway in the 1950's. They provided information on area accommodations. Locations included Rockfish Valley, Adney Gap, north and south of Roanoke, Asheville near Biltmore, and by the Oconaluftee River. All were removed by the 1980's, after cars ran into two structures and demolished them. The islands where these were located are now used for Pillar of Truth information displays. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  5. Soil management systems to improve water availability for plants

    NASA Astrophysics Data System (ADS)

    Klik, A.; Rosner, J.

    2009-04-01

    Due to climate change it is expected that the air temperature will increase and the amount as well as the variability of rainfall will change drastically within this century. Higher temperatures and fewer rainy days with more extreme events will increase the risk of surface runoff and erosion. This will lead to reduced soil water storage and therefore to a lower water use efficiency of plants. Soil and land management systems need to be applied and adapted to improve the amount of water stored in the soil and to ensure crop productivity functions of soils under changing climatic conditions. In a 14-yr. long field experiment, the effects of three soil management systems have been studied at three sites in Austria with respect to surface runoff, soil erosion, losses of nutrients and pesticides. Eight years after beginning of the project soil samples have been taken from different depth throughout the root zone to investigate the effects on soil properties. The results show that soil management systems with reduced tillage intensity are able to improve infiltration and soil water storage. More soil water enables plant development during longer dry periods and decreases amounts of irrigation. Overall, the higher water retention in the landscape improves the regional water balance and reduces environmental problems like soil erosion and nutrient and pesticide losses

  6. WindPACT Turbine Design Scaling Studies Technical Area 3 -- Self-Erecting Tower and Nacelle Feasibility: March 2000--March 2001

    SciTech Connect

    Global Energy Concepts, LLC

    2001-05-31

    The United States Department of Energy (DOE), through the National Renewable Energy Laboratory (NREL), has implemented the Wind Partnerships for Advanced Component Technologies (WindPACT) program to explore advanced technologies for improving the reliability and cost-effectiveness of wind energy technology. Global Energy Concepts (GEC) prepared this report on self-erecting towers as part of the WindPACT program. The objectives of the work were to identify potential methods for erecting wind turbine towers without the use of large conventional cranes, establish the most promising methods, and compare the costs of the most promising methods to the costs of conventional cranes.

  7. Improved conventional testing of power plant cables. Final report

    SciTech Connect

    Anadakumaran, K.; Braun, J.M.; DiPaul, J.A. |

    1995-09-01

    The objective of the project is to develop improved condition monitoring techniques to assess the condition of power plant cables, particularly the unshielded cables found in older thermal plants. The cables of interest were insulated with PVC, butyl rubber, SBR (styrene butadiene rubber), EPR (ethylene propylene rubber), PE and XLPE (crosslinked polyethylene) as either single conductor, twisted pair, shielded and unshielded. The cables were thermally aged to embrittlement and characterized by physical, chemical and electrical tests. Physical characterization included, in addition to reference tensile elongation, tests performed on microscopic samples for quasi-nondestructive examination. Different tests proved particularly suited to different types of insulation. The dielectric characterization underlined the value of performing tests at other than power frequency and/or dc. Electric field calculations were carried out to develop a field testing strategy for unshielded cables and notably to investigate the feasibility of providing a suitable ground plane by testing conductor to grounded conductors(s). Two major electrical diagnostic test techniques were investigated in detail, low frequency insulation analysis to probe the bulk condition of insulations and partial discharge (PD) testing to detect cracks and defects. PD testing is well established but more challenging to perform with unshielded cables. Because of the attenuation properties of typical plant cables, a dual ended detector configuration is necessary. Two novel techniques were developed to provide dual ended detection without need for a second cable as the return path from the far end detector.

  8. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  9. Power plant performance monitoring and improvement. Volume 1. Boiler optimization

    SciTech Connect

    Crim, H.G.

    1986-02-01

    The boiler portion of RP1681/2153 deals with the development of procedures for determining the optimum fireside operating conditions in a coal fired power plant and the development of instrumentation and monitoring systems for achieving the resulting improvements in heat rate. This annual report describes the rsults of the project for the period beginning in October, 1982. A computer code was developed which takes information on the plant and calculates heat rate as a function of parameters such as excess air and steam flow rate. Computational results obtained to date for Potomac Electric Power Company's Morgantown Unit No. 2 show that the net unit heat rate is a very sensitive function of grind size of the coal, level of excess air and exit gas temperature. The theoretical calculations suggest that by optimizing these three parameters, improvements in net unit heat rate of the order of 100 Btu/Kwh may be possible at Morgantown. An intrumentation assessment was carried out. Preparations are underway for boiler tests.

  10. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  11. 32 CFR 643.115 - Contractors-Permission to erect structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Contractors-Permission to erect structures. 643.115 Section 643.115 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders § 643.115 Contractors—Permission to erect structures. Installation commanders...

  12. 32 CFR 643.115 - Contractors-Permission to erect structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Contractors-Permission to erect structures. 643.115 Section 643.115 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders § 643.115 Contractors—Permission to erect structures. Installation commanders...

  13. Manipulation of Carotenoid Content in Plants to Improve Human Health.

    PubMed

    Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo

    2016-01-01

    Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health. PMID:27485228

  14. PG&E`s Geysers` Power Plant improvements - past, present, and future

    SciTech Connect

    Louden, P.; Southall, W.; Paquin, C.

    1996-04-10

    Geothermal power plant retrofits can improve plant efficiency, reduce operations and maintenance costs, as well as increase plant availability. All geothermal power producers must find new ways to become more competitive as the electric power industry becomes deregulated. To survive and thrive in the competitive power generation market, geothermal plant operators must continually look for economic power plant upgrades that reduce the cost of production and improve availability. This paper describes past and present power plant retrofits as well as shows how further research can help future plant improvements. Past power plant retrofits at Pacific Gas and Electric Company`s Geysers Power Plants include innovative H{sub 2}S burners that reduced chemical costs and a turbine jack-shaft that improved unit efficiency. Other important retrofits that dramatically reduced turbine forced outage and repair costs were turbine blade and nozzle changes, turbine weld repairs, and steam desuperheating.

  15. Cyclic AMP-dependent phosphorylation of neuronal nitric oxide synthase mediates penile erection

    PubMed Central

    Hurt, K. Joseph; Sezen, Sena F.; Lagoda, Gwen F.; Musicki, Biljana; Rameau, Gerald A.; Snyder, Solomon H.; Burnett, Arthur L.

    2012-01-01

    Nitric oxide (NO) generated by neuronal NO synthase (nNOS) initiates penile erection, but has not been thought to participate in the sustained erection required for normal sexual performance. We now show that cAMP-dependent phosphorylation of nNOS mediates erectile physiology, including sustained erection. nNOS is phosphorylated by cAMP-dependent protein kinase (PKA) at serine(S)1412. Electrical stimulation of the penile innervation increases S1412 phosphorylation that is blocked by PKA inhibitors but not by PI3-kinase/Akt inhibitors. Stimulation of cAMP formation by forskolin also activates nNOS phosphorylation. Sustained penile erection elicited by either intracavernous forskolin injection, or augmented by forskolin during cavernous nerve electrical stimulation, is prevented by the NOS inhibitor l-NAME or in nNOS-deleted mice. Thus, nNOS mediates both initiation and maintenance of penile erection, implying unique approaches for treating erectile dysfunction. PMID:23012472

  16. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice

    PubMed Central

    Chen, Qiaoling; Xie, Qingjun; Gao, Ju; Wang, Wenyi; Sun, Bo; Liu, Bohan; Zhu, Haitao; Peng, Haifeng; Zhao, Haibing; Liu, Changhong; Wang, Jiang; Zhang, Jingliu; Zhang, Guiquan; Zhang, Zemin

    2015-01-01

    Leaf morphology, particularly in crop, is one of the most important agronomic traits because it influences the yield through the manipulation of photosynthetic capacity and transpiration. To understand the regulatory mechanism of leaf morphogenesis, an Oryza sativa dominant mutant, rolled and erect leaf 1 (rel1) has been characterized. This mutant has a predominant rolled leaf, increased leaf angle, and reduced plant height phenotype that results in a reduction in grain yield. Electron microscope observations indicated that the leaf incurvations of rel1 dominant mutants result from the alteration of the size and number of bulliform cells. Molecular cloning revealed that the rel1 dominant mutant phenotype is caused by the activation of the REL1 gene, which encodes a novel unknown protein, despite its high degree of conservation among monocot plants. Moreover, the downregulation of the REL1 gene in the rel1 dominant mutant restored the phenotype of this dominant mutant. Alternatively, overexpression of REL1 in wild-type plants induced a phenotype similar to that of the dominant rel1 mutant, indicating that REL1 plays a positive role in leaf rolling and bending. Consistent with the observed rel1 phenotype, the REL1 gene was predominantly expressed in the meristem of various tissues during plant growth and development. Nevertheless, the responsiveness of both rel1 dominant mutants and REL1-overexpressing plants to exogenous brassinosteroid (BR) was reduced. Moreover, transcript levels of BR response genes in the rel1 dominant mutants and REL1-overexpressing lines were significantly altered. Additionally, seven REL1-interacting proteins were also identified from a yeast two-hybrid screen. Taken together, these findings suggest that REL1 regulates leaf morphology, particularly in leaf rolling and bending, through the coordination of BR signalling transduction. PMID:26142419

  17. Advanced control strategy for plant heat rate improvement

    SciTech Connect

    Schultz, P.; Frerichs, D.K.; Kyr, D.

    1995-12-31

    Florida Power & Light Company (FPL) supplies electricity to about half of the population of Florida, roughly 6.5 million people. The load base is largely residential/business with the obvious seasonal extremes due to the climate. FPL`s generating capacity is 16,320 MW composed of 70% traditional fossil cycle, 18% nuclear, and 12% gas turbine. The system load profile coupled with bulk power purchases is such that the 400 MW class units (9 Foster Wheeler drum type units comprising 24% of total capacity) are now forced to cycle daily all year, and to come off line on weekends during the winter months. The current economic realities of power generation force utility companies to seek methods to improve plant heat rate, and FPL is no exception. FPL believed it possible to achieve the goal of lower heat rate and follow the required load demand with the 400 MW class units through the use of an advanced control strategy implemented totally within the unit`s Distributed Control System (DCS). As of the writing of this paper, the project is still ongoing. This paper will present the theory and methodology of the advanced control strategy along with the current design and implementation status and results obtained to date.

  18. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    SciTech Connect

    Not Available

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  19. Electrophysiological actions of the dopamine agonist apomorphine in the paraventricular nucleus during penile erection.

    PubMed

    Richards, Natalie; Wayman, Chris; Allers, Kelly A

    2009-11-20

    The ability to achieve and maintain penile erection is necessary for successful copulation. Studies have demonstrated that dopamine receptor stimulation in the paraventricular nucleus (PVN) of the hypothalamus induces penile erection in rodents, and the dopamine agonist apomorphine has been used to treat erectile dysfunction. The aim of this study was to determine the electrophysiological characteristics of PVN neuronal firing activity in anaesthetised rodents during apomorphine-induced erection. Our findings can be placed in two categories; those effects that occur immediately upon apomorphine administration and continue for up to several minutes prior to penile erection, deemed 'pre-erectile', and those effects that were only observed during penile erection and seminal emission. In the pre-erectile period, apomorphine acts on two different populations of PVN neurons to increase or decrease firing rates and increases alpha1 frequency band power in local field potentials. Decreased delta and increased theta frequency power in PVN local field potentials occur only during penile erection and seminal emission. These studies provide further understanding of the coordinated neuronal activity that occurs in the PVN during apomorphine-induced penile erection. PMID:19733217

  20. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?

    PubMed

    Bouis, Howarth E

    2003-05-01

    Can commonly-eaten food staple crops be developed that fortify their seeds with essential minerals and vitamins? Can farmers be induced to grow such varieties? If so, would this result in a marked improvement in human nutrition at a lower cost than existing nutrition interventions? An interdisciplinary international effort is underway to breed for mineral- and vitamin-dense varieties of rice, wheat, maize, beans and cassava for release to farmers in developing countries. The biofortification strategy seeks to take advantage of the consistent daily consumption of large amounts of food staples by all family members, including women and children as they are most at risk for micronutrient malnutrition. As a consequence of the predominance of food staples in the diets of the poor, this strategy implicitly targets low-income households. After the one-time investment is made to develop seeds that fortify themselves, recurrent costs are low and germplasm may be shared internationally. It is this multiplier aspect of plant breeding across time and distance that makes it so cost-effective. Once in place, the biofortified crop system is highly sustainable. Nutritionally-improved varieties will continue to be grown and consumed year after year, even if government attention and international funding for micronutrient issues fades. Biofortification provides a truly feasible means of reaching malnourished populations in relatively remote rural areas, delivering naturally-fortified foods to population groups with limited access to commercially-marketed fortified foods that are more readily available in urban areas. Biofortification and commercial fortification are, therefore, highly complementary. Breeding for higher trace mineral density in seeds will not incur a yield penalty. Mineral-packed seeds sell themselves to farmers because, as recent research has shown, these trace minerals are essential in helping plants resist disease and other environmental stresses. More seedlings

  1. Exploring high throughput phenotyping, plant architecture and plant-boll distribution for improving drought tolerance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a pressing need to identify and understand the effects of different irrigation regimes on plant-boll distribution, seed cotton yield, and plant architecture for improving yield and fiber quality under stress and/or drought tolerance of cotton (Gossypium spp.) cultivars. To identify the impa...

  2. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  3. Crop Improvement through Modification of the Plant's Own Genome

    PubMed Central

    Rommens, Caius M.; Humara, Jaime M.; Ye, Jingsong; Yan, Hua; Richael, Craig; Zhang, Lynda; Perry, Rachel; Swords, Kathleen

    2004-01-01

    Plant genetic engineering has, until now, relied on the incorporation of foreign DNA into plant genomes. Public concern about the extent to which transgenic crops differ from their traditionally bred counterparts has resulted in molecular strategies and gene choices that limit, but not eliminate, the introduction of foreign DNA. Here, we demonstrate that a plant-derived (P-) DNA fragment can be used to replace the universally employed Agrobacterium transfer (T-) DNA. Marker-free P-DNAs are transferred to plant cell nuclei together with conventional T-DNAs carrying a selectable marker gene. By subsequently linking a positive selection for temporary marker gene expression to a negative selection against marker gene integration, 29% of derived regeneration events contain P-DNA insertions but lack any copies of the T-DNA. Further refinements are accomplished by employing Ω-mutated virD2 and isopentenyl transferase cytokinin genes to impair T-DNA integration and select against backbone integration, respectively. The presented methods are used to produce hundreds of marker-free and backbone-free potato (Solanum tuberosum) plants displaying reduced expression of a tuber-specific polyphenol oxidase gene in potato. The modified plants represent the first example of genetically engineered plants that only contain native DNA. PMID:15133156

  4. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... concrete in the footings, piers and walls and the mortar in the masonry piers and walls has attained, on... erect steel unless it has received written notification that the concrete in the footings, piers...

  5. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concrete in the footings, piers and walls and the mortar in the masonry piers and walls has attained, on... erect steel unless it has received written notification that the concrete in the footings, piers...

  6. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... concrete in the footings, piers and walls and the mortar in the masonry piers and walls has attained, on... erect steel unless it has received written notification that the concrete in the footings, piers...

  7. 29 CFR 1926.752 - Site layout, site-specific erection plan and construction sequence.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... concrete in the footings, piers and walls and the mortar in the masonry piers and walls has attained, on... erect steel unless it has received written notification that the concrete in the footings, piers...

  8. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  9. Process energy efficiency improvement in Wisconsin cheese plants

    SciTech Connect

    Zehr, S.; Mitchell, J.; Reinemann, D.; Klein, S.; Reindl, D.

    1997-07-01

    Costs for the energy involved in cheese making has a major impact on profit. Although industrial cheese plants differ in size, production equipment, and the manner in which whey is processed, there are common elements in most plants. This paper evaluates several process integration opportunities at two representative cheese plants in Wisconsin. Pinch analysis is used to help assess the heat recovery potential for the major thermal processes in the plants. The potential of using packaged cheese as a thermal storage medium to allow electrical demand shifting in the cold storage warehouse is evaluated and shown to be feasible. Three major conservation measures are identified with a total cost savings of $130,000 to $160,000 annually.

  10. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  11. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  12. Bromeliad-living spiders improve host plant nutrition and growth.

    PubMed

    Romero, Gustavo Q; Mazzafera, Paulo; Vasconcellos-Neto, Joao; Trivelin, Paulo C O

    2006-04-01

    Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceae may be more common than previously thought. PMID:16676522

  13. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  14. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  15. Millwater Pumping System Optimization Improves Efficiency and Saves Energy at an Automotive Glass Plant

    SciTech Connect

    2003-03-01

    In 2001, the Visteon automotive glass plant in Nashville, Tennessee renovated its millwater pumping system. This improvement saved the plant $280,000 annually in energy and operating costs, reduced annual energy consumption by 3.2 million kilowatt-hours, reduced water consumption, improved system performance, and reduced use of water treatment chemicals.

  16. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture. PMID:23271460

  17. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  18. Nitric Oxide Improves Internal Iron Availability in Plants1

    PubMed Central

    Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo

    2002-01-01

    Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068

  19. PHYTOCHEMICALS IN PLANTS: GENOMICS-ASSISTED PLANT IMPROVEMENT FOR NUTRITIONAL AND HEALTH BENEFITS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants are an important source of essential nutrients and health-beneficial components that are crucial for human life. Because the intake of these phytochemicals is not always adequate, the resources of plant biotechnology are being used to enhance the nutritional quality of our plant-based food s...

  20. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  1. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  2. Improved outage management techniques for better plant availability

    SciTech Connect

    Bemer, J.P.

    1989-01-01

    To maintain high availability of nuclear generating units is one of the most important management objectives. The duration of outages-whether planned or unplanned-is the main parameter impacting on plant availability, but the planned outages, and essentially the refueling outages, are the most important in this respect, and they also have a heavy impact on the economics of plant operation. The following factors influence the duration of the outages: (1) modifications; (2) preventive maintenance operations; and (3) corrective maintenance operations of generic faults. In this paper, the authors examine how the outage management organization of Electricite de France (EdF) plants is tending to optimize the solutions to the above-mentioned points.

  3. Using plant canopy temperature to improve irrigated crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  4. An Improved Quantitative Analysis Method for Plant Cortical Microtubules

    PubMed Central

    Lu, Yi; Huang, Chenyang; Wang, Jia; Shang, Peng

    2014-01-01

    The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies. PMID:24744684

  5. [Evaluation of the efficacy of recombinant human erythropoietin (rHuEPO) administration on penile erection in males undergoing hemodialysis and effect on pituitary-gonadal function].

    PubMed

    Kuwahara, M; Takagi, N; Nishitani, M; Matsushita, K; Ohta, K; Nakamura, K; Fujisaki, N

    1995-04-01

    Recombinant human erythropoietin (rHuEPO) was administered to males undergoing hemodialysis, and its effects on penile erection and hypothalamus-pituitary-gonadal hormone levels were studied. The subject consisted of 18 males undergoing hemodialysis ranging in age from 22 to 58 years (mean 45.3 years). Chronic glomerulonephritis was present in 16, and diabetic nephropathy in 2, as underlying disease. rHuEPO was administered intravenously at 1,500 U 3 times a week with a target to increase the Ht value to 25% or above. Penile erection was evaluated subjectively by a questionnaire based on a visual analogue scale and objectively by semi quantitative measurement of nocturnal penile tumescence (NPT) using an erectometer. Of the 18 patients, subjective improvements in penile erection were observed in 13 (72%), and objective improvements in NPT were observed in 10 (56%). The administration of rHuEPO may alleviate hyperprolactinemia but was found to have no effect on the FSH, LH, Zn, or HS-PTH level. rHuEPO was suggested to be fairly effective for the treatment of sexual disorders. PMID:7776560

  6. Compressed Air System Optimization Project Saves Energy and Improves Production at a Citation Forging Plant

    SciTech Connect

    2003-05-01

    In the 1990s, a subsidiary of the Citation Corporation, Interstate Forging, implemented a compressed air system improvement project at its Milwaukee, Wisconsin, forging plant. This improvement enabled the plant to maintain an adequate and stable pressure level using fewer compressors, which led to improved product quality and lower production downtime. The project also yielded annual energy savings of 820,000 kWh and $45,000. With a total project cost of $67,000, the plant achieved a simple payback of just 1.5 years.

  7. Citation Corporation: Compressed Air System Optimization Project Saves Energy and Improves Production at Forging Plant

    SciTech Connect

    Not Available

    2003-05-01

    In the 1990s, a subsidiary of the Citation Corporation, Interstate Forging, implemented a compressed air system improvement project at its Milwaukee, Wisconsin, forging plant. This improvement enabled the plant to maintain an adequate and stable pressure level using fewer compressors, which led to improved product quality and lower production downtime. The project also yielded annual energy savings of 820,000 kWh and$45,000. With a total project cost of$67,000, the plant achieved a simple payback of just 1.5 years.

  8. Improved tritium monitoring at the Pantex Nuclear Weapons Plant

    SciTech Connect

    Brain, W.F.; Click, C.N.; Griffis, D.W.

    1995-12-31

    This paper describes the development of a system capable of sampling ambient levels of both elemental and oxidized tritium in ambient air at the US Department of Energy`s Pantex Nuclear Weapons Plant. The system of monitors uses a combination of commercial laboratory equipment and custom fabricated components. Problems inherent in tritium sampling, and those specific to weather extremes in Texas, were identified and researched. Experience with the sampling network is still limited, but concentrations of oxidized tritium are presently comparable to the original sampling network.

  9. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  10. Predicted Efficiency of Spaced Plant Selection to Indirectly Improve Tall Fescue Sward Yield and Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The validity of spaced plant evaluation to determine sward performance of forage grasses has oft been questioned. This experiment studied the efficiency of spaced plant evaluation to indirectly improve sward yield and nutritional quality in tall fescue (Festuca arundinacea Schreb.). A tall fescue ...

  11. Application of microbial inoculants promote plant growth, increased nutrient uptake and improve root morphology of corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing fertilizers impacts from agriculture is a world-wide concern, both from an environmental and human health perspective. One way to reduce impacts of fertilizers is by enhancing plant uptake which improves nutrient use efficiency and also potentially reduce the amounts of fertilizer needed. ...

  12. Edwin I. Hatch nuclear plant implementation of improved technical specifications

    SciTech Connect

    Mahler, S.R.; Pendry, D.

    1994-12-31

    Edwin I. Hatch nuclear plant consists of two General Electric boiling water reactor/4 units, with a common control room and a common refueling floor. In March 1993, Hatch began conversion of both units` technical specifications utilizing NUREG 1433. The technical specifications amendment request was submitted February 25, 1994. Issuance is scheduled for October 21, 1994, with implementation on March 15, 1994. The current unit-1 technical specifications are in the {open_quotes}custom{close_quotes} format, and the unit-2 technical specifications are in the old standard format. Hatch previously relocated the fire protection and radiological technical specifications requirements. The Hatch conversion will provide consistency between the two units, to the extent practicable.

  13. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  14. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  15. Deployable and erectable concepts for large spacecraft. [determining structural proportions of space platforms for STS delivery

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Heard, W. L., Jr.; Walz, J. E.; Rehder, J. J.

    1980-01-01

    Computerized structural sizing techniques were used to determine structural proportions of minimum mass tetrahedral truss platforms designed for low Earth and geosynchronous orbit. Optimum (minimum mass) deployable and erectable, hexagonal shaped spacecraft are sized to satisfy multiple design requirements and constraints. Strut dimensions characterizing minimum mass designs are found to be significantly more slender than those conventionally used for structural applications. Comparison studies show that mass characteristics of deployable and erectable platforms are approximately equal and that the shuttle flights required by deployable trusses become excessive above certain critical stiffness values. Recent investigations of eractable strut assembly are reviewed. Initial erectable structure assembly experiments show that a pair of astronauts can achieve EVA assembly times of 2-5 min/strut and studies indicate that an automated assembler can achieve times of less than 1 min/strut for around the clock operation.

  16. Electromyographic analysis of male rat perineal muscles during copulation and reflexive erections.

    PubMed

    Holmes, G M; Chapple, W D; Leipheimer, R E; Sachs, B D

    1991-06-01

    Anatomical examination of the ventral bulbospongiosus (BS) muscle suggested that its proximal and distal portions may act during penile erection as a two-stage pump governing the intensity of glans erections. The coordination between these portions of the BS, and of the proximal BS with the ischiocavernosus (IC) muscle, was studied using electromyographic (EMG) recordings taken during copulation and reflexive erections. Mounts without intromission were accompanied by either strong IC activity with little or no proximal BS activity, or strong proximal BS activity preceding the onset of IC activity. Activity in the proximal BS during mounts was variable in both duration and amplitude but uniform in frequency. During mounts with intromission, EMG activity of the proximal BS consisted of two characteristic phases, an early phase of low-amplitude activity which was similar to proximal BS activity during nonintromissive mounts, followed by an intromissive phase of high-amplitude, high-frequency activity. During intromission patterns, IC activity reliably preceded proximal BS activity. Ejaculations were accompanied by stronger proximal BS activity than were other copulatory events and were followed by a series of proximal BS and IC bursts lasting for 10-20 seconds. During reflexive erections, EMG activity in the proximal BS was always fusiform and varied with the intensity of erection only in frequency. In contrast to the proximal BS, activity in the distal BS was similar in frequency and amplitude across copulatory and reflexive events. These findings suggest that: a) different motoneuron pools serve the different portions of the BS muscle; b) the distal BS does not differentially affect glans erection but may serve primarily to promote rigidity of the portion of the bulb that it surrounds, while the proximal BS acts as the variable aspect of a hypothetical two-stage pump, and c) activity in the IC must precede activity in the proximal BS to achieve intromission. PMID

  17. A synthetic erectile optogenetic stimulator enabling blue-light-inducible penile erection.

    PubMed

    Kim, Taeuk; Folcher, Marc; Doaud-El Baba, Marie; Fussenegger, Martin

    2015-05-11

    Precise spatiotemporal control of physiological processes by optogenetic devices inspired by synthetic biology may provide novel treatment opportunities for gene- and cell-based therapies. An erectile optogenetic stimulator (EROS), a synthetic designer guanylate cyclase producing a blue-light-inducible surge of the second messenger cyclic guanosine monophosphate (cGMP) in mammalian cells, enabled blue-light-dependent penile erection associated with occasional ejaculation after illumination of EROS-transfected corpus cavernosum in male rats. Photostimulated short-circuiting of complex psychological, neural, vascular, and endocrine factors to stimulate penile erection in the absence of sexual arousal may foster novel advances in the treatment of erectile dysfunction. PMID:25788334

  18. Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress.

    PubMed

    Tian, Fengxia; Gong, Jiangfeng; Zhang, Jin; Feng, Yanan; Wang, Guokun; Guo, Qifang; Wang, Wei

    2014-09-01

    The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance. PMID:25113454

  19. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  20. Ongoing Control System Modernization Project at a Steel Plant Improves Operations (Weirton Plant)

    SciTech Connect

    2000-12-01

    Weirton Steel Corporation is the eighth largest steel producer in the U.S. and its main manufacturing facility is located in Weirton, West Virginia. In 1998 Weirton Steel successfully implemented a project at its Weirton plant in which it modernized the control systems on its utilities and built a control center in a central location from which those utilities could be monitored.

  1. Application of plant genomics for improved symbiotic nitrogen fixation in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because genome sequencing, transcript profiling, proteome analysis, metabolite profiling, mutant analysis, and comparative genomics have progressed at a logarithmic pace, we know more about the plant genes involved in symbiotic nitrogen fixation (SNF) than could have been imagined a decade ago. Howe...

  2. BOOK REVIEW OF "IMPROVEMENT OF CROP PLANTS FOR INDUSTRIAL END USE"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Industrial crops are acquiring greater importance as countries seek to reduce their dependence on raw materials and energy derived from fossil sources. Thus, a thorough assessment of the prospects for improving industrial crops is timely. The book Improvement of Crop Plants for Industrial End Use, r...

  3. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-01

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants. PMID:27164447

  4. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.)

    PubMed Central

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-01-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisation, leaf protein and chlorophyll content of the host plants were observed. The results revealed that the inocula successfully colonised roots of the host plants. Plants inoculated with Acetobacter diazotrophicus (R12) had more root dry weight and volume than plants inoculated with Azospirillum brasilense (Sp7). Leaf protein and chlorophyll content were higher in the bacterised plants compared to Control 2 plants (inoculated with killed Sp7). These results suggest that the diazotrophs successfully improved the growth of the host plant (oil palm) and minimised the amount of N fertiliser necessary for growth. PMID:24575180

  5. Automated construction of lightweight, simple, field-erected structures

    NASA Technical Reports Server (NTRS)

    Leonard, R. S.

    1980-01-01

    The feasibility of automation of construction processes which could result in mobile construction robots is examined. The construction of a large photovoltaic power plant with a peak power output of 100 MW is demonstrated. The reasons to automate the construction process, a conventional construction scenario as the reference for evaluation, and a list of potential cost benefits using robots are presented. The technical feasibility of using robots to construct SPS ground stations is addressed.

  6. Condom-associated erection problems: behavioural responses and attributions in young, heterosexual men

    PubMed Central

    Hill, Brandon J.; Sanders, Stephanie A.; Crosby, Richard A.; Ingelhart, Kara N.; Janssen, Erick

    2015-01-01

    Background Previous studies have associated men who experience condom-associated erection problems (CAEP) with incomplete condom use and/or foregoing using condoms altogether. However, how men respond to CAEP and what they attribute CAEP to, remains unclear. Understanding young men's CAEP responses and attributions could help improve sexually transmissible infections (STI)/HIV prevention programs and interventions. Methods Behavioural responses to, and attributions for, CAEP during application (CAEP-Application) and/or during penile-vaginal intercourse (CAEP-PVI) were reported using an online questionnaire by 295 young, heterosexual men (aged 18–24 years) who were recruited via social media websites and university Listservs across major cities in the Midwestern USA. Results Behavioural responses to CAEP-Application included receiving oral or manual stimulation, stimulating a partner, self-stimulation, foregoing condom use and applying the condom after starting intercourse. Attributions for CAEP-Application included: distraction, fit and feel problems, application taking too long and having consumed too much alcohol. Behavioural responses to CAEP-PVI included increasing the intensity of intercourse, removing the condom to receive oral or manual stimulation and removing condom and continuing intercourse. Attributions for CAEP-PVI included: lack of sensation, taking too long to orgasm, not being ‘turned on’ enough, fit and feel problems and partner-related factors. Conclusions Men who report CAEP respond with both STI/HIV risk-reducing and potentially risk-increasing behaviours (e.g. forgoing condom use). Men attribute their experiences to a wide range of individual- and partner-level factors. Addressing men's CAEP behavioural responses and attributions may increase the efficacious value of condom programs and STI/HIV prevention interventions – particularly among men who experience CAEP. PMID:26166025

  7. Condom-Associated Erection Problems: A Study of High-Risk Young Black Males Residing in the Southern United States.

    PubMed

    Graham, Cynthia A; Crosby, Richard; Sanders, Stephanie; Milhausen, Robin; Yarber, William L

    2016-03-01

    Previous research indicates that young men may experience condom-associated erection loss and that these problems may lead to inconsistent or incomplete condom use. The primary aim of this study was to assess, using a retrospective recall period of 2 months, correlates of condom-associated erection problems among young Black men attending sexually transmitted infection (STI) clinics. Data were collected in clinics treating patients with STIs in three southern U.S. cities. Males 15 to 23 years of age who identified as Black/African American and reported recent (past 2 months) condom use were eligible. A total of 494 men participated. Nineteen percent reported that condom-associated erection problems during condom application occurred at least once, and 17.8% indicated erection difficulties occurred during sexual intercourse at least once in the past 2 months. Multivariate analyses identified that condom-associated erection problems were associated with reports of sex with more than one partner during the recall period, reported problems with condom fit and feel, lower motivation to use condoms, and attempts at condom application before having a full erection. Findings suggest that clinic interventions should address possible condom-associated erection problems among young Black men who are at risk of STIs. Encouraging men who may be vulnerable to erection loss when condoms are used to allow sufficient time for sexual arousal to build may be an effective strategy. PMID:25475105

  8. 32 CFR 643.118 - Nonappropriated funds-Authority to permit erection of structures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Nonappropriated funds-Authority to permit erection of structures. 643.118 Section 643.118 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders § 643.118 Nonappropriated funds—Authority to permit...

  9. 32 CFR 643.118 - Nonappropriated funds-Authority to permit erection of structures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Nonappropriated funds-Authority to permit erection of structures. 643.118 Section 643.118 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders §...

  10. 32 CFR 643.118 - Nonappropriated funds-Authority to permit erection of structures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Nonappropriated funds-Authority to permit erection of structures. 643.118 Section 643.118 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders §...

  11. 32 CFR 643.118 - Nonappropriated funds-Authority to permit erection of structures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Nonappropriated funds-Authority to permit erection of structures. 643.118 Section 643.118 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders § 643.118 Nonappropriated funds—Authority to permit...

  12. 32 CFR 643.118 - Nonappropriated funds-Authority to permit erection of structures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Nonappropriated funds-Authority to permit erection of structures. 643.118 Section 643.118 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE Additional Authority of Commanders §...

  13. 76 FR 33786 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Steel Erection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-09

    ... Federal Register on March 2, 2011 (76 FR 11516). Interested parties are encouraged to send comments to the...; Steel Erection ACTION: Notice. SUMMARY: The Department of Labor (DOL) is submitting the Occupational Safety and Health Administration (OSHA) sponsored information collection request (ICR) titled,...

  14. SPERTI Control Building (PER601). Preengineered metal frame building is erected, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Control Building (PER-601). Pre-engineered metal frame building is erected, with metal siding on part of one side. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1002 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. A.J. STEVENS MEMORIAL, “ERECTED TO A FRIEND OF LABOR BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A.J. STEVENS MEMORIAL, “ERECTED TO A FRIEND OF LABOR BY HIS COWORKERS, NOV. 28, 1889.” CESAR CHAVEZ PLAZA, SACRAMENTO, CA. STEVENS WAS MASTER MECHANIC AT SACRAMENTO SHOPS FROM 1870-1888. - Southern Pacific, Sacramento Shops, 111 I Street, Sacramento, Sacramento County, CA

  16. 31. VIEW LOOKING AFT TOWARD WHEELHOUSE ERECTED IN THE 1940s. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW LOOKING AFT TOWARD WHEELHOUSE ERECTED IN THE 1940s. CREW MEMBER IS UNKNOWN. Original 3-1/2'x4-1/4' photograph taken c. 1930? - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  17. CONTROL HOUSE, TRA620. MASONS ERECT PUMICE BLOCK WALLS. BUILDING WILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL HOUSE, TRA-620. MASONS ERECT PUMICE BLOCK WALLS. BUILDING WILL CONTROL ACCESS TO MTR AND OTHER "HOT" AND CLASSIFIED AREAS. INL NEGATIVE NO. 577. Unknown Photographer, 9/11/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Portal Crane P51, 50ton Crane. Erecting side trusses and ladder. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Portal Crane P-51, 50-ton Crane. Erecting side trusses and ladder. Looking east. Taken April 12, 1920. 14th Naval District Photo Collection Item No. 3207 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  19. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  20. Power plant performance monitoring and improvement. Volume 3. Power plant performance instrumentation systems

    SciTech Connect

    Crim, H.G.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Parkinson, D.W.; Czuba, J.S.

    1986-02-01

    PEPCO's Morgantown Unit 2 and the PJM system control center are serving as the test facilities for this project. This first phase of the project utilizes currently (or soon to be) available instrumentation for monitoring and analyzing plant and system performance on a continuous basis. The overall approach is to demonstrate in one facility all sensors, monitoring devices, and necessary computer hardware and software for on-line performance monitoring and dispatch purposes. Significant developments include turbine packing leakage measurement, condenser back-pressure measurement, power cycle testing, and studies of the application of advanced instrumentation to system dispatch.

  1. Indefatigable: an erect coralline alga is highly resistant to fatigue.

    PubMed

    Denny, Mark; Mach, Katharine; Tepler, Sarah; Martone, Patrick

    2013-10-15

    Intertidal organisms are subjected to intense hydrodynamic forces as waves break on the shore. These repeated insults can cause a plant or animal's structural materials to fatigue and fail, even though no single force would be sufficient to break the organism. Indeed, the survivorship and maximum size of at least one species of seaweed is set by the accumulated effects of small forces rather than the catastrophic imposition of a single lethal force. One might suppose that fatigue would be especially potent in articulated coralline algae, in which the strain of the entire structure is concentrated in localized joints, the genicula. However, previous studies of joint morphology suggest an alternative hypothesis. Each geniculum is composed of a single tier of cells, which are attached at their ends to the calcified segments of the plant (the intergenicula) but have minimal connection to each other along their lengths. This lack of neighborly attachment potentially allows the weak interfaces between cells to act as 'crack stoppers', inhibiting the growth of fatigue cracks. We tested this possibility by repeatedly loading fronds of Calliarthron cheilosporioides, a coralline alga common on wave-washed shores in California. When repeatedly loaded to 50-80% of its breaking strength, C. cheilosporioides commonly survives more than a million stress cycles, with a record of 51 million. We show how this extraordinary fatigue resistance interacts with the distribution of wave-induced water velocities to set the limits to size in this species. PMID:24068348

  2. Luminant's Big Brown Plant wins for continuous improvement and safety programs

    SciTech Connect

    Peltier, R.

    2008-07-15

    Staff from Luminant's Big Brown Plant accepted the PRB Coal Users' Group's top honour for innovative improvements to coal-handling systems and a sterling safety record. The numbers reveal their accomplishments: an average EFOR less than 4%, an availability factor averaging 90% for a plant that burns a lignite/PRB mix, and staff who worked more than 2.6 million man-hours since March 2000 without a lost-time injury. 13 photos., 1 tab.

  3. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance.

    PubMed

    Caldeira, Cecilio F; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions. PMID:25370944

  4. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance

    PubMed Central

    Caldeira, Cecilio F.; Jeanguenin, Linda; Chaumont, François; Tardieu, François

    2014-01-01

    Circadian rhythms enable plants to anticipate daily environmental variations, resulting in growth oscillations under continuous light. Because plants daily transpire up to 200% of their water content, their water status oscillates from favourable during the night to unfavourable during the day. We show that rhythmic leaf growth under continuous light is observed in plants that experience large alternations of water status during an entrainment period, but is considerably buffered otherwise. Measurements and computer simulations show that this is due to oscillations of plant hydraulic conductance and plasma membrane aquaporin messenger RNA abundance in roots during continuous light. A simulation model suggests that circadian oscillations of root hydraulic conductance contribute to acclimation to water stress by increasing root water uptake, thereby favouring growth and photosynthesis. They have a negative effect in favourable hydraulic conditions. Climate-driven control of root hydraulic conductance therefore improves plant performances in both stressed and non-stressed conditions. PMID:25370944

  5. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  6. Water stress preconditioning to improve drought resistance in young apricot plants.

    PubMed

    Ruiz-Sánchez; Domingo; Torrecillas; Pérez-Pastor

    2000-07-28

    The effect of water stress preconditioning was studied in 1-year-old apricot plants (Prunus armeniaca L., cv. Búlida). Plants were submitted to different treatments, T-0 (control treatment) and T-1, drip irrigated daily; T-2 and T-3, irrigated daily at 50% and 25% of T-0, respectively; T-4 and T-5, irrigated to field capacity every 3 and 6 days, respectively. After 30 days, irrigation was withheld for 10 days, maintaining the T-0 treatment irrigated daily. After this period, the plants were re-irrigated to run-off and treated as control treatment. The stomatal closure and epinasty observed in response to water stress represented adaptive mechanisms to drought, allowing the plants to regulate water loss more effectively and prevent leaf heating. A substantial reduction in the irrigation water supplied combined with a high frequency of application (T-3 treatment) promoted plant hardening; the plants enduring drought better, due to their greater osmotic adjustment (0.77 MPa), which prevented severe plant dehydration and leaf abscission. Such a preconditioning treatment may be valuable for young apricot plants in the nursery stage in order to improve their subsequent resistance to drought. A 50% reduction in daily irrigation (T-2 treatment) did not significantly affect either gas exchange rates or leaf turgor, which suggests that water should be applied frequently if deficit irrigation is to be implemented. PMID:10936532

  7. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis.

    PubMed

    Li, Zhijian T; Kim, Kyung-Hee; Dhekney, Sadanand A; Jasinski, Jonathan R; Creech, Matthew R; Gray, Dennis J

    2014-01-01

    Plant regeneration from grapevine (Vitis spp.) via somatic embryogenesis typically is poor. Recovery of plants from Vitis rotundifolia Michx. (muscadine grape) is particularly problematic due to extremely low efficiency, including extended culture durations required for embryo-plant conversion. Poor plant recovery is an obstacle to the selection of improved genetically modified lines. Somatic embryos (SEs) of V. rotundifolia cultivar Delicious (Del-HS) and Vitis vinifera L cultivar Thompson Seedless (TS) were used to identify culture media and conditions that promoted embryo differentiation and plant conversion; this resulted in a two-step culture system. In comparative culture experiments, C2D medium containing 6% sucrose was the most effective, among four distinct formulae tested, for inducing precocious SE germination and cell differentiation. This medium, further supplemented with 4 µM 6-benzylaminopurine (C2D4B), was subsequently determined to enhance post-germinative growth of SE. MS medium supplemented with 0.5 µM 1-naphthaleneacetic acid (MSN) was then utilized to stimulate root and shoot growth of germinated SE. An average of 35% and 80% 'Del-HS' and 'TS' SE, respectively, developed into plants. All plants developed robust root and shoot systems and exhibited excellent survival following transfer to soil. Over 150 plants of 'Del-HS' were regenerated and established within 2.5 months, which is a dramatic reduction from the 6- to 12-month time period previously required. Similarly, 88 'TS' plant lines were obtained within the same time period. Subsequently, seven out of eight Vitis cultivars exhibited significantly increased plant conversion percentages, demonstrating broad application of the two-step culture system to produce the large numbers of independent plant lines needed for selection of desired traits. PMID:26504540

  8. An optimized procedure for plant recovery from somatic embryos significantly facilitates the genetic improvement of Vitis

    PubMed Central

    Li, Zhijian T; Kim, Kyung-Hee; Dhekney, Sadanand A; Jasinski, Jonathan R; Creech, Matthew R; Gray, Dennis J

    2014-01-01

    Plant regeneration from grapevine (Vitis spp.) via somatic embryogenesis typically is poor. Recovery of plants from Vitis rotundifolia Michx. (muscadine grape) is particularly problematic due to extremely low efficiency, including extended culture durations required for embryo–plant conversion. Poor plant recovery is an obstacle to the selection of improved genetically modified lines. Somatic embryos (SEs) of V. rotundifolia cultivar Delicious (Del-HS) and Vitis vinifera L cultivar Thompson Seedless (TS) were used to identify culture media and conditions that promoted embryo differentiation and plant conversion; this resulted in a two-step culture system. In comparative culture experiments, C2D medium containing 6% sucrose was the most effective, among four distinct formulae tested, for inducing precocious SE germination and cell differentiation. This medium, further supplemented with 4 µM 6-benzylaminopurine (C2D4B), was subsequently determined to enhance post-germinative growth of SE. MS medium supplemented with 0.5 µM 1-naphthaleneacetic acid (MSN) was then utilized to stimulate root and shoot growth of germinated SE. An average of 35% and 80% ‘Del-HS’ and ‘TS’ SE, respectively, developed into plants. All plants developed robust root and shoot systems and exhibited excellent survival following transfer to soil. Over 150 plants of ‘Del-HS’ were regenerated and established within 2.5 months, which is a dramatic reduction from the 6- to 12-month time period previously required. Similarly, 88 ‘TS’ plant lines were obtained within the same time period. Subsequently, seven out of eight Vitis cultivars exhibited significantly increased plant conversion percentages, demonstrating broad application of the two-step culture system to produce the large numbers of independent plant lines needed for selection of desired traits. PMID:26504540

  9. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    Energy Science and Technology Software Center (ESTSC)

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes willmore » be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.« less

  10. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  11. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  12. Post-floral Erection of Stalks Provides Insight into the Evolution of Fruit Orientation and Its Effects on Seed Dispersal

    PubMed Central

    Niu, Yang; Zhou, Zhuo; Sha, Wen; Sun, Hang

    2016-01-01

    That stalks reorient after flowering to face upwards is a common phenomenon in many flowering plants, indicating the potential importance of fruit orientation on seed dispersal. But this idea has not been subject to an empirical test. We examined this hypothesis by analysing the evolutionary correlation between fruit orientation and other characters and by investigating the effects of fruit orientation on seed dispersal. We found that 1) in a sub-alpine plant community, upward fruit orientation strongly correlates with fruits that act as seed containers, which are often of dry type and are dispersed by non-animal vectors; 2) as exemplified by the Campanulaceae s. str., fruit orientation strongly correlates with dehiscence position. Upwardly-oriented capsules dehisce at the apex, whereas pendent ones dehisce at the base, in both cases ensuring that seeds are released from an upright position; 3) in manipulation experiments on Silene chungtienensis, upward fruits (the natural state) exhibit much greater dispersal distances and more dispersive pattern than pendent ones, and have a more even distribution of dispersal direction than horizontal ones. Our results suggest that fruit orientation may have important function in seed dispersal, which may be the reason why the phenomenon that stalk erection after flowering occurs widely. PMID:26832830

  13. Post-floral Erection of Stalks Provides Insight into the Evolution of Fruit Orientation and Its Effects on Seed Dispersal.

    PubMed

    Niu, Yang; Zhou, Zhuo; Sha, Wen; Sun, Hang

    2016-01-01

    That stalks reorient after flowering to face upwards is a common phenomenon in many flowering plants, indicating the potential importance of fruit orientation on seed dispersal. But this idea has not been subject to an empirical test. We examined this hypothesis by analysing the evolutionary correlation between fruit orientation and other characters and by investigating the effects of fruit orientation on seed dispersal. We found that 1) in a sub-alpine plant community, upward fruit orientation strongly correlates with fruits that act as seed containers, which are often of dry type and are dispersed by non-animal vectors; 2) as exemplified by the Campanulaceae s. str., fruit orientation strongly correlates with dehiscence position. Upwardly-oriented capsules dehisce at the apex, whereas pendent ones dehisce at the base, in both cases ensuring that seeds are released from an upright position; 3) in manipulation experiments on Silene chungtienensis, upward fruits (the natural state) exhibit much greater dispersal distances and more dispersive pattern than pendent ones, and have a more even distribution of dispersal direction than horizontal ones. Our results suggest that fruit orientation may have important function in seed dispersal, which may be the reason why the phenomenon that stalk erection after flowering occurs widely. PMID:26832830

  14. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and

  15. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  16. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    SciTech Connect

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  17. Exergoeconomic analysis of a refinery`s utilities plant: Part II-improvement proposals

    SciTech Connect

    Rivero, R.; Hernandez, R.

    1996-12-31

    A crude oil refinery normally consumes a large amount of energy, not only in the form of the combustion of fossil fuels in the process units, but also in the associated Utilities Plant which produces process steam at different pressure levels and electricity. Energy losses of the utilities plant represent some 40 % of the total refinery`s energy losses. It is then extremely important to evaluate the performance of this plant and the costs to be assigned to the production of steam and electricity as a supplier of energy to the process units. This paper presents the improvement proposals generated by the application of an exergoeconomic analysis to the Utilities Plant of an existing 150,000 BPD crude oil refinery. 2 refs., 7 figs.

  18. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  19. Exploiting plant-microbe partnerships to improve biomass production and remediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J.

    2009-10-01

    Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial processes. Such plant growth-promoting mechanisms might facilitate higher production of energy crops in a more sustainable manner, even on marginal land, and thus contribute to avoiding conflicts between food and energy production. Furthermore, because many bacteria show a natural capacity to cope with contaminants, they could be exploited to improve the efficiency of phytoremediation or to protect the food chain by reducing levels of agrochemicals in food crops.

  20. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods.

    PubMed

    Goodman, Richard E; Tetteh, Afua O

    2011-08-01

    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety. PMID:21487714

  1. Use of validation dosimetry, in source rack load planning, to improve cobalt irradiation plant efficiency

    NASA Astrophysics Data System (ADS)

    Pyne, C. H.; Comben, M. J.

    2002-03-01

    Source load planning is an important part of optimising the performance of cobalt-60 gamma irradiation plants. The best results are achieved using a complex algorithm to accurately model the radiation profile of the source. In this way operational plant performance may be predicted as a function of changes in activity distribution within the source rack. This paper describes an approach to the prediction of plant performance that is numerically simpler than attempting to calculate actual doses from first principles. It shows how validation dosimetry results can be used to validate the software-predicted dose distribution and details how this enables the load plan to be tailored to meet the specific objectives of the plant operator. Improvements in product throughput and reduced maximum to minimum dose ratios are typical.

  2. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. PMID:24679262

  3. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  4. Motor Assembly Plant Saves $85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project.

  5. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  6. Amending metal contaminated mine soil with biochars to sequester metals and improve plant growth cover

    EPA Science Inventory

    There are numerous mine spoil sites in the U.S. Pacific Northwest that contain highly acidic, heavy metal-laden soils, which limits establishment of a soil-stabilizing plant cover. Biochars may be a suitable soil amendment to reduce toxic metals, improve soil fertility, soil wa...

  7. Practical aspects of running DOE for improving growth media for in vitro plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments using DOE software to improve plant tissue culture growth medium are complicated and require complex setups. Once the experimental design is set and the treatment points calculated, media sheets and mixing charts must be developed. Since these experiments require three passages on the sa...

  8. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    high survival potential and greater area cover. In contrast, a pre-treatment of cuttings of S. virginicus with Kinetin would achieve more acceptable plant survival rates. This easy and low cost-effective technique may be extended to other dune plant species and applied on a large scale to improve the chance of dune restoration success.

  9. Recent advances in structural technology for large deployable and erectable spacecraft

    NASA Technical Reports Server (NTRS)

    Bush, H. G.; Heard, W. L., Jr.

    1980-01-01

    Ultra-low mass deployable and erectable truss structure designs for spacecraft are identified using computerized structural sizing techniques. Extremely slender strut proportions are shown to characterize minimum mass spacecraft which are designed for shuttle transport to orbit. Discrete element effects using a recently developed buckling theory for periodic lattice type structures are presented. An analysis of fabrication imperfection effects on the surface accuracy of four different antenna reflector structures is summarized. The tetrahedral truss has the greatest potential of the structures examined for application to accurate or large reflectors. A deployable module which can be efficiently transported is identified and shown to have significant potential for application to future antenna requirements. Investigations of erectable structure assembly are reviewed.

  10. Design, construction and utilization of a space station assembled from 5-meter erectable struts

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.

    1986-01-01

    Presented are the primary characteristics of the 5-meter erectable truss designated for the space station. The relatively large 5-meter truss dimension was chosen to provide a deep beam for high bending stiffness yet provide convenient mounting locations for space shuttle cargo bay size payloads which are 14.5 ft. (4.4 m) in diameter. Truss nodes and quick-attachment erectable joints are described which provide for evolutionary three-dimensional growth and for simple maintenance and repair. A mobile remote manipulator system is described which is provided to assist in station construction and maintenance. A discussion is also presented of the construction of the space station and the associated EVA time.

  11. Design, construction, and utilization of a space station assembled from 5-meter erectable struts

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.; Bush, Harold G.

    1987-01-01

    The primary characteristics of the 5-meter erectable truss is presented, which was baselined for the Space Station. The relatively large 5-meter truss dimension was chosen to provide a deep beam for high bending stiffness yet provide convenient mounting locations for space shuttle cargo bay size payloads which are approx. 14.5 ft (4.4 m) in diameter. Truss nodes and quick attachment erectable joints are described which provide for evolutionary three dimensional growth and for simple maintenance and repair. A mobile remote manipulator system is described which is provided to assist in station construction and maintenance. A discussion is also presented of the construction of the Space Station and the associated extravehicular active (EVA) time.

  12. The use of cyclone modeling in the erection of precast segmental aerial construction

    NASA Astrophysics Data System (ADS)

    Cleveland, S.

    1983-06-01

    The intent of this work is to analyze two methods of obtaining activity duration data in the field for use in the CYCLONE modeling program for determining construction productivity. One method is the traditional stopwatch-type study while the other is utilization of time-lapse photography. The construction activity which will be observed is the erection of an aerial guideway for the Metropolitan Atlanta Rapid Transit Authority (MARTA) rail line. The aerial guideway is being built using precast post-tensioned segmental concrete construction. This method of bridge construction or elevated span construction has proven to be more economical than more conventional methods of construction. One of the primary reasons for lower cost is the speed at which precast post-tensioned segmental concrete construction can be put in place. Field data for the erection procedure will be input into the CYCLONE model to obtain a production rate to be compared to actual field production.

  13. 11. 'Erection Plan, 1 208'101/2' C. to C. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. 'Erection Plan, 1 - 208'-10-1/2' C. to C. End Pins S. Tr. Thro. Skew Span, 6th Crossing Sacramento River, Pacific System, Southern Pacific Company, The Phoenix Bridge Co., C.O. 836D, Drawing No. 13, Scale 1/8' = 1'0', Engineer, B.M. Krohn, Draftsman, W.L. Clegg, Date, May 25th 1901' - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  14. [Increased occurrence of nuclear cataract in the calf after erection of a mobile phone base station].

    PubMed

    Hässig, M; Jud, F; Spiess, B

    2012-02-01

    We examined and monitored a dairy farm in which a large number of calves were born with nuclear cataracts after a mobile phone base station had been erected in the vicinity of the barn. Calves showed a 3.5 times higher risk for heavy cataract if born there compared to Swiss average. All usual causes such as infection or poisoning, common in Switzerland, could be excluded. The real cause of the increased incidence of cataracts remains unknown. PMID:22287140

  15. Influence of dihydroergotoxine, bromocriptine, and ergotamine on penile erection in Wistar rats.

    PubMed

    Radosavljevic, Milovan; Pajovic, Bogdan; Radunovic, Miodrag; Radojevic, Nemanja; Bjelogrlic, Bojana

    2012-01-01

    The pilot study presented was conducted to determine as to whether ergot alkaloids (alpha-adrenergic blockers) have a potential effect on penile erectile function. The influence of dihydroergotoxine, bromocriptine, and ergotamine was studied on the erection ability in intact, two-grade outbred male Wistar albino rats that were out of their estrous phase. The experimental animals were injected intrapenially with the substances under examination: dihydroergotoxine mesylate (0.1 mg/0.1 mL, 0.3 mg/0.1 mL, and 1 mg/0.1 mL), bromocriptine mesylate (0.3 mg/0.1 mL, 1 mg/0.1 mL, and 3 mg/0.1 mL), and ergotamine tartrate (0.1 mg/0.1 mL, 0.3 mg/0.1 mL, and 1mg/0.1 mL). Every dose was tested on a pattern of 30 rats. These mentioned substances were injected in the amount of 1 mm to the left of the proximal part of the superficial dorsal vein of the penis, in the region of the penis root. After injection, the animals were then observed within the next 90 minutes. In the trial, the following was observed: the number of rats with an erection achieved, the period of time from intrapenial application to the appearance of the first erection, and the duration of the erection. Ultimately, the research results confirm the efficiency of dihydroergotoxine and bromocriptine as erectogenic agents, as well as ergotamine as a detumescent compared with saline solutions. PMID:22441761

  16. 18. 'Erection Plan for 3 180'61/2' End Pins S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. 'Erection Plan for 3 - 180'-6-1/2' End Pins S. Track Thro. Spans, 10th, 11th & 13th Crossings of Sacramento River, Pacific Systems, Southern Pacific Co. Phoenix Bridge Co., C. O. #839, Drawing #9, Scale = 1/8' & 1' = 1 ft., Eng'r-Chas. Scheidl, Drafts. H. O. McG., April 16th, 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  17. 12. 'Erection Plan, 1 180'01/4' c. to c. End ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. 'Erection Plan, 1 - 180'-0-1/4' c. to c. End Pins Sing. Tr. Thro' Span, 16th Crossing over Sacramento River, Pacific System, Southern Pacific Co., Phoenix Bridge Co., C.O. #842, Drawing #13, Scale 1/8' & 1' = 1'-0', Eng'r C. Scheidl, Draftsman D. Sharp, Scale 1' = 1'-0', May 1st 1901.' - Southern Pacific Railroad Shasta Route, Bridge No. 324.99, Milepost 324.99, Shasta Springs, Siskiyou County, CA

  18. 134. ARAII SL1 decontamination and lay down building (ARA614) erected ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    134. ARA-II SL-1 decontamination and lay down building (ARA-614) erected after accidental explosion of SL-1 reactor. Shows vicinity map, index of related drawings, plot plan and other detail. F.C. Torkelson Company 842-area/SL-1-101-U-2. Date: September 1962. Ineel index code no. 070-0101-65-851-150713. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  19. Detection of urethral incompetence. Erect studies using the fluid-bridge test.

    PubMed

    Sutherst, J R; Brown, M

    1981-08-01

    The fluid-bridge test (FBT) detects the entry of urine into the proximal urethra during coughing. In this study it was applied in the investigation of incontinent patients when they were first supine and then standing up. The test results in 76 women with urinary incontinence and 27 women with normal urinary control are reported. When the test was performed erect at 0.5 cm from the urethrovesical junction, it was positive in 68 (90%) of the study group and 4 (15%) of the controls. The difference between the results in the 2 groups is highly significant (P less than 0.001). In 12 (16%) of the incontinent group the test at 0.5 cm became positive only when the subject was standing up, indicating that erect testing adds to the diagnostic efficiency of the method. Erect testing seems more relevant to the investigation of stress urinary incontinence. This study has shown that this is possible using simple urodynamic apparatus. PMID:7196273

  20. Summary of LaRC 2-inch Erectable Joint Hardware Heritage Test Data

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    As the National Space Transportation System (STS, also known as the Space Shuttle) went into service during the early 1980's, NASA envisioned many missions of exploration and discovery that could take advantage of the STS capabilities. These missions included: large orbiting space stations, large space science telescopes and large spacecraft for manned missions to the Moon and Mars. The missions required structures that were significantly larger than the payload volume available on the STS. NASA Langley Research Center (LaRC) conducted studies to design and develop the technology needed to assemble the large space structures in orbit. LaRC focused on technology for erectable truss structures, in particular, the joint that connects the truss struts at the truss nodes. When the NASA research in large erectable space structures ended in the early 1990's, a significant amount of structural testing had been performed on the LaRC 2-inch erectable joint that was never published. An extensive set of historical information and data has been reviewed and the joint structural testing results from this historical data are compiled and summarized in this report.

  1. Effects of a hurricane on survival and orientation of large erect coral reef sponges

    NASA Astrophysics Data System (ADS)

    Wulff, J. L.

    1995-02-01

    In October 1988, Hurricane Joan struck reefs in the San Blas Island, Panama, where hurricanes had never been recorded. Effects on large erect sponges were dramatic. For several years before the hurricane, the three most common sponges had been studied, providing pre-storm data on population structure and dynamics. Nearly half the individuals and biomass of three species were lost in the storm. The species were not affected in the same way, even though they are all of erect branching growth forms. Iotrochota birotulata lost significantly more individuals chan Amphimedon rubens (57.6% vs 42.9%), which lost significantly more individuals than Aplysina fulva (31.6%). Patterns of biomass loss were very different, with both Iotrochota and Aplysina suffering losses of about 50%, but Amphimedon losing only 4.9%. Patterns of loss appear to be related to differences between species in the relative proportions of spicules (siliceous) and spongin (protein) in skeletal fibers and by differences in the speed and success rate of fragment reattachment. The incidence of toppling due to base failure varied among the six most common large erect sponge species, with significantly less toppling of the two species with skeletons composed solely of spongin. Clones of Iotrochota birotulata characterized by harrow branches suffered disproportionately greater losses than clones with more robust branches. The abundance of very small sponges, possibly developed from sexually produced larvae, was an order of magnitude higher after the storm than before.

  2. A mixture of odorant molecules potentially indicating oestrus in mammals elicits penile erections in male rats.

    PubMed

    Nielsen, Birte L; Jerôme, Nathalie; Saint-Albin, Audrey; Thonat, Catherine; Briant, Christine; Boué, Franck; Rampin, Olivier; Maurin, Yves

    2011-12-01

    A common set of odorous molecules may indicate female receptiveness across species, as male rats display sexual arousal when exposed to the odour of oestrous faeces from rats, vixens and mares. More than 900 different compounds were identified by GC-MS analyses performed on faeces samples from di-oestrous and oestrous females and from males of the three species. Five carboxylic acids were found in lower concentrations in faeces from all oestrous females. We subjected 12 sexually trained male rats to a 30 min exposure to different dilutions of a mixture of these five molecules in the same proportions as found in female oestrous faeces. The behavioural responses of the rats were compared to those displayed when exposed to water (negative control) and faeces from oestrous female rats (positive control). Frequency of penile erections were found to be significantly dependent on mixture dilution, with two intermediate dilutions eliciting frequencies of penile erections that did not differ from those obtained during exposure to oestrous female rat faeces. Higher and lower dilutions did not elicit more penile erections than observed with water. These results support our hypothesis that a small set of odorous molecules may indicate sexual receptiveness in mammalian females. PMID:21884731

  3. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    PubMed Central

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  4. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters. PMID:25944926

  5. Effect of levitra on sustenance of erection (EROS): an open-label, prospective, multicenter, single-arm study to investigate erection duration measured by stopwatch with flexible dose vardenafil administered for 8 weeks in subjects with erectile dysfunction.

    PubMed

    Shin, Y S; Lee, S W; Park, K; Chung, W S; Kim, S W; Hyun, J S; Moon, D G; Yang, S-K; Ryu, J K; Yang, D Y; Moon, K H; Min, K S; Park, J K

    2015-01-01

    To investigate the change of erection duration measured by stopwatch with flexible dose vardenafil administered for 8 weeks in subjects with erectile dysfunction (ED). Effect of levitra on sustenance of erection was an open-label, prospective, multicenter and single-arm study designed to measure the duration of erection in men with ED receiving a flexible dose of vardenafil over an 8-week treatment period. Patients were instructed to take vardenafil 10 mg 60 min before attempting the intercourse. Vardenfil could be increased to 20 mg or decreased to 5 mg concerning patients' efficacy and safety. Following the initial screening, patients entered a 4-week treatment-free run-in phase and 8-week treatment period, during which they were instructed to attempt intercourse at least four times on four separate days. A total of 95 men were enrolled in 10 centers. After the 8 weeks treatment, the mean duration of erection leading to successful intercourse was statistically superior when patients were treated with vardenafil. After an 8-week treatment, the duration of erection leading to successful intercourse was 9.39 min. There were significant benefits with vardenafil in all domains of International Index of Erectile Function. Secondary efficacy end points included success rate of penetration, maintaining erection, ejaculation and satisfaction were superior when patients were treated with vardenafil. There was a significant correlation between duration of erection with other sexual factors. Also partner's sexual satisfaction was increased with vardenafil. Most adverse events were mild or moderate in severity. Vardenafil was safe and well tolerated. Vardenafil therapy provided a statistically superior duration of erection leading to successful intercourse in men with ED with female partner. PMID:25471318

  6. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  7. Silicon moderated the K deficiency by improving the plant-water status in sorghum

    PubMed Central

    Chen, Daoqian; Cao, Beibei; Wang, Shiwen; Liu, Peng; Deng, Xiping; Yin, Lina; Zhang, Suiqi

    2016-01-01

    Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the underlying mechanism in potassium (K) deficiency is poorly understood. In this study, sorghum seedlings were treated with Si under a K deficiency condition for 15 days. Under control conditions, plant growth was not affected by Si application. The growth and water status were reduced by K-deficient stress, but Si application significantly alleviated these decreases. The leaf gas exchanges, whole-plant hydraulic conductance (Kplant), and root hydraulic conductance (Lpr) were reduced by K deficiency, but Si application moderated the K-deficiency-induced reductions, suggesting that Si alleviated the plant hydraulic conductance. In addition, 29% of Si-alleviated transpiration was eliminated by HgCl2 treatment, suggesting that aquaporin was not the primary cause for the reversal of plant hydraulic conductance. Moreover, the K+ concentration in xylem sap was significantly increased and the xylem sap osmotic potential was decreased by Si application, suggesting that the major cause of Si-induced improvement in hydraulic conductance could be ascribed to the enhanced xylem sap K+ concentration, which increases the osmotic gradient and xylem hydraulic conductance. The results of this study show that Si mediates K+ accumulation in xylem, which ultimately alleviates the plant-water status under the K-deficient condition. PMID:26961070

  8. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    PubMed

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils. PMID:24727792

  9. Silicon moderated the K deficiency by improving the plant-water status in sorghum.

    PubMed

    Chen, Daoqian; Cao, Beibei; Wang, Shiwen; Liu, Peng; Deng, Xiping; Yin, Lina; Zhang, Suiqi

    2016-01-01

    Although silicon (Si) has been widely reported to alleviate plant nutrient deficiency, the underlying mechanism in potassium (K) deficiency is poorly understood. In this study, sorghum seedlings were treated with Si under a K deficiency condition for 15 days. Under control conditions, plant growth was not affected by Si application. The growth and water status were reduced by K-deficient stress, but Si application significantly alleviated these decreases. The leaf gas exchanges, whole-plant hydraulic conductance (Kplant), and root hydraulic conductance (Lpr) were reduced by K deficiency, but Si application moderated the K-deficiency-induced reductions, suggesting that Si alleviated the plant hydraulic conductance. In addition, 29% of Si-alleviated transpiration was eliminated by HgCl2 treatment, suggesting that aquaporin was not the primary cause for the reversal of plant hydraulic conductance. Moreover, the K(+) concentration in xylem sap was significantly increased and the xylem sap osmotic potential was decreased by Si application, suggesting that the major cause of Si-induced improvement in hydraulic conductance could be ascribed to the enhanced xylem sap K(+) concentration, which increases the osmotic gradient and xylem hydraulic conductance. The results of this study show that Si mediates K(+) accumulation in xylem, which ultimately alleviates the plant-water status under the K-deficient condition. PMID:26961070

  10. Ethylene resistance in flowering ornamental plantsimprovements and future perspectives

    PubMed Central

    Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate

    2015-01-01

    Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580

  11. Foliar absorption of intercepted rainfall improves woody plant water status most during drought.

    PubMed

    Breshears, David D; McDowell, Nathan G; Goddard, Kelly L; Dayem, Katherine E; Martens, Scott N; Meyer, Clifton W; Brown, Karen M

    2008-01-01

    A large proportion of rainfall in dryland ecosystems is intercepted by plant foliage and is generally assumed to evaporate to the atmosphere or drip onto the soil surface without being absorbed. We demonstrate foliar absorption of intercepted rainfall in a widely distributed, continental dryland, woody-plant genus: Juniperus. We observed substantial improvement in plant water status, exceeding 1.0 MPa water potential for drought-stressed plants, following precipitation on an experimental plot that excluded soil water infiltration. Experiments that wetted shoots with unlabeled and with isotopically labeled water confirmed that water potential responded substantially to foliar wetting, that these responses were not attributable to re-equilibration with other portions of the xylem, and that magnitude of response increased with water stress. Foliar absorption is not included in most ecological, hydrological, and atmospheric models; has implications for interpreting plant isotopic signatures; and not only supplements water acquisition associated with increases in soil moisture that follow large or repeated precipitation events, but also enables plants to bypass soil water uptake and benefit from the majority of precipitation events, which wet foliage but do not increase soil moisture substantially. Foliar absorption of intercepted water could be more important than previously appreciated, especially during drought when water stress is greatest. PMID:18376545

  12. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development

    PubMed Central

    Yu, Hongyang; Murchie, Erik H.; González-Carranza, Zinnia H.; Pyke, Kevin A.; Roberts, Jeremy A.

    2015-01-01

    The ERECT PANICLE 3 gene of rice encodes a peptide that exhibits more than 50% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Ectopic expression of the Os02g15950 coding sequence, driven by the HWS (At3g61950) promoter, rescued the hws-1 flower phenotype in Arabidopsis confirming that EP3 is a functional orthologue of HWS. In addition to displaying an erect inflorescence phenotype, loss-of-function mutants of Os02g15950 exhibited a decrease in leaf photosynthetic capacity and stomatal conductance. Analysis of a range of physiological and anatomical features related to leaf photosynthesis revealed no alteration in Rubisco content and no notable changes in mesophyll size or arrangement. However, both ep3 mutant plants and transgenic lines that have a T-DNA insertion within the Os02g15950 (EP3) gene exhibit smaller stomatal guard cells compared with their wild-type controls. This anatomical characteristic may account for the observed decrease in leaf photosynthesis and provides evidence that EP3 plays a role in regulating stomatal guard cell development. PMID:25582452

  13. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. PMID:25707745

  14. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    PubMed Central

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  15. Supplemental blue LED lighting array to improve the signal quality in hyperspectral imaging of plants.

    PubMed

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  16. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

  17. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    SciTech Connect

    Chakravarti, B.

    1996-07-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ``like for like`` replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants.

  18. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  19. A Review on Plants Used for Improvement of Sexual Performance and Virility

    PubMed Central

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V. K.; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction. PMID:25215296

  20. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution. PMID:26785565

  1. A review on plants used for improvement of sexual performance and virility.

    PubMed

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V K; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction. PMID:25215296

  2. Erection problems

    MedlinePlus

    Erectile dysfunction; Impotence; Sexual dysfunction - male ... American Urological Association. Management of erectile dysfunction. Available at: www.auanet.org/content/guidelines-and-quality-care/clinical-guidelines.cfm?sub=ed . Accessed January 12, 2016. Burnett A. ...

  3. Erection problems

    MedlinePlus

    ... cord injury In some cases, your emotions or relationship problems can lead to ED, such as: Poor ... you stressed, depressed, or anxious? Are you having relationship problems? You may have a number of different ...

  4. Strategies to improve MEA CO/sub 2/-removal detailed at Louisiana ammonia plant

    SciTech Connect

    Gagliardi, C.R.; Smith, D.D.; Wang, S.I.

    1989-03-06

    Alkanolamines are chemically reactive solvents widely used for removal of CO/sub 2/ and H/sub 2/S from sour-gas streams. Monoethanolamine (MEA) is the most popular of the alkanolamines. Improving efficiencies and increasing capacities in existing MEA CO/sub 2/-removal systems may be constrained by several limitations. Air Products and Chemicals Inc. (APCI), Allentown, Pa., has experience resolving these limitations as shown in a CO/sub 2/-removal system project at a Louisiana ammonia plant.

  5. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    Not Available

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  6. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  7. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  8. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism.

    PubMed

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies. PMID:27014254

  9. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth

    PubMed Central

    Wilson, Robert H.; Alonso, Hernan; Whitney, Spencer M.

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted “trial and error” protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  10. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  11. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants.

    PubMed

    Álvarez-López, V; Prieto-Fernández, Á; Cabello-Conejo, M I; Kidd, P S

    2016-04-01

    Ni phytomining is a promising technology for Ni recovery from low-grade ores such as ultramafic soils. Metal-hyperaccumulators are good candidates for phytomining due to their extraordinary capacity for Ni accumulation. However, many of these plants produce a low biomass, which makes the use of agronomic techniques for improving their growth necessary. In this study, the Ni hyperaccumulators Alyssum serpyllifolium ssp. lusitanicum, A. serpyllifolium ssp. malacitanum, Alyssum bertolonii and Noccaea goesingense were evaluated for their Ni phytoextraction efficiency from a Ni-rich serpentine soil. Effects of soil inorganic fertilisation (100:100:125kgNPKha(-1)) and soil organic amendment addition (2.5, 5 or 10% compost) on plant growth and Ni accumulation were determined. All soil treatments greatly improved plant growth, but the highest biomass production was generally found after addition of 2.5 or 5% compost (w/w). The most pronounced beneficial effects were observed for N. goesingense. Total Ni phytoextracted from soils was significantly improved using both soil treatments (inorganic and organic), despite the decrease observed in soil Ni availability and shoot Ni concentrations in compost-amended soils. The most promising results were found using intermediate amount of compost, indicating that these types of organic wastes can be incorporated into phytomining systems. PMID:26803735

  12. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

    PubMed

    Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M

    2016-01-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth. PMID:26926260

  13. Hydrological management for improving nutrient assimilative capacity in plant-dominated wetlands: A modelling approach.

    PubMed

    Xu, Zhihao; Yang, Zhifeng; Yin, Xinan; Cai, Yanpeng; Sun, Tao

    2016-07-15

    Wetland eutrophication is a global environmental problem. Besides reducing pollutant emissions, improving nutrient assimilative capacity in wetlands is also significant for preventing eutrophication. Hydrological management can improve nutrient assimilative capacity in wetlands through physical effects on the dilution capacity of water body and ecological effects on wetland nutrient cycles. The ecological effects are significant while were rarely considered in previous research. This study focused on the ecological effects of hydrological management on two crucial nutrient removal processes, plant uptake and biological denitrification, in plant-dominated wetlands. A dual-objective optimization model for hydrological management was developed to improve wetland nitrogen and phosphorus assimilative capacities, using upstream reservoir release as water regulating measure. The model considered the interactions between ecological processes and hydrological cycles in wetlands, and their joint effects on nutrient assimilative capacity. Baiyangdian Wetland, the largest freshwater wetland in northern China, was chosen as a case study. The results found that the annual total assimilative capacity of nitrogen (phosphorus) was 4754 (493) t under the optimal scheme for upstream reservoir operation. The capacity of nutrient removal during the summer season accounted for over 80% of the annual total removal capacity. It was interesting to find that the relationship between water inflow and nutrient assimilative capacity in a plant-dominated wetland satisfied a dose-response relationship commonly describing the response of an organism to an external stressor in the medical field. It illustrates that a plant-dominated wetland shows similar characteristics to an organism. This study offers a useful tool and some fresh implications for future management of wetland eutrophication prevention. PMID:27085151

  14. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models.

    PubMed

    Ramírez-Albores, Jorge E; Bustamante, Ramiro O; Badano, Ernesto I

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  15. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models

    PubMed Central

    Ramírez-Albores, Jorge E.; Bustamante, Ramiro O.

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  16. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance.

    PubMed

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  17. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    PubMed Central

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  18. Quantitation of pharmacologically-induced penile erections: the value of radionuclide phallography in the objective evaluation of erectile haemodynamics.

    PubMed

    Siraj, Q H; Bomanji, J; Akhtar, M A; Rana, M H; Sadiq, M; Ahmed, M

    1990-06-01

    This study combines the pharmacologically-induced penile erection (PIPE) technique with radionuclide phallography (RNP) for the non-invasive study of penile haemodynamic changes during erection. Penile erections produced by the intracavernosal injections of two different vasoactive drugs, prostaglandin E1 (PGE1) and papaverine HCl (PPV) were assessed by quantitation of the dynamic RNP and parameters of erection were defined and compared. PGE1 intracavernosal injections were seen to elicit a better erectile response than PPV. Dynamic radionuclide phallography was performed using 99Tcm-labelled autologous RBCs in five normally potent volunteers, sixteen patients with psychogenic impotence, seven patients with vasculogenic impotence (three arteriogenic, four venous leakage) and one patient with neurogenic impotence. Physical parameters of erection including the penile length and circumference changes during erection and the erectile angle were compared with the indices of penile blood flow and volume derived through quantitation of the RNP. There was a close correlation between the penogram index (an index of penile blood volume) and penile circumference increase during erection (r = 0.77, p less than 10(-6). The erectile angle, a measure of penile rigidity, correlated strongly (r = 0.82, p less than 10(-6) with the flow index, a measure of penile blood volume. Patterns specific to various categories of impotence were observed and these aided in the diagnosis, especially in equivocal cases with a suboptimal clinical response to the intracavernosal injection. Quantitative RNP offers a non-invasive method which allows direct objective assessment of the erectile response providing several quantitative parameters for analysis. PMID:2385430

  19. Coke oven gas treatment and by-product plant of Magnitogorsk Integrated Iron and Steel Works

    SciTech Connect

    Egorov, V.N.; Anikin, G.J.; Gross, M.

    1995-12-01

    Magnitogorsk Integrated Iron and Steel Works, Russia, decided to erect a new coke oven gas treatment and by-product plant to replace the existing obsolete units and to improve the environmental conditions of the area. The paper deals with the technological concept and the design requirements. Commissioning is scheduled at the beginning of 1996. The paper describes H{sub 2}S and NH{sub 3} removal, sulfur recovery and ammonia destruction, primary gas cooling and electrostatic tar precipitation, and the distributed control system that will be installed.

  20. The first stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers erect the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) at Launch Complex 46 at Cape Canaveral Air Station, Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 in October for an 18-month mission that will orbit the Earth's Moon to collect data from the lunar surface. Designed for a low polar orbit investigation of the Moon, the Lunar Prospector will map the Moon's surface composition and possible polar ice deposits, measure magnetic and gravity fields, and study lunar outgassing events.

  1. The first stage of Lunar Prospector's LMLV is erected at Pad 46, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Workers erect the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) at Launch Complex 46 at Cape Canaveral Air Station, Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 in October for an 18-month mission that will orbit the Earth's Moon to collect data from the lunar surface. Scientific experiments to be conducted by the Prospector include locating water ice that may exist near the lunar poles, gathering data to understand the evolution of the lunar highland crust and the lunar magnetic field, finding radon outgassing events, and describing the lunar gravity field by means of Doppler tracking.

  2. Small RNAs in plants: recent development and application for crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  3. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  4. Small RNAs in plants: recent development and application for crop improvement

    PubMed Central

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20–24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  5. Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions.

    PubMed

    Saud, Shah; Li, Xin; Chen, Yang; Zhang, Lu; Fahad, Shah; Hussain, Saddam; Sadiq, Arooj; Chen, Yajun

    2014-01-01

    Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L(-1)) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L(-1) significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses. PMID:25054178

  6. Selenium (Se) improves drought tolerance in crop plants--a myth or fact?

    PubMed

    Ahmad, Rashid; Waraich, Ejaz Ahmad; Nawaz, Fahim; Ashraf, Muhammad Y; Khalid, Muhammad

    2016-01-30

    Climate change has emerged as one of the most complex challenges of the 21st century and has become an area of interest in the past few decades. Many countries of the world have become extremely vulnerable to the impacts of climate change. The scarcity of water is a serious concern for food security of these countries and climate change has aggravated the risks of extreme events like drought. Oxidative stress, caused by a variety of active oxygen species formed under drought stress, damages many cellular constituents, such as carbohydrates, lipids, nucleic acids and proteins, which ultimately reduces plant growth, respiration and photosynthesis. Se has become an element of interest to many biologists owing to its physiological and toxicological importance. It plays a beneficial role in plants by enhancing growth, reducing damage caused by oxidative stress, enhancing chlorophyll content under light stress, stimulating senesce to produce antioxidants and improving plant tolerance to drought stress by regulating water status. Researchers have adopted different strategies to evaluate the role of selenium in plants under drought stress. Some of the relevant work available regarding the role of Se in alleviating adverse effect of drought stress is discussed in this paper. PMID:25906838

  7. An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane.

    PubMed

    Kinkema, Mark; Geijskes, R Jason; Shand, Kylie; Coleman, Heather D; De Lucca, Paulo C; Palupe, Anthony; Harrison, Mark D; Jepson, Ian; Dale, James L; Sainz, Manuel B

    2014-03-01

    Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology. PMID:24142380

  8. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  9. Synthetic cryIIIA gene from Bacillus thuringiensis improved for high expression in plants.

    PubMed

    Sutton, D W; Havstad, P K; Kemp, J D

    1992-09-01

    A 1974 bp synthetic gene was constructed from chemically synthesized oligonucleotides in order to improve transgenic protein expression of the cryIIIA gene from Bacillus thuringiensis var. tenebrionis in transgenic tobacco. The crystal toxin genes (cry) from B. thuringiensis are difficult to express in plants even when under the control of efficient plant regulatory sequences. We identified and eliminated five classes of sequence found throughout the cryIIIA gene that mimic eukaryotic processing signals and which may be responsible for the low levels of transcription and translation. Furthermore, the GC content of the gene was raised from 36% to 49% and the codon usage was changed to be more plant-like. When the synthetic gene was placed behind the cauliflower mosaic virus 35S promoter and the alfalfa mosaic virus translational enhancer, up to 0.6% of the total protein in transgenic tobacco plants was cryIIIA as measured from immunoblot analysis. Bioassay data using potato beetle larvae confirmed this estimate. PMID:1301214

  10. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  11. Optical fiber sensors to improve the safety of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Magne, S.; Laffont, G.

    2013-09-01

    Safety must always prevail in Nuclear Power Plants (NPPs), as shown at Fukushima-Daiichi. So, innovations are clearly needed to strengthen instrumentations, which went inoperative during this nuclear accident as a consequence of power supply losses. Possible improvements concern materials and structures, which may be remotely monitored thanks to Optical Fiber Sensors (OFS). We detail topics involving OFS helpful for monitoring, in nominal conditions as well as during a severe accident. They include distributed sensing (Rayleigh, Raman, Brillouin) for both temperature sensing and structure monitoring as well as H2 concentration and ionizing radiation monitoring. For future plants, Fiber Bragg Grating (FBG) sensors are considered up to high temperature for sodium-cooled fast reactor monitoring. These applications can benefit from fiber advantages: sensor multiplexing, multi-km range, no risk-to-people, no common failure mode with other technologies, remote sensing, and the ability to operate in case of power supply lost in the NPP.

  12. Using game technologies to improve the safety of construction plant operations.

    PubMed

    Guo, Hongling; Li, Heng; Chan, Greg; Skitmore, Martin

    2012-09-01

    Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general. PMID:22664683

  13. Near-term improvements for nuclear power plant control room annunciator systems. [PWR; BWR

    SciTech Connect

    Rankin, W.L.; Duvernoy, E.G.; Ames, K.R.; Morgenstern, M.H.; Eckenrode, R.J.

    1983-04-01

    This report sets forth a basic design philosophy with its associated functional criteria and design principles for present-day, hard-wired annunciator systems in the control rooms of nuclear power plants. It also presents a variety of annunciator design features that are either necessary for or useful to the implementation of the design philosophy. The information contained in this report is synthesized from an extensive literature review, from inspection and analysis of control room annunciator systems in the nuclear industry and in related industries, and from discussions with a variety of individuals who are knowledgeable about annunciator systems, nuclear plant control rooms, or both. This information should help licensees and license applicants in improving their hard-wired, control room annunciator systems as outlined by NUREG-0700.

  14. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    PubMed

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production. PMID:26951371

  15. Improving planting stock quality: The humboldt experience. Forest Service general technical report (Final)

    SciTech Connect

    Jenkinson, J.L.; Nelson, J.A.; Huddleston, M.E.

    1993-05-01

    A seedling testing program was developed to improve the survival and growth potential of planting stock produced in the USDA Forest Service Humboldt Nursery, situated on the Pacific Coast in northern California. Coastal and inland seed sources of Douglas-fir and eight other conifers in the Pacific Slope forests of western Oregon and northern California were assessed in both nursery and field studies. Seedling top and root growth capacities were evaluated just after lifting and after cold storage, and stored seedlings were tested for suvival and growth on cleared planting sites in the seed zones of origin. Safe lifting and cold storage schedules were defined, and seedling cultural regimes were formulated to produce successful 1-0, 1-1, and 2-0 stock types. Testing deomonstrated the critical elements of reforestation and proved that rapid establishment is attainable on diverse sites. Accomplishments of the Humboldt program recommended similar programs for other forest nurseries and their service regions.

  16. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    Not Available

    2005-05-01

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant's compressed air system to enhance its performance while saving energy and improving production. After plant staff identified opportunities for system improvements, a qualified instructor from a U.S. Department of Energy (DOE) Allied Partner, Scales Air Compressor Corporation, helped to clarify several of them. The resulting improvement measures are yielding energy savings for compressed air of more than 1 million kWh; energy and maintenance cost savings total $165,000. The total cost of planned upgrades and other measures was $336,000, for a 2-year simple payback.

  17. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    PubMed Central

    Lallemand, Jérôme; Bouché, Frédéric; Desiron, Carole; Stautemas, Jennifer; de Lemos Esteves, Frédéric; Périlleux, Claire; Tocquin, Pierre

    2015-01-01

    Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion), in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes) were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA) and human serum immunoglobulins G (hIgGs). Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine, and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing. PMID:25705212

  18. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    PubMed

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants. PMID:25733857

  19. An enquiry into the respiratory health effects on a rural community of a soil mound erected close to residential property.

    PubMed

    Olowokure, B; Wardle, S A; Beaumont, M; Duggal, H V; Colling, G

    2005-03-01

    The health concerns of a rural community were investigated following the erection of a soil mound in close proximity to residential property. Retrospective comparisons were made of respiratory and non-respiratory consultations with general practitioners between the exposed population and a sociodemographically similar comparison population. A 2-year period was examined, 1 year before and 1 year after the mound was erected. In the 1-year period prior to erection of the mound, similar consultation rates for both respiratory and non-respiratory conditions were observed in both populations. In the 1-year period following erection of the mound, the exposed population was more likely to consult for respiratory conditions than the comparison population (OR=4.10, 95% CI 2.26-7.44). No differences were observed for non-respiratory conditions. We identified a significant increase in respiratory consultations in the exposed population following erection of the soil mound. Limitations associated with this type of study should be considered when interpreting the results. PMID:15661133

  20. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities

    PubMed Central

    Carlson, Bradley Z.; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-01-01

    Background and Aims Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. We developed a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which we used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Methods We mapped snow cover at 15 m resolution using Landsat imagery for five recent years and fitted a generalized additive model (GAM) for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots (including species richness, community weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content). Key Results Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared to without led to an average gain in R2 of 0.26 and also reversed slope direction to more intuitive relationships for several diversity metrics. Conclusions We show that in alpine environments, high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. Our results further indicate that studies seeking to predict the response

  1. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  2. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  3. Why Would Plant Species Become Extinct Locally If Growing Conditions Improve?

    PubMed Central

    Kramer, Koen; Bijlsma, Rienk-Jan; Hickler, Thomas; Thuiller, Wilfried

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing season, and water stress during the growing season, rather than to biotic interactions. These assumptions allow model parameters to be estimated from current species ranges. Deterioration of growing conditions due to climate change, e.g. more severe drought, will cause local extinction. However, for many plant species, the predicted climate change of higher minimum temperatures and longer growing seasons means, improved growing conditions. Biogeographical models may under some circumstances predict that a species will become locally extinct, despite improved growing conditions, because they are based on an assumption of equilibrium and this forces the species range to match the species-specific macroclimatic thresholds. We argue that such model predictions should be rejected unless there is evidence either that competition influences the position of the range margins or that a certain physiological mechanism associated with the apparent improvement in growing conditions negatively affects the species performance. We illustrate how a process-based vegetation model can be used to ascertain whether such a physiological cause exists. To avoid potential modelling errors of this type, we propose a method that constrains the scenario predictions of the envelope models by changing the geographical distribution of the dominant plant functional type. Consistent modelling results are very important for evaluating how changes in species areas affect local functional trait diversity and hence ecosystem functioning and resilience, and for inferring the implications for conservation management in the face of climate change. PMID:22991500

  4. An E3 ubiquitin ligase, ERECT LEAF1, functions in brassinosteroid signaling of rice

    PubMed Central

    Sakamoto, Tomoaki; Kitano, Hidemi; Fujioka, Shozo

    2013-01-01

    A spontaneous rice mutant, erect leaf1 (elf1–1), produced a dwarf phenotype with erect leaves and short grains. Physiological analyses suggested that elf1–1 is brassinosteroid-insensitive, so we hypothesized that ELF1 encodes a positive regulator of brassinosteroid signaling. ELF1, identified by means of positional cloning, encodes a protein with both a U-box domain and ARMADILLO (ARM) repeats. U-box proteins have been shown to function as E3 ubiquitin ligases; in fact, ELF1 possessed E3 ubiquitin ligase activity in vitro. However, ELF1 itself does not appear to be polyubiquitinated. Mutant phenotypes of 2 more elf1 alleles indicate that the entire ARM repeats is indispensable for ELF1 activity. These results suggest that ELF1 ubiquitinates target proteins through an interaction mediated by ARM repeats. Similarities in the phenotypes of elf1 and d61 mutants (mutants of brassinosteroid receptor gene OsBRI1), and in the regulation of ELF1 and OsBRI1 expression, imply that ELF1 functions as a positive regulator of brassinosteroid signaling in rice. PMID:24299927

  5. Design, analysis, and testing of the Phase 1 CSI Evolutionary Model erectable truss

    NASA Technical Reports Server (NTRS)

    Gronet, M. J.; Davis, D. A.; Kintis, D. H.; Brillhart, R. D.; Atkins, E. M.

    1992-01-01

    This report addressed the design, analysis, and testing of the erectable truss structure for the Phase 1 CSI Evolutionary Model (CEM) testbed. The Phase 1 CEM testbed is the second testbed to form part of an ongoing program of focused research at NASA/LaRC in the development of Controls-Structures Integration (CSI) technology. The Phase 1 CEM contains the same overall geometry, weight, and sensor locations as the Phase 0 CEM, but is based in an integrated controller and structure design, whereby both structure and controller design variables are sized simultaneously. The Phase 1 CEM design features seven truss sections composed of struts with tailored mass and stiffness properties. A common erectable joint is used and the strut stiffness is tailored by varying the cross-sectional area. To characterize the structure, static tests were conducted on individual struts and 10-bay truss assemblies. Dynamic tests were conducted on 10-bay truss assemblies as well as the fully-assembled CEM truss. The results indicate that the static and dynamic properties of the structure are predictable, well-characterized, and within the performance requirements established during the Phase 1 CEM integrated controller/structure design analysis.

  6. Effects of erectable glossal hairs on a honeybee's nectar-drinking strategy

    NASA Astrophysics Data System (ADS)

    Yang, Heng; Wu, Jianing; Yan, Shaoze

    2014-06-01

    With the use of a scanning electron microscope, we observe specific microstructures of the mouthpart of the Italian bee (Apis mellifera ligustica), especially the distribution and dimensions of hairs on its glossa. Considering the erection of glossal hairs for trapping nectar modifies the viscous dipping model in analyzing the drinking strategy of a honeybee. Theoretical estimations of volume intake rates with respect to sucrose solutions of different concentrations agree with experimental data, which indicates that erectable hairs can significantly increase the ability of a bee to acquire nectar efficiently. The comparison with experimental results also indicates that a honeybee may continuously augment its pumping power, rather than keep it constant, to drink nectar with sharply increasing viscosity. Under the modified assumption of increasing working power, we introduce the rate at which working power increases with viscosity and discuss the nature-preferred nectar concentration of 35% by theoretically calculating optimal concentration maximizing energetic intake rates under varying increasing rates. Finally, the ability of the mouthparts of the honeybee to transfer viscous nectar may inspire a concept for transporting microfluidics with a wide range of viscosities.

  7. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    NASA Astrophysics Data System (ADS)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  8. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy at a Lehigh Southwest Cement Plant

    SciTech Connect

    Not Available

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  9. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  10. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  11. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler. PMID:24112644

  12. Using closed-loop dynamic optimization to improve boiler efficiency at Chemopetrol's Litvinov Plant

    SciTech Connect

    Jarc, C.A.; Lang, R.

    1998-07-01

    Due to ever increasing demands by shareholders, environmental and governmental agencies, and customers, power generation and co-generating companies are looking more and more into advanced technologies to help them gain an edge on their competitors. Intelligent empirical optimization is a promising family of technologies to tune boilers for maximum efficiency and/or minimum emissions. A recent project teamed the Ultramax Corporation and Honeywell to install an on-line, closed-loop optimization solution on four new boilers at the Chemopetrol plant in Litvinov, Czech Republic, Honeywell has created an engineered solution called Individual Boiler Optimization (IBO) which utilizes the Ultramax Method and Dynamic Optimization, known as ULTRAMAX{reg{underscore}sign}, to optimize combustion of the boilers which are controlled by Honeywell's TotalPlant{reg{underscore}sign} solutions (TPS) System. IBO provides a real-time shell providing for automatic Ultramax operation in either open or closed-loop. With this system, Chemopetrol will be able to improve their boiler efficiency and NO{sub x} emissions on-line with little operator intervention. It can safely maintain best operating settings and compensate for changes that could potentially cause poor performance. The integrated dynamic solution enables greater emissions control fuel savings, and the ability to respond rapidly and flexibly to changes in operating conditions, compliance regulations and plant demands.

  13. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms.

    PubMed

    Zhou, Cheng; Guo, Jiansheng; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Ma, Zhongyou; Wang, Jianfei

    2016-08-01

    Despite the high abundance of iron (Fe) in most earth's soils, Fe is the major limiting factor for plant growth and development due to its low bioavailability. With an increasing recognition that soil microbes play important roles in plant growth, several strains of beneficial rhizobactria have been applied to improve plant nutrient absorption, biomass, and abiotic or biotic stress tolerance. In this study, we report the mechanisms of microbe-induced plant Fe assimilation, in which the plant growth promoting rhizobacteria (PGPR) Paenibacillus polymyxa BFKC01 stimulates plant's Fe acquisition machinery to enhance Fe uptake in Arabidopsis plants. Mechanistic studies show that BFKC01 transcriptionally activates the Fe-deficiency-induced transcription factor 1 (FIT1), thereby up-regulating the expression of IRT1 and FRO2. Furthermore, BFKC01 has been found to induce plant systemic responses with the increased transcription of MYB72, and the biosynthetic pathways of phenolic compounds are also activated. Our data reveal that abundant phenolic compounds are detected in root exudation of the BFKC01-inoculated plants, which efficiently facilitate Fe mobility under alkaline conditions. In addition, BFKC01 can secret auxin and further improved root systems, which enhances the ability of plants to acquire Fe from soils. As a result, BFKC01-inoculated plants have more endogenous Fe and increased photosynthetic capacity under alkaline conditions as compared to control plants. Our results demonstrate the potential roles of BFKC01 in promoting Fe acquisition in plants and underline the intricate integration of microbial signaling in controlling plant Fe acquisition. PMID:27105423

  14. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  15. Use of collaboration software to improve nuclear power plant outage management

    SciTech Connect

    Germain, Shawn

    2015-02-01

    Nuclear Power Plant (NPP) refueling outages create some of the most challenging activities the utilities face in both tracking and coordinating thousands of activities in a short period of time. Other challenges, including nuclear safety concerns arising from atypical system configurations and resource allocation issues, can create delays and schedule overruns, driving up outage costs. Today the majority of the outage communication is done using processes that do not take advantage of advances in modern technologies that enable enhanced communication, collaboration and information sharing. Some of the common practices include: runners that deliver paper-based requests for approval, radios, telephones, desktop computers, daily schedule printouts, and static whiteboards that are used to display information. Many gains have been made to reduce the challenges facing outage coordinators; however; new opportunities can be realized by utilizing modern technological advancements in communication and information tools that can enhance the collective situational awareness of plant personnel leading to improved decision-making. Ongoing research as part of the Light Water Reactor Sustainability Program (LWRS) has been targeting NPP outage improvement. As part of this research, various applications of collaborative software have been demonstrated through pilot project utility partnerships. Collaboration software can be utilized as part of the larger concept of Computer-Supported Cooperative Work (CSCW). Collaborative software can be used for emergent issue resolution, Outage Control Center (OCC) displays, and schedule monitoring. Use of collaboration software enables outage staff and subject matter experts (SMEs) to view and update critical outage information from any location on site or off.

  16. Role of the lateral preoptic area and the bed nucleus of stria terminalis in the regulation of penile erection.

    PubMed

    Iwasaki, Hiroshi; Jodo, Eiichi; Kawauchi, Akihiro; Miki, Tsuneharu; Kayama, Yukihiko; Koyama, Yoshimasa

    2010-10-21

    To elucidate the role of the preoptic area (POA) in the regulation of penile erection, we examined the effects of electrical stimulation in and around the POA on penile erection in rats, which was assessed by changes in pressure in the corpus spongiosum of the penis (CSP) and electromyography (EMG) of the bulbospongiosus (BS) muscle. In unanesthetized and anesthetized rats, four types of responses were induced by stimulation in and around the POA; (1) normal type responses, which were similar to spontaneously occurring erections, characterized by slow increase in CSP pressure and sharp peaks concurrent with BS muscle bursting; (2) muscular type responses, which included sharp CSP pressure peaks (muscular component) with almost no vascular component; (3) mixed type responses, which included a sequence of high-frequency CSP peaks followed by low-frequency CSP peaks; and (4) micturition type responses, which had higher-frequency and lower-amplitude CSP peaks than other responses which were identical to those of normal micturition. In unanesthetized condition, erections were evoked by stimulation of the lateral preoptic area (LPOA), medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN), reuniens thalamic nucleus (Re) and lateral septum (LS). Lower-intensity stimulation evoked erections from the LPOA, BST, PVN and RE, but not the MPOA. In anesthetized condition, stronger stimuli were required and effective sites were restricted to the LPOA, MPOA and BST. These findings suggest that the lateral and medial subdivisions of the preoptic area play different roles in mediating penile erection. PMID:20705064

  17. Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings.

    PubMed

    Kabas, S; Faz, A; Acosta, J A; Arocena, J M; Zornoza, R; Martínez-Martínez, S; Carmona, D M

    2014-02-01

    Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg(-1)) than the El Lirio (up to 26 μg N kg(-1)). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg(-1). We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments. PMID:23479083

  18. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change. PMID:26909467

  19. [Radical surgical treatment of Peironie disease by excision of the plaque and dermal graft allowing conservation of erection].

    PubMed

    Austoni, E; Fenice, O; Kartalas-Goumas, Y; Colombo, F; Mantovani, F; Pisani, E

    1996-01-01

    The surgical treatment of the La Peyronie disease is the complet excision of the fibrom plaque followed by dermal skin grafts. This technique is applied for stabilised cases in which coït has become uneasy due to the deformation of the penis. A complete isolation of the vasculonervous dorsal pedicle guaranties a good erection. In 15 years this technique was applied in 400 cases followed during 2 years. In 7% of cases a recidive of the incurvation occurs. In 20% the erection was unsatisfactory. PMID:8967743

  20. Effect of acute lithium administration on penile erection: involvement of nitric oxide system

    PubMed Central

    Sandoughdaran, Saleh; Sadeghipour, Hamed; Sadeghipour, Hamid Reza

    2016-01-01

    Background: Lithium has been the treatment of choice for bipolar disorder (BD) for many years. Although erectile dysfunction is a known adverse effect of this drug, the mechanism of action by which lithium affects erectile function is still unknown. Objective: The aim was to investigate the possible involvement of nitric oxide (NO) in modulatory effect of lithium on penile erection (PE). We further evaluated the possible role of Sildenafil in treatment of lithium-induced erectile dysfunction. Materials and Methods: Erectile function was determined using rat model of apomorphine-induced erections. For evaluating the effect of lithium on penile erection, rats received intraperitoneal injection of graded doses of lithium chloride 30 mins before subcutaneous injection of apomorphine. To determine the possible role of NO pathway, sub-effective dose of N (G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, was administered 15 min before administration of sub-effective dose of lithium chloride. In other separate experimental groups, sub- effective dose of the nitric oxide precursor, L-arginine, or Sildenafil was injected into the animals 15 min before administration of a potent dose of lithium. 30 min after administration of lithium chloride, animals were assessed in apomorphine test. Serum lithium levels were measured 30 min after administration of effective dose of lithium. Results: Lithium at 50 and 100 mg/kg significantly decreased number of PE (p<0.001), whereas at lower doses (5, 10 and 30 mg/kg) had no effect on apomorphine induced PE. The serum Li+ level of rats receiving 50 mg/kg lithium was 1±0.15 mmol/L which is in therapeutic range of lithium. The inhibitory effect of Lithium was blocked by administration of sub-effective dose of nitric oxide precursor L-arginine (100 mg/kg) (p<0.001) and sildenafil (3.5 mg/kg) (p<0.001) whereas pretreatment with a low and sub-effective dose of L-NAME (10mg/kg) potentiated sub-effective dose of

  1. An Innovative Magnetic Charging Chute to Improve Productivity of Sinter Machine at Rourkela Steel Plant

    NASA Astrophysics Data System (ADS)

    Selvam, Sambandham Thirumalai; Chaudhuri, Subhasis; Das, Arunaba; Singh, Mithilesh Kumar; Mahanta, H. K.

    Sintering is a process in sinter machine for agglomeration of iron ore and other raw material fines into a compact porous mass, i.e., sinter, used in Blast Furnaces as an iron bearing input charge material for hot metal production. 'Permeability' of sinter-bed on sinter machine i.e., the porosity in sinter-bed of charged materials, facilitates atmospheric air passes from the top to bottom across the depth of sinter-bed, when suction created from the bottom of the bed, for efficient heat carry over from top to bottom of the bed for complete burning of charged materials for effective sintering process controls the productivity of the sinter machine. The level of 'permeability' in sinter-bed is depending upon the effectiveness of 'charging chute' in size-wise 'segregation' of charge materials across the depth in sinter-bed, achieved due to differences in the sliding velocities of particles during charging into the moving sinter-bed. The permeability achieved by the earlier conventional 'charging chute' was limited due to its design and positional constraints in sinter machine. Improving the productivity of sinter machine, through increased permeability of sinter bed is successfully achieved through implementation of an innovatively designed and developed, "Magnetic Charging Chute" at Sinter Plant no. 2 of Rourkela Steel Plant. The induced magnetic force on the charged materials while the charge materials dropping down through the charge chute has improved the permeability of sinter bed through an unique method of segregating the para-magnetic materials and the finer materials of the charge materials to top layer of sinter bed along with improved size-wise segregation of charge materials. This has increased the productivity of the sinter machine by 3% and also reduced the solid fuel consumption i.e., coke breeze in input charge materials by 1 kg/t of sinter.

  2. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants

    PubMed Central

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  3. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    PubMed

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants. PMID:27073898

  4. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01

    will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  5. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems. PMID:26796423

  6. Chiller plant CFC, energy and operational improvements{hor_ellipsis} or, killing three birds with one stone

    SciTech Connect

    Waltz, J.P.

    1996-05-01

    This paper explores the hidden opportunities that exist when planning CFC abatement or modernization projects for central cooling plants, both small and large. It is critically important to perform an in-depth, comprehensive, and integrated re-evaluation of the entire cooling plant, its auxiliaries and its distribution system. By doing so, numerous system improvements can be identified and implemented which will reduce operating costs, simplify maintenance, improve plant operations, enhance plant reliability and even improve building comfort. Among the improvement measures are more efficient chillers, cooling tower replacement and optimization, plant re-sizing, optimizing, primary and auxiliary equipment {open_quotes}mix{close_quotes}chilled water variable flow conversion, multiple-plant integration, installation of dedicated cooling systems and fuel substitution. These measures can all independently, or concurrently, contribute to dramatically improved cooling operations. The paper refers to numerous actual projects that have already employed these techniques and also discusses the major CFC abatement compliance dates. The hidden opportunities presented and explained in this paper can do much to take the{open_quote}sting{close_quote} out of an otherwise onerous regulatory {open_quotes}predicament{close_quotes} and, perhaps most significantly, help to secure funding from management for much-needed projects sooner rather than later.

  7. Feasibility demonstration for electroplating ultra-thin polyimide film. [fabricating film for space erectable structures

    NASA Technical Reports Server (NTRS)

    Schneier, R.; Braswell, T. V.; Vaughn, R. W.

    1978-01-01

    The effect of electrodeposition variables on film thickness was investigated using a dilute polyimide solution as a bath into which aluminum (as foil or as a vapor deposited coating) was immersed. The electrodeposited film was dried for 2 hours at 93 C (primarily to remove solvent) and cured for 18 hours at 186 C. Infrared studies indicate that imide formation (curing) occurs at 149 C under vacuum. From a conceptual viewpoint, satisfactory film metallized on one side can be obtained by this method. The cured ultra thin polyimide film exhibits properties equivalent to those of commercial film, and the surface appearance of the strippable polyimide film compares favorably with that of a sample of commercial film of thicker gauge. The feasibility of manufacturing approximately one million sq m of ultra thin film capable of being joined to fabricate an 800 m by 9 800 m square from starting material 0.5 to 1 m wide for space erectable structures was demonstrated.

  8. MARS GLOBAL SURVEYOR SPACECRAFT ERECTION AT LC-17A AT CCAS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    MARS GLOBAL SURVEYOR SPACECRAFT ERECTION AT LC-17A AT CCAS KSC-96C-11616.1 Workers at Launch Pad 17A on Cape Canaveral Air Station prepare to stack the Mars Global Surveyor spacecraft, mated to its upper stage booster, atop the Delta II launch vehicle that will loft the spacecraft on its interplanetary journey. In this view the Surveyor's solar array panels are clearly visible, as is the spacecraft's boom-mounted high-gain antenna at left. Both are stowed against the spacecraft bus for flight. The booster stage - - actually the third stage of the Delta II -- is lowermost. After stacking and integrated testing are complete, the fairing will be placed around the Surveyor in preparation for liftoff Nov. 6 at the beginning of a 20-day launch period.

  9. Contact conductance evaluation for a full scale space erectable radiator pressurized interface

    NASA Technical Reports Server (NTRS)

    Duschatko, R. John

    1989-01-01

    The baseline thermal control configuration for the Space Station Freedom includes a contact heat exchanger to provide efficient heat transfer between the two-phase thermal bus heat collection/delivery system and the radiator panel heat rejection system. The contact heat exchanger provides a dry interface for a modular radiator system with easy on-orbit panel replacement. July 1988 testing of the Space Erectable Radiator System (SERS) at NASA-JSC provided thermal/vacuum data for three full-scale prototype units of a pressurized dry contact heat exchanger design. Derived contact conductance values agreed with predictions and previous element tests and demonstrated high conductance for relatively low pressure levels. A limited amount of data was also obtained below the operating pressure, resulting in contact conductance trends with respect to interface pressure.

  10. First stage of an Atlas-II/Centaur rocket is erected at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Cape Canaveral Air Force Station, the first stage of an Atlas II/Centaur rocket begins erection in the launch gantry on pad 36A. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the NASA/Lockheed Martin GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing.

  11. First stage of an Atlas-II/Centaur rocket is erected at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Cape Canaveral Air Force Station, the first stage of an Atlas II/Centaur rocket is nearing erection in the launch gantry on pad 36A. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the NASA/Lockheed Martin GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing.

  12. MARS GLOBAL SURVEYOR SPACECRAFT ERECTION AT LC-17A AT CCAS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    MARS GLOBAL SURVEYOR SPACECRAFT ERECTION AT LC-17A AT CCAS KSC-96C-11617.7 Workers at Launch Pad 17A on Cape Canaveral Air Station prepare for the delicate task of hoisting the Mars Global Surveyor spacecraft and its upper stage booster to stack it atop the Delta II launch vehicle that will loft the spacecraft on its interplanetary journey. Tucked safely inside the protective canister shown here, the Surveyor was transferred from the Payload Hazardous Servicing Facility on KSC to the Cape, completing the final Earth-bound leg of its journey into space. The Mars Global Surveyor is the first of two U.S. missions to Mars scheduled for launch from Launch Complex 17 this year, with liftoff to occur Nov. 6 at the beginning of a 20-day launch period. In December, the Mars Pathfinder will follow the Surveyor on a journey to the Red Planet.

  13. Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Van Meighem, Jeffery S.; Duncan, Garth M.; Pell, Michael J.; Harrington, Christopher C.

    2013-07-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

  14. Improved conversion of herbaceous biomass to biofuels: Potential for modification of key plant characteristics

    SciTech Connect

    Sladden, S.E.; Bransby, D.I. . Dept. of Agronomy and Soils)

    1989-10-01

    Biomass crops are converted to fuels via biochemical and thermochemical processes. The process preferred depends on properties and cost of available feedstocks, and on the specific products desired. Since most mature biomass crops are composed of up to 80% cell wall fibers, the properties of these fibers determine, to a large degree, the conversion potential of the crop. However, biomass crops also contain small amounts of proteins, soluble carbohydrates and interfering materials (e.g., tannins and silica) which also influence the desirability of the feedstock in specific conversion processes. Fortunately, wide variation exists in the chemical composition of potential biomass crops. Although the chemical composition of feedstocks can be influenced significantly with judicious management has species selection, some traits are sufficiently heritable to permit breeding for improved feedstock composition. In addition to breeding for specific compositional traits directly, selection for in vitro digestibility or for easily-measured canopy or physiological traits may lead to more rapid and efficient progress in feedstock improvement, provided those measurements are highly-correlated with desirable feedstock composition. At the same time breeders must improve, or at least avoid damaging, stand longevity, tendency of plants to lodge, and establishment traits (e.g., disease resistance and seedling vigor). 46 refs., 8 tabs.

  15. Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263

    SciTech Connect

    Arm, Stuart T.; Pell, Michael J.; Van Meighem, Jeffery S.; Duncan, Garth M.; Harrington, Christopher C.

    2012-11-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

  16. Distribution of infective gastrointestinal helminth larvae in tropical erect grass under different feeding systems for lambs.

    PubMed

    Tontini, Jalise Fabíola; Poli, Cesar Henrique Espírito Candal; Bremm, Carolina; de Castro, Juliane Machado; Fajardo, Neuza Maria; Sarout, Bruna Nunes Marsiglio; Castilhos, Zélia Maria de Souza

    2015-08-01

    This study examined tropical pasture contamination dynamics under different feeding systems for finishing lambs. The experiment aimed to evaluate the vertical distribution of gastrointestinal helminth infective larvae (L3) in erect grass subjected to grazing and to assess the parasite load and its impact on lamb performance in three production systems. Three treatments based on Aruana grass (Panicum maximum cv. IZ-5) were as follows: T1, grass only; T2, grass with 1.5% of body weight (BW) nutrient concentrate supplementation; and T3, grass with 2.5% BW concentrate supplementation. The randomized block design had three replicates of three treatments, with six lambs per replicate. L3 were recovered from three pasture strata (upper, middle, and bottom), each representing one third of the sward height, and correlated with microclimatic data. Significant differences (P < 0.05) were observed among treatments in the L3 recovery. Despite different grass heights between treatments and microclimates within the sward, the L3 concentration generally did not differ significantly among the three strata within a treatment (P > 0.05). Pasture microclimate did not correlate with larval recovery. At the end of the experiment, the animal fecal egg count was similar among treatments (P > 0.05). The results indicated that different lamb feeding systems in a tropical erect grassland caused differences in grass height but did not affect the distribution of infective larvae among strata. Larvae were found from the base to the top of the grass sward. PMID:26003429

  17. Shepard Plants Flag

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Astronaut Alan B. Shepard Jr., Apollo 14 Commander, stands by the U.S. flag on the lunar Fra Mauro Highlands during the early moments of the first extravehicular activity (EVA-1) of the mission. Shadows of the Lunar Module 'Antares', astronaut Edgar D. Mitchell, Lunar Module pilot, and the erectable S-band Antenna surround the scene of the third American flag planting to be performed on the lunar surface.

  18. Isoprene improves photochemical efficiency and enhances heat dissipation in plants at physiological temperatures.

    PubMed

    Pollastri, Susanna; Tsonev, Tsonko; Loreto, Francesco

    2014-04-01

    Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate. PMID:24676032

  19. Systems Level Engineering of Plant Cell Wall Biosynthesis to Improve Biofuel Feedstock Quality

    SciTech Connect

    Hazen, Samuel

    2013-09-27

    Our new regulatory model of cell wall biosynthesis proposes original network architecture with several newly incorporated components. The mapped set of protein-DNA interactions will serve as a foundation for 1) understanding the regulation of a complex and integral plant component and 2) the manipulation of crop species for biofuel and biotechnology purposes. This study revealed interesting and novel aspects of grass growth and development and further enforce the importance of a grass model system. By functionally characterizing a suite of genes, we have begun to improve the sparse model for transcription regulation of biomass accumulation in grasses. In the process, we have advanced methodology and brachy molecular genetic tools that will serve as valuable community resource.

  20. Soybean GmPHD-Type Transcription Regulators Improve Stress Tolerance in Transgenic Arabidopsis Plants

    PubMed Central

    Hao, Yu-Jun; Zou, Hong-Feng; Wang, Hui-Wen; Zhao, Jing-Yun; Liu, Xue-Yi; Zhang, Wan-Ke; Ma, Biao; Zhang, Jin-Song; Chen, Shou-Yi

    2009-01-01

    Background Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. Principal Findings Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element “GTGGAG”. The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. Significance These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator. PMID:19789627

  1. Improving depth maps of plants by using a set of five cameras

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Adam L.

    2015-03-01

    Obtaining high-quality depth maps and disparity maps with the use of a stereo camera is a challenging task for some kinds of objects. The quality of these maps can be improved by taking advantage of a larger number of cameras. The research on the usage of a set of five cameras to obtain disparity maps is presented. The set consists of a central camera and four side cameras. An algorithm for making disparity maps called multiple similar areas (MSA) is introduced. The algorithm was specially designed for the set of five cameras. Experiments were performed with the MSA algorithm and the stereo matching algorithm based on the sum of sum of squared differences (sum of SSD, SSSD) measure. Moreover, the following measures were included in the experiments: sum of absolute differences (SAD), zero-mean SAD (ZSAD), zero-mean SSD (ZSSD), locally scaled SAD (LSAD), locally scaled SSD (LSSD), normalized cross correlation (NCC), and zero-mean NCC (ZNCC). Algorithms presented were applied to images of plants. Making depth maps of plants is difficult because parts of leaves are similar to each other. The potential usability of the described algorithms is especially high in agricultural applications such as robotic fruit harvesting.

  2. An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs.

    PubMed

    Liao, Qiansheng; Tu, Yifei; Carr, John P; Du, Zhiyou

    2015-01-01

    We previously devised a cucumber mosaic virus (CMV)-based vector system carrying microRNA target mimic sequences for analysis of microRNA function in Arabidopsis thaliana. We describe an improved version in which target mimic cloning is achieved by annealing two partly-overlapping complementary DNA oligonucleotides for insertion into an infectious clone of CMV RNA3 (LS strain) fused to the cauliflower mosaic virus-derived 35S promoter. LS-CMV variants carrying mimic sequences were generated by co-infiltrating plants with Agrobacterium tumefaciens cells harboring engineered RNA3 with cells carrying RNA1 and RNA2 infectious clones. The utility of using agroinfection to deliver LS-CMV-derived microRNA target mimic sequences was demonstrated using a miR165/166 target mimic and three solanaceous hosts: Nicotiana benthamiana, tobacco (N. tabacum), and tomato (Solanum lycopersicum). In all three hosts the miR165/166 target mimic induced marked changes in developmental phenotype. Inhibition of miRNA accumulation and increased target mRNA (HD-ZIP III) accumulation was demonstrated in tomato. Thus, a CMV-derived target mimic delivered via agroinfection is a simple, cheap and powerful means of launching virus-based miRNA mimics and is likely to be useful for high-throughput investigation of miRNA function in a wide range of plants. PMID:26278008

  3. An improved cucumber mosaic virus-based vector for efficient decoying of plant microRNAs

    PubMed Central

    Liao, Qiansheng; Tu, Yifei; Carr, John P.; Du, Zhiyou

    2015-01-01

    We previously devised a cucumber mosaic virus (CMV)-based vector system carrying microRNA target mimic sequences for analysis of microRNA function in Arabidopsis thaliana. We describe an improved version in which target mimic cloning is achieved by annealing two partly-overlapping complementary DNA oligonucleotides for insertion into an infectious clone of CMV RNA3 (LS strain) fused to the cauliflower mosaic virus-derived 35S promoter. LS-CMV variants carrying mimic sequences were generated by co-infiltrating plants with Agrobacterium tumefaciens cells harboring engineered RNA3 with cells carrying RNA1 and RNA2 infectious clones. The utility of using agroinfection to deliver LS-CMV-derived microRNA target mimic sequences was demonstrated using a miR165/166 target mimic and three solanaceous hosts: Nicotiana benthamiana, tobacco (N. tabacum), and tomato (Solanum lycopersicum). In all three hosts the miR165/166 target mimic induced marked changes in developmental phenotype. Inhibition of miRNA accumulation and increased target mRNA (HD-ZIP III) accumulation was demonstrated in tomato. Thus, a CMV-derived target mimic delivered via agroinfection is a simple, cheap and powerful means of launching virus-based miRNA mimics and is likely to be useful for high-throughput investigation of miRNA function in a wide range of plants. PMID:26278008

  4. Mathematical literacy in Plant Physiology undergraduates: results of interventions aimed at improving students' performance

    NASA Astrophysics Data System (ADS)

    Vila, Francisca; Sanz, Amparo

    2013-09-01

    The importance of mathematical literacy in any scientific career is widely recognized. However, various studies report lack of numeracy and mathematical literacy in students from various countries. In the present work, we present a detailed study of the mathematical literacy of Spanish undergraduate students of Biology enrolled in a Plant Physiology course. We have performed individual analyses of results obtained during the period 2000-2011, for questions in the examinations requiring and not requiring mathematical skills. Additionally, we present the outcome of two interventions introduced with the aim of helping students improve their prospects for success in the course. Our results confirm previous research showing students' deficiencies in mathematical skills. However, the scores obtained for mathematical questions in the examinations are good predictors of the final grades attained in Plant Physiology, as there are strong correlations at the individual level between results for questions requiring and not requiring mathematical skills. The introduction of a laboratory session devoted to strengthening the application of students' previously acquired mathematical knowledge did not change significantly the results obtained for mathematical questions. Since mathematical abilities of students entering university have declined in recent years, this intervention may have helped to maintain students' performance to a level comparable to that of previous years. The outcome of self-assessment online tests indicates that although Mathematics anxiety is lower than during examinations, the poor results obtained for questions requiring mathematical skills are, at least in part, due to a lack of self-efficacy.

  5. Power plant performance monitoring and improvement: Volume 4, Boiler optimization: Interim report

    SciTech Connect

    Crim, H.G. Jr.; Levy, E.K.

    1987-12-01

    The boiler portion of EPRI project RP1681/2153 is concerned with the development of measurement methods and instrumentation and analysis techniques for pulverized coal power plants, for monitoring the performance of a unit and for determining its optimum fireside operating conditions. Three of the physical parameters of interest in this investigation are level of excess air, size distribution of the coal, and stack gas temperature. A computer code has been developed to compute the effects of fireside parameters on power plant performance and field tests are being carried out at the Potomac Electric Power Company's Morgantown Station, where the effects of coal grind size and level of excess air on parameters such as unit heat rate, carbon heat loss, stack loss and boiler efficiency are being measured. A new technique for the direct measurement of unit heat rate, referred to as the output/loss method, is under development and measurements are being made at the regenerative air preheater to determine the effects on acid deposition of operating at reduced levels of O/sub 2/. An improved procedure for ultrasonic measurement of waterwall tube thickness has been developed and laboratory experiments were carried out to determine the effects of O/sub 2/ level and particle size on the reactions which pyrite undergoes in the furnace. This progress report describes the results of the project for the two year period ending in January, 1986.

  6. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  7. A New Interpretation of the Transport and Erection of Large Obelisks by Ancient Egyptian Engineers or Englebach Revisited.

    ERIC Educational Resources Information Center

    Spry, William J.

    In the teaching of archaeology at the university level there is often conflict between the engineer and the humanist when looking at archaeological evidence. Nowhere is this more clear than in considering the very old puzzle of how ancient Egyptian engineers transported and erected huge stone obelisks using only human labor. The humanist, whose…

  8. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation.

    PubMed

    Boyko, Alex; Matsuoka, Aki; Kovalchuk, Igor

    2011-04-01

    Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations. PMID:21132499

  9. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed. PMID:23322250

  10. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. PMID:26473512

  11. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  12. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    SciTech Connect

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger; Leigh, Christi

    2013-07-01

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  13. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity.

    PubMed

    Cheng, Tao; Xu, Chao; Lei, Li; Li, Changhao; Zhang, Yu; Zhou, Shiliang

    2016-01-01

    The internal transcribed spacer (ITS) of nuclear ribosomal DNA is one of the most commonly used DNA markers in plant phylogenetic and DNA barcoding analyses, and it has been recommended as a core plant DNA barcode. Despite this popularity, the universality and specificity of PCR primers for the ITS region are not satisfactory, resulting in amplification and sequencing difficulties. By thoroughly surveying and analysing the 18S, 5.8S and 26S sequences of Plantae and Fungi from GenBank, we designed new universal and plant-specific PCR primers for amplifying the whole ITS region and a part of it (ITS1 or ITS2) of plants. In silico analyses of the new and the existing ITS primers based on these highly representative data sets indicated that (i) the newly designed universal primers are suitable for over 95% of plants in most groups; and (ii) the plant-specific primers are suitable for over 85% of plants in most groups without amplification of fungi. A total of 335 samples from 219 angiosperm families, 11 gymnosperm families, 24 fern and lycophyte families, 16 moss families and 17 fungus families were used to test the performances of these primers. In vitro PCR produced similar results to those from the in silico analyses. Our new primer pairs gave PCR improvements up to 30% compared with common-used ones. The new universal ITS primers will find wide application in both plant and fungal biology, and the new plant-specific ITS primers will, by eliminating PCR amplification of nonplant templates, significantly improve the quality of ITS sequence information collections in plant molecular systematics and DNA barcoding. PMID:26084789

  14. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    PubMed

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. PMID:25641517

  15. An improved gate valve for critical applications in nuclear power plants

    SciTech Connect

    Kalsi, M.S.; Alvarez, P.D.; Wang, J.K.; Somagyi, D.

    1996-12-01

    U.S. Nuclear Regulatory Commission Generic Letters 89-10 for motor-operated valves (MOVs) and 95-07 for all power-operated valves document in detail the problems related to the performance of the safety-related valves in nuclear power plants. The problems relate to lack of reliable operation under design basis conditions including higher than anticipated stem thrust, unpredictable valve behavior, damage to the valve internals under blowdown/high flow conditions, significant degradation of performance when cycled under AP and flow, thermal binding, and pressure locking. This paper describes an improved motor-operated flexible wedge gate valve design, the GE Sentinel Valve, which is the outcome of a comprehensive and systematic development effort undertaken to resolve the issues identified in the NRC Generic Letters 89-10 and 95-07. The new design provides a reliable, long-term, low maintenance cost solution to the nuclear power industry. One of the key features incorporated in the disc permits the disc flexibility to be varied independently of the disc thickness (pressure boundary) dictated by the ASME Section III Pressure Vessel & Piping Code stress criteria. This feature allows the desired flexibility to be incorporated in the disc, thus eliminating thermal binding problems. A matrix of analyses was performed using finite element and computational fluid dynamics approaches to optimize design for stresses, flexibility, leak-tightness, fluid flow, and thermal effects. The design of the entire product line was based upon a consistent set of analyses and design rules which permit scaling to different valve sizes and pressure classes within the product line. The valve meets all of the ASME Section III Code design criteria and the N-Stamp requirements. The performance of the valve was validated by performing extensive separate effects and plant in-situ tests. This paper summarizes the key design features, analyses, and test results.

  16. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency. PMID:26423283

  17. Plant Maintenance and Improvement Experiences for Control System in UCN 5 and 6

    SciTech Connect

    Choi, D.R.; Lee, K.B.; Kim, C.J.; Chung, Y.M.

    2006-07-01

    The Plant Control System (PCS) in Korean Standard Nuclear Power Plant (KSNP) is designed to perform data acquisition and transfer function via communication data links to control most of the field components such as pumps, fans, valves, dampers and circuit breakers. The PCS installed at UCN 5 and 6 for both safety related and non -safety related functions is microprocessor based system supplied by HF Controls. Safety related functions are provided by redundant trains of microprocessor based single loop controllers with direct connections to the field input/output instruments but non-safety related functions utilize a similar construction with the input/output boards to be remotely located in cabinet arrangements near the field components. Whatever the functions, the signals to control and monitor field devices are processed through communication master (CM), HFC distributed control system, which uses Multibus I back-plane design to accommodate the requirement of multiple processors. The complex programmable logic device (CPLD) mounted on the A233 back-plane of the CM controls the processors for an adequate access to the bus so that 16 microprocessor based circuitries acting as bus masters share the public memory properly through the common bus. The bus occupation of each processor should not affect overall system response time to keep appropriate system performance. This paper discusses the comparison evaluation between the difference priority techniques and hardware change on A233 back-plane to improve the communication methods, etc., as to the bus arbitration schemes of communication master(CM) applied to UCN site based on the waveform data acquired from A233 CPLD and HFC bus design specification. (authors)

  18. Modernization of Controls Improves Productivity and Reduces Energy Costs at a Large Steel Plant (Weirton Steel Plant)

    SciTech Connect

    2000-04-01

    In 1996 and 1997, Weirton Steel upgraded the utilities control systems at its main steel manufacturing plant in Weirton, WV. In response to increasing energy costs and the need to remain competitive in the steel industry, Weirton Steel commissioned a comprehensive energy management study of the facility, which provided the basis for an energy management control strategy.

  19. The present situation and tentative ideas on the improvement of 75 t/h CFB boiler in P.R. China

    SciTech Connect

    Zhu Ning

    1997-12-31

    In order to use the low grade and cheap coal, reduce the air pollution and meet the demand for process steam and district heating, quite a number of CFB boiler cogeneration power plants with a capacity of less than 50 MW have been and will be installed in China. This article makes a detailed analysis on the existing problems of China-manufactured 75 t/h CFB boilers in regard to design, manufacturing, erection, operation, auxiliary components and systems, and engineering design. Suggestions are made on the measures to solve the problems and the immediate object for the improvement of 75 t/h CFB boilers.

  20. Genetic engineering of plants for improved crop production. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of genetic engineering to improve crop production. Genetic alterations of plants to provide insect protection, herbicide resistance, disease resistance, improved quality, and higher yield are discussed. Methods used to develop environmentally tolerant crops that are able to withstand extremes of temperature, reduced water consumption, and reduced fertilizer requirements are examined. Genetic engineering of microorganisms that are beneficial to plants is discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  1. Synergistic actions of apomorphine and m-chlorophenylpiperazine on ejaculation, but not penile erection in rats.

    PubMed

    Yonezawa, Akihiko; Yoshizumi, Masaru; Ise, Shin-Nosuke; Watanabe, Chizuko; Mizoguchi, Hirokazu; Furukawa, Katsuo; Tsuru, Hiromichi; Kimura, Yukio; Kawatani, Masahito; Sakurada, Shinobu

    2009-04-01

    It has been suggested that dopamine (DA) and serotonin (5-HT) and their receptors, particularly D(2)-like and 5-HT(2C) receptors, may play a significant role in the control of male sexual function. The purpose of this study was to investigate whether the combination of a dopamine receptor agonist apomorphine and a 5-HT(2) receptor agonist m-CPP would potentiate penile erection and ejaculation in male rats. Systemic administration of either apomorphine (0.01-0.1 mg/kg, s.c.) or m-CPP (0.01-0.3 mg/kg, i.p.) dose-dependently elicited penile erections, but did not induce ejaculation. When combined, there was a drastic increase in both the incidence of ejaculation and the amount of ejaculated seminal materials, while the proerectile effect induced by each drug was not potentiated. The proejaculatory effect induced by the combination of apomorphine (0.1 mg/kg, s.c.) and m-CPP (0.3 mg/kg, i.p.) was completely blocked by pretreatment with the D(2)-like receptor antagonists haloperidol and sulpiride, but not by the D(1)-like receptor antagonist SCH-23390. The synergistic action for ejaculation was also blocked by domperidone, the D(2)-like receptor antagonist that dose not cross the blood-brain barrier. The rats pretreated with the 5-HT(2C) receptor antagonist SB242084 did not show the synergistic action by the combination of apomorphine and m-CPP, whereas the rats pretreated with the 5-HT(2A) receptor antagonist ketanserin and the 5-HT(2B) receptor antagonist SB204741 showed the combination-induced synergistic action. These results suggest that the combination of a small dose of apomorphine and m-CPP potently and selectively facilitates the ejaculatory response through the activation of D(2)-like and 5-HT(2C) receptors, respectively. The D(2)-like receptors involved in the synergistic action may be, at least in part, located in the peripheral sites. PMID:19420729

  2. Insertion of a Specific Fungal 3′-phosphoadenosine-5′-phosphatase Motif into a Plant Homologue Improves Halotolerance and Drought Tolerance of Plants

    PubMed Central

    Rotter, Ana; Plemenitaš, Ana; Gunde-Cimerman, Nina; Gruden, Kristina; Žel, Jana

    2013-01-01

    Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3′-phosphoadenosine-5′-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi

  3. Insertion of a specific fungal 3'-phosphoadenosine-5'-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants.

    PubMed

    Gašparič, Meti Buh; Lenassi, Metka; Gostinčar, Cene; Rotter, Ana; Plemenitaš, Ana; Gunde-Cimerman, Nina; Gruden, Kristina; Zel, Jana

    2013-01-01

    Soil salinity and drought are among the most serious agricultural and environmental problems of today. Therefore, investigations of plant resistance to abiotic stress have received a lot of attention in recent years. In this study, we identified the complete coding sequence of a 3'-phosphoadenosine-5'-phosphatase protein, ApHal2, from the halotolerant yeast Aureobasidium pullulans. Expression of the ApHAL2 gene in a Saccharomyces cerevisiae hal2 mutant complemented the mutant auxotrophy for methionine, and rescued the growth of the hal2 mutant in media with high NaCl concentrations. A 21-amino-acids-long region of the ApHal2 enzyme was inserted into the Arabidopsis thaliana homologue of Hal2, the SAL1 phosphatase. The inserted sequence included the META motif, which has previously been implicated in increased sodium tolerance of the Hal2 homologue from a related fungal species. Transgenic Arabidopsis plants overexpressing this modified SAL1 (mSAL1) showed improved halotolerance and drought tolerance. In a medium with an elevated salt concentration, mSAL1-expressing plants were twice as likely to have roots in a higher length category in comparison with the wild-type Arabidopsis and with plants overexpressing the native SAL1, and had 5% to 10% larger leaf surface area under moderate and severe salt stress, respectively. Similarly, after moderate drought exposure, the mSAL1-expressing plants showed 14% increased dry weight after revitalisation, with no increase in dry weight of the wild-type plants. With severe drought, plants overexpressing native SAL1 had the worst rehydration success, consistent with the recently proposed role of SAL1 in severe drought. This was not observed for plants expressing mSAL1. Therefore, the presence of this fungal META motif sequence is beneficial under conditions of increased salinity and moderate drought, and shows no drawbacks for plant survival under severe drought. This demonstrates that adaptations of extremotolerant fungi should

  4. METHODS FOR IMPROVEMENT OF TRICKLING FILTER PLANT PERFORMANCE. PART II. CHEMICAL ADDITION

    EPA Science Inventory

    An experimental program to explore potential methods for removing phosphorus and generally enhancing trickling filter plant performance was conducted at the Mason Farm Wastewater Treatment Plant, Chapel Hill, North Carolina. Preliminary investigations included jar testing with se...

  5. Integrating Botany with Chemistry & Art to Improve Elementary School Children's Awareness of Plants

    ERIC Educational Resources Information Center

    Çil, Emine

    2015-01-01

    Students need to be aware of plants in order to learn about, appreciate, care for, and protect them. However, research has found that many children are not aware of the plants in their environment. A way to address this issue might be integration of plants with various disciplines. I investigated the effectiveness of an instructional approach…

  6. Improved nuclear power plant operations and safety through performance-based safety regulation.

    PubMed

    Golay, M W

    2000-01-01

    This paper illustrates some of the promise and needed future work for risk-informed, performance-based regulation (RIPBR). RIPBR is an evolving alternative to the current prescriptive method of nuclear safety regulation. Prescriptive regulation effectively constitutes a long, fragmented checklist of requirements that safety-related systems in a plant must satisfy. RIPBR, instead, concentrates upon satisfying negotiated performance goals and incentives for judging and rewarding licensee behavior to improve safety and reduce costs. In a project reported here, a case study was conducted concerning a pressurized water reactor (PWR) emergency diesel generator (EDG). Overall, this work has shown that the methods of RIPBR are feasible to use, and capable of justifying simultaneous safety and economic nuclear power improvements. However, it also reveals several areas where the framework of RIPBR should be strengthened. First, researchers need better data and understanding regarding individual component-failure modes that may cause components to fail. Not only are more data needed on failure rates, but more data and understanding are needed to enable analysts to evaluate whether these failures become more likely as the interval between tests is increased. This is because the current state of failure data is not sufficiently finely detailed to define the failure rates of individual component failure modes; such knowledge is needed when changing component-specific regulatory requirements. Second, the role of component testing, given that a component has failed, needs to be strengthened within the context of RIPBR. This includes formulating requirements for updating the prior probability distribution of a component failure rate and conducting additional or more frequent testing. Finally, as a means of compensating for unavoidable uncertainty as an obstacle to regulatory decision-making, limits to knowledge must be treated explicitly and formally. This treatment includes the

  7. Plant growth improvement mediated by nitrate capture in co-composted biochar.

    PubMed

    Kammann, Claudia I; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Joseph, Stephen; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  8. Plant growth improvement mediated by nitrate capture in co-composted biochar

    PubMed Central

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  9. Plant growth improvement mediated by nitrate capture in co-composted biochar

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-06-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  10. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions.

    PubMed

    Mengual, Carmen; Schoebitz, Mauricio; Azcón, Rosario; Roldán, Antonio

    2014-02-15

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions. PMID:24463051

  11. Inbreeding compromises host plant defense gene expression and improves herbivore survival

    PubMed Central

    Portman, Scott L; Kariyat, Rupesh R; Johnston, Michelle A; Stephenson, Andrew G; Marden, James H

    2015-01-01

    Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants – suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of LIPOXYGENEASE-D (LoxD) and 12-OXOPHYTODIENOATE REDUCTASE-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants. PMID:26039489

  12. A 60-meter erectable assembly concept for a control of flexible structures flight experiment

    NASA Technical Reports Server (NTRS)

    Watson, Judith J.; Heard, Walter L., Jr.

    1988-01-01

    A flight experiment which proposes to use a 60-m deployable/retractable truss beam attached to the Space Shuttle to study dynamic characterization and control of flexible structures is being studied by NASA. The concept requires a relatively complex mechanism for deploying and retracting the truss on-orbit. Development of such a mechanism having a high degree of reliability will be expensive. An alternative method for constructing the truss is discussed requiring no new technology development or complex mechanisms and has already been demonstrated on-orbit. The alternative method proposes an erectable truss beam which can be assembled by two astronauts in EVA. The EVA crew would have to manually assemble the beam from 468 struts and 165 nodes, and install 7 instrumentation platforms with signal and power cabling. The predicted assembly time is 3 hr and 23 min. The structure would also have to be disassembled and restowed following testing, thus 2 EVA days would be required. To allow 25 hr for data collection (probably a bare minimum to accomplish meaningful tests), current Shuttle operations policy dictates a 9-day mission. The design, assembly procedure and issues associated with the alternative concept are discussed.

  13. Cytochrome P450 epoxygenases provide a novel mechanism for penile erection.

    PubMed

    Jin, Liming; Foss, Clare E; Zhao, Xueying; Mills, Thomas M; Wang, Mong-Heng; McCluskey, Lynnette P; Yaddanapud, Ganesh S S; Falck, John R; Imig, John D; Webb, R Clinton

    2006-03-01

    Erectile dysfunction (ED) is estimated to affect more than 30 million American men and 152 million men worldwide. Therapeutic agents targeting the nitric oxide/cyclic GMP signaling pathway have successfully treated patients with ED; however, the efficacies of these treatments are significantly lower in specific populations such as patients with diabetes. The goal of this study was to discover and identify new endothelium-derived relaxing factors involved in the regulation of erectile function, providing alternative therapeutic targets for treatment of ED. Immunoblotting results showed that protein expressions of epoxygenases from cytochrome P450 (CYP)2B, 2C and 2J subfamilies, as well as NADPH CYP reductase were present in rat corpora cavernosa, which was confirmed by immunohistochemical analysis. Furthermore, CYP2C was localized in cavernosal endothelial cells using double immunolabeling. CYP epoxygenase activity was analyzed by reverse-phase high-pressure liquid chromatography; and the results showed that 11,12- epoxyeicosatrienoic acid (EET) was the major product metabolized by CYP epoxygenases in rat corpora cavernosa. Inhibition of EETs function by injection of an EETs antagonist into rat penis significantly decreased intracavernosal pressure-induced by electrical stimulation of the major pelvic ganglion in vivo. In conclusion, our results suggest that EETs, produced by CYP epoxygenases, in penile endothelial cells serve as vasodilators. Inhibition of this pathway attenuated erectile function, suggesting that EETs are required for normal erection. PMID:16415108

  14. Experimental investigation of the visual field dependency in the erect and supine positions

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.; Saucer, R. T.

    1972-01-01

    The increasing utilization of simulators in many fields, in addition to aeronautics and space, requires the efficient use of these devices. It seemed that personnel highly influenced by the visual scene would make desirable subjects, particularly for those simulators without sufficient motion cues. In order to evaluate this concept, some measure of the degree of influence of the visual field on the subject in necessary. As part of this undertaking, 37 male and female subjects, including eight test pilots, were tested for their visual field dependency or independency. A version of Witkin's rod and frame apparatus was used for the tests. The results showed that nearly all the test subjects exhibited some degree of field dependency, the degree varying from very high field dependency to nearly zero field dependency in a normal distribution. The results for the test pilots were scattered throughout a range similar to the results for the bulk of male subjects. The few female subjects exhibited a higher field dependency than the male subjects. The male subjects exhibited a greater field dependency in the supine position than in the erect position, whereas the field dependency of the female subjects changed only slightly.

  15. The use of erection enhancing medication and party drugs among men living with HIV in Europe.

    PubMed

    De Ryck, Iris; Van Laeken, David; Noestlinger, Christiana; Platteau, Tom; Colebunders, Robert

    2013-08-01

    Studies have shown more erectile dysfunction (ED) in men living with HIV (MLHIV), relative to age matched HIV-negative men. Erection enhancing medication (EEM) is more frequently used by HIV-positive men than in the general male population. Increased sexually transmitted infection has been described in HIV-positive men with ED using EEM. This study investigated the use of EEM and party drugs (methyleendioxymethamfetamine (XTC), gammahydroxybutyrate (GHB) "fluid XTC" and alkyl nitrites "poppers") among MLHIV. Self-administered questionnaires were distributed consecutively to all patients attending 17 European HIV treatment centers. The sample included 1118 HIV-positive men, among whom 74.5% men having sex with men (MSM). The use of EEM was more frequent in MSM than in heterosexual men (odds ratio (OR) 3.33, p<0.001) and was associated with increased sexual risk behavior (OR 3.27, p<0.001). Nonmedically indicated use of EEM was linked to increased use of party drugs (OR 2.30, p=0.01). Physicians taking care of MLHIV need to be aware of the high prevalence of (nonmedical) use of EEM and party drugs. Medical provision of EEM should be combined with a discussion on safer sex behavior and the risk related to concomitant use of party drugs and illegal EEM. PMID:23244618

  16. Changes in concentration levels of selected VOCs in newly erected and remodelled building in Gdansk.

    PubMed

    Zabiegała, B; Namieśnik, J; Przyk, E; Przyjazny, A

    1999-11-01

    Volatile organic compounds such as benzene, toluene, butyl acetate, ethylbenzene, m-xylene, styrene and m-dichlorobenzene were measured in three newly erected and remodelled dwellings. The present study also attempted to examine the time dependence of concentrations of selected VOCs in each investigated dwelling. This was accomplished by at least triplicate measurements of the IAQ. To collect a series of air samples the active and passive methods were used. In both cases activated charcoal was applied as a sorption medium. The samples were recovered by solvent extraction, and analysed by capillary column gas chromatography, employing a flame ionisation detector. The experimental results showed that MAC values for analysed VOCs were exceeded (even a few orders of magnitude) for the measurements made before inhabiting of the occupants, in every investigated dwelling. The concentrations of the investigated VOCs decreased significantly with time, which should be expected, although in some cases the levels of selected VOCs remained still high. Our experience indicates that parallel application of two different indoor air sampling techniques to determine analytes of interest, though more laborious and time consuming, can lead to significant conclusions concerning indoor air quality in monitored spaces. PMID:10576105

  17. Blockade of androgen receptor in the medial amygdala inhibits noncontact erections in male rats.

    PubMed

    Bialy, Michal; Nikolaev-Diak, Anna; Kalata, Urszula; Nikolaev, Evgeni

    2011-06-01

    Our previous work demonstrated that androgens in the medial amygdala (MeA) of castrated male rats maintained noncontact erections (NCEs), which occur during exposure to an inaccessible receptive female, for one week after implantation. The present experiments investigated the effects of implantation into the MeA of either flutamide (F), a blocker of androgen receptors, or of 1,4,6-androstatrien-3,17-dione (ATD), which blocks aromatization of testosterone. One day after implantation of F, fewer males displayed NCEs, and had longer latencies to the first NCE and fewer NCEs, and spent less total time in genital grooming, compared to the control group. ATD had only weak facilitative effects on some measures of NCEs. These results suggest that androgen receptors in the MeA play a major role in the regulation of NCEs and that the MeA is one of the neuronal structures that regulate male sexual arousal. Furthermore, it is sensitive to relatively fast changes in the level of androgen receptors stimulation. PMID:21315100

  18. The involvement of expansins in responses to phosphorus availability in wheat, and its potentials in improving phosphorus efficiency of plants.

    PubMed

    Han, Yang-yang; Zhou, Shan; Chen, Yan-hui; Kong, Xiangzhu; Xu, Ying; Wang, Wei

    2014-05-01

    Phosphorus (P) is a critical macronutrient required for numerous functions in plants and is one of the limiting factors for plant growth. Phosphate availability has a strong effect on root system architecture. Expansins are encoded by a superfamily of genes that are organized into four families, and growing evidence has demonstrated that expansins are involved in almost all aspects of plant development, especially root development. In the current study, we demonstrate that expansins may be involved in increasing phosphorus availability by regulating the growth and development of plant roots. Multiple expansins (five α- and nine β-expansin genes) were up- or down-regulated in response to phosphorus and showed different expression patterns in wheat. Meanwhile, the expression level of TaEXPB23 was up-regulated at excess-P condition, suggesting the involvement of TaEXPB23 in phosphorus adaptability. Overexpression of the TaEXPB23 resulted in improved phenotypes, particularly improved root system architecture, as indicated by the increased number of lateral roots in transgenic tobacco plants under excess-P and low-P conditions. Thus, these transgenic plants maintained better photosynthetic gas exchange ability than the control under both P-sufficient and P-deficient conditions. PMID:24636907

  19. The use of agrobiodiversity for plant improvement and the intellectual property paradigm: institutional fit and legal tools for mass selection, conventional and molecular plant breeding.

    PubMed

    Batur, Fulya; Dedeurwaerdere, Tom

    2014-12-01

    Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes. PMID:26085450

  20. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  1. Re-engineering of carbon fixation in plants - challenges for plant biotechnology to improve yields in a high-CO2 world.

    PubMed

    Peterhansel, Christoph; Offermann, Sascha

    2012-04-01

    Source and sink strength control plant carbon gain and yield. Source strength was recently engineered by modifying the large subunit of Rubisco, replacing the small subunit, and creating improved thermostable Rubisco activases. This technological breakthrough makes Rubisco engineering feasible at last. Enhancement of leaf transitory starch synthesis or induction of artificial sinks in leaves increased biomass and yield. Importantly, such approaches also had a positive feedback on source strength. In addition, novel targets for the improvement of carbon gain in crops have been identified that are especially relevant in the light of climate change. PMID:22261558

  2. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    NASA Astrophysics Data System (ADS)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  3. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners.

    PubMed

    Zhang, Mengru; Gong, Ming; Yang, Yumei; Li, Xujuan; Wang, Haibo; Zou, Zhurong

    2015-04-01

    Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity. PMID:25515798

  4. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL...

  5. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL...

  6. 32 CFR 644.486 - Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL...

  7. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants.

    PubMed

    Flexas, J; Díaz-Espejo, A; Conesa, M A; Coopman, R E; Douthe, C; Gago, J; Gallé, A; Galmés, J; Medrano, H; Ribas-Carbo, M; Tomàs, M; Niinemets, Ü

    2016-05-01

    Water limitation is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal for the near future. At the leaf level, WUE is the ratio between photosynthesis and transpiration. Maintaining high photosynthesis under water stress, while improving WUE requires either increasing mesophyll conductance (gm ) and/or improving the biochemical capacity for CO2 assimilation-in which Rubisco properties play a key role, especially in C3 plants at current atmospheric CO2 . The goals of the present analysis are: (1) to summarize the evidence that improving gm and/or Rubisco can result in increased WUE; (2) to review the degree of success of early attempts to genetically manipulate gm or Rubisco; (3) to analyse how gm , gsw and the Rubisco's maximum velocity (Vcmax ) co-vary across different plant species in well-watered and drought-stressed conditions; (4) to examine how these variations cause differences in WUE and what is the overall extent of variation in individual determinants of WUE; and finally, (5) to use simulation analysis to provide a theoretical framework for the possible control of WUE by gm and Rubisco catalytic constants vis-à-vis gsw under water limitations. PMID:26297108

  8. Employing native shrubs to improve agricultural potential of arid lands: Drawing on plants to draw water (Invited)

    NASA Astrophysics Data System (ADS)

    Dragila, M. I.; Kizito, F.; Dick, R.

    2009-12-01

    Even though soil moisture poses limits on landscape dynamics, plant communities within the landscape can also regulate the spatial distribution of moisture, thus creating a biofeedback system that advances the system towards a specific landscape order. This behavior is evident in arid climates where specific parameters, such as soil moisture, are close to sustainability limits and result in a distinct spatial distribution of plant communities. Understanding plant-soil water relationships can lead to management tools to improve landscape function. Plant-soil interactions that influence soil moisture include, local changes in soil texture when plants trap airborne soil particles, increases in organic matter content below their foliage, and root distribution. We specifically focus on a process commonly referred to as hydraulic redistribution wherein plant roots draw moisture vertically to the near surface, raising the potential for seed germination and maintenance through short drought periods. Two fieldwork sites in Senegal were used to investigate the role of native shrubs in controlling soil moisture movement, and in particular, using these native plants to enhance agricultural potential.

  9. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells

    PubMed Central

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-01-01

    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants. PMID:26139825

  10. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells.

    PubMed

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-09-01

    In plants, drought stress is a major growth limiting factor causing cell water loss through open stomata. In this study, guard cell-specific transcripts from drought-stressed Arabidopsis plants were analysed and a down-regulation of β-amylase 1 (BAM1) was found. In previous studies, BAM1 was shown to be involved in stomatal starch degradation under ambient conditions. Impaired starch breakdown of bam1 mutant plants was accompanied by decreased stomatal opening. Here, it is shown that drought tolerance of bam1 mutant plants is improved as compared with wild-type controls. Microarray analysis of stomata-specific transcripts from bam1 mutant plants revealed a significant down-regulation of genes encoding aquaporins, auxin- and ethylene-responsive factors, and cell-wall modifying enzymes. This expression pattern suggests that reduced water uptake and limited cell wall extension are associated with the closed state of stomata of bam1 mutant plants. Together these data suggest that regulation of stomata-specific starch turnover is important for adapting stomata opening to environmental needs and its breeding manipulation may result in drought tolerant crop plants. PMID:26139825

  11. Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: strategies and applications.

    PubMed

    Ludwig-Müller, Jutta; Jahn, Linda; Lippert, Annemarie; Püschel, Joachim; Walter, Antje

    2014-11-01

    A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties. PMID:24699436

  12. Activation of mirror-neuron system by erotic video clips predicts degree of induced erection: an fMRI study.

    PubMed

    Mouras, H; Stoléru, S; Moulier, V; Pélégrini-Issac, M; Rouxel, R; Grandjean, B; Glutron, D; Bittoun, J

    2008-09-01

    Although visually-induced erection is a common occurrence in human male behaviour, the cerebral underpinnings of this response are not well-known. We hypothesized that the magnitude of induced erection would be linearly correlated with the activation of the mirror-neuron system in response to sexually explicit films. When presented with sexual video clips, eight out of ten healthy subjects had an erectile response demonstrated through volumetric penile plethysmography. The level of activation of the left frontal operculum and of the inferior parietal lobules, areas which contain mirror neurons, predicted the magnitude of the erectile response. These results suggest that the response of the mirror-neuron system may not only code for the motor correlates of observed actions, but also for autonomic correlates of these actions. PMID:18598769

  13. Erection of the STS-3 external tank (ET) in the VAB Hi-Bay #3 area 01-05-82

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Erection of the STS-3 external tank (ET) in the VAB Hi-Bay #3 area 01-05-82. The external fuel tank is lowered into place on the Mobile Launcher Platform. The Kennedy Space Center alternative photo number is 108-KSC-82PC-5 (26752); wide view of the ET being lowered into place in preparation for being mated to the solid rocket boosters (SRB's). The Kennedy Space Center alternative photo number is 108-KSC-82PC-8 (26753).

  14. Oxytocin induces penile erection when injected into the ventral subiculum: role of nitric oxide and glutamic acid.

    PubMed

    Melis, Maria Rosaria; Succu, Salvatora; Cocco, Cristina; Caboni, Emanuela; Sanna, Fabrizio; Boi, Antonio; Ferri, Gian Luca; Argiolas, Antonio

    2010-06-01

    Oxytocin (100 ng) induces penile erection when injected unilaterally into the ventral subiculum of the hippocampus of male rats. The pro-erectile effect started mostly 30 min after treatment and occurred 15 min after an increase in both nitric oxide (NO) production, measured by the concentration of NO(2)(-) and NO(3)(-), the main metabolites of newly formed NO, and extra-cellular glutamic acid concentration in the dialysate obtained from the ventral subiculum by intracerebral microdialysis. These responses were abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (2 microg), an oxytocin receptor antagonist, S-methyl-L-thiocitrulline (SMTC), a selective inhibitor of neuronal NO-synthase (25 microg), and haemoglobin, a NO scavenger (25 microg), given into the ventral subiculum before oxytocin. Unlike d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, SMTC and haemoglobin, (+)MK-801 (5 microg), a noncompetitive antagonist of NMDA receptors abolished oxytocin-induced penile erection, but reduced only partially the increase in NO production and extra-cellular glutamic acid. As NMDA (0.25-1 microg) injected into the ventral subiculum induces penile erection episodes, which also occurred with an increase of NO production and extra-cellular glutamic acid, and NMDA responses were abolished by (+)MK-801 (5 microg), but not by SMTC (25 microg) or haemoglobin (25 microg), injected into the ventral subiculum, these results show that oxytocin injected into the ventral subiculum increases NO production by activating its own receptors. NO in turn increases glutamic acid neurotransmission, leading to penile erection, possibly through neural (glutamatergic) efferent projections from the ventral subiculum to extra-hippocampal brain areas (e.g., prefrontal cortex) modulating the activity of mesolimbic dopaminergic neurons. PMID:20156463

  15. Energy saving on wastewater treatment plants through improved online control: case study wastewater treatment plant Antwerp-South.

    PubMed

    De Gussem, Kris; Fenu, Alessio; Wambecq, Tom; Weemaes, Marjoleine

    2014-01-01

    This work provides a case study on how activated sludge modelling and computational fluid dynamics (CFD) can help to optimize the energy consumption of a treatment plant that is already equipped with an advanced control based on online nutrient measurements. Currently, aeration basins on wastewater treatment plant Antwerp-South are operated sequentially while flow direction and point of inflow and outflow vary as a function of time. Activated sludge modelling shows that switching from the existing alternating flow based control to a simultaneous parallel feeding of all aeration tanks saves 1.3% energy. CFD calculations also illustrate that the water velocity is still sufficient if some impellers in the aeration basins are shutdown. The simulations of the Activated Sludge Model No. 2d indicate that the coupling of the aeration control with the impeller control, and automatically switching off some impellers when the aeration is inactive, can save 2.2 to 3.3% of energy without affecting the nutrient removal efficiency. On the other hand, all impellers are needed when the aeration is active to distribute the oxygen. PMID:24622558

  16. Configuration management manual as a tool for improving plant change controls

    SciTech Connect

    Craig, L.L. )

    1991-01-01

    Early vintage plants, such as Turkey Point at Florida Power and Light (FP and L) Company, were not provided with as much design documentation as later plants. At FP and L, programs were initiated to reconstruct the design bases, correct and update drawings at Turkey Point, and develop an overall configuration management program for both Turkey Point and St. Lucie plants. This paper discusses the Configuration Management Manual developed by plant and engineering personnel, which is used to train personnel to a common language and achieve better understanding of individual impact on configuration management.

  17. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid

    PubMed Central

    Al-Amri, Salem M.

    2013-01-01

    A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. PMID:24235870

  18. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    Not Available

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas's Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  19. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  20. Advances in understanding of mammalian penile evolution, human penile anatomy and human erection physiology: Clinical implications for physicians and surgeons

    PubMed Central

    Hsieh, Cheng-Hsing; Liu, Shih-Ping; Hsu, Geng-Long; Chen, Heng-Shuen; Molodysky, Eugen; Chen, Ying-Hui; Yu, Hong-Jeng

    2012-01-01

    Summary Recent studies substantiate a model of the tunica albuginea of the corpora cavernosa as a bi-layered structure with a 360° complete inner circular layer and a 300° incomplete outer longitudinal coat spanning from the bulbospongiosus and ischiocavernosus proximally and extending continuously into the distal ligament within the glans penis. The anatomical location and histology of the distal ligament invites convincing parallels with the quadrupedal os penis and therefore constitutes potential evidence of the evolutionary process. In the corpora cavernosa, a chamber design is responsible for facilitating rigid erections. For investigating its venous factors exclusively, hemodynamic studies have been performed on both fresh and defrosted human male cadavers. In each case, a rigid erection was unequivocally attainable following venous removal. This clearly has significant ramifications in relation to penile venous surgery and its role in treating impotent patients. One deep dorsal vein, 2 cavernosal veins and 2 pairs of para-arterial veins (as opposed to 1 single vein) are situated between Buck’s fascia and the tunica albuginea. These newfound insights into penile tunical, venous anatomy and erection physiology were inspired by and, in turn, enhance clinical applications routinely encountered by physicians and surgeons, such as penile morphological reconstruction, penile implantation and penile venous surgery. PMID:22739749

  1. Ginkgo biloba extract enhances noncontact erection in rats: the role of dopamine in the paraventricular nucleus and the mesolimbic system.

    PubMed

    Yeh, K-Y; Wu, C-H; Tai, M-Y; Tsai, Y-F

    2011-08-25

    Penile erection is essential for successful copulation in males. Dopaminergic projections from the paraventricular nucleus (PVN) to the ventral tegmental area (VTA) and from the VTA to the nucleus accumbens (NAc) are thought to exert a facilitatory effect on penile erection. Our previous study showed that treatment with an extract of Ginkgo biloba leaves (EGb 761) enhances noncontact erection (NCE) in male rats. However, the relationship between NCE and dopaminergic activity in the PVN, VTA, and NAc remains unknown. The present study examined the relationship between NCE and central dopaminergic activity following EGb 761 treatment. We report here that, in comparison with the controls, there was a significant increase in the number of NCEs in rats after treatment with 50 mg/kg of EGb 761 for 14 days. EGb 761-treated rats also showed more NCEs than the same group before EGb 761 treatment. A significant increase in the expression of catecholaminergic neurons in the PVN and the VTA was seen by means of tyrosine hydroxylase immunohistochemistry, and tissue levels of dopamine and 3,4-dihydroxyphenylacetic acid in the NAc were also markedly increased in the EGb 761-treated animals. However, the norepinephrine tissue levels in the PVN and the NAc in the EGb 761-treated group were not significantly different from those in the controls. Together, these results suggest that administration of EGb 761 increases dopaminergic activity in the PVN and the mesolimbic system to facilitate NCE in male rats. PMID:21640798

  2. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2010-12-31

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  3. Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters.

    PubMed

    Lahrouni, Majida; Oufdou, Khalid; El Khalloufi, Fatima; Benidire, Loubna; Albert, Susann; Göttfert, Michael; Caviedes, Miguel A; Rodriguez-Llorente, Ignacio D; Oudra, Brahim; Pajuelo, Eloísa

    2016-05-01

    Irrigation of crops with microcystins (MCs)-containing waters-due to cyanobacterial blooms-affects plant productivity and could be a way for these potent toxins entering the food chain. This study was performed to establish whether MC-tolerant rhizobia could benefit growth, nodulation, and nitrogen metabolism of faba bean plants irrigated with MC-containing waters. For that, three different rhizobial strains-with different sensitivity toward MCs-were used: RhOF96 (most MC-sensitive strain), RhOF125 (most MC-tolerant strain), or Vicz1.1 (reference strain). As a control, plants grown without rhizobia and fertilized by NH4NO3 were included in the study. MC exposure decreased roots (30-37 %) and shoots (up to 15 %) dry weights in un-inoculated plants, whereas inoculation with rhizobia protects plants toward the toxic effects of MCs. Nodulation and nitrogen content were significantly impaired by MCs, with the exception of plants inoculated with the most tolerant strain RhOF125. In order to deep into the effect of inoculation on nitrogen metabolism, the nitrogen assimilatory enzymes (glutamine synthetase (GS) and glutamate synthase (GOGAT)) were investigated: Fertilized plants showed decreased levels (15-30 %) of these enzymes, both in shoots and roots. By contrast, inoculated plants retained the levels of these enzymes in shoots and roots, as well as the levels of NADH-GOGAT activity in nodules. We conclude that the microcystin-tolerant Rhizobium protects faba bean plants and improves nitrogen assimilation when grown in the presence of MCs. PMID:26865488

  4. A New and Improved Carbon Dioxide Isotope Analyzer for Understanding Soil-Plant-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Berman, E. S.; Owano, T. G.; Verfaillie, J. G.; Oikawa, P. Y.; Baldocchi, D. D.; Still, C. J.; Gardner, A.; Baer, D. S.; Rastogi, B.

    2015-12-01

    Stable CO2 isotopes provide information on biogeochemical processes that occur at the soil-plant-atmosphere interface. While δ13C measurement can provide information on the sources of the CO2, be it photosynthesis, natural gas combustion, other fossil fuel sources, landfills or other sources, δ18O, and δ17O are thought to be determined by the hydrological cycling of the CO2. Though researchers have called for analytical tools for CO2 isotope measurements that are reliable and field-deployable, developing such instrument remains a challenge. The carbon dioxide isotope analyzer developed by Los Gatos Research (LGR) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This new and improved analyzer measures CO2 concentration as well as δ13C, δ18O, and δ17O from CO2 at natural abundance (150-2500 ppm). The laboratory precision is ±200 ppb (1σ) in CO2 at 1 s, with a long-term (2 min) precision of ±20 ppb. The 1-second precision for both δ13C and δ18O is 0.7 ‰, and for δ17O is 1.8 ‰. The long-term (2 min) precision for both δ13C and δ18O is 0.08 ‰, and for δ17O is 0.18 ‰. The instrument has improved precision, stability and user interface over previous LGR CO2 isotope instruments and can be easily programmed for periodic referencing and sampling from different sources when coupled with LGR's multiport inlet unit (MIU). We have deployed two of these instruments at two different field sites, one at Twitchell Island in Sacramento County, CA to monitor the CO2 isotopic fluxes from an alfalfa field from 6/29/2015-7/13/2015, and the other at the Wind River Experimental Forest in Washington to monitor primarily the oxygen isotopes of CO2 within the canopy from 8/4/2015 through mid-November 2015. Methodology, laboratory development and testing and field performance are presented.

  5. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  6. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity.

    PubMed

    Bhardwaj, Deepak; Ansari, Mohammad Wahid; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  7. Genetic improvement of the Pee Dee cotton germplasm collection following seventy years of plant breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term plant breeding programs develop genetic resources that constitute the baseline potential of crop production systems. Over the course of time, through long-term plant breeding efforts, the volume of genetic resources developed is extensive. Knowledge of the performance and genetic propertie...

  8. Research collaborations can improve the use of organic amendments for plant-parasitic nematode management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of utilizing organic amendments to manage plant-parasitic nematodes is not new, but the widespread implementation of this management practice has still not been realized. The use of organic amendments for plant-parasitic nematode management is a complex process requiring an understandin...

  9. Changes in operational procedures to improve spaceflight experiments in plant biology in the European Modular Cultivation System

    NASA Astrophysics Data System (ADS)

    Kiss, John Z.; Aanes, Gjert; Schiefloe, Mona; Coelho, Liz H. F.; Millar, Katherine D. L.; Edelmann, Richard E.

    2014-03-01

    The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.

  10. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    SciTech Connect

    1997-06-01

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  11. Olkiluoto 1 and 2 - Plant efficiency improvement and lifetime extension-project (PELE) implemented during outages 2010 and 2011

    SciTech Connect

    Kosonen, M.; Hakola, M.

    2012-07-01

    Teollisuuden Voima Oyj (TVO) is a non-listed public company founded in 1969 to produce electricity for its stakeholders. TVO is the operator of the Olkiluoto nuclear power plant. TVO follows the principle of continuous improvement in the operation and maintenance of the Olkiluoto plant units. The PELE project (Plant Efficiency Improvement and Lifetime Extension), mainly completed during the annual outages in 2010 and 2011, and forms one part of the systematic development of Olkiluoto units. TVO maintains a long-term development program that aims at systematically modernizing the plant unit systems and equipment based on the latest technology. According to the program, the Olkiluoto 1 and Olkiluoto 2 plant units are constantly renovated with the intention of keeping them safe and reliable, The aim of the modernization projects is to improve the safety, reliability, and performance of the plant units. PELE project at Olkiluoto 1 was done in 2010 and at Olkiluoto 2 in 2011. The outage length of Olkiluoto 1 was 26 d 12 h 4 min and Olkiluoto 2 outage length was 28 d 23 h 46 min. (Normal service-outage is about 14 days including refueling and refueling-outage length is about seven days. See figure 1) The PELE project consisted of several single projects collected into one for coordinated project management. Some of the main projects were as follows: - Low pressure turbines: rotor, stator vane, casing and turbine instrumentation replacement. - Replacement of Condenser Cooling Water (later called seawater pumps) pumps - Replacement of inner isolation valves on the main steam lines. - Generator and the generator cooling system replacement. - Low voltage switchgear replacement. This project will continue during future outages. PELE was a success. 100 TVO employees and 1500 subcontractor employees participated in the project. The execution of the PELE projects went extremely well during the outages. The replacement of the low pressure turbines and seawater pumps improved the

  12. Rapid Identification of Asteraceae Plants with Improved RBF-ANN Classification Models Based on MOS Sensor E-Nose

    PubMed Central

    Zou, Hui-Qin; Li, Shuo; Huang, Ying-Hua; Liu, Yong; Bauer, Rudolf; Peng, Lian; Tao, Ou; Yan, Su-Rong; Yan, Yong-Hong

    2014-01-01

    Plants from Asteraceae family are widely used as herbal medicines and food ingredients, especially in Asian area. Therefore, authentication and quality control of these different Asteraceae plants are important for ensuring consumers' safety and efficacy. In recent decades, electronic nose (E-nose) has been studied as an alternative approach. In this paper, we aim to develop a novel discriminative model by improving radial basis function artificial neural network (RBF-ANN) classification model. Feature selection algorithms, including principal component analysis (PCA) and BestFirst + CfsSubsetEval (BC), were applied in the improvement of RBF-ANN models. Results illustrate that in the improved RBF-ANN models with lower dimension data classification accuracies (100%) remained the same as in the original model with higher-dimension data. It is the first time to introduce feature selection methods to get valuable information on how to attribute more relevant MOS sensors; namely, in this case, S1, S3, S4, S6, and S7 show better capability to distinguish these Asteraceae plants. This paper also gives insights to further research in this area, for instance, sensor array optimization and performance improvement of classification model. PMID:25214873

  13. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  14. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  15. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects.

    PubMed

    Sumner, Lloyd W; Lei, Zhentian; Nikolau, Basil J; Saito, Kazuki

    2015-02-01

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine. PMID:25342293

  16. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  17. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants: Summary Report and Case Studies

    SciTech Connect

    Not Available

    2005-09-01

    Industrial Technologies Programs BestPractices report based on a comprehensive plant assessment project with ITP's Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  18. Improving Energy Efficiency at U.S. Plastics Manufacturing Plants Summary Report and Case Studies

    SciTech Connect

    none,

    2010-06-25

    Industrial Technologies Program’s BestPractices report based on a comprehensive plant assessment project with ITP’s Industrial Assessment Center, The Society of the Plastics Industry, Inc., and several of its member companies.

  19. Rohm and Haas: Furnace Replacement Project Saves Energy and Improves Production at a Chemical Plant

    SciTech Connect

    2006-02-01

    This DOE Industrial Technologies Program spotlight describes how Rohm and Haas’s Deer Park, Texas, chemical plant reduced natural gas usage and energy costs by replacing inefficient furnace equipment.

  20. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGESBeta

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  1. Comparing the effectiveness of heat rate improvements in different coal-fired power plants utilizing carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Walsh, Martin Jeremy

    New Congressional legislation may soon require coal-fired power generators to pay for their CO2 emissions and capture a minimum level of their CO2 output. Aminebased CO2 capture systems offer plants the most technically proven and commercially feasible option for CO2 capture at this time. However, these systems require a large amount of heat and power to operate. As a result, amine-based CO2 capture systems significantly reduce the net power of any units in which they are installed. The Energy Research Center has compiled a list of heat rate improvements that plant operators may implement before installing a CO2 capture system. The goal of these improvements is to upgrade the performance of existing units and partially offset the negative effects of adding a CO2 capture system. Analyses were performed in Aspen Plus to determine the effectiveness of these heat rate improvements in preserving the net power and net unit heat rate (NUHR) of four different power generator units. For the units firing high-moisture sub-bituminous coal, the heat rate improvements reduced NUHR by an average of 13.69% across a CO 2 capture level range of 50% to 90%. For the units firing bituminous coal across the same CO2 capture range, the heat rate improvements reduced NUHR by an average of 12.30%. Regardless of the units' coal or steam turbine cycle type, the heat rate improvements preserved 9.7% to 11.0% of each unit's net power across the same CO2 capture range. In general, the heat rate improvements were found to be most effective in improving the performance of units firing high-moisture sub-bituminous. The effect of the CO2 capture system on these units and the reasons for the improvements' greater effectiveness in them are described in this thesis.

  2. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2004-12-14

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  3. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-04-29

    Increasing the concentration of prolines such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that overexpress glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramnate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  4. Use of prolines for improving growth and other properties of plants and algae

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas J.; Martinez, Rodolfo A.

    2003-07-15

    Increasing the concentration of prolines, such as 2-hydroxy-5-oxoproline, in the foliar portions of plants has been shown to cause an increase in carbon dioxide fixation, growth rate, dry weight, nutritional value (amino acids), nodulation and nitrogen fixation, photosynthetically derived chemical energy, and resistance to insect pests over the same properties for wild type plants. This can be accomplished in four ways: (1) the application of a solution of the proline directly to the foliar portions of the plant by spraying these portions; (2) applying a solution of the proline to the plant roots; (3) genetically engineering the plant and screening to produce lines that over-express glutamine synthetase in the leaves which gives rise to increased concentration of the metabolite, 2-hydroxy-5-oxoproline (this proline is also known as 2-oxoglutaramate); and (4) impairing the glutamine synthetase activity in the plant roots which causes increased glutamine synthetase activity in the leaves which gives rise to increased concentration of 2-hydroxy-5-oxoproline. Prolines have also been found to induce similar effects in algae.

  5. Biotechnological approaches for conservation and improvement of rare and endangered plants of Saudi Arabia

    PubMed Central

    Khan, Salim; Al-Qurainy, Fahad; Nadeem, Mohammad

    2011-01-01

    Genetic variation is believed to be a prerequisite for the short-and long-term survival of the plant species in their natural habitat. It depends on many environmental factors which determine the number of alleles on various loci in the genome. Therefore, it is important to understand the genetic composition and structure of the rare and endangered plant species from their natural habitat to develop successful management strategies for their conservation. However, rare and endangered plant species have low genetic diversity due to which their survival rate is decreasing in the wilds. The evaluation of genetic diversity of such species is very important for their conservation and gene manipulation. However, plant species can be conserved by in situ and in vitro methods and each has advantages and disadvantages. DNA banking can be considered as a means of complimentary method for the conservation of plant species by preserving their genomic DNA at low temperatures. Such approach of preservation of biological information provides opportunity for researchers to search novel genes and its products. Therefore, in this review we are describing some potential biotechnological approaches for the conservation and further manipulation of these rare and endangered plant species to enhance their yield and quality traits. PMID:23961155

  6. Biotechnological approaches for conservation and improvement of rare and endangered plants of Saudi Arabia.

    PubMed

    Khan, Salim; Al-Qurainy, Fahad; Nadeem, Mohammad

    2012-01-01

    Genetic variation is believed to be a prerequisite for the short-and long-term survival of the plant species in their natural habitat. It depends on many environmental factors which determine the number of alleles on various loci in the genome. Therefore, it is important to understand the genetic composition and structure of the rare and endangered plant species from their natural habitat to develop successful management strategies for their conservation. However, rare and endangered plant species have low genetic diversity due to which their survival rate is decreasing in the wilds. The evaluation of genetic diversity of such species is very important for their conservation and gene manipulation. However, plant species can be conserved by in situ and in vitro methods and each has advantages and disadvantages. DNA banking can be considered as a means of complimentary method for the conservation of plant species by preserving their genomic DNA at low temperatures. Such approach of preservation of biological information provides opportunity for researchers to search novel genes and its products. Therefore, in this review we are describing some potential biotechnological approaches for the conservation and further manipulation of these rare and endangered plant species to enhance their yield and quality traits. PMID:23961155

  7. General mechanisms of drought response and their application in drought resistance improvement in plants.

    PubMed

    Fang, Yujie; Xiong, Lizhong

    2015-02-01

    Plants often encounter unfavorable environmental conditions because of their sessile lifestyle. These adverse factors greatly affect the geographic distribution of plants, as well as their growth and productivity. Drought stress is one of the premier limitations to global agricultural production due to the complexity of the water-limiting environment and changing climate. Plants have evolved a series of mechanisms at the morphological, physiological, biochemical, cellular, and molecular levels to overcome water deficit or drought stress conditions. The drought resistance of plants can be divided into four basic types-drought avoidance, drought tolerance, drought escape, and drought recovery. Various drought-related traits, including root traits, leaf traits, osmotic adjustment capabilities, water potential, ABA content, and stability of the cell membrane, have been used as indicators to evaluate the drought resistance of plants. In the last decade, scientists have investigated the genetic and molecular mechanisms of drought resistance to enhance the drought resistance of various crops, and significant progress has been made with regard to drought avoidance and drought tolerance. With increasing knowledge to comprehensively decipher the complicated mechanisms of drought resistance in model plants, it still remains an enormous challenge to develop water-saving and drought-resistant crops to cope with the water shortage and increasing demand for food production in the future. PMID:25336153

  8. Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation

    NASA Astrophysics Data System (ADS)

    Brzostek, Edward R.; Fisher, Joshua B.; Phillips, Richard P.

    2014-08-01

    Accurate projections of the future land carbon (C) sink by terrestrial biosphere models depend on how nutrient constraints on net primary production are represented. While nutrient limitation is nearly universal, current models do not have a C cost for plant nutrient acquisition. Also missing are symbiotic mycorrhizal fungi, which can consume up to 20% of net primary production and supply up to 50% of a plant's nitrogen (N) uptake. Here we integrate simultaneous uptake and mycorrhizae into a cutting-edge plant N model—Fixation and Uptake of Nitrogen (FUN)—that can be coupled into terrestrial biosphere models. The C cost of N acquisition varies as a function of mycorrhizal type, with plants that support arbuscular mycorrhizae benefiting when N is relatively abundant and plants that support ectomycorrhizae benefiting when N is strongly limiting. Across six temperate forested sites (representing arbuscular mycorrhizal- and ectomycorrhizal-dominated stands and 176 site years), including multipath resistance improved the partitioning of N uptake between aboveground and belowground sources. Integrating mycorrhizae led to further improvements in predictions of N uptake from soil (R2 = 0.69 increased to R2 = 0.96) and from senescing leaves (R2 = 0.29 increased to R2 = 0.73) relative to the original model. On average, 5% and 9% of net primary production in arbuscular mycorrhizal- and ectomycorrhizal-dominated forests, respectively, was needed to support mycorrhizal-mediated acquisition of N. To the extent that resource constraints to net primary production are governed by similar trade-offs across all terrestrial ecosystems, integrating these improvements to FUN into terrestrial biosphere models should enhance predictions of the future land C sink.

  9. Recent advances and future prospects of phyto-phospholipid complexation technique for improving pharmacokinetic profile of plant actives.

    PubMed

    Khan, Junaid; Alexander, Amit; Ajazuddin; Saraf, Swarnlata; Saraf, Shailendra

    2013-05-28

    The phyto-phospholipid complexation technique has emerged as one of the leading methods of improving bioavailability of phytopharmaceuticals having poor competency of solubilizing and crossing the biological membranes. Several plant actives in spite having potent in vitro pharmacological activities have failed to demonstrate similar in vivo response. Such plant actives have been made more effective systemically by incorporating them with dietary phospholipids forming new cellular structures which are amphipathic in nature. In the last few years phospholipids have been extensively explored for improved bioavailability and efficacy of plant drugs. Further, it is also much relevant to mention that phospholipids show unique compatibility with biological membranes and have inherent hepatoprotective activity. Different methods have been adopted to formulate phospholipid complexes of plant extractives utilizing varying solvent systems, molar ratios of drug/phospholipids and different drying techniques. Some methods of formulating such drug-phospholipid complexes have been patented as well. However, the stability of phyto-phospholipid complexes is still a matter of concern which needs attention. But still a number of products exploiting this technique are under clinical trials and some of them are now in market. The current review highlights key findings of recent years with our own viewpoints which can give the new directions to this strategy and also includes advancements in the technical aspects of phyto-phospholipid formulations which have been done in the recent past with future challenges. PMID:23474031

  10. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  11. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.

    PubMed

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming

    2016-05-01

    Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas. PMID:26846211

  12. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait.

    PubMed

    Rolli, Eleonora; Marasco, Ramona; Vigani, Gianpiero; Ettoumi, Besma; Mapelli, Francesca; Deangelis, Maria Laura; Gandolfi, Claudio; Casati, Enrico; Previtali, Franco; Gerbino, Roberto; Pierotti Cei, Fabio; Borin, Sara; Sorlini, Claudia; Zocchi, Graziano; Daffonchio, Daniele

    2015-02-01

    Although drought is an increasing problem in agriculture, the contribution of the root-associated bacterial microbiome to plant adaptation to water stress is poorly studied. We investigated if the culturable bacterial microbiome associated with five grapevine rootstocks and the grapevine cultivar Barbera may enhance plant growth under drought stress. Eight isolates, over 510 strains, were tested in vivo for their capacity to support grapevine growth under water stress. The selected strains exhibited a vast array of plant growth promoting (PGP) traits, and confocal microscopy observation of gfp-labelled Acinetobacter and Pseudomonas isolates showed their ability to adhere and colonize both the Arabidopsis and grapevine rhizoplane. Tests on pepper plants fertilized with the selected strains, under both optimal irrigation and drought conditions, showed that PGP activity was a stress-dependent and not a per se feature of the strains. The isolates were capable of increasing shoot and leaf biomass, shoot length, and photosynthetic activity of drought-challenged grapevines, with an enhanced effect in drought-sensitive rootstock. Three isolates were further assayed for PGP capacity under outdoor conditions, exhibiting the ability to increase grapevine root biomass. Overall, the results indicate that PGP bacteria contribute to improve plant adaptation to drought through a water stress-induced promotion ability. PMID:24571749

  13. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  14. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  15. The sunflower transcription factor HaHB11 improves yield, biomass and tolerance to flooding in transgenic Arabidopsis plants.

    PubMed

    Cabello, Julieta V; Giacomelli, Jorge I; Piattoni, Claudia V; Iglesias, Alberto A; Chan, Raquel L

    2016-03-20

    HaHB11 is a member of the sunflower homeodomain-leucine zipper I subfamily of transcription factors. The analysis of a sunflower microarray hybridized with RNA from HaHB11-transformed leaf-disks indicated the regulation of many genes encoding enzymes from glycolisis and fermentative pathways. A 1300bp promoter sequence, fused to the GUS reporter gene, was used to transform Arabidopsis plants showing an induction of expression after flooding treatments, concurrently with HaHB11 regulation by submergence in sunflower. Arabidopsis transgenic plants expressing HaHB11 under the control of the CaMV 35S promoter and its own promoter were obtained and these plants exhibited significant increases in rosette and stem biomass. All the lines produced more seeds than controls and particularly, those of high expression level doubled seeds yield. Transgenic plants also showed tolerance to flooding stress, both to submergence and waterlogging. Carbohydrates contents were higher in the transgenics compared to wild type and decreased less after submergence treatments. Finally, transcript levels of selected genes involved in glycolisis and fermentative pathways as well as the corresponding enzymatic activities were assessed both, in sunflower and transgenic Arabidopsis plants, before and after submergence. Altogether, the present work leads us to propose HaHB11 as a biotechnological tool to improve crops yield, biomass and flooding tolerance. PMID:26876611

  16. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils.

    PubMed

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  17. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants

    PubMed Central

    Ghanem, Michel Edmond; Smigocki, Ann C.; Frébort, Ivo; Pospíšilová, Hana; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Lutts, Stanley; Dodd, Ian C.; Pérez-Alfocea, Francisco

    2011-01-01

    Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100 mM NaCl for 22 d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K+ (20%) and decreases in the toxic ion Na+ (by 30%) and abscisic acid (by 20–40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75 mM NaCl for 90 d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield. PMID:20959628

  18. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    PubMed

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis. PMID:27338256

  19. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    PubMed

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. PMID:27593465

  20. Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors.

    PubMed

    Su, Qi; Preisser, Evan L; Zhou, Xiao Mao; Xie, Wen; Liu, Bai Ming; Wang, Shao Li; Wu, Qing Jun; Zhang, You Jun

    2015-02-01

    Pathogen-mediated interactions between insect vectors and their host plants can affect herbivore fitness and the epidemiology of plant diseases. While the role of plant quality and defense in mediating these tripartite interactions has been recognized, there are many ecologically and economically important cases where the nature of the interaction has yet to be characterized. The Bemisia tabaci (Gennadius) cryptic species Mediterranean (MED) is an important vector of tomato yellow leaf curl virus (TYLCV), and performs better on virus-infected tomato than on uninfected controls. We assessed the impact of TYLCV infection on plant quality and defense, and the direct impact of TYLCV infection on MED feeding. We found that although TYLCV infection has a minimal direct impact on MED, the virus alters the nutritional content of leaf tissue and phloem sap in a manner beneficial to MED. TYLCV infection also suppresses herbivore-induced production of plant defensive enzymes and callose deposition. The strongly positive net effect on TYLCV on MED is consistent with previously reported patterns of whitefly behavior and performance, and provides a foundation for further exploration of the molecular mechanisms responsible for these effects and the evolutionary processes that shape them. PMID:26470098

  1. Utilization of starch films plasticized with urea as fertilizer for improvement of plant growth.

    PubMed

    Rychter, Piotr; Kot, Marta; Bajer, Krzysztof; Rogacz, Diana; Šišková, Alena; Kapuśniak, Janusz

    2016-02-10

    The utilization of starch films, obtained by extrusion of potato starch with urea as plasticizer, for the fertilization of plants has been undertaken. Release rate of urea from the starch films was conducted in water conditions. The molecular weight distribution, surface erosion and weight loss of the starch samples have been determined. The evaluation of efficiency of urea as a fertilizer in the process of release from the starch films was performed under laboratory conditions based on the plant growth test proposed by OECD 208 Guideline and the PN-ISO International Standard using oat and common radish. Although among extruded starch-based films, those that contain the highest amount of fertilizer hold the most promise for a delayed release system, the time of release of fertilizer from obtained films in undertaken study was not satisfactory. All the same, in the present study effort has been made to utilize extruded samples as a fertilizer for agriculture or horticulture purposes. Urea-plasticized starch was successfully used as a fertilizer. Plant growth assessment, including determination of such parameters as fresh and dry matter of plants and their visual evaluation, has proved the stimulating effect of using extruded films on the growth and development of cultivated plants. PMID:26686113

  2. Engineering Plant Shikimate Pathway for Production of Tocotrienol and Improving Herbicide Resistance1

    PubMed Central

    Rippert, Pascal; Scimemi, Claire; Dubald, Manuel; Matringe, Michel

    2004-01-01

    Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants. PMID:14684842

  3. Improving low-temperature performance of surface flow constructed wetlands using Potamogeton crispus L. plant.

    PubMed

    Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Yin, Xiaole

    2016-10-01

    In this study, enhanced organics and nitrogen removal efficiency in SFCWs by different submerged plants for polluted river water treatment under cold temperature was evaluated. High average removal efficiencies of COD (92.45%), NH4(+)-N (93.70%) and TN (55.62%) were achieved in experimental SFCWs with Potamogeton crispus compared with SFCWs with other plants. SFCWs with underground Phragmites australis root also presented better performance than the unplanted systems, indicating its positive role of contamination removal in winter. The results of this study indicated SFCWs with hardy submerged plant P. crispus could be a more effective and sustainable strategy for removing organics and nitrogen in shallow nutrient enriched river water ecosystems under cold climate. PMID:27381001

  4. Reliability improvements and modernization of low pressure turbine cylinders for steam-turbine generator power plants

    SciTech Connect

    Aneja, I.K. )

    1990-01-01

    This paper presents the use of 2-D and 3-D finite element analysis to determine the cause of distress in certain components in the low pressure turbines for large power plants. The same finite element models are then used for parametric evaluation of various alternates to increase component fatigue life. Finally, the 3-D finite element model is used for designing a new cylinder which can withstand severe cyclic duty operation requirements and can also be used for modernization of existing old power plants.

  5. Neural pathway for aggressive display in Betta splendens: midbrain and hindbrain control of gill-cover erection behavior.

    PubMed

    Gorlick, D L

    1990-01-01

    Horseradish peroxidase (HRP) was used to identify parts of the presumptive neural pathway for gill cover erection, a behavioral display pattern performed by Siamese fighting fish (Betta splendens) during aggressive interactions. Motor, motor integration and sensory areas were identified in the medulla and mesencephalon. Motor neurons of the dilator operculi muscle, the effector muscle for gill cover erection, are located in the lateral and medial parts of the caudal trigeminal motor nucleus. Iontophoretic injections of HRP into the lateral trigeminal motor nucleus resulted in labeled cell bodies in two motor areas (medial part of the trigeminal motor nucleus, anterior part of the motor nucleus of cranial nerve IX-X), two parts of the reticular formation (medial and inferior reticular areas), and two nuclei of the octavolateralis system (nucleus medialis, magnocellular octaval nucleus). The HRP injections in the medial part of the caudal trigeminal motor nucleus resulted in labeled cells in the lateral part of the nucleus and in the medial reticular nucleus. Discrete injections of HRP into nucleus medialis revealed a strong axonal projection that terminated in the torus semicircularis. The medial reticular area and both of the octavolateralis nuclei received projections from their contralateral counterparts. Connections between motor areas, and between parts of the reticular formation, may coordinate the performance of gill cover erection with other behavioral patterns used during aggressive display. Connections with the octavolateralis system may provide information on the strength of an opponent's tail beats via the lateral-line system, as well as vestibular information about the fish's own orientation during aggressive display. The organization of inputs to the trigeminal motor nucleus in Betta, a perciform fish, was found to differ from that reported in the common carp, a cypriniform fish. These differences may underlie the different behavioral capabilities of

  6. The septal area, site for the central regulation of penile erection during waking and rapid eye movement sleep in rats: a stimulation study.

    PubMed

    Gulia, K K; Jodo, E; Kawauchi, A; Miki, T; Kayama, Y; Mallick, H N; Koyama, Y

    2008-10-28

    The effects of electrical stimulation to the septum on penile erections in rats were examined to clarify the mechanisms for regulation of erectile responses during different states of vigilance. Penile responses were assessed by changes in pressure in the corpus spongiosum of penis (CSP) and electromyography (EMG) of the bulbospongiosus (BS) muscle. In anesthetized and un-anesthetized rats, stimulation in and around the septum induced three erectile patterns; 1) a Normal type response, which was indistinguishable from a spontaneous erection, characterized by a slow increase in CSP pressure with sharp CSP pressure peaks associated with BS muscle bursts, 2) Mixed type response, in which high frequency CSP pressure peaks were followed by a Normal type response, and 3) a Prolonged type response, evoked only in the anesthetized rat, consisting of a single sharp CSP peak followed by a slow increase in CSP pressure and a return to baseline with multiple subsequent events repeated for up to 960 s. In addition, a Micturition type response was also observed involving high frequency CSP pressure oscillations similar to the pressure pattern seen during spontaneous micturition. We found that erections were induced after stimulation to the lateral septum (LS), but not from the medial septum (MS). In anesthetized rats, a few responses were also obtained following stimulation of the horizontal limb of diagonal band (HDB). In un-anesthetized rats, responses were also induced from the HDB and the ventral limb of diagonal band (VDB) and the adjoining areas. The effective sites for eliciting erection during rapid eye movement (REM) sleep were located in the dorsal and intermediate parts of the LS, whereas the ventral part of the LS was the most effective site for eliciting erections during wakefulness. These results suggest a functional role for penile erection in the septum, and further suggest that subdivisions of the LS may have different roles in the regulation of penile erection

  7. A temporary social parasite of tropical plant-ants improves the fitness of a myrmecophyte

    NASA Astrophysics Data System (ADS)

    Dejean, Alain; Leroy, Céline; Corbara, Bruno; Céréghino, Régis; Roux, Olivier; Hérault, Bruno; Rossi, Vivien; Guerrero, Roberto J.; Delabie, Jacques H. C.; Orivel, Jérôme; Boulay, Raphaël

    2010-10-01

    Myrmecophytes offer plant-ants a nesting place in exchange for protection from their enemies, particularly defoliators. These obligate ant-plant mutualisms are common model systems for studying factors that allow horizontally transmitted mutualisms to persist since parasites of ant-myrmecophyte mutualisms exploit the rewards provided by host plants whilst providing no protection in return. In pioneer formations in French Guiana, Azteca alfari and Azteca ovaticeps are known to be mutualists of myrmecophytic Cecropia ( Cecropia ants). Here, we show that Azteca andreae, whose colonies build carton nests on myrmecophytic Cecropia, is not a parasite of Azteca- Cecropia mutualisms nor is it a temporary social parasite of A. alfari; it is, however, a temporary social parasite of A. ovaticeps. Contrarily to the two mutualistic Azteca species that are only occasional predators feeding mostly on hemipteran honeydew and food bodies provided by the host trees, A. andreae workers, which also attend hemipterans, do not exploit the food bodies. Rather, they employ an effective hunting technique where the leaf margins are fringed with ambushing workers, waiting for insects to alight. As a result, the host trees’ fitness is not affected as A. andreae colonies protect their foliage better than do mutualistic Azteca species resulting in greater fruit production. Yet, contrarily to mutualistic Azteca, when host tree development does not keep pace with colony growth, A. andreae workers forage on surrounding plants; the colonies can even move to a non- Cecropia tree.

  8. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    PubMed

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries. PMID:19603700

  9. Take advantage of mycorrhizal fungi for improved soil fertility and plant health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arbuscular mycorrhizal [AM] fungi are naturally-occurring soil fungi that form a beneficial symbiosis with the roots of most crops. The plants benefit because the symbiosis increases mineral nutrient uptake, drought resistance, and disease resistance. These characteristics make utilization of AM f...

  10. Plant functional traits improve diversity-based predictions of temporal stability of grassland productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aboveground net primary productivity (ANPP) varies in response to temporal fluctuations in weather. Temporal stability (mean/standard deviation) of community ANPP may be increased, on average, by increasing plant species richness, but stability also may differ widely at a given richness level imply...

  11. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    EPA Science Inventory

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  12. Operating experience and plant betterment to improve capacity factor and reduce scrams at Maanshan

    SciTech Connect

    Soong, S.H.; Shih, A.H.C.; Chen, P.T. ); Chu, E.N. )

    1992-01-01

    Maanshan Nuclear Power Station, a twin-unit PWR plant with Westinghouse 3-loop NSSS and General Electric TC-4F turbine generator, has been in commercial operation over 7 years. This paper reports the significant events, equipment and material failures, design shortcomings encountered during this period and the corresponding betterments performed and planned to eliminate the recurrence of equipment failures and unit trips.

  13. Manipulating photorespiration to increase plant productivity. Recent advances and perspectives for crop improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches have been proposed with the aim of producing plants with reduced rates of photorespiratory ...

  14. Improvement of PNPI experimental industrial plant based on CECE process for heavy water detritiation

    SciTech Connect

    Bondarenko, S. D.; Alekseev, I. A.; Fedorchenko, O. A.; Vasyanina, T. V.; Konoplev, K. A.; Arkhipov, E. A.; Uborsky, V. V.

    2008-07-15

    An updated experimental industrial plant of PNPI for the development of CECE technology is described. Experimental results for heavy water detritiation in different operating modes are shown. The effect of pressure, temperatures and gas flow rate on the detritiation factor for the CECE process is presented. (authors)

  15. Dietary plant phenolic improves survival of bacterial infection in Manduca sexta caterpillars.

    PubMed

    Del Campo, Marta L; Halitschke, Rayko; Short, Sarah M; Lazzaro, Brian P; Kessler, André

    2013-03-01

    Plant phenolics are generally thought to play significant roles in plant defense against herbivores and pathogens. Many plant taxa, including Solanaceae, are rich in phenolic compounds and some insect herbivores have been shown to acquire phenolics from their hosts to use them as protection against their natural enemies. Here we demonstrate that larvae of an insect specialist on Solanaceae, the tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae), acquire the plant phenolic chlorogenic acid (CA), and other caffeic acid derivatives as they feed on one of their hosts, Nicotiana attenuata L. (Solanaceae), and on artificial diet supplemented with CA. We test the hypothesis that larvae fed on CA-supplemented diet would have better resistance against bacterial infection than larvae fed on a standard CA-free diet by injecting bacteria into the hemocoel of fourth instars. Larvae fed CA-supplemented diet show significantly higher survival of infection with Enterococcus faecalis (Andrewes & Horder) Schleifer & Kilpper-Bälz, but not of infection with the more virulent Pseudomonas aeruginosa (Schroeter) Migula. Larvae fed on CA-supplemented diet possess a constitutively higher number of circulating hemocytes than larvae fed on the standard diet, but we found no other evidence of increased immune system activity, nor were larvae fed on CA-supplemented diet better able to suppress bacterial proliferation early in the infection. Thus, our data suggest an additional defensive function of CA to the direct toxic inhibition of pathogen proliferation in the gut. PMID:23420018

  16. Plant Pathogens at Work: Progress and Possibilities for Weed Biocontrol Part 2. Improving Weed Control Efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of plant pathogenic weed biological control agents can be approached using two strategies, termed the classical and biological approaches. The classical involves the search for pathogens in the native range of an invasive weed and its importation and release into the area of introdu...

  17. The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 21st century, nutrient efficient plants will play a major role in increasing crop yields compared to the 20th century, mainly due to limited land and water resources available for crop production, higher cost of inorganic fertilizer inputs, and declining trends in crop yields globally. Furthe...

  18. Showcase Energy Efficiency, Cost Savings, and Process Improvements in Your Plant

    SciTech Connect

    2000-11-01

    Hosting a Showcase Demonstration Event describes how industrial manufacturers can showcase energy efficiency technologies that they have implemented in their plants. Companies can gain access to a wide variety of technical assistance and resources when they agree to host a showcase demonstration and this fact sheet explains how to participate.

  19. DEVELOPMENT OF AN IMPROVED PCR-BASED TECHNIQUE FOR DETECTION OF PHYTOPHTHORA CACTORUM IN STRAWBERRY PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Specific and rapid plant pathogen detection methods can aid in strawberry disease management decisions. PCR-based diagnostics for Phytophthora cactorum and other strawberry pathogens are hindered by PCR inhibitors and lack of species-specific PCR primers. We developed a DNA extraction and purificati...

  20. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions

    PubMed Central

    2014-01-01

    Background Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. Results We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. Conclusions The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes. PMID:24649917

  1. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes

    PubMed Central

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  2. Improving Light Distribution by Zoom Lens for Electricity Savings in a Plant Factory with Light-Emitting Diodes.

    PubMed

    Li, Kun; Li, Zhipeng; Yang, Qichang

    2016-01-01

    The high energy consumption of a plant factory is the biggest issue in its rapid expansion, especially for lighting electricity, which has been solved to a large extent by light-emitting diodes (LED). However, the remarkable potential for further energy savings remains to be further investigated. In this study, an optical system applied just below the LED was designed. The effects of the system on the growth and photosynthesis of butterhead lettuce (Lactuca sativa var. capitata) were examined, and the performance of the optical improvement in energy savings was evaluated by comparison with the traditional LED illumination mode. The irradiation patterns used were LED with zoom lenses (Z-LED) and conventional non-lenses LED (C-LED). The seedlings in both treatments were exposed to the same light environment over the entire growth period. The improvement saved over half of the light source electricity, while prominently lowering the temperature. Influenced by this, the rate of photosynthesis sharply decreased, causing reductions in plant yield and nitrate content, while having no negative effects on morphological parameters and photosynthetic pigment contents. Nevertheless, the much higher light use efficiency of Z-LEDs makes this system a better approach to illumination in a plant factory with artificial lighting. PMID:26904062

  3. LCA as a decision support tool for the environmental improvement of the operation of a municipal wastewater treatment plant.

    PubMed

    Pasqualino, Jorgelina C; Meneses, Montse; Abella, Montserrat; Castells, Francesc

    2009-05-01

    Life cycle assessment (LCA) methodology is used to evaluate the environmental profile of a product or process from its origin to its final destination. In this paper we used LCA to evaluate the current situation of a wastewater treatment plant and identify improvement alternatives. Currently, the highest environmental impacts are caused by the stages of the plant with the highest energy consumption, the use of biogas from anaerobic digestion (95% burned in torch) and the final destination of the sludge (98.6% for agricultural use and 1.4% for compost). We propose four alternatives for biogas applications and five alternatives for sludge applications and compare them to the current situation. The alternatives were incorporated in a decision support system to identify and prioritize the most positive environmental option. Using biogas to produce electricity or a combination of electricity and heat provided the best environmental options since the energy produced would be enough to supply all the stages of the plant, thus reducing their environmental impact. The best environmental option for the final destination of the sludge is to combine the current situation (fertilizer replacement) with use of the sludge in a cement plant (as a replacement for fuel and raw material). PMID:19534150

  4. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing.

    PubMed

    Koch, Aline; Kogel, Karl-Heinz

    2014-09-01

    RNA interference (RNAi) has emerged as a powerful genetic tool for scientific research over the past several years. It has been utilized not only in fundamental research for the assessment of gene function, but also in various fields of applied research, such as human and veterinary medicine and agriculture. In plants, RNAi strategies have the potential to allow manipulation of various aspects of food quality and nutritional content. In addition, the demonstration that agricultural pests, such as insects and nematodes, can be killed by exogenously supplied RNAi targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNAi signals generated in planta. Indeed, recent evidence argues that this strategy, called host-induced gene silencing (HIGS), is effective against sucking insects and nematodes; it also has been shown to compromise the growth and development of pathogenic fungi, as well as bacteria and viruses, on their plant hosts. Here, we review recent studies that reveal the enormous potential RNAi strategies hold not only for improving the nutritive value and safety of the food supply, but also for providing an environmentally friendly mechanism for plant protection. PMID:25040343

  5. Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work.

    SciTech Connect

    Gillen, Kenneth Todd; Bernstein, Robert

    2010-11-01

    Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

  6. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security. PMID:24681087

  7. Oxygen plant breadboard design, and techniques for improving mission figure-of-merit

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1991-01-01

    A breadboard oxygen plant to process anaerobic carbon dioxide is designed and constructed; the objective is not only to produce a key propellant component extraterrestrially, but also to develop the important technologies that are necessary for a successful operation of in-situ materials utilization hardware. The solid electrolytic cells are supplied to specifications by an established vendor. The cell thermal control, electrical control, and flow control are installed after detailed designs. Extensive data are obtained that characterize the operation of the plant as the input parameters are varied. The initial mass, energy, and volume-needs provide the input to a figure-of-merit software program to calculate the impact of various candidate technologies upon the overall mission. The desirability of studies on storage and high-density propellants is shown. This task dovetails into other tasks that are evaluating alternative cell materials, catalysis for compactness, and smart sensors for effective control.

  8. Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success?

    PubMed

    Flexas, J

    2016-10-01

    There is an urgent need for simultaneously increasing photosynthesis/yields and water use efficiency (WUE) in C3 crops. Potentially, this can be achieved by genetic manipulation of the key traits involved. However, despite significant efforts in the past two decades very limited success has been achieved. Here I argue that this is mostly due to the fact that single gene/single trait approaches have been used thus far. Photosynthesis models demonstrate that only limited improving of photosynthesis can be expected by large improvements of any of its single limiting factors, i.e. stomatal conductance, mesophyll conductance, and the biochemical capacity for photosynthesis, the latter co-limited by Rubisco and the orchestrated activity of thylakoid electron transport and the Calvin cycle enzymes. Accordingly, only limited improvements of photosynthesis have been obtained by genetic manipulation of any of these single factors. In addition, improving photosynthesis by genetic manipulation in general reduced WUE, and vice-versa, and in many cases pleiotropic effects appear that cancel out some of the expected benefits. I propose that success in genetic manipulation for simultaneous improvement of photosynthesis and WUE efficiency may take longer than suggested in previous reports, and that it can be achieved only by joint projects addressing multi-gene manipulation for simultaneous alterations of all the limiting factors of photosynthesis, including the often neglected phloem capacity for loading and transport the expected surplus of carbohydrates in plants with improved photosynthesis. PMID:27593473

  9. Significant improvements in the area of stroke timing of motor-operated valves for nuclear plants

    SciTech Connect

    Wohld, P.R. ); Newsome, R.C. )

    1990-01-01

    This paper reports on valve stroke timing test equipment developed and tested for use in a nuclear power plant main control room that can provide significant advantages to the user for valve surveillance testing required by the Nuclear Regulatory Commission. The equipment is particularly suitable for Motor-Operated Valves (MOVs) because of its accuracy and repeatability that is necessary to detect the effects of small changes in actuator motor RPM.

  10. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research.

    PubMed

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S Luke

    2015-01-01

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m(2). There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions. PMID:25829379

  11. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research

    PubMed Central

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S. Luke

    2015-01-01

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m2. There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions. PMID:25829379

  12. The pericyte as a cellular regulator of penile erection and a novel therapeutic target for erectile dysfunction

    PubMed Central

    Yin, Guo Nan; Das, Nando Dulal; Choi, Min Ji; Song, Kang-Moon; Kwon, Mi-Hye; Ock, Jiyeon; Limanjaya, Anita; Ghatak, Kalyan; Kim, Woo Jean; Hyun, Jae Seog; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2015-01-01

    Pericytes are known to play critical roles in vascular development and homeostasis. However, the distribution of cavernous pericytes and their roles in penile erection is unclear. Herein we report that the pericytes are abundantly distributed in microvessels of the subtunical area and dorsal nerve bundle of mice, followed by dorsal vein and cavernous sinusoids. We further confirmed the presence of pericytes in human corpus cavernosum tissue and successfully isolated pericytes from mouse penis. Cavernous pericyte contents from diabetic mice and tube formation of cultured pericytes in high glucose condition were greatly reduced compared with those in normal conditions. Suppression of pericyte function with anti-PDGFR-β blocking antibody deteriorated erectile function and tube formation in vivo and in vitro diabetic condition. In contrast, enhanced pericyte function with HGF protein restored cavernous pericyte content in diabetic mice, and significantly decreased cavernous permeability in diabetic mice and in pericytes-endothelial cell co-culture system, which induced significant recovery of erectile function. Overall, these findings showed the presence and distribution of pericytes in the penis of normal or pathologic condition and documented their role in the regulation of cavernous permeability and penile erection, which ultimately explore novel therapeutics of erectile dysfunction targeting pericyte function. PMID:26044953

  13. Valencia Peanut Response to Single, Twin and Diamond Planting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, most Valencia peanuts are grown in single rows on 36 to 40 inch beds. Because of their bunch-type and erect growth habit, Valencia peanuts do not spread over the whole bed and have the opportunity to benefit from multiple row planting arrangements. This study was conducted near Clovis, ...

  14. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis.

    PubMed

    Wilhelm, Christian; Selmar, Dirk

    2011-01-15

    -photochemical quenching or photorespiration appear in a quite new perspective, especially when discussing strategies to improve the solar energy conversion into plant biomass. PMID:20800930

  15. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.

    PubMed

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L

    2005-07-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens. PMID:16000810

  16. Dietary medicinal plant extracts improve growth, immune activity and survival of tilapia Oreochromis mossambicus.

    PubMed

    Immanuel, G; Uma, R P; Iyapparaj, P; Citarasu, T; Peter, S M Punitha; Babu, M Michael; Palavesam, A

    2009-05-01

    The effects of supplementing diets with acetone extract (1% w/w) from four medicinal plants (Bermuda grass Cynodon dactylon, H(1), beal Aegle marmelos, H(2), winter cherry Withania somnifera, H(3) and ginger Zingiber officinale, H(4)) on growth, the non-specific immune response and ability to resist pathogen infection in tilapia Oreochromis mossambicus were assessed. In addition, the antimicrobial properties of the extract were assessed against Vibrio alginolyticus, Vibrioparahaemolyticus, Vibrio mimicus, Vibrio campbelli, Vibrio vulnificus, Vibrio harveyi and Photobacterium damselae. Oreochromis mossambicus were fed 5% of their body mass per day for 45 days, and those fed the experimental diets showed a greater increase in mass (111-139%) over the 45 days compared to those that received the control diet (98%). The specific growth rate of O. mossambicus fed the four diets was also significantly greater (1.66-1.93%) than control (1.52%) diet-fed fish. The blood plasma chemistry analysis revealed that protein, albumin, globulin, cholesterol, glucose and triglyceride levels of experimental fish were significantly higher than that of control fish. Packed cell volume of the blood samples of experimental diet-fed fish was also significantly higher (34.16-37.95%) than control fish (33.0%). Leucocrit value, phagocytic index and lysozyme activity were enhanced in fish fed the plant extract-supplemented diets. The acetone extract of the plants inhibited growth of Vibrio spp. and P. damselae with extracts from W. somnifera showing maximum growth inhibition. A challenge test with V. vulnificus showed 100% mortality in O. mossambicus fed the control diet by day 15, whereas the fish fed the experimental diets registered only 63-80% mortality at the end of challenge experiment (30 days). The cumulative mortality index for the control group was 12,000, which was equated to 1.0% mortality, and accordingly, the lowest mortality of 0.35% was registered in H(4)-diet-fed group. PMID

  17. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects.

    PubMed

    Resquín-Romero, G; Garrido-Jurado, I; Delso, C; Ríos-Moreno, A; Quesada-Moraga, E

    2016-05-01

    The current work reports how spray application of entomopathogenic fungi on alfalfa, tomato and melon plants may cause an additional Spodoptera littoralis larvae mortality due to a temporal colonization of the leaves and subsequent ingestion of those leaves by the larvae. Most entomopathogenic fungi (EF) (Ascomycota: Hypocreales) endophytes seem to colonize their host plants in a non-systemic pattern, in which case at least a transient endophytic establishment of the fungus should be expected in treated areas after spray application. In this work, all strains were able to endophytically colonize roots, stems and leaves during the first 96h after inoculation. Whilst the treatment of S. littoralis larvae with a 10(8)ml(-1) conidial suspension resulted in moderate to high mortality rates for the Metarhizium brunneum EAMb 09/01-Su (41.7-50.0%) and Beauveria bassiana EABb 01/33-Su (66.7-76.6%) strains, respectively, an additive effect was detected when these larvae were also fed endophytically colonized alfalfa, tomato, and melon leaves, with mortality rates varying from 25.0% to 46.7% as a function of the host plant and total mortality rates in the combined treatment of 75-80% and 33-60% for B. bassiana and M. brunneum, respectively. Fungal outgrowth was not detected in any of the dead larvae feeding on colonized leaves, whereas traces of destruxin A were detected in 11% of the insects fed tomato discs endophytically colonized by M. brunneum. The combined effects of the fungal spray with the mortality caused by the feeding of insects on transient EF-colonized leaves have to be considered to estimate the real acute impact of field sprays with entomopathogenic fungi on chewing insects. PMID:26945771

  18. Development of innovative techniques and principles that may be used as models to improve plant performance

    SciTech Connect

    Hanna, W.W.; Burton, G.W.

    1989-06-01

    Plant breeding has made possible a large portion of the record yields of our major food crops, and can claim credit for at least half of their increased yield. It can continue to do this but the population explosion demands that it be done in less time. Innovative techniques must be developed. The purpose of this research is: to develop techniques and principles of transferring germplasm from the primary, secondary, and tertiary gene pools of the wild species to cultivated species and evaluate the transferred germplasm; to evaluate diverse cytoplasms from wild species in isogenic lines to detect cytoplasmic effects on agronomic characteristics; and to develop an obligate apomictic pearl millet. 32 refs.

  19. Improvement of the ethanol productivity in a high gravity brewing at pilot plant scale.

    PubMed

    Dragone, Giuliano; Silva, Daniel P; de Almeida e Silva, João Batista; de Almeida Lima, Urgel

    2003-07-01

    A 23 full factorial design was used to study the influence of different experimental variables, namely wort gravity, fermentation temperature and nutrient supplementation, on ethanol productivity from high gravity wort fermentation by Saccharomyces cerevisiae (lager strain), under pilot plant conditions. The highest ethanol productivity (0.69 g l(-1) h(-1)) was obtained at 20 degrees P [degrees P is the weight of extract (sugar) equivalent to the weight of sucrose in a 100 g solution at 20 degrees C], 15 degrees C, with the addition of 0.8% (w/v) yeast extract, 24 mg l(-1) ergosterol and 0.24% (v/v) Tween 80. PMID:12967007

  20. Development and realization of the concept of an integrated system for the improvement of steam turbine plant reliability

    NASA Astrophysics Data System (ADS)

    Murmanskii, B. E.

    2015-12-01

    Main works performed when implementing the concept of an integrated approach to the improvement of the steam turbine plant (STP) reliability were stated. The technique of an integrated approach to the collection and processing of data on the STP equipment reliability was presented. This technique is based on the information on damages resulting in equipment failures, damages revealed during the routine equipment maintenance, and on data concerning equipment faults occurred when operating the STP. There is an implementation example for the technique of defining main elements specifying the reliability of a specific unit based on the statistical analysis of STP operating data.

  1. Regional climate model downscaling may improve the prediction of alien plant species distributions

    NASA Astrophysics Data System (ADS)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  2. An Improved Binary Vector and Escherichia coli Strain for Agrobacterium tumefaciens-Mediated Plant Transformation

    PubMed Central

    Watson, Michael R.; Lin, Yu-fei; Hollwey, Elizabeth; Dodds, Rachel E.; Meyer, Peter; McDowall, Kenneth J.

    2016-01-01

    The plasmid vector pGreenII is widely used to produce plant transformants via a process that involves propagation in Escherichia coli. However, we show here that pGreenII-based constructs can be unstable in E. coli as a consequence of them hampering cell division and promoting cell death. In addition, we describe a new version of pGreenII that does not cause these effects, thereby removing the selective pressure for mutation, and a new strain of E. coli that better tolerates existing pGreenII-based constructs without reducing plasmid yield. The adoption of the new derivative of pGreenII and the E. coli strain, which we have named pViridis and MW906, respectively, should help to ensure the integrity of genes destined for study in plants while they are propagated and manipulated in E. coli. The mechanism by which pGreenII perturbs E. coli growth appears to be dysregulation within the ColE1 origin of replication. PMID:27194805

  3. Extended statistical entropy analysis (eSEA) for improving the evaluation of Austrian wastewater treatment plants.

    PubMed

    Sobańtka, A; Rechberger, H

    2013-01-01

    Extended statistical entropy analysis (eSEA) is used to evaluate the nitrogen (N) budgets of 13 Austrian wastewater treatment plants (WWTPs). The eSEA results are then compared to the WWTPs specific N-removal rates. Among the five WWTPs that achieve a removal rate of 75% the eSEA detects significant differences in the N-performance. The main reason for this is that eSEA considers all N-species and seems to be more discriminating than the N-removal rate. Additionally, the energy consumption and the costs of the mechanical-biological treatment process are related to the N-performance according to the eSEA. The influence of the WWTP size on the energy- and cost-efficiency of the N-treatment is investigated. Results indicate that energy-efficiency does not necessarily coincide with cost-efficiency. It is shown that smaller WWTPs between 22,000 PE (population equivalents) and 50,000 PE can be operated as energy-efficiently as larger WWTPs between 100,000 and 1,000,000 PE. On average, the smaller plants operate less cost-efficiently than the large ones. This research offers a new method for the assessment of the N-performance of WWTPs, and suggests that small WWTPs are not necessarily less energy- and cost-efficient than large ones. PMID:23416597

  4. Efficacy of aphrodisiac plants towards improvement in semen quality and motility in infertile males.

    PubMed

    Mahajan, Ghanashyam Keshav; Mahajan, Arun Yashwant; Mahajan, Raghunath Totaram

    2012-01-01

    Infertility is the inability to conceive after one year of unprotected intercourse. In the present study, herbal composition prepared by using medicinal plants having aphrodisiac potentials was administered orally to the albino rats for 40 days and to the oligospermic patients for 90 days in order to prove the efficacy of herbal composition. Herbal composition was the mixture (powder form) of the medicinal plants namely, Mucuna pruriens (Linn), Chlorophytum borivillianum (Sant and Fernand), and Eulophia campestris (Wall). In the neem oil treated albino rats, there was significant reduction in almost all the parameters viz. body weight, testes and epididymes weight, sperm density and motility, serum levels of testosterone, FSH, and LH compared with control rats. Treatment with said herbal composition for 40 days results significant increased in the body weight, testis, and epididymes weight in rats. Concomitantly the sperm motility and the sperm density were significantly increased. After 90 days of treatment with this herbal composition, sperm density vis-a-vis motility was increased in oligozoospermic patients as a result of elevation in serum testosterone levels. No side effects were noticed during the entire duration of the trial. PMID:22499723

  5. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].

    PubMed

    Duponnois, Robin; Ramanankierana, Heriniaina; Hafidi, Mohamed; Baohanta, Rondro; Baudoin, Ezékiel; Thioulouse, Jean; Sanguin, Hervé; Bâ, Amadou; Galiana, Antoine; Bally, René; Lebrun, Michel; Prin, Yves

    2013-01-01

    The overexploitation of natural resources, resulting in an increased need for arable lands by local populations, causes a serious dysfunction in the soil's biological functioning (mineral deficiency, salt stress, etc.). This dysfunction, worsened by the climatic conditions (drought), requires the implementation of ecological engineering strategies allowing the rehabilitation of degraded areas through the restoration of essential ecological services. The first symptoms of weathering processes of soil quality in tropical and Mediterranean environments result in an alteration of the plant cover structure with, in particular, the pauperization of plant species diversity and abundance. This degradation is accompanied by a weakening of soils and an increase of the impact of erosion on the surface layer resulting in reduced fertility of soils in terms of their physicochemical characteristics as well as their biological ones (e.g., soil microbes). Among the microbial components particularly sensitive to erosion, symbiotic microorganisms (rhizobia, Frankia, mycorrhizal fungi) are known to be key components in the main terrestrial biogeochemical cycles (C, N and P). Many studies have shown the importance of the management of these symbiotic microorganisms in rehabilitation and revegetation strategies of degraded environments, but also in improving the productivity of agrosystems. In particular, the selection of symbionts and their inoculation into the soil were strongly encouraged in recent decades. These inoculants were selected not only for their impact on the plant, but also for their ability to persist in the soil at the expense of the residual native microflora. The performance of this technique was thus evaluated on the plant cover, but its impact on soil microbial characteristics was totally ignored. The role of microbial diversity on productivity and stability (resistance, resilience, etc.) of eco- and agrosystems has been identified relatively recently and has led

  6. Improvement of Pest Resistance in Transgenic Tobacco Plants Expressing dsRNA of an Insect-Associated Gene EcR

    PubMed Central

    Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng

    2012-01-01

    The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance. PMID:22685585

  7. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    PubMed

    Zhu, Jin-Qi; Liu, Shumin; Ma, Yao; Zhang, Jia-Qi; Qi, Hai-Sheng; Wei, Zhao-Jun; Yao, Qiong; Zhang, Wen-Qing; Li, Sheng

    2012-01-01

    The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance. PMID:22685585

  8. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding. PMID:25344442

  9. Endogenous overexpression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth.

    PubMed

    Plett, Jonathan M; Wilkins, Olivia; Campbell, Malcolm M; Ralph, Steven G; Regan, Sharon

    2010-11-01

    Trichomes are specialized epidermal cells that generally play a role in reducing transpiration and act as a deterrent to herbivory. In a screen of activation-tagged Populus tremula × Populus alba 717-1B4 trees, we identified a mutant line, fuzzy, with increased foliar trichome density. This mutant also had a 35% increase in growth rate and a 200% increase in the rate of photosynthesis as compared with wild-type poplar. The fuzzy mutant had significant resistance to feeding by larvae of the white-spotted tussock moth (Orgyia leucostigma), a generalist insect pest of poplar trees. The fuzzy trichome phenotype is attributable to activation tagging and increased expression of the gene encoding PtaMYB186, which is related to Arabidopsis thaliana MYB106, a known regulator of trichome initiation. The fuzzy phenotype can be recapitulated by overexpressing PtaMYB186 in poplar. PtaMYB186 overexpression results in reconfiguration of the poplar transcriptome, with changes in the transcript abundance of suites of genes that are related to trichome differentiation. It is notable that a plant with misexpression of a gene responsible for trichome development also had altered traits related to growth rate and pest resistance, suggesting that non-intuitive facets of plant development might be useful targets for plant improvement. PMID:20807210

  10. Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense.

    PubMed

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2013-11-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779

  11. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  12. Application of an Improved Proteomics Method for Abundant Protein Cleanup: Molecular and Genomic Mechanisms Study in Plant Defense*

    PubMed Central

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2013-01-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779

  13. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  14. The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements.

    PubMed

    Altenhoff, Adrian M; Škunca, Nives; Glover, Natasha; Train, Clément-Marie; Sueki, Anna; Piližota, Ivana; Gori, Kevin; Tomiczek, Bartlomiej; Müller, Steven; Redestig, Henning; Gonnet, Gaston H; Dessimoz, Christophe

    2015-01-01

    The Orthologous Matrix (OMA) project is a method and associated database inferring evolutionary relationships amongst currently 1706 complete proteomes (i.e. the protein sequence associated for every protein-coding gene in all genomes). In this update article, we present six major new developments in OMA: (i) a new web interface; (ii) Gene Ontology function predictions as part of the OMA pipeline; (iii) better support for plant genomes and in particular homeologs in the wheat genome; (iv) a new synteny viewer providing the genomic context of orthologs; (v) statically computed hierarchical orthologous groups subsets downloadable in OrthoXML format; and (vi) possibility to export parts of the all-against-all computations and to combine them with custom data for 'client-side' orthology prediction. OMA can be accessed through the OMA Browser and various programmatic interfaces at http://omabrowser.org. PMID:25399418

  15. Geocomposite with Superabsorbent as an Element Improving Water Availability for Plants on Slopes

    NASA Astrophysics Data System (ADS)

    Pawlowski, A.; Lejcus, K.; Garlikowski, D.; Orzeszyna, H.

    2009-04-01

    Water availability for plants on a slope is usually worse, then on a plane surface. Exposure on sun radiation makes these conditions even more difficult. The key problem is how to supply plants with water. Frequently watering is good but expensive solution. To avoid often repeating of such action and/or to use as much as possible water from precipitation, it has to be retained in soil. One of the ways to increase soil water retention is superabsorbents (SAP), called often hydrogel addition to the soil. They can absorb 300 - 1000 times more water, then theirs own weight. This water can be later taken by roots system. Addition to the soil small amount of dry superabsorbent, which, after absorbing water, forms gel can affect stability of the slope top layer, diminishing soil strength parameters. Part of the strength lose can be recompensed by reinforcing action of better developed roots system, which, according to the tests are increasing soil shear strength. However because it is a living system still rest some uncertainty about its functioning over many vegetation seasons. From engineering point of view, these strength parameters are very difficult for precise calculation, control and determination of long term behaviour. Important factor of superabsorbent influence on soil shear parameters is its dosage and, as a result, final volume and properties after water absorption. If the volume of superabsorbent is not greater then available pore volume of soil, this influence is not decisive. By bigger dosage, when volume of superabsorbent with retained water is much greater then pore space volume. The soil form a suspension in hydrogel and in laboratory condition one can observe sedimentation of soil fraction at the early stage of saturation. After longer time gel's density is already high enough to support grains of soils and stop sedimentation process. By highly permeable soils, which are sometimes used in embankment construction, eg. for buttress, gel, just after

  16. Power plant performance monitoring and improvement. Volume 2. Incremental heat rate sensitivity analysis

    SciTech Connect

    Crim, H.G.

    1986-02-01

    This report describes the interim findings of the Incremental Heat Rate Sensitivity Analysis task of EPRI Project RP1681-1/2153-1, Power Plant Performance Instrumentation System. Objectives of this task were to develop the models and methods for evaluation of unit performance uncertainty, and to determine the effects of modeling, input/output, and fuel cost uncertainty on production cost and dispatch. Analyses and simulations were made to determine the sensitivity of cost and economic dispatch to modeling errors and measurement errors within realistic system constraints. The results obtained are sufficient to provide the measures necessary to evaluate on-line updates of unit performance to develop incremental heat rate information for economic dispatch.

  17. Polyphenolic rich traditional plants and teas improve lipid stability in food test systems.

    PubMed

    Ramsaha, Srishti; Aumjaud, B Esha; Neergheen-Bhujun, Vidushi S; Bahorun, Theeshan

    2015-02-01

    The deleterious effects of lipid autoxidation are of major concern to the food industry and can be prevented by food antioxidants. In this vein, the phenolic contents and antioxidant potential of traditional plants of Mauritius such as P. betle L. (Piperaceae), M. koenigii L. Sprengel. (Rutaceae), O. gratissimum L. (Lamiaceae), O. tenuiflorum L. (Lamiaceae), and commercially available Mauritian green and black teas were evaluated. Their ferric reducing antioxidant power (FRAP) were compared to that of butylated hydroxytoluene (BHT) with the following order of potency: BHT > "Natural" commercial green tea > "Black Label" commercial black tea > O. gratissimum > P. betle > O. tenuiflorum > M. koenigii. The trolox equivalent antioxidant capacity (TEAC) assay reflected a similar antioxidative order for BHT and "Natural" commercial green tea, with however P. betle, O. tenuiflorum and O. gratissimum exhibiting higher activities than "Black Label" commercial black tea and M. koenigii. Based on their potent antioxidant capacity, P. betle (0.2 % m/m) and O. tenuiflorum (0.2 % m/m) extracts, and green tea (0.1 % m/m) infusate were compared with BHT (0.02 % m/m) on their ability to retard lipid oxidation in unstripped sunflower oil and mayonnaise during storage at 40 °C. P. betle and green tea were more effective than BHT in both food systems. Moreover, odour evaluation by a sensory panel showed that the plant extracts and green tea infusate effectively delayed the development of rancid odours in unstripped sunflower oil and mayonnaise (p < 0.05). PMID:25694685

  18. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  19. Can Physiological Endpoints Improve the Sensitivity of Assays with Plants in the Risk Assessment of Contaminated Soils?

    PubMed Central

    Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth

    2013-01-01

    Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The

  20. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551