Science.gov

Sample records for erythrocyte glucose 6-phosphate

  1. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  2. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase... § 864.7360 Erythrocytic glucose-6-phosphate dehydrogenase assay. (a) Identification. An erythrocytic glucose-6-phosphate dehydrogenase assay is a device used to measure the activity of the enzyme...

  3. Erythrocyte glucose-6-phosphate dehydrogenase from Brazilian opossum Didelphis marsupialis.

    PubMed

    Barretto, O C de O; Oshiro, M; Oliveira, R A G; Fedullo, J D L; Nonoyama, K

    2006-05-01

    In a comparative study of erythrocyte metabolism of vertebrates, the specific activity of glucose-6-phosphate dehydrogenase (G6PD) of the Brazilian opossum Didelphis marsupialis in a hemolysate was shown to be high, 207 +/- 38 IU g-1 Hb-1 min-1 at 37 degrees C, compared to the human erythrocyte activity of 12 +/- 2 IU g-1 Hb-1 min-1 at 37 degrees C. The apparent high specific activity of the mixture led us to investigate the physicochemical properties of the opossum enzyme. We report that reduced glutathione (GSH) in the erythrocytes was only 50% higher than in human erythrocytes, a value lower than expected from the high G6PD activity since GSH is maintained in a reduced state by G6PD activity. The molecular mass, determined by G-200 Sephadex column chromatography at pH 8.0, was 265 kDa, which is essentially the same as that of human G6PD (260 kDa). The Michaelis-Menten constants (Km: 55 microM) for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (Km: 3.3 microM) were similar to those of the human enzyme (Km: 50-70 and Km: 2.9-4.4, respectively). A 450-fold purification of the opossum enzyme was achieved and the specific activity of the purified enzyme, 90 IU/mg protein, was actually lower than the 150 IU/mg protein observed for human G6PD. We conclude that G6PD after purification from the hemolysate of D. marsupialis does not have a high specific activity. Thus, it is quite probable that the red cell hyperactivity reported may be explained by increased synthesis of G6PD molecules per unit of hemoglobin or to reduced inactivation in the RBC hemolysate. PMID:16648898

  4. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and...

  5. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and...

  6. 21 CFR 864.7360 - Erythrocytic glucose-6-phosphate dehydrogenase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Erythrocytic glucose-6-phosphate dehydrogenase assay. 864.7360 Section 864.7360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and...

  7. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  8. Glucose-6-phosphate isomerase.

    PubMed

    Achari, A; Marshall, S E; Muirhead, H; Palmieri, R H; Noltmann, E A

    1981-06-26

    Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site. PMID:6115414

  9. Protective Effect of Quercetin on Oxidative Stress in Glucose-6-Phosphate Dehydrogenase-Deficient Erythrocytes in Vitro

    PubMed Central

    Jamshidzadeh, Akram; Rezaeian Mehrabadi, Abbas

    2010-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficient subjects are vulnerable to oxidative stress. Quercetin, a flavonoids, has been employed as a potent oxygen-free radical scavenger in order to assess the protective effects of quercetin against H2O2-induced oxidative damage in G6PD-deficient and normal human erythrocytes. Erythrocytes of G6PD-deficient (n = 10) and normal (n = 10) subjects were incubated with different concentrations of quercetin. The produced thiobarbituric acid reactive substance (TBARS) and glutathione (GSH) level of erythrocytes were then subsequently measured. Different concentrations of quercetin showed no significant hemolysis, compared with the phosphate buffer solution. Upon challenge with H2O2, there was a significant (p < 0.005) decrease in GSH and an increase in TBARS level in G6PD-deficient erythrocytes. With quercetin, it managed to preserve concentrations of 15 to 75 mM preserved GSH and TBARS levels of normal and G6PD-deficient erythrocytes against H2O2-induced oxidative damage. In addition to its well-established antioxidant effects, quercetin was also found to have cytoprotective properties. PMID:24363724

  10. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11-7082, parthenolide and dimethyl fumarate.

    PubMed

    Ghashghaeinia, Mehrdad; Giustarini, Daniela; Koralkova, Pavla; Köberle, Martin; Alzoubi, Kousi; Bissinger, Rosi; Hosseinzadeh, Zohreh; Dreischer, Peter; Bernhardt, Ingolf; Lang, Florian; Toulany, Mahmoud; Wieder, Thomas; Mojzikova, Renata; Rossi, Ranieri; Mrowietz, Ulrich

    2016-01-01

    In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11-7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11-7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11-7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach "Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target" (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity. PMID:27353740

  11. Pharmacological targeting of glucose-6-phosphate dehydrogenase in human erythrocytes by Bay 11–7082, parthenolide and dimethyl fumarate

    PubMed Central

    Ghashghaeinia, Mehrdad; Giustarini, Daniela; Koralkova, Pavla; Köberle, Martin; Alzoubi, Kousi; Bissinger, Rosi; Hosseinzadeh, Zohreh; Dreischer, Peter; Bernhardt, Ingolf; Lang, Florian; Toulany, Mahmoud; Wieder, Thomas; Mojzikova, Renata; Rossi, Ranieri; Mrowietz, Ulrich

    2016-01-01

    In mature erythrocytes, glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) yield NADPH, a crucial cofactor of the enzyme glutathione reductase (GR) converting glutathione disulfide (GSSG) into its reduced state (GSH). GSH is essential for detoxification processes in and survival of erythrocytes. We explored whether the anti-inflammatory compounds Bay 11–7082, parthenolide and dimethyl fumarate (DMF) were able to completely deplete a common target (GSH), and to impair the function of upstream enzymes of GSH recycling and replenishment. Treatment of erythrocytes with Bay 11–7082, parthenolide or DMF led to concentration-dependent eryptosis resulting from complete depletion of GSH. GSH depletion was due to strong inhibition of G6PDH activity. Bay 11–7082 and DMF, but not parthenolide, were able to inhibit the GR activity. This approach “Inhibitors, Detection of their common target that is completely depleted or inactivated when pharmacologically relevant concentrations of each single inhibitor are applied, Subsequent functional analysis of upstream enzymes for this target” (IDS), can be applied to a broad range of inhibitors and cell types according to the selected target. The specific G6PDH inhibitory effect of these compounds may be exploited for the treatment of human diseases with high NADPH and GSH consumption rates, including malaria, trypanosomiasis, cancer or obesity. PMID:27353740

  12. Effect of vitamin K1 on glucose-6-phosphate dehydrogenase deficient neonatal erythrocytes in vitro

    PubMed Central

    Kaplan, M.; Waisman, D.; Mazor, D.; Hammerman, C.; Bader, D.; Abrahamov, A.; Meyerstein, N.

    1998-01-01

    AIM—To determine whether vitamin K1, which is routinely administered to neonates, could act as an exogenous oxidising agent and be partly responsible for haemolysis in glucose-6-phosphat-dehydrogenase (G-6-PD).
METHODS—G-6-PD deficient (n=7) and control (n=10) umbilical cord blood red blood cells were incubated in vitro with a vitamin K1 preparation (Konakion). Two concentrations of Vitamin K1 were used, both higher than that of expected serum concentrations, following routine injection of 1 mg vitamin K1. Concentrations of reduced glutathione (GSH) and methaemoglobin, indicators of oxidative red blood cell damage, were determined before and after incubation, and the mean percentage change from baseline calculated.
RESULTS—Values (mean (SD)) for GSH, at baseline, and after incubation with vitamin K1 at concentrations of 44 and 444 µM, respectively, and percentage change from baseline (mean (SD)) were 1.97 + 0.31µmol/g haemoglobin, 1.89 ± 0.44 µmol/g (-4.3 ± 13.1%), and 1.69± 0.41 µmol/g (-14.5 ±9.3%) for the G-6-PD deficient red blood cells, and 2.27 ± 0.31 µmol/g haemoglobin, 2.09 ± 0.56 µmol/g (−7.2 ± 23.2%), and 2.12 ± 0.38 µmol/g (−6.0 + 14.1%) for the control cells. For methaemoglobin (percentage of total haemoglobin), the corresponding values were 2.01± 0.53%, 1.93 ± 0.37% (−0.6± 17.4%) and 2.06 ± 0.43% (5.7 ± 14.2%) for the G-6-PD deficient red blood cells, and 1.56 ± 0.74%, 1.70 ± 0.78% (12.7 ± 21.9%), and 1.78 ± 0.71% (20.6 ± 26.8%) for the control red blood cells. None of the corresponding percentage changes from baseline was significantly different when G-6-PD deficient and control red blood cells were compared.
CONCLUSIONS—These findings suggest that G-6-PD deficient red blood cells are not at increased risk of oxidative damage from vitamin K1.

 PMID:10194997

  13. A comprehensive analysis of membrane and morphology of erythrocytes from patients with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Fang, Zishui; Jiang, Chengrui; Tang, Jia; He, Ming; Lin, Xiaoying; Chen, Xiaodan; Han, Luhao; Zhang, Zhiqiang; Feng, Yi; Guo, Yibin; Li, Hongyi; Jiang, Weiying

    2016-06-01

    Acute hemolytic anemia could be triggered by oxidative stress in the patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, the underlying hemolytic mechanism is unknown. To make clear the hemolytic mechanisms, a systematic study on membrane ultrastructure had been undertaken. A comprehensive method was used including atomic force microscopy, scanning electron microscopy, flow cytometer and fluorescence microscopy to analyze the membrane ultrastructure, externalized phosphatidylserine (PS), intracellular Ca(2+) concentration, morphology and the distributions of band 3 protein in G6PD deficient red blood cells (RBCs) after tert-butyl-hydroperoxide (t-BHP) oxidation. The results showed that erythrocyte shrinkage, annexin-V binding to externalized PS on the membrane of early-stage apoptotic cells, the increased membrane roughness and intracellular Ca(2+) concentration, as well as the change of distributions of band 3 protein in RBCs. Compared with the control RBCs, as the concentration of t-BHP up to 0.1mM, the membrane roughness of G6PD deficient RBCs showed significant difference (p<0.05) and as the concentration of t-BHP up to 0.3mM, externalized PS showed significant difference (p<0.05). Furthermore, the population types of RBCs showed dramatic difference between control groups and G6PD deficient groups. Oxidative stress induced more serious erythrocyte apoptosis and resulted in increased roughness of erythrocyte membrane and abnormal distributed band 3 protein in G6PD deficient RBCs. Echinocytes are the predominant abnormal erythrocyte shape occurring in the peripheral blood from patients with G6PD deficiency, which may shorten the RBCs lifespan. The results in the present study will give an increased understanding for the hemolytic mechanism of G6PD deficiency. PMID:26496826

  14. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants.

    PubMed

    Cheah, Fook-Choe; Peskin, Alexander V; Wong, Fei-Liang; Ithnin, Azlin; Othman, Ainoon; Winterbourn, Christine C

    2014-07-01

    Erythrocytes require glucose-6-phosphate dehydrogenase (G6PD) to generate NADPH and protect themselves against hemolytic anemia induced by oxidative stress. Peroxiredoxin 2 (Prx2) is a major antioxidant enzyme that requires NADPH to recycle its oxidized (disulfide-bonded) form. Our aims were to determine whether Prx2 is more highly oxidized in G6PD-deficient erythrocytes and whether these cells are able to recycle oxidized Prx2 after oxidant challenge. Blood was obtained from 61 Malaysian neonates with G6PD deficiency (average 33% normal activity) and 86 controls. Prx2 redox state was analyzed by Western blotting under nonreducing conditions. Prx2 in freshly isolated blood was predominantly reduced in both groups, but the median level of oxidation was significantly higher (8 vs 3%) and the range greater for the G6PD-deficient population. When treated with reagent H2O2, the G6PD-deficient erythrocytes were severely compromised in their ability to recycle oxidized Prx2, with only 27 or 4% reduction after 1 h treatment with 0.1 or 1 mM H2O2 respectively, compared with >97% reduction in control erythrocytes. The accumulation of oxidized Prx2 in oxidatively stressed erythrocytes with common G6PD variants suggests that impaired antioxidant activity of Prx2 could contribute to the hemolysis and other complications associated with the condition.-Cheah, F.-C., Peskin, A. V., Wong, F.-L., Ithnin, A., Othman, A., Winterbourn, C. C. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase deficient erythrocytes from newborn infants. PMID:24636884

  15. In vivo and in vitro effects of some plant hormones on rat erythrocyte carbonic anhydrase and glucose-6-phosphate dehydrogenase activities.

    PubMed

    Ciftçi, Mehmet; Demir, Yavuz; Ozmen, Ismail; Atici, Okkeş

    2003-02-01

    The present study was undertaken to determine in vivo and in vitro effects of some plant growth regulators on rat erythrocyte carbonic anhydrase (CA) and glucose-6-phosphate dehydrogenase (G6PD) activities. Both in vivo and in vitro, spermidine and kinetin did not affect enzymatic activities of CA and G6PD, whereas putrescine decreased these activities, and abscisic acid increased them. Since plants use such growth regulators, their effects should be considered on mammals consuming them since they may possess important biological effects. PMID:12751824

  16. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  17. Biochemical mechanisms of glucose-6-phosphate dehydrogenase deficiency.

    PubMed Central

    Morelli, A; Benatti, U; Gaetani, G F; De Flora, A

    1978-01-01

    A solid-phase radioimmunoassay for human glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase; EC 1.1.1.49) was developed that allowed the specific activity of this enzyme protein to be measured in lysates from whole erythrocyte populations, in lysates from erythrocytes of different ages, and in purified samples. The enzyme was highly purified from erythrocytes of single donors by a simple procedure of affinity chromatography with insolubilized adenosine 2',5'-bisphosphate. These techniques were used in an attempt to elucidate the molecular mechanisms leading to deficiency of glucose-6-phosphate dehydrogenase activity in two genetic variants of the enzyme, i.e., the Mediterranean and the Seattle-like variants. The results indicate that the lowered activity of erythrocytes containing the Mediterranean variant of glucose-6-phosphate dehydrogenase is related to an enhanced rate of degradation of a catalytically defective protein synthesized at a nearly normal rate. Synthesis of a normally functioning protein and an increased breakdown of it are involved in the Seattle-like variant of the enzyme. Images PMID:273924

  18. Psoriatic therapeutics and glucose-6-phosphate dehydrogenase.

    PubMed

    Cotton, D W; van Rossum, E

    1975-01-01

    The inhibitory effects of various agents on the enzyme glucose-6-phosphate dehydrogenase have been studied in vitro. Stress is laid on the calculation of kinetic parameters such as true K-I values. The most active inhibitor was methotrexate, closely followed by cGMP. The increase in inhibitory activity after incubation of methotrexate with liver slices is discussed. PMID:167665

  19. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.

    PubMed Central

    Roth, E F; Ruprecht, R M; Schulman, S; Vanderberg, J; Olson, J A

    1986-01-01

    The metabolism of pentose-phosphate was investigated in Plasmodium falciparum-infected normal and glucose-6-phosphate dehydrogenase (G6PD)-deficient human red blood cells in vitro. 5'-Phosphoribosyl-1-pyrophosphate (PRPP) content of infected normal red blood cells was increased 50-60-fold at the parasite trophozoite growth stage over that of uninfected cells. The PRPP increment in infected G6PD-deficient cells at comparable stage and parasitemia was only 40% of the value in normal infected cells. Red blood cell PRPP synthetase activity did not change during the growth cycle of the parasite and was similar in both normal and G6PD-deficient cells. Reduced glutathione (GSH) content of G6PD-deficient cells under conditions of culture fell to low or undetectable levels. These low levels of GSH were shown to inhibit the function of red blood cell PRPP synthetase, which requires GSH for full activity. Measurements of the incorporation of 1-14C or 6-14C selectively labeled glucose into parasite nucleic acids revealed that in normal infected red cells, approximately 20% of the pentose was produced via the oxidation of glucose-6-phosphate, whereas in infected G6PD-deficient cells (Mediterranean type), none of the pentose was produced via the oxidative pathway. It is concluded that the low level of reduced GSH found in G6PD deficiency and the resultant partial inhibition of PRPP synthetase together with the missing oxidative pathway for ribose phosphate production can account fully for the reduced parasite growth rate in G6PD-deficient red blood cells described previously. Of these two mechanisms, the predominant one is the impaired PRPP synthetase activity due to low GSH levels in enzyme-deficient red blood cells. The contribution to the ribose-phosphate pool by the hexose monophosphate shunt is relatively minor. A co-existing oxidative stress (which is often hypothesized to mediate the destruction of parasitized red blood cells) is not required to explain growth inhibition

  20. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    PubMed

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  1. EFFECT OF METHYL LINOLEATE HYDROPEROXIDE (MLHP), A POSSIBLE TOXIC INTERMEDIATE OF OZONE, ON HUMAN NORMAL AND GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G-6-PD) DEFICIENT ERYTHROCYTES

    EPA Science Inventory

    Erythrocytes of both normal and G-6-PD deficient humans responded in a dose-dependent manner to the oxidant stress of MLHP as measured by decreases in G-6-PD activity, increases in methemoglobin (METHB) levels and decreases in reduced glutahione (GSH). The G-6-PD deficient erythr...

  2. Structural basis for glucose-6-phosphate activation of glycogen synthase

    SciTech Connect

    Baskaran, Sulochanadevi; Roach, Peter J.; DePaoli-Roach, Anna A.; Hurley, Thomas D.

    2010-11-22

    Regulation of the storage of glycogen, one of the major energy reserves, is of utmost metabolic importance. In eukaryotes, this regulation is accomplished through glucose-6-phosphate levels and protein phosphorylation. Glycogen synthase homologs in bacteria and archaea lack regulation, while the eukaryotic enzymes are inhibited by protein kinase mediated phosphorylation and activated by protein phosphatases and glucose-6-phosphate binding. We determined the crystal structures corresponding to the basal activity state and glucose-6-phosphate activated state of yeast glycogen synthase-2. The enzyme is assembled into an unusual tetramer by an insertion unique to the eukaryotic enzymes, and this subunit interface is rearranged by the binding of glucose-6-phosphate, which frees the active site cleft and facilitates catalysis. Using both mutagenesis and intein-mediated phospho-peptide ligation experiments, we demonstrate that the enzyme's response to glucose-6-phosphate is controlled by Arg583 and Arg587, while four additional arginine residues present within the same regulatory helix regulate the response to phosphorylation.

  3. Nomenclature of glucose-6-phosphate dehydrogenase in man*

    PubMed Central

    1967-01-01

    The World Health Organization convened in Geneva from 5 to 10 December 1966 a Scientific Group on Standardization of Procedures for the Study of Glucose-6-Phosphate Dehydrogenase1 (EC 1.1.1.49; D-glucose-6-phosphate: NAPD oxidoreductase; G6PD). Variants of this enzyme have attracted international attention both as causes of various haemolytic disorders and as useful genetic markers in man. In the course of the meeting the variants of this enzyme thus far described were extensively reviewed. There was unanimous agreement that a consistent system of nomenclature would be desirable, and that as G6PD variants were only one example of similar polymorphisms in man, a nomenclature should be devised which might conceivably be applied to other enzymes. The Group included the following recommendations on nomenclature in its report, which will be published in full in World Health Organization: Technical Report Series, 1967, 366. PMID:5299754

  4. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria. PMID:1107056

  5. Is glucose-6-phosphate dehydrogenase deficiency more prevalent in Carrion's disease endemic areas in Latin America?

    PubMed

    Mazulis, Fernando; Weilg, Claudia; Alva-Urcia, Carlos; Pons, Maria J; Del Valle Mendoza, Juana

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention. Erythrocytes have a predisposition towards oxidized environments due to their lack of mitochondria, giving G6PD a major role in its stability. G6PD deficiency (G6PDd) is the most common enzyme deficiency in humans; it affects approximately 400 million individuals worldwide. The overall G6PDd allele frequency across malaria endemic countries is estimated to be 8%, corresponding to approximately 220 million males and 133 million females. However, there are no reports on the prevalence of G6PDd in Andean communities where bartonellosis is prevalent. PMID:26706684

  6. Frostbite: A Novel Presentation of Glucose-6-Phosphate Dehydrogenase Deficiency?

    PubMed

    Bowles, Justin M; Joas, Chris; Head, Steven

    2015-01-01

    Acute hemolytic anemia (AHA) due to glucose 6-phosphate dehydrogenase (G6PD) deficiency has rarely been recognized as a contributor to the development of frostbite. We discuss a case of frostbite in a 32-year-old male Marine with G6PD deficiency during military training on Mount McKinley in Alaska, which eventually led to a permanent disability. In this report, the pathophysiology of G6PD deficiency, the effects of hemolytic anemia, and factors that contribute to frostbite will be discussed, as well as the clinical findings, treatment course, and the outcome of this case. The patient was evacuated and admitted to Alaska Regional Hospital. He was treated for fourth-degree frostbite, ultimately resulting in the complete or partial amputation of all toes. Although it cannot be proved that AHA occurred in this patient, this case potentially adds frostbite to the list of rare but possible clinical presentations of G6PD deficiency. PMID:26360347

  7. Kawasaki disease with Glucose-6-Phosphate Dehydrogenase deficiency, case report.

    PubMed

    Obeidat, Hesham Radi; Al-Dossary, Sahar; Asseri, Abdulsalam

    2015-09-01

    Kawasaki disease (KD) is an acute, self-limited vasculitis of unknown etiology that occurs predominantly in infants and children younger than 5 years of age. Coronary artery abnormalities are the most serious complication. Based on the literatures infusion of Intravenous Immunoglobulin of 2 g/kg and a high dose of oral aspirin up to 100 mg/kg/day are the standard treatment for Kawasaki disease in the acute stage, and should be followed by antiplatelet dose of aspirin for thrombocytosis. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is an inherited X-linked hereditary disorder, and aspirin can induce hemolysis in patients with G6PD deficiency. We report a case of a 5 year and 8 month old male with KD and G6PD deficiency. PMID:27134550

  8. Hypohidrotic ectodermal dysplasia associated with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Ermertcan, Aylin Türel; Yaşar, Ali; Kayhan, Tuba Çelebı; Gülen, Hüseyin; Ertan, Pelin

    2011-09-01

    Hypohidrotic ectodermal dysplasia (HED) is a syndrome characterized by hypodontia, hypotrichosis, and partial or total ecrine sweat gland deficiency. The most prevalent form of HED is inherited as an X linked pattern. Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency is an X-linked recessive disease, which leads to hemolytic anemia and jaundice. It is expressed in males, while heterozygous females are usually clinically normal. A 12-year-old boy with the complaints of hair and eyebrow disturbances, teeth disfigurement, decreased sweating, and xerosis presented to the outpatient clinic. Dermatological examination revealed sparse hair and eyebrows, conical-shaped teeth, xerosis, syndactylia, transverse grooves, and discoloration of nails. Laboratory findings indicated anemia. His 3-year-old sister also had sparse hair and eyebrows, xerosis, and syndactylia. We learned that the patient had a previous history of neonatal jaundice and a diagnosis of G-6-PD deficiency. Although it has been shown that loci of ectodermal dysplasia and G-6-PD deficiency genes are near to one another, we did not find any case study reporting on occurrence of these two genetic diseases together. With the aspect of this rare and interesting case, the relationship between HED and G-6-PD deficiency was defined. PMID:22028581

  9. Hypohidrotic Ectodermal Dysplasia Associated with Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Yaşar, Ali; Kayhan, Tuba Çelebİ; Gülen, Hüseyin; Ertan, Pelin

    2011-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a syndrome characterized by hypodontia, hypotrichosis, and partial or total ecrine sweat gland deficiency. The most prevalent form of HED is inherited as an X linked pattern. Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency is an X-linked recessive disease, which leads to hemolytic anemia and jaundice. It is expressed in males, while heterozygous females are usually clinically normal. A 12-year-old boy with the complaints of hair and eyebrow disturbances, teeth disfigurement, decreased sweating, and xerosis presented to the outpatient clinic. Dermatological examination revealed sparse hair and eyebrows, conical-shaped teeth, xerosis, syndactylia, transverse grooves, and discoloration of nails. Laboratory findings indicated anemia. His 3-year-old sister also had sparse hair and eyebrows, xerosis, and syndactylia. We learned that the patient had a previous history of neonatal jaundice and a diagnosis of G-6-PD deficiency. Although it has been shown that loci of ectodermal dysplasia and G-6-PD deficiency genes are near to one another, we did not find any case study reporting on occurrence of these two genetic diseases together. With the aspect of this rare and interesting case, the relationship between HED and G-6-PD deficiency was defined. PMID:22028581

  10. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    PubMed

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection. PMID:23874768

  11. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered. PMID:24711919

  12. Plasmodium falciparum glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase is a potential drug target.

    PubMed

    Allen, Stacey M; Lim, Erin E; Jortzik, Esther; Preuss, Janina; Chua, Hwa Huat; MacRae, James I; Rahlfs, Stefan; Haeussler, Kristina; Downton, Matthew T; McConville, Malcolm J; Becker, Katja; Ralph, Stuart A

    2015-10-01

    The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge. PMID:26198663

  13. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism): A Review of the Literature and Case Report.

    PubMed

    Hernández-Pérez, Daniela; Butrón-Téllez Girón, Claudia; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Pozos-Guillén, Amaury

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management. PMID:26435857

  14. Dental Considerations in Children with Glucose-6-phosphate Dehydrogenase Deficiency (Favism): A Review of the Literature and Case Report

    PubMed Central

    Hernández-Pérez, Daniela; Butrón-Téllez Girón, Claudia; Ruiz-Rodríguez, Socorro; Garrocho-Rangel, Arturo; Pozos-Guillén, Amaury

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an uncommon inherited enzyme deficiency characterized by hemolytic anemia, caused by the inability of erythrocytes to detoxify oxidizing agents such as drugs, infectious diseases, or fava bean ingestion. In this later case, the disorder is known as favism. The aim of the present report was to present a review of the literature in this disease, to describe a case report concerning an affected 9-year-old male, and to review the main implications and precautions in pediatric dental management. PMID:26435857

  15. Hereditary sideroblastic anemia and glucose-6-phosphate dehydrogenase deficiency in a negro family

    PubMed Central

    Prasad, Ananda S.; Tranchida, Liborio; Konno, Edward T.; Berman, Lawrence; Albert, Samuel; Sing, Charles F.; Brewer, George J.

    1968-01-01

    Detailed clinical and genetic studies have been performed in a Negro family, which segregated for sex-linked sideroblastic anemia and glucose-6-phosphate dehydrogenase (G-6-DP) deficiency. This is the first such pedigree reported. Males affected with sideroblastic anemia had growth retardation, hypochromic microcytic anemia, elevated serum iron, decreased unsaturated iron-binding capacity, increased 59Fe clearance, low 59Fe incorporation into erythrocytes, normal erythrocyte survival (51Cr), normal hemoglobin electrophoretic pattern, erythroblastic hyperplasia of marrow with increased iron, and marked increase in marrow sideroblasts, particularly ringed sideroblasts. Perinuclear deposition of ferric aggregates was demonstrated to be intramitochondrial by electron microscopy. Female carriers of the sideroblastic gene were normal but exhibited a dimorphic population of erythrocytes including normocytic and microcytic cells. The bone marrow studies in the female (mother) showed ringed marrow sideroblasts. Studies of G-6-PD involved the methemoglobin elution test for G-6-PD activity of individual erythrocytes, quantitative G-6-PD assay, and electrophoresis. In the pedigree, linkage information was obtained from a doubly heterozygous woman, four of her sons, and five of her daughters. Three sons were doubly affected, and one was normal. One daughter appeared to be a recombinant. The genes appeared to be linked in the coupling phase in the mother. The maximum likelihood estimate of the recombination value was 0.14. By means of Price-Jones curves, the microcytic red cells in peripheral blood were quantitated in female carriers. The sideroblast count in the bone marrow in the mother corresponded closely to the percentage of microcytic cells in peripheral blood. This is the second example in which the cellular expression of a sex-linked trait has been documented in the human red cells, the first one being G-6-PD deficiency. The coexistence of the two genes in doubly

  16. Antimalarial NADPH-Consuming Redox-Cyclers As Superior Glucose-6-Phosphate Dehydrogenase Deficiency Copycats

    PubMed Central

    Bielitza, Max; Belorgey, Didier; Ehrhardt, Katharina; Johann, Laure; Lanfranchi, Don Antoine; Gallo, Valentina; Schwarzer, Evelin; Mohring, Franziska; Jortzik, Esther; Williams, David L.; Becker, Katja; Arese, Paolo; Elhabiri, Mourad

    2015-01-01

    Abstract Aims: Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum were shown to protect G6PD-deficient populations from severe malaria. Here, we investigated the mechanism of a novel antimalarial series, namely 3-[substituted-benzyl]-menadiones, to understand whether these NADPH-consuming redox-cyclers, which induce oxidative stress, mimic the natural protection of G6PD deficiency. Results: We demonstrated that the key benzoylmenadione metabolite of the lead compound acts as an efficient redox-cycler in NADPH-dependent methaemoglobin reduction, leading to the continuous formation of reactive oxygen species, ferrylhaemoglobin, and subsequent haemichrome precipitation. Structure–activity relationships evidenced that both drug metabolites and haemoglobin catabolites contribute to potentiate drug effects and inhibit parasite development. Disruption of redox homeostasis by the lead benzylmenadione was specifically induced in Plasmodium falciparum parasitized erythrocytes and not in non-infected cells, and was visualized via changes in the glutathione redox potential of living parasite cytosols. Furthermore, the redox-cycler shows additive and synergistic effects in combination with compounds affecting the NADPH flux in vivo. Innovation: The lead benzylmenadione 1c is the first example of a novel redox-active agent that mimics the behavior of a falciparum parasite developing inside a G6PD-deficient red blood cell (RBC) giving rise to malaria protection, and it exerts specific additive effects that are inhibitory to parasite development, without harm for non-infected G6PD-sufficient or -deficient RBCs. Conclusion: This strategy offers an innovative perspective for the development of future antimalarial drugs for G6PD-sufficient and -deficient populations. Antioxid. Redox Signal. 22, 1337–1351. PMID:25714942

  17. EVALUATION OF THE DORSET SHEEP AS A PREDICTIVE ANIMAL MODEL FOR THE RESPONSE OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE-DEFICIENT HUMAN ERYTHOCYTES TO A PROPOSED SYSTEMIC TOXIC OZONE INTERMEDIATE, METHYL OLEATE OZONIDE

    EPA Science Inventory

    Erythrocytes of both glucose-6-phosphate dehydrogenase (G-6-PD)-deficient humans and Dorest sheep, an animal model with an erythrocyte G-6-PD deficiency, responded in a dose-dependent manner to the oxidant stress of methyl oleate ozonide (MOO) as measured by decreases in G-6-PD a...

  18. Cryopreservation of glucose-6-phosphate dehydrogenase activity inside red blood cells: developing a specimen repository in support of development and evaluation of glucose-6-phosphate dehydrogenase deficiency tests

    PubMed Central

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzyme deficiency. It is characterized by abnormally low levels of G6PD activity. Individuals with G6PD deficiency are at risk of undergoing acute haemolysis when exposed to 8‒aminoquinoline-based drugs, such as primaquine. For this reason it is imperative to identify individuals with G6PD deficiency prior to administering these anti-malarial drugs. There is a need for the development and evaluation of point-of-care G6PD deficiency screening tests suitable for areas of the developing world where malarial treatments are frequently administered. The development and evaluation of new G6PD tests will be greatly assisted with the availability of specimen repositories. Methods Cryopreservation of erythrocytes was evaluated as a means to preserve G6PD activity. Blood specimens from 31 patients including ten specimens with normal G6PD activity, three with intermediate activity, and 18 with deficient activity were cryopreserved for up to six months. Results Good correlation in G6PD activity between fresh and cryopreserved specimens (R2 = 0.95). The cryopreserved specimens show an overall small drop in mean G6PD activity of 0.23 U/g Hb (P=0.23). Cytochemical staining showed that intracellular G6PD activity distribution within the red blood cell populations is preserved during cryopreservation. Furthermore, the mosaic composition of red blood cells in heterozygous women is also preserved for six months or more. The fluorescent spot and the BinaxNOW qualitative tests for G6PD deficiency also showed high concordance in G6PD status determination between cryopreserved specimens and fresh specimens. Conclusions A methodology for establishing a specimen panel for evaluation of G6PD tests is described. The approach is similar to that used in several malaria research facilities for the cryopreservation of parasites in clinical specimens and axenic cultures. Specimens stored in this manner will aid

  19. Appearance of Novel Glucose-6-Phosphate Dehydrogenase Isoforms in Chlamydomonas reinhardtii during Growth on Nitrate.

    PubMed Central

    Huppe, H. C.; Turpin, D. H.

    1996-01-01

    Extractable glucose-6-phosphate dehydrogenase activity is higher from N-limited Chlamydomonas reinhardtii cells than from N-sufficient cells. Native gels reveal that the isoform complexity varies depending on the form of N supplied. The isoforms associated with NO3- growth appear within 2 h of switching cells from NH4+ to NO3-. PMID:12226271

  20. Multiple transcripts encode glucose 6-phosphate dehydrogenase in the southern cattle tick, Rhipicephalus (Boophilus) microplus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose 6-phosphate dehydrogenase (G6PDH) is an enzyme that plays a critical role in the production of NADPH. Here we describe the identification of four transcripts (G6PDH-A, -B, -C, and -D) that putatively encode the enzyme in the southern cattle tick, Rhipicephalus (Boophilus) microplus. The geno...

  1. Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the failing heart, NADPH oxidase and uncoupled NO synthase utilize cytosolic NADPH to form superoxide. NADPH is supplied principally by the pentose phosphate pathway, whose rate-limiting enzyme is glucose 6-phosphate dehydrogenase (G6PD). Therefore, we hypothesized that cardiac G6PD activation dr...

  2. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    SciTech Connect

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N.; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-05-07

    Carbohydrate response element binding protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here, we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose-phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP.

  3. Glucose-6-Phosphate Dehydrogenase and Its Deficiency in Mutants of Corynebacterium glutamicum

    PubMed Central

    Ihnen, Ernel D.; Demain, Arnold L.

    1969-01-01

    Corynebacterium glutamicum is a member of a group of taxonomically related glutamate-excreting bacteria which utilize glucose both by the Embden-Meyerhof and the pentose phosphate pathways, the latter sequence accounting for 10 to 38% of the glucose metabolized. Some of the properties of glucose-6-phosphate dehydrogenase in crude extracts of C. glutamicum were studied. The enzyme was rapidly inactivated by dilution in tris (hydroxymethyl)aminomethane-hydrochloride buffer. This inactivation was prevented by the presence of 0.45 m NaCl. Mg++ was required for enzyme activity, but Mn++, Ca++, Sr++, and Ba++ were equally effective. Growth of the organism under differing conditions did not markedly affect the specific activity of the enzyme. A generally applicable method for detecting colonies deficient in glucose-6-phosphate dehydrogenase was developed. Mutants so obtained were found to be auxotrophic for tryptophan. Upon reversion of the tryptophan requirement, the revertants still retained the property of glucose-6-phosphate dehydrogenase deficiency. Neither the mutants nor the revertants could grow as rapidly as the parent culture in glucose, in gluconate, or in a complex medium. PMID:5788701

  4. Identification of the binding domain for NADP sup + of human glucose-6-phosphate dehydrogenase by sequence analysis of mutants

    SciTech Connect

    Hirono, A.; Kuhl, W.; Gelbart, T.; Forman, L.; Beutler, E. ); Fairbanks, V.F. )

    1989-12-01

    Human erythrocyte glucose-6-phosphate is normally quite stable in the presence of 10 {mu}M NADP{sup +}. Certain glucose-6-phosphate dehydrogenase variants lose virtually all their activity at this concentration of NADP{sup +} but are reactivated by 200 {mu}M NADP{sup +}. Such variants presumably have a defect in their NADP{sup +}-binding site. The authors analyzed the sequence of cDNA or genomic DNA from seven unrelated patients with hemolytic anemia due to the inheritance of variants that are reactivated by NADP{sup +}. Six patients had substitutions of one of three adjacent amino acids, and the seventh patient had another amino acid substitution 23 residues downstream. These amino acids are highly conserved, all being present in rat and all but one being found also in Drosophila. The anomalous electrophoretic behavior of some of the variants can be explained by their loss of ability to bind NADP{sup +}. The conclude that the region in which these mutations occur defines the binding domain for NADP{sup +} and that binding NADP{sup +} that has been designated as structural and as catalytic probably occurs at the same site.

  5. NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis.

    PubMed

    Abbas, Shahzada Nadeem; Mok, Kenneth Hun; Rashid, Naeem; Xie, Yongjing; Ruether, Manuel; O'Brien, John; Akhtar, Muhammad

    2016-06-01

    The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus. PMID:27014866

  6. Molecular Analysis of the Gene Encoding F420-Dependent Glucose-6-Phosphate Dehydrogenase from Mycobacterium smegmatis

    PubMed Central

    Purwantini, Endang; Daniels, Lacy

    1998-01-01

    The gene fgd, which codes for F420-dependent glucose-6-phosphate dehydrogenase (FGD), was cloned from Mycobacterium smegmatis, and its sequence was determined and analyzed. A homolog of FGD which has a very high similarity to the M. smegmatis FGD-derived amino acid sequence was identified in Mycobacterium tuberculosis. FGD showed significant homology with F420-dependent N5,N10-methylene-tetrahydromethanopterin reductase (MER) from methanogenic archaea and with several hypothetical proteins from M. tuberculosis and Archaeoglobus fulgidus, but FGD showed no significant homology with NADP-dependent glucose-6-phosphate dehydrogenases. Multiple alignment of FGD and MER proteins revealed four conserved consensus sequences. Multiple alignment of FGD with the hypothetical proteins also revealed portions of the same conserved sequences. Moderately high levels of FGD were expressed in Escherichia coli BL21(DE3) carrying fgd in pBluescript. PMID:9555906

  7. Stenotrophomonas Infection in a Patient with Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Harthan, Aaron A.; Heger, Margaret L

    2013-01-01

    The drug of choice for treatment of Stenotrophomonas maltophilia is sulfamethoxazole/trimethoprim, and second-line therapy usually consists of a fluoroquinolone. However, in patients with glucose-6-phosphate dehydrogenase deficiency, neither sulfamethoxazole/trimethoprim nor a fluoroquinolone is a preferred option as it may result in hemolysis. Currently, there is a paucity of data regarding treatment of S maltophilia infection in these patients. This case report presents a patient who was successfully treated with doxycycline and inhaled colistimethate. PMID:23798908

  8. The suitability of saliva for detection of glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Beamont, A H; Miguel, A; Goos, C M; Vermeesch-Markslag, A M; Hermans, A; Vermorken, A J

    1988-01-01

    Saliva was investigated for its suitability as a biopsy tissue for the determination of glucose-6-phosphate dehydrogenase deficiency. It appears that there is a significant difference between the activity of the enzyme in patients and controls. However, some controls have very low values making discrimination between patients and controls using a qualitative method impossible. Glucose-6-phosphate dehydrogenase deficiency is a relevant clinical problem in many rural areas in developing countries. Existing methods for determination of the deficiency in blood and hair follicles do not meet the criteria necessary for their large scale introduction in the areas of the world that are concerned by the problem. The present study shows that saliva is not a suitable alternative. Between the three biopsy tissues compared: blood, hair follicles and saliva, hair follicles remain most attractive since their isolation hardly involves the risk of infection. A simplified method for the detection of glucose-6-phosphate dehydrogenase activity in hair follicles that would allow health service workers in the field to determine the carrier status of pregnant women might form the basis for a future kernicterus prevention programme. PMID:3221843

  9. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  10. Ischaemic Priapism and Glucose-6-Phosphate Dehydrogenase Deficiency: A Mechanism of Increased Oxidative Stress?

    PubMed Central

    Morrison, BF; Thompson, EB; Shah, SD; Wharfe, GH

    2014-01-01

    ABSTRACT Ischaemic priapism is a devastating urological condition that has the potential to cause permanent erectile dysfunction. The disorder has been associated with numerous medical conditions and the use of pharmacotherapeutic agents. The aetiology is idiopathic in a number of cases. There are two prior case reports of the association of ischaemic priapism and glucose-6-phosphate dehydrogenase (G6PD) deficiency. We report on a third case of priapism associated with G6PD deficiency and review recently described molecular mechanisms of increased oxidative stress in the pathophysiology of ischaemic priapism. The case report of a 32-year old Afro-Caribbean male with his first episode of major ischaemic priapism is described. Screening for common causes of ischaemic priapism, including sickle cell disease was negative. Glucose-6-phosphate dehydrogenase deficiency was discovered on evaluation for priapism. Penile aspiration was performed and erectile function was good post treatment. Glucose-6-phosphate dehydrogenase deficiency is a cause for ischaemic priapism and should be a part of the screening process in idiopathic causes of the disorder. Increased oxidative stress occurs in G6PD deficiency and may lead to priapism. PMID:25803385

  11. The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies.

    PubMed

    Oikonomakos, N G; Zographos, S E; Johnson, L N; Papageorgiou, A C; Acharya, K R

    1995-12-15

    Kinetic and crystallographic studies have characterized the effect of 2-deoxy-glucose 6-phosphate on the catalytic and structural properties of glycogen phosphorylase b. Previous work on the binding of glucose 6-phosphate, a potent physiological inhibitor of the enzyme, to T state phosphorylase b in the crystal showed that the inhibitor binds at the allosteric site and induces substantial conformational changes that affect the subunit-subunit interface. The hydrogen-bond from the O-2 hydroxyl of glucose 6-phosphate to the main-chain oxygen of Val40' represents the only hydrogen bond from the sugar to the other subunit, and this interaction appears important for promoting a more "tensed" structure than native T state phosphorylase b. 2-Deoxy-glucose 6-phosphate acts competitively with both the activator AMP and the substrate glucose 1-phosphate, with Ki values of 0.53 mM and 1.23 mM, respectively. The binding of 2-deoxy-glucose 6-phosphate to T state glycogen phosphorylase b in the crystal, has been investigated and the complex phosphorylase b: 2-deoxy-glucose 6-phosphate has been refined to give a crystallographic R factor of 17.3%, for data between 8 A and 2.3 A. 2-Deoxy-glucose 6-phosphate binds at the allosteric site as the a anomer and adopts a different conformation compared to glucose 6-phosphate. The two conformations differ by 160 degrees in the torsion angle about the C-5-C-6 bond. The contacts from the phosphate group are essentially identical to those made by the phosphate of glucose 6-phosphate but the 2-deoxy glucosyl moiety binds in a quite different orientation compared to the glucosyl of glucose 6-phosphate. 2-Deoxy-glucose 6-phosphate can be accommodated in the allosteric site with very little change in the protein, while structural comparisons show that the phosphorylase b: 2-deoxy-glucose 6-phosphate complex structure is overall more similar to a glucose-like complex than to the Glc-6-P complex structure. PMID:7500360

  12. Beta glucosidase from Bacillus polymyxa is activated by glucose-6-phosphate.

    PubMed

    Weiss, Paulo H E; Álvares, Alice C M; Gomes, Anderson A; Miletti, Luiz C; Skoronski, Everton; da Silva, Gustavo F; de Freitas, Sonia M; Magalhães, Maria L B

    2015-08-15

    Optimization of cellulose enzymatic hydrolysis is crucial for cost effective bioethanol production from lignocellulosic biomass. Enzymes involved in cellulose hydrolysis are often inhibited by their end-products, cellobiose and glucose. Efforts have been made to produce more efficient enzyme variants that are highly tolerant to product accumulation; however, further improvements are still necessary. Based on an alternative approach we initially investigated whether recently formed glucose could be phosphorylated into glucose-6-phosphate to circumvent glucose accumulation and avoid inhibition of beta-glucosidase from Bacillus polymyxa (BGLA). The kinetic properties and structural analysis of BGLA in the presence of glucose-6-phosphate (G6P) were investigated. Kinetic studies demonstrated that enzyme was not inhibited by G6P. In contrast, the presence of G6P activated the enzyme, prevented beta glucosidase feedback inhibition by glucose accumulation and improved protein stability. G6P binding was investigated by fluorescence quenching experiments and the respective association constant indicated high affinity binding of G6P to BGLA. Data reported here are of great impact for future design strategies for second-generation bioethanol production. PMID:26116788

  13. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP)

    PubMed Central

    Li, Ming V.; Chen, Weiqin; Harmancey, Romain N; Nuotio-Antar, Alli M.; Imamura, Minako; Saha, Pradip; Taegtmeyer, Heinrich; Chan, Lawrence

    2010-01-01

    Carbohydrate Response Element Binding Protein (ChREBP) is a Mondo family transcription factor that activates a number of glycolytic and lipogenic genes in response to glucose stimulation. We have previously reported that high glucose can activate the transcriptional activity of ChREBP independent of the protein phosphatase 2A (PP2A)-mediated increase in nuclear entry and DNA binding. Here we found that formation of glucose-6-phosphate (G-6-P) is essential for glucose activation of ChREBP. The glucose response of GAL4-ChREBP is attenuated by D-mannoheptulose, a potent hexokinase inhibitor, as well as over-expression of glucose-6-phosphatase (G6Pase); kinetics of activation of GAL4-ChREBP can be modified by exogenously expressed GCK. Further metabolism of G-6-P through the two major glucose metabolic pathways, glycolysis and pentose phosphate pathway, is not required for activation of ChREBP; over-expression of glucose-6-phosphate dehydrogenase (G6PD) diminishes, whereas RNAi knockdown of the enzyme enhances, the glucose response of GAL4-ChREBP, respectively. Moreover, the glucose analogue 2-deoxyglucose (2-DG), which is phosphorylated by hexokinase, but not further metabolized, effectively upregulates the transcription activity of ChREBP. In addition, over-expression of phosphofructokinase (PFK) 1 and 2, synergistically diminishes the glucose response of GAL4-ChREBP. These multiple lines of evidence support the conclusion that G-6-P mediates the activation of ChREBP. PMID:20382127

  14. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli.

    PubMed

    Morita, Teppei; El-Kazzaz, Waleed; Tanaka, Yuya; Inada, Toshifumi; Aiba, Hiroji

    2003-05-01

    Previously we found that a mutation in either pgi or pfkA, encoding phosphoglucose isomerase or phosphofructokinase A, respectively, facilitates degradation of the ptsG mRNA in an RNase E-dependent manner in Escherichia coli (1). In this study, we examined the effects of a series of glycolytic genes on the degradation of ptsG mRNA and how the mutations destabilize the ptsG mRNA. The conditional lethal mutation ts8 in fda, encoding fructose-1,6-P(2) aldolase just downstream of pfkA in the glycolytic pathway, caused the destabilization of ptsG mRNA at the nonpermissive temperature. Mutations in any other gene did not destabilize the ptsG mRNA; rather, they reduced the ptsG transcription mainly by affecting the cAMP level. The rapid degradation of ptsG mRNA in mutant strains was completely dependent upon the presence of glucose or any one of its compounds, which enter the Embden-Meyerhof glycolytic pathway before the block points. A significant increase in the intracellular glucose-6-P level was observed in the presence of glucose in the pgi strain. An overexpression of glucose-6-phosphate dehydrogenase eliminated both the accumulation and the degradation of ptsG mRNA in the pgi strain. In addition, accumulation of fructose-6-P led to the rapid degradation of ptsG mRNA in a pgi pfkA mutant strain lacking glucose-6-P. We conclude that the RNase E-dependent destabilization of ptsG mRNA occurs in response to accumulation of glucose-6-P or fructose-6-P. PMID:12578824

  15. Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.

    PubMed Central

    Kramer, W; Burger, H J; Arion, W J; Corsiero, D; Girbig, F; Weyland, C; Hemmerle, H; Petry, S; Habermann, P; Herling, A

    1999-01-01

    The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver. PMID:10215602

  16. Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling.

    PubMed

    Kramer, W; Burger, H J; Arion, W J; Corsiero, D; Girbig, F; Weyland, C; Hemmerle, H; Petry, S; Habermann, P; Herling, A

    1999-05-01

    The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver. PMID:10215602

  17. Changing kinetic properties of glucose-6-phosphate dehydrogenase from pea chloroplasts during photosynthetic induction

    SciTech Connect

    Yuan, X.; Anderson, L.E.

    1987-04-01

    The first enzyme of the oxidative pentose phosphate pathway, glucose-6-P dehydrogenase (EC 1.1.1.49), is inactivated when pea chloroplasts are irradiated. They have examined the kinetics of light inactivation of glucose-6-P dehydrogenase in intact chloroplasts during photosynthetic induction and the kinetic parameters of the active (dark) and less active (light) form of the dehydrogenase. Light inactivation of the dehydrogenase is rapid and occurs before photosynthetic O/sub 2/ evolution is measureable in intact chloroplasts. Likewise dark activation is quite rapid. The major change in the kinetic parameters of glucose-6-phosphate dehydrogenase is in maximal velocity. This light inactivation probably prevents operation of a futile cycle involving glucose-6-P, NADPH and oxidative and reductive pentose phosphate pathway enzymes.

  18. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  19. Glucose-6-Phosphate Dehydrogenase Deficiency and the Need for a Novel Treatment to Prevent Kernicterus.

    PubMed

    Cunningham, Anna D; Hwang, Sunhee; Mochly-Rosen, Daria

    2016-06-01

    Hyperbilirubinemia occurs frequently in newborns, and in severe cases can progress to kernicterus and permanent developmental disorders. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human enzymopathies, is a major risk factor for hyperbilirubinemia and greatly increases the risk of kernicterus even in the developed world. Therefore, a novel treatment for kernicterus is needed, especially for G6PD-deficient newborns. Oxidative stress is a hallmark of bilirubin toxicity in the brain. We propose that the activation of G6PD via a small molecule chaperone is a potential strategy to increase endogenous defense against bilirubin-induced oxidative stress and prevent kernicterus. PMID:27235212

  20. Purification and properties of the cytoplasmic glucose-6-phosphate dehydrogenase from pea leaves.

    PubMed

    Fickenscher, K; Scheibe, R

    1986-06-01

    A method involving affinity chromatography on the yellow dye Remazol Brilliant Gelb GL to highly purify the cytoplasmic isoenzyme of glucose-6-phosphate dehydrogenase from pea shoots is described. Purification is at least 6000-fold. The specific activity of the purified enzyme is 185 mumol NADP reduced/min per mg protein. The preparation was free from any contamination of chloroplastic isoenzyme. The purified enzyme retains its activity in the presence of reducing agents which, in contrast, inactivate the chloroplast enzyme. The state of activity of the cytoplasmic and the chloroplastic isoenzyme in illuminated or darkened pea leaves was investigated using specific antibodies. While upon illumination the chloroplastic isoenzyme was inactivated by 80 to 90%, we could not find any change in activity of the cytoplasmic glucose-6-phosphate dehydrogenase. ATP, ADP, NAD, NADH, and various sugar phosphates do not inhibit the enzyme activity. Only NADPH is a strong competitive inhibitor with respect to NADP, suggesting that the enzyme is regulated by feedback inhibition by one of its products. Mg2+ ions have no influence on the activity of the enzyme. The molecular weight has found to be 240,000 for the native enzyme and 60,000 for the subunit. Throughout the purification procedure the enzyme was very unstable unless NADP was present in the buffer. PMID:3717951

  1. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis.

    PubMed

    Ulusu, N Nuray

    2015-08-01

    Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues. PMID:26004559

  2. Effect of divalent metals on fungal and bacterial glucose-6-phosphate dehydrogenases

    SciTech Connect

    Jiang, W.; Niehaus, W.G.

    1986-05-01

    The authors have studied the effect of Zn/sup 2 +/ and Mg/sup 2 +/ on glucose-6-phosphate dehydrogenase purified from the fungi Aspergillus parasiticus, Alternaria alternata, Aphanomyces astaci, Saccharomyces cerevesiae, and Torula utilis, and from the bacteria Escherichia coli, Leuconostoc mesenteroides, and Bacillus stearothermophilus. Zn/sup 2 +/ reversibly inhibited the enzymes from A. parasiticus, S. cerevesiae, and T. utilis. Inhibition was competitive versus glucose-6-phosphate, with Ki = 25 ..mu..M, 75 ..mu..M, 25 ..mu..M, respectively. Zn/sup 2 +/ at 100 or 500 ..mu..M did not affect Vmax or Vmax/Km for the enzymes from A. alternata, A. astaci, L. mesenteroides, or B. stearothermophilus. Zn/sup 2 +/ caused loss of activity of the E. coli enzyme, which was not reversed by EDTA. Mg/sup 2 +/ stimulated both Vmax and Vmax/Km for all enzymes except that from A. astaci, on which it had no effect. Maximum stimulation occurred between 1 and 15 mM Mg/sup 2 +/ and ranged from 2 to 6-fold. For the enzymes from A. parasiticus, S. cerevesiae, and T. utilis, inclusion of 5 mM Mg/sup 2 +/ reversed the inhibition caused by 100 ..mu..M Zn/sup 2 +/.

  3. [Effect of temperature acclimation on glucose-6-phosphate dehydrogenase activity in various tissues of the Mullus barbatus ponticus].

    PubMed

    Rusinova, O S

    1997-01-01

    Acclimation of the Mullus barbatus ponticus to the temperature fall (from 16 to 8 degrees C) induces an increase in the activity of glucose-6-phosphate dehydrogenase both in summer and in autumn. These changes are more expressed in the liver and red muscle than in the white ones. The values of Km of glucose-6-phosphate (only in autumn) and NADP are also higher at 8 than at 16 degrees C. Actinomycin D does not prevent from cold activation of this enzyme in liver only in autumn, when the activity of glucose-6-phosphate dehydrogenase is 8-10 times higher than in summer, and in the red muscle in the both seasons, although this injection decreases the level of enzyme activity in this muscle. This injection does not change the values of Km for glucose-6-phosphate and NADP. It is supposed that the activation of glucose-6-phosphate dehydrogenase in the liver and red muscle during cold adaptation may be a result of change of substrate-binding ability and enzyme interaction with NADP without changes in the enzyme biosynthesis. PMID:9606826

  4. Metabolism of tritiated D-glucose in rat erythrocytes

    SciTech Connect

    Manuel y Keenoy, B.; Malaisse-Lagae, F.; Malaisse, W.J. )

    1991-09-01

    The metabolism of D-(U-14C)glucose, D-(1-14C)glucose, D-(6-14C)glucose, D-(1-3H)glucose, D-(2-3H)glucose, D-(3-3H)glucose, D-(3,4-3H)glucose, D-(5-3H)glucose, and D-(6-3H)glucose was examined in rat erythrocytes. There was a fair agreement between the rate of 3HOH production from either D-(3-3H)glucose and D-(5-3H)glucose, the decrease in the 2,3-diphosphoglycerate pool, its fractional turnover rate, the production of 14C-labeled lactate from D-(U-14C)glucose, and the total lactate output. The generation of both 3HOH and tritiated acidic metabolites from D-(3,4-3H)glucose indicated incomplete detritiation of the C4 during interconversion of fructose-1,6-bisphosphate and triose phosphates. Erythrocytes unexpectedly generated 3HOH from D-(6-3H)glucose, a phenomenon possibly attributable to the detritiation of (3-3H)pyruvate in the reaction catalyzed by glutamate pyruvate transaminase. The production of 3HOH from D-(2-3H)glucose was lower than that from D-(5-3H)glucose, suggesting enzyme-to-enzyme tunneling of glycolytic intermediates in the hexokinase/phosphoglucoisomerase/phosphofructokinase sequence. The production of 3HOH from D-(1-3H)glucose largely exceeded that of 14CO2 from D-(1-14C)glucose, a situation tentatively ascribed to the generation of 3HOH in the phosphomannoisomerase reaction. It is further speculated that the adjustment in specific radioactivity of D-(1-3H)glucose-6-phosphate cannot simultaneously match the vastly different degrees of isotopic discrimination in velocity at the levels of the reactions catalyzed by either glucose-6-phosphate dehydrogenase or phosphoglucoisomerase. The interpretation of the present findings thus raises a number of questions, which are proposed as a scope for further investigations.

  5. Dosage Compensation in DROSOPHILA MELANOGASTER Triploids. II. Glucose-6-Phosphate Dehydrogenase Activity

    PubMed Central

    Maroni, Gustavo; Plaut, Walter

    1973-01-01

    The level of activity of the enzyme glucose-6-phosphate dehydrogenase was determinel in flies having seven different chromosomic constitutions. All those having an integral number of chromosomes [XAA, XXAA, XAAA, XXAAA, and XXXAAA (X=X chromosome, A=set of autosomes)] were found to have similar units of enzyme activity/mg live weight, while diploid females with a duplication and triploid females with a deficiency showed dosage effect. The amount of enzyme activity per cell, on the other hand, is also independent of the number of X's present but appears roughly proportional to the number of sets of autosomes.—It is proposed that dosage-compensated sex-linked genes are controlled by a positively acting regulatory factor(s) of autosomal origin. With this hypothesis it is possible to explain dosage compensation as a consequence of general regulatory mechanisms without invoking a special device which applies only to the X chromosomes. PMID:17248620

  6. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection.

    PubMed

    Wu, Yi-Hsuan; Tseng, Ching-Ping; Cheng, Mei-Ling; Ho, Hung-Yao; Shih, Shin-Ru; Chiu, Daniel Tsun-Yee

    2008-03-15

    The host cellular environment is a key determinant of pathogen infectivity. Viral gene expression and viral particle production of glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD-knockdown cells were much higher than their counterparts when human coronavirus (HCoV) 229E was applied at 0.1 multiplicity of infection. These phenomena were correlated with increased oxidant production. Accordingly, ectopic expression of G6PD in G6PD-deficient cells or addition of antioxidant (such as alpha-lipoic acid) to G6PD-knockdown cells attenuated the increased susceptibility to HCoV 229E infection. All experimental data indicated that oxidative stress in host cells is an important factor in HCoV 229E infectivity. PMID:18269318

  7. Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery

    PubMed Central

    Gupta, Shreedhara; Igoillo-Esteve, Mariana; Michels, Paul A. M.; Cordeiro, Artur T.

    2011-01-01

    In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension that in T. cruzi seems to regulate the enzyme activity in a redox-state-dependent manner. T. brucei and T. cruzi G6PDHs, but not their Leishmania spp. counterpart, are inhibited, in an uncompetitive way, by steroids such as dehydroepiandrosterone and derivatives. The Trypanosoma enzymes are more susceptible to inhibition by these compounds than the human G6PDH. The steroids also effectively kill cultured trypanosomes but not Leishmania and are presently considered as promising leads for the development of new parasite-selective chemotherapeutic agents. PMID:22091394

  8. Molecular analysis of glucose-6-phosphate dehydrogenase variants in the Solomon Islands

    SciTech Connect

    Hirono, A.; Ishii, A.; Hirono, K.; Miwa, S.; Kere, N.; Fujii, H.

    1995-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most prevalent genetic disorders, and >100 million people are considered to have mutant genes. G6PD deficiency is frequent in the area where plasmodium falciparum infection is endemic, probably because the G6PD-deficient subjects are resistant to the parasite. Falciparum and vivax malarias have been highly endemic in the Solomon Islands, and a high frequency of G6PD deficiency has also been expected. A recent investigation showed that the frequency of G6PD deficiency in the Solomon Islands was 8.4%-14.4%. Although >80 G6PD variants from various populations have been molecularly analyzed, little is known about those in Melanesians. G6PD Maewo, which was originally found in Vanuatu, has so far been the only Melanesian variant whose structural abnormality was determined. 14 refs., 1 fig.

  9. Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death

    PubMed Central

    Catanzaro, Daniela; Gaude, Edoardo; Orso, Genny; Giordano, Carla; Guzzo, Giulia; Rasola, Andrea; Ragazzi, Eugenio; Caparrotta, Laura; Frezza, Christian; Montopoli, Monica

    2015-01-01

    The mechanisms of cisplatin resistance, one of the major limitations of current chemotherapy, has only partially been described. We previously demonstrated that cisplatin-resistant ovarian cancer cells (C13), are characterized by reduced mitochondrial activity and higher glucose-dependency when compared to the cisplatin-sensitive counterpart (2008). In this work we further characterized the role of metabolic transformation in cisplatin resistance. By using transmitochondrial hybrids we show that metabolic reprogramming of cisplatin-resistant cell is not caused by inherent mtDNA mutations. We also found that C13 cells not only present an increased glucose-uptake and consumption, but also exhibit increased expression and enzymatic activity of the Pentose Phosphate pathway (PPP) enzyme Glucose-6-Phosphate Dehydrogenase (G6PDH). Moreover, we show that cisplatin-resistant cells are more sensitive to G6PDH inhibition. Even if the metabolomic fingerprint of ovarian cancer cells remains to be further elucidated, these findings indicate that PPP offers innovative potential targets to overcome cisplatin resistance. PMID:26337086

  10. An enzymatic fluorimetric assay for glucose-6-phosphate: application in an in vitro Warburg-like effect

    PubMed Central

    Zhu, Aiping; Romero, Roberto; Petty, Howard R.

    2009-01-01

    Recently, there has been a resurgence of interest in the regulatory role of cell metabolism in tumor biology and immunology. To assess changes in metabolite levels in cell populations and tissues, especially from small clinical samples, highly sensitive assays are required. Based upon glucose 6-phosphate’s reaction and the diaphorase-resazurin amplifying system, we have developed a fluorescence methodology to measure glucose 6-phosphate concentrations in cell extracts. In this approach, glucose 6-phosphate is oxidized by glucose-6-phosphate dehydrogenase in the presence of NADP+, and the stoichiometrically generated NADPH is then amplified by the diaphorase-cycling system to produce a highly fluorescent molecule - resorufin. The limit of detection (LOD) of the assay is 10 pmol. The assay has a Z′ factor of 0.81. Its usefulness is demonstrated by experiments in which the pyruvate kinase inhibitor, phenylalanine, is added to cells. After 2 hours incubation at 37°C, glucose-6-phosphate levels rose by 20%, thus illustrating an in vitro Warburg-like effect on cell metabolism. PMID:19454216

  11. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  12. Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides on Plasmodium falciparum growth in culture and on the phagocytosis of infected cells.

    PubMed

    Ginsburg, H; Atamna, H; Shalmiev, G; Kanaani, J; Krugliak, M

    1996-07-01

    The balanced polymorphism of glucose-6-phosphate dehydrogenase deficiency (G6PD-) is believed to have evolved through the selective pressure of malarial combined with consumption of fava beans. The implicated fava bean constituents are the hydroxypyrimidine glucosides vicine and convicine, which upon hydrolysis of their beta-O-glucosidic bond, became protein pro-oxidants. In this work we show that the glucosides inhibit the growth of Plasmodium falciparum, increase the hexose-monophosphate shunt activity and the phagocytosis of malaria-infected erythrocytes. These activities are exacerbated in the presence of beta-glucosidase, implicating their pro-oxidant aglycones in the toxic effect, and are more pronounced in infected G6PD- erythrocytes. These results suggest that G6PD- infected erythrocytes are more susceptible to phagocytic cells, and that fava bean pro-oxidants are more efficiently suppressing parasite propagation in G6PD- erythrocytes, either by directly affecting parasite growth, or by means of enhanced phagocytic elimination of infected cells. The present findings could account for the relative resistance of G6PD- bearers to falciparum malaria, and establish a link between dietary habits and malaria in the selection of the G6PD- genotype. PMID:8710417

  13. A hemolysis trigger in glucose-6-phosphate dehydrogenase enzyme deficiency. Vicia sativa (Vetch).

    PubMed

    Bicakci, Zafer

    2009-02-01

    Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme, playing an important role in the redox metabolism of all aerobic cells. It was reported that certain medications, fava beans, and infections can trigger acute hemolytic anemia in patients with G6PD deficiency. An 8-year-old male patient was admitted to the hospital with blood in the urine, headache, dizziness, fatigue, loss of appetite, and jaundice in the eyes, 24 hours after eating large amounts of fresh, vetch grains. Laboratory investigation revealed hemolytic anemia, hyperbilirubinemia, and G6PD deficiency. Approximately 0.5% of fava bean seeds have 2 pyrimidine beta-glycosides called, vicine and convicine. Vetch has 0.731% vicine, 0.081% convicine, and 0.530% beta cyanoalanine glycosides. The aim of this case report is to emphasize the importance of vetch seeds as a cause for hemolytic crisis in our country, where approximately one million tons of vetch is produced per year, especially in the agricultural regions. PMID:19198723

  14. Characterization of Morphine-Glucose-6-Phosphate Dehydrogenase Conjugates by Mass Spectrometry

    PubMed Central

    Chiu, May L.; Ytterberg, A. Jimmy; Ogorzalek Loo, Rachel R.; Loo, Joseph A.; Monbouquette, Harold G.

    2011-01-01

    A key characteristic of the analyte-reporter enzyme conjugate used in the enzyme-multiplied immunoassay technique (EMIT) is the inhibition of the conjugate enzyme upon anti-analyte antibody binding. Toward understanding the antibody-induced inhibition mechanism, characterization of morphine-glucose-6-phosphate dehydrogenase (G6PDH) conjugates as model EMIT analyte-reporter enzyme conjugates was pursued. Morphine-G6PDH conjugates were prepared by acylating predominantly the primary amines on G6PDH with morphine-3-glucuronide NHS-ester molecules. In this study, morphine-G6PDH conjugates were characterized using a combination of methods including tryptic digestion, immunoprecipitation, matrix-assisted laser desorption/ionization mass spectrometry, and electrospray ionization tandem mass spectrometry. Twenty-six conjugation sites were identified. The identified sites all were found to be primary amines. The degree of conjugation was determined to be less than the number of conjugation sites, suggesting heterogeneity within the morphine-G6PDH conjugate population. Two catalytically important residues in the active site (K22 and K183) were among the identified conjugation sites, explaining at least partially, the cause of activity loss due to the coupling reaction. PMID:21678975

  15. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  16. Multiple Independent Fusions of Glucose-6-Phosphate Dehydrogenase with Enzymes in the Pentose Phosphate Pathway

    PubMed Central

    Stover, Nicholas A.; Dixon, Thomas A.; Cavalcanti, Andre R. O.

    2011-01-01

    Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD) in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms. PMID:21829610

  17. Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors in Sana’a City, Yemen

    PubMed Central

    Al-Nood, Hafiz A.; Bazara, Fakiha A.; Al-Absi, Rashad; Habori, Molham AL

    2012-01-01

    Objectives To determine the prevalence of Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency among Yemeni people from different regions of the country living in the capital city, Sana’a, giving an indication of its overall prevalence in Yemen. Methods A cross-sectional study was conducted among Yemeni male blood donors attending the Department of Blood Bank at the National Centre of the Public Health Laboratories in the capital city, Sana’a, Yemen. Fluorescent spot method was used for screening, spectrophotometeric estimation of G-6-PD activity and separation by electrophoresis was done to determine the G-6-PD phenotype. Results Of the total 508 male blood donors recruited into the study, 36 were G-6-PD deficient, giving a likely G-6-PD deficiency prevalence of 7.1%. None of these deficient donors had history of anemia or jaundice. Thirty-five of these deficient cases (97.2%) showed severe G-6-PD deficiency class II (<10% of normal activity), and their phenotyping presumptively revealed a G-6-PD-Mediterranean variant. Conclusion The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiency type in these blood donors in Sana’a City, which could represent an important health problem through occurrence of hemolytic anemia under oxidative stress. A larger sample size is needed to determine the overall prevalence of G-6-PD deficiency, and should be extended to include DNA analysis to identify its variants in Yemen. PMID:22359725

  18. [Glucose-6-phosphate dehydrogenase (G6PD) deficiency--a cause of anaemia in pregnant women].

    PubMed

    Kuliszkiewicz-Janus, Małgorzata; Zimny, Anna

    2003-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) is one of the most important cytoprotective enzymes for oxidative stress. The WHO classification of G6PD deficiency, based on enzyme activity and clinical significance, distinguishes five variants. Chronic haemolytic process is rare and the main factors causing haemolysis are: infections, substances derived from plants, drugs with high oxidation-reduction potential, stress, ketoacidosis in diabetes and surgery operations. We report two cases of women belonging to the class 3 of the WHO classification in whom haemolysis occured during pregnancy. One of the patients developed two incidents of haemolytic anaemia. The cause of the first episode, nine months before pregnancy, was probably infection of the urinary tract caused by Escherichia coli, but the influence of the drugs also cannot be excluded. Because of the genetic background of this enzymopathy we also examined members of the patients, families but did not find any evidence of G6PD deficiency among them. The reported cases indicate that haemolytic anaemia caused by G6PD deficiency may occur during pregnancy what can lead to many not only haematological but also serious obstetrical complications such as infertility, fetus malformations and even its death. We also draw attention to several difficulties in diagnosing G6PD deficiency especially during haemolysis. PMID:16737003

  19. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  20. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse

    SciTech Connect

    Hendriksen, P.J.M. |; Hoogerbrugge, J.W.; Baarends, W.M.

    1997-05-01

    The X-chromosomal gene glucose-6-phosphate dehydrogenase (G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designated G6pd-2, encoding a G6PD isoenzyme. G6pd-2 does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encoded G6pd gene is not transcribed. Expression of the G6pd-2 sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence of G6pd-2-encoded isoenzyme in these cell types. G6pd-2 is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis. 62 refs., 7 figs.

  1. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress.

    PubMed Central

    Ursini, M V; Parrella, A; Rosa, G; Salzano, S; Martini, G

    1997-01-01

    Recent reports have demonstrated that glucose-6-phosphate dehydrogenase (G6PD) activity in mammalian cells is necessary in order to ensure cell survival when damage is produced by reactive oxygen intermediates. In this paper we demonstrate that oxidative stress, caused by agents acting at different steps in the biochemical pathway controlling the intracellular redox status, determines the increase in G6PD-specific activity in human cell lines of different tissue origins. The intracellular level of G6PD-specific mRNA also increases, with kinetics compatible with the induction of new enzyme synthesis. We carried out experiments in which cells were exposed to oxidative stress in the presence of inhibitors of protein or RNA synthesis. These demonstrated that increased G6PD expression is mainly due to an increased rate of transcription, with a minor but significant contribution of regulatory mechanisms acting at post-transcriptional levels. These results provide new information on the defence systems that eukaryotic cells possess in order to prevent damage caused by potentially harmful oxygen derivatives. PMID:9169615

  2. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity

    PubMed Central

    Leopold, Jane A.; Dam, Aamir; Maron, Bradley A.; Scribner, Anne W.; Liao, Ronglih; Handy, Diane E.; Stanton, Robert C.; Pitt, Bertram; Loscalzo, Joseph

    2013-01-01

    Hyperaldosteronism is associated with impaired vascular reactivity; however, the mechanism by which aldosterone promotes endothelial dysfunction remains unknown. Glucose-6-phosphate dehydrogenase (G6pd), the principal source of Nadph, modulates vascular function by limiting oxidant stress to preserve bioavailable nitric oxide (NO•). In these studies, we show that aldosterone (10−9-10−7 mol/l) decreases endothelial G6pd expression and activity in vitro resulting in increased oxidant stress and decreased cGMP levels similar to what is observed in G6pd-deficient cells. Aldosterone decreases G6pd expression by protein kinase A activation to increase expression of Crem, which interferes with Creb binding to the G6pd promoter. In vivo, infusion of aldosterone decreases vascular G6pd expression and impairs vascular reactivity. These effects are abrogated by spironolactone or vascular gene transfer of G6pd. These studies demonstrate that aldosterone induces a G6pd-deficient phenotype to impair endothelial function; aldosterone antagonism or gene transfer of G6pd improves vascular reactivity by restoring G6pd activity. PMID:17273168

  3. Metformin-Induced Hemolytic Anemia in a Patient With Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Ruggiero, Nicole A; Kish, Troy D; Lee, Mikyung L

    2016-01-01

    Metformin, an oral antidiabetic agent, is considered the preferred first-line therapy for patients with type II diabetes. Between 2010 and 2012, it has been estimated that 14 million Americans were administered an oral antidiabetic agent, suggesting the extensive use of metformin among the diabetic population. There have been few case reports implicating metformin in causing hemolytic anemia. We present a case of a 53-year-old white male who developed hemolytic anemia after the initiation of treatment with metformin 500 mg twice daily. The patient experienced a 1.5 g/dL decrease in hemoglobin from baseline and a 2.8 mg/dL increase in total bilirubin within 1 day of treatment. Laboratory results confirmed that the patient was also glucose-6-phosphate dehydrogenase deficient. The hemolytic anemia resolved on discontinuation of metformin. Although this adverse effect seems to be rare, it is important to consider its seriousness. Clinicians should be advised to closely monitor patients newly started on metformin. PMID:25756470

  4. Glucose-6-Phosphate Dehydrogenase-Deficiency in Transfusion Medicine: The Unknown Risks

    PubMed Central

    Francis, Richard O.; Jhang, Jeffrey S.; Pham, Huy P.; Hod, Eldad A.; Zimring, James C.; Spitalnik, Steven L.

    2013-01-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce hemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing hemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage, and mechanisms of hemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed. PMID:23815264

  5. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity

    PubMed Central

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C.; Campo, Brice; Sampath, Aruna; Magill, Alan J.; Tekwani, Babu L.; Walker, Larry A.

    2013-01-01

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations. PMID:24101478

  6. The preparation of nylon-tube-supported hexokinase and glucose 6-phosphate dehydrogenase and the use of the co-immobilized enzymes in the automated determination of glucose.

    PubMed Central

    Morris, D L; Campbell, J; Hornby, W E

    1975-01-01

    Triethyloxonium tetrafluoroborate was used to O-alkylate nylon-tube thus producing the imidate salt of the nylon which was further made to react with 1,6-diaminohexane. 2. Hexokinase (EC 2.7.1.1) and glucose 6-phosphate dehydrogenase (EC 1.1.1.49) were immobilized on the amino-substituted nylon tube through glutaraldeyde and bisimidates. 3. The effect of varying the conditions of O-alkylation and the amount of enzyme immobilized on the activity of nylon tube-hexokinase derivatives was determined. 4. The effect of varying the amount of enzyme immobilized on the activity of nylon-tube-glucose 6-phosphate dehydrogenase derivatives was determined. 5. The thermal stability of nylon-tube-hexokinase and nylon-tube-glucose 6-phosphate dehydrogenase derivatives was studied. 6. Different ratios of hexokinase and glucose 6-phosphate dehydrogenase were co-immobilized on nylon tube, and the rate of conversion of glucose into 6-phosphogluconolactone was compared with the individual activities of the immobilized enzymes. 7. Hexokinase and glucose 6-phosphate dehydrogenase co-immobilized on nylon tube were used in the automated analysis of glucose. PMID:1167161

  7. Improvement of the quantitative method for glucose determination using hexokinase and glucose 6-phosphate dehydrogenase.

    PubMed

    Ogawa, Z; Kanashima, M; Nishioka, H

    2001-05-01

    This paper has two aims. The first one is to point out the shortcomings of Food and Drug Administration's (FDA's) reference method for the measurement of glucose. We found that the quantity of enzyme used in the method recommended by the FDA was more than the exact quantity needed for accurate measurement. The use of exact quantity of enzyme is important to minimize the negative effects due to impurity and side reactions of enzymes. The second aim is to simulate the coupling enzyme reaction using computer. We have successfully established the exact quantity of enzyme needed in the assay through the computer simulation. The quantity of the enzyme was lesser than the that recommended by FDA, but the reaction ended at the same time as in the FDA method. In addition, optimum conditions and inhibitory effects of various reagents have also been successfully analyzed using computer. In conclusion, we suggest a reference method using computer simulation to determine the exact quantity of the coupling enzyme needed in the assay. PMID:11434388

  8. Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells.

    PubMed

    Tzounakas, Vassilis L; Kriebardis, Anastasios G; Georgatzakou, Hara T; Foudoulaki-Paparizos, Leontini E; Dzieciatkowska, Monika; Wither, Matthew J; Nemkov, Travis; Hansen, Kirk C; Papassideri, Issidora S; D'Alessandro, Angelo; Antonelou, Marianna H

    2016-07-01

    Storage of packed red blood cells (RBCs) is associated with progressive accumulation of lesions, mostly triggered by energy and oxidative stresses, which potentially compromise the effectiveness of the transfusion therapy. Concerns arise as to whether glucose 6-phosphate dehydrogenase deficient subjects (G6PD(-)), ~5% of the population in the Mediterranean area, should be accepted as routine donors in the light of the increased oxidative stress their RBCs suffer from. To address this question, we first performed morphology (scanning electron microscopy), physiology and omics (proteomics and metabolomics) analyses on stored RBCs from healthy or G6PD(-) donors. We then used an in vitro model of transfusion to simulate transfusion outcomes involving G6PD(-) donors or recipients, by reconstituting G6PD(-) stored or fresh blood with fresh or stored blood from healthy volunteers, respectively, at body temperature. We found that G6PD(-) cells store well in relation to energy, calcium and morphology related parameters, though at the expenses of a compromised anti-oxidant system. Additional stimuli, mimicking post-transfusion conditions (37°C, reconstitution with fresh healthy blood, incubation with oxidants) promoted hemolysis and oxidative lesions in stored G6PD(-) cells in comparison to controls. On the other hand, stored healthy RBC units showed better oxidative parameters and lower removal signaling when reconstituted with G6PD(-) fresh blood compared to control. Although the measured parameters of stored RBCs from the G6PD deficient donors appeared to be acceptable, the results from the in vitro model of transfusion suggest that G6PD(-) RBCs could be more susceptible to hemolysis and oxidative stresses post-transfusion. On the other hand, their chronic exposure to oxidative stress might make them good recipients, as they better tolerate exposure to oxidatively damaged long stored healthy RBCs. PMID:27094493

  9. Glucose-6-phosphate dehydrogenase in small intestine of rabbit: biochemical properties and subcellular localization.

    PubMed

    Ninfali, P; Malatesta, M; Biagiotti, E; Aluigi, G; Gazzanelli, G

    2001-07-01

    Biochemical properties and cellular and subcellular distribution patterns of glucose-6-phosphate dehydrogenase (G6PD) were investigated in small intestine of rabbits. The specific activity of G6PD in fresh homogenates of small intestine was 19 +/- 9 IU/g protein. This value did not change significantly after dialysis. The kinetic and electrophoretic properties of the partially purified enzyme were similar to those found in other rabbit tissues. Enzyme histochemical analysis of G6PD activity using the tetrazolium salt method showed high activity in epithelial cells of villi and crypts of Lieberkuhn. The activity in acinar cells of Brunner's glands was lower than that in epithelium, whereas cells of the muscularis externa showed a very low activity. Immunohistochemical analysis showed that the amounts of G6PD protein were lower in the epithelium than in Brunner's glands and muscularis externa. The differences between distribution patterns of activity and protein of G6PD may reflect the presence of inactive enzyme molecules in Brunner's glands and muscularis externa or posttranslational activation of G6PD in epithelium. Electron microscopic immunocytochemical analysis performed with gold-labelled antibodies showed the presence of G6PD protein throughout the cytoplasm and at smooth endoplasmic reticulum in enterocytes. In Paneth cells and cells of Brunner's glands, G6PD was found in the cytoplasm, at rough endoplasmic reticulum and Golgi complex. Immunolabelling was not found in mitochondria or nuclei. Our findings show that G6PD is heterogeneously distributed in cells of the small intestine and that the enzyme is associated with rough and smooth endoplasmic reticulum to support synthetic functions in these compartments by NADPH production. PMID:11482375

  10. Evaluation of the blue formazan spot test for screening glucose 6 phosphate dehydrogenase deficiency.

    PubMed

    Pujades, A; Lewis, M; Salvati, A M; Miwa, S; Fujii, H; Zarza, R; Alvarez, R; Rull, E; Corrons, J L

    1999-06-01

    Several screening tests for glucose 6 phosphate dehydrogenase (G6PD) deficiency have been reported thus far, and a standardized method of testing was proposed by the International Council for Standardization in Hematology (ICSH). The screening test used in any particular laboratory depends upon a number of factors such as cost, time required, temperature, humidity, and availability of reagents. In this study, a direct comparison between three different G6PD screening methods has been undertaken. In 71 cases (50 hematologically normal volunteers, 9 hemizygous G6PD-deficient males, and 12 heterozygous deficient females), the blue formazan spot test (BFST) was compared with the conventional methemoglobin reduction test (HiRT) and the ICSH-recommended fluorescent spot test (FST-ICSH). In all cases, the results obtained with the three screening tests were correlated with the enzyme activity assayed spectrophotometrically. In hemizygous G6PD-deficient males, all cases were equally detected with the three methods: BFST (4.7-6.64, controls: 11.1-13.4), BMRT (score +3 in all 9 cases), and FST (no fluorescence in 9 cases). In heterozygous G6PD-deficient females, two methods detected 7 out of 12 cases (BFST: 8.71-11.75, controls: 11.1-13.4; and BMRT: score +3 in 7 cases), whereas the FST-ICSH missed all 12 cases that presented a variable degree of fluorescence. Although the sensitivity for G6PD-deficient carrier detection is the same for the BMRT and the BFST, the latter has the advantage of being semiquantitative and not merely qualitative. Unfortunately, none of the three screening tests compared here allowed the detection of the 100% heterozygote carrier state of G6PD deficiency. PMID:10407579

  11. Producing glucose 6-phosphate from cellulosic biomass: Structural insights into levoglucosan bioconversion

    DOE PAGESBeta

    Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; Jarboe, Laura R.; Unkefer, Clifford J.; Mark, Brian L.; Michalczyk, Ryszard

    2015-09-09

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium andmore » solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.« less

  12. Producing glucose 6-phosphate from cellulosic biomass: structural insights into levoglucosan bioconversion.

    PubMed

    Bacik, John-Paul; Klesmith, Justin R; Whitehead, Timothy A; Jarboe, Laura R; Unkefer, Clifford J; Mark, Brian L; Michalczyk, Ryszard

    2015-10-30

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production. PMID:26354439

  13. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    PubMed Central

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Zhang, Dong-Jie; Guo, Zhen-Hua; Guo, Yun-Yun; Zhu, Meng; Bai, Jing

    2015-01-01

    The in vitro maturation (IVM) efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+) oocytes with low glucose-6-phosphate dehydrogenase (G6PDH) activity have shown superior quality than BCB negative (−) oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG) migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9) and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes. PMID:26580437

  14. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate

    SciTech Connect

    Toroser, D.; Plaut, Z.; Huber, S.C.

    2000-05-01

    One of the major protein kinases (PK{sub III}) that phosphorylates serine-158 of spinach sucrose-phosphate synthase (SPS), which is responsible for light/dark modulation of activity, is known to be a member of the SNF1-related family of protein kinases. In the present study, the authors have developed a fluorescence-based continuous assay for measurement of PK{sub III} activity. Using the continuous assay, along with the fixed-time-point {sup 32}P-incorporation assay, they demonstrate that PK{sub III} activity is inhibited by glucose-6-phosphate (Glc-6-P). Relative inhibition by Glc-6-P was increased by decreasing pH from 8.5 to 5.5 and by reducing the concentration of Mg{sup 2+} in the assay from 10 to 2 nM. Under likely physiological conditions (PH 7.0 and 2 mM Mg{sup 2+}), 10 nM Glc-6-P inhibited kinase activity approximately 70%. Inhibition by Glc-6-P could not be ascribed to contaminants in the commercial preparations. Other metabolites inhibited PK{sub III} in the following order: Glc-6-P > mannose-6-P, fructose-1,6P{sub 2} > ribose-5-P, 3-PGA, fructose-6-P. Inorganic phosphate, Glc, and AMP were not inhibitory, and free Glc did not reverse the inhibition by Glc-6-P. Because SNF1-related protein kinases are thought to function broadly in the regulation of enzyme activity and gene expression, Glc-6-P inhibition of PK{sub III} activity potentially provides a mechanism for metabolic regulation of the reactions catalyzed by these important protein kinases.

  15. Producing glucose 6-phosphate from cellulosic biomass: Structural insights into levoglucosan bioconversion

    SciTech Connect

    Bacik, John -Paul; Klesmith, Justin R.; Whitehead, Timothy A.; Jarboe, Laura R.; Unkefer, Clifford J.; Mark, Brian L.; Michalczyk, Ryszard

    2015-09-09

    The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Furthermore, greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.

  16. Control of Hepatic Nuclear Superoxide Production by Glucose 6-Phosphate Dehydrogenase and NADPH Oxidase-4*

    PubMed Central

    Spencer, Netanya Y.; Yan, Ziying; Boudreau, Ryan L.; Zhang, Yulong; Luo, Meihui; Li, Qiang; Tian, Xin; Shah, Ajay M.; Davisson, Robin L.; Davidson, Beverly; Banfi, Botond; Engelhardt, John F.

    2011-01-01

    Redox-regulated signal transduction is coordinated by spatially controlled production of reactive oxygen species within subcellular compartments. The nucleus has long been known to produce superoxide (O2⨪); however, the mechanisms that control this function remain largely unknown. We have characterized molecular features of a nuclear superoxide-producing system in the mouse liver. Using electron paramagnetic resonance, we investigated whether several NADPH oxidases (NOX1, 2, and 4) and known activators of NOX (Rac1, Rac2, p22phox, and p47phox) contribute to nuclear O2⨪ production in isolated hepatic nuclei. Our findings demonstrate that NOX4 most significantly contributes to hepatic nuclear O2⨪ production that utilizes NADPH as an electron donor. Although NOX4 protein immunolocalized to both nuclear membranes and intranuclear inclusions, fluorescent detection of NADPH-dependent nuclear O2⨪ predominantly localized to the perinuclear space. Interestingly, NADP+ and G6P also induced nuclear O2⨪ production, suggesting that intranuclear glucose-6-phosphate dehydrogenase (G6PD) can control NOX4 activity through nuclear NADPH production. Using G6PD mutant mice and G6PD shRNA, we confirmed that reductions in nuclear G6PD enzyme decrease the ability of hepatic nuclei to generate O2⨪ in response to NADP+ and G6P. NOX4 and G6PD protein were also observed in overlapping microdomains within the nucleus. These findings provide new insights on the metabolic pathways for substrate regulation of nuclear O2⨪ production by NOX4. PMID:21212270

  17. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border

    PubMed Central

    Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24

  18. The prevalence of glucose-6-phosphate dehydrogenase deficiency in Gambian school children

    PubMed Central

    2014-01-01

    Background Primaquine, the only available drug effective against Plasmodium falciparum sexual stages, induces also a dose-dependent haemolysis, especially in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals. Therefore, it is important to determine the prevalence of this deficiency in areas that would potentially benefit from its use. The prevalence of G6PD deficiency by genotype and enzyme activity was determined in healthy school children in The Gambia. Methods Blood samples from primary school children collected during a dry season malaria survey were screened for G6PDd and malaria infection. Genotypes for allele mutations reported in the country; 376, 202A-, 968A- and 542 were analysed while enzyme activity (phenotype) was assayed using a semi-quantitative commercial test kit. Enzyme activity values were fitted in a finite mixture model to determine the distribution and calculate a cut-off for deficiency. The association between genotype and phenotype for boys and girls as well as the association between mutant genotype and deficient phenotype was analysed. Results Samples from 1,437 children; 51% boys were analysed. The prevalence of P. falciparum malaria infection was 14%. The prevalence of the 202A-, 968 and 542 mutations was 1.8%, 2.1% and 1.0%, respectively, and higher in boys than in girls. The prevalence of G6PDd phenotype was 6.4% (92/1,437), 7.8% (57/728) in boys and 4.9% (35/709) in girls with significantly higher odds in the former (OR 1.64, 95% CI 1.05, 2.53, p = 0.026). The deficient phenotype was associated with reduced odds of malaria infection (OR 0.77, 95% CI 0.36, 1.62, p = 0.49). Conclusions There is a weak association between genotype and phenotype estimates of G6PDd prevalence. The phenotype expression of deficiency represents combinations of mutant alleles rather than specific mutations. Genotype studies in individuals with a deficient phenotype would help identify alleles responsible for haemolysis. PMID:24742291

  19. Mechanism of glucose-6-phosphate dehydrogenase-mediated regulation of coronary artery contractility.

    PubMed

    Ata, Hirotaka; Rawat, Dhwajbhadur K; Lincoln, Thomas; Gupte, Sachin A

    2011-06-01

    We previously identified glucose-6-phosphate dehydrogenase (G6PD) as a regulator of vascular smooth muscle contraction. In this study, we tested our hypothesis that G6PD activated by KCl via a phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-protein kinase C (PKC) pathway increases vascular smooth muscle contraction and that inhibition of G6PD relaxes smooth muscle by decreasing intracellular Ca(2+) ([Ca(2+)](i)) and Ca(2+) sensitivity to the myofilament. Here we show that G6PD is activated by membrane depolarization via PKC and PTEN pathway and that G6PD inhibition decreases intracellular free calcium ([Ca(2+)](i)) in vascular smooth muscle cells and thus arterial contractility. In bovine coronary artery (CA), KCl (30 mmol/l) increased PKC activity and doubled G6PD V(max) without affecting K(m). KCl-induced PKC and G6PD activation was inhibited by bisperoxo(pyridine-2-carboxyl)oxovanadate (Bpv; 10 μmol/l), a PTEN inhibitor, which also inhibited (P < 0.05) KCl-induced CA contraction. The G6PD blockers 6-aminonicotinamide (6AN; 1 mmol/l) and epiandrosterone (EPI; 100 μmol/l) inhibited KCl-induced increases in G6PD activity, [Ca(2+)](i), Ca(2+)-dependent myosin light chain (MLC) phosphorylation, and contraction. Relaxation of precontracted CA by 6AN and EPI was not blocked by calnoxin (10 μmol/l), a plasma membrane Ca(2+) ATPase inhibitor or by lowering extracellular Na(+), which inhibits the Na(+)/Ca(2+) exchanger (NCX), but cyclopiazonic acid (200 μmol/l), a sarcoplasmic reticulum Ca(2+) ATPase inhibitor, reduced (P < 0.05) 6AN- and EPI-induced relaxation. 6AN also attenuated phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Ser855, a site phosphorylated by Rho kinase, inhibition of which reduced (P < 0.05) KCl-induced CA contraction and 6AN-induced relaxation. By contrast, 6AN increased (P < 0.05) vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239, indicating that inhibition of G6PD increases PKA or PKG

  20. Evaluation of Glucose-6-Phosphate Dehydrogenase stability in stored blood samples

    PubMed Central

    Jalil, Norunaluwar; Azma, Raja Zahratul; Mohamed, Emida; Ithnin, Azlin; Alauddin, Hafiza; Baya, Siti Noor; Othman, Ainoon

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the commonest cause of neonatal jaundice in Malaysia. Recently, OSMMR2000-D G6PD Assay Kit has been introduced to quantitate the level of G6PD activity in newborns delivered in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). As duration of sample storage prior to analysis is one of the matters of concern, this study was conducted to identify the stability of G6PD enzyme during storage. A total of 188 cord blood samples from normal term newborns delivered at UKMMC were selected for this study. The cord bloods samples were collected in ethylene-diamine-tetra-acetic acid (EDTA) tubes and refrigerated at 2-8 °C. In addition, 32 out of 188 cord blood samples were spotted on chromatography paper, air-dried and stored at room temperature. G6PD enzyme activities were measured daily for 7 days using the OSMMR2000-D G6PD Assay Kit on both the EDTA blood and dried blood samples. The mean value for G6PD activity was compared between days of analysis using Student Paired T-Test. In this study, 172 out of 188 cord blood samples showed normal enzyme levels while 16 had levels corresponding to severe enzyme deficiency. The daily mean G6PD activity for EDTA blood samples of newborns with normal G6PD activity showed a significant drop on the fourth day of storage (p < 0.005) while for samples with severely deficient G6PD activity, significant drop was seen on third day of storage (p = 0.002). Analysis of dried cord blood showed a significant reduction in enzyme activity as early as the second day of storage (p = 0.001). It was also noted that mean G6PD activity for spotted blood samples were lower compared to those in EDTA tubes for all days (p = 0.001). Thus, EDTA blood samples stored at 2-8 °C appeared to have better stability in terms of their G6PD enzyme level as compared to dried blood samples on filter paper, giving a storage time of up to 3 days. PMID:27103895

  1. Medications and glucose-6-phosphate dehydrogenase deficiency: an evidence-based review.

    PubMed

    Youngster, Ilan; Arcavi, Lidia; Schechmaster, Renata; Akayzen, Yulia; Popliski, Hen; Shimonov, Janna; Beig, Svetlana; Berkovitch, Matitiahu

    2010-09-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect and one of the most common genetic disorders worldwide, with an estimated 400 million people worldwide carrying a mutation in the G6PD gene that causes deficiency of the enzyme. Although drug-induced haemolysis is considered the most common adverse clinical consequence of G6PD deficiency, significant confusion exists regarding which drugs can cause haemolytic anaemia in patients with G6PD deficiency. In the absence of consensus among physicians, patients are subject to conflicting advice, causing uncertainty and distress. In the current review we aimed, by thorough search of the medical literature, to collect evidence on which to base decisions either to prohibit or allow the use of various medications in patients with G6PD deficiency. A literature search was conducted during May 2009 for studies and case reports on medication use and G6PD deficiency using the following sources: MEDLINE (1966-May 2009), PubMed (1950-May 2009), the Cochrane database of systematic reviews (2009), and major pharmacology, internal medicine, haematology and paediatric textbooks. After assessing the literature, we divided medications into one of three groups: medications that should be avoided in individuals with G6PD deficiency, medications that were considered unsafe by at least one source, but according to our review can probably be given safely in normal therapeutic dosages to individuals with G6PD deficiency as evidence does not contravene their use, and medications where no evidence at all was found to contravene their use in G6PD-deficient patients. It is reasonable to conclude that, over time, many compounds have been wrongly cited as causing haemolysis because they were administered to patients experiencing an infection-related haemolytic episode. We found solid evidence to prohibit only seven currently used medications: dapsone, methylthioninium chloride (methylene blue), nitrofurantoin

  2. Evaluation of Glucose-6-Phosphate Dehydrogenase stability in stored blood samples.

    PubMed

    Jalil, Norunaluwar; Azma, Raja Zahratul; Mohamed, Emida; Ithnin, Azlin; Alauddin, Hafiza; Baya, Siti Noor; Othman, Ainoon

    2016-01-01

    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the commonest cause of neonatal jaundice in Malaysia. Recently, OSMMR2000-D G6PD Assay Kit has been introduced to quantitate the level of G6PD activity in newborns delivered in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). As duration of sample storage prior to analysis is one of the matters of concern, this study was conducted to identify the stability of G6PD enzyme during storage. A total of 188 cord blood samples from normal term newborns delivered at UKMMC were selected for this study. The cord bloods samples were collected in ethylene-diamine-tetra-acetic acid (EDTA) tubes and refrigerated at 2-8 °C. In addition, 32 out of 188 cord blood samples were spotted on chromatography paper, air-dried and stored at room temperature. G6PD enzyme activities were measured daily for 7 days using the OSMMR2000-D G6PD Assay Kit on both the EDTA blood and dried blood samples. The mean value for G6PD activity was compared between days of analysis using Student Paired T-Test. In this study, 172 out of 188 cord blood samples showed normal enzyme levels while 16 had levels corresponding to severe enzyme deficiency. The daily mean G6PD activity for EDTA blood samples of newborns with normal G6PD activity showed a significant drop on the fourth day of storage (p < 0.005) while for samples with severely deficient G6PD activity, significant drop was seen on third day of storage (p = 0.002). Analysis of dried cord blood showed a significant reduction in enzyme activity as early as the second day of storage (p = 0.001). It was also noted that mean G6PD activity for spotted blood samples were lower compared to those in EDTA tubes for all days (p = 0.001). Thus, EDTA blood samples stored at 2-8 °C appeared to have better stability in terms of their G6PD enzyme level as compared to dried blood samples on filter paper, giving a storage time of up to 3 days. PMID:27103895

  3. Induction of fatty acid synthase and S14 gene expression by glucose, xylitol and dihydroxyacetone in cultured rat hepatocytes is closely correlated with glucose 6-phosphate concentrations.

    PubMed Central

    Mourrieras, F; Foufelle, F; Foretz, M; Morin, J; Bouche, S; Ferre, P

    1997-01-01

    It is now well established that the transcription of several genes belonging to the glycolytic and lipogenic pathway is stimulated in the presence of a high glucose concentration in adipocytes and hepatocytes. We have previously proposed that glucose 6-phosphate could be the signal metabolite that transduces the glucose effect. This proposal has recently been challenged and both an intermediate of the pentose phosphate pathway, xylulose 5-phosphate, and metabolites of the later part of glycolysis (3-phosphoglycerate and phosphoenolpyruvate) have been proposed. To discriminate between these possibilities, we have measured concomitantly, in primary cultures of adult rat hepatocytes, the expression of the fatty acid synthase (FAS) and S14 genes and the concentration of glucose metabolites. We have used various substrates entering at different steps of the glycolytic pathway (glucose, dihydroxyacetone) and the pentose phosphate pathway (xylitol). When compared with 5 mM glucose, 25 mM glucose induces a marked increase in both S14 and FAS gene expression, detectable as early as 2 h and peaking at 6 h. Increasing concentrations (1-5 mM) of xylitol and dihydroxyacetone in the presence of 5 mM glucose are also able to induce S14 and FAS gene expression progressively. Among the various glucose metabolites measured, glucose 6-phosphate, in contrast with xylulose 5-phosphate and metabolites of the lower part of glycolysis, is the only one that shows a clear-cut parallelism between its concentration and the degree of S14 and FAS gene expression. We conclude that glucose 6-phosphate is the most likely signal metabolite for the glucose-induced transcription of this group of genes. PMID:9291103

  4. The Preterm Infant: A High-Risk Situation for Neonatal Hyperbilirubinemia Due to Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Kaplan, Michael; Hammerman, Cathy; Bhutani, Vinod K

    2016-06-01

    Prematurity and glucose-6-phosphate dehydrogenase (G6PD) deficiency are risk factors for neonatal hyperbilirubinemia. The 2 conditions may interact additively or synergistically, contributing to extreme hyperbilirubinemia, with the potential for bilirubin neurotoxicity. This hyperbilirubinemia is the result of sudden, unpredictable, and acute episodes of hemolysis in combination with immaturity of bilirubin elimination, primarily of conjugation. Avoidance of contact with known triggers of hemolysis in G6PD-deficient individuals will prevent some, but not all, episodes of hemolysis. All preterm infants with G6PD deficiency should be vigilantly observed for the development of jaundice both in hospital and after discharge home. PMID:27235211

  5. Mutational Analyses of Glucose Dehydrogenase and Glucose-6-Phosphate Dehydrogenase Genes in Pseudomonas fluorescens Reveal Their Effects on Growth and Alginate Production

    PubMed Central

    Maleki, Susan; Mærk, Mali; Valla, Svein

    2015-01-01

    The biosynthesis of alginate has been studied extensively due to the importance of this polymer in medicine and industry. Alginate is synthesized from fructose-6-phosphate and thus competes with the central carbon metabolism for this metabolite. The alginate-producing bacterium Pseudomonas fluorescens relies on the Entner-Doudoroff and pentose phosphate pathways for glucose metabolism, and these pathways are also important for the metabolism of fructose and glycerol. In the present study, the impact of key carbohydrate metabolism enzymes on growth and alginate synthesis was investigated in P. fluorescens. Mutants defective in glucose-6-phosphate dehydrogenase isoenzymes (Zwf-1 and Zwf-2) or glucose dehydrogenase (Gcd) were evaluated using media containing glucose, fructose, or glycerol. Zwf-1 was shown to be the most important glucose-6-phosphate dehydrogenase for catabolism. Both Zwf enzymes preferred NADP as a coenzyme, although NAD was also accepted. Only Zwf-2 was active in the presence of 3 mM ATP, and then only with NADP as a coenzyme, indicating an anabolic role for this isoenzyme. Disruption of zwf-1 resulted in increased alginate production when glycerol was used as the carbon source, possibly due to decreased flux through the Entner-Doudoroff pathway rendering more fructose-6-phosphate available for alginate biosynthesis. In alginate-producing cells grown on glucose, disruption of gcd increased both cell numbers and alginate production levels, while this mutation had no positive effect on growth in a non-alginate-producing strain. A possible explanation is that alginate synthesis might function as a sink for surplus hexose phosphates that could otherwise be detrimental to the cell. PMID:25746989

  6. Effect of feeding and of DDT on the activity of hepatic glucose 6- phosphate dehydrogenase in two salmonids

    USGS Publications Warehouse

    Buhler, Donald R.; Benville, P.

    1969-01-01

    The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.

  7. Apoptotic effects and glucose-6-phosphate dehydrogenase responses in liver and gill tissues of rainbow trout treated with chlorpyrifos.

    PubMed

    Topal, Ahmet; Atamanalp, Muhammed; Oruç, Ertan; Kırıcı, Muammer; Kocaman, Esat Mahmut

    2014-12-01

    We investigated apoptotic effects and changes in glucose-6-phosphate dehydrogenase (G6PD) enzyme activity in liver and gill tissues of fish exposed to chlorpyrifos. Three different chlorpyrifos doses (2.25, 4.5 and 6.75 μg/L) were administrated to rainbow trout at different time intervals (24, 48, 72 and 96 h). Acute exposure to chlorpyrifos showed time dependent decrease in G6PD enzyme activity at all concentrations (p < 0.05). Immunohistochemical results showed that chlorpyrifos caused mucous cell loss in gill tissue and apoptosis via caspase-3 activation in fish. The present study suggested that chlorpyrifos inhibits G6PD enzyme and causes mucous cell loss in gill and apoptosis in gill and liver tissues. PMID:25438950

  8. X-linked glucose-6-phosphate dehydrogenase (G6PD) and autosomal 6-phosphogluconate dehydrogenase (6PGD) polymorphisms in baboons

    SciTech Connect

    VandeBerg, J.L.; Aivaliotis, M.J.; Samollow, P.B. )

    1992-12-01

    Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model. 61 refs., 1 fig., 4 tabs.

  9. Glucose-6-phosphate-dehydrogenase deficiency and its correlation with other risk factors in jaundiced newborns in Southern Brazil

    PubMed Central

    Carvalho, Clarissa Gutiérrez; Castro, Simone Martins; Santin, Ana Paula; Zaleski, Carina; Carvalho, Felipe Gutiérrez; Giugliani, Roberto

    2011-01-01

    Objective To evaluate the correlation between glucose-6-phosphate-dehydrogenase (G6PD) deficiency and neonatal jaundice. Methods Prospective, observational case-control study was conducted on 490 newborns admitted to Hospital de Clínicas de Porto Alegre for phototherapy, who all experienced 35 or more weeks of gestation, from March to December 2007. Enzymatic screening of G6PD activity was performed, followed by PCR. Results There was prevalence of 4.6% and a boy-girl ratio of 3:1 in jaundiced newborns. No jaundiced neonate with ABO incompatibility presented G6PD deficiency, and no Mediterranean mutation was found. A higher proportion of deficiency was observed in Afro-descendants. There was no association with UGT1A1 variants. Conclusions G6PD deficiency is not related to severe hyperbilirubinemia and considering the high miscegenation in this area of Brazil, other gene interactions should be investigated. PMID:23569738

  10. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia

    SciTech Connect

    Vulliamy, T.J.; D'Urso, M.; Battistuzzi, G.; Estrada, M.; Foulkes, N.S.; Martini, G.; Calabro, V.; Poggi, V.; Giordano, R.; Town, M.; Luzzatto, L.; Persico, M.G. )

    1988-07-01

    Glucose-6-phosphate dehydrogenase deficiency is a common genetic abnormality affecting an estimated 400 million people worldwide. Clinical and biochemical analyses have identified many variants exhibiting a range of phenotypes, which have been well characterized from the hematological point of view. However, until now, their precise molecular basis has remained unknown. The authors have cloned and sequenced seven mutant G6PD alleles. In the nondeficient polymorphic African variant G6PD A they have found a single point mutation. The other six mutants investigated were all associated with enzyme deficiency. The mutations observed show a striking predominance of C {yields} T transitions, with CG doublets involved in four of seven cases. Thus, diverse point mutations may account largely for the phenotypic heterogeneity of G6PD deficiency.

  11. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-).

    PubMed Central

    Hirono, A; Beutler, E

    1988-01-01

    Glucose-6-phosphate dehydrogenase (G6PD; D-glucose-6-phosphate:NADP+ oxidoreductase, EC 1.1.1.49) A(-) is a common variant in Blacks that causes sensitivity to drug-and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3' end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C33----G, G202----A, and A376----G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The base substitution at position 376, identical to the substitution that has been reported in G6PD A(+), was present in all G6PD A(-) samples and none of the control G6PD B(+) samples examined. The substitution at position 202 was found in four of the five G6PD A(-) samples and no normal control sample. At position 33 guanine was found in all G6PD A(-) samples and seven G6PD B(+) control samples and is, presumably, the usual nucleotide found at this position. The finding of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein. Images PMID:2836867

  12. Identification of Mutation of Glucose-6-Phosphate Dehy–drogenase (G6PD) in Iran: Meta- analysis Study

    PubMed Central

    MOOSAZADEH, Mahmood; NEKOEI-MOGHADAM, Mahmood; ALIRAM–ZANY, Maryam; AMIRESMAILI, Mohammadreza

    2013-01-01

    Abstract Background Glucose-6-phosphate dehydrogenase is one of the most common genetic deficiencies, which approximately 400 million people in the world suffer from. According to authors’ initial search, numerous studies have been carried out in Iran regarding molecular variants of this enzyme. Thus, this meta-analysis presented a reliable estimation about prevalence of different types of molecular mutations of G6PD Enzyme in Iran. Methods Keywords “glucose 6 phosphate dehydrogenase or G6PD, Mediterranean or Chatham or Cosenza and mutation, Iran or Iranian and their Persian equivalents” were searched in different databases. Moreover, reference list of the published studies were examined to increase sensitivity and to select more studies. After studying titles and abstracts of retrieved articles, excluding the repeated and unrelated ones, and evaluating quality of articles, documents were selected. Data was analyzed using STATA. Results After performing systematic review, 22 papers were entered this meta-analysis and 1698 subjects were examined concerning G6PD molecular mutation. In this meta-analysis, prevalence of Mediterranean mutation, Chatham mutation and Cosenza mutation in Iran was estimated 78.2%, 9.1% and 0.5% respectively. Conclusions This meta-analysis showed that in spite of prevalence of different types of G6PD molecular mutations in center, north, north-west and west of Iran, the most common molecular mutations in people with G6PD deficiency in Iran, like other Mediterranean countries and countries around Persian Gulf, were Mediterranean mutation, Chatham mutation and Cosenza mutation. It is also recommended that future studies may focus on races and regions which haven’t been taken into consideration up to now. PMID:26060661

  13. Cloning, expression and characterization of glucokinase gene involved in the glucose-6- phosphate formation in Staphylococcus aureus

    PubMed Central

    Lakshmi, Hanumanthu Prasanna; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Vasu, Dudipeta; Swarupa, Vimjam; Kumar, Pasupuleti Santhosh; Narasu, Mangamoori Lakshmi; Krishna Sarma, Potukuchi Venkata Gurunadha

    2013-01-01

    Glucose-6-phosphate (G-6-P) formation in Staphylococcus aureus is catalysed by glucokinase (glkA) gene under high glucose concentration leading to upregulation of various pathogenic factors; therefore the present study is aimed in the cloning and characterization of glk A gene from S. aureus ATCC12600. The glk A gene was cloned in the Sma I site of pQE 30, sequenced (Accession number: JN645812) and expressed in E. coli DH5α. The recombinant glk A expressed from the resultant glk A 1 clone was purified using nickel metal chelate chromatography, the pure enzyme gave single band in SDS-PAGE with molecular weight of 33kDa. The rglk A showed very high affinity to glucose Km 5.1±0.06mM with Hill coefficient of 1.66±0.032mM. Analysis of glucokinase sequence of S. aureus showed presence of typical ATP binding site and ROK motif CNCGRSGCIE. Sequentially and phylogenetically S. aureus glk A exhibited low identity with other bacterial glk A and 21% homology with human glucokinase (GCK). Functionally, S. aureus glk A showed higher rate of G-6-P formation compared to human GCK which may have profound role in the pathogenesis. PMID:23519063

  14. A gene on chromosome 11q23 coding for a putative glucose- 6-phosphate translocase is mutated in glycogen-storage disease types Ib and Ic.

    PubMed Central

    Veiga-da-Cunha, M; Gerin, I; Chen, Y T; de Barsy, T; de Lonlay, P; Dionisi-Vici, C; Fenske, C D; Lee, P J; Leonard, J V; Maire, I; McConkie-Rosell, A; Schweitzer, S; Vikkula, M; Van Schaftingen, E

    1998-01-01

    Glycogen-storage diseases type I (GSD type I) are due to a deficiency in glucose-6-phosphatase, an enzymatic system present in the endoplasmic reticulum that plays a crucial role in blood glucose homeostasis. Unlike GSD type Ia, types Ib and Ic are not due to mutations in the phosphohydrolase gene and are clinically characterized by the presence of associated neutropenia and neutrophil dysfunction. Biochemical evidence indicates the presence of a defect in glucose-6-phosphate (GSD type Ib) or inorganic phosphate (Pi) (GSD type Ic) transport in the microsomes. We have recently cloned a cDNA encoding a putative glucose-6-phosphate translocase. We have now localized the corresponding gene on chromosome 11q23, the region where GSD types Ib and Ic have been mapped. Using SSCP analysis and sequencing, we have screened this gene, for mutations in genomic DNA, from patients from 22 different families who have GSD types Ib and Ic. Of 20 mutations found, 11 result in truncated proteins that are probably nonfunctional. Most other mutations result in substitutions of conserved or semiconserved residues. The two most common mutations (Gly339Cys and 1211-1212 delCT) together constitute approximately 40% of the disease alleles. The fact that the same mutations are found in GSD types Ib and Ic could indicate either that Pi and glucose-6-phosphate are transported in microsomes by the same transporter or that the biochemical assays used to differentiate Pi and glucose-6-phosphate transport defects are not reliable. PMID:9758626

  15. Glucose-6-phosphate transport activity in liver microsomes exposed to stilbene disulfonate derivatives

    SciTech Connect

    Countaway, J.L.; Arion, W.J.

    1986-05-01

    Glucose-6-P (G6P) hydrolysis by hepatic microsomes (MS) is mediated by a coupled system composed of the G6P transporter (T1), the enzyme (E) and a phosphate transporter (T2). Zoccoli et al. concluded that T1 is a 54 kDa protein based on a linear correlation of labeling by /sup 3/H-4,4'diisothiocyano-1,2-diphenylethane-2,2'-disulfonate (/sup 3/H-H/sub 2/DIDS) and inhibition of system activity. The authors cannot support this conclusion: (1) in their hands the reaction of /sup 3/H-H/sub 2/DIDS with MS proteins is extremely nonspecific, and (2) the linear correlation must be between labeling and inhibition of T1 activity, because transport per se is not the absolute rate limiting step in hydrolysis by the system. Point 2 is readily demonstrated by examining the influence of the enzyme inhibitor, D-glucose, on the sensitivity of the system to inhibition by H/sub 2/DIDS. Studies of H/sub 2/DIDS inhibition of the system in MS from fasted and diabetic rats revealed that the observed inhibition constant for the system, K/sub i(S)/, is inversely proportional to the fraction of latent G6Pase activity (LF) seen before exposure to H/sub 2/DIDS, and K/sub i(S)/ x LF - K/sub i(T1)/, the inhibition constant for T1 activity. This relationship is derived from the equation 1/V/sub (S)/ - 1/V/sub (E)/ = 1/V/sub (T1)/, where V denotes the initial rates of S, E and T1, respectively. The latter equation can be used to calculate V/sub (T1)/ for any preparation of intact MS, and it predicts that labeling and inhibition of T1 will be linearly correlated with V/sub (T1)/ but not V/sub (S)/.

  16. Glucose-6-Phosphate-Dehydrogenase Is Also Increased in Erythrocytes from Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Ordonez, Francisco J.; Rosety-Plaza, Manuel; Rosety-Rodriguez, Manuel

    2006-01-01

    For some time it has been claimed that trisomic cells are more sensitive to oxidative stress since there is an imbalance in hydrogen peroxide metabolism due to an increase in superoxide dismutase (SOD) catalytic activity. We designed the present study to assess activity levels of antioxidant enzymes [superoxide dismutase (SOD), glutathione…

  17. ISOLATION OF A PRECURSOR AND A NASCENT CHAIN FORM OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE FROM RAT UTERUS AND REGULATION OF PRECURSOR PROCESSING BY ESTRADIOL

    EPA Science Inventory

    SDS-polyacrylamide gel electrophoresis of anti-glucose-6-phosphate dehydrogenase immunoprecipitates from radiolabeled uterine tissue extracts previously revealed three proteins: A, B and C, which were tentatively identified as a 60-64 kDa precursor form, a 57 kDa predominant form...

  18. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver.

    PubMed

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru; Yasutake, Akira

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  19. Dual Antiplatelet Therapy in Patients with Glucose-6-Phosphate Dehydrogenase Deficiency undergoing PCI with Drug-Eluting Stents.

    PubMed

    Biscaglia, Simone; Ferri, Alessandra; Pavasini, Rita; Campo, Gianluca; Ferrari, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. In patients with G6PD deficiency, the use of aspirin is controversial, since past studies have reported a potential risk of haemolysis related to its administration, even at low doses. More recent publications have shown that low-dose aspirin administration is safe in these patients. At the same time, no authors have previously reported more than single cases regarding low-dose aspirin treatment in patients with G6PD deficiency undergoing percutaneous coronary intervention (PCI), and most physicians are still sceptical about aspirin administration in these patients. In this paper, we report a case series of five patients with G6PD deficiency receiving PCI with drug-eluting stents (DES) and treatment with dual antiplatelet therapy (DAPT) containing low-dose aspirin, without clinical complications. Moreover, we discuss our internal protocol for managing these patients and provide an overview of the available data. PMID:25843116

  20. Molecular cloning, sequence analysis and expression in Escherichia coli of Camelus dromedarius glucose-6-phosphate dehydrogenase cDNA.

    PubMed

    Saeed, Hesham Mahmoud; Alanazi, Mohammad Saud; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Khan, Zahid

    2012-06-01

    This study determined the full length sequence of glucose-6-phosphate dehydrogenase cDNA (G6PD) from the Arabian camel Camelus dromedarius using reverse transcription polymerase chain reaction. The C. dromedarius G6PD has an open reading frame of 1545 bp, and the cDNA encodes a protein of 515 amino acid residues with a molecular weight of 59.0 KDa. The amino acid sequence showed the highest identity with Equus caballus (92%) and Homo sapiens (92%). The G6PD cDNA was cloned and expressed into Escherichia coli as a fusion protein and was purified in a single chromatographic step using nickel affinity gel column. The purity and the molecular weight of the enzyme were checked on SDS-PAGE and the purified enzyme showed a single band on the gel with a molecular weight of 63.0 KDa. The specific activity of G6PD was determined to be 289.6 EU/mg protein with a fold purification of 95.45 and yield of 56.8%. PMID:22538316

  1. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  2. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; González-Valdez, Abigail; Martínez-Rosas, Víctor; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Castillo-Rodríguez, Rosa Angélica; Cuevas-Cruz, Miguel; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site. PMID:27213370

  3. [Cloning and expression analysis of glucose-6-phosphate dehydrogenase 1 (G6PDH1) gene from Chimonanthus praecox].

    PubMed

    Wang, Xiao-hui; Liu, Xiao; Gao, Bo-wen; Zhang, Zhong-xiu; Shi, She-po; Tu, Peng-fei

    2015-11-01

    Glucose-6-phosphate dehydrogenase is main regulatory enzyme for pentose phosphate pathway. To amplify the core sequence of G6PDH gene from Chimonanthus praecox, the primers were synthesized, based on the conserved nucleotide sequence of other reported plant G6PDH genes. The specific primers were designed according to the major fragment. The full length cDNA of the G6PDH1 gene was isolated by the 3' and 5' rapid amplification of cDNA ends approach. Transcript levels of G6PDH1 isoform was measured by real-time quantitative RT-PCR in different tissues and in responds to cold treatment. The G6PDH1 subcellular localization, transmembrane domain, three-dimensional structure, and phylogenetic analysis were predicted by different software to analysis the bioinformatics of G6PDH1 protein. The G6PDH1 cDNA sequence was 2 011 bp in length and consisted of 1 551 bp Open Reading Frame (ORF) , encoding a protein of 516 amino acids. Expression analysis results in different tissues showed that G6PDH1 was primarily observed in flowers and roots, as opposed to the leaves and stems. Cold treatment experiments indicated that cold treatment caused a rapid increase in G6PDH1 expression in flowers within 12 h. The full-length cDNA of G6PDH1 and its expression analysis will play an important role for further study on cold stress responses in Ch. praecox. PMID:27071249

  4. Hemoglobin E and Glucose-6-Phosphate Dehydrogenase Deficiency and Plasmodium falciparum Malaria in the Chittagong Hill Districts of Bangladesh.

    PubMed

    Shannon, Kerry L; Ahmed, Sabeena; Rahman, Hafizur; Prue, Chai S; Khyang, Jacob; Ram, Malathi; Haq, M Zahirul; Chowdhury, Ashish; Akter, Jasmin; Glass, Gregory E; Shields, Timothy; Nyunt, Myaing M; Khan, Wasif A; Sack, David A; Sullivan, David J

    2015-08-01

    Hemoglobin E is largely confined to south and southeast Asia. The association between hemoglobin E (HbE) and malaria is less clear than that of hemoglobin S and C. As part of a malaria study in the Chittagong Hill Districts of Bangladesh, an initial random sample of 202 individuals showed that 39% and 49% of Marma and Khyang ethnic groups, respectively, were positive for either heterozygous or homozygous hemoglobin E. In this group, 6.4% were also found to be severely deficient and 35% mildly deficient for glucose-6-phosphate dehydrogenase (G6PD). In a separate Plasmodium falciparum malaria case-uninfected control study, the odds of having homozygous hemoglobin E (HbEE) compared with normal hemoglobin (HbAA) were higher among malaria cases detected by passive surveillance than age and location matched uninfected controls (odds ratio [OR] = 5.0, 95% confidence interval [CI] = 1.07-46.93). The odds of heterozygous hemoglobin E (HbAE) compared with HbAA were similar between malaria cases and uninfected controls (OR = 0.71, 95% CI = 0.42-1.19). No association by hemoglobin type was found in the initial parasite density or the proportion parasite negative after 2 days of artemether/lumefantrine treatment. HbEE, but not HbAE status was associated with increased passive case detection of malaria. PMID:26101273

  5. On-plate enzyme and inhibition assay of glucose-6-phosphate dehydrogenase using thin-layer chromatography.

    PubMed

    Tian, Miaomiao; Mohamed, Amara Camara; Wang, Shengtian; Yang, Li

    2015-08-01

    We performed on-plate enzyme and inhibition assays of glucose 6-phosphate dehydrogenase using thin-layer chromatography. The assays were accomplished based on different retardation factors of the substrates, enzyme, and products. All the necessary steps were integrated on-plate in one developing process, including substrate/enzyme mixing, reaction starting, and quenching as well as product separation. In order to quantitatively measure the enzyme reaction, the developed plate was then densitometrically evaluated to determine the peak area of the product. Rapid and high-throughput assays were achieved by loading different substrate spots and/or enzyme (and inhibition) spots in different tracks on the plate. The on-plate enzyme assay could be finished in a developing time of only 4 min, with good track-to-track and plate-to-plate repeatability. Moreover, we determined the Km values of the enzyme reaction and Ki values of the inhibition (Pb(2+) Cd(2+) and Cu(2+) as inhibitors), as well as the corresponding kinetics using the on-plate assay. Taken together, our method expanded the application of thin-layer chromatography in enzyme assays, and it could be potentially used in research fields for rapid and quantitative measurement of enzyme activity and inhibition. PMID:26017233

  6. Determination of the inhibitory effect of green tea extract on glucose-6-phosphate dehydrogenase based on multilayer capillary enzyme microreactor.

    PubMed

    Camara, Mohamed Amara; Tian, Miaomiao; Liu, Xiaoxia; Liu, Xin; Wang, Yujia; Yang, Jiqing; Yang, Li

    2016-08-01

    Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low-cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6-phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE-IMERs). The multilayer CE-IMERs were produced with layer-by-layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE-IMERs. The Michaelis constant (Km ) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy-to-operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26659432

  7. Red Cell Glucose-6-Phosphate Dehydrogenase Deficiency—A Newly Recognized Cause of Neonatal Jaundice and Kernicterus in Canada

    PubMed Central

    Naiman, J. Lawrence; Kosoy, Martin H.

    1964-01-01

    Seven male newborns of Chinese, Greek and Italian origin presented with severe hemolytic jaundice due to red cell glucose-6-phosphate dehydrogenase (G-6-PD) deficiency. In five, the hemolysis was precipitated by inhalation of mothball vapours in the home. Kernicterus was evident upon admission in six infants and was fatal in four of these. G-6-PD deficiency should be suspected as a cause of jaundice in all full-term male infants of these ethnic groups. The diagnosis can be confirmed in any hospital by the methemoglobin reduction test. In areas similar to Toronto, Canada, where these high-risk ethnic groups prevail, the following measures are recommended: (1) detection of G-6-PD deficient newborns by screening cord bloods of all infants of these ethnic groups; (2) protection of affected infants from potentially hemolytic agents such as naphthalene, certain vitamin K preparations, and sulfonamides; and (3) observation of serum bilirubin levels to assess the need for exchange transfusion for hyperbilirubinemia. ImagesFig. 1 PMID:14226101

  8. African Glucose-6-Phosphate Dehydrogenase Alleles Associated with Protection from Severe Malaria in Heterozygous Females in Tanzania

    PubMed Central

    Manjurano, Alphaxard; Sepulveda, Nuno; Nadjm, Behzad; Mtove, George; Wangai, Hannah; Maxwell, Caroline; Olomi, Raimos; Reyburn, Hugh; Riley, Eleanor M.; Drakeley, Christopher J.; Clark, Taane G.

    2015-01-01

    X-linked Glucose-6-phosphate dehydrogenase (G6PD) A- deficiency is prevalent in sub-Saharan Africa populations, and has been associated with protection from severe malaria. Whether females and/or males are protected by G6PD deficiency is uncertain, due in part to G6PD and malaria phenotypic complexity and misclassification. Almost all large association studies have genotyped a limited number of G6PD SNPs (e.g. G6PD202 / G6PD376), and this approach has been too blunt to capture the complete epidemiological picture. Here we have identified 68 G6PD polymorphisms and analysed 29 of these (i.e. those with a minor allele frequency greater than 1%) in 983 severe malaria cases and controls in Tanzania. We establish, across a number of SNPs including G6PD376, that only female heterozygotes are protected from severe malaria. Haplotype analysis reveals the G6PD locus to be under balancing selection, suggesting a mechanism of protection relying on alleles at modest frequency and avoiding fixation, where protection provided by G6PD deficiency against severe malaria is offset by increased risk of life-threatening complications. Our study also demonstrates that the much-needed large-scale studies of severe malaria and G6PD enzymatic function across African populations require the identification and analysis of the full repertoire of G6PD genetic markers. PMID:25671784

  9. Elevation of Glucose 6-Phosphate Dehydrogenase Activity Induced by Amplified Insulin Response in Low Glutathione Levels in Rat Liver

    PubMed Central

    Taniguchi, Misako; Mori, Nobuko; Iramina, Chizuru

    2016-01-01

    Weanling male Wistar rats were fed on a 10% soybean protein isolate (SPI) diet for 3 weeks with or without supplementing 0.3% sulfur-containing amino acids (SAA; methionine or cystine) to examine relationship between glutathione (GSH) levels and activities of NADPH-producing enzymes, glucose 6-phosphate dehydrogenase (G6PD) and malic enzyme (ME), in the liver. Of rats on the 10% SPI diet, GSH levels were lower and the enzyme activities were higher than of those fed on an SAA-supplemented diet. Despite the lower GSH level, γ-glutamylcysteine synthetase (γ-GCS) activity was higher in the 10% SPI group than other groups. Examination of mRNAs of G6PD and ME suggested that the GSH-suppressing effect on enzyme induction occurred prior to and/or at transcriptional levels. Gel electrophoresis of G6PD indicated that low GSH status caused a decrease in reduced form and an increase in oxidized form of the enzyme, suggesting an accelerated turnover rate of the enzyme. In primary cultured hepatocytes, insulin response to induce G6PD activity was augmented in low GSH levels manipulated in the presence of buthionine sulfoximine. These findings indicated that elevation of the G6PD activity in low GSH levels was caused by amplified insulin response for expression of the enzyme and accelerated turnover rate of the enzyme molecule. PMID:27597985

  10. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-)

    SciTech Connect

    Hirono, A.; Beutler, E. )

    1988-06-01

    Glucose-6-phosphate dehydrogenase A(-) is a common variant in Blacks that causes sensitivity to drug- and infection-induced hemolytic anemia. A cDNA library was constructed from Epstein-Barr virus-transformed lymphoblastoid cells from a male who was G6PD A(-). One of four cDNA clones isolated contained a sequence not found in the other clones nor in the published cDNA sequence. Consisting of 138 bases and coding 46 amino acids, this segment of cDNA apparently is derived from the alternative splicing involving the 3{prime} end of intron 7. Comparison of the remaining sequences of these clones with the published sequence revealed three nucleotide substitutions: C{sup 33} {yields} G, G{sup 202} {yields} A, and A{sup 376} {yields} G. Each change produces a new restriction site. Genomic DNA from five G6PD A(-) individuals was amplified by the polymerase chain reaction. The findings of the same mutation in G6PD A(-) as is found in G6PD A(+) strongly suggests that the G6PD A(-) mutation arose in an individual with G6PD A(+), adding another mutation that causes the in vivo instability of this enzyme protein.

  11. Clonal evolution following chemotherapy-induced stem cell depletion in cats heterozygous for glucose-6-phosphate dehydrogenase

    SciTech Connect

    Abkowitz, J.L.; Ott, R.M.; Holly, R.D.; Adamson, J.W.

    1988-06-01

    The number of hematopoietic stem cells necessary to support normal hematopoiesis is not known but may be small. If so, the depletion or damage of such cells could result in apparent clonal dominance. To test this hypothesis, dimethylbusulfan (2 to 4 mg/kg intravenously (IV) x 3) was given to cats heterozygous for the X-linked enzyme glucose-6-phosphate dehydrogenase (G-6-PD). These cats were the daughters of domestic X Geoffroy parents. After the initial drug-induced cytopenias (2 to 4 weeks), peripheral blood counts and the numbers of marrow progenitors detected in culture remained normal, although the percentages of erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (CFU-GM) in DNA synthesis increased, as determined by the tritiated thymidine suicide technique. In three of six cats treated, a dominance of Geoffroy-type G-6-PD emerged among the progenitor cells, granulocytes, and RBCs. These skewed ratios of domestic to Geoffroy-type G-6-PD have persisted greater than 3 years. No changes in cell cycle kinetics or G-6-PD phenotypes were noted in similar studies in six control cats. These data suggest that clonal evolution may reflect the depletion or damage of normal stem cells and not only the preferential growth and dominance of neoplastic cells.

  12. Identification and Characterization of the Glucose-6-Phosphate Dehydrogenase Gene Family in the Para Rubber Tree, Hevea brasiliensis

    PubMed Central

    Long, Xiangyu; He, Bin; Fang, Yongjun; Tang, Chaorong

    2016-01-01

    As a key enzyme in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides nicotinamide adenine dinucleotide phosphate (NADPH) and intermediary metabolites for rubber biosynthesis, and plays an important role in plant development and stress responses. In this study, four Hevea brasiliensis (Para rubber tree) G6PDH genes (HbG6PDH1 to 4) were identified and cloned using a genome-wide scanning approach. All four HbG6PDH genes encode functional G6PDH enzymes as shown by heterologous expression in E. coli. Phylogeny analysis and subcellular localization prediction show that HbG6PDH3 is a cytosolic isoform, while the other three genes (HbG6PDH1, 2 and 4) are plastidic isoforms. The subcellular locations of HbG6PDH3 and 4, two latex-abundant isoforms were further verified by transient expression in rice protoplasts. Enzyme activity assay and expression analysis showed HbG6PDH3 and 4 were implicated in PPP during latex regeneration, and to influence rubber production positively in rubber tree. The cytosolic HbG6PDH3 is a predominant isoform in latex, implying a principal role for this isoform in controlling carbon flow and NADPH production in the PPP during latex regeneration. The expression pattern of plastidic HbG6PDH4 correlates well with the degree of tapping panel dryness, a physiological disorder that stops the flow of latex from affected rubber trees. In addition, the four HbG6PDHs responded to temperature and drought stresses in root, bark, and leaves, implicating their roles in maintaining redox balance and defending against oxidative stress. PMID:26941770

  13. Aspirin inhibits glucose-6-phosphate dehydrogenase activity in HCT 116 cells through acetylation: Identification of aspirin-acetylated sites

    PubMed Central

    Ai, Guoqiang; Dachineni, Rakesh; Kumar, D. Ramesh; Alfonso, Lloyd F.; Marimuthu, Srinivasan; Bhat, G. Jayarama

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) catalyzes the first reaction in the pentose phosphate pathway, and generates ribose sugars, which are required for nucleic acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADPH), which is important for neutralization of oxidative stress. The expression of G6PD is elevated in several types of tumor, including colon, breast and lung cancer, and has been implicated in cancer cell growth. Our previous study demonstrated that exposure of HCT 116 human colorectal cancer cells to aspirin caused acetylation of G6PD, and this was associated with a decrease in its enzyme activity. In the present study, this observation was expanded to HT-29 colorectal cancer cells, in order to compare aspirin-mediated acetylation of G6PD and its activity between HCT 116 and HT-29 cells. In addition, the present study aimed to determine the acetylation targets of aspirin on recombinant G6PD to provide an insight into the mechanisms of inhibition. The results demonstrated that the extent of G6PD acetylation was significantly higher in HCT 116 cells compared with in HT-29 cells; accordingly, a greater reduction in G6PD enzyme activity was observed in the HCT 116 cells. Mass spectrometry analysis of aspirin-acetylated G6PD (isoform a) revealed that aspirin acetylated a total of 14 lysine residues, which were dispersed throughout the length of the G6PD protein. One of the important amino acid targets of aspirin included lysine 235 (K235, in isoform a) and this corresponds to K205 in isoform b, which has previously been identified as being important for catalysis. Acetylation of G6PD at several sites, including K235 (K205 in isoform b), may mediate inhibition of G6PD activity, which may contribute to the ability of aspirin to exert anticancer effects through decreased synthesis of ribose sugars and NADPH. PMID:27356773

  14. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.

    PubMed

    Jeppsson, Marie; Johansson, Björn; Jensen, Peter Ruhdal; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2003-11-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different production levels of G6PDH on xylose fermentation. We used a synthetic promoter library and the copper-regulated CUP1 promoter to generate G6PDH-activities between 0% and 179% of the wild-type level. G6PDH-activities of 1% and 6% of the wild-type level resulted in 2.8- and 5.1-fold increase in specific xylose consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate than the strain with wild-type G6PDH-activity, which suggested that the availability of intracellular NADPH correlated with tolerance towards lignocellulose-derived inhibitors. Low G6PDH-activity strains were also more sensitive to H(2)O(2) than the control strain TMB3001. PMID:14618564

  15. A Population Survey of the Glucose-6-Phosphate Dehydrogenase (G6PD) 563C>T (Mediterranean) Mutation in Afghanistan

    PubMed Central

    Jamornthanyawat, Natsuda; Awab, Ghulam R.; Tanomsing, Naowarat; Pukrittayakamee, Sasithon; Yamin, Fazel; Dondorp, Arjen M.; Day, Nicholas P. J.; White, Nicholas J.; Woodrow, Charles J.; Imwong, Mallika

    2014-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36–9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73–4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine. PMID:24586352

  16. Prevalence of glucose-6-phosphate dehydrogenase deficiency and diagnostic challenges in 1500 immigrants in Denmark examined for haemoglobinopathies.

    PubMed

    Warny, Marie; Klausen, Tobias Wirenfeldt; Petersen, Jesper; Birgens, Henrik

    2015-09-01

    Similar to the thalassaemia syndromes, glucose-6-phosphate dehydrogenase (G6PD) deficiency is highly prevalent in areas historically exposed to malaria. In the present study, we used quantitative and molecular methods to determine the prevalence of G6PD deficiency in a population of 1508 immigrants in Denmark. We found the allele frequency to be between 2.4 and 2.9% in the female immigrants. Furthermore, the mutation pattern in the studied population showed a high prevalence of the G6PD A-(202A) variant in African and African-American immigrants, a high prevalence of the G6PD Mediterranean variant in Mediterranean European and Western Asian immigrants, and substantial heterogeneity in the variants found in the Eastern Asian/Pacific immigrants. Inasmuch as many of the patients included in this investigation had various thalassaemic syndromes, we were able to evaluate the effects of the interaction between a low mean corpuscular haemoglobin (MCH) value and G6PD activity, particularly in heterozygous females. The activity level was markedly influenced by the MCH value in females with normal G6PD activity, but not in heterozygous and homozygous females. Comparison of patients with normal G6PD activity and heterozygous females indicated considerable overlap in activity levels. To help separating heterozygous females from females with wild-type genes, a DNA analysis is necessary when the female activity level is between 4.0 and 4.9 U/g hgb corresponding to 50-60% of the median activity of unaffected males. PMID:25925739

  17. Identification and Characterization of the Glucose-6-Phosphate Dehydrogenase Gene Family in the Para Rubber Tree, Hevea brasiliensis.

    PubMed

    Long, Xiangyu; He, Bin; Fang, Yongjun; Tang, Chaorong

    2016-01-01

    As a key enzyme in the pentose phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) provides nicotinamide adenine dinucleotide phosphate (NADPH) and intermediary metabolites for rubber biosynthesis, and plays an important role in plant development and stress responses. In this study, four Hevea brasiliensis (Para rubber tree) G6PDH genes (HbG6PDH1 to 4) were identified and cloned using a genome-wide scanning approach. All four HbG6PDH genes encode functional G6PDH enzymes as shown by heterologous expression in E. coli. Phylogeny analysis and subcellular localization prediction show that HbG6PDH3 is a cytosolic isoform, while the other three genes (HbG6PDH1, 2 and 4) are plastidic isoforms. The subcellular locations of HbG6PDH3 and 4, two latex-abundant isoforms were further verified by transient expression in rice protoplasts. Enzyme activity assay and expression analysis showed HbG6PDH3 and 4 were implicated in PPP during latex regeneration, and to influence rubber production positively in rubber tree. The cytosolic HbG6PDH3 is a predominant isoform in latex, implying a principal role for this isoform in controlling carbon flow and NADPH production in the PPP during latex regeneration. The expression pattern of plastidic HbG6PDH4 correlates well with the degree of tapping panel dryness, a physiological disorder that stops the flow of latex from affected rubber trees. In addition, the four HbG6PDHs responded to temperature and drought stresses in root, bark, and leaves, implicating their roles in maintaining redox balance and defending against oxidative stress. PMID:26941770

  18. Regulatory mechanism of the three-component system HptRSA in glucose-6-phosphate uptake in Staphylococcus aureus.

    PubMed

    Yang, Yifan; Sun, Haipeng; Liu, Xiaoyu; Wang, Mingxing; Xue, Ting; Sun, Baolin

    2016-06-01

    Glucose-6-phosphate (G6P) is a common alternative carbon source for various bacteria, and its uptake usually relies on the hexose phosphate antiporter UhpT. In the human pathogenic bacterium Staphylococcus aureus, the ability to utilize different nutrients, particularly alternative carbon source uptake in glucose-limiting conditions, is essential for its fitness in the host environment during the infectious process. It has been reported that G6P uptake in S. aureus is regulated by the three-component system HptRSA. When G6P is provided as the only carbon source, HptRSA could sense extracellular G6P and activate uhpT expression to facilitate G6P utilization. However, the regulatory mechanism of HptRSA is still unclear. In this study, we further investigated the HptRSA system in S. aureus. First, we confirmed that HptRSA is necessary for the normal growth of this pathogen in chemically defined medium with G6P supplementation, and we discovered that HptRSA could exclusively sense extracellular G6P compared to the other organophosphates we tested. Next, using isothermal titration calorimetry, we found that HptA could bind to G6P, suggesting that it may be the G6P sensor. After that experiment, using an electrophoresis mobility shift assay, we verified that the response regulator HptR could directly bind to the uhpT promoter and identified a putative binding site from -67 to -96-bp. Subsequently, we created different point mutations in the putative binding site and revealed that the entire 30-bp sequence is essential for HptR regulation. In summary, we unveiled the regulatory mechanism of the HptRSA system in S. aureus, HptA most likely functions as the G6P sensor, and HptR could implement its regulatory function by directly binding to a conserved, approximately 30-bp sequence in the uhpT promoter. PMID:26711125

  19. Data on how several physiological parameters of stored red blood cells are similar in glucose 6-phosphate dehydrogenase deficient and sufficient donors.

    PubMed

    Tzounakas, Vassilis L; Kriebardis, Anastasios G; Georgatzakou, Hara T; Foudoulaki-Paparizos, Leontini E; Dzieciatkowska, Monika; Wither, Matthew J; Nemkov, Travis; Hansen, Kirk C; Papassideri, Issidora S; D'Alessandro, Angelo; Antonelou, Marianna H

    2016-09-01

    This article contains data on the variation in several physiological parameters of red blood cells (RBCs) donated by eligible glucose-6-phosphate dehydrogenase (G6PD) deficient donors during storage in standard blood bank conditions compared to control, G6PD sufficient (G6PD(+)) cells. Intracellular reactive oxygen species (ROS) generation, cell fragility and membrane exovesiculation were measured in RBCs throughout the storage period, with or without stimulation by oxidants, supplementation of N-acetylcysteine and energy depletion, following incubation of stored cells for 24 h at 37 °C. Apart from cell characteristics, the total or uric acid-dependent antioxidant capacity of the supernatant in addition to extracellular potassium concentration was determined in RBC units. Finally, procoagulant activity and protein carbonylation levels were measured in the microparticles population. Further information can be found in "Glucose 6-phosphate dehydrogenase deficient subjects may be better "storers" than donors of red blood cells" [1]. PMID:27437434

  20. Fatal haemolytic crisis with microvascular pulmonary obstruction mimicking a pulmonary embolism in a young African man with glucose-6-phosphate dehydrogenase deficiency

    PubMed Central

    Albertsen, Jens; Ommen, Hans Beier; Wandler, Anne; Munk, Kim

    2014-01-01

    We report a fatal case of haemolytic crisis mimicking a pulmonary embolism in a previously healthy 42-year-old African man. The patient was admitted to hospital with fatigue, shortness of breath and jaundice lasting for 2 days. Laboratory tests were consistent with haemolysis and inflammation. The patient was treated as having a mycoplasma pneumonia. His condition deteriorated rapidly, with respiratory distress and circulatory failure. Echocardiography showed pulmonary hypertension and right heart dilation. Despite the fact that he was given fibrinolysis for suspected pulmonary embolism, he developed cardiac arrest and died after a long-lasting resuscitation attempt. Postmortem examinations revealed that the patient had a glucose-6-phosphate dehydrogenase deficiency and disseminated intravascular coagulation with pulmonary microthrombi. To the best of our knowledge, this is the first case of death caused by right heart failure due to microvascular obstruction resulting from multiple microvascular thrombosis in a patient with acute haemolysis due to glucose-6-phosphate dehydrogenase deficiency. PMID:24713708

  1. Acute viral hepatitis E presenting with haemolytic anaemia and acute renal failure in a patient with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Tomar, Laxmikant Ramkumarsingh; Aggarwal, Amitesh; Jain, Piyush; Rajpal, Surender; Agarwal, Mukul P

    2015-10-01

    The association of acute hepatitis E viral (HEV) infection with glucose-6-phosphate dehydrogenase (G6PD) deficiency leading to extensive intravascular haemolysis is a very rare clinical entity. Here we discuss such a patient, who presented with acute HEV illness, developed severe intravascular haemolysis and unusually high levels of bilirubin, complicated by acute renal failure (ARF), and was later on found to have a deficiency of G6PD. The patient recovered completely with haemodialysis and supportive management. PMID:25500531

  2. Delineation of the roles of amino acids involved in the catalytic functions of Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase.

    PubMed

    Vought, V; Ciccone, T; Davino, M H; Fairbairn, L; Lin, Y; Cosgrove, M S; Adams, M J; Levy, H R

    2000-12-12

    The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state. PMID

  3. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies.

    PubMed

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  4. Glucose-6-phosphate dehydrogenase regulation in the hepatopancreas of the anoxia-tolerant marine mollusc, Littorina littorea.

    PubMed

    Lama, Judeh L; Bell, Ryan A V; Storey, Kenneth B

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PDH) gates flux through the pentose phosphate pathway and is key to cellular antioxidant defense due to its role in producing NADPH. Good antioxidant defenses are crucial for anoxia-tolerant organisms that experience wide variations in oxygen availability. The marine mollusc, Littorina littorea, is an intertidal snail that experiences daily bouts of anoxia/hypoxia with the tide cycle and shows multiple metabolic and enzymatic adaptations that support anaerobiosis. This study investigated the kinetic, physical and regulatory properties of G6PDH from hepatopancreas of L. littorea to determine if the enzyme is differentially regulated in response to anoxia, thereby providing altered pentose phosphate pathway functionality under oxygen stress conditions. Several kinetic properties of G6PDH differed significantly between aerobic and 24 h anoxic conditions; compared with the aerobic state, anoxic G6PDH (assayed at pH 8) showed a 38% decrease in K m G6P and enhanced inhibition by urea, whereas in pH 6 assays K m NADP and maximal activity changed significantly between the two states. The mechanism underlying anoxia-responsive changes in enzyme properties proved to be a change in the phosphorylation state of G6PDH. This was documented with immunoblotting using an anti-phosphoserine antibody, in vitro incubations that stimulated endogenous protein kinases versus protein phosphatases and significantly changed K m G6P, and phosphorylation of the enzyme with (32)P-ATP. All these data indicated that the aerobic and anoxic forms of G6PDH were the high and low phosphate forms, respectively, and that phosphorylation state was modulated in response to selected endogenous protein kinases (PKA or PKG) and protein phosphatases (PP1 or PP2C). Anoxia-induced changes in the phosphorylation state of G6PDH may facilitate sustained or increased production of NADPH to enhance antioxidant defense during long term anaerobiosis and/or during the transition

  5. Determinants of Cofactor Specificity for the Glucose-6-Phosphate Dehydrogenase from Escherichia coli: Simulation, Kinetics and Evolutionary Studies

    PubMed Central

    Fuentealba, Matias; Muñoz, Rodrigo; Maturana, Pablo; Krapp, Adriana; Cabrera, Ricardo

    2016-01-01

    Glucose 6-Phosphate Dehydrogenases (G6PDHs) from different sources show varying specificities towards NAD+ and NADP+ as cofactors. However, it is not known to what extent structural determinants of cofactor preference are conserved in the G6PDH family. In this work, molecular simulations, kinetic characterization of site-directed mutants and phylogenetic analyses were used to study the structural basis for the strong preference towards NADP+ shown by the G6PDH from Escherichia coli. Molecular Dynamics trajectories of homology models showed a highly favorable binding energy for residues K18 and R50 when interacting with the 2'-phosphate of NADP+, but the same residues formed no observable interactions in the case of NAD+. Alanine mutants of both residues were kinetically characterized and analyzed with respect to the binding energy of the transition state, according to the kcat/KM value determined for each cofactor. Whereas both residues contribute to the binding energy of NADP+, only R50 makes a contribution (about -1 kcal/mol) to NAD+ binding. In the absence of both positive charges the enzyme was unable to discriminate NADP+ from NAD+. Although kinetic data is sparse, the observed distribution of cofactor preferences within the phylogenetic tree is sufficient to rule out the possibility that the known NADP+-specific G6PDHs form a monophyletic group. While the β1-α1 loop shows no strict conservation of K18, (rather, S and T seem to be more frequent), in the case of the β2-α2 loop, different degrees of conservation are observed for R50. Noteworthy is the fact that a K18T mutant is indistinguishable from K18A in terms of cofactor preference. We conclude that the structural determinants for the strict discrimination against NAD+ in the case of the NADP+-specific enzymes have evolved independently through different means during the evolution of the G6PDH family. We further suggest that other regions in the cofactor binding pocket, besides the β1-α1 and β2-α2

  6. Glucose-6-phosphate dehydrogenase deficiency among children attending the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria

    PubMed Central

    Isaac, IZ; Mainasara, AS; Erhabor, Osaro; Omojuyigbe, ST; Dallatu, MK; Bilbis, LS; Adias, TC

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common human enzyme deficiencies in the world. It is particularly common in populations living in malaria-endemic areas, affecting more than 400 million people worldwide. This present study was conducted with the aim of determining the prevalence of G6PD deficiency among children visiting the Emergency Paediatric Unit of Usmanu Danfodiyo University Teaching Hospital for pediatric-related care. The study included 118 children, made up of 77 (65.3%) males and 41 (34.7%) females aged ≤5 years with mean age of 3.26 ± 1.90 years. Randox G6PD quantitative in vitro test screening was used for the diagnosis of G6PD deficiency. Of the 118 children tested, 17 (14.4%) were G6PD-deficient. Prevalence of G6PD deficiency was concentrated predominantly among male children (22.1%). Male sex was significantly correlated with G6PD deficiency among the children studied (r = 7.85, P = 0.01). The highest prevalence occurred among children in the 2- to 5-year age-group. Of the 17 G6PD-deficient children, twelve (70.2%) were moderately deficient, while five (29.4%) were severely deficient. Blood film from G6PD-deficient children indicated the following morphological changes; Heinz bodies, schistocytes, target cells, nucleated red cells, spherocytes, and polychromasia. This present study has shown a high prevalence of G6PD deficiency among children residing in Sokoto in the northwestern geopolitical zone of Nigeria. The study indicated a male sex bias in the prevalence of G6PD deficiency among the children studied. There is a need for the routine screening of children for G6PD deficiency in our environment, to allow for evidence-based management of these children and to ensure the avoidance of food, drugs, and infective agents that can potentially predispose these children to oxidative stress as well as diseases that deplete micronutrients that protect against oxidative stress. There is need to build capacity in our

  7. Prevalence and molecular basis of glucose-6-phosphate dehydrogenase deficiency in Afghan populations: implications for treatment policy in the region

    PubMed Central

    2013-01-01

    Background Glucose-6-phosphate dehydrogenase deficiency (G6PD), an x-linked inherited enzymopathy, is a barrier to malaria control because primaquine cannot be readily applied for radical cure in individuals with the condition. In endemic areas, including in Afghanistan, the G6PD status of vivax patients is not routinely determined so the drug is rarely, if ever, prescribed even though it is included as a recommended treatment in local, regional and global guidelines. This study assessed the prevalence and genotype of G6PD deficiency in Afghan populations and examined the need for routine G6PD testing as a malaria treatment and control tool. Methods A cross-sectional household survey was conducted using random sampling in five Afghan cities to determine the prevalence of G6PD deficiency in Afghan ethnic groups. Filter-paper blood spots were analysed for phenotypic G6PD deficiency using a fluorescent spot test. Molecular analysis was conducted to identify the genetic basis of the disorder. Results Overall, 45/1,436 (3.1%) people were G6PD deficient, 36/728 (5.0%) amongst males and 9/708 (1.3%) amongst females. Amongst males the prevalence was highest in the Pashtun ethnic group (10%, 26/260) while in Tajik males it was 8/250 (3.2%); in Hazara males it was 1/77 (1.3%) and in Uzbek males is was 0/125. Genetic testing in those with deficiency showed that all were of the Mediterranean type (Med-) characterized by a C-T change at codon 563 of the G6PD gene. Conclusion Prevalence of G6PD deficiency in Afghanistan varies considerably by ethnic group and is predominantly of the Mediterranean type. G6PD deficient individuals are susceptible to potentially severe and life-threatening haemolysis after standard primaquine treatment. If the aim of increasing access to radical treatment of vivax is to be successful reliable G6PD testing needs to be made routinely available within the health system. PMID:23834949

  8. Effect of high glucose concentrations on human erythrocytes in vitro

    PubMed Central

    Viskupicova, Jana; Blaskovic, Dusan; Galiniak, Sabina; Soszyński, Mirosław; Bartosz, Grzegorz; Horakova, Lubica; Sadowska-Bartosz, Izabela

    2015-01-01

    Exposure to high glucose concentrations in vitro is often employed as a model for understanding erythrocyte modifications in diabetes. However, effects of such experiments may be affected by glucose consumption during prolonged incubation and changes of cellular parameters conditioned by impaired energy balance. The aim of this study was to compare alterations in various red cell parameters in this type of experiment to differentiate between those affected by glycoxidation and those affected by energy imbalance. Erythrocytes were incubated with 5, 45 or 100 mM glucose for up to 72 h. High glucose concentrations intensified lipid peroxidation and loss of activities of erythrocyte enzymes (glutathione S-transferase and glutathione reductase). On the other hand, hemolysis, eryptosis, calcium accumulation, loss of glutathione and increase in the GSSG/GSH ratio were attenuated by high glucose apparently due to maintenance of energy supply to the cells. Loss of plasma membrane Ca2+-ATPase activity and decrease in superoxide production were not affected by glucose concentration, being seemingly determined by processes independent of both glycoxidation and energy depletion. These results point to the necessity of careful interpretation of data obtained in experiments, in which erythrocytes are subject to treatment with high glucose concentrations in vitro. PMID:26141922

  9. Unsuspected glucose-6-phosphate dehydrogenase deficiency presenting as symptomatic methemoglobinemia with severe hemolysis after fava bean ingestion in a 6-year-old boy.

    PubMed

    Odièvre, Marie-Hélène; Danékova, Névéna; Mesples, Bettina; Chemouny, Myriam; Couque, Nathalie; Parez, Nathalie; Ducrocq, Rolande; Elion, Jacques

    2011-05-01

    We report the occurrence of symptomatic methemoglobinemia in a previously healthy boy, who presented with severe acute hemolysis after fava bean ingestion. The methemoglobinemia revealed a previously unrecognized glucose-6-phosphate dehydrogenase (G6PD) deficiency. We discuss the pathophysiology of severe methemoglobinemia when associated with acute hemolysis, favism, and the common African G6PD A-variant [G6PD, VAL68MET, ASN126ASP]. In conclusion, screening for G6PD deficiency must be considered in symptomatic methemoglobinemia, especially in young boys, when associated with intravascular hemolysis. PMID:21479984

  10. Immunological identification of the human erythrocyte glucose transporter.

    PubMed Central

    Sogin, D C; Hinkle, P C

    1980-01-01

    A rabbit antibody against the human erythrocyte glucose transporter was purified by affinity chromatography and used to determine the distribution of transporter on polyacrylamide gels after electrophoresis in sodium dodecyl sulfate. Fresh erythrocyte ghosts showed transporter only at the broad 55,000 Mr band, as did the isolated transporter. HeLa cell plasma membranes showed a similar band of crossreacting material at Mr 55,000. The amount of crossreacting material in human erythrocyte ghosts and in plasma membranes from human HeLa cells and mouse L-1210 cells was determined in an enzyme-linked immunosorbent assay which gave results consistent with the extent of glucose-reversible binding of cytochalasin B. PMID:6934506

  11. The fate of 14C in glucose 6-phosphate synthesized from [1-14C]Ribose 5-phosphate by enzymes of rat liver.

    PubMed Central

    Williams, J F; Clark, M G; Blackmore, P F

    1978-01-01

    1. Glucose 5-phosphate was synthesized from ribose 5-phosphate by an enzyme extract prepared from an acetone-dried powder of rat liver. Three rates of ribose 5-phosphate utilization were observed during incubation for 17 h. An analysis of intermediates and products formed throughout the incubation revealed that as much as 20% of the substrate carbon could not be accounted for. 2. With [1-14C]ribose 5-phosphate as substrate, the specific radioactivity of [14C]glucose 6-phosphate formed was determined at 1, 2, 5 and 30 min and 3, 8 and 17 h. It increased rapidly to 1.9-fold the initial specific radioactivity of [1-14C]ribose 5-phosphate at 3 h and then decreased to a value approximately equal to that of the substrate at 6 h, and finally at 17 h reached a value 0.8-fold that of the initial substrate [1-14C]ribose 5-phosphate. 3. The specific radioactivity of [14C]ribose 5-phosphate decreased to approx. 50% of its inital value during the first 3 h of the incubation and thereafter remained unchanged. 4. The distribution of 14C in the six carbon atoms of [14C]glucose 6-phosphate formed from [1-14C]ribose 5-phosphate at 1, 2, 5 and 30 min and 3, 8 and 17 h was determined. The early time intervals (1--30 min) were characterized by large amounts of 14C in C-2 and in C-6 and with C-1 and C-3 being unlabelled. In contrast, the later time intervals (3--17 h) were characterized by the appearance of 14C in C-1 and C-3 and decreasing amounts of 14C in C-2 and C-6. 5. It is concluded that neither the currently accepted reaction sequence for the non-oxidative pentose phosphate pathway nor the 'defined' pentose phosphate-cycle mechanism can be reconciled with the labelling patterns observed in glucose 6-phosphate formed during the inital 3 h of the incubation. PMID:728109

  12. Marked differences in drug-induced methemoglobinemia in sheep are not due to RBC glucose-6-phosphate dehydrogenase, reduced glutathione, or methemoglobin reductase activity

    SciTech Connect

    Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.; Woodard, C.L.; Leonard, D.A.

    1993-05-13

    Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, and differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.

  13. Site directed immobilization of glucose-6-phosphate dehydrogenase via thiol-disulfide interchange: influence on catalytic activity of cysteines introduced at different positions.

    PubMed

    Simons, J R; Mosisch, M; Torda, A E; Hilterhaus, L

    2013-08-10

    This study shows the effect of site-directed enzyme immobilization upon the enzyme activity of covalently bound glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. Immobilization points were introduced at sterically accessible sites in order to control the protein's orientation and twice as much activity was recovered in comparison to conventionally immobilized enzyme. Immobilization of G6PDH via genetically engineered cysteine provided a simple, but effective method to control the immobilization process. G6PDH variants with cysteine close to the active center (L218C), close to the dimer interface (D205C) as well as far from the active center (D453C) showed changes in activity and the efficacy of immobilization. PMID:23770076

  14. A Novel de novo Mutation in the G6PD Gene in a Korean Boy with Glucose-6-phosphate Dehydrogenase Deficiency: Case Report.

    PubMed

    Jang, Mi-Ae; Kim, Ji-Yoon; Lee, Ki-O; Kim, Sun-Hee; Koo, Hong Hoe; Kim, Hee-Jin

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive hemolytic anemia caused by a mutation in the G6PD gene on Xq28. Herein, we describe a Korean boy with G6PD deficiency resulting from a novel mutation in G6PD. A 20-month-old boy with hemolytic anemia was referred for molecular diagnosis. He had no relevant family history. The G6PD activity was severely decreased at 0.2 U/g Hb (severe deficiency). Direct sequencing analyses on the G6PD gene revealed that he was hemizygous for a novel missense variant, c.1187C>G (p.Pro396Arg), in exon 10 of G6PD. Family study involving his parents revealed the de novo occurrence of the mutation. This is the first report of genetically confirmed G6PD deficiency in Korea. PMID:26275698

  15. Molecular Epidemiological Survey of Glucose-6-Phosphate Dehydrogenase Deficiency and Thalassemia in Uygur and Kazak Ethnic Groups in Xinjiang, Northwest China.

    PubMed

    Han, Luhao; Su, Hai; Wu, Hao; Jiang, Weiying; Chen, Suqin

    2016-06-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency and thalassemia occur frequently in tropical and subtropical regions, while the prevalence of relationship between the two diseases in Xinjiang has not been reported. We aimed to determine the prevalence of these diseases and clarify the relationship between genotypes and phenotypes of the two diseases in the Uygur and Kazak ethnic groups in Xinjiang. We measured G6PD activity by G6PD:6PGD (glucose acid-6-phosphate dehydrogenase) ratio, identified the gene variants of G6PD and α- and β-globin genes by polymerase chain reaction (PCR)-DNA sequencing and gap-PCR and compared these variants in different ethnic groups in Xinjiang with those adjacent to it. Of the 149 subjects with molecular analysis of G6PD deficiency conducted, a higher prevalence of the combined mutations c.1311C > T/IVSXI + 93T > C and IVSXI + 93T > C, both with normal enzymatic activities, were observed in the Uygur and Kazak subjects. A case of rare mutation HBB: c.135delC [codon 44 (-C) in the heterozygous state], a heterozygous case of HBB: c.68A > G [Hb G-Taipei or β22(B4)Glu→Gly] and several common single nucleotide polymorphisms (SNPs) were found on the β-globin gene. In conclusion, G6PD deficiency with pathogenic mutations and three common α-thalassemia (α-thal) [- -(SEA), -α(3.7) (rightward), -α(4.2) (leftward)] deletions and point mutations of the α-globin gene were not detected in the present study. The average incidence of β-thalassemia (β-thal) in Uygurs was 1.45% (2/138) in Xinjiang. The polymorphisms of G6PD and β-globin genes might be useful genetic markers to trace the origin and migration of the Uygur and Kazak in Xinjiang. PMID:26950205

  16. Light modulation of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase by photosynthetic electron flow in pea chloroplasts

    SciTech Connect

    Akamba, L.M.; Anderson, L.E.

    1981-02-01

    Light activation of NADP-linked glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) and light inactivation of glucose-6-P dehydrogenase (EC 1.1.1.49) appear to be modulated within pea leaf chloroplasts by mediators which are reduced by photosynthetic electron flow from the photosystem I reaction center. Dichlorophenyl-1,1-dimethylurea inhibition of this modulation can be completely reversed by ascorbate plus 2,6-dichlorophenolindophenol in broken chloroplasts, but not in intact chloroplasts. Intact chloroplasts are impermeable to 2,6-dichlorophenolindophenol at pH 7.5. Studies on the effect of light in reconstituted chloroplasts with photosystem I-enriched particles in the place of whole thylakoids revealed that photosystem I participants in the light modulation of NADP-linked glyceraldehyde-3-P dehydrogenase and of glucose-6-P dehydrogenase.

  17. The effect of bilipolinum (Adipiodon), an iodine contrast medium on erythrocyte enzymes.

    PubMed

    Kwiatkowska, J; Kwiatkowska, D; Dawiskiba, J

    1980-01-01

    Bilipolinum (Adipiodon), iodine contrast medium used in cholangiography, showed an inhibitory effect on the activity of human erythrocyte phosphohexoseisomerase, phosphofructokinase, aldolase and glucose-6-phosphate dehydrogenase. The addition of glucose metabolites (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bis-phosphate, pyruvate and lactate) abolished the inhibitory effect of Bilipolinum. In the presence of Bilipolinum purified erythrocyte phosphofructokinase showed a decreased affinity towards substrate, modified allosteric properties and reduced stability at pH below 7.5. Purified erythrocyte glucose-6-phosphate dehydrogenase was also affected by Bilipolinum and its affinity for NADP was decreased. Testing of erythrocyte enzymes in the evaluation of toxicity of iodine contrast media is discussed. PMID:6452104

  18. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma

    PubMed Central

    Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-01-01

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target. PMID:25945836

  19. Molecular Characterization of Glucose-6-phosphate Dehydrogenase Deficiency in Families from the Republic of Macedonia and Genotype-phenotype Correlation

    PubMed Central

    Cherepnalkovski, Anet Papazovska; Zemunik, Tatijana; Glamocanin, Sofijanka; Piperkova, Katica; Gunjaca, Ivana; Kocheva, Svetlana; Jovanova, Biljana Coneska; Krzelj, Vjekoslav

    2015-01-01

    Introduction: Glucose-6-phospahte dehydrogenase deficiency (G6PD) is one of the most common inherited disorders affecting around 400 million people worldwide. Molecular analysis of the G6PD gene identified more than 140 distinct mutations, the majority being single base missense mutations. G6PD Mediterranean is the most common variant found in populations of the Mediterranean area. Aim: The aim of our study was to perform molecular characterization of G6PD deficiency in families from the Republic of Macedonia and correlate the findings to disease phenotype. Patients and methods: Six patients and seven other family members were selected for genetic characterization, the selection procedure involved clinical evaluation and G6PD quantitative testing. All patients were first screened for the Mediterranean mutation, and subsequently for the Seattle mutation. Mutations were detected using PCR amplification and appropriate restriction endonuclease cleavage. Results: Four hemizygote and 3 heterozygous carriers for G6PD Mediterranean were detected. All G6PD deficient patients from this group showed clinical picture of hemolysis, and in 66.6% neonatal jaundice was confirmed based on history data. To our knowledge, this is the first study concerned with molecular aspects of the G6PD deficiency in R. Macedonia. Conclusion: This study represents a step towards a more comprehensive genetic evaluation in our population and better understanding of the health issues involved. PMID:26622077

  20. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+.

    PubMed

    Levy, H R; Vought, V E; Yin, X; Adams, M J

    1996-02-01

    Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides can utilize either NADP or NAD as coenzyme. The enzyme's three-dimensional structure has been solved (Rowland et al., 1994, Structure 2, 1073-1087) and shown to contain a conventional nucleotide binding domain. NADP+ was modeled into the structure by superimposing the beta alpha beta domain and that of coenzyme-bound 6-phosphogluconate dehydrogenase (Adams et al., 1994, Structure 2, 651-658), enabling us to identify Arg-46 as a potentially important residue for NADP+ binding. Using site-directed mutagenesis, we constructed mutant enzymes in which Arg-46 was replaced by glutamine (R46Q) and alanine (R46A) and examined their kinetic properties. The principal effects in these mutant enzymes were that the Km and Ki values for NADP+ increased by 2 to 3 orders of magnitude over those of the wild-type enzyme. No other kinetic constant was altered more than 6.5-fold. Changing this single amino acid leads to mutant glucose-6-phosphate dehydrogenases with coenzyme specificities that favor NAD+, whereas the wild-type enzyme prefers NADP+ as coenzyme. These results confirm that Arg-46 plays a key role in NADP+ binding by contributing a positively charged planar residue that interacts primarily with the 2'-adenosine phosphate. The Arg residue corresponding to Arg-46 in L. mesenteroides glucose-6-phosphate dehydrogenase is conserved in all glucose-6-phosphate dehydrogenases and, presumably, plays the same role in all these enzymes. PMID:8579362

  1. Aggregation ability of erythrocytes of patients with coronary heart disease depending on different glucose concentration

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Kirichuk, Vyacheslav F.; Denisova, Tatyana P.; Tuchin, Valery V.

    2002-07-01

    The aggregation ability of erythrocytes of patients with coronary heart disease comparing to practically healthy persons and patients with coronary heart disease combined with non insulin dependent diabetes mellitus depending on different glucose concentration in unguentums of blood incubates with the help of computer microphotometer - visual analyzer was studied. Two-phase behavior of erythrocytes size changing of practically healthy persons depending on glucose concentration in an incubation medium and instability erythrocyte systems of a whole blood to the influence of high glucose concentration were revealed. Influence of high glucose concentration on aggregation ability of erythrocytes of patients with coronary heart disease and its combination with non insulin dependent diabetes mellitus was revealed.

  2. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    PubMed Central

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  3. Red blood cell indices and prevalence of hemoglobinopathies and glucose 6 phosphate dehydrogenase deficiencies in male Tanzanian residents of Dar es Salaam.

    PubMed

    Mwakasungula, Solomon; Schindler, Tobias; Jongo, Said; Moreno, Elena; Kamaka, Kasimu; Mohammed, Mgeni; Joseph, Selina; Rashid, Ramla; Athuman, Thabit; Tumbo, Anneth Mwasi; Hamad, Ali; Lweno, Omar; Tanner, Marcel; Shekalaghe, Seif; Daubenberger, Claudia A

    2014-01-01

    Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α(+)-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α(+)-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α(+)-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α(+)-thalassemia were identified based on their MCH value < 28.6 pg. PMID:25755846

  4. A New Glucose-6-Phosphate Dehydrogenase Variant, G6PD Orissa (44 Ala→Gly), is the Major Polymorphic Variant in Tribal Populations in India

    PubMed Central

    Kaeda, J. S.; Chhotray, G. P.; Ranjit, M. R.; Bautista, J. M.; Reddy, P. H.; Stevens, D.; Naidu, J. M.; Britt, R. P.; Vulliamy, T. J.; Luzzatto, L.; Mason, P. J.

    1995-01-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been endemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala→Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser→Phe) variant. The K of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. ImagesFigure 2 PMID:8533762

  5. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency.

    PubMed Central

    Filosa, S.; Giacometti, N.; Wangwei, C.; De Mattia, D.; Pagnini, D.; Alfinito, F.; Schettini, F.; Luzzatto, L.; Martini, G.

    1996-01-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G-->A) and two with G6PD Bari (1187C-->T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8808605

  6. An In vivo Drug Screening Model Using Glucose-6-Phosphate Dehydrogenase Deficient Mice to Predict the Hemolytic Toxicity of 8-Aminoquinolines

    PubMed Central

    Zhang, Peng; Gao, Xiugong; Ishida, Hiroshi; Amnuaysirikul, Jack; Weina, Peter J.; Grogl, Max; O'Neil, Michael T.; Li, Qigui; Caridha, Diana; Ohrt, Colin; Hickman, Mark; Magill, Alan J.; Ray, Prabhati

    2013-01-01

    Anti-malarial 8-aminoquinolines drugs cause acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDD). Efforts to develop non-hemolytic 8-aminoquinolines have been severely limited caused by the lack of a predictive in vivo animal model of hemolytic potential that would allow screening of candidate compounds. This report describes a G6PDD mouse model with a phenotype closely resembling the G6PDD phenotype found in the African A-type G6PDD human. These G6PDD mice, given different doses of primaquine, which used as a reference hemolytic drug, display a full array of hemolytic anemia parameters, consistently and reproducibly. The hemolytic and therapeutic indexes were generated for evaluation of hemotoxicity of drugs. This model demonstrated a complete hemolytic toxicity response to another known hemolytic antimalarial drug, pamaquine, but no response to non-hemolytic drugs, chloroquine and mefloquine. These results suggest that this model is suitable for evaluation of selected 8-AQ type candidate antimalarial drugs for their hemolytic potential. PMID:23530079

  7. Glucose-6-phosphate dehydrogenase plays a central role in the response of tomato (Solanum lycopersicum) plants to short and long-term drought.

    PubMed

    Landi, Simone; Nurcato, Roberta; De Lillo, Alessia; Lentini, Marco; Grillo, Stefania; Esposito, Sergio

    2016-08-01

    The present study was undertaken to investigate the expression, occurrence and activity of glucose 6 phosphate dehydrogenase (G6PDH - EC 1.1.1.49), the key-enzyme of the Oxidative Pentose Phosphate Pathway (OPPP), in tomato plants (Solanum lycopersicum cv. Red Setter) exposed to short- and long-term drought stress. For the first time, drought effects have been evaluated in plants under different growth conditions: in hydroponic laboratory system, and in greenhouse pots under controlled conditions; and in open field, in order to evaluate drought response in a representative agricultural environment. Interestingly, changes observed appear strictly associated to the induction of well known stress response mechanisms, such as the increase of proline synthesis, accumulation of chaperone Hsp70, and ascorbate peroxidase. Results show significant increase in total activity of G6PDH, and specifically in expression and occurrence of cytosolic isoform (cy-G6PDH) in plants grown in any cultivation system upon drought. Intriguingly, the results clearly suggest that abscissic acid (ABA) pathway and signaling cascade (protein phosphatase 2C PP2C) could be strictly related to increased G6PDH expression, occurrence and activities. We hypothesized for G6PDH a specific role as one of the main reductants' suppliers to counteract the effects of drought stress, in the light of converging evidences given by young and adult tomato plants under stress of different duration and intensity. PMID:27085599

  8. Two new mutations of the glucose-6-phosphate dehydrogenase (G6PD) gene associated with haemolytic anaemia: clinical, biochemical and molecular relationships.

    PubMed

    Zarza, R; Pujades, A; Rovira, A; Saavedra, R; Fernandez, J; Aymerich, M; Vives Corrons, J L

    1997-09-01

    In two unrelated Spanish males with glucose-6-phosphate dehydrogenase (G6PD) deficiency and haemolytic anaemia, and two different novel point mutations in the G6PD gene, have been identified. A C to T transition at nucleotide 406 resulting in a (136) Arg to Cys substitution and a C to G transition at nucleotide 1155 resulting in a (385) Cys to Trp substitution. These two molecular defects have not been described before and are designated G6PD Valladolid 406 C-->T and G6PD Madrid 1155 C-->G. In vitro biochemical characterization of both mutant enzymes showed important differences in their molecular properties according to their different clinical behaviour. In G6PD Valladolid, the mutation of which is located in exon 5, the normal in vitro heat stability may explain its mild clinical expression (low-grade haemolysis interrupted by an acute haemolytic crisis at age 70). In G6PD Madrid, the mutation, located in exon 10, results in a deficient variant associated with neonatal jaundice and life-long chronic nonspherocytic haemolytic anaemia (CNSHA). This finding further emphasizes the importance of this specific region of the G6PD gene in the stabilization of the G6PD molecule. Putative relationships between these single point mutations and the molecular properties of the mutant enzymes are also discussed. PMID:9332310

  9. Hereditary nonspherocytic hemolytic anemia caused by red cell glucose-6-phosphate isomerase (GPI) deficiency in two Portuguese patients: Clinical features and molecular study.

    PubMed

    Manco, Licínio; Bento, Celeste; Victor, Bruno L; Pereira, Janet; Relvas, Luís; Brito, Rui M; Seabra, Carlos; Maia, Tabita M; Ribeiro, M Letícia

    2016-09-01

    Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme. PMID:27519939

  10. Overcompensation in Response to Herbivory in Arabidopsis thaliana: The Role of Glucose-6-Phosphate Dehydrogenase and the Oxidative Pentose-Phosphate Pathway

    PubMed Central

    Siddappaji, Madhura H.; Scholes, Daniel R.; Bohn, Martin; Paige, Ken N.

    2013-01-01

    That some plants benefit from being eaten is counterintuitive, yet there is now considerable evidence demonstrating enhanced fitness following herbivory (i.e., plants can overcompensate). Although there is evidence that genetic variation for compensation exists, little is known about the genetic mechanisms leading to enhanced growth and reproduction following herbivory. We took advantage of the compensatory variation in recombinant inbred lines of Arabidopsis thaliana, combined with microarray and QTL analyses to assess the molecular basis of overcompensation. We found three QTL explaining 11.4, 10.1, and 26.7% of the variation in fitness compensation, respectively, and 109 differentially expressed genes between clipped and unclipped plants of the overcompensating ecotype Columbia. From the QTL/microarray screen we uncovered one gene that plays a significant role in overcompensation: glucose-6-phosphate-1-dehydrogenase (G6PDH1). Knockout studies of Transfer-DNA (T-DNA) insertion lines and complementation studies of G6PDH1 verify its role in compensation. G6PDH1 is a key enzyme in the oxidative pentose-phosphate pathway that plays a central role in plant metabolism. We propose that plants capable of overcompensating reprogram their transcriptional activity by up-regulating defensive genes and genes involved in energy metabolism and by increasing DNA content (via endoreduplication) with the increase in DNA content feeding back on pathways involved in defense and metabolism through increased gene expression. PMID:23934891

  11. Rapid and Reliable Detection of Glucose-6-Phosphate Dehydrogenase (G6PD) Gene Mutations in Han Chinese Using High-Resolution Melting Analysis

    PubMed Central

    Yan, Jing-bin; Xu, Hong-ping; Xiong, Can; Ren, Zhao-rui; Tian, Guo-li; Zeng, Fanyi; Huang, Shu-zhen

    2010-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked inherited disease, is one of the most common enzymopathies and affects over 400 million people worldwide. In China at least 21 distinct point mutations have been identified so far. In this study high-resolution melting (HRM) analysis was used to screen for G6PD mutations in 260 unrelated Han Chinese individuals, and the rapidity and reliability of this method was investigated. The mutants were readily differentiated by using HRM analysis, which produced distinct melting curves for each tested mutation. Interestingly, G1388A and G1376T, the two most common variants accounting for 50% to 60% of G6PD deficiency mutations in the Chinese population, could be differentiated in a single reaction. Further, two G6PD mutations not previously reported in the Chinese population were identified in this study. One of these mutations, designated “G6PD Jiangxi G1340T,” involved a G1340T substitution in exon 11, predicting a Gly447Val change in the protein. The other mutation involved a C406T substitution in exon 5. The frequencies of the common polymorphism site C1311T/IVS (intervening sequence) XI t93c between patients with G6PD and healthy volunteers were not significantly different. Thus, HRM analysis will be a useful alternative for screening G6PD mutations. PMID:20203002

  12. Rapid and reliable detection of glucose-6-phosphate dehydrogenase (G6PD) gene mutations in Han Chinese using high-resolution melting analysis.

    PubMed

    Yan, Jing-bin; Xu, Hong-ping; Xiong, Can; Ren, Zhao-rui; Tian, Guo-li; Zeng, Fanyi; Huang, Shu-zhen

    2010-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency, an X-linked inherited disease, is one of the most common enzymopathies and affects over 400 million people worldwide. In China at least 21 distinct point mutations have been identified so far. In this study high-resolution melting (HRM) analysis was used to screen for G6PD mutations in 260 unrelated Han Chinese individuals, and the rapidity and reliability of this method was investigated. The mutants were readily differentiated by using HRM analysis, which produced distinct melting curves for each tested mutation. Interestingly, G1388A and G1376T, the two most common variants accounting for 50% to 60% of G6PD deficiency mutations in the Chinese population, could be differentiated in a single reaction. Further, two G6PD mutations not previously reported in the Chinese population were identified in this study. One of these mutations, designated "G6PD Jiangxi G1340T," involved a G1340T substitution in exon 11, predicting a Gly447Val change in the protein. The other mutation involved a C406T substitution in exon 5. The frequencies of the common polymorphism site C1311T/IVS (intervening sequence) XI t93c between patients with G6PD and healthy volunteers were not significantly different. Thus, HRM analysis will be a useful alternative for screening G6PD mutations. PMID:20203002

  13. Glucose-6-Phosphate Dehydrogenase Deficiency in an Endemic Area for Malaria in Manaus: A Cross-Sectional Survey in the Brazilian Amazon

    PubMed Central

    Santana, Marli Stela; de Lacerda, Marcus Vinícius Guimarães; Barbosa, Maria das Graças Vale; Alecrim, Wilson Duarte; Alecrim, Maria das Graças Costa

    2009-01-01

    Background There is a paucity of information regarding glucose-6-phosphate dehydrogenase (G6PD) deficiency in endemic areas for malaria in Latin America. Methodology/Principal Findings This study determined the prevalence of the G6PD deficiency in 200 male non-consanguineous individuals residing in the Ismail Aziz Community, on the outskirts of Manaus (Brazilian Amazon). Six individuals (3%) were deficient using the qualitative Brewer's test. Gel electrophoresis showed that five of these patients were G6PD A−. The deficiency was not associated with the ethnic origin (P = 0.571). In a multivariate logistic regression analysis, G6PD deficiency protected against three or more episodes of malaria (P = 0.049), independently of the age, and was associated with a history of jaundice (P = 0.020) and need of blood transfusion (P = 0.045) during previous treatment for malarial infection, independently of the age and the previous malarial exposure. Conclusions/Significance The frequency of G6PD deficiency was similar to other studies performed in Brazil and the finding of a predominant G6PD A− variant will help the clinical management of patients with drug-induced haemolysis. The history of jaundice and blood transfusion during previous malarial infection may trigger the screening of patients for G6PD deficiency. The apparent protection against multiple malarial infections in an area primarily endemic for Plasmodium vivax needs further investigation. PMID:19370159

  14. Isocitrate Dehydrogenase Is Important for Nitrosative Stress Resistance in Cryptococcus neoformans, but Oxidative Stress Resistance Is Not Dependent on Glucose-6-Phosphate Dehydrogenase▿

    PubMed Central

    Brown, Sarah M.; Upadhya, Rajendra; Shoemaker, James D.; Lodge, Jennifer K.

    2010-01-01

    The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or maintenance of a reduced, functional form. The need for NADPH during oxidative stress is well established in many systems, but a role in resistance to nitrosative stress has not been as well characterized. In this study we investigated the roles of two sources of NADPH, glucose-6-phosphate dehydrogenase (Zwf1) and NADP+-dependent isocitrate dehydrogenase (Idp1), in production of NADPH and resistance to oxidative and nitrosative stress. Deletion of ZWF1 in C. neoformans did not result in an oxidative stress sensitivity phenotype or changes in the amount of NADPH produced during oxidative stress compared to those for the wild type. Deletion of IDP1 resulted in greater sensitivity to nitrosative stress than to oxidative stress. The amount of NADPH increased 2-fold over that in the wild type during nitrosative stress, and yet the idp1Δ strain accumulated more mitochondrial damage than the wild type during nitrosative stress. This is the first report of the importance of Idp1 and NADPH for nitrosative stress resistance. PMID:20400467

  15. Red blood cell indices and prevalence of hemoglobinopathies and glucose 6 phosphate dehydrogenase deficiencies in male Tanzanian residents of Dar es Salaam

    PubMed Central

    Mwakasungula, Solomon; Schindler, Tobias; Jongo, Said; Moreno, Elena; Kamaka, Kasimu; Mohammed, Mgeni; Joseph, Selina; Rashid, Ramla; Athuman, Thabit; Tumbo, Anneth Mwasi; Hamad, Ali; Lweno, Omar; Tanner, Marcel; Shekalaghe, Seif; Daubenberger, Claudia A

    2014-01-01

    Hemoglobinopathies, disorders of hemoglobin structure and production, are one of the most common monogenic disorders in humans. Glucose 6 phosphate dehydrogenase deficiency (G6PD) is an inherited enzymopathy resulting in increased oxygen stress susceptibility of red blood cells. The distributions of these genetic traits in populations living in tropical and subtropical regions where malaria has been or is still present are thought to result from survival advantage against severe life threatening malaria disease. 384 male Tanzanian volunteers residing in Dar es Salaam were typed for G6PD, sickle cell disease and α-thalassemia. The most prominent red blood cell polymorphism was heterozygous α+-thalassemia (37.8%), followed by the G6PD(A) deficiency (16.4%), heterozygous sickle cell trait (15.9%), G6PD(A-) deficiency (13.5%) and homozygous α+-thalassemia (5.2%). 35%, 45%, 17% and 3% of these volunteers were carriers of wild type gene loci, one, two or three of these hemoglobinopathies, respectively. We find that using a cut off value of 28.6 pg. for mean corpuscular hemoglobin (MCH), heterozygous α+-thalassemia can be predicted with a sensitivity of 84% and specificity of 72% in this male population. All subjects carrying homozygous α+-thalassemia were identified based on their MCH value < 28.6 pg. PMID:25755846

  16. Increased activity of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase in purified cell suspensions and single cells from the uterine cervix in cervical intraepithelial neoplasia.

    PubMed Central

    Jonas, S. K.; Benedetto, C.; Flatman, A.; Hammond, R. H.; Micheletti, L.; Riley, C.; Riley, P. A.; Spargo, D. J.; Zonca, M.; Slater, T. F.

    1992-01-01

    The activities of 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase have been measured in squamous epithelial cells of the uterine cervix from normal patients and cases of cervical intraepithelial neoplasia (CIN). A biochemical cycling method, which uses only simple equipment and is suited to routine use and to automation, was applied to cells separated by gradient centrifugation. In addition, cells were examined cytochemically, and the intensity of staining in the cytoplasm of single whole cells was measured using computerised microcytospectrophotometry. Twenty per cent of cells in samples from normal patients (n=61) showed staining intensities above an extinction of 0.15 at 540 nm, compared to 71% of cases of CIN 1 (n=14), 91% of cases of CIN 2 (n=11) and 67% of cases of CIN 3 (n=15). The cytochemical data do not allow definitive distinctions to be made between different grades of CIN whereas the biochemical assay applied to cell lysates shows convincing differences between normal samples and cases of CIN. There are no false negatives for CIN 3 (n=14) and CIN 2 (n=10) and 11% false negatives for CIN 1 (n=9) and 14% of false positives for normal cases (n=21). The results of this preliminary study with reference to automation are discussed [corrected]. Images Figure 1 PMID:1637668

  17. Somatic-cell selection is a major determinant of the blood-cell phenotype in heterozygotes for glucose-6-phosphate dehydrogenase mutations causing severe enzyme deficiency

    SciTech Connect

    Filosa, S.; Giacometti, N.; Wangwei, C.; Martini, G.

    1996-10-01

    X-chromosome inactivation in mammals is regarded as an essentially random process, but the resulting somatic-cell mosaicism creates the opportunity for cell selection. In most people with red-blood-cell glucose-6-phosphate dehydrogenase (G6PD) deficiency, the enzyme-deficient phenotype is only moderately expressed in nucleated cells. However, in a small subset of hemizygous males who suffer from chronic nonspherocytic hemolytic anemia, the underlying mutations (designated class I) cause more-severe G6PD deficiency, and this might provide an opportunity for selection in heterozygous females during development. In order to test this possibility we have analyzed four heterozygotes for class I G6PD mutations: two with G6PD Portici (1178G{r_arrow}A) and two with G6PD Bari (1187C{r_arrow}T). We found that in fractionated blood cell types (including erythroid, myeloid, and lymphoid cell lineages) there was a significant excess of G6PD-normal cells. The significant concordance that we have observed in the degree of imbalance in the different blood-cell lineages indicates that a selective mechanism is likely to operate at the level of pluripotent blood stem cells. Thus, it appears that severe G6PD deficiency affects adversely the proliferation or the survival of nucleated blood cells and that this phenotypic characteristic is critical during hematopoiesis. 65 refs., 6 figs., 3 tabs.

  18. A new glucose-6-phosphate dehydrogenase variant, G6PD Orissa (44 Ala{yields}Gly), is the major polymorphic variant in tribal populations in India

    SciTech Connect

    Kaeda, J.S.; Bautista, J.M.; Stevens, D.

    1995-12-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is usually found at high frequencies in areas of the world where malaria has been epidemic. The frequency and genetic basis of G6PD deficiency have been studied in Africa, around the Mediterranean, and in the Far East, but little such information is available about the situation in India. To determine the extent of heterogeneity of G6PD, we have studied several different Indian populations by screening for G6PD deficiency, followed by molecular analysis of deficient alleles. The frequency of G6PD deficiency varies between 3% and 15% in different tribal and urban groups. Remarkably, a previously unreported deficient variant, G6PD Orissa (44 Ala{yields}Gly), is responsible for most of the G6PD deficiency in tribal Indian populations but is not found in urban populations, where most of the G6PD deficiency is due to the G6PD Mediterranean (188 Ser{yields}Phe) variant. The K{sup NADP}{sub m} of G6PD Orissa is fivefold higher than that of the normal enzyme. This may be due to the fact that the alanine residue that is replaced by glycine is part of a putative coenzyme-binding site. 37 refs., 2 figs., 3 tabs.

  19. Real-time monitoring of glucose-6-phosphate dehydrogenase activity using liquid droplet arrays and its application to human plasma samples.

    PubMed

    Jung, Se-Hui; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-05-15

    Glucose-6-phosphate dehydrogenase (G6PD) regulates nicotinamide adenine dinucleotide phosphate (NADPH) levels and is related to the pathogenesis of various diseases, including G6PD deficiency, type 2 diabetes, aldosterone-induced endothelial dysfunction, and cancer. Therefore, a highly sensitive array-based assay for determining quantitative G6PD activity is required. Here, we developed an on-chip G6PD activity assay using liquid droplet fluorescence arrays. Quantitative G6PD activity was determined by calculating reduced resorufin concentrations in liquid droplets. The limit of detection (LOD) of this assay was 0.162 mU/ml (2.89 pM), which is much more sensitive than previous assays. We used our activity assay to determine kinetic parameters, including Michaelis-Menten constants (Km) and maximum rates of enzymatic reaction (Vmax) for NADP(+) and G6P, and half-maximal inhibitory concentrations (IC50). We successfully applied this new assay to determine G6PD activity in human plasma from normal healthy individuals (n=30) and patients with inflammation (n=30). The inflammatory group showed much higher G6PD activities than did the normal group (p<0.001), with a high area under the curve value of 0.939. Therefore, this new activity assay has the potential to be used for diagnosis of G6PD-associated diseases and utilizing kinetic studies. PMID:26802575

  20. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein.

    PubMed

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  1. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase.

    PubMed

    Zhou, Yan; Nambou, Komi; Wei, Liujing; Cao, Jingjing; Imanaka, Tadayuki; Hua, Qiang

    2013-12-01

    Genetic manipulation was undertaken in order to understand the mechanism involved in the heterologous synthesis of lycopene in Escherichia coli. Knockout of the central carbon metabolic gene zwf (glucose-6-phosphate dehydrogenase) resulted in the enhancement of lycopene production (above 130 % relative to control). The amplification and overexpression of rate-limiting steps encoded by idi (isopentenyl diphosphate isomerase), dxs (1-deoxyxylulose-5-phosphate synthase) and ispDF (4-diphosphocytidyl-2C-methyl-D-erythritol synthase and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase) genes improved lycopene synthesis from 0.89 to 5.39 mg g(-1) DCW. The combination of central metabolic genes knockout with the amplification of MEP pathway genes yielded best amounts of lycopene (6.85-7.55 mg g(-1) DCW). Transcript profiling revealed that idi and dxs were up-regulated in the zwf knock-out strain, providing a plausible explanation for the increase in lycopene yield observed in this strain. An increase in precursor availability might also have contributed to the improved lycopene production. PMID:24062132

  2. Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity

    SciTech Connect

    Berteloot, A.; Vidal, H.; van de Werve, G. )

    1991-03-25

    Rapid kinetics of both glucose-6-P uptake and hydrolysis in fasted rat liver microsomes were investigated with a recently developed fast-sampling, rapid-filtration apparatus. Experiments were confronted with both the substrate transport and conformational models currently proposed for the glucose-6-phosphatase system. Accumulation in microsomes of 14C products from (U-14C)glucose-6-P followed biexponential kinetics. From the inside to outside product concentrations, it could be inferred that mostly glucose should accumulate inside the vesicles. While biexponential kinetics are compatible with the mathematical predictions of a simplified substrate transport model, the latter fails in explaining the burst in total glucose production over a similar time scale to that used for the uptake measurements. Since the initial rate of the burst phase in untreated microsomes exactly matched the steady-state rate of glucose production in detergent-treated vesicles, it can be definitely concluded that the substrate transport model does not describe adequately our results. While the conformational model accounts for both the burst of glucose production and the kinetics of glucose accumulation into the vesicles, it cannot explain the burst in 32Pi production from (32P)glucose-6-P measured under the same conditions. Since the amplitude of the observed bursts is not compatible with a presteady state in enzyme activity, we propose that a hysteretic transition best explains our results in both untreated and permeabilized microsomes, thus providing a new rationale to understand the molecular mechanism of the glucose-6-phosphatase system.

  3. Sequence Analysis and Molecular Characterization of Clonorchis sinensis Hexokinase, an Unusual Trimeric 50-kDa Glucose-6-Phosphate-Sensitive Allosteric Enzyme

    PubMed Central

    Chen, Tingjin; Ning, Dan; Sun, Hengchang; Li, Ran; Shang, Mei; Li, Xuerong; Wang, Xiaoyun; Chen, Wenjun; Liang, Chi; Li, Wenfang; Mao, Qiang; Li, Ye; Deng, Chuanhuan; Wang, Lexun; Wu, Zhongdao; Huang, Yan; Xu, Jin; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors

  4. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Gallagher PG. Hemolytic anemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 161. Janz ...

  5. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G-6-PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Churchill Livingston; 2008:chap 45. Golan DER. Hemolytic anemias: red cell membrane and metabolic defects. In: Goldman ...

  6. Glucose-6-phosphate dehydrogenase and alternative oxidase are involved in the cross tolerance of highland barley to salt stress and UV-B radiation.

    PubMed

    Zhao, Chengzhou; Wang, Xiaomin; Wang, Xiaoyu; Wu, Kunlun; Li, Ping; Chang, Ning; Wang, Jianfeng; Wang, Feng; Li, Jiaolong; Bi, Yurong

    2015-06-01

    In this study, a new mechanism involving glucose-6-phosphate dehydrogenase (G6PDH) and alternative pathways (AP) in salt pretreatment-induced tolerance of highland barley to UV-B radiation was investigated. When highland barley was exposed to UV-B radiation, the G6PDH activity decreased but the AP capacity increased. In contrast, under UV-B+NaCl treatment, the G6PDH activity was restored to the control level and the maximal AP capacity and antioxidant enzyme activities were reached. Glucosamine (Glucm, an inhibitor of G6PDH) obviously inhibited the G6PDH activity in highland barley under UV-B + NaCl treatment and a similar pattern was observed in reduced glutathione (GSH) and ascorbic acid (Asc) contents. Similarly, salicylhydroxamic acid (SHAM, an inhibitor of AOX) significantly reduced the AP capacity in highland barley under UV-B + NaCl treatment. The UV-B-induced hydrogen peroxide (H2O2) accumulation was also followed. Further studies indicated that non-functioning of G6PDH or AP under UV-B+NaCl + Glucm or UV-B + NaCl + SHAM treatment also caused damages in photosynthesis and stomatal movement. Western blot analysis confirmed that the alternative oxidase (AOX) and G6PDH were dependent each other in cross tolerance to UV-B and salt. The inhibition of AP or G6PDH activity resulted in a significant accumulation or reduction of NADPH content, respectively, under UV-B+NaCl treatment in highland barley leaves. Taken together, our results indicate that AP and G6PDH mutually regulate and maintain photosynthesis and stomata movement in the cross adaptation of highland barley seedlings to UV-B and salt by modulating redox homeostasis and NADPH content. PMID:26009793

  7. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling

    PubMed Central

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes—tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)—in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP+ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  8. Glucose-6-Phosphate Dehydrogenase Enhances Antiviral Response through Downregulation of NADPH Sensor HSCARG and Upregulation of NF-κB Signaling.

    PubMed

    Wu, Yi-Hsuan; Chiu, Daniel Tsun-Yee; Lin, Hsin-Ru; Tang, Hsiang-Yu; Cheng, Mei-Ling; Ho, Hung-Yao

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are highly susceptible to viral infection. This study examined the mechanism underlying this phenomenon by measuring the expression of antiviral genes-tumor necrosis factor alpha (TNF-α) and GTPase myxovirus resistance 1 (MX1)-in G6PD-knockdown cells upon human coronavirus 229E (HCoV-229E) and enterovirus 71 (EV71) infection. Molecular analysis revealed that the promoter activities of TNF-α and MX1 were downregulated in G6PD-knockdown cells, and that the IκB degradation and DNA binding activity of NF-κB were decreased. The HSCARG protein, a nicotinamide adenine dinucleotide phosphate (NADPH) sensor and negative regulator of NF-κB, was upregulated in G6PD-knockdown cells with decreased NADPH/NADP⁺ ratio. Treatment of G6PD-knockdown cells with siRNA against HSCARG enhanced the DNA binding activity of NF-κB and the expression of TNF-α and MX1, but suppressed the expression of viral genes; however, the overexpression of HSCARG inhibited the antiviral response. Exogenous G6PD or IDH1 expression inhibited the expression of HSCARG, resulting in increased expression of TNF-α and MX1 and reduced viral gene expression upon virus infection. Our findings suggest that the increased susceptibility of the G6PD-knockdown cells to viral infection was due to impaired NF-κB signaling and antiviral response mediated by HSCARG. PMID:26694452

  9. Population screening for glucose-6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots

    PubMed Central

    2010-01-01

    Background Glucose-6-phosphate dehydrogenase deficiency poses a significant impediment to primaquine use for the elimination of liver stage infection with Plasmodium vivax and for gametocyte clearance, because of the risk of life-threatening haemolytic anaemia that can occur in G6PD deficient patients. Although a range of methods for screening G6PD deficiency have been described, almost all require skilled personnel, expensive laboratory equipment, freshly collected blood, and are time consuming; factors that render them unsuitable for mass-screening purposes. Methods A published WST8/1-methoxy PMS method was adapted to assay G6PD activity in a 96-well format using dried blood spots, and used it to undertake population screening within a malaria survey undertaken in Isabel Province, Solomon Islands. The assay results were compared to a biochemical test and a recently marketed rapid diagnostic test. Results Comparative testing with biochemical and rapid diagnostic test indicated that results obtained by filter paper assay were accurate providing that blood spots were assayed within 5 days when stored at ambient temperature and 10 days when stored at 4 degrees. Screening of 8541 people from 41 villages in Isabel Province, Solomon Islands revealed the prevalence of G6PD deficiency as defined by enzyme activity < 30% of normal control was 20.3% and a prevalence of severe deficiency that would predispose to primaquine-induced hemolysis (WHO Class I-II) of 6.9%. Conclusions The assay enabled simple and quick semi-quantitative population screening in a malaria-endemic region. The study indicated a high prevalence of G6PD deficiency in Isabel Province and highlights the critical need to consider G6PD deficiency in the context of P. vivax malaria elimination strategies in Solomon Islands, particularly in light of the potential role of primaquine mass drug administration. PMID:20684792

  10. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems.

    PubMed

    Gurpilhares, Daniela B; Pessoa, Adalberto; Roberto, Inês C

    2015-07-01

    Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol(-1), TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol(-1), TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol(-1), TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol(-1), TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07-0.05, NADP(+) K M 0.02-1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells. PMID:25987135

  11. Involvement of ABA- and H2O2-dependent cytosolic glucose-6-phosphate dehydrogenase in maintaining redox homeostasis in soybean roots under drought stress.

    PubMed

    Wang, Huahua; Yang, Lidan; Li, Yan; Hou, Junjie; Huang, Junjun; Liang, Weihong

    2016-10-01

    The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress. Drought caused a marked increase of the total and cytosolic G6PDH activities and triggered a rapid ABA and H2O2 accumulation in soybean roots. Exogenous ABA or H2O2 treatment elevated the total and cytosolic G6PDH activities, whereas suppressing ABA or H2O2 production inhibited the drought-induced increase in total and cytosolic G6PDH activities, suggesting that ABA and H2O2 are required for drought-induced increase of total G6PDH activity, namely cytosolic G6PDH activity. Furthermore, ABA induced H2O2 production by stimulating NADPH oxidase activity under drought stress. Moreover, drought significantly increased the contents of AsA and GSH and the activities of key enzymes in AsA-GSH cycle, while application of G6PDH inhibitor to seedlings significantly reduced the above effect induced by drought. Taken together, these results indicate that H2O2 acting as a downstream signaling molecule of ABA mediates drought-induced increase in cytosolic G6PDH activity, and that enhanced cytosolic G6PDH activity maintains cellular redox homeostasis by regulating AsA-GSH cycle in soybean roots. PMID:27285781

  12. Cytological mapping of the human glucose-6-phosphate dehydrogenase gene distal to the fragile-X site suggests a high rate of meiotic recombination across this site.

    PubMed

    Szabo, P; Purrello, M; Rocchi, M; Archidiacono, N; Alhadeff, B; Filippi, G; Toniolo, D; Martini, G; Luzzatto, L; Siniscalco, M

    1984-12-01

    The human gene for glucose-6-phosphate dehydrogenase (G6PD) has been subregionally mapped to band Xq28 by segregation analysis in rodent-human somatic cell hybrids [Pai, G. S., Sprinkel, J. A., Do, T. T., Mareni, C. E. & Migeon, B. R. (1980) Proc. Natl. Acad. Sci. USA 77, 2810-2813]. We have previously reported a common type of X-linked mental retardation associated with an inducible fragile site at Xq27-Xq28 segregates in a close linkage relationship with a G6PD variant, but the relative position of G6PD with respect to the fragile site has not yet been established. This fragile-X syndrome has been shown to be closely linked also to a Taq I restriction fragment length polymorphism detected by a cDNA probe for factor IX, and the latter locus has been mapped to the subtelomeric region Xq26-Xq28 [Camerino, G., Mattei, M. G., Mattei, G. F., Jaye, B. & Mandel, J. L. (1983) Nature (London) 306, 701-704]. The in situ hybridization studies reported here provide strong evidence that G6PD is located on the Xq telomeric fragment distal to the fragile site. These observations and the well-established knowledge that the genes for Deutan and Protan colorblindness are closely linked to G6PD, but segregate independently of factor IX deficiency, suggest that the fragile site associated with this type of X-linked mental retardation occurs in a region prone to high frequency of meiotic recombination. PMID:6595664

  13. Cytological mapping of the human glucose-6-phosphate dehydrogenase gene distal to the fragile-X site suggests a high rate of meiotic recombination across this site.

    PubMed Central

    Szabo, P; Purrello, M; Rocchi, M; Archidiacono, N; Alhadeff, B; Filippi, G; Toniolo, D; Martini, G; Luzzatto, L; Siniscalco, M

    1984-01-01

    The human gene for glucose-6-phosphate dehydrogenase (G6PD) has been subregionally mapped to band Xq28 by segregation analysis in rodent-human somatic cell hybrids [Pai, G. S., Sprinkel, J. A., Do, T. T., Mareni, C. E. & Migeon, B. R. (1980) Proc. Natl. Acad. Sci. USA 77, 2810-2813]. We have previously reported a common type of X-linked mental retardation associated with an inducible fragile site at Xq27-Xq28 segregates in a close linkage relationship with a G6PD variant, but the relative position of G6PD with respect to the fragile site has not yet been established. This fragile-X syndrome has been shown to be closely linked also to a Taq I restriction fragment length polymorphism detected by a cDNA probe for factor IX, and the latter locus has been mapped to the subtelomeric region Xq26-Xq28 [Camerino, G., Mattei, M. G., Mattei, G. F., Jaye, B. & Mandel, J. L. (1983) Nature (London) 306, 701-704]. The in situ hybridization studies reported here provide strong evidence that G6PD is located on the Xq telomeric fragment distal to the fragile site. These observations and the well-established knowledge that the genes for Deutan and Protan colorblindness are closely linked to G6PD, but segregate independently of factor IX deficiency, suggest that the fragile site associated with this type of X-linked mental retardation occurs in a region prone to high frequency of meiotic recombination. Images PMID:6595664

  14. Mosaicism in female hybrid hares heterozygous for glucose-6-phosphate dehydrogenase. V. The recovery of DNA synthesis of hare fibroblasts after ultraviolet irradiation

    SciTech Connect

    Janakidevi, K.; Lee, K.T.; Thomas, W.A.; Kroms, M.; Murray, C.D.

    1984-12-01

    The effect of uv irradiation on the recovery of DNA synthesis is examined in a population of hare fibroblasts exhibiting heterozygosity with reference to the X-linked enzyme, glucose-6-phosphate-dehydrogenase (G-6-PD). These cells have been grown from skin explants of a hybrid female cross between Lepus timidus (female) and L. europaeus (male), the former carrying the G-6-PD gene for the slow-moving T variant and the latter with the fast-moving E variant gene. The hybrid, therefore, exhibits genetic mosaicism due to random inactivation in each cell, of one of the two X chromosomes in the embryonic stage. Exponentially growing cells from 13 fibroblast strains, comprising a wide range of E to T ratios, were exposed to moderately low dose of uv irradiation (6 J/m2). The recovery in DNA synthesis during the 2- to 8-h postirradiation period was calculated as the mean percentage rates of (/sup 3/H)thymidine incorporated during the time as compared to the unirradiated zero-time controls. The results show a statistically significant positive correlation as determined by linear regression analysis between the levels of E and the rate of recovery in DNA synthesis. This is valid also at the higher dose of uv (21 J/m2). These results strengthen our earlier observations with 25-hydroxycholesterol that in the in vitro system the cell expressing the E variant is perhaps more resistant to cytotoxic agents. This also indicates that various factors contribute to the development of monotypism which include cell growth, cell death, mutation, and selection, to name a few.

  15. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report

    PubMed Central

    2013-01-01

    The diagnosis and management of glucose-6-phosphate dehydrogenase (G6PD) deficiency is a crucial aspect in the current phases of malaria control and elimination, which will require the wider use of 8-aminoquinolines for both reducing Plasmodium falciparum transmission and achieving the radical cure of Plasmodium vivax. 8-aminoquinolines, such as primaquine, can induce severe haemolysis in G6PD-deficient individuals, potentially creating significant morbidity and undermining confidence in 8-aminoquinoline prescription. On the other hand, erring on the side of safety and excluding large numbers of people with unconfirmed G6PD deficiency from treatment with 8-aminoquinolines will diminish the impact of these drugs. Estimating the remaining G6PD enzyme activity is the most direct, accessible, and reliable assessment of the phenotype and remains the gold standard for the diagnosis of patients who could be harmed by the administration of primaquine. Genotyping seems an unambiguous technique, but its use is limited by cost and the large range of recognized G6PD genotypes. A number of enzyme activity assays diagnose G6PD deficiency, but they require a cold chain, specialized equipment, and laboratory skills. These assays are impractical for care delivery where most patients with malaria live. Improvements to the diagnosis of G6PD deficiency are required for the broader and safer use of 8-aminoquinolines to kill hypnozoites, while lower doses of primaquine may be safely used to kill gametocytes without testing. The discussions and conclusions of a workshop conducted in Incheon, Korea in May 2012 to review key knowledge gaps in G6PD deficiency are reported here. PMID:23537118

  16. Purification of glucose-6-phosphate dehydrogenase and glutathione reductase enzymes from the gill tissue of Lake Van fish and analyzing the effects of some chalcone derivatives on enzyme activities.

    PubMed

    Kuzu, Muslum; Aslan, Abdulselam; Ahmed, Ishtiaq; Comakli, Veysel; Demirdag, Ramazan; Uzun, Naim

    2016-04-01

    Glucose-6-phosphate dehydrogenase (G6PD) and glutathione reductase (GR) are metabolically quite important enzymes. Within this study, these two enzymes were purified for the first time from the gills of Lake Van fish. In the purifying process, ammonium sulfate precipitation and 2',5'-ADP Sepharose 4B affinity column chromatography techniques for glucose-6-phosphate dehydrogenase, temperature degradation and 2',5'-ADP Sepharose 4B affinity column chromatography for glutathione reductase enzyme were used. The control of the enzyme purity and determination of molecular weight were done with sodium dodecyl sulfate polyacrylamide gel electrophoresis. K M and V max values were determined with Lineweaver-Burk plot. Besides, the effects of some chalcone derivatives on the purified enzymes were analyzed. For the ones showing inhibition effect, % activity-[I] figures were drawn and IC50 values were determined. K i value was calculated by using Cheng-Prusoff equation. PMID:26676512

  17. High prevalence of hemoglobin disorders and glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Republic of Guinea (West Africa).

    PubMed

    Millimono, Tamba S; Loua, Kovana M; Rath, Silvia L; Relvas, Luis; Bento, Celeste; Diakite, Mandiou; Jarvis, Martin; Daries, Nathalie; Ribeiro, Leticia M; Manco, Licínio; Kaeda, Jaspal S

    2012-01-01

    Reliable and accurate epidemiological data is a prerequisite for a cost effective screening program for inherited disorders, which however, is lacking in a number of developing countries. Here we report the first detailed population study in the Republic of Guinea, a sub-Saharan West African country, designed to assess the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency and hemoglobinopathies, including screening for thalassemia. Peripheral blood samples from 187 Guinean adults were screened for hemoglobin (Hb) variants by standard hematological methods. One hundred and ten samples from males were screened for G6PD deficiency by the fluorescent spot test. Molecular analysis was performed for the most common α-thalassemia (α-thal) deletions, β-globin gene mutations, G6PD variants B (376A), A (376G), A- (376G/202A) and Betica (376G/968C), using polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) or sequencing. Of the 187 subjects screened, 36 were heterozygous for Hb S [β6(A3)Glu→Val, GAG>GTG] (allele frequency 9.62%). Sixty-four subjects were heterozygous and seven were homozygous for the -α(3.7) kb deletion (allele frequency 20.85%). β-Thalassemia alleles were detected in five subjects, four with the -29 (A>G) mutation (allele frequency 1.07%) and one with codon 15 (TGG>TAG) (allele frequency 0.96%). The G6PD A- and G6PD Betica deficient variants were highly prevalent with a frequency of 5.7 and 3.3%, respectively. While we did not test for ferritin levels or α(0)-thal, four females (5.2%) had red cell indices strongly suggestive of iron deficient anemia: Hb <9.7 g/dL; MCH <19.3 pg; MCV <68.2; MCHC <31.6 g/dl; RDW >19.8%. Our results are consistent with high frequency of alleles such as Hb S, α-thal and G6PD deficient alleles associated with malaria resistance. Finding a 9.6% Hb S allele frequency supports the notion for a proficient neonatal screening to identify the sickle cell patients, who might benefit

  18. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study

    PubMed Central

    Uyoga, Sophie; Ndila, Carolyne M; Macharia, Alex W; Nyutu, Gideon; Shah, Shivang; Peshu, Norbert; Clarke, Geraldine M; Kwiatkowski, Dominic P; Rockett, Kirk A; Williams, Thomas N

    2015-01-01

    Summary Background The global prevalence of X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is thought to be a result of selection by malaria, but epidemiological studies have yielded confusing results. We investigated the relationships between G6PD deficiency and both malaria and non-malarial illnesses among children in Kenya. Methods We did this study in Kilifi County, Kenya, where the G6PD c.202T allele is the only significant cause of G6PD deficiency. We tested the associations between G6PD deficiency and severe and complicated Plasmodium falciparum malaria through a case-control study of 2220 case and 3940 control children. Cases were children aged younger than 14 years, who visited the high dependency ward of Kilifi County Hospital with severe malaria between March 1, 1998, and Feb 28, 2010. Controls were children aged between 3–12 months who were born within the same study area between August 2006, and September 2010. We assessed the association between G6PD deficiency and both uncomplicated malaria and other common diseases of childhood in a cohort study of 752 children aged younger than 10 years. Participants of this study were recruited from a representative sample of households within the Ngerenya and Chonyi areas of Kilifi County between Aug 1, 1998, and July 31, 2001. The primary outcome measure for the case-control study was the odds ratio for hospital admission with severe malaria (computed by logistic regression) while for the cohort study it was the incidence rate ratio for uncomplicated malaria and non-malaria illnesses (computed by Poisson regression), by G6PD deficiency category. Findings 2863 (73%) children in the control group versus 1643 (74%) in the case group had the G6PD normal genotype, 639 (16%) versus 306 (14%) were girls heterozygous for G6PD c.202T, and 438 (11%) versus 271 (12%) children were either homozygous girls or hemizygous boys. Compared with boys and girls without G6PD deficiency, we found significant

  19. A dynamic and stationary rheological study of erythrocytes incubated in a glucose medium.

    PubMed

    Riquelme, Bibiana; Foresto, Patricia; D'Arrigo, Mabel; Valverde, Juana; Rasia, Rodolfo

    2005-02-28

    A higher than normal glucose concentration in a suspending medium may produce non-enzymatic glycosylation of erythrocyte proteins. This process can modify the viscoelastic properties of erythrocytes. In this paper, we studied the possible relationship between glucose concentration in a suspending medium and erythrocyte rheological parameters. Human venous blood was obtained from the antecubital veins of 10 healthy volunteers. Blood samples were anticoagulated with EDTA and centrifuged. Red blood cells (RBCs) were washed and subsequently divided in aliquots, which were incubated in vitro with glucose solutions of different concentrations. Dynamic and stationary viscoelastic parameters of RBCs were determined by laser diffractometry in an Erythrodeformeter. Aggregate shape parameter (ASP) of the RBCs was determined by digital image processing. Significant changes were observed both in ASP and in rheological parameters when the glucose concentration in the medium was increased, demonstrating that a glucose concentration as low as 1% induces alterations in the mechanical properties of RBCs. PMID:15680283

  20. Alterations in Energy/Redox Metabolism Induced by Mitochondrial and Environmental Toxins: A Specific Role for Glucose-6-Phosphate-Dehydrogenase and the Pentose Phosphate Pathway in Paraquat Toxicity

    PubMed Central

    2015-01-01

    Parkinson’s disease (PD) is a multifactorial disorder with a complex etiology including genetic risk factors, environmental exposures, and aging. While energy failure and oxidative stress have largely been associated with the loss of dopaminergic cells in PD and the toxicity induced by mitochondrial/environmental toxins, very little is known regarding the alterations in energy metabolism associated with mitochondrial dysfunction and their causative role in cell death progression. In this study, we investigated the alterations in the energy/redox-metabolome in dopaminergic cells exposed to environmental/mitochondrial toxins (paraquat, rotenone, 1-methyl-4-phenylpyridinium [MPP+], and 6-hydroxydopamine [6-OHDA]) in order to identify common and/or different mechanisms of toxicity. A combined metabolomics approach using nuclear magnetic resonance (NMR) and direct-infusion electrospray ionization mass spectrometry (DI-ESI-MS) was used to identify unique metabolic profile changes in response to these neurotoxins. Paraquat exposure induced the most profound alterations in the pentose phosphate pathway (PPP) metabolome. 13C-glucose flux analysis corroborated that PPP metabolites such as glucose-6-phosphate, fructose-6-phosphate, glucono-1,5-lactone, and erythrose-4-phosphate were increased by paraquat treatment, which was paralleled by inhibition of glycolysis and the TCA cycle. Proteomic analysis also found an increase in the expression of glucose-6-phosphate dehydrogenase (G6PD), which supplies reducing equivalents by regenerating nicotinamide adenine dinucleotide phosphate (NADPH) levels. Overexpression of G6PD selectively increased paraquat toxicity, while its inhibition with 6-aminonicotinamide inhibited paraquat-induced oxidative stress and cell death. These results suggest that paraquat “hijacks” the PPP to increase NADPH reducing equivalents and stimulate paraquat redox cycling, oxidative stress, and cell death. Our study clearly demonstrates that alterations

  1. Silencing trehalose-6-phosphate synthase incapacitates adult mosquitoes by interfering with the biosynthetic pathway for flight fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trehalose is a disaccharide comprised of two glucose molecules. It is the main blood sugar of insects and is essential for flight. Trehalose is synthesized by two enzymes: trehalose-6-phosphate synthase (T6PS) converts glucose-6-phosphate to trehalose-6-phosphate, and trehalose-6-phosphate phosphata...

  2. Crystal Structures of An F420-Dependent Glucose-6-Phosphate Dehydrogenase Fgd1 Involved in the Activation of the Anti-Tb Drug Candidate Pa-824 Reveal the Basis of Coenzyme And Substrate Binding

    SciTech Connect

    Bashiri, G.; Squire, C.J.; Moreland, N.J.; Baker, E.N.

    2009-05-11

    The modified flavin coenzyme F{sub 420} is found in a restricted number of microorganisms. It is widely distributed in mycobacteria, however, where it is important in energy metabolism, and in Mycobacterium tuberculosis (Mtb) is implicated in redox processes related to non-replicating persistence. In Mtb, the F{sub 420}-dependent glucose-6-phosphate dehydrogenase FGD1 provides reduced F{sub 420} for the in vivo activation of the nitroimidazopyran prodrug PA-824, currently being developed for anti-tuberculosis therapy against both replicating and persistent bacteria. The structure of M. tuberculosis FGD1 has been determined by x-ray crystallography both in its apo state and in complex with F{sub 420} and citrate at resolutions of 1.90 and 1.95{angstrom}, respectively. The structure reveals a highly specific F{sub 420} binding mode, which is shared with several other F{sub 420}-dependent enzymes. Citrate occupies the substrate binding pocket adjacent to F{sub 420} and is shown to be a competitive inhibitor (IC{sub 50} 43 {micro}m). Modeling of the binding of the glucose 6-phosphate (G6P) substrate identifies a positively charged phosphate binding pocket and shows that G6P, like citrate, packs against the isoalloxazine moiety of F{sub 420} and helps promote a butterfly bend conformation that facilitates F{sub 420} reduction and catalysis.

  3. Dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Dynamics of glucose concentration in human organism is an important diagnostic characteristic for it's parameters correlate significantly with the severity of metabolic, vessel and perfusion disorders. 36 patients with stable angina pectoris of II and III functional classes were involved in this study. All of them were men in age range of 45-59 years old. 7 patients hospitalized with acute myocardial infarction (aged from 49 to 59 years old) form the group of compare. Control group (n = 5) was of practically healthy men in comparable age. To all patients intravenous glucose solution (40%) in standard loading dose was injected. Capillary and vein blood samples were withdrawn before, and 5, 60, 120, 180 and 240 minutes after glucose load. At these time points blood pressure and glucose concentration were measured. In prepared blood smears shape, deformability and sizes of erythrocytes, quantity and degree of shear stress resistant erythrocyte aggregates were studied. Received data were approximated by polynomial of high degree to receive concentration function of studied parameters, which first derivative elucidate velocity characteristics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease and practically healthy persons. Received data show principle differences in dynamics of morphofunctional erythrocyte properties during intravenous glucose injection in patients with coronary heart disease as a possible mechanism of coronary blood flow destabilization.

  4. Derivativation of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label

    SciTech Connect

    Wadzinski, B.; Shanahan, M.; Ruoho, A.

    1987-05-01

    An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-0-succinyldeacetyl-forskolin (IAPS-Fsk), has been synthesized, purified, and characterized. The K/sub i/ for inhibition of 3-0-methylglucose transport by TAPS-Fsk in human erythrocytes was found to be 0.1 uM. The carrier-free radioiodinated label has been shown to be a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes with 1-10 nM (I-125)IAPS-Fsk and analysis by SDS-PAGE showed specific derivatization of a broad band with an apparent molecular weight of 40-70 kDa. Photoincorporation using 2 nM (I-125)IAPS-Fsk was protected with D-glucose, cytochalasin B, and forskolin. No protection was observed with L-glucose. Endo-B-galactosidase digestion and trypsinization of (I-125)IAPS-Fsk labelled erythrocytes reduced the specifically radiolabelled transporter to 40 kDa and 18 kDa respectively. (I-125)-IAPS-Fsk will be used to study the structural aspects of the glucose transporter.

  5. Purification and Characterization of Glucose 6-Phosphate Dehydrogenase, 6-Phosphogluconate Dehydrogenase, and Glutathione Reductase from Rat Heart and Inhibition Effects of Furosemide, Digoxin, and Dopamine on the Enzymes Activities.

    PubMed

    Adem, Sevki; Ciftci, Mehmet

    2016-06-01

    The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. PMID:26820767

  6. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.

    PubMed

    Lamas-Maceiras, Mónica; Rodríguez-Belmonte, Esther; Becerra, Manuel; González-Siso, Ma Isabel; Cerdán, Ma Esperanza

    2015-09-01

    It has been previously reported that Gcr1 differentially controls growth and sugar utilization in Saccharomyces cerevisiae and Kluyveromyces lactis, although the regulatory mechanisms causing activation of glycolytic genes are conserved (Neil et al., 2004). We have found that KlGCR1 deletion diminishes glucose consumption and ethanol production, but increases resistance to oxidative stress caused by H2O2, cadmium and arsenate, glucose 6P dehydrogenase activity, and the NADPH/NADP(+) and GSH/GSSG ratios in K. lactis. The gene KlZWF1 that encodes for glucose 6P dehydrogenase, the first enzyme in the pentose phosphate pathway, is transcriptionally regulated by KlGcr1. The high resistance to oxidative stress observed in the ΔKlgcr1 mutant strain, could be explained as a consequence of an increased flux of glucose through the pentose phosphate pathway. Since mitochondrial respiration decreases in the ΔKlgcr1 mutant (García-Leiro et al., 2010), the reoxidation of the NADPH, produced through the pentose phosphate pathway, has to be achieved by the reduction of other molecules implied in the defense against oxidative stress, like GSSG. The higher GSH/GSSG ratio in the mutant would explain its phenotype of increased resistance to oxidative stress. PMID:26164373

  7. Glucose and glycogen metabolism in erythrocytes from normal and glycogen storage disease type III subjects

    PubMed Central

    Moses, Shimon W.; Chayoth, Reuben; Levin, Stanley; Lazarovitz, Ela; Rubinstein, David

    1968-01-01

    Active glycogen metabolism has been demonstrated in both normal and glycogen-rich erythrocytes taken from patients with type III glycogen storage disease. Activity of all enzymes catalyzing the reactions required for the synthesis and degradation of glycogen have been demonstrated in the mature erythrocytes. Uniformly labeled glucose-14C is incorporated into glycogen in intact cells of both types during incubation. Replacement of the glucose-14C by unlabeled glucose in the medium resulted in a significant loss of radioactivity from cellular glycogen. In the absence of the substrate a progressive shortening of outer branches occurred during incubation of intact glucogen-rich cells. Using cells from patients with type III glycogen storage disease, which have sufficient glycogen content to be analyzed by β-amylolysis, we demonstrated that the glucosyl units are first incorporated in the outer tiers, then transferred to the core where they tend to accumulate due to the absence of amylo-1,6-glucosidase. The glycogen-rich cells have a more rapid rate of glucose utilization upon incubation which is not reflected by a higher lactate production. The increased rate of glucose utilization did not result from an increased rate of glucose incorporation into glycogen in affected cells. The rate of 14CO2 production from glucose-1-14C during incubation was not significantly different in the two types of cells unless methylene blue was added as an electron acceptor, in which case the glycogen-rich cells oxidized glucose to CO2 more rapidly. PMID:5240360

  8. Impairment of erythrocytes incubated in glucose medium: a wavelet-information theory analysis.

    PubMed

    Korol, A M; Rosso, O A; Martín, M T; D'Arrigo, M; Riquelme, B D

    2011-07-01

    This study investigates the effects produced by an increased concentration of glucose in a suspending medium on the erythrocytes Information Theory quantifiers. Erythrocytes, which were obtained from eight healthy volunteers, were washed and incubated in vitro with glucose solutions at different concentrations. The measured Wavelet-based Information Theory quantifiers include the Relative Wavelet Energy (RWE), the Normalized Total Wavelet Shannon Entropy (NTWS), MPR-Statistical Complexity Measure (SCM) and entropy-complexity plane. The results show that the increase in glucose concentration does not produce significant changes on the RWE, while significant ones on the NTSE, which combined with SCM values allow to identify different behaviour for all the different populations in the entropy-complexity plane. Modification in the hemorheological properties of cells could be clearly detected with these Wavelet-based Information Theory quantifiers. PMID:21301991

  9. In vitro upregulation of erythrocytes glucose uptake by Rhaphnus sativa extract in diabetic patients.

    PubMed

    Habib, Salem A; Othman, Eman M

    2012-05-01

    In diabetes, both the increase in the oxidative stress and the decrease in the antioxidant defense may elevate the susceptibility of diabetic patients to many pathological complications. So, the aim of the present study was to investigate the effect of superoxide dismutase (SOD) like activity protein, partially purified from radish (Rhaphnus sativa) on uptake of glucose in vitro by erythrocytes of diabetic patients. In hyperglycemic patients, erythrocytes malondialdehyde level was highly significantly increased (P < 0.0001) than that of the control. However, the erythrocytes glutathione content and glutathione reductase activity, were both highly significantly decreased (P < 0.0001) compared to that corresponding control values. The glucose uptake by erythrocytes of diabetic patients was highly significantly decreased (P < 0.0001) with increasing hyperglycemia, while it was highly significantly elevated (p < 0.0001) after addition of the partially purified SOD like activity protein. On the other hand, the malondialdehyde concentration was highly significantly reduced (p < 0.001) on adding the partially purified protein. It thus can be concluded that, an appropriate support for enhancing antioxidant supply, such as SOD like activity protein from natural sources, may help control blood glucose level and may prevent clinical complications of diabetes. PMID:22365984

  10. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter.

    PubMed

    Soty, Maud; Chilloux, Julien; Delalande, François; Zitoun, Carine; Bertile, Fabrice; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-04-01

    The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP. PMID:26958868

  11. EFFECT OF CHLORINE DIOXIDE, CHLORITE, AND NITRITE ON MICE WITH LOW AND HIGH LEVELS OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) IN THEIR ERYTHROCYTES

    EPA Science Inventory

    Mice exposed to chlorine dioxide for 30 days at 100 ppm exhibited no significant differences from controls in any of the blood parameters measured. There were no additive or synergistic effects between chlorine dioxide and nitrite based on these same measurements. When A/J (high ...

  12. Life and Death of Glucose-6-Phosphate Dehydrogenase (G6PD) Deficient Erythrocytes – Role of Redox Stress and Band 3 Modifications

    PubMed Central

    Arese, Paolo; Gallo, Valentina; Pantaleo, Antonella; Turrini, Franco

    2012-01-01

    Summary G6PD catalyzes the first, pace-making reaction of pentosephosphate cycle (PPC) which produces NADPH. NADPH maintains glutathione and thiol groups of proteins and enzymes in the reduced state which is essential for protection against oxidative stress. Individuals affected by G6PD deficiency are unable to regenerate reduced glutathione (GSH) and are undefended against oxidative stress. G6PD deficiency accelerates normal senescence and enhances the precocious removal of chronologically young, yet biologically old cells. The term hemolytic anemia is misleading because RBCs do not lyse but are removed by phagocytosis. Acute hemolysis by fava bean ingestion in G6PD deficient individuals (favism) is described being the best-studied natural model of oxidant damage. It bears strong analogies to hemolysis by oxidant drugs or chemicals. Membrane alterations observed in vivo during favism are superimposable to changes in senescent RBCs. In summary, RBC membranes isolated from favic patients contained elevated amounts of complexes between IgG and the complement fragment C3b/C3c and were prone to vesiculation. Anti-band 3 IgG reacted to aggregated band 3-complement complexes. In favism extensive clustering of band 3 and membrane deposition of hemichromes were also observed. Severely damaged RBCs isolated from early crises had extensive membrane cross-bonding and very low GSH levels and were phagocytosed 10-fold more intensely compared to normal RBCs. PMID:23801924

  13. Photoaffinity labeling of the human erythrocyte glucose transporter with /sup 4/H-labelled forskolin

    SciTech Connect

    Shanahan, M.F.; Edwards, B.M.; Morris, D.P.

    1986-05-01

    Forskolin, a potent activator of adenylate cyclase, is also known to inhibit glucose transport in a number of cells. The authors have investigated photoincorporation of (/sup 3/H)forskolin into erythrocyte membrane proteins using a technique they previously developed for photolabeling the erythrocyte glucose transporter with cytochalasin B (CB). A 30-40s irradiation of erythrocyte ghosts in the presence of (/sup 3/H)forskolin resulted in a concentration-dependent, covalent incorporation of radiolabel into all of the major membrane protein bands. However, most of the incorporation occurred in only three regions of the gel. Peak 1 was a sharp peak near the top of the gel in the region corresponding to spectrin, peak 2 appeared to be associated with band 3 (approx. 90kDa), and the third region labeled was between 41-60 kDa which corresponds to the region of the glucose transporter. This region appeared to contain several overlapping peaks with the largest incorporation of label occurring around 45 kDa in the area of red cell actin. When photolabeling was performed in the presence of 400 ..mu..M cytochalasin B (8.0 ..mu..M forskolin) the labeling in the 41-60 kDa region was totally inhibited while labeling of the 90 kDa peak was partially blocked. CB had no effect on the photolabeling of peak 1 by forskolin.

  14. A further polymorphism of the Gd locus for glucose-6-phosphate dehydrogenase present among blacks (Nigerians) and apparently absent among Caucasoids: the quantitative isoelectrophoretic variation of the Gd+ allele.

    PubMed

    Modiano, G; Ciminelli, B M; Malaspina, P; Santolamazza, P; Sedran, L; Meloni, T; Forteleoni, G; Mela, G

    1991-01-01

    A structural but isoelectrophoretic moderate variation of glucose-6-phosphate dehydrogenase (G6PD) activity is common among Nigerians (a black population exposed to a long-lasting intense Plasmodium falciparum malarial endemia). It had never even been searched for among Caucasoids and Mongoloids. In the present work, we attempted to ascertain whether this polymorphism exists among Caucasoids. With this purpose, two Caucasoid male populations were studied: Sardinians and Romans, who respectively did and did not experience an evolutionarily effective exposure to P. falciparum. The approach adopted here consisted in comparing the variations of G6PD activity observed between brothers who certainly received their Gd gene from the same grandparent (hence Gd genes identical by descent) with those between brothers who received it (in the Roman series) or may have received it (in the Sardinian series) from different grandparents. No evidence for common moderate G6PD activity variations segregating with the Gd gene was found either in Romans or Sardinians, who have both been studied with much larger samples and more sensitive approaches than those which detected such type of polymorphism among Nigerians. The upper 95% confidence limit of such zero estimates for the frequency of the isoelectrophoretic quantitative Gd variant alleles were about 0.04 and 0.025 for Romans and Sardinians, respectively. This is the first example of a genetic region (the Gd gene with its flanking sequences) apparently monomorphic in a major race and with several (four) polymorphic sites in another major race. PMID:1797629

  15. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress.

    PubMed Central

    Pandolfi, P P; Sonati, F; Rivi, R; Mason, P; Grosveld, F; Luzzatto, L

    1995-01-01

    Glucose 6-phosphate dehydrogenase (G6PD) is a housekeeping enzyme encoded in mammals by an X-linked gene. It has important functions in intermediary metabolism because it catalyzes the first step in the pentose phosphate pathway and provides reductive potential in the form of NADPH. In human populations, many mutant G6PD alleles (some present at polymorphic frequencies) cause a partial loss of G6PD activity and a variety of hemolytic anemias, which vary from mild to severe. All these mutants have some residual enzyme activity, and no large deletions in the G6PD gene have ever been found. To test which, if any, function of G6PD is essential, we have disrupted the G6PD gene in male mouse embryonic stem cells by targeted homologous recombination. We have isolated numerous clones, shown to be recombinant by Southern blot analysis, in which G6PD activity is undetectable. We have extensively characterized individual clones and found that they are extremely sensitive to H2O2 and to the sulfydryl group oxidizing agent, diamide. Their markedly impaired cloning efficiency is restored by reducing the oxygen tension. We conclude that G6PD activity is dispensable for pentose synthesis, but is essential to protect cells against even mild oxidative stress. Images PMID:7489710

  16. Effects of test spills of chemically dispersed and nondispersed oil on the activity of aspartate aminotransferase and glucose-6-phosphate dehydrogenase in two intertidal bivalves, Mya arenaria and Mytilus edulis

    SciTech Connect

    Gilfillan, E.S.; Foster, J.; Gerber, R.; Hanson, S.A.; Page, D.S.; Vallas, D.

    1982-10-01

    In 1981, two test oil spills were made in Maine. One spill was 975 L (250 gal) of Murban crude oil; the other was 975 L of Murban crude oil premixed with 97 L (25 gal) of Corexit 9527. The uptake of the oil and its effects on enzymatic activity in two species of common intertidal bivalve mollusks, Mya arenaria and Mytilus edulis, were studied. Data were obtained on uptake and depuration of the oil for each species; data were also obtained on the activity of glucose-6-phosphate dehydrogenase and aspartate aminotransferase for each species. Data were collected both before and after each of the spills. Much less oil was taken up by the populations of animals exposed to chemically dispersed oil than by those exposed to nondispersed oil. Rates of depuration were the same for each species; they were also the same regardless of oil exposure. Significant long-term effects on enzyme activity were detected only in those animals exposed to nondispersed oil.

  17. Detailed functional analysis of two clinical glucose-6-phosphate dehydrogenase (G6PD) variants, G6PDViangchan and G6PDViangchan+Mahidol: Decreased stability and catalytic efficiency contribute to the clinical phenotype.

    PubMed

    Boonyuen, Usa; Chamchoy, Kamonwan; Swangsri, Thitiluck; Saralamba, Naowarat; Day, Nicholas P J; Imwong, Mallika

    2016-06-01

    Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is an X-linked hereditary genetic defect that is the most common polymorphism and enzymopathy in humans. To investigate functional properties of two clinical variants, G6PDViangchan and G6PDViangchan+Mahidol, these two mutants were created by overlap-extension PCR, expressed in Escherichia coli and purified to homogeneity. We describe an overexpression and purification method to obtain substantial amounts of functionally active protein. The KM for G6P of the two variants was comparable to the KM of the native enzyme, whereas the KM for NADP(+) was increased 5-fold for G6PDViangchan and 8-fold for G6PDViangchan+Mahidol when compared with the native enzyme. Additionally, kcat of the mutant enzymes was markedly reduced, resulting in a 10- and 18-fold reduction in catalytic efficiency for NADP(+) catalysis for G6PDViangchan and G6PDViangchan+Mahidol, respectively. Furthermore, the two variants demonstrated significant reduction in thermostability, but similar susceptibility to trypsin digestion, when compared with the wild-type enzyme. The presence of NADP(+) is shown to improve the stability of G6PD enzymes. This is the first report indicating that protein instability and reduced catalytic efficiency are responsible for the reduced catalytic activity of G6PDViangchan and G6PDViangchan+Mahidol and, as a consequence, contribute to the clinical phenotypes of these two clinical variants. PMID:27053284

  18. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    MedlinePlus

    ... and researchers. OMIM is maintained by Johns Hopkins University School of Medicine. Orphanet is a European reference ... Support for Patients and Families Help with Travel Costs How to Get Involved in Research FAQs About ...

  19. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    MedlinePlus

    ... gov to read descriptions of these studies. Organizations Organizations Listen Nonprofit support and advocacy groups bring together ... endorsement by GARD. Suggest an organization to add. Organizations Supporting this Disease The G6PD Favism Association E- ...

  20. Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine

    PubMed Central

    2005-01-01

    The metabolism of the glycation product fructose-ϵ-lysine in Escherichia coli involves its ATP-dependent phosphorylation by a specific kinase (FrlD), followed by the conversion of fructoselysine 6-phosphate into glucose 6-phosphate and lysine by fructoselysine-6-phosphate deglycase (FrlB), which is distantly related to the isomerase domain of glucosamine-6-phosphate synthase. As shown in the present work, several bacterial operons comprise: (1) a homologue of fructoselysine-6-phosphate deglycase; (2) a second homologue of the isomerase domain of glucosamine-6-phosphate synthase, more closely related to it; and (3) components of a novel phosphotransferase system, but no FrlD homologue. The FrlB homologue (GfrF) and the closer glucosamine-6-phosphate synthase homologue (GfrE) encoded by an Enterococcus faecium operon were expressed in E. coli and purified. Similar to FrlB, GfrF catalysed the reversible conversion of fructoselysine 6-phosphate into glucose 6-phosphate and lysine. When incubated with fructose 6-phosphate and elevated concentrations of lysine, GfrE catalysed the formation of a compound identified as 2-ϵ-lysino-2-deoxy-6-phospho-glucose (glucoselysine 6-phosphate) by NMR. GfrE also catalysed the reciprocal conversion, i.e. the formation of fructose 6-phosphate (but not glucose 6-phosphate) from glucoselysine 6-phosphate. The equilibrium constant of this reaction (0.8 M) suggests that the enzyme serves to degrade glucoselysine 6-phosphate. In conclusion, GfrF and GfrE serve to metabolize glycation products formed from lysine and glucose (fructoselysine) or fructose (glucoselysine), via their 6-phospho derivatives. The latter are presumably formed by the putative phosphotransferase system encoded by gfrA–gfrD. The designation gfr (glycation and fructation product degradation) is proposed for this operon. This is the first description of an enzyme participating in the metabolism of fructation products. PMID:16153181

  1. Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine.

    PubMed

    Wiame, Elsa; Lamosa, Pedro; Santos, Helena; Van Schaftingen, Emile

    2005-12-01

    The metabolism of the glycation product fructose-epsilon-lysine in Escherichia coli involves its ATP-dependent phosphorylation by a specific kinase (FrlD), followed by the conversion of fructoselysine 6-phosphate into glucose 6-phosphate and lysine by fructoselysine-6-phosphate deglycase (FrlB), which is distantly related to the isomerase domain of glucosamine-6-phosphate synthase. As shown in the present work, several bacterial operons comprise: (1) a homologue of fructoselysine-6-phosphate deglycase; (2) a second homologue of the isomerase domain of glucosamine-6-phosphate synthase, more closely related to it; and (3) components of a novel phosphotransferase system, but no FrlD homologue. The FrlB homologue (GfrF) and the closer glucosamine-6-phosphate synthase homologue (GfrE) encoded by an Enterococcus faecium operon were expressed in E. coli and purified. Similar to FrlB, GfrF catalysed the reversible conversion of fructoselysine 6-phosphate into glucose 6-phosphate and lysine. When incubated with fructose 6-phosphate and elevated concentrations of lysine, GfrE catalysed the formation of a compound identified as 2-epsilon-lysino-2-deoxy-6-phospho-glucose (glucoselysine 6-phosphate) by NMR. GfrE also catalysed the reciprocal conversion, i.e. the formation of fructose 6-phosphate (but not glucose 6-phosphate) from glucoselysine 6-phosphate. The equilibrium constant of this reaction (0.8 M) suggests that the enzyme serves to degrade glucoselysine 6-phosphate. In conclusion, GfrF and GfrE serve to metabolize glycation products formed from lysine and glucose (fructoselysine) or fructose (glucoselysine), via their 6-phospho derivatives. The latter are presumably formed by the putative phosphotransferase system encoded by gfrA-gfrD. The designation gfr (glycation and fructation product degradation) is proposed for this operon. This is the first description of an enzyme participating in the metabolism of fructation products. PMID:16153181

  2. Risks of Hemolysis in Glucose-6-Phosphate Dehydrogenase Deficient Infants Exposed to Chlorproguanil-Dapsone, Mefloquine and Sulfadoxine-Pyrimethamine as Part of Intermittent Presumptive Treatment of Malaria in Infants

    PubMed Central

    Poirot, Eugenie; Vittinghoff, Eric; Ishengoma, Deus; Alifrangis, Michael; Carneiro, Ilona; Hashim, Ramadhan; Baraka, Vito; Mosha, Jacklin; Gesase, Samwel; Chandramohan, Daniel; Gosling, Roland

    2015-01-01

    Background Chlorproguanil-dapsone (CD) has been linked to hemolysis in symptomatic glucose-6-phosphate dehydrogenase deficient (G6PDd) children. Few studies have explored the effects of G6PD status on hemolysis in children treated with Intermittent Preventive Treatment in infants (IPTi) antimalarial regimens. We sought to examine the joint effects of G6PD status and IPTi antimalarial treatment on incidence of hemolysis in asymptomatic children treated with CD, sulfadoxine-pyrimethamine (SP), and mefloquine (MQ). Methods A secondary analysis of data from a double-blind, placebo-controlled trial of IPTi was conducted. Hemoglobin (Hb) measurements were made at IPTi doses, regular follow-up and emergency visits. G6PD genotype was determined at 9 months looking for SNPs for the A- genotype at coding position 202. Multivariable linear and logistic regression models were used to examine hemolysis among children with valid G6PD genotyping results. Hemolysis was defined as the absolute change in Hb or as any post-dose Hb <8 g/dL. These outcomes were assessed using either a single follow-up Hb on day 7 after an IPTi dose or Hb obtained 1 to 14 or 28 days after each IPTi dose. Findings Relative to placebo, CD reduced Hb by approximately 0.5 g/dL at day 7 and within 14 days of an IPTi dose, and by 0.2 g/dL within 28 days. Adjusted declines in the CD group were larger than in the MQ and SP groups. At day 7, homo-/hemizygous genotype was associated with higher odds of Hb <8 g/dL (adjusted odds ratio = 6.7, 95% CI 1.7 to 27.0) and greater absolute reductions in Hb (-0.6 g/dL, 95% CI -1.1 to 0.003). There was no evidence to suggest increased reductions in Hb among homo-/hemizygous children treated with CD compared to placebo, SP or MQ. Conclusions While treatment with CD demonstrated greater reductions in Hb at 7 and 14 days after an IPTi dose compared to both SP and MQ, there was no evidence that G6PD deficiency exacerbated the adverse effects of CD, despite evidence for higher

  3. [The regulation of glucose-6-phosphate dehydrogenase and glycogen synthase activities by insulin superfamily peptides in myometrium of pregnant women and its impairments under different types of diabetes mellitus].

    PubMed

    Kuznetsova, L A; Chistiakova, O V

    2009-01-01

    The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10(-9) M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10(-9) M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women

  4. Lower reference limits of quantitative cord glucose-6-phosphate dehydrogenase estimated from healthy term neonates according to the clinical and laboratory standards institute guidelines: a cross sectional retrospective study

    PubMed Central

    2013-01-01

    Background Previous studies have reported the lower reference limit (LRL) of quantitative cord glucose-6-phosphate dehydrogenase (G6PD), but they have not used approved international statistical methodology. Using common standards is expecting to yield more true findings. Therefore, we aimed to estimate LRL of quantitative G6PD detection in healthy term neonates by using statistical analyses endorsed by the International Federation of Clinical Chemistry (IFCC) and the Clinical and Laboratory Standards Institute (CLSI) for reference interval estimation. Methods This cross sectional retrospective study was performed at King Abdulaziz Hospital, Saudi Arabia, between March 2010 and June 2012. The study monitored consecutive neonates born to mothers from one Arab Muslim tribe that was assumed to have a low prevalence of G6PD-deficiency. Neonates that satisfied the following criteria were included: full-term birth (37 weeks); no admission to the special care nursery; no phototherapy treatment; negative direct antiglobulin test; and fathers of female neonates were from the same mothers’ tribe. The G6PD activity (Units/gram Hemoglobin) was measured spectrophotometrically by an automated kit. This study used statistical analyses endorsed by IFCC and CLSI for reference interval estimation. The 2.5th percentiles and the corresponding 95% confidence intervals (CI) were estimated as LRLs, both in presence and absence of outliers. Results 207 males and 188 females term neonates who had cord blood quantitative G6PD testing met the inclusion criteria. Method of Horn detected 20 G6PD values as outliers (8 males and 12 females). Distributions of quantitative cord G6PD values exhibited a normal distribution in absence of the outliers only. The Harris-Boyd method and proportion criteria revealed that combined gender LRLs were reliable. The combined bootstrap LRL in presence of the outliers was 10.0 (95% CI: 7.5-10.7) and the combined parametric LRL in absence of the outliers was 11

  5. Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: circular dichroism measurements.

    PubMed Central

    Chin, J J; Jung, E K; Chen, V; Jung, C Y

    1987-01-01

    The secondary structural compositions of the human erythrocyte glucose transporter in proteoliposome vesicles were assessed on the basis of circular dichroism (CD) spectra measured in the absence and in the presence of D-glucose or an inhibitor, cytochalasin B. We designed and used a scattered-light-collecting device, which corrects CD spectra for optical artifacts originating from light scattering. Relative contents of eight types of secondary structure were estimated by using basis spectra generated by the eigenvector method based on CD spectra of 15 proteins of known structure. Results indicate that the glucose transporter is composed of approximately 82% alpha-helices, 10% beta-turns, and 8% other random structure, with no beta-strands. In the presence of an excess of D-glucose, the alpha-helical content is reduced by more than 10% and there is a significant increase in the random structure content. Cytochalasin B does not appear to affect the secondary structural composition of the transporter to any significant degree. PMID:3473495

  6. Purification and Characteristics of Sorbitol-6-phosphate Dehydrogenase from Loquat Leaves.

    PubMed

    Hirai, M

    1981-02-01

    To study the role of sorbitol-6-phosphate dehydrogenase in sorbitol synthesis in leaves of Rosaceous plants, properties of the enzyme and its presence in several plants in the family was investigated. The activity of the enzyme, which catalyzes an NADP-dependent oxidation of the substrate to glucose-6-phosphate, was detected in leaves of Prunus mume, Prunus persica, Rhaphiolepsis indica, Sorbus aucuparia, Cydonia oblonga, Photinia glabra, Sorbaria kirilowii, and Spiraea thunbergii.The enzyme was purified about 60-fold from leaves of loquat (Eriobotrya japonica) using affinity chromatography with Blue Sepharose. Neither mannitol-1-phosphate nor fructose-6-phosphate served as substrate. Molecular weight of the enzyme was calculated to be 65,000 at pH 8.0 by gel filtration. Since sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a peptide of 33,000 daltons, the enzyme was assumed to be a dimer at pH 8.0 K(m) values for sorbitol-6-phosphate, glucose-6-phosphate, NADP, and NADPH were 2.22 millimolar, 11.6 millimolar, 13.5 micromolar, and 1.61 micromolar, respectively. Equilibrium constant for sorbitol-6-phosphate oxidation was 5.12 x 10(-10). Optimal pH for sorbitol-6-phosphate oxidation was 9.8. The enzyme showed its maximum activity within a broad pH range between 7 and 9 for glucose-6-phosphate reduction. The enzyme was more effective in the direction of glucose-6-phosphate reduction than in the reverse direction at neutral pH. Thus, it is suggested that the enzyme catalyzes sorbitol synthesis from glucose-6-phosphate during photosynthesis in leaves of Rosaceous plants. PMID:16661650

  7. Erythrocyte ion channels in regulation of apoptosis.

    PubMed

    Lang, Florian; Birka, Christina; Myssina, Svetlana; Lang, Karl S; Lang, Philipp A; Tanneur, Valerie; Duranton, Christophe; Wieder, Thomas; Huber, Stephan M

    2004-01-01

    interferes with erythrocyte "apoptosis." Susceptibility to scramblase activation is enhanced in thalassemia, sickle cell disease and glucose-6-phosphate dehydrogenase deficiency. Infection with Plasmodium falciparum leads to activation of the cation channel eventually triggering erythrocyte "apoptosis." PMID:18727242

  8. Generation of C3- and C2-deuterated L-lactic acid by human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose and D-[6-13C]glucose in the presence of D2O.

    PubMed

    Malaisse, W J; Biesemans, M; Willem, R

    1994-05-01

    1. The generation of C2- and C3-deuterated L-lactate was monitored by 13C NMR in human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose or D-[6-13C]glucose and incubated in a medium prepared in D2O. 2. The results suggested that the deuteration of the C1 of D-fructose 6-phosphate in the phosphoglucoisomerase reaction, the deuteration of the C1 of D-glyceraldehyde-3-phosphate in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase and the deuteration of the C3 of pyruvate in the reaction catalyzed by pyruvate kinase were all lower than expected from equilibration with D2O. 3. Moreover, about 40% of the molecules of pyruvate generated by glycolysis apparently underwent deuteration on their C3 during interconversion of the 2-keto acid and L-alanine in the reaction catalyzed by glutamate-pyruvate transaminase. 4. The occurrence of the latter process was also documented in cells exposed to exogenous [3-13C]pyruvate. 5. This methodological approach is proposed to provide a new tool to assess in intact cells the extent of back-and-forth interconversion of selected metabolic intermediates. PMID:8005354

  9. Discovery of a Plasmodium falciparum glucose-6-phosphate dehydrogenase 6- phosphogluconolactonase inhibitor (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2-(2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (ML276) that reduces parasite growth in vitro

    PubMed Central

    Preuss, Janina; Maloney, Patrick; Peddibhotla, Satyamaheshwar; Hedrick, Michael P.; Hershberger, Paul; Gosalia, Palak; Milewski, Monika; Li, Yujie Linda; Sugarman, Eliot; Hood, Becky; Suyama, Eigo; Nguyen, Kevin; Vasile, Stefan; Sergienko, Eduard; Mangravita-Novo, Arianna; Vicchiarelli, Michael; McAnally, Danielle; Smith, Layton H.; Roth, Gregory P.; Diwan, Jena; Chung, Thomas D.Y.; Jortzik, Esther; Rahlfs, Stefan; Becker, Katja; Pinkerton, Anthony B.; Bode, Lars

    2012-01-01

    A high throughput screen of the NIH’s MLSMR collection of ~340,000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is essential for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human ortholog. The reaction catalyzed by glucose-6-phosphate dehydrogenase (G6PD) is the first, rate-limiting step in the pentose phosphate pathway (PPP), a key metabolic pathway sustaining anabolic needs in reductive equivalents and synthetic materials in fastgrowing cells. In P. falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase-6- phosphogluconolactonase (PfGluPho) catalyzes the first two steps of the PPP. Because P. falciparum and infected host red blood cells rely on accelerated glucose flux, they depend on the G6PD activity of PfGluPho. The lead compound identified from this effort, (R,Z)-N-((1-ethylpyrrolidin-2-yl)methyl)-2- (2-fluorobenzylidene)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide, 11, (ML276), is a submicromolar inhibitor of PfG6PD (IC50 = 889 nM). It is completely selective for the enzyme’s human isoform, displays micromolar potency (IC50 = 2.6 μM) against P. falciparum in culture, and has good drug-like properties, including high solubility and moderate microsomal stability. Studies testing the potential advantage of inhibiting PfG6PD in vivo are in progress. PMID:22813531

  10. Regulation of glucosamine-6-phosphate deaminase synthesis in yeast.

    PubMed

    Singh, B; Datta, A

    1979-02-19

    A basal level of glucosamine-6-phosphate deaminase is detected in yeast cells grown on glucose. However, a burst of enzyme production occurs in the presence of N-acetylglucosamine in pathogenic Candida albicans and non-pathogenic Saccharomyces cervisiae. The enzyme synthesis stops and its concentration in the cells declines rapidly as soon as N-acetylglucosamine is removed from the medium. Experiments with RNA- and protein-synthesis inhibitors indicate that the appearance of new enzyme activity is dependent on concomitant new protein synthesis and the inducer operates at a transcriptional level. However, inhibition of DNA synthesis either by hydroxyurea or by mitomycin-C does not impair the synthesis of glucosamine-6-phosphate deaminase. PMID:369615

  11. The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes.

    PubMed Central

    Rosa, R; Prehu, M O; Beuzard, Y; Rosa, J

    1978-01-01

    An inherited and complete deficiency of diphosphoglycerate mutase was discovered in the erythrocytes of a 42-yr-old man of French origin whose blood hemoglobin concentration was 19.0 g/dl. Upon physical examination he was normal with the exception of a ruddy cyanosis. The morphology of his erythrocytes was also normal and there was no evidence of hemolysis. The erythrocyte 2,3-diphosphoglycerate level was below 3% of normal values and, as a consequence, the affinity of the cells for oxygen was increased. Diphosphoglycerate mutase activity was undetectable in erythrocytes as was that of diphosphoglycerate phosphatase. The activities of all the other erythrocyte enzymes that were tested were normal except for nomophosphoglycerate mutase which was diminished to 50% of the normal value. The levels of reduced glutathione, ATP, fructose 1,6-diphosphate, and of triose phosphates were elevated, whereas those of glucose 6-phosphate and fructose 6-phosphate were decreased. This report sheds new light on the role of diphosphoglycerate mutase in the metabolism of erythrocytes. Images PMID:152321

  12. Erythrocyte survival in sheep exposed to ozone

    SciTech Connect

    Moore, G.S.; Calabrese, E.J.; Labato, F.J.

    1981-07-01

    Erythrocyte survival studies in the Dorset ewe using chromium 51 were performed. The purpose of the study was to determine if ozone exposure produces decreased cell survival which may be the result of premature erythrocyte aging. This strain of sheep has an erythrocyte glucose-6-phosphate dehydrogenase (G6PD) activity that is very low, being comparable to human A-variants with G6PD deficiency. Ozone exposure may produce hemolytic effects in G6PD deficients more readily than in erythrocytes with normal activity. A decrease in hematocrit was observed in the ozone exposed groups. With respect to red cell destruction, ozone does not appear to act immediately, but rather there appears to be a delayed effect. At 0.25 ppM ozone, the group reached the 50% remaining level an average of 1 day sooner than the control group. There was no significant difference between control and exposed groups at the 0.50 ppM and 0.70 ppM levels. Also, the results demonstrate a net decrease in hematocrit which is greater for 0.25 ppM ozone than any other exposure level. (RJC)

  13. Triggers, Inhibitors, Mechanisms, and Significance of Eryptosis: The Suicidal Erythrocyte Death

    PubMed Central

    Lang, Elisabeth

    2015-01-01

    Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders. PMID:25821808

  14. Crystal Structure Analysis of Human Glutamine : Fructose 6-Phosphate Amidotransferase, a Key Regulator in Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Nakaishi, Yuichiro; Bando, Masahiko

    Glutamine : fructose 6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosythetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose 6-phosphate and linear glucosamine 6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.

  15. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes

    PubMed Central

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2015-01-01

    Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes. PMID:26053739

  16. G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)

    MedlinePlus

    ... are high-risk areas for the infectious disease malaria . Researchers have found evidence that the parasite that ... deficiency may have developed as a protection against malaria. continue G6PD Deficiency Symptom Triggers Kids with G6PD ...

  17. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    ... as some antibiotics and medications used to treat malaria). Hemolytic anemia can also occur after eating fava ... a G6PD mutation may be partially protected against malaria, an infectious disease carried by a certain type ...

  18. Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter.

    PubMed Central

    Davies, A; Ciardelli, T L; Lienhard, G E; Boyle, J M; Whetton, A D; Baldwin, S A

    1990-01-01

    Antibodies were raised against synthetic peptides corresponding to most of the regions of the human erythrocyte glucose transporter predicted to be extramembranous in the model of Mueckler, Caruso, Baldwin, Panico, Blench, Morris, Lienhard, Allard & Lodish [(1985) Science 229, 941-945]. Most of the antibodies (17 out of a total of 19) recognized the intact denatured protein on Western blots. However, only seven of the antibodies recognized the native membrane-bound protein, even after its deglycosylation. These antibodies, against peptides encompassing residues 217-272 and 450-492 in the hydrophilic central and C-terminal regions of the transporter, bound to the cytoplasmic surface of the erythrocyte membrane. This finding is in agreement with the prediction of the model that these regions of the sequence are cytoplasmic. Antibodies against peptides from the central cytoplasmic loop of the transporter were found to inhibit the binding of cytochalasin B to the membrane-bound protein, whereas antibodies against the C-terminal region had no effect. The anti-peptide antibodies were then used to map the sequence locations of fragments of the transporter arising from tryptic digestion of the membrane-bound protein. This in turn enabled the epitopes for a number of anti-transporter monoclonal antibodies to be located within either the central cytoplasmic loop or the C-terminal region of the protein. Of those monoclonal antibodies which inhibited cytochalasin B binding to the protein, all but one were found to have epitopes within the central region of the sequence. In conjunction with the results of the anti-peptide antibody studies, these findings indicate the importance of this part of the protein for transporter function. Images Fig. 7. PMID:1691633

  19. Cation channels, cell volume and the death of an erythrocyte.

    PubMed

    Lang, Florian; Lang, Karl S; Wieder, Thomas; Myssina, Svetlana; Birka, Christina; Lang, Philipp A; Kaiser, Stephanie; Kempe, Daniela; Duranton, Christophe; Huber, Stephan M

    2003-11-01

    Similar to a variety of nucleated cells, human erythrocytes activate a non-selective cation channel upon osmotic cell shrinkage. Further stimuli of channel activation include oxidative stress, energy depletion and extracellular removal of Cl-. The channel is permeable to Ca2+ and opening of the channel increases cytosolic [Ca2+]. Intriguing evidence points to a role of this channel in the elimination of erythrocytes by apoptosis. Ca2+ entering through the cation channel stimulates a scramblase, leading to breakdown of cell membrane phosphatidylserine asymmetry, and stimulates Ca(2+)-sensitive K+ channels, thus leading to KCl loss and (further) cell shrinkage. The breakdown of phosphatidylserine asymmetry is evidenced by annexin binding, a typical feature of apoptotic cells. The effects of osmotic shock, oxidative stress and energy depletion on annexin binding are mimicked by the Ca2+ ionophore ionomycin (1 microM) and blunted in the nominal absence of extracellular Ca2+. Nevertheless, the residual annexin binding points to additional mechanisms involved in the triggering of the scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Susceptibility to annexin binding is enhanced in several genetic disorders affecting erythrocyte function, such as thalassaemia, sickle-cell disease and glucose-6-phosphate dehydrogenase deficiency. The enhanced vulnerability presumably contributes to the shortened life span of the affected erythrocytes. Beyond their role in the limitation of erythrocyte survival, cation channels may contribute to the triggering of apoptosis in nucleated cells exposed to osmotic shock and/or oxidative stress. PMID:12905029

  20. Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides

    PubMed Central

    Gao, Ningguo; Shang, Jie; Huynh, Dang; Manthati, Vijaya L.; Arias, Carolina; Harding, Heather P.; Kaufman, Randal J.; Mohr, Ian; Ron, David; Falck, John R.; Lehrman, Mark A.

    2011-01-01

    Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose3mannose9GlcNAc2-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown. In this study, we used intact mouse embryonic fibroblasts to show that endoplasmic reticulum (ER) stress elevates M6P concentrations, leading to cleavage of the LLO pyrophosphate linkage with recovery of its lipid and lumenal glycan components. We demonstrate that this M6P originates from glycogen, with glycogenolysis activated by the kinase domain of the stress sensor IRE1-α. The apparent futility of M6P causing destruction of its LLO product was resolved by experiments with another stress sensor, PKR-like ER kinase (PERK), which attenuates translation. PERK's reduction of N-glycoprotein synthesis (which consumes LLOs) stabilized steady-state LLO levels despite continuous LLO destruction. However, infection with herpes simplex virus 1, an N-glycoprotein-bearing pathogen that impairs PERK signaling, not only caused LLO destruction but depleted LLO levels as well. In conclusion, the common metabolite M6P is also part of a novel mammalian stress-signaling pathway, responding to viral stress by depleting host LLOs required for N-glycosylation of virus-associated polypeptides. Apparently conserved throughout evolution, LLO destruction may be a response to a variety of environmental stresses. PMID:21737679

  1. Potassium bromate causes cell lysis and induces oxidative stress in human erythrocytes.

    PubMed

    Ahmad, Mir Kaisar; Amani, Samreen; Mahmood, Riaz

    2014-02-01

    In the present study, we have studied the effect of KBrO3 on human erythrocytes under in vitro conditions. Erythrocytes were isolated from the blood of healthy nonsmoking volunteers and incubated with different concentrations of KBrO3 at 37°C for 60 min. This resulted in marked hemolysis in a KBrO3 -concentration dependent manner. Lysates were prepared from KBrO3 -treated and control erythrocytes and assayed for various parameters. KBrO3 treatment caused significant increase in protein oxidation, lipid peroxidation, hydrogen peroxide levels, and decrease in total sulfhydryl content, which indicates induction of oxidative stress in human erythrocytes. Methemoglobin levels and methemoglobin reductase activity were significantly increased while the total antioxidant power of lysates was greatly reduced upon KBrO3 treatment. Intracellular production of reactive oxygen species increased in a dose dependent manner. Exposure of erythrocytes to KBrO3 also caused decrease in the activities of catalase, glutathione peroxidase, thioredoxin reductase, glucose 6-phosphate dehydrogenase and glutathione reductase whereas the activities of Cu-Zn superoxide dismutase and glutathione-S-transferase were increased. These results show that KBrO3 induces oxidative stress in human erythrocytes through the generation of reactive oxygen species and alters the cellular antioxidant defense system. PMID:22012894

  2. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes

    SciTech Connect

    Gaetani, G.F.; Galiano, S.; Canepa, L.; Ferraris, A.M.; Kirkman, H.N.

    1989-01-01

    Genetic deficiencies of glucose-6-phosphate dehydrogenase (G6PD) and NADPH predispose affected erythrocytes to destruction from peroxides. Conversely, genetic deficiencies of catalase do not predispose affected erythrocytes to peroxide-induced destruction. These observations have served to strengthen the assumption that the NADPH/glutathione/glutathione peroxidase pathway is the principal means for disposal of H/sub 2/O/sub 2/ in human erythrocytes. Recently, however, mammalian catalase was found to have tightly bound NADPH and to require NADPH for the prevention and reversal of inactivation by its toxic substrate (H/sub 2/O/sub 2/). Since both catalase and the glutathione pathway are dependent on NADPH for function, this finding raises the possibility that both mechanisms destroy H/sub 2/O/sub 2/ in human erythrocytes. A comparison of normal and acatalasemic erythrocytes in the present study indicated that catalase accounts for more than half of the destruction of H/sub 2/O/sub 2/ when H/sub 2/O/sub 2/ is generated at a rate comparable to that which leads to hemolysis in G6PD- deficient erythrocytes.

  3. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning

    SciTech Connect

    Babu, Challagundla K.; Khanna, Subhash K.; Das, Mukul

    2008-08-01

    Oxidative damage of biomolecules and antioxidant status in erythrocytes of humans from an outbreak of argemone oil (AO) poisoning in Kannauj (India) and AO intoxicated experimental animals was investigated. Erythrocytes of the dropsy patients and AO treated rats were found to be more susceptible to 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced peroxidative stress. Significant decrease in RBC glutathione (GSH) levels (46, 63%) with concomitant enhancement in oxidized glutathione (172, 154%) levels was noticed in patients and AO intoxicated animals. Further, depletion of glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PDH) and glutathione-S-transferase (GST) (42-52%) was observed in dropsy patients. Oxidation of erythrocyte membrane lipids and proteins was increased (120-144%) in patients and AO treated animals (112-137%) along with 8-OHdG levels in whole blood (180%) of dropsy patients. A significant reduction in {alpha}-tocopherol content (68%) was noticed in erythrocytes of dropsy patients and hepatic, plasma and RBCs of AO treated rats (59-70%) thereby indicating the diminished antioxidant potential to scavenge free radicals or the limited transport of {alpha}-tocopherol from liver to RBCs leading to enhanced oxidation of lipids and proteins in erythrocytes. These studies implicate an important role of erythrocyte degradation in production of anemia and breathlessness in epidemic dropsy.

  4. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy.

    PubMed

    Dulińska, Ida; Targosz, Marta; Strojny, Wojciech; Lekka, Małgorzata; Czuba, Paweł; Balwierz, Walentyna; Szymoński, Marek

    2006-03-31

    During recent years, atomic force microscopy has become a powerful technique for studying the mechanical properties (such as stiffness, viscoelasticity, hardness and adhesion) of various biological materials. The unique combination of high-resolution imaging and operation in physiological environment made it useful in investigations of cell properties. In this work, the microscope was applied to measure the stiffness of human red blood cells (erythrocytes). Erythrocytes were attached to the poly-L-lysine-coated glass surface by fixation using 0.5% glutaraldehyde for 1 min. Different erythrocyte samples were studied: erythrocytes from patients with hemolytic anemias such as hereditary spherocytosis and glucose-6-phosphate-dehydrogenase deficiency patients with thalassemia, and patients with anisocytosis of various causes. The determined Young's modulus was compared with that obtained from measurements of erythrocytes from healthy subjects. The results showed that the Young's modulus of pathological erythrocytes was higher than in normal cells. Observed differences indicate possible changes in the organization of cell cytoskeleton associated with various diseases. PMID:16443279

  5. Assay and properties of N-acetylglucosamine 6-phosphate deacetylase from rat liver

    SciTech Connect

    Campbell, P.; Laurent, T.C.; Roden, L.

    1987-05-01

    N-Acetylglucosamine (GlcNAc) is generated, in liver and other tissues, as a product of the lysosomal degradation of complex carbohydrates. After diffusion into the cytosol, the monosaccharide is metabolized via catabolic or anabolic pathways, in which the first step is common to both pathways and consists of phosphorylation at C-6 by a specific GlcNAc kinase. When processed via the catabolic pathway, GlcNAc 6-phosphate is then deacetylated to glucosamine (GlcN) 6-phosphate. In the present study, they have developed a simple assay for the deacetylase catalyzing this reaction, in which /sup 3/H-acetate released from /sup 3/H-acetyl-labeled GlcNAc 6-phosphate is measured directly in a biphasic liquid scintillation counting system after acidification of the reaction mixture. The new assay has been used in partial purification of the deacetylase from rat liver and in analysis of kinetic and other properties of the enzyme. GlcN 6-phosphate and glucose 6-phosphate inhibited the deacetylase, while GlcNAc, GlcNAc 1-phosphate, GlcN 1-phosphate, and N-acetylgalactosamine had no effect. The activity of the enzyme was substantially inhibited by 5 mM Mn/sup 2 +/, Ni/sup 2 +/, or Cu/sup 2 +/, while Ca/sup 2 +/, Mg/sup 2 +/, and Ba/sup 2 +/ had essentially no effect at concentrations of 12.5 mM or lower. Co/sup 2 +/ stimulated at low concentrations (< 5 mM) but inhibited at higher concentrations. Gel chromatography on Sepharose CL-6B indicated that the enzyme had a mol. wt. greater than 160,000.

  6. Kinetics of exogenous induction of the hexose-6-phosphate transport system of Escherichia coli.

    PubMed

    Winkler, H H

    1971-07-01

    The kinetics of the exogenous induction of the hexose-phosphate transport system by glucose-6-phosphate (G6P) was investigated. The induction of this system by extracellular but not intracellular G6P was confirmed. The differential rate of synthesis was linear, a function of the extracellular concentration of G6P and independent of the previous induction history of the culture. Neither maintenance nor autocatalysis, phenomena described in the induction of the lac operon, were observed in the exogenous induction of hexose-phosphate transport. Fructose-6-phosphate, a potent competitive inhibitor of G6P influx, had no effect on the induction of the system by G6P, indicating that the transport of inducer was not involved in the induction process. PMID:4935331

  7. Activated and unactivated forms of human erythrocyte aldose reductase.

    PubMed Central

    Srivastava, S K; Hair, G A; Das, B

    1985-01-01

    Aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) has been partially purified from human erythrocytes by DEAE-cellulose (DE-52) column chromatography. This enzyme is activated severalfold upon incubation with 10 microM each glucose 6-phosphate, NADPH, and glucose. The activation of the enzyme was confirmed by following the oxidation of NADPH as well as the formation of sorbitol with glucose as substrate. The activated form of aldose reductase exhibited monophasic kinetics with both glyceraldehyde and glucose (Km of glucose = 0.68 mM and Km of glyceraldehyde = 0.096 mM), whereas the native (unactivated) enzyme exhibited biphasic kinetics (Km of glucose = 9.0 and 0.9 mM and Km of glyceraldehyde = 1.1 and 0.14 mM). The unactivated enzyme was strongly inhibited by aldose reductase inhibitors such as sorbinil, alrestatin, and quercetrin, and by phosphorylated intermediates such as ADP, glycerate 3-phosphate, glycerate 1,3-bisphosphate, and glycerate 2,3-trisphosphate. The activated form of the enzyme was less susceptible to inhibition by aldose reductase inhibitors and phosphorylated intermediates. PMID:3933003

  8. Attenuation of erythrocyte membrane oxidative stress by Sesbania grandiflora in streptozotocin-induced diabetic rats.

    PubMed

    Sureka, Chandrabose; Ramesh, Thiyagarajan; Begum, Vavamohaideen Hazeena

    2015-08-01

    The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190-220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na(+)/K(+)-ATPase, Ca(2+)-ATPase, and Mg(2+)-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications. PMID:26176361

  9. Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production

    PubMed Central

    Sigdel, Sujan; Singh, Ranjitha; Kim, Tae-Su; Li, Jinglin; Kim, Sang-Yong; Kim, In-Won; Jung, Woo-Suk; Pan, Cheol-Ho; Kang, Yun Chan; Lee, Jung-Kul

    2015-01-01

    The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8) was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P). The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications. PMID:26171785

  10. Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase.

    PubMed Central

    Milewski, S; Andruszkiewicz, R; Kasprzak, L; Mazerski, J; Mignini, F; Borowski, E

    1991-01-01

    The mechanism of anticandidal action of novel synthetic dipeptides containing N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP) residues was shown to be consistent with the "warhead delivery" concept. FMDP dipeptides were shown to be transported into Candida albicans cells by the di-tripeptide permease and subsequently hydrolyzed by intracellular peptidases, especially aminopeptidase. The anticandidal activity of the particular FMDP dipeptide was influenced by the rate of its transport and, to a lower extent, by the intracellular cleavage rate. A high transport rate accompanied by a high cleavage rate resulted in the high anticandidal activity of L-norvalyl-FMDP. The strong growth-inhibitory effect of this compound was the consequence of inhibition of the enzyme glucosamine-6-phosphate synthase by the released FMDP. The action of L-norvalyl-FMDP on exponentially growing C. albicans cells resulted in a sharp decrease of incorporation of 14C label from [14C]glucose into chitin, mannoprotein, and glucan. This effect, as well as the growth-inhibitory effect, was fully reversed by exogenous N-acetyl-D-glucosamine. Glucosamine-6-phosphate synthase was proved to be the only essential target for FMDP dipeptides. Scanning electron microscopy of C. albicans cells treated with L-norvalyl-FMDP revealed highly distorted, wrinkled, and collapsed forms. Cells formed long, bulbous chains, and partial lysis occurred. Images PMID:1901701

  11. Mechanism of action of anticandidal dipeptides containing inhibitors of glucosamine-6-phosphate synthase.

    PubMed

    Milewski, S; Andruszkiewicz, R; Kasprzak, L; Mazerski, J; Mignini, F; Borowski, E

    1991-01-01

    The mechanism of anticandidal action of novel synthetic dipeptides containing N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (FMDP) residues was shown to be consistent with the "warhead delivery" concept. FMDP dipeptides were shown to be transported into Candida albicans cells by the di-tripeptide permease and subsequently hydrolyzed by intracellular peptidases, especially aminopeptidase. The anticandidal activity of the particular FMDP dipeptide was influenced by the rate of its transport and, to a lower extent, by the intracellular cleavage rate. A high transport rate accompanied by a high cleavage rate resulted in the high anticandidal activity of L-norvalyl-FMDP. The strong growth-inhibitory effect of this compound was the consequence of inhibition of the enzyme glucosamine-6-phosphate synthase by the released FMDP. The action of L-norvalyl-FMDP on exponentially growing C. albicans cells resulted in a sharp decrease of incorporation of 14C label from [14C]glucose into chitin, mannoprotein, and glucan. This effect, as well as the growth-inhibitory effect, was fully reversed by exogenous N-acetyl-D-glucosamine. Glucosamine-6-phosphate synthase was proved to be the only essential target for FMDP dipeptides. Scanning electron microscopy of C. albicans cells treated with L-norvalyl-FMDP revealed highly distorted, wrinkled, and collapsed forms. Cells formed long, bulbous chains, and partial lysis occurred. PMID:1901701

  12. The crystal and solution studies of glucosamine-6-phosphate synthase from Candida albicans.

    PubMed

    Raczynska, Joanna; Olchowy, Jaroslaw; Konariev, Peter V; Svergun, Dmitri I; Milewski, Slawomir; Rypniewski, Wojciech

    2007-09-21

    Glucosamine 6-phosphate (GlcN-6-P) synthase is an ubiquitous enzyme that catalyses the first committed step in the reaction pathway that leads to formation of uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), a precursor of macromolecules that contain amino sugars. Despite sequence similarities, the enzyme in eukaryotes is tetrameric, whereas in prokaryotes it is a dimer. The activity of eukaryotic GlcN-6-P synthase (known as Gfa1p) is regulated by feedback inhibition by UDP-GlcNAc, the end product of the reaction pathway, whereas in prokaryotes the GlcN-6-P synthase (known as GlmS) is not regulated at the post-translational level. In bacteria and fungi the enzyme is essential for cell wall synthesis. In human the enzyme is a mediator of insulin resistance. For these reasons, Gfa1p is a target in anti-fungal chemotherapy and in therapeutics for type-2 diabetes. The crystal structure of the Gfa1p isomerase domain from Candida albicans has been analysed in complex with the allosteric inhibitor UDP-GlcNAc and in the presence of glucose 6-phosphate, fructose 6-phosphate and an analogue of the reaction intermediate, 2-amino-2-deoxy-d-mannitol 6-phosphate (ADMP). A solution structure of the native Gfa1p has been deduced using small-angle X-ray scattering (SAXS). The tetrameric Gfa1p can be described as a dimer of dimers, with each half similar to the related enzyme from Escherichia coli. The core of the protein consists of the isomerase domains. UDP-GlcNAc binds, together with a metal cation, in a well-defined pocket on the surface of the isomerase domain. The residues responsible for tetramerisation and for binding UDP-GlcNAc are conserved only among eukaryotic sequences. Comparison with the previously studied GlmS from E. coli reveals differences as well as similarities in the isomerase active site. This study of Gfa1p focuses on the features that distinguish it from the prokaryotic homologue in terms of quaternary structure, control of the enzymatic activity

  13. [The activity of antioxidant enzymes of erythrocytes under intensive physical activity on the background of D-ribose use].

    PubMed

    Konvaĭ, V D; Chigrinskiĭ, E A; Korniakova, V V; Reĭs, B A

    2011-01-01

    Biochemical analysis of blood of 30 male rats with 240 +/- 20 g mass and 50 sportsmen at the age 17-20 years were done. They were subjected by intensive physical activity with D-ribose use and without it. Carbohydrate was being put into them before and after intensive physical activity during 5-7 days. The dose was 30-50 mg/kg of their body mass. Concentration of glucose, lactate and uric acids, level of malondialdehyde, activity of superoxide dismutase, glutathione peroxidase and glucose-6-phosphate dehydrogenase were defined in the male rats and sportsmen blood. It is shown that D-ribose use influences positive by to the dynamics of biochemical data in blood. It has taken place owing to the intensification of reutilization of purine mononucleotides and the activity of pentose cycle, as a result lipid peroxidation of membrane of erythrocytes reduces and state of antioxidation system improves. PMID:21842760

  14. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well-oxygenated perfused skeletal muscle

    PubMed Central

    Rennie, Michael J.; Holloszy, John O.

    1977-01-01

    The effects of exogenous oleate on glucose uptake, lactate production and glycogen concentration in resting and contracting skeletal muscle were studied in the perfused rat hindquarter. In preliminary studies with aged erythrocytes at a haemoglobin concentration of 8g/100ml in the perfusion medium, 1.8mm-oleate had no effect on glucose uptake or lactate production. During these studies it became evident that O2 delivery was inadequate with aged erythrocytes. Perfusion with rejuvenated human erythrocytes at a haemoglobin concentration of 12g/100ml resulted in a 2-fold higher O2 uptake at rest and a 4-fold higher O2 uptake during muscle contraction than was obtained with aged erythrocytes. Rejuvenated erythrocytes were therefore used in subsequent experiments. Glucose uptake and lactate production by the well-oxygenated hindquarter were inhibited by one-third, both at rest and during muscle contraction, when 1.8mm-oleate was added to the perfusion medium. Addition of oleate also significantly protected against glycogen depletion in the fast-twitch red and slow-twitch red types of muscle, but not in white muscle, during sciatic-nerve stimulation. In the absence of added oleate, glucose was confined to the extracellular space in resting muscle. Addition of oleate resulted in intracellular glucose accumulation in red muscle. Contractile activity resulted in accumulation of intracellular glucose in all three muscle types, and this effect was significantly augmented in the red types of muscle by perfusion with oleate. The concentrations of citrate and glucose 6-phosphate were also increased in red muscle perfused with oleate. We conclude that, as in the heart, availability of fatty acids has an inhibitory effect on glucose uptake and glycogen utilization in well-oxygenated red skeletal muscle. PMID:597267

  15. Carbohydrate Recognition by the Mannose 6-phosphate Receptors

    PubMed Central

    Kim, Jung-Ja P.; Olson, Linda J.; Dahms, Nancy M.

    2009-01-01

    Summary The two P-type lectins, the 46 kDa cation-dependent mannose 6-phosphate (Man-6-P) receptor (CD-MPR) and the 300 kDa cation-independent Man-6-P receptor (CI-MPR), are the founding members of the growing family of mannose 6-phosphate receptor homology (MRH) proteins. A major cellular function of the MPRs is to transport Man-6-P-containing acid hydrolases from the Golgi to endosomal/lysosomal compartments. Recent advances in the structural analyses of both CD-MPR and CI-MPR have revealed the structural basis for phosphomannosyl recognition by these receptors and provided insights into how the receptors load and unload their cargo. A surprising finding is that the CD-MPR is dynamic, with at least two stable quaternary states, the open (ligand bound) and closed (ligand free) conformations, similar to those of hemoglobin. Ligand binding stabilizes the open conformation; changes in the pH of the environment at the cell surface and in endosomal compartments weaken the ligand-receptor interaction and/or weaken the electrostatic interactions at the subunit interface, resulting in the closed conformation. PMID:19801188

  16. Physical mapping of the human glutamine:fructose-6-phosphate amidotransferase gene (GFPT) to chromosome 2p13

    SciTech Connect

    Whitmore, T.E.; Mudri, S.L.; McKnight, G.L.

    1995-03-20

    Diabetic hyperglycemia influences insulin resistance through a process termed glucose toxicity. Implicated as a source of the mediators of this toxicity is an increased intracellular glucose metabolism through the hexosamine pathway. The hexosamine pathway itself is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFAT), which is the first enzyme of the pathway. It has been shown that there is a close correlation between the glucose-mediated reduction of GFAT activity and the onset of insulin desensitization of the glucose transport system, a condition associated with insulin-resistant states of non-insulin-dependent diabetes mellitus and obesity. To gain a better understanding of the molecular regulation of GFAT and its role in the induction of insulin resistance, we previously isolated and cloned the cDNA for the human form of this enzyme and expressed the functional protein in Escherichia coli. 9 refs., 1 fig.

  17. Site on the human erythrocyte glucose transporter phosphorylated by protein kinase C resides on the protein's hydrophilic domain

    SciTech Connect

    Deziel, M.R.; McReynolds, J.H.; Lippes, H.A.; Jung, C.Y.

    1986-05-01

    A recently published model of the human erythrocyte hexose transporter deduced from the protein's primary structure proposes that the transporter is organized into two membrane domains comprising 77% of the protein's mass and three hydrophilic domains, a short segment that includes the polypeptide's N-terminus and two larger segments, one lying between the membrane domains and the other at the protein's C-terminus. Limited tryptic digestion of the transporter produces two membrane-bound fragments corresponding to the proposed membrane domains and releases a number of soluble peptides. Fast Atom Bombardment Mass Spectroscopic analysis of the released peptides and comparison of the peptide's masses with the transporter's amino acid sequence revealed that tryptic peptides corresponding to at least 63% of the hydrophilic domains' mass were recovered. The site of phosphorylation by protein kinase C, tagged using (/sup 32/P)-ATP, was also released from the transporter under these conditions, (in contrast to sites located within the protein's membrane domains), indicating that this site is located within one of the hydrophilic domains. Tryptic digestion at elevated ionic strength or cleavage with S. Aureus V8 protease results in the recovery of the /sup 32/P label on the carbohydrate-bearing membrane domain that is located near the protein's N-terminus, thus eliminating the C-terminal hydrophilic segment as a possible site of phosphorylation.

  18. The mechanism of sugar phosphate isomerization by glucosamine 6-phosphate synthase.

    PubMed Central

    Teplyakov, A.; Obmolova, G.; Badet-Denisot, M. A.; Badet, B.

    1999-01-01

    Glucosamine 6-phosphate synthase converts fructose-6P into glucosamine-6P or glucose-6P depending on the presence or absence of glutamine. The isomerase activity is associated with a 40-kDa C-terminal domain, which has already been characterized crystallographically. Now the three-dimensional structures of the complexes with the reaction product glucose-6P and with the transition state analog 2-amino-2-deoxyglucitol-6P have been determined. Glucose-6P binds in a cyclic form whereas 2-amino-2-deoxyglucitol-6P is in an extended conformation. The information on ligand-protein interactions observed in the crystal structures together with the isotope exchange and site-directed mutagenesis data allow us to propose a mechanism of the isomerase activity of glucosamine-6P synthase. The sugar phosphate isomerization involves a ring opening step catalyzed by His504 and an enolization step with Glu488 catalyzing the hydrogen transfer from C1 to C2 of the substrate. The enediol intermediate is stabilized by a helix dipole and the epsilon-amino group of Lys603. Lys485 may play a role in deprotonating the hydroxyl O1 of the intermediate. PMID:10091662

  19. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme.

    PubMed

    Cochrane, Jesse C; Lipchock, Sarah V; Smith, Kathryn D; Strobel, Scott A

    2009-04-21

    The glmS ribozyme is the first naturally occurring catalytic RNA that relies on an exogenous, nonnucleotide cofactor for reactivity. From a biochemical perspective, the glmS ribozyme derived from Bacillus anthracis is the best characterized. However, much of the structural work to date has been done on a variant glmS ribozyme, derived from Thermoanaerobacter tengcongensis. Here we present structures of the B. anthracis glmS ribozyme in states before the activating sugar, glucosamine 6-phosphate (GlcN6P), has bound and after the reaction has occurred. These structures show an active site preorganized to bind GlcN6P that retains some affinity for the sugar even after cleavage of the RNA backbone. A structure of an inactive glmS ribozyme with a mutation distal from the ligand-binding pocket highlights a nucleotide critical to the reaction that does not affect GlcN6P binding. Structures of the glmS ribozyme bound to a naturally occurring inhibitor, glucose 6-phosphate (Glc6P), and a nonnatural activating sugar, mannosamine 6-phosphate (MaN6P), reveal a binding mode similar to that of GlcN6P. Kinetic analyses show a pH dependence of ligand binding that is consistent with titration of the cofactor's phosphate group and support a model in which the major determinant of activity is the sugar amine independent of its stereochemical presentation. PMID:19228039

  20. Structural and Chemical Basis for Glucosamine 6-Phosphate Binding and Activation of the glmS Ribozyme

    SciTech Connect

    Cochrane, J.; Lipchock, S; Smith, K; Strobel, S

    2009-01-01

    The glmS ribozyme is the first naturally occurring catalytic RNA that relies on an exogenous, nonnucleotide cofactor for reactivity. From a biochemical perspective, the glmS ribozyme derived from Bacillus anthracis is the best characterized. However, much of the structural work to date has been done on a variant glmS ribozyme, derived from Thermoanaerobacter tengcongensis. Here we present structures of the B. anthracis glmS ribozyme in states before the activating sugar, glucosamine 6-phosphate (GlcN6P), has bound and after the reaction has occurred. These structures show an active site preorganized to bind GlcN6P that retains some affinity for the sugar even after cleavage of the RNA backbone. A structure of an inactive glmS ribozyme with a mutation distal from the ligand-binding pocket highlights a nucleotide critical to the reaction that does not affect GlcN6P binding. Structures of the glmS ribozyme bound to a naturally occurring inhibitor, glucose 6-phosphate (Glc6P), and a nonnatural activating sugar, mannosamine 6-phosphate (MaN6P), reveal a binding mode similar to that of GlcN6P. Kinetic analyses show a pH dependence of ligand binding that is consistent with titration of the cofactor's phosphate group and support a model in which the major determinant of activity is the sugar amine independent of its stereochemical presentation.

  1. {open_quotes}The effects of diabetes on the activity of the enzyme glutamine: fructose-6-phosphate amindotransferase{close_quotes}

    SciTech Connect

    Nelson, S.P.

    1994-12-31

    Hexsoamine synthetic pathway (HexNSP) controls the supply of essential substrates for glycoprotein synthesis. In vitro studies suggest that increased flux of glucose via the hexsoamine synthetic pathway may play a role in glucose induced insulin resistance of glucose transport. Glutamine: fructose-6-phosphate amindotransferase (GFAT) controls flux into the hexsoamine synthetic pathway; the major products are UDPN-acetylhexosamines (UDP.HexNac=UDP.GlcNAc= UDP.GalNac). I examined whether diabetes ({approximately} 7 days post intravenous streptozotocin, and genetically linked) affects the activity of glutamine: fructose-6-phosphate in rat and mouse skeletal muscle in vivo. Nucleotide linked HexNAc were analyzed by high pressure liquid chromatography(HPLC) in deproteinized hind limb muscle extracts.

  2. Identification of a fourth mannose 6-phosphate binding site in the cation-independent mannose 6-phosphate receptor

    PubMed Central

    Olson, Linda J; Castonguay, Alicia C; Lasanajak, Yi; Peterson, Francis C; Cummings, Richard D; Smith, David F; Dahms, Nancy M

    2015-01-01

    The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays an essential role in lysosome biogenesis by targeting ∼60 different phosphomannosyl-containing acid hydrolases to the lysosome. This type I membrane glycoprotein has a large extracellular region comprised of 15 homologous domains. Two mannose 6-phosphate (M6P) binding sites have been mapped to domains 3 and 9, whereas domain 5 binds preferentially to the phosphodiester, M6P-N-acetylglucosamine (GlcNAc). A structure-based sequence alignment predicts that the C-terminal domain 15 contains three out of the four conserved residues identified as essential for carbohydrate recognition by domains 3, 5 and 9 of the CI-MPR, but lacks two cysteine residues that are predicted to form a disulfide bond. To determine whether domain 15 of the CI-MPR has lectin activity and to probe its carbohydrate-binding specificity, truncated forms of the CI-MPR were tested for binding to acid hydrolases with defined N-glycans in surface plasmon resonance analyses, and used to interrogate a phosphorylated glycan microarray. The results show that a construct encoding domains 14–15 binds both M6P and M6P-GlcNAc with similar affinity (Kd = 13 and 17 μM, respectively). Site-directed mutagenesis studies demonstrate the essential role of the conserved Tyr residue in domain 15 for phosphomannosyl binding. A structural model of domain 15 was generated that predicted an Arg residue to be in the binding pocket and mutagenesis studies confirmed its important role in carbohydrate binding. Together, these results show that the CI-MPR contains a fourth carbohydrate-recognition site capable of binding both phosphomonoesters and phosphodiesters. PMID:25573276

  3. Cytochrome P{sub 450}-dependent toxic effects of primaquine on human erythrocytes

    SciTech Connect

    Ganesan, Shobana; Tekwani, Babu L.; Sahu, Rajnish; Tripathi, Lalit M.; Walker, Larry A.

    2009-11-15

    Primaquine, an 8-aminoquinoline, is the drug of choice for radical cure of relapsing malaria. Use of primaquine is limited due to its hemotoxicity, particularly in populations with glucose-6-phosphate dehydrogenase deficiency [G6PD(-)]. Biotransformation appears to be central to the anti-infective and hematological toxicities of primaquine, but the mechanisms are still not well understood. Metabolic studies with primaquine have been hampered due to the reactive nature of potential hemotoxic metabolites. An in vitro metabolism-linked hemotoxicity assay has been developed. Co-incubation of the drug with normal or G6PD(-) erythrocytes, microsomes or recombinant cytochrome P{sub 450} (CYP) isoforms has allowed in situ generation of potential hemotoxic metabolite(s), which interact with the erythrocytes to generate hemotoxicity. Methemoglobin formation, real-time generation of reactive oxygen intermediates (ROIs) and depletion of reactive thiols were monitored as multiple biochemical end points for hemotoxicity. Primaquine alone did not produce any hemotoxicity, while a robust increase was observed in methemoglobin formation and generation of ROIs by primaquine in the presence of human or mouse liver microsomes. Multiple CYP isoforms (CYP2E1, CYP2B6, CYP1A2, CYP2D6 and CYP3A4) variably contributed to the hemotoxicity of primaquine. This was further confirmed by significant inhibition of primaquine hemotoxicity by the selective CYP inhibitors, namely thiotepa (CYP2B6), fluoxetine (CYP2D6) and troleandomycin (CYP3A4). Primaquine caused similar methemoglobin formation in G6PD(-) and normal human erythrocytes. However, G6PD(-) erythrocytes suffered higher oxidative stress and depletion of thiols than normal erythrocytes due to primaquine toxicity. The results provide significant insights regarding CYP isoforms contributing to hemotoxicity and may be useful in controlling toxicity of primaquine to increase its therapeutic utility.

  4. Glucosamine and Glucosamine-6-phosphate Derivatives: Catalytic Cofactor Analogs for the glmS Ribozyme

    PubMed Central

    Posakony, Jeffrey J.; Ferré-D'Amaré, Adrian R.

    2013-01-01

    Two analogues of glucosamine-6-phosphate (GlcN6P, 1) and five of glucosamine (GlcN, 2) were prepared for evaluation as catalytic cofactor of the glmS ribozyme, a bacterial gene-regulatory RNA that controls cell wall biosynthesis. Glucosamine and allosamine with 3-azido substitutions were prepared by SN2 reactions of the respective 1,2,4,6-protected sugars; final acidic hydrolysis afforded the fully deprotected compounds as their TFA salts. A 6-phospho-2-aminoglucolactam (31) was prepared from glucosamine in a 13-step synthesis, which included a late-stage POCl3-phosphorylation. A simple and widely applicable 2-step procedure with the triethylsilyl (TES) protecting group was developed to selectively expose the 6-OH group in N-protected glucosamine analogs, which provided another route to chemical phosphorylation. Mitsunobu chemistry afforded 6-cyano (35) and 6-azido (36) analogues of GlcN-(Cbz) and the selectivity for the 6-position was confirmed by NMR (COSY, HMBC, HMQC) experiments. Compound 36 was converted to the fully deprotected 6-azido-GlcN (37) and 2,6-diaminoglucose (38) analogs. A 2-hydroxylamino glucose (42) analogue was prepared via an oxaziridine (41). Enzymatic phosphorylation of 42 and chemical phosphorylation of its 6-OH precursor (43) were possible, but 42 and the 6-phospho product (44) were unstable under neutral or basic conditions. Chemical phosphorylation of the previously described 2-guanidinyl-glucose (46) afforded its 6-phospho analogue (49) after final deprotection. PMID:23578404

  5. Metabolic phenotypes of Saccharomyces cerevisiae mutants with altered trehalose 6-phosphate dynamics.

    PubMed

    Walther, Thomas; Mtimet, Narjes; Alkim, Ceren; Vax, Amélie; Loret, Marie-Odile; Ullah, Azmat; Gancedo, Carlos; Smits, Gertien J; François, Jean Marie

    2013-09-01

    In Saccharomyces cerevisiae, synthesis of T6P (trehalose 6-phosphate) is essential for growth on most fermentable carbon sources. In the present study, the metabolic response to glucose was analysed in mutants with different capacities to accumulate T6P. A mutant carrying a deletion in the T6P synthase encoding gene, TPS1, which had no measurable T6P, exhibited impaired ethanol production, showed diminished plasma membrane H⁺-ATPase activation, and became rapidly depleted of nearly all adenine nucleotides which were irreversibly converted into inosine. Deletion of the AMP deaminase encoding gene, AMD1, in the tps1 strain prevented inosine formation, but did not rescue energy balance or growth on glucose. Neither the 90%-reduced T6P content observed in a tps1 mutant expressing the Tps1 protein from Yarrowia lipolytica, nor the hyperaccumulation of T6P in the tps2 mutant had significant effects on fermentation rates, growth on fermentable carbon sources or plasma membrane H⁺-ATPase activation. However, intracellular metabolite dynamics and pH homoeostasis were strongly affected by changes in T6P concentrations. Hyperaccumulation of T6P in the tps2 mutant caused an increase in cytosolic pH and strongly reduced growth rates on non-fermentable carbon sources, emphasizing the crucial role of the trehalose pathway in the regulation of respiratory and fermentative metabolism. PMID:23763276

  6. Glucose Metabolism in Neisseria gonorrhoeae

    PubMed Central

    Morse, Stephen A.; Stein, Stefanie; Hines, James

    1974-01-01

    The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO2 from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-14C]acetate over that of [2-14C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent. PMID:4156358

  7. [Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation].

    PubMed

    Brazhe, N A; Baĭzhumanov, A A; Parshina, E Iu; Iusipovich, A I; Akhalaia, M Ia; Iarlykova, Iu V; Labetskaia, O I; Ivanova, S M; Morukov, B V; Maksimov, G V

    2011-01-01

    Effects of strict 105-d isolation on blood antioxidant status, erythrocyte membrane processes and oxygen-binding properties of hemoglobin were studied in 6 male volunteers (25 to 40 y.o.) in ground-based simulation of a mission to Mars (experiment Mars-105). The parameters were measured using venous blood samples collected during BDC, on days 35, 70 and 105 of the experiment and on days 7 and 14-15 after its completion. Methods of biochemistry (determination of enzyme activity and thin-layer chromatography) and biophysical (laser interference microscopy, Raman spectroscopy) showed changes in relative content of lipid and phospholipid fractions suggesting growth of membrane microviscosity and increase in TBA-AP (active products of lipids peroxidation interacting with thiobarbituric acid). A significant increase in glucose-6-phosphate dehydrogenase and superoxide dismutase activities against reduction of catalase activity points to both reparative processes in erythrocytes and disbalance between the number of evolving active forms of oxygen and antioxidant protection mechanisms in cells. Hemoglobin sensitivity of oxygen and blood level of oxyhemoglobin were found to increase, too. It is presumed that adaptation of organism to stresses experienced during and after the experiment may destroy balance of the antioxidant protection systems which is conducive to oxidation of membrane phospholipids, alteration of their content, increase of membrane microviscosity and eventual failure of the gas-exchange function of erythrocytes. PMID:21675192

  8. Energy balance-dependent regulation of ovine glucose 6-phosphate dehydrogenase protein isoform expression.

    PubMed

    Triantaphyllopoulos, Kostas A; Laliotis, George P; Bizelis, Iosif A

    2014-01-01

    G6PDH is the rate-limiting enzyme of the pentose phosphate pathway and one of the principal source of NADPH, a major cellular reductant. Importantly, in ruminant's metabolism the aforementioned NADPH provided, is utilized for de novo fatty acid synthesis. Previous work of cloning the ovine (Ovis aries) og6pdh gene has revealed the presence of two cDNA transcripts (og6pda and og6pdb), og6pdb being a product of alternative splicing not similar to any other previously reported.(1) In the current study the effect of energy balance in the ovine G6PDH protein expression was investigated, shedding light on the biochemical features and potential physiological role of the oG6PDB isoform. Changes in energy balance leads to protein expression changes in both transcripts, to the opposite direction and not in a proportional way. Negative energy balance was not in favor of the presence of any particular isoform, while both protein expression levels were not significantly different (P > 0.05). In contrast, at the transition point from negative to positive and on the positive energy balance, there is a significant increase of oG6PDA compared with oG6PDB protein expression (P < 0.001). Both oG6PDH protein isoforms changed significantly toward the positive energy balance. oG6PDA is escalating, while oG6PDB is falling, under the same stimulus (positive energy balance alteration). This change is also positively associated with increasing levels in enzyme activity, 4 weeks post-weaning in ewes' adipose tissue. Furthermore, regression analysis clearly demonstrated the linear correlation of both proteins in response to the WPW, while energy balance, enzyme activity, and oG6PDA relative protein expression follow the same escalating trend; in contrast, oG6PDB relative protein expression falls in time, similar to both transcripts accumulation pattern, as reported previously.(2.) PMID:24575366

  9. The glucose 6-phosphate shunt around the Calvin-Benson cycle.

    PubMed

    Sharkey, Thomas D; Weise, Sean E

    2016-07-01

    It is just over 60 years since a cycle for the regeneration of the CO2-acceptor used in photosynthesis was proposed. In this opinion paper, we revisit the origins of the Calvin-Benson cycle that occurred at the time that the hexose monophosphate shunt, now called the pentose phosphate pathway, was being worked out. Eventually the pentose phosphate pathway was separated into two branches, an oxidative branch and a non-oxidative branch. It is generally thought that the Calvin-Benson cycle is the reverse of the non-oxidative branch of the pentose phosphate pathway but we describe crucial differences and also propose that some carbon routinely passes through the oxidative branch of the pentose phosphate pathway. This creates a futile cycle but may help to stabilize photosynthesis. If it occurs it could explain a number of enigmas including the lack of complete labelling of the Calvin-Benson cycle intermediates when carbon isotopes are fed to photosynthesizing leaves. PMID:26585224

  10. Molecular characterization of glucose-6-phosphate dehydrogenase deficient variants in Baghdad city - Iraq

    PubMed Central

    2012-01-01

    Background Although G6PD deficiency is the most common genetically determined blood disorder among Iraqis, its molecular basis has only recently been studied among the Kurds in North Iraq, while studies focusing on Arabs in other parts of Iraq are still absent. Methods A total of 1810 apparently healthy adult male blood donors were randomly recruited from the national blood transfusion center in Baghdad. They were classified into G6PD deficient and non-deficient individuals based on the results of methemoglobin reduction test (MHRT), with confirmation of deficiency by subsequent enzyme assays. DNA from deficient individuals was studied using a polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) for four deficient molecular variants, namely G6PD Mediterranean (563 C→T), Chatham (1003 G→A), A- (202 G→A) and Aures (143 T→C). A subset of those with the Mediterranean variant, were further investigated for the 1311 (C→T) silent mutation. Results G6PD deficiency was detected in 109 of the 1810 screened male individuals (6.0%). Among 101 G6PD deficient males molecularly studied, the Mediterranean mutation was detected in 75 cases (74.3%), G6PD Chatham in 5 cases (5.0%), G6PD A- in two cases (2.0%), and G6PD Aures in none. The 1311 silent mutation was detected in 48 out of the 51 G6PD deficient males with the Mediterranean variant studied (94.1%). Conclusions Three polymorphic variants namely: the Mediterranean, Chatham and A-, constituted more than 80% of G6PD deficient variants among males in Baghdad. Iraq. This observation is to some extent comparable to other Asian Arab countries, neighboring Turkey and Iran. PMID:22452742

  11. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  12. Discovery of O-GlcNAc-6-phosphate Modified Proteins in Large-scale Phosphoproteomics Data*

    PubMed Central

    Hahne, Hannes; Kuster, Bernhard

    2012-01-01

    Phosphorylated O-GlcNAc is a novel post-translational modification that has so far only been found on the neuronal protein AP180 from the rat (Graham et al., J. Proteome Res. 2011, 10, 2725–2733). Upon collision induced dissociation, the modification generates a highly mass deficient fragment ion (m/z 284.0530) that can be used as a reporter for the identification of phosphorylated O-GlcNAc. Using a publically available mouse brain phosphoproteome data set, we employed our recently developed Oscore software to re-evaluate high resolution/high accuracy tandem mass spectra and discovered the modification on 23 peptides corresponding to 11 mouse proteins. The systematic analysis of 220 candidate phosphoGlcNAc tandem mass spectra as well as a synthetic standard enabled the dissection of the major phosphoGlcNAc fragmentation pathways, suggesting that the modification is O-GlcNAc-6-phosphate. We find that the classical O-GlcNAc modification often exists on the same peptides indicating that O-GlcNAc-6-phosphate may biosynthetically arise in two steps involving the O-GlcNAc transferase and a currently unknown kinase. Many of the identified proteins are involved in synaptic transmission and for Ca2+/calmodulin kinase IV, the O-GlcNAc-6-phosphate modification was found in the vicinity of two autophosphorylation sites required for full activation of the kinase suggesting a potential regulatory role for O-GlcNAc-6-phosphate. By re-analyzing mass spectrometric data from human embryonic and induced pluripotent stem cells, our study also identified Zinc finger protein 462 (ZNF462) as the first human O-GlcNAc-6-phosphate modified protein. Collectively, the data suggests that O-GlcNAc-6-phosphate is a general post-translation modification of mammalian proteins with a variety of possible cellular functions. PMID:22826440

  13. A modelling study of feedforward activation in human erythrocyte glycolysis.

    PubMed

    Bali, M; Thomas, S R

    2001-03-01

    Though feedforward activation (FA) is a little known principle of control in metabolic networks, there is one well-known example; namely, the activation of pyruvate kinase (PK) by fructose-1,6-biphosphate (FBP) in glycolysis. The effects of this activation on the enzyme's kinetics are well characterised, but its possible role in glycolytic control has not been determined, and, experimentally, there is as yet no direct way of modifying the enzyme to remove just the FBP activation without affecting other aspects of the enzyme's kinetics. Given this limitation, we used a detailed numerical simulation of human erythrocyte glycolysis to simulate the effects of selective removal of the activation of PK by FBP on steady-state metabolite concentrations and on the dynamic response of glycolytic flux to a sudden increase of the cell's demand for ATP. Our modelling results predict that in the absence of FA steady-state levels of metabolites within the activation loop, i.e. from FBP to phosphoenolpyruvate, would be four- to thirteen-fold higher than normal, whereas levels of ATP and metabolites outside the loop, i.e. glucose-6-phosphate, fructose-6-phosphate and pyruvate, would be lower than normal. Existing clinical evidence in a patient with haemolytic anaemia, correlated with a lack of activation of PK by FBP (Paglia D.E., Valentine W.N., Holbrook C.T., Brockway R., Blood (1983) 62 972-979), is consistent with this prediction. In response to changing demand for ATP, the model predicts that the corresponding change of glycolytic flux would entail changes of metabolite concentrations in the absence of FA, but that in its presence the levels of metabolites within the activation loop remain essentially unperturbed. Thus, our results suggest that by stabilising metabolite pools in the face of variable glycolytic flux, FA may serve to avoid perturbations of the oxygen affinity of haemoglobin (sensitive to the levels of 2,3-phosphoglycerate) and of cell osmolality that would

  14. Sorbitol synthesis by an engineered Lactobacillus casei strain expressing a sorbitol-6-phosphate dehydrogenase gene within the lactose operon.

    PubMed

    Nissen, Lorenzo; Pérez-Martínez, Gaspar; Yebra, María J

    2005-08-01

    Sorbitol is claimed to have important health-promoting effects and Lactobacillus casei is a lactic acid bacterium relevant as probiotic and used as a cheese starter culture. A sorbitol-producing L. casei strain might therefore be of considerable interest in the food industry. A recombinant strain of L. casei was constructed by the integration of a d-sorbitol-6-phosphate dehydrogenase-encoding gene (gutF) in the chromosomal lactose operon (strain BL232). gutF expression in this strain followed the same regulation as that of the lac genes, that is, it was repressed by glucose and induced by lactose. (13)C-nuclear magnetic resonance analysis of supernatants of BL232 resting cells demonstrated that, when pre-grown on lactose, cells were able to synthesize sorbitol from glucose. Inactivation of the l-lactate dehydrogenase gene in BL232 led to an increase in sorbitol production, suggesting that the engineered route provides an alternative pathway for NAD(+) regeneration. PMID:16002237

  15. Disruption of the Candida albicans TPS1 Gene Encoding Trehalose-6-Phosphate Synthase Impairs Formation of Hyphae and Decreases Infectivity†

    PubMed Central

    Zaragoza, Oscar; Blazquez, Miguel A.; Gancedo, Carlos

    1998-01-01

    The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30°C was indistinguishable from that of the wild type. However, at 42°C it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37°C, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42°C, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 106 CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476

  16. Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity.

    PubMed

    Zaragoza, O; Blazquez, M A; Gancedo, C

    1998-08-01

    The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation. PMID:9683476

  17. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts.

    PubMed Central

    Ludwig, T; Munier-Lehmann, H; Bauer, U; Hollinshead, M; Ovitt, C; Lobel, P; Hoflack, B

    1994-01-01

    In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells. Images PMID:8062819

  18. Relation between Neonatal Icter and Gilbert Syndrome in Gloucose-6-Phosphate Dehydrogenase Deficient Subjects

    PubMed Central

    Zahedpasha, Yadollah; Ahmadpour, Mousa; Niaki, Haleh Akhavan; Alaee, Ehsan

    2014-01-01

    Background and Aim: The pathogenesis of neonatal hyperbilirubinemia hasn’t been completely defined in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient newborns. The aim of this study was to detect the relationship between Gilbert’s syndrome and hyperbilirubinemia in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient neonates. Materials and Methods: This case-control study was conducted in Amirkola pediatrics teaching hospital, Babol, Iran. A total number of one hundred four infants were included in the study (51 infants with neonatal jaundice and Gloucose-6-Phosphate Dehydrogenase (G6PD) deficiency admitted to phototherapy or transfusion were selected as the case group and 53 infants with Gloucose-6-Phosphate Dehydrogenase (G6PD) deficiency admitted for other reasons than jaundice were selected as the control group). Exclusion criteria were ABO or Rh incompatibility or other reasons that made Coombs test positive, sepsis, hepatosplenomegaly, metabolic diseases, medical treatment and phototherapy. The promoter and coding regions of Uridine diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) of genomic DNA were amplified by polymerase chain reaction (PCR) isolated from leukocytes. We used chi-square test and t-test to compare cases and controls. Results: Distribution of Gilbert genome was not significantly different between the two groups; among cases, 33.3% were homozygote, 35.3% heterozygote, and 31.4% normal. Among controls, 22.6% were homozygote, 34% heterozygote, and 43.4% normal (p-value=xxx). Hyperbilirubinemia family history didn’t differ significantly between these two groups. Conclusions: We showed that in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient neonates, there was no significant association between Gilbert’s syndrome (promoter polymorphism) and hyperbilirubinemia. PMID:24783083

  19. Trehalose-6-Phosphate Phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus

    PubMed Central

    Puttikamonkul, Srisombat; Willger, Sven D.; Grahl, Nora; Perfect, John R.; Movahed, Navid; Bothner, Brian; Park, Steven; Paderu, Padmaja; Perlin, David S.; Cramer, Robert A.

    2010-01-01

    Summary The trehalose biosynthesis pathway is critical for virulence in human and plant fungal pathogens. In this study, we tested the hypothesis that trehalose-6-phosphate phosphatase (T6PP) is required for Aspergillus fumigatus virulence. A mutant of the A. fumigatus T6PP, OrlA, displayed severe morphological defects related to asexual reproduction when grown on glucose (1%) minimal media. These defects could be rescued by addition of osmotic stabilizers, reduction in incubation temperature, or increase in glucose levels (>4%). Subsequent examination of the mutant with cell wall perturbing agents revealed a link between cell wall biosynthesis and trehalose-6-phosphate (T6P) levels. As expected, high levels of T6P accumulated in the absence of OrlA resulting in depletion of free inorganic phosphate (Pi) and inhibition of hexokinase activity. Surprisingly, trehalose production persisted in the absence of OrlA. Further analyses revealed that A. fumigatus contains two trehalose phosphorylases that may be responsible for trehalose production in the absence of OrlA. Despite a normal growth rate under in vitro growth conditions, the orlA mutant was virtually avirulent in two distinct murine models of invasive pulmonary aspergillosis. Our results suggest that further study of this pathway will lead to new insights into regulation of fungal cell wall biosynthesis and virulence. PMID:20545865

  20. Laser-based particle-counting microimmunoassay for the analysis of single human erythrocytes

    SciTech Connect

    Rosenzweig, Z.; Yeung, E.S. Ames Lab., IA )

    1994-05-15

    A particle-counting immunoassay system for ultrasensitive analysis of proteins in a capillary environment has been developed. The assay is based on the agglutination of antibody-coated particles in the presence of an antigen (usually a protein). The particles were electrophoretically migrated in a 20-[mu]m-i.d. capillary past a detection window where a laser beam irradiates continuously. The light scattering events generated by the agglutinated particles were counted while those produced by unreacted particles were electronically rejected. Glucose-6-phosphate dehydrogenase (G6PDH) was chosen as a test compound for the off-column as well as for the on-column versions of this method. A limit of detection of 620 molecules of G6PDH (1 zmol) was found in the on-column assay. The standard deviation between runs was approximately 6%, which is comparable to that of standard immunoassay methods. The application to the determination of G6PDH levels in individual human erythrocytes is presented. A 14-fold cell-to-cell variation was found which can be explained by the age distribution in the red blood cells. 42 refs., 5 figs.

  1. Mannose-6-phosphate receptor: a target for theranostics of prostate cancer.

    PubMed

    Vaillant, Ophélie; El Cheikh, Khaled; Warther, David; Brevet, David; Maynadier, Marie; Bouffard, Elise; Salgues, Frédéric; Jeanjean, Audrey; Puche, Pierre; Mazerolles, Catherine; Maillard, Philippe; Mongin, Olivier; Blanchard-Desce, Mireille; Raehm, Laurence; Rébillard, Xavier; Durand, Jean-Olivier; Gary-Bobo, Magali; Morère, Alain; Garcia, Marcel

    2015-05-11

    The development of personalized and non-invasive cancer therapies based on new targets combined with nanodevices is a major challenge in nanomedicine. In this work, the over-expression of a membrane lectin, the cation-independent mannose 6-phosphate receptor (M6PR), was specifically demonstrated in prostate cancer cell lines and tissues. To efficiently target this lectin a mannose-6-phosphate analogue was synthesized in six steps and grafted onto the surface of functionalized mesoporous silica nanoparticles (MSNs). These MSNs were used for in vitro and ex vivo photodynamic therapy to treat prostate cancer cell lines and primary cell cultures prepared from patient biopsies. The results demonstrated the efficiency of M6PR targeting for prostate cancer theranostic. PMID:25802144

  2. Product inhibition of potato tuber pyrophosphate:fructose-6-phosphate phosphotransferase by phosphate and pyrophosphate.

    PubMed

    Stitt, M

    1989-02-01

    The product inhibition of potato (Solanum tuberosum) tuber pyrophosphate:fructose-6-phosphate phosphotransferase by inorganic pyrophosphate and inorganic phosphate has been studied. The binding of substrates for the forward (glycolytic) and the reverse (gluconeogenic) reaction is random order, and occurs with only weak competition between the substrate pair fructose-6-phosphate and pyrophosphate, and between the substrate pair fructose-1,6-bisphosphate and phosphate. Pyrophosphate is a powerful inhibitor of the reverse reaction, acting competitively to fructose-1,6-biphosphate and noncompetitively to phosphate. At the concentrations needed for catalysis of the reverse reaction, phosphate inhibits the forward reaction in a largely noncompetitive mode with respect to both fructose-6-phosphate and pyrophosphate. At higher concentrations, phosphate inhibits both the forward and the reverse reaction by decreasing the affinity for fructose-2,6-bisphosphate and thus, for the other three substrates. These results allow a model to be proposed, which describes the interactions between the substrates at the catalytic site. They also suggest the enzyme may be regulated in vivo by changes of the relation between metabolites and phosphate and could act as a means of controlling the cytosolic pyrophosphate concentration. PMID:16666593

  3. Radiation inactivation analysis of rat liver microsomal glucose 6-phosphatase

    SciTech Connect

    Ness, G.C.; Sample, C.E.; McCreery, M.J.; Sukalski, K.A.; Nordlie, R.C.

    1986-05-01

    Attempts to obtain the molecular weight of microsomal glucose-6-phosphatase based on solubilization and purification have yielded widely divergent results. Since radiation inactivation analysis can be used to obtain molecular weights of proteins within the native membrane environments, this technique was applied. Identical target sizes of about 70 kd for both glucose 6-phosphate phosphohydrolase and carbamyl phosphate:glucose phosphotransferase were observed. This value was unaffected by adding deoxycholate, which disrupts the microsomal membranes, to the microsomal suspensions prior to irradiation. The data suggest that the glucose 6-phosphate transport function and the glucose 6-phosphate phosphohydrolase activity of microsomal glucose 6-phosphatase either residue on a single polypeptide or on two covalently linked polypeptides.

  4. Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium.

    PubMed

    Foley, Sophie; Stolarczyk, Emilie; Mouni, Fadoua; Brassart, Colette; Vidal, Olivier; Aïssi, Eliane; Bouquelet, Stéphane; Krzewinski, Frédéric

    2008-02-01

    Bifidobacterium bifidum, in contrast to other bifidobacterial species, is auxotrophic for N-acetylglucosamine. Growth experiments revealed assimilation of radiolabelled N-acetylglucosamine in bacterial cell walls and in acetate, an end-product of central metabolism via the bifidobacterial D: -fructose-6-phosphate shunt. While supplementation with fructose led to reduced N-acetylglucosamine assimilation via the D: -fructose-6-phosphate shunt, no significant difference was observed in levels of radiolabelled N-acetylglucosamine incorporated into cell walls. Considering the central role played by glutamine fructose-6-phosphate transaminase (GlmS) in linking the biosynthetic pathway for N-acetylglucosamine to hexose metabolism, the GlmS of Bifidobacterium was characterized. The genes encoding the putative GlmS of B. longum DSM20219 and B. bifidum DSM20082 were cloned and sequenced. Bioinformatic analyses of the predicted proteins revealed 43% amino acid identity with the Escherichia coli GlmS, with conservation of key amino acids in the catalytic domain. The B. longum GlmS was over-produced as a histidine-tagged fusion protein. The purified C-terminal His-tagged GlmS possessed glutamine fructose-6-phosphate amidotransferase activity as demonstrated by synthesis of glucosamine-6-phosphate from fructose-6-phosphate and glutamine. It also possesses an independent glutaminase activity, converting glutamine to glutamate in the absence of fructose-6-phosphate. This is of interest considering the apparently reduced coding potential in bifidobacteria for enzymes associated with glutamine metabolism. PMID:17943273

  5. Interference by acetaminophen in the glucose oxidase-peroxidase method for blood glucose determination.

    PubMed

    Kaufmann-Raab, I; Jonen, H G; Jähnchen, E; Kahl, G F; Groth, U

    1976-10-01

    Acetaminophen, p-aminophenol, and oxyphenbutazone interfere with the glucose oxidase/peroxidase method for glucose. Structurally related compounds that lack a free phenolic hydroxyl group (acetanilide, aniline, and phenylbutazone) do not interfere. During the analytical procedure acetaminophen is consumed. One mole of acetaminophen leads to an apparent loss of four moles of glucose. The hexokinase/glucose-6-phosphate dehydrogenase method (Boehringer Hexokinase method) is not affected by these substances. PMID:975521

  6. Alterations of hemorheological parameters and tubulin content in erythrocytes from diabetic subjects.

    PubMed

    Nigra, Ayelén D; Monesterolo, Noelia E; Rivelli, Juan F; Amaiden, Marina R; Campetelli, Alexis N; Casale, Cesar H; Santander, Verónica S

    2016-05-01

    Treatment of human erythrocytes with high glucose concentrations altered the content and distributions of three tubulin isotypes, with consequent reduction of erythrocyte deformability and osmotic resistance. In erythrocytes from diabetic subjects (D erythrocytes), (i) tubulin in the membrane-associated fraction (Mem-Tub) was increased and tubulin in the sedimentable fraction (Sed-Tub) was decreased, (ii) deformability was lower than in erythrocytes from normal subjects (N erythrocytes), and (iii) detyrosinated/acetylated tubulin content was higher in the Mem-Tub fraction and tyrosinated/acetylated tubulin content was higher in the Sed-Tub fraction, in comparison with N erythrocytes. Similar properties were observed for human N erythrocytes treated with high glucose concentrations, and for erythrocytes from rats with streptozotocin-induced diabetes. In N erythrocytes, high-glucose treatment caused translocation of tubulin from the Sed-Tub to Mem-Tub fraction, thereby reducing deformability and inducing acetylation/tyrosination in the Sed-Tub fraction. The increased tubulin acetylation in these cells resulted from inhibition of deacetylase enzymes. Increased tubulin acetylation and translocation of this acetylated tubulin to the Mem-Tub fraction were both correlated with reduced osmotic resistance. Our findings suggest that (i) high glucose concentrations promote tubulin acetylation and translocation of this tubulin to the membrane, and (ii) this tubulin is involved in regulation of erythrocyte deformability and osmotic fragility. PMID:26923290

  7. Sporothrix schenckii: purification and partial biochemical characterization of glucosamine-6-phosphate synthase, a potential antifungal target.

    PubMed

    González-Ibarra, Joaquín; Milewski, Sławomir; Villagómez-Castro, Julio C; Cano-Canchola, Carmen; López-Romero, Everardo

    2010-02-01

    The first committed step of the biosynthetic pathway leading to uridine-5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc) is catalyzed by glucosamine-6-phosphate synthase (GlcN-6-P synthase), an enzyme proposed as a potential antifungal chemotherapy target. Here, we describe the purification and biochemical characterization of the native enzyme from the dimorphic pathogenic fungus Sporothrix schenckii. The availability of the pure protein facilitated its biochemical characterization. The enzyme exhibited subunit and native molecular masses of 79 and 350+/-5 kDa, respectively, suggesting a homotetrameric structure. Isoelectric point was 6.26 and K(m) values for fructose-6-phosphate and L-glutamine were 1.12+/-0.3 and 2.2+/-0.7 mM, respectively. Inhibition of activity by UDP-GlcNAc was enhanced by Glc-6-P and phosphorylation stimulated GlcN-6-P synthase activity without affecting the enzyme sensitivity to the aminosugar. A glutamine analogue, FMDP [N(3)-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid] was a more potent inhibitor of activity than ADMP (2-Amino-2-deoxy-D-mannitol-6-phosphate) but the latter was a stronger inhibitor of growth in two culture media. To our knowledge, this is the first report on the purification and biochemical characterization of a non-recombinant GlcN-6-P synthase from a true dimorphic fungus. Inhibition of enzyme activity and fungal growth by specific inhibitors of GlcN-6-P synthase strongly reinforces the role of this enzyme as a potential target for antifungal chemotherapy. PMID:19353425

  8. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags.

    PubMed

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-06-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in "Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans" (Kang et al., 2016 [1]). PMID:27222848

  9. Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery.

    PubMed Central

    Everard, J D; Cantini, C; Grumet, R; Plummer, J; Loescher, W H

    1997-01-01

    Compared with other primary photosynthetic products (e.g. sucrose and starch), little is known about sugar alcohol metabolism, its regulation, and the manner in which it is integrated with other pathways. Mannose-6-phosphate reductase (M6PR) is a key enzyme that is involved in mannitol biosynthesis in celery (Apium graveolens L.). The M6PR gene was cloned from a leaf cDNA library, and clonal authenticity was established by assays of M6PR activity, western blots, and comparisons of the deduced amino acid sequence with a celery M6PR tryptic digestion product. Recombinant M6PR, purified from Escherichia coli, had specific activity, molecular mass, and kinetic characteristics indistinguishable from those of authentic celery M6PR. Sequence analyses showed M6PR to be a member of the aldo-keto reductase superfamily, which includes both animal and plant enzymes. The greatest sequence similarity was with aldose-6-phosphate reductase (EC 1.1.1.200), a key enzyme in sorbitol synthesis in Rosaceae. Developmental studies showed M6PR to be limited to green tissues and to be under tight transcriptional regulation during leaf initiation, expansion, and maturation. These data confirmed a close relationship between the development of photosynthetic capacity, mannitol synthesis, and M6PR activity. PMID:9112783

  10. Data for analysis of mannose-6-phosphate glycans labeled with fluorescent tags

    PubMed Central

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-01-01

    Mannose-6-phosphate (M-6-P) glycan plays an important role in lysosomal targeting of most therapeutic enzymes for treatment of lysosomal storage diseases. This article provides data for the analysis of M-6-P glycans by high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The identities of M-6-P glycan peaks in HPLC profile were confirmed by measuring the masses of the collected peak eluates. The performances of three fluorescent tags (2-aminobenzoic acid [2-AA], 2-aminobenzamide [2-AB], and 3-(acetyl-amino)-6-aminoacridine [AA-Ac]) were compared focusing on the analysis of bi-phosphorylated glycan (containing two M-6-Ps). The bi-phosphorylated glycan analysis is highly affected by the attached fluorescent tag and the hydrophilicity of elution solvent used in HPLC. The data in this article is associated with the research article published in “Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans” (Kang et al., 2016 [1]). PMID:27222848

  11. Acceptor substrate binding revealed by crystal structure of human glucosamine-6-phosphate N-acetyltransferase 1.

    PubMed

    Wang, Juan; Liu, Xiang; Liang, Yu-He; Li, Lan-Fen; Su, Xiao-Dong

    2008-09-01

    Glucosamine-6-phosphate (GlcN6P) N-acetyltransferase 1 (GNA1) is a key enzyme in the pathway toward biosynthesis of UDP-N-acetylglucosamine, an important donor substrate for N-linked glycosylation. GNA1 catalyzes the formation of N-acetylglucosamine-6-phosphate (GlcNAc6P) from acetyl-CoA (AcCoA) and the acceptor substrate GlcN6P. Here, we report crystal structures of human GNA1, including apo GNA1, the GNA1-GlcN6P complex and an E156A mutant. Our work showed that GlcN6P binds to GNA1 without the help of AcCoA binding. Structural analyses and mutagenesis studies have shed lights on the charge distribution in the GlcN6P binding pocket, and an important role for Glu156 in the substrate binding. Hence, these findings have broadened our knowledge of structural features required for the substrate affinity of GNA1. PMID:18675810

  12. Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis.

    PubMed

    Zhang, Nan; Wang, Fei; Meng, Xiangzong; Luo, Saifan; Li, Qiyun; Dong, Hongyun; Xu, Zhengkai; Song, Rentao

    2011-04-01

    Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793 bp encoding 930 aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed. PMID:20878239

  13. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture

    PubMed Central

    Tsai, Allen Y.-L.; Gazzarrini, Sonia

    2014-01-01

    Carbohydrates, or sugars, regulate various aspects of plant growth through modulation of cell division and expansion. Besides playing essential roles as sources of energy for growth and as structural components of cells, carbohydrates also regulate the timing of expression of developmental programs. The disaccharide trehalose is used as an energy source, as a storage and transport molecule for glucose, and as a stress-responsive compound important for cellular protection during stress in all kingdoms. Trehalose, however, is found in very low amounts in most plants, pointing to a signaling over metabolic role for this non-reducing disaccharide. In the last decade, trehalose-6-phosphate (T6P), an intermediate in trehalose metabolism, has been shown to regulate embryonic and vegetative development, flowering time, meristem determinacy, and cell fate specification in plants. T6P acts as a global regulator of metabolism and transcription promoting plant growth and triggering developmental phase transitions in response to sugar availability. Among the T6P targets are members of the Sucrose-non-fermenting1-related kinase1 (SnRK1) family, which are sensors of energy availability and inhibit plant growth and development during metabolic stress to maintain energy homeostasis. In this review, we will discuss the opposite roles of the sugar metabolite T6P and the SnRK1 kinases in the regulation of developmental phase transitions in response to carbohydrate levels. We will focus on how these two global regulators of metabolic processes integrate environmental cues and interact with hormonal signaling pathways to modulate plant development. PMID:24744765

  14. Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate1[W][OPEN

    PubMed Central

    Martins, Marina Camara Mattos; Hejazi, Mahdi; Fettke, Joerg; Steup, Martin; Feil, Regina; Krause, Ursula; Arrivault, Stéphanie; Vosloh, Daniel; Figueroa, Carlos María; Ivakov, Alexander; Yadav, Umesh Prasad; Piques, Maria; Metzner, Daniela; Stitt, Mark; Lunn, John Edward

    2013-01-01

    Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night. PMID:24043444

  15. Source/sink interactions underpin crop yield: the case for trehalose 6-phosphate/SnRK1 in improvement of wheat.

    PubMed

    Lawlor, David W; Paul, Matthew J

    2014-01-01

    Considerable interest has been evoked by the analysis of the regulatory pathway in carbohydrate metabolism and cell growth involving the non-reducing disaccharide trehalose (TRE). TRE is at small concentrations in mesophytes such as Arabidopsis thaliana and Triticum aestivum, excluding a role in osmoregulation once suggested for it. Studies of TRE metabolism, and genetic modification of it, have shown a very wide and more important role of the pathway in regulation of many processes in development, growth, and photosynthesis. It has now been established that rather than TRE, it is trehalose 6-phosphate (T6P) which has such profound effects. T6P is the intermediary in TRE synthesis formed from glucose-6-phosphate and UDP-glucose, derived from sucrose, by the action of trehalose phosphate synthase. The concentration of T6P is determined both by the rate of synthesis, which depends on the sucrose concentration, and also by the rate of breakdown by trehalose-6-phosphate phosphatase which produces TRE. Changing T6P concentrations by genetically modifying the enzymes of synthesis and breakdown has altered photosynthesis, sugar metabolism, growth, and development which affect responses to, and recovery from, environmental factors. Many of the effects of T6P on metabolism and growth occur via the interaction of T6P with the SnRK1 protein kinase system. T6P inhibits the activity of SnRK1, which de-represses genes encoding proteins involved in anabolism. Consequently, a large concentration of sucrose increases T6P and thereby inhibits SnRK1, so stimulating growth of cells and their metabolic activity. The T6P/SnRK1 mechanism offers an important new view of how the distribution of assimilates to organs, such as developing grains in cereal plants, is achieved. This review briefly summarizes the factors determining, and limiting, yield of wheat (particularly mass/grain which is highly conserved) and considers how T6P/SnRK1 might function to determine grain yield and might be

  16. Structure of the Lectin Mannose 6-Phosphate Receptor Homology (MRH) Domain of Glucosidase II, an Enzyme That Regulates Glycoprotein Folding Quality Control in the Endoplasmic Reticulum*

    PubMed Central

    Olson, Linda J.; Orsi, Ramiro; Alculumbre, Solana G.; Peterson, Francis C.; Stigliano, Ivan D.; Parodi, Armando J.; D'Alessio, Cecilia; Dahms, Nancy M.

    2013-01-01

    Here we report for the first time the three-dimensional structure of a mannose 6-phosphate receptor homology (MRH) domain present in a protein with enzymatic activity, glucosidase II (GII). GII is involved in glycoprotein folding in the endoplasmic reticulum. GII removes the two innermost glucose residues from the Glc3Man9GlcNAc2 transferred to nascent proteins and the glucose added by UDP-Glc:glycoprotein glucosyltransferase. GII is composed of a catalytic GIIα subunit and a regulatory GIIβ subunit. GIIβ participates in the endoplasmic reticulum localization of GIIα and mediates in vivo enhancement of N-glycan trimming by GII through its C-terminal MRH domain. We determined the structure of a functional GIIβ MRH domain by NMR spectroscopy. It adopts a β-barrel fold similar to that of other MRH domains, but its binding pocket is the most shallow known to date as it accommodates a single mannose residue. In addition, we identified a conserved residue outside the binding pocket (Trp-409) present in GIIβ but not in other MRHs that influences GII glucose trimming activity. PMID:23609449

  17. Site-Specific GlcNAcylation of Human Erythrocyte Proteins

    PubMed Central

    Wang, Zihao; Park, Kyoungsook; Comer, Frank; Hsieh-Wilson, Linda C.; Saudek, Christopher D.; Hart, Gerald W.

    2009-01-01

    OBJECTIVE—O-linked N-acetylglucosamine (O-GlcNAc) is upregulated in diabetic tissues and plays a role in insulin resistance and glucose toxicity. Here, we investigated the extent of GlcNAcylation on human erythrocyte proteins and compared site-specific GlcNAcylation on erythrocyte proteins from diabetic and normal individuals. RESEARCH DESIGN AND METHODS—GlcNAcylated erythrocyte proteins or GlcNAcylated peptides were tagged and selectively enriched by a chemoenzymatic approach and identified by mass spectrometry. The enrichment approach was combined with solid-phase chemical derivatization and isotopic labeling to detect O-GlcNAc modification sites and to compare site-specific O-GlcNAc occupancy levels between normal and diabetic erythrocyte proteins. RESULTS—The enzymes that catalyze the cycling (addition and removal) of O-GlcNAc were detected in human erythrocytes. Twenty-five GlcNAcylated erythrocyte proteins were identified. Protein expression levels were compared between diabetic and normal erythrocytes. Thirty-five O-GlcNAc sites were reproducibly identified, and their site-specific O-GlcNAc occupancy ratios were calculated. CONCLUSIONS—GlcNAcylation is differentially regulated at individual sites on erythrocyte proteins in response to glycemic status. These data suggest not only that site-specific O-GlcNAc levels reflect the glycemic status of an individual but also that O-GlcNAc site occupancy on erythrocyte proteins may be eventually useful as a diagnostic tool for the early detection of diabetes. PMID:18984734

  18. Comparison of fluorescent tags for analysis of mannose-6-phosphate glycans.

    PubMed

    Kang, Ji-Yeon; Kwon, Ohsuk; Gil, Jin Young; Oh, Doo-Byoung

    2016-05-15

    Mannose-6-phosphate (M-6-P) glycan analysis is important for quality control of therapeutic enzymes for lysosomal storage diseases. Here, we found that the analysis of glycans containing two M-6-Ps was highly affected by the hydrophilicity of the elution solvent used in high-performance liquid chromatography (HPLC). In addition, the performances of three fluorescent tags--2-aminobenzoic acid (2-AA), 2-aminobenzamide (2-AB), and 3-(acetyl-amino)-6-aminoacridine (AA-Ac)--were compared with each other for M-6-P glycan analysis using HPLC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The best performance for analyzing M-6-P glycans was shown by 2-AA labeling in both analyses. PMID:26876105

  19. Signal amplification of glucosamine-6-phosphate based on ribozyme glmS.

    PubMed

    Zhao, Yongyun; Chen, Haodong; Du, Feng; Yasmeen, Afshan; Dong, Juan; Cui, Xin; Tang, Zhuo

    2014-12-15

    Ribozyme glmS based isothermal amplification assay is developed for the colorimetric detection of glucosamine-6-phosphate (GlcN6P). Upon binding to the metabolite target GlcN6P, self-cleavage of glmS ribozyme is initiated to release RNA fragment that can trigger the cascade signal amplification to release large amount of G-quadruplex DNAzymes as reporter for colorimetric detection. Given the importance of GlcN6P for cell wall biosynthesis, the glmS riboswitch has become a new drug target for the development of antibiotics. This assay not only offers a convenient detection of GlcN6P with high specificity and sensitivity, but also provides a platform for high-throughput screening of antibiotics based on glmS riboswitches. PMID:25038539

  20. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae.

    PubMed

    Ozer Uyar, Ebru; Yücel, Meral; Hamamcı, Haluk

    2016-05-01

    Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed. PMID:26567772

  1. Myb-binding site regulates the expression of glucosamine-6-phosphate isomerase in Dictyostelium discoideum.

    PubMed

    Tabata, K; Matsuda, Y; Viller, E; Masamune, Y; Katayama, T; Yasukawa, H

    2001-10-01

    A homolog of the glucosamine-6-phosphate isomerase in the cellular slime mold Dictyostelium discoideum has been analyzed. The gene disruption mutant was arrested at the mound stage, demonstrating that the gene is important for development. The gene was expressed in vegetatively growing cells, silenced on starvation and expressed again in prestalk cells during the multicellular stages. The upstream region of the gene (1376 bp relative to ATG) was cloned and sequenced to study the transcription control mechanisms. Analysis of deletion mutants and a site-directed mutant indicated that the Myb-binding sequence (5'-AACTG-3') localized in the upstream region is important for gene expression. The results of gel-shift assays showed the presence of an Myb-related protein binding to the sequence at the growing phase and another protein binding to the sequence at developmental stages. PMID:11576175

  2. Structural Analysis of N-acetylglucosamine-6-phosphate Deacetylase Apoenzyme from Escherichia coli

    SciTech Connect

    Ferreira,F.; Mendoza-Hernandez, G.; Castaneda-Bueno, M.; Aparicio, R.; Fischer, H.; Calcagno, M.; Oliva, G.

    2006-01-01

    We report the crystal structure of the apoenzyme of N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase from Escherichia coli (EcNAGPase) and the spectrometric evidence of the presence of Zn{sup 2+} in the native protein. The GlcNAc6P deacetylase is an enzyme of the amino sugar catabolic pathway that catalyzes the conversion of the GlcNAc6P into glucosamine 6-phosphate (GlcN6P). The crystal structure was phased by the single isomorphous replacement with anomalous scattering (SIRAS) method using low-resolution (2.9 Angstroms) iodine anomalous scattering and it was refined against a native dataset up to 2.0 Angstroms resolution. The structure is similar to two other NAGPases whose structures are known from Thermotoga maritima (TmNAGPase) and Bacillus subtilis (BsNAGPase); however, it shows a phosphate ion bound at the metal-binding site. Compared to these previous structures, the apoenzyme shows extensive conformational changes in two loops adjacent to the active site. The E. coli enzyme is a tetramer and its dimer-dimer interface was analyzed. The tetrameric structure was confirmed in solution by small-angle X-ray scattering data. Although no metal ions were detected in the present structure, experiments of photon-induced X-ray emission (PIXE) spectra and of inductively coupled plasma emission spectroscopy (ICP-AES) with enzyme that was neither exposed to chelating agents nor metal ions during purification, revealed the presence of 1.4 atoms of Zn per polypeptide chain. Enzyme inactivation by metal-sequestering agents and subsequent reactivation by the addition of several divalent cations, demonstrate the role of metal ions in EcNAGPase structure and catalysis.

  3. Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the "old" and update of the new mutations.

    PubMed

    Minucci, Angelo; Moradkhani, Kamran; Hwang, Ming Jing; Zuppi, Cecilia; Giardina, Bruno; Capoluongo, Ettore

    2012-03-15

    In the present paper we have updated the G6PD mutations database, including all the last discovered G6PD genetic variants. We underline that the last database has been published by Vulliamy et al. [1] who analytically reported 140 G6PD mutations: along with Vulliamy's database, there are two main sites, such as http://202.120.189.88/mutdb/ and www.LOVD.nl/MR, where almost all G6PD mutations can be found. Compared to the previous mutation reports, in our paper we have included for each mutation some additional information, such as: the secondary structure and the enzyme 3D position involving by mutation, the creation or abolition of a restriction site (with the enzyme involved) and the conservation score associated with each amino acid position. The mutations reported in the present tab have been divided according to the gene's region involved (coding and non-coding) and mutations affecting the coding region in: single, multiple (at least with two bases involved) and deletion. We underline that for the listed mutations, reported in italic, literature doesn't provide all the biochemical or bio-molecular information or the research data. Finally, for the "old" mutations, we tried to verify features previously reported and, when subsequently modified, we updated the specific information using the latest literature data. PMID:22293322

  4. Survey on haemoglobin variants, beta thalassaemia, glucose-6-phosphate dehydrogenase deficiency, and haptoglobin types in Turks from western Thrace.

    PubMed Central

    Aksoy, M; Kutlar, A; Kutlar, F; Dinçol, G; Erdem, S; Baştesbihçi, S

    1985-01-01

    A total of 102 apparently healthy and randomly selected Turks who either immigrated from Western Thrace or were still living there were studied for haemoglobin variants, high Hb A2 beta thalassaemia, G6PD deficiency, and haptoglobin types. The incidence of haemoglobins S and O Arab were 2.9 and 3.9% respectively. The incidence of high A2 beta thalassaemia was 10.8% and that of G6PD deficiency 5%. The gene frequencies of Hp1 and Hp2 were 0.326 and 0.674, respectively. PMID:4045955

  5. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Asención Diez, Matías D.; Demonte, Ana M.; Syson, Karl; Arias, Diego G.; Gorelik, Andrii; Guerrero, Sergio A.; Bornemann, Stephen; Iglesias, Alberto A.

    2015-01-01

    Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. PMID:25277548

  6. Metabolism of acetylcholine in human erythrocytes

    SciTech Connect

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identification of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.

  7. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling.

    PubMed

    Kumar, Manjeet; Kaur, Supinder; Nazir, Aamir; Tripathi, Raj Kamal

    2016-05-20

    HIV-1 Nef modulates cellular function that enhances viral replication in vivo which culminate into AIDS pathogenesis. With no enzymatic activity, Nef regulates cellular function through host protein interaction. Interestingly, trans-cellular introduction of recombinant Nef protein in Caenorhabditis elegans results in AIDS like pathogenesis which might share common pathophysiology because the gene sequence of C. elegans and humans share considerable homology. Therefore employing C. elegans based initial screen complemented with sequence based homology search we identified GCC185 as novel host protein interacting with HIV-1 Nef. The detailed molecular characterization revealed N-terminal EEEE65 acidic domain of Nef as key region for interaction. GCC185 is a tethering protein that binds with Rab9 transport vesicles. Our results show that Nef-GCC185 interaction disrupts Rab9 interaction resulting in delocalization of CI-MPR (cation independent Mannose 6 phosphate receptor) resulting in elevated secretion of hexosaminidase. In agreement with this, our studies identified novel host GCC185 protein that interacts with Nef EEEE65 acidic domain interfering GCC185-Rab9 vesicle membrane fusion responsible for retrograde vesicular transport of CI-MPR from late endosomes to TGN. In light of existing report suggesting critical role of Nef-GCC185 interaction reveals valuable mechanistic insights affecting specific protein transport pathway in docking of late endosome derived Rab9 bearing transport vesicle at TGN elucidating role of Nef during viral pathogenesis. PMID:27105913

  8. Comparative study on mannose 6-phosphate residue contents of recombinant lysosomal enzymes.

    PubMed

    Togawa, Tadayasu; Takada, Masaru; Aizawa, Yoshiaki; Tsukimura, Takahiro; Chiba, Yasunori; Sakuraba, Hitoshi

    2014-03-01

    As most recombinant lysosomal enzymes are incorporated into cells via mannose 6-phosphate (M6P) receptors, the M6P content is important for effective enzyme replacement therapy (ERT) for lysosomal diseases. However, there have been no comprehensive reports of the M6P contents of lysosomal enzymes. We developed an M6P assay method comprising three steps, i.e., acid hydrolysis of glycoproteins, derivatization of M6P, and high-performance liquid chromatography, and determined the M6P contents of six recombinant lysosomal enzymes now available for ERT and one in the process of development. The assay is easy, specific, and reproducible. The results of the comparative study revealed that the M6P contents of agalsidase alfa, agalsidase beta, modified α-N-acetylgalactosaminidase, alglucosidase alfa, laronidase, idursulfase, and imiglucerase are 2.1, 2.9, 5.9, 0.7, 2.5, 3.2, and <0.3 mol/mol enzyme, respectively. The results were correlated with those of the biochemical analyses previously performed and that of the binding assay of exposed M6P of the enzymes with the domain 9 of the cation-independent M6P receptor. This assay method is useful for comparison of the M6P contents of recombinant lysosomal enzymes for ERT. PMID:24439675

  9. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    PubMed

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  10. Cloning and partial characterization of the mouse glutamine:fructose-6-phosphate amidotransferase (GFAT) gene promoter.

    PubMed Central

    Sayeski, P P; Wang, D; Su, K; Han, I O; Kudlow, J E

    1997-01-01

    Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the enzyme that is rate limiting in the synthesis of glucosamine and hexosamines. Glucosamine has been proposed to contribute to the glucotoxicity of diabetes. Evidence that the gene encoding GFAT is transcriptionally regulated prompted us to clone and characterize its promoter. The position of the mouse GFAT promoter relative to the translational start site was located by primer extension and found to be 149 bp upstream of the translational start site. A 1.9 kb SacI fragment of the GFAT gene was found to contain the promoter and 88 bp of sequence downstream of the transcriptional start site. This promoter segment could drive expression of a luciferase reporter gene, could confer correct transcriptional initiation to the reporter and could confer the EGF-responsiveness previously observed in the native gene. The mouse GFAT promoter lacks a canonical TATA box and has several GC boxes within a highly GC-rich region. Deletional analysis of the promoter indicated that a proximal element extending to -120 relative to the transcriptional start site could confer reporter expression at a level of 57% of the 1.9 kb construct. Detailed analysis of this proximal region by DNase I footprinting, electrophoretic mobility shift assays and site-directed mutagenesis indicated that Sp1 binds to three elements in this proximal promoter segment and plays a vital role in regulation of transcription from this gene. PMID:9060444

  11. Functional characterization of glucosamine-6-phosphate synthase (GlmS) in Salmonella enterica serovar Enteritidis.

    PubMed

    Bennett, Alexis M; Shippy, Daniel C; Eakley, Nicholas; Okwumabua, Ogi; Fadl, Amin A

    2016-08-01

    Salmonella is a threat to public health due to consumption of contaminated food. Screening of a transposon library identified a unique mutant that was growth and host cell binding deficient. The objective of this study was to determine the functional role of glucosamine-6-phosphate synthase (GlmS) in the biology and pathogenesis of Salmonella. To examine this, we created a glmS mutant (ΔglmS) of Salmonella and examined the effect on cell envelope integrity, growth, metabolism, and pathogenesis. Our data indicated ΔglmS was defective in growth unless media were supplemented with D-glucosamine (D-GlcN). Examination of the bacterial cell envelope revealed that ΔglmS was highly sensitive to detergents, hydrophobic antibiotics, and bile salts compared to the wild type (WT). A release assay indicated that ΔglmS secreted higher amounts of β-lactamase than the WT in culture supernatant fractions. Furthermore, ΔglmS was attenuated in cell culture models of Salmonella infection. Taken together, this study determined an important role for GlmS in the pathogenesis and biology of Salmonella. PMID:27017337

  12. D-Fructose-6-phosphate aldolase-catalyzed one-pot synthesis of iminocyclitols.

    PubMed

    Sugiyama, Masakazu; Hong, Zhangyong; Liang, Pi-Hui; Dean, Stephen M; Whalen, Lisa J; Greenberg, William A; Wong, Chi-Huey

    2007-11-28

    A one-pot chemoenzymatic method for the synthesis of a variety of new iminocyclitols from readily available, non-phosphorylated donor substrates has been developed. The method utilizes the recently discovered fructose-6-phosphate aldolase (FSA), which is functionally distinct from known aldolases in its tolerance of different donor substrates as well as acceptor substrates. Kinetic studies were performed with dihydroxyacetone (DHA), the presumed endogenous substrate for FSA, as well as hydroxy acetone (HA) and 1-hydroxy-2-butanone (HB) as donor substrates, in each case using glyceraldehyde-3-phosphate as acceptor substrate. Remarkably, FSA used the three donor substrates with equal efficiency, with kcat/KMvalues of 33, 75, and 20 M-1 s-1, respectively. This level of donor substrate tolerance is unprecedented for an aldolase. Furthermore, DHA, HA, and HB were accepted as donors in FSA-catalyzed aldol reactions with a variety of azido- and Cbz-amino aldehyde acceptors. The broad substrate tolerance of FSA and the ability to circumvent the need for phosphorylated substrates allowed for one-pot synthesis of a number of known and novel iminocyclitols in good yields, and in a very concise fashion. New iminocyclitols were assayed as inhibitors against a panel of glycosidases. Compounds 15 and 16 were specific alpha-mannosidase inhibitors, and 24 and 26 were potent and selective inhibitors of beta-N-acetylglucosaminidases in the submicromolar range. Facile access to these compounds makes them attractive core structures for further inhibitor optimization. PMID:17985886

  13. Mannose 6-Phosphate Receptors Regulate the Formation of Clathrin-coated Vesicles in the TGN

    PubMed Central

    Borgne, Roland Le; Hoflack, Bernard

    1997-01-01

    The transport of the two mannose 6-phosphate receptors (MPRs) from the secretory pathway to the endocytic pathway is mediated by carrier vesicles coated with the AP-1 Golgi-specific assembly protein and clathrin. Using an in vitro assay that reconstitutes the ARF-1–dependent translocation of cytosolic AP-1 onto membranes of the TGN, we have previously reported that the MPRs are key components for the efficient recruitment of AP-1 (Le Borgne, R., G. Griffiths, and B. Hoflack. 1996. J. Biol. Chem. 271:2162–2170). Using a polyclonal antibody against the mouse γ-adaptin, we have now examined the steady state distribution of AP-1 after subcellular fractionation of mouse fibroblasts lacking both MPRs or reexpressing physiological levels of either MPR. We report that the amount of AP-1 bound to membranes and associated with clathrin-coated vesicles depends on the expression level of the MPRs and on the integrity of their cytoplasmic domains. Thus, these results indicate that the concentration of the MPRs, i.e., the major transmembrane proteins sorted toward the endosomes, determines the number of clathrin-coated vesicles formed in the TGN. PMID:9128246

  14. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor

    PubMed Central

    Arighi, Cecilia N.; Hartnell, Lisa M.; Aguilar, Ruben C.; Haft, Carol R.; Bonifacino, Juan S.

    2004-01-01

    The cation-independent mannose 6-phosphate receptor (CI-MPR) mediates sorting of lysosomal hydrolase precursors from the TGN to endosomes. After releasing the hydrolase precursors into the endosomal lumen, the unoccupied receptor returns to the TGN for further rounds of sorting. Here, we show that the mammalian retromer complex participates in this retrieval pathway. The hVps35 subunit of retromer interacts with the cytosolic domain of the CI-MPR. This interaction probably occurs in an endosomal compartment, where most of the retromer is localized. In particular, retromer is associated with tubular–vesicular profiles that emanate from early endosomes or from intermediates in the maturation from early to late endosomes. Depletion of retromer by RNA interference increases the lysosomal turnover of the CI-MPR, decreases cellular levels of lysosomal hydrolases, and causes swelling of lysosomes. These observations indicate that retromer prevents the delivery of the CI-MPR to lysosomes, probably by sequestration into endosome-derived tubules from where the receptor returns to the TGN. PMID:15078903

  15. Adhesion of Annexin 7 Deficient Erythrocytes to Endothelial Cells

    PubMed Central

    Abed, Majed; Balasaheb, Siraskar; Towhid, Syeda Tasneem; Daniel, Christoph; Amann, Kerstin; Lang, Florian

    2013-01-01

    Annexin 7 deficiency has previously been shown to foster suicidal death of erythrocytes or eryptosis, which is triggered by increase of intracellular Ca2+ concentration ([Ca2+]i) and characterized by cell shrinkage and cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface. Eryptosis following increase of [Ca2+]i by Ca2+ ionophore ionomycin, osmotic shock or energy depletion was more pronounced in erythrocytes from annexinA7-deficient mice (anxA7−/−) than in erythrocytes from wild type mice (anxA7+/+). As phosphatidylserine exposure is considered to mediate adhesion of erythrocytes to the vascular wall, the present study explored adhesion of erythrocytes from anx7−/− and anx7+/+-mice following increase of [Ca2+]i by Ca2+ ionophore ionomycin (1 µM for 30 min), hyperosmotic shock (addition of 550 mM sucrose for 2 hours) or energy depletion (removal of glucose for 12 hours). Phosphatidylserine exposing erythrocytes were identified by annexin V binding, cell volume estimated from forward scatter in FACS analysis and adhesion to human umbilical vein endothelial cells (HUVEC) utilizing a flow chamber. As a result, ionomycin, sucrose addition and glucose removal all triggered phosphatidylserine-exposure, decreased forward scatter and enhanced adhesion of erythrocytes to human umbilical vein endothelial cells (HUVEC), effects significantly more pronounced in anx7−/− than in anx7+/+-erythrocytes. Following ischemia, morphological renal injury was significantly higher in anx7−/− than in anx7+/+-mice. The present observations demonstrate that enhanced eryptosis of annexin7 deficient cells is paralleled by increased adhesion of erythrocytes to the vascular wall, an effect, which may impact on microcirculation during ischemia. PMID:23437197

  16. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    SciTech Connect

    Gowda, Giri; Sagurthi, Someswar Rao; Savithri, H. S.; Murthy, M. R. N.

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  17. Purification, crystallization and preliminary X-ray analysis of the glucosamine-6-phosphate N-acetyltransferase from human liver

    SciTech Connect

    Wang, Juan; Zhou, Yan-Feng; Li, Lan-Fen; Liang, Yu-He Su, Xiao-Dong

    2006-11-01

    Glucosamine-6-phosphate N-acetyltransferase from human liver was expressed, purified and crystallized. Diffraction data have been collected to 2.6 Å resolution. Glucosamine-6-phosphate N-acetyltransferase from human liver, which catalyzes the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to the primary amine of d-glucosamine 6-phosphate to form N-acetyl-d-glucosamine 6-phosphate, was expressed in a soluble form from Escherichia coli strain BL21 (DE3). The protein was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.6 Å resolution. The crystals belonged to space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = b = 50.08, c = 142.88 Å.

  18. The Redox-Sensitive Chloroplast Trehalose-6-Phosphate Phosphatase AtTPPD Regulates Salt Stress Tolerance

    PubMed Central

    Krasensky, Julia; Broyart, Caroline; Rabanal, Fernando A.

    2014-01-01

    Abstract Aims: High salinity stress impairs plant growth and development. Trehalose metabolism has been implicated in sugar signaling, and enhanced trehalose metabolism can positively regulate abiotic stress tolerance. However, the molecular mechanism(s) of the stress-related trehalose pathway and the role of individual trehalose biosynthetic enzymes for stress tolerance remain unclear. Results: Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step of trehalose metabolism. Investigating the subcellular localization of the Arabidopsis thaliana TPP family members, we identified AtTPPD as a chloroplast-localized enzyme. Plants deficient in AtTPPD were hypersensitive, whereas plants overexpressing AtTPPD were more tolerant to high salinity stress. Elevated stress tolerance of AtTPPD overexpressors correlated with high starch levels and increased accumulation of soluble sugars, suggesting a role for AtTPPD in regulating sugar metabolism under salinity conditions. Biochemical analyses indicate that AtTPPD is a target of post-translational redox regulation and can be reversibly inactivated by oxidizing conditions. Two cysteine residues were identified as the redox-sensitive sites. Structural and mutation analyses suggest that the formation of an intramolecular disulfide bridge regulates AtTPPD activity. Innovation: The activity of different AtTPP isoforms, located in the cytosol, nucleus, and chloroplasts, can be redox regulated, suggesting that the trehalose metabolism might relay the redox status of different cellular compartments to regulate diverse biological processes such as stress responses. Conclusion: The evolutionary conservation of the two redox regulatory cysteine residues of TPPs in spermatophytes indicates that redox regulation of TPPs might be a common mechanism enabling plants to rapidly adjust trehalose metabolism to the prevailing environmental and developmental conditions. Antioxid. Redox Signal. 21, 1289–1304. PMID:24800789

  19. Hexose-6-phosphate dehydrogenase: a new risk gene for multiple sclerosis

    PubMed Central

    Alcina, Antonio; Ramagopalan, Sreeram V; Fernández, Óscar; Catalá-Rabasa, Antonio; Fedetz, María; Ndagire, Dorothy; Leyva, Laura; Arnal, Carmen; Delgado, Concepción; Lucas, Miguel; Izquierdo, Guillermo; Ebers, George C; Matesanz, Fuencisla

    2010-01-01

    A recent genome-wide association study (GWAS) performed by the The Wellcome Trust Case–Control Consortium based on 12 374 nonsynonymous single-nucleotide polymorphisms (SNPs) provided evidence for several genes involved in multiple sclerosis (MS) susceptibility. In this study, we aimed at verifying the association of 19 SNPs with MS, with P-values ≤0.005, in an independent cohort of 732 patients and 974 controls, all Caucasian from the South of Spain. We observed an association of the rs17368528 polymorphism with MS (P=0.04, odds ratio (OR)=0.801, 95% confidence interval (CI)=0.648–0.990). The association of this polymorphism with MS was further validated in an independent set of 1318 patients from the Canadian Collaborative Project (P=0.04, OR=0.838, 95% CI=0.716–0.964). This marker is located on chromosome 1p36.22, which is 1 Mb away from the MS-associated kinesin motor protein KIF1B, although linkage disequilibrium was not observed between these two markers. The rs17368528 SNP results in an amino-acid substitution (proline to leucine) in the fifth exon of the hexose-6-phosphate dehydrogenase (H6PD) gene, in which some variants have been reported to attenuate or abolish H6PD activity, in individuals with cortisone reductase deficiency. This study corroborates the association of one locus determined by GWAS and points to H6PD as a new candidate gene for MS. PMID:19935835

  20. Recognition of mannose 6-phosphate ligands by dystrophic rat retinal pigment epithelium

    SciTech Connect

    Tarnowski, B.; Shepherd, V.; McLaughlin, B.

    1986-05-01

    Retinal pigment epithelium (RPE) phagocytize discarded rod outer segments (ROS) during normal eye function. In the dystrophic rat, an animal model for retinitis pigmentosa in humans, ROS phagocytosis is defective. Dystrophic RPE can phagocytize particles other than ROS, suggesting that the defect may be in the RPE phagocytic recognition. They are currently investigating the recognition markers on RPE in dystrophic rats. In studies using ligand-coated latex beads, no uptake of mannose-coated beads was found in dystrophic rat RPE. They found that dystrophic RPE could specifically phagocytize phosphomannan-coated beads. Studies were begun to examine the presence and function of a phosphomannan receptor (PMR) on dystrophic RPE. ..cap alpha..-Mannosidase, isolated from D. discoideum has been shown to be an efficient ligand for the PMR in fibroblasts and macrophages. It is also recognized by the macrophage mannose receptor. Dystrophic rat RPE and retina explants were placed in culture dishes (5-7/well). /sup 125/I-Labelled ..cap alpha..-mannosidase was added to each well in the presence or absence of 10 mM mannose 6-phosphate (M6P) or yeast mannan (lmg/ml). Explants were incubated at 37/sup 0/ for 2 hr., washed and bound /sup 125/I-mannosidase quantitated. Approximately 2-3% of total counts added were bound to the RPE via a M6P-inhibitable recognition process. The binding to RPE was not blocked by mannan. No mannan or M6P-specific binding was found in retina explants. These results support the findings of specific uptake of phosphomannan-coated beads and demonstrate the presence of a specific PMR on dystrophic RPE phagocytic membranes.

  1. Mannose-6-phosphate facilitates early peripheral nerve regeneration in thy-1-YFP-H mice.

    PubMed

    Harding, A J; Christmas, C R; Ferguson, M W J; Loescher, A R; Robinson, P P; Boissonade, F M

    2014-10-24

    The formation of scar tissue following nerve injury has been shown to adversely affect nerve regeneration and evidence suggests that mannose-6-phosphate (M6P), a potential scar reducing agent that affects transforming growth factor (TGF)-β activation, may enhance nerve regeneration. In this study we utilized thy-1-YFP-H mice - a transgenic strain expressing yellow fluorescent protein (YFP) within a subset of axons - to enable visual analysis of axons regenerating through a nerve graft. Using this strain of mouse we have developed analysis techniques to visualize and quantify regeneration of individual axons across the injury site following the application of either M6P or vehicle to the site of nerve injury. No significant differences were found in the proportion of axons regenerating through the graft between M6P- and vehicle-treated grafts at any point along the graft length. Maximal sprouting occurred at 1.0mm from the proximal graft ending in both groups. The maximum change in sprouting levels for both treatment groups occurred between the graft start and 0.5-mm interval for both treatment groups. The difference between repair groups was significant at this point with a greater increase seen in the vehicle group than the M6P group. The average length of axons regenerating across the initial graft entry was significantly shorter in M6P- than in vehicle-treated grafts, indicating that they encountered less impedance. Application of M6P appears to reduce the disruption of regenerating axons and may therefore facilitate quicker recovery; this is likely to result from altered scar tissue formation in M6P grafts in the early stages of recovery. This study also establishes the usefulness of our methods of analysis using the thy-1-YFP-H mouse strain to visualize and quantify regeneration at the level of the individual axon. PMID:25173153

  2. Histone II-A stimulates glucose-6-phosphatase and reveals mannose-6-phosphatase activities without permeabilization of liver microsomes.

    PubMed Central

    St-Denis, J F; Annabi, B; Khoury, H; van de Werve, G

    1995-01-01

    The effect of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase activities was investigated in relation to microsomal membrane permeability. It was found that glucose-6-phosphatase activity in histone II-A-pretreated liver microsomes was stimulated to the same extent as in detergent-permeabilized microsomes, and that the substrate specificity of the enzyme for glucose 6-phosphate was lost in histone II-A-pretreated microsomes, as [U-14C]glucose-6-phosphate hydrolysis was inhibited by mannose 6-phosphate and [U-14C]mannose 6-phosphate hydrolysis was increased. The accumulation of [U-14C]glucose from [U-14C]glucose 6-phosphate into untreated microsomes was completely abolished in detergent-treated vesicles, but was increased in histone II-A-treated microsomes, accounting for the increased glucose-6-phosphatase activity, and demonstrating that the microsomal membrane was still intact. The stimulation of glucose-6-phosphatase and mannose-6-phosphatase activities by histone II-A was found to be reversed by EGTA. It is concluded that the effects of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase are not caused by the permeabilization of the microsomal membrane. The measurement of mannose-6-phosphatase latency to evaluate the intactness of the vesicles is therefore inappropriate. PMID:7646448

  3. [Experimental Evaluation of Radioprotective Efficacy of Synthetic Genistein on Criteria of Glutathione System and Lipid Peroxidation in Erythrocytes of Peripheral Blood in Irradiated Rats].

    PubMed

    Grebenyuk, A N; Tarumov, R A; Basharin, V A; Kovtun, V U

    2015-01-01

    The study was aimed to evaluate experimentally the radioprotective effectiveness of synthetic genistein in terms of the glutathione system and lipid peroxidation in erythrocytes of irradiated rats. The animals were exposed to single acute X-ray irradiation at a dose of 6 Gy. Genistein was administered intraperitoneally at 200 mg/kg 1 hour before radiation exposure. The irradiation caused the initiation of lipid peroxidation in the background depletion of reduced glutathione. Decrease by 25% in the number of malondialdehyde in the rats treated with genistein was registered 5 min after irradiation compared with the control. It is established thatl day after irradiation the level of reduced glutathione in the rats treated with genistein was 26% higher. However, intraperitoneal administration of genistein did not cause statistically significant changes in the activity of glutathione reductase, glutathione-S-transferase, or glucose-6-phosphate dehydrogenase during the whole period of observation. The results suggest that the radioprotective effect of synthetic genistein is implemented, along with other mechanisms, by stimulating the glutathione system and reducing the severity of lipid peroxidation. PMID:26863780

  4. Effect of carnosine on erythrocyte deformability in diabetic rats.

    PubMed

    Yapislar, Hande; Aydogan, Sami

    2012-12-01

    It is known that oxidative stress plays an important role in the chronic complications of diabetes. Lipid peroxidation is one of the consequences of oxidative stress. Erythrocyte deformability abilities are reduced as a result of lipid peroxidation. Conversely, a decrease nitric oxide (NO) production seems to be responsible in endothelial dysfunction which occurs in diabetic vascular complications. Carnosine is a molecule with anti-oxidant properties. The aim of this study was to investigate erythrocyte deformability indices and the effects of carnosine on erythrocyte deformability in diabetes and to determine a possible relationship between carnosine and nitric oxide. Male Wistar albino rats were used in the study. Injections were administered to seven groups consisting of eight rats each. The groups were: Control, Carnosine, L-NAME (NG-nitro-L-arginine methyl ester), Diabetic, STZ (Streptozotocin) +Carnosine, STZ+L-NAME and STZ+Carnosine+L-NAME. In addition, glucose, insulin, MDA (Malondialdehyde) and NO levels were measured and erythrocyte deformability indices were calculated in all groups. Erythrocyte deformability indices and NO levels were decreased and MDA levels were found to be increased in diabetic group. It was also found that carnosine can significantly reverse erythrocyte deformability, reduce lipid peroxidation and increase NO levels in diabetes. It can be concluded that carnosine can recover from microvascular circulation problems by increasing erythrocyte deformability, can protect cells and tissues against lipid peroxidation and can be used as a multi-functional anti-oxidant in the treatment of diabetes mellitus to prevent the complications of diabetes. PMID:22946660

  5. Trehalose-6-phosphate synthesis controls yeast gluconeogenesis downstream and independent of SNF1.

    PubMed

    Deroover, Sofie; Ghillebert, Ruben; Broeckx, Tom; Winderickx, Joris; Rolland, Filip

    2016-06-01

    Trehalose-6-P (T6P), an intermediate of trehalose biosynthesis, was identified as an important regulator of yeast sugar metabolism and signaling. tps1Δ mutants, deficient in T6P synthesis (TPS), are unable to grow on rapidly fermentable medium with uncontrolled influx in glycolysis, depletion of ATP and accumulation of sugar phosphates. However, the exact molecular mechanisms involved are not fully understood. We show that SNF1 deletion restores the tps1Δ growth defect on glucose, suggesting that lack of TPS hampers inactivation of SNF1 or SNF1-regulated processes. In addition to alternative, non-fermentable carbon metabolism, SNF1 controls two major processes: respiration and gluconeogenesis. The tps1Δ defect appears to be specifically associated with deficient inhibition of gluconeogenesis, indicating more downstream effects. Consistently, Snf1 dephosphorylation and inactivation on glucose medium are not affected, as confirmed with an in vivo Snf1 activity reporter. Detailed analysis shows that gluconeogenic Pck1 and Fbp1 expression, protein levels and activity are not repressed upon glucose addition to tps1Δ cells, suggesting a link between the metabolic defect and persistent gluconeogenesis. While SNF1 is essential for induction of gluconeogenesis, T6P/TPS is required for inactivation of gluconeogenesis in the presence of glucose, downstream and independent of SNF1 activity and the Cat8 and Sip4 transcription factors. PMID:27189362

  6. MondoA Senses Non-glucose Sugars

    PubMed Central

    Stoltzman, Carrie A.; Kaadige, Mohan R.; Peterson, Christopher W.; Ayer, Donald E.

    2011-01-01

    Glucose is required for cell growth and proliferation. The MondoA·Mlx transcription factor is glucose-responsive and accumulates in the nucleus by sensing glucose 6-phosphate. One direct and glucose-induced target of MondoA·Mlx complexes is thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, and hence its regulation by MondoA·Mlx triggers a feedback loop that restricts glucose uptake. This feedback loop is similar to the “hexose transport curb” first described almost 30 years ago. We show here that MondoA responds to the non-glucose hexoses, allose, 3-O-methylglucose, and glucosamine by accumulating in the nucleus and activating TXNIP transcription. The metabolic inhibitor 3-bromopyruvate blocks the transcriptional response to allose and 3-O-methylglucose, indicating that their metabolism, or a parallel pathway, is required to stimulate MondoA activity. Our dissection of the hexosamine biosynthetic pathway suggests that in addition to sensing glucose 6-phosphate, MondoA can also sense glucosamine 6-phosphate. Analysis of glucose uptake in wild-type, MondoA-null, or TXNIP-null murine embryonic fibroblasts indicates a role for the MondoA-TXNIP regulatory circuit in the hexose transport curb, although other redundant pathways also contribute. PMID:21908621

  7. Protein preparation and preliminary X-ray crystallographic analysis of a putative glucosamine 6-phosphate deaminase from Streptococcus mutants

    SciTech Connect

    Hu, Guan-Jing; Li, Lan-Fen; Li, Dan; Liu, Cong; Wei, Shi-Cheng; Liang, Yu-He Su, Xiao-Dong

    2007-09-01

    A glucosamine 6-phosphate deaminase homologue from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.4 Å resolution. The SMU.636 protein from Streptococcus mutans is a putative glucosamine 6-phosphate deaminase with 233 residues. The smu.636 gene was PCR-amplified from S. mutans genomic DNA and cloned into the expression vector pET-28a(+). The resultant His-tagged fusion protein was expressed in Escherichia coli and purified to homogeneity in two steps. Crystals of the fusion protein were obtained by the hanging-drop vapour-diffusion method. The crystals diffracted to 2.4 Å resolution and belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.83, b = 82.13, c = 134.70 Å.

  8. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions.

    PubMed

    Nuccio, Michael L; Wu, Jeff; Mowers, Ron; Zhou, Hua-Ping; Meghji, Moez; Primavesi, Lucia F; Paul, Matthew J; Chen, Xi; Gao, Yan; Haque, Emdadul; Basu, Shib Sankar; Lagrimini, L Mark

    2015-08-01

    Maize, the highest-yielding cereal crop worldwide, is particularly susceptible to drought during its 2- to 3-week flowering period. Many genetic engineering strategies for drought tolerance impinge on plant development, reduce maximum yield potential or do not translate from laboratory conditions to the field. We overexpressed a gene encoding a rice trehalose-6-phosphate phosphatase (TPP) in developing maize ears using a floral promoter. This reduced the concentration of trehalose-6-phosphate (T6P), a sugar signal that regulates growth and development, and increased the concentration of sucrose in ear spikelets. Overexpression of TPP increased both kernel set and harvest index. Field data at several sites and over multiple seasons showed that the engineered trait improved yields from 9% to 49% under non-drought or mild drought conditions, and from 31% to 123% under more severe drought conditions, relative to yields from nontransgenic controls. PMID:26473199

  9. Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast.

    PubMed Central

    Van Dijck, Patrick; Mascorro-Gallardo, José O; De Bus, Martien; Royackers, Katrien; Iturriaga, Gabriel; Thevelein, Johan M

    2002-01-01

    Plants, such as Arabidopsis thaliana and Selaginella lepidophylla, contain genes homologous with the trehalose-6-phosphate synthase (TPS) genes of bacteria and fungi. Most plants do not accumulate trehalose with the desert resurrection plant S. lepidophylla, being a notable exception. Overexpression of the plant genes in a Saccharomyces cerevisiae tps1 mutant results in very low TPS-catalytic activity and trehalose accumulation. We show that truncation of the plant-specific N-terminal extension in the A. thaliana AtTPS1 and S. lepidophylla SlTPS1 homologues results in 10-40-fold higher TPS activity and 20-40-fold higher trehalose accumulation on expression in yeast. These results show that the plant TPS enzymes possess a high-potential catalytic activity. The growth defect of the tps1 strain on glucose was restored, however, the proper homoeostasis of glycolytic flux was not restored, indicating that the plant enzymes were unable to substitute for the yeast enzyme in the regulation of hexokinase activity. Further analysis of the N-terminus led to the identification of two conserved residues, which after mutagenesis result in strongly enhanced trehalose accumulation upon expression in yeast. The plant-specific N-terminal region may act as an inhibitory domain allowing modulation of TPS activity. PMID:11978181

  10. Structure of the Trehalose-6-phosphate Phosphatase from Brugia malayi Reveals Key Design Principles for Anthelmintic Drugs

    PubMed Central

    Farelli, Jeremiah D.; Galvin, Brendan D.; Li, Zhiru; Liu, Chunliang; Aono, Miyuki; Garland, Megan; Hallett, Olivia E.; Causey, Thomas B.; Ali-Reynolds, Alana; Saltzberg, Daniel J.; Carlow, Clotilde K. S.; Dunaway-Mariano, Debra; Allen, Karen N.

    2014-01-01

    Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible. PMID:24992307

  11. Molecular cloning, sequencing, and expression of a L -glutamine D-fructose 6-phosphate amidotransferase gene from Volvariella volvacea.

    PubMed

    Luo, Chuping; Shao, Weilan; Li, Xun; Chen, Zhiyi; Liu, Yongfeng

    2009-01-01

    Using 3'-RACE and 5'-RACE, we have cloned and sequenced the genomic gene and complete cDNA encoding L: -glutamine D: -fructose 6-phosphate amidotransferase (GFAT) from the edible straw mushroom, Volvariella volvacea. Gfat contains five introns, and encodes a predicted protein of 697 amino acids that is homologous to other reported GFAT sequences. Southern hybridization indicated that a single gfat gene locus exists in the V. volvacea genome. Recombinant native V. volvacea GFAT enzyme, over-expressed using Escherichia coli and partially purified, had an estimated molecular mass of 306 kDa and consisted of four equal-sized subunits of 77 kD. Reciprocal plots revealed K (m) values of 0.55 and 0.75 mM for fructose 6-phosphate and L: -glutamine, respectively. V. volvacea GFAT activity was inhibited by the end-product of the hexosamine pathway, UDP-GlcNAc, and by the glutamine analogues N (3)-(4-methoxyfumaroyl)-L: -2,3-diaminopropanoic acid and 2-amino-2-deoxy-D: -glucitol-6-phosphate. PMID:19165584

  12. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of. beta. -glucuronidase

    SciTech Connect

    Watanabe, H.; Grubb, J.H.; Sly, W.S. )

    1990-10-01

    The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functional receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.

  13. Crystallization and preliminary X-ray analysis of the isomerase domain of glucosamine-6-phosphate synthase from Candida albicans

    SciTech Connect

    Olchowy, Jaroslaw; Milewski, Slawomir

    2005-11-01

    The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers. Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to space group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers.

  14. Oxidative Hemolysis of Erythrocytes

    ERIC Educational Resources Information Center

    Wlodek, Lidia; Kusior, Dorota

    2006-01-01

    This exercise for students will allow them to simultaneously observe lipid peroxidation and consequent hemolysis of rat erythrocytes and the effect of sodium azide, a catalase inhibitor, on these processes. It will also demonstrate a protective action of antioxidants, the therapeutically used N-acetylcysteine and albumins present in plasma.

  15. Histochemical research on metabolic pathways of glucose in some species of Mollusca Gastropoda.

    PubMed

    Bolognani Fantin, A M; Bolognani, L; Ottaviani, E; Franchini, A

    1987-01-01

    The metabolic pathways of glucose were studied by histochemical reactions in some species of gastropods living in different habitats. The glycolytic pathway is histochemically indicated by positive results for glucose-6-phosphate isomerase, fructose-1,6-biphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and D-lactate dehydrogenase. The enzymes of the Krebs cycle gave different responses: isocitrate dehydrogenase and L-malate dehydrogenase were positive, whilst succinate dehydrogenase was constantly negative. Malate synthetase activity was also demonstrated. Despite L-glutamate dehydrogenase is undetectable, the presence of transaminase indicates the gluconeogenetic route. Phosphoglucomutase and glucose-6-phosphate phosphatase appear also positive. The metabolic meaning of our results were discussed. PMID:3111150

  16. Monitoring the Dynamics of Monomer Exchange Using Electrospray Mass Spectrometry: The Case of the Dimeric Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Chevreux, Guillaume; Atmanene, Cédric; Lopez, Philippe; Ouazzani, Jamal; Van Dorsselaer, Alain; Badet, Bernard; Badet-Denisot, Marie-Ange; Sanglier-Cianférani, Sarah

    2011-03-01

    Escherichia coli glucosamine-6-phosphate synthase (GlmS) is a dimeric enzyme from the glutamine-dependent amidotransferases family, which catalyses the conversion of D-fructose-6-phosphate (Fru6P) and glutamine (Gln) into D-glucosamine-6-phosphate (GlcN6P) and glutamate, respectively. Extensive X-ray crystallography investigations have been reported, highlighting the importance of the dimeric association to form the sugar active site as well as significant conformational changes of the protein upon substrate and product binding. In the present work, an approach based on time-resolved noncovalent mass spectrometry has been developed to study the dynamics of GlmS subunit exchange. Using 14N versus 15N labeled proteins, the kinetics of GlmS subunit exchange was monitored with the wild-type enzyme in the presence of different substrates and products as well as with the protein bearing a key amino acid mutation specially designed to weaken the dimer interface. Determination of rate constants of subunit exchange revealed important modifications of the protein dynamics: while glutamine, glutamate, and K603A mutation accelerates subunit exchange, Fru6P and GlcN6P totally prevent it. These results are described in light of the available structural information, providing additional useful data for both the characterization of GlmS catalytic process and the design of new GlmS inhibitors. Finally, time-resolved noncovalent MS can be proposed as an additional biophysical technique for real-time monitoring of protein dynamics.

  17. Characterization of the d-Xylulose 5-Phosphate/d-Fructose 6-Phosphate Phosphoketolase Gene (xfp) from Bifidobacterium lactis

    PubMed Central

    Meile, Leo; Rohr, Lukas M.; Geissmann, Thomas A.; Herensperger, Monique; Teuber, Michael

    2001-01-01

    A d-xylulose 5-phosphate/d-fructose 6-phosphate phosphoketolase (Xfp) from the probiotic Bifidobacterium lactis was purified to homogeneity. The specific activity of the purified enzyme with d-fructose 6-phosphate as a substrate is 4.28 Units per mg of enzyme. Km values for d-xylulose 5-phosphate and d-fructose 6-phosphate are 45 and 10 mM, respectively. The native enzyme has a molecular mass of 550,000 Da. The subunit size upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (90,000 Da) corresponds with the size (92,529 Da) calculated from the amino acid sequence of the isolated gene (named xfp) encoding 825 amino acids. The xfp gene was identified on the chromosome of B. lactis with the help of degenerated nucleotide probes deduced from the common N-terminal amino acid sequence of both the native and denatured enzyme. Comparison of the deduced amino acid sequence of the cloned gene with sequences in public databases revealed high homologies with hypothetical proteins (26 to 55% identity) in 20 microbial genomes. The amino acid sequence derived from the xfp gene contains typical thiamine diphosphate (ThDP) binding sites reported for other ThDP-dependent enzymes. Two truncated putative genes, pta and guaA, were localized adjacent to xfp on the B. lactis chromosome coding for a phosphotransacetylase and a guanosine monophosphate synthetase homologous to products of genes in Mycobacterium tuberculosis. However, xfp is transcribed in B. lactis as a monocistronic operon. It is the first reported and sequenced gene of a phosphoketolase. PMID:11292814

  18. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies.

    PubMed

    Reaves, B J; Row, P E; Bright, N A; Luzio, J P; Davidson, H W

    2000-11-01

    A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway

  19. Structural Diversity Within the Mononuclear and Binuclear Active Sites of N-Acetyl-D-Glucosamine-6-Phosphate Deacetylase

    SciTech Connect

    Hall,R.; Brown, S.; Fedorov, A.; Fedorov, E.; Xu, C.; Babbitt, P.; Almo, S.; Raushel, F.

    2007-01-01

    NagA catalyzes the hydrolysis of N-acetyl-D-glucosamine-6-phosphate to D-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-D-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the {alpha}-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.

  20. Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase.

    PubMed

    Hall, Richard S; Brown, Shoshana; Fedorov, Alexander A; Fedorov, Elena V; Xu, Chengfu; Babbitt, Patricia C; Almo, Steven C; Raushel, Frank M

    2007-07-10

    NagA catalyzes the hydrolysis of N-acetyl-d-glucosamine-6-phosphate to d-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-d-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the alpha-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity. PMID:17567048

  1. Glucose cycling in islets from healthy and diabetic rats

    SciTech Connect

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Loew, H.L.; Landau, B.R.; Efendic, S. )

    1990-04-01

    Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with {sup 3}H{sub 2}O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable ({sup 3}H)glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of {sup 3}H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the {sup 3}H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals.

  2. Fructose-6-phosphate aldolase in organic synthesis: preparation of D-fagomine, N-alkylated derivatives, and preliminary biological assays.

    PubMed

    Castillo, José A; Calveras, Jordi; Casas, Josefina; Mitjans, Montserrat; Vinardell, M Pilar; Parella, Teodor; Inoue, Tomoyuki; Sprenger, Georg A; Joglar, Jesús; Clapés, Pere

    2006-12-21

    [Structure: see text] D-fructose-6-phosphate aldolase (FSA) mediates a novel straightforward two-step chemo-enzymatic synthesis of D-fagomine and some of its N-alkylated derivatives in 51% isolated yield and 99% de. The key step is the FSA-catalyzed aldol addition of simple dihydroxyacetone (DHA) to N-Cbz-3-aminopropanal. The use of FSA greatly simplifies the enzymatic procedures that used dihydroxyacetonephosphate or DHA/esters. Some N-alkyl derivatives synthesized elicited antifungal and antibacterial activity as well as enhanced inhibitory activity, and selectivity against beta-galactosidase and alpha-glucosidase. PMID:17165931

  3. Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis

    PubMed Central

    Miao, Yi; Tenor, Jennifer L.; Toffaletti, Dena L.; Washington, Erica J.; Liu, Jiuyu; Shadrick, William R.; Schumacher, Maria A.; Lee, Richard E.; Perfect, John R.; Brennan, Richard G.

    2016-01-01

    Trehalose is a disaccharide essential for the survival and virulence of pathogenic fungi. The biosynthesis of trehalose requires trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. Here, we report the structures of the N-terminal domain of Tps2 (Tps2NTD) from Candida albicans, a transition-state complex of the Tps2 C-terminal trehalose-6-phosphate phosphatase domain (Tps2PD) bound to BeF3 and trehalose, and catalytically dead Tps2PD(D24N) from Cryptococcus neoformans bound to trehalose-6-phosphate (T6P). The Tps2NTD closely resembles the structure of Tps1 but lacks any catalytic activity. The Tps2PD–BeF3–trehalose and Tps2PD(D24N)–T6P complex structures reveal a “closed” conformation that is effected by extensive interactions between each trehalose hydroxyl group and residues of the cap and core domains of the protein, thereby providing exquisite substrate specificity. Disruption of any of the direct substrate–protein residue interactions leads to significant or complete loss of phosphatase activity. Notably, the Tps2PD–BeF3–trehalose complex structure captures an aspartyl-BeF3 covalent adduct, which closely mimics the proposed aspartyl-phosphate intermediate of the phosphatase catalytic cycle. Structures of substrate-free Tps2PD reveal an “open” conformation whereby the cap and core domains separate and visualize the striking conformational changes effected by substrate binding and product release and the role of two hinge regions centered at approximately residues 102–103 and 184–188. Significantly, tps2Δ, tps2NTDΔ, and tps2D705N strains are unable to grow at elevated temperatures. Combined, these studies provide a deeper understanding of the substrate recognition and catalytic mechanism of Tps2 and provide a structural basis for the future design of novel antifungal compounds against a target found in three major fungal pathogens. PMID:27307435

  4. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    SciTech Connect

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. )

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  5. Plasma lipids profile and erythrocytes system in patients with coronary heart disease

    NASA Astrophysics Data System (ADS)

    Malinova, Lidia I.; Simonenko, Georgy V.; Tuchin, Valery V.; Denisova, Tatyana P.

    2006-08-01

    Erythrocytes system study can provide a framework for detailed exploration of blood cell-cell and cell-vessel wall interactions, one of the key patterns in blood and vascular pathophysiology. Our objective was to explore erythrocytes system in patients with stable angina pectoris II f.c. (Canadian classification). The participants (N = 56, age 40 - 55 years) without obesity, glucose tolerance violations, lipid lowering drugs treating, heart failure of II and more functional classes (NYHA), coronary episode at least 6 months before study were involved in the study. Blood samples were incubated with glucose solutions of increasing concentrations (from 2.5% to 20% with 2.5% step) during 60 mm (36° C). In prepared blood smears erythrocyte's sizes were studied. Plasma total cholesterol, triglyceride and glucose levels were also measured. Received data were approximated by polynomials of high degree, with after going first and second derivations. Erythrocytes system "behavior" was studied by means of phase pattern constructing. By lipids levels all the patient were divided into five groups: 1) patients with normal lipids levels, 2) patients with borderline total cholesterol level, 3) patients with isolated hypercholesterolemia, 4) patients with isolated hypertriglyceridemia and 5) patients with combined hyperlipidemia. Erythrocytes size lowering process was of set of "stages", which characteristics differ significantly (p > 0.05) in all five groups. Their rate and acceleration characteristics allow us to detect type of lipid profile in patients. Erythrocyte system disturbing by glucose concentration increase show to be most resistant in group of patients with isolated hypercholesterolemia.

  6. Targeted disruption of the mouse cation-dependent mannose 6-phosphate receptor results in partial missorting of multiple lysosomal enzymes.

    PubMed Central

    Ludwig, T; Ovitt, C E; Bauer, U; Hollinshead, M; Remmler, J; Lobel, P; Rüther, U; Hoflack, B

    1993-01-01

    In mammalian cells two mannose 6-phosphate receptors (MPRs) are involved in lysosomal enzyme transport. To understand the precise function of the cation-dependent mannose 6-phosphate receptor (CD-MPR), one allele of the corresponding gene has been disrupted in mouse embryonic stem cells and homozygous mice lacking this receptor have been generated. The homozygous mice appear normal, suggesting that other targeting mechanisms can partially compensate for the loss of the CD-MPR in vivo. However, homozygous receptor-deficient cells and animals clearly exhibit defects in targeting of multiple lysosomal enzymes when compared with wild-types. Increased levels of phosphorylated lysosomal enzymes were present in body fluids of homozygous animals. In thymocytes from homozygous mice or in primary cultures of fibroblasts from homozygous embryos, there is a marked increase in the amount of phosphorylated lysosomal enzymes that are secreted into the extracellular medium. The cultured fibroblasts have decreased intracellular levels of multiple lysosomal enzymes and accumulate macromolecules within their endosomal/lysosomal system. Taken together, these results clearly indicate that the CD-MPR is required for efficient intracellular targeting of multiple lysosomal enzymes. Images PMID:8262065

  7. Molecular Docking Studies of Catechin and Its Derivatives as Anti-bacterial Inhibitor for Glucosamine-6-Phosphate Synthase

    NASA Astrophysics Data System (ADS)

    Fikrika, H.; Ambarsari, L.; Sumaryada, T.

    2016-01-01

    Molecular docking simulation of catechin and its derivatives on Glucosamine-6- Phosphate Synthase (GlmS) has been performed in this research. GlmS inhibition by a particular ligand will suppress the production of bacterial cell wall and significantly reduce the population of invading bacteria. In this study, catechin derivatives i.e epicatechin, galloatechin and epigalloatechin were found to have stronger binding affinities as compared to natural ligand of GlmS, Fructose-6-Phosphate (F6P). Those three ligands were docked on the same pocket in GlmS target as F6P, with 70% binding sites similarity. Based on the docking results, gallocatechin turns out to be the most potent ligand for anti-bacterial agent with ΔG= -8.00 kcal/mol. The docking between GlmS and catechin derivatives are characterized by a constant present of a strong hydrogen bond between functional group O3 and Ser-349. This hydrogen bond most likely plays a significant role in the docking mechanism and binding modes selection. The surprising result is catechin itself exhibited a quite strong binding with GlmS (ΔG= -7.80 kcal.mol), but docked on a completely different pocket compared to other ligands. This results suggest that catechin might still have a curing effect but with a completely different pathway and mechanism as compared to its derivatives.

  8. Fructose-1,6-Bisphosphate Is an Allosteric Activator of Pyrophosphate:Fructose-6-Phosphate 1-Phosphotransferase.

    PubMed

    Nielsen, T. H.

    1995-05-01

    The activity of highly purified pyrophosphate:fructose-6-phosphate 1-phosphotransferase (PFP) from barley (Hordeum vulgare) leaves was studied under conditions where the catalyzed reaction was allowed to approach equilibrium. The activity of PFP was monitored by determining the changes in the levels of fructose-6-phosphate, orthophosphate, and fructose-1,6-bisphosphate (Fru-1,6-bisP). Under these conditions PFP activity was not dependent on activation by fructose-2,6-bisphosphate (Fru-2,6-bisP). Inclusion of aldolase in the reaction mixture temporarily restored the dependence of PFP on Fru-2,6-bisP. Alternatively, PFP was activated by Fru-1,6-bisP in the presence of aldolase. It is concluded that Fru-1,6-bisP is an allosteric activator of barley PFP, which can substitute for Fru-2,6-bisP as an activator. A significant activation was observed at a concentration of 5 to 25 [mu]M Fru-1,6-bisP, which demonstrates that the allosteric site of barley PFP has a very high affinity for Fru-1,6-bisP. The high affinity for Fru-1,6-bisP at the allosteric site suggests that the observed activation of PFP by Fru-1,6-bisP constitutes a previously unrecognized in vivo regulation mechanism. PMID:12228454

  9. A Cationic-Independent Mannose 6-Phosphate Receptor Inhibitor (PXS64) Ameliorates Kidney Fibrosis by Inhibiting Activation of Transforming Growth Factor-β1

    PubMed Central

    Zhang, Jie; Wong, Muh Geot; Wong, May; Gross, Simon; Chen, Jason; Pollock, Carol; Saad, Sonia

    2015-01-01

    The activity of transforming growth factor-β1 (TGF-β1) is regulated by its conversion from the latent to the active form. We have previously shown that the conversion is at least in part mediated by the cationic-independent mannose 6-phosphate receptor (CI-M6PR), as the CI-M6PR inhibitor, PXS-25 has anti-fibrotic properties in human kidney tubular (HK-2) cells under high glucose conditions. However, its clinical use is limited by low bioavailability. Our aim was to determine the effects of PXS64, a pro-drug of PXS25, in in vitro and in vivo models of renal fibrosis. HK-2 cells were exposed to latent TGFβ1+/- PXS64 for 48 hours. The mRNA and protein levels of pro-fibrotic and pro-inflammatory markers were determined. A 7 day unilateral ureteric obstruction (UUO) model was used and the following experimental groups were studied: (i) Sham operated, (ii) UUO, (iii) UUO + telmisartan (iv) UUO + PSX64. HK-2 cells exposed to PXS64 reduced TGFβ mediated effects on collagen IV, fibronectin, macrophage chemotactic protein-1 (MCP-1) and phospho-smad2 protein expression, consistent with inhibition of the conversion of latent to active TGF-β1. PXS 64 treated UUO mice had a lower tubulointerstitial fibrosis index, collagen IV and fibronectin protein and mRNA expression when compared to untreated UUO mice. In addition, these animals had lower MCP-1 mRNA expression, reduced inflammarory cell infiltrate, as indicated by fewer CD45, F4/80 positive cells, and reduced phospho-Smad2 protein expression when compared to untreated UUO animals. Our data demonstrates that PSX64 is an effective anti-fibrotic agent by inhibiting the activation of latent TGF-β1. PMID:25658916

  10. Trehalose metabolism in the blue crab Callinectes sapidus: isolation of multiple structural cDNA isoforms of trehalose-6-phosphate synthase and their expression in muscles.

    PubMed

    Shi, Q; Chung, J Sook

    2014-02-15

    Adult blue crab Callinectes sapidus exhibit behavioral and ecological dimorphisms: females migrating from the low salinity water to the high salinity area vs. males remaining in the same areas. The flesh basal muscle of the swimming paddle shows a dimorphic color pattern in that levator (Lev) and depressor (Dep) of females tend to be much darker than those of males, while both genders have the same light colored remoter (Rem) and promoter (Pro). The full-length cDNA sequence of four structural isoforms of trehalose-6-phosphate synthase (TPS) is isolated from chela muscles of an adult female, C. sapidus. Two isoforms of the C. sapidus TPS encode functional domains of TPS and trehalose-6-phosphorylase (TPP) in tandem as a fused gene product of Escherichia coli Ost A and Ost B. The other two isoforms contain only a single TPS domain. In both males and females, the darker (Lev+Dep) muscles exhibit greater amounts of trehalose, TPS and trehalase activities than the light colored (Rem+Pro). The fact that adult females show higher levels of trehalase activity in the basal muscles and of glucose in Lev+Dep than those of adult males suggests that there may be a metabolic dimorphism. Moreover, the involvement of trehalose in energy metabolism that was examined under the condition of strenuous swimming activity mimicked in adult females demonstrates the intrinsic trehalose metabolism in Lev+Dep, which subsequently results in hemolymphatic hyperglycemia and hyperlactemia. Our data support that trehalose serves as an additional carbohydrate source of hemolymphatic hyperglycemia in this species. Behavioral and ecological dimorphisms of C. sapidus adults may be supported by a functional dimorphism in energy metabolism. PMID:24334121

  11. Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent

    PubMed Central

    Ashraf, Ghulam Md; Perveen, Asma; Zaidi, Syed Kashif; Tabrez, Shams; Kamal, Mohammad A.; Banu, Naheed

    2014-01-01

    Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology. PMID:25561893

  12. Control of Pyrophosphated-Fructose-6-Phosphate 1-Phosphotransferase Activity in the Cotyledons of Citrullus lanatus1

    PubMed Central

    Botha, Anna-Maria; Botha, Frederik C.

    1990-01-01

    After initiation of radicle elongation, the pyrophosphate:d-fructose-6-phosphate 1-phosphotransferase (PFP) activity sharply increases in the cotyledons of Citrullus lanatus. Removal of the radicle early during incubation prevents the increase in PFP activity in the cotyledons evident in the control. Removal of the radicle at any stage after germination results in a decrease in PFP activity in the cotyledons. Application of kinetin (0.5 micromolar) or 2-chlorophosphonic acid (0.1 micromolar) to isolated cotyledons replaces the effect of the radicle. Gibberellic acid (0.09 micromolar GA3) also partially mimics the presence of the radicle. Anaerobic conditions, as well as cycloheximide application (0.18 micromolar) to intact embryos or to kinetin and ethrel treated isolated cotyledons prevent the increase in PFP activity evident in the control. PMID:16667523

  13. In vivo survival of (14C)sucrose-loaded porcine carrier erythrocytes

    SciTech Connect

    DeLoach, J.R.

    1983-06-01

    Porcine carrier erythrocyte survival was measured in adult pigs. (14C)Sucrose-loaded erythrocytes had a biphasic survival curve, with as much as 50% of the cells removed from circulation in the first 24 hours. The remaining cells had a 35-day half-life. Encapsulation values were measured for porcine erythrocytes and entrapment of (14C)sucrose was greater than 45%. Addition of inosine and glucose to the dialyzed cells and to the final wash buffer before reinjection of autologous cells did not improve their survival.

  14. Mannose 6-phosphate-dependent targeting of lysosomal enzymes is required for normal craniofacial and dental development.

    PubMed

    Koehne, Till; Markmann, Sandra; Schweizer, Michaela; Muschol, Nicole; Friedrich, Reinhard E; Hagel, Christian; Glatzel, Markus; Kahl-Nieke, Bärbel; Amling, Michael; Schinke, Thorsten; Braulke, Thomas

    2016-09-01

    Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis. PMID:27239697

  15. Spectrochemical evidence for the presence of a tyrosine residue in the allosteric site of glucosamine-6-phosphate deaminase from Escherichia coli.

    PubMed

    Altamirano, M M; Hernandez-Arana, A; Tello-Solis, S; Calcagno, M L

    1994-03-01

    The interaction of the enzyme glucosamine 6-phosphate deaminase from Escherichia coli with its allosteric activator, N-acetyl-D-glucosamine 6-phosphate, was studied by different spectrophotometric methods. Analysis of the circular-dichroism differential spectra produced by the binding of the allosteric activator or the competitive inhibitor 2-amino-2-deoxy-D-glucitol 6-phosphate (a homotropic ligand displacing the allosteric equilibrium to the R conformer), strongly suggests the presence of tyrosine residues at or near the allosteric site, although a conformational effect cannot be ruled out. The involvement of a single tyrosine residue in the N-acetyl-D-glucosamine-6-phosphate binding site of glucosamine-6-phosphate deaminase was supported by spectrophotometric pH titrations performed in the presence or absence of the homotropic and heterotropic ligand. In these experiments, a single titrated tyrosine residue is completely protected by saturation with the allosteric activator; this group is considerably acidic (pK 8.75). The analysis of the amino acid sequence of the deaminase using a set of indices for the prediction of surface accessibility of amino acid residues, suggests that the involved residue may be Tyr121 or Tyr254. PMID:8125098

  16. Disorders of Erythrocyte Volume Homeostasis

    PubMed Central

    Glogowska, Edyta; Gallagher, Patrick G.

    2015-01-01

    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis. PMID:25976965

  17. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions

    PubMed Central

    2012-01-01

    Background The development of drought-tolerant, elite varieties of potato (Solanum tuberosum L.) is a challenging task, which might be achieved by introducing transgenic lines into breeding. We previously demonstrated that strains of the White Lady potato cultivar that express the yeast trehalose-6-phosphate synthase ( TPS1) gene exhibit improved drought tolerance. Results We investigated the responses of the drought-sensitive potato cultivar White Lady and the drought-tolerant TPS1 transgenic variant to prolonged drought stress at both the transcriptional and metabolic levels. Leaf mRNA expression profiles were compared using the POCI microarray, which contains 42,034 potato unigene probes. We identified 379 genes of known function that showed at least a 2-fold change in expression across genotypes, stress levels or the interaction between these factors. Wild-type leaves had twice as many genes with altered expression in response to stress than TPS1 transgenic leaves, but 112 genes were differentially expressed in both strains. We identified 42 transcription factor genes with altered expression, of which four were uniquely up-regulated in TPS1 transgenic leaves. The majority of the genes with altered expression that have been implicated in photosynthesis and carbohydrate metabolism were down-regulated in both the wild-type and TPS1 transgenic plants. In agreement with this finding, the starch concentration of the stressed leaves was very low. At the metabolic level, the contents of fructose, galactose and glucose were increased and decreased in the wild-type and TPS1 transgenic leaves, respectively, while the amounts of proline, inositol and raffinose were highly increased in both the wild-type and TPS1 transgenic leaves under drought conditions. Conclusions To our knowledge, this study is the most extensive transcriptional and metabolic analysis of a transgenic, drought-tolerant potato line. We identified four genes that were previously reported as drought

  18. The Structure of MurNAc 6-Phosphate Hydrolase (MurQ) from Haemophilus influenzae with Bound Inhibitor

    PubMed Central

    Hadi, Timin; Hazra, Saugata; Tanner, Martin E.; Blanchard, John S.

    2014-01-01

    The breakdown and recycling of peptidoglycan, an essential polymeric cell structure, occurs in a number of bacterial species. A key enzyme in the recycling pathway of one of the components of the peptidoglycan layer, N-acetylmuramic acid (MurNAc), is MurNAc 6-phosphate hydrolase (MurQ). This enzyme catalyzes the cofactor-independent cleavage of a relatively non-labile ether bond and presents an interesting target for mechanistic studies. Open-chain product and substrate analogs were synthesized and tested as competitive inhibitors (Kis values of 1.1 +/− 0.3 mM and 0.23 +/− 0.02 mM, respectively) of the MurNAc 6P hydrolase from Escherichia coli (MurQ-EC). To identify the roles of active site residues important for catalysis, the substrate analog was co-crystallized with the MurNAc 6P hydrolase from Haemophilus influenzae (MurQ-HI) that was amenable to crystallographic studies. The co-crystal structure of MurQ-HI with the substrate analog showed that Glu89 was located in close proximity to both the carbon at the C2 position and the oxygen at the C3 position of the bound inhibitor, and that no other potential acid/base residue that could act as an active site acid/base was located in the vicinity. The conserved residues Glu120 and Lys239 were found within hydrogen-bonding distance of the C5 hydroxyl group and C6 phosphate group, suggesting that they play a role in substrate binding and ring-opening. Combining these results with previous biochemical data, a one base mechanism of action where Glu89 functions to both deprotonate at the C2 position and assist in the departure of the lactyl ether at the C3 position is proposed. This same residue would serve to deprotonate the incoming water and reprotonate the enolate in the second half of the catalytic cycle. PMID:24251551

  19. Permeability properties of erythrocyte ghosts.

    PubMed

    TEORELL, T

    1952-05-01

    1. Erythrocyte ghosts from human blood were produced by gentle water hemolysis. The ghost-containing hemolysate (about 20 mN) was added to media of different composition (KCl, NaCl, glucose, sucrose, etc.) and varying concentration ranging from 8 to 840 mN. The volume changes of the ghost cells were followed by a light absorption method. The potassium and sodium concentrations were also analyzed in some representative cases. 2. The ghosts shrank, or swelled, in two stages. An initial phase with a momentary expulsion, or uptake, of water leading to an osmotic equilibrium, was followed by a second phase in which a slow swelling or shrinking proceeded toward a final constant volume. 3. The ghosts were semipermeable in the sense that water always passed rapidly in either direction so as to maintain isotonicity with the external medium. The relation between ghost cell volumes (V) and the total concentration (C(e)) of the suspension medium can be expressed by a modified van't Hoff-Mariotte law: (C(e) + a)(V - b) = constant. Here a is a term correcting for an internal pressure and b is the non-solvent volume of the ghost cells. This means that the ghosts behave as perfect osmometers. 4. On the other hand appreciable concentration differences of the K and Na ions could be maintained across the intact ghost cell membranes for long periods. Whether this phenomenon is due simply to very low cation permeability or to active transport processes cannot be decided, although the first assumption appears more probable. 5. When the ghosts were treated with small concentrations of a lytic substance like Na oleate, the alkali ion transfer was greatly increased. This seems to be a simple exchange diffusion process with simultaneous, continued maintenance of osmotic equilibrium (= the second phase). A simplified theory is also given for the kinetics of the volume variations and ion exchange during the second phase (cf. the Appendix). 6. Miscellaneous observations on the effects of p

  20. Enzymes of glucose metabolism in Frankia sp.

    PubMed

    Lopez, M F; Torrey, J G

    1985-04-01

    Enzymes of glucose metabolism were assayed in crude cell extracts of Frankia strains HFPArI3 and HFPCcI2 as well as in isolated vesicle clusters from Alnus rubra root nodules. Activities of the Embden-Meyerhof-Parnas pathway enzymes glucokinase, phosphofructokinase, and pyruvate kinase were found in Frankia strain HFPArI3 and glucokinase and pyruvate kinase were found in Frankia strain HFPCcI2 and in the vesicle clusters. An NADP+-linked glucose 6-phosphate dehydrogenase and an NAD-linked 6-phosphogluconate dehydrogenase were found in all of the extracts, although the role of these enzymes is unclear. No NADP+-linked 6-phosphogluconate dehydrogenase was found. Both dehydrogenases were inhibited by adenosine 5-triphosphate, and the apparent Km's for glucose 6-phosphate and 6-phosphogluconate were 6.86 X 10(-4) and 7.0 X 10(-5) M, respectively. In addition to the enzymes mentioned above, an NADP+-linked malic enzyme was detected in the pure cultures but not in the vesicle clusters. In contrast, however, the vesicle clusters had activity of an NAD-linked malic enzyme. The possibility that this enzyme resulted from contamination from plant mitochondria trapped in the vesicle clusters could not be discounted. None of the extracts showed activities of the Entner-Doudoroff enzymes or the gluconate metabolism enzymes gluconate dehydrogenase or gluconokinase. Propionate- versus trehalose-grown cultures of strain HFPArI3 showed similar activities of most enzymes except malic enzyme, which was higher in the cultures grown on the organic acid. Nitrogen-fixing cultures of strain HFPArI3 showed higher specific activities of glucose 6-phosphate and 6-phosphogluconate dehydrogenases and phosphofructokinase than ammonia-grown cultures. PMID:3980434

  1. Fructose 6-phosphate phosphoketolase activity in wild-type strains of Lactobacillus, isolated from the intestinal tract of pigs.

    PubMed

    Bolado-Martínez, E; Acedo-Félix, E; Peregrino-Uriarte, A B; Yepiz-Plascencia, G

    2012-01-01

    Phosphoketolases are key enzymes of the phosphoketolase pathway of heterofermentative lactic acid bacteria, which include lactobacilli. In heterofermentative lactobacilli xylulose 5-phosphate phosphoketolase (X5PPK) is the main enzyme of the phosphoketolase pathway. However, activity of fructose 6-phosphate phosphoketolase (F6PPK) has always been considered absent in lactic acid bacteria. In this study, the F6PPK activity was detected in 24 porcine wild-type strains of Lactobacillus reuteri and Lactobacillus mucosae, but not in the Lactobacillus salivarius or in L. reuteri ATCC strains. The activity of F6PPK increased after treatment of the culture at low-pH and diminished after porcine bile-salts stress conditions in wild-type strains of L. reuteri. Colorimetric quantification at 505 nm allowed to differentiate between microbial strains with low activity and without the activity of F6PPK. Additionally, activity of F6PPK and the X5PPK gene expression levels were evaluated by real time PCR, under stress and nonstress conditions, in 3 L. reuteri strains. Although an exact correlation, between enzyme activity and gene expression was not obtained, it remains possible that the xpk gene codes for a phosphoketolase with dual substrate, at least in the analyzed strains of L. reuteri. PMID:23101386

  2. Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells.

    PubMed

    Klein, Diana; Yaghootfam, Afshin; Matzner, Ullrich; Koch, Bettina; Braulke, Thomas; Gieselmann, Volkmar

    2009-01-01

    Metachromatic leukodystrophy is a lysosomal disorder caused by the deficiency of arylsulfatase A (ASA). This leads to the storage of the sphingolipid 3-O-sulfogalactosylceramide (sulfatide) in various cell types, such as renal tubular cells. Examination of mannose 6-phosphate receptor (MPR300)-dependent endocytosis revealed that uptake of lysosomal enzymes is more than two-fold increased in sulfatide-storing kidney cells. Expression of MPR300 and its internalization rate is increased in these cells, whereas the recycling rate is decreased. Similar alterations can be found for the transferrin receptor, indicating that sulfatide storage leads to a general alteration of the endocytotic pathway. These data allow calculating that the endosomal pool from which receptors can recycle is 1.4- to 2-fold increased in lipid-storing cells. Immunocytochemistry demonstrates that the MPR300 in lipid-storing cells does not co-localize with accumulated sulfatide, suggesting that the kinetics of internalization and recycling appear to be altered indirectly. PMID:19007310

  3. High hydrostatic pressure induces synthesis of heat-shock proteins and trehalose-6-phosphate synthase in Anastrepha ludens larvae.

    PubMed

    Vargas-Ortiz, Manuel A; Quintana-Castro, Rodolfo; Oliart-Ros, Rosa M; De la Cruz-Medina, Javier; Ramírez de León, José A; Garcia, Hugo S

    2013-04-01

    The Mexican fruit fly (Anastrepha ludens) is responsible for losses of up to 25% of crops such as mango and citrus fruits in Central America and México. The larval life cycle of A. ludens comprises three stages with a duration ranging from 3 to 8 days. Because of the damage caused by A. ludens, several methods of control have been studied and implemented. High hydrostatic pressures (HHP) are currently applied to foods and it is now proposed to be employed to inactivate eggs and larvae of A. ludens. Originally HHP was designed to inactivate microorganisms, since it exerts marked effects on cell morphology, and can affect enzymatic reactions and genetic mechanisms of microbial cells, with no major changes altering the sensory or nutritional quality of the foodstuff. In this study, A. ludens in two larval stages (5- and 8-day-old) were subjected to HHP treatments. The biochemical response of the larvae of A. ludens was dependent on their stage of development. The third larval stage (L3) developed a better protection mechanism based on the synthesis of stress proteins or heat-shock proteins (HSPs) and the enzyme trehalose-6-phosphate synthase, which are linked and possibly act together to achieve greater survivability to stress caused by hydrostatic pressure. PMID:23361865

  4. Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle.

    PubMed

    Koeberl, Dwight D; Luo, Xiaoyan; Sun, Baodong; McVie-Wylie, Alison; Dai, Jian; Li, Songtao; Banugaria, Suhrad G; Chen, Y-T; Bali, Deeksha S

    2011-06-01

    Enzyme replacement therapy (ERT) with acid α-glucosidase has become available for Pompe disease; however, the response of skeletal muscle, as opposed to the heart, has been attenuated. The poor response of skeletal muscle has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle compared to heart. To further understand the role of CI-MPR in Pompe disease, muscle-specific CI-MPR conditional knockout (KO) mice were crossed with GAA-KO (Pompe disease) mice. We evaluated the impact of CI-MPR-mediated uptake of GAA by evaluating ERT in CI-MPR-KO/GAA-KO (double KO) mice. The essential role of CI-MPR was emphasized by the lack of efficacy of ERT as demonstrated by markedly reduced biochemical correction of GAA deficiency and of glycogen accumulations in double KO mice, in comparison with the administration of the same therapeutic doses in GAA-KO mice. Clenbuterol, a selective β(2)-agonist, enhanced the CI-MPR expression in skeletal tissue and also increased efficacy from GAA therapy, thereby confirming the key role of CI-MPR with regard to enzyme replacement therapy in Pompe disease. Biochemical correction improved in both muscle and non-muscle tissues, indicating that therapy could be similarly enhanced in other lysosomal storage disorders. In summary, enhanced CI-MPR expression might improve the efficacy of enzyme replacement therapy in Pompe disease through enhancing receptor-mediated uptake of GAA. PMID:21397538

  5. Enhanced Efficacy of Enzyme Replacement Therapy in Pompe Disease Through Mannose-6-Phosphate Receptor Expression in Skeletal Muscle

    PubMed Central

    Koeberl, Dwight D.; Luo, Xiaoyan; Sun, Baodong; McVie-Wylie, Alison; Dai, Jian; Li, Songtao; Banugaria, Suhrad G.; Chen, Y-T; Bali, Deeksha S.

    2011-01-01

    Enzyme replacement therapy (ERT) with acid α-glucosidase has become available for Pompe disease; however, the response of skeletal muscle, as opposed to the heart, has been attenuated. The poor response of skeletal muscle has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR) in skeletal muscle compared to heart. To further understand the role of CI-MPR in Pompe disease, muscle-specific CI-MPR conditional knockout (KO) mice were crossed with GAA-KO (Pompe disease) mice. We evaluated the impact of CI-MPR-mediated uptake of GAA by evaluating ERT in CI-MPR-KO/GAA-KO (double KO) mice. The essential role of CI-MPR was emphasized by the lack of efficacy of ERT as demonstrated by markedly reduced biochemical correction of GAA deficiency and of glycogen accumulations in double KO mice, in comparison with administration of the same therapeutic doses in GAA-KO mice. Clenbuterol, a selective β2-agonist, enhanced CI-MPR expression in skeletal tissue and also increased efficacy from GAA therapy, thereby confirming the key role of CI-MPR with regard to enzyme replacement therapy in Pompe disease. Biochemical correction improved in both muscle and non-muscle tissues, indicating that therapy could be similarly enhanced in other lysosomal storage disorders. In summary, enhanced CI-MPR expression might improve the efficacy of enzyme replacement therapy in Pompe disease through enhancing receptor-mediated uptake of GAA. PMID:21397538

  6. Engineering the donor selectivity of D-fructose-6-phosphate aldolase for biocatalytic asymmetric cross-aldol additions of glycolaldehyde.

    PubMed

    Szekrenyi, Anna; Soler, Anna; Garrabou, Xavier; Guérard-Hélaine, Christine; Parella, Teodor; Joglar, Jesús; Lemaire, Marielle; Bujons, Jordi; Clapés, Pere

    2014-09-22

    D-Fructose-6-phosphate aldolase (FSA) is a unique catalyst for asymmetric cross-aldol additions of glycolaldehyde. A combination of a structure-guided approach of saturation mutagenesis, site-directed mutagenesis, and computational modeling was applied to construct a set of FSA variants that improved the catalytic efficiency towards glycolaldehyde dimerization up to 1800-fold. A combination of mutations in positions L107, A129, and A165 provided a toolbox of FSA variants that expand the synthetic possibilities towards the preparation of aldose-like carbohydrate compounds. The new FSA variants were applied as highly efficient catalysts for cross-aldol additions of glycolaldehyde to N-carbobenzyloxyaminoaldehydes to furnish between 80-98 % aldol adduct under optimized reaction conditions. Donor competition experiments showed high selectivity for glycolaldehyde relative to dihydroxyacetone or hydroxyacetone. These results demonstrate the exceptional malleability of the active site in FSA, which can be remodeled to accept a wide spectrum of donor and acceptor substrates with high efficiency and selectivity. PMID:25146467

  7. Mathematical model for aldol addition catalyzed by two D-fructose-6-phosphate aldolases variants overexpressed in E. coli.

    PubMed

    Sudar, Martina; Findrik, Zvjezdana; Vasić-Rački, Durđa; Clapés, Pere; Lozano, Carles

    2013-09-10

    Two D-fructose-6-phosphate aldolase variants namely, single variant FSA A129S and double variant FSA A129S/A165G, were used as catalysts in the aldol addition of dihydroxyacetone (DHA) to N-Cbz-3-aminopropanal. Mathematical model for reaction catalyzed by both enzymes, consisting of kinetic and mass balance equations, was developed. Kinetic parameters were estimated from the experimental data gathered by using the initial reaction rate method. The model was validated in the batch and continuously operated ultrafiltration membrane reactor (UFMR). The same type of kinetic model could be applied for both enzymes. The operational stability of the aldolases was assessed by measuring enzyme activity during the experiments. FSA A129S/A165G had better operational stability in the batch reactor (half-life time 26.7 h) in comparison to FSA A129S (half-life time 5.78 h). Both variants were unstable in the continuously operated UFMR in which half-life times were 1.99 and 3.64 h for FSA A129S and FSA A129S/A165G, respectively. PMID:23876482

  8. Disruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity.

    PubMed

    Zaragoza, Oscar; de Virgilio, Claudio; Pontón, José; Gancedo, Carlos

    2002-05-01

    The gene CaTPS2 encoding trehalose-6-phosphate (T6P) phosphatase from Candida albicans has been cloned and disrupted in this organism. The Catps2/Catps2 mutant did not accumulate trehalose but accumulated high levels of T6P. Disruption of the two copies of the CaTPS2 gene did not abolish growth even at 42 degrees C, but decreased the growth rate. In the stationary phase, the Catps2/Catps2 mutant aggregated, more than 50% of its cells became permeable to propidium iodide and a large amount of protein was found in the culture medium. Aggregation occurred only at pH values higher than 7 and was avoided by osmoprotectants; it was never observed during the exponential phase of growth. The mutant formed colonies with a smooth border on Spider medium. Mice inoculated with 1.5 x 10(6) c.f.u. of wild-type cells died after 8 days, while 80% of those inoculated with the same number of c.f.u. of the Catps2/Catps2 mutant survived for at least 1 month. Reintroduction of the wild-type CaTPS2 gene in the Catps2/Catps2 mutant abolished the phenotypes described. It is hypothesized that the accumulation of T6P interferes with the assembly of a normal cell wall. PMID:11988502

  9. Requirement of the Human GARP Complex for Mannose 6-phosphate-receptor-dependent Sorting of Cathepsin D to Lysosomes

    PubMed Central

    Pérez-Victoria, F. Javier; Mardones, Gonzalo A.

    2008-01-01

    The biosynthetic sorting of acid hydrolases to lysosomes relies on transmembrane, mannose 6-phosphate receptors (MPRs) that cycle between the TGN and endosomes. Herein we report that maintenance of this cycling requires the function of the mammalian Golgi-associated retrograde protein (GARP) complex. Depletion of any of the three GARP subunits, Vps52, Vps53, or Vps54, by RNAi impairs sorting of the precursor of the acid hydrolase, cathepsin D, to lysosomes and leads to its secretion into the culture medium. As a consequence, lysosomes become swollen, likely due to a buildup of undegraded materials. Missorting of cathepsin D in GARP-depleted cells results from accumulation of recycling MPRs in a population of light, small vesicles downstream of endosomes. These vesicles might correspond to intermediates in retrograde transport from endosomes to the TGN. Depletion of GARP subunits also blocks the retrograde transport of the TGN protein, TGN46, and the B subunit of Shiga toxin. These observations indicate that the mammalian GARP complex plays a general role in the delivery of retrograde cargo into the TGN. We also report that a Vps54 mutant protein in the Wobbler mouse strain is active in retrograde transport, thus explaining the viability of these mutant mice. PMID:18367545

  10. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress.

    PubMed

    Xie, D W; Wang, X N; Fu, L S; Sun, J; Zheng, W; Li, Z F

    2015-03-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are potentially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag sequence information from NCBI and two wheat genome databases, we identified 12 wheat TPS genes and performed a comprehensive study on their structural, evolutionary and functional properties. The estimated divergence time of wheat TPS gene pairs and wheat-rice orthologues suggested that wheat and rice have a common ancestor. The number of TPS genes in the wheat genome was estimated to be at least 12, which is close to the number found in rice, Arabidopsis and soybean. Moreover, it has been reported earlier in other plants that TPS genes respond to abiotic stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways. Taken together, the current study represents the first comprehensive study of TPS genes in winter wheat and provides a foundation for future functional studies of this important gene family in Triticeae. PMID:25846877

  11. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of N-acetylmannosamine-6-phosphate 2-epimerase from methicillin-resistant Staphylococcus aureus.

    PubMed

    North, Rachel A; Kessans, Sarah A; Griffin, Michael D W; Watson, Andrew J A; Fairbanks, Antony J; Dobson, Renwick C J

    2014-05-01

    Sialic acids are one of the most important carbohydrate classes in biology. Some bacterial pathogens can scavenge sialic acids from their surrounding environment and degrade them as a source of carbon, nitrogen and energy. This sequestration and subsequent catabolism of sialic acid require a cluster of genes known as the `Nan-Nag' cluster. The enzymes coded by these genes are important for pathogen colonization and persistence. Importantly, the Nan-Nag genes have proven to be essential for Staphylococcus aureus growth on sialic acids, suggesting that the pathway is a viable antibiotic drug target. The enzyme N-acetylmannosamine-6-phosphate 2-epimerase is involved in the catabolism of sialic acid; specifically, the enzyme converts N-acetylmannosamine-6-phosphate into N-acetylglucosamine-6-phosphate. The gene was cloned into an appropriate expression vector, and recombinant protein was expressed in Escherichia coli BL21 (DE3) cells and purified via a three-step procedure. Purified N-acetylmannosamine-6-phosphate 2-epimerase was screened for crystallization. The best crystal diffracted to a resolution of beyond 1.84 Å in space group P21212. Understanding the structural nature of this enzyme from methicillin-resistant S. aureus will provide us with the insights necessary for the development of future antibiotics. PMID:24817730

  12. Structure-guided redesign of D-fructose-6-phosphate aldolase from E. coli: remarkable activity and selectivity towards acceptor substrates by two-point mutation.

    PubMed

    Gutierrez, Mariana; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Clapés, Pere

    2011-05-28

    Structure-guided re-design of the acceptor binding site of D-fructose-6-phosphate aldolase from E. coli leads to the construction of FSA A129S/A165G double mutant with an activity between 5- to >900-fold higher than that of wild-type towards N-Cbz-aminoaldehyde derivatives. PMID:21499643

  13. Novel mode of inhibition by D-tagatose 6-phosphate through a Heyns rearrangement in the active site of transaldolase B variants.

    PubMed

    Stellmacher, Lena; Sandalova, Tatyana; Schneider, Sarah; Schneider, Gunter; Sprenger, Georg A; Samland, Anne K

    2016-04-01

    Transaldolase B (TalB) and D-fructose-6-phosphate aldolase A (FSAA) from Escherichia coli are C-C bond-forming enzymes. Using kinetic inhibition studies and mass spectrometry, it is shown that enzyme variants of FSAA and TalB that exhibit D-fructose-6-phosphate aldolase activity are inhibited covalently and irreversibly by D-tagatose 6-phosphate (D-T6P), whereas no inhibition was observed for wild-type transaldolase B from E. coli. The crystal structure of the variant TalB(F178Y) with bound sugar phosphate was solved to a resolution of 1.46 Å and revealed a novel mode of covalent inhibition. The sugar is bound covalently via its C2 atom to the ℇ-NH2 group of the active-site residue Lys132. It is neither bound in the open-chain form nor as the closed-ring form of D-T6P, but has been converted to β-D-galactofuranose 6-phosphate (D-G6P), a five-membered ring structure. The furanose ring of the covalent adduct is formed via a Heyns rearrangement and subsequent hemiacetal formation. This reaction is facilitated by Tyr178, which is proposed to act as acid-base catalyst. The crystal structure of the inhibitor complex is compared with the structure of the Schiff-base intermediate of TalB(E96Q) formed with the substrate D-fructose 6-phosphate determined to a resolution of 2.20 Å. This comparison highlights the differences in stereochemistry at the C4 atom of the ligand as an essential determinant for the formation of the inhibitor adduct in the active site of the enzyme. PMID:27050126

  14. FT-IR spectrometry utilization for determining changes in erythrocyte susceptibility to oxidative stress

    NASA Astrophysics Data System (ADS)

    Petibois, Cyril; Deleris, Gdrard Y. R.

    2004-07-01

    We tested the hypothesis that FT-IR spectrometry was useful for determining oxidative stress damage on erythrocytes. Endurance-trained subjects performed a standardized endurance-training session at 75% of maximal oxygen consumption each week over 19 consecutive weeks. Capillary blood samples were taken before and after test-sessions and plasma and erythrocytes were separately analyzed using Fourier-transform infrared spectrometry. Exercise-induced change in plasma concentrations and erythrocyte IR absorptivities (vC-Hn of fatty acyl moieties, vC=O and δN-H of proteins, vP=O of phospholipids, vCOO- of amino-acids, and vC-O of lactate) were monitored and compared to training level. First training weeks induced normalization of plasma concentration changes during exercise (unchanged for glucose, moderately increased for lactate, high increases for triglycerides, glycerol, and fatty acids) while erythrocyte phospholipids alteration remained elevated (P < 0.05). Further, training reduced the exercise-induced erythrocyte lactate content increase (vC-O; P < 0.05) and phospholipids alteration (vC-Hn and vP=O; P < 0.05) during exercise. These changes paralleled the lowering of exercise-induced hemoconcentration (P < 0.05) and plasma lactate concentration increase during exercise (P < 0.05). These correlated changes between plasma and erythrocyte parameters suggest that hemoconcentration and lactate acidosis (plasmatic and intracellular) are important factors contributing to reduce erythrocyte susceptibility to oxidative stress during chronic endurance training.

  15. Glucosamine: fructose-6-phosphate amidotransferase in the white shrimp Litopenaeus vannamei: characterization and regulation under alkaline and cadmium stress.

    PubMed

    Liu, Y; Cai, D X; Wang, L; Li, J Z; Wang, W N

    2015-10-01

    Heavy metal residues and chemical contaminators considered as relevant sources of aquatic environmental pollutants have a generally immunosuppressive effect on aquatic organisms, depressing metabolic activities and immune response. Glutamine: fructose-6-phosphate aminotransferase (GFAT, EC2.6.1.16) is the first, and rate-limiting, enzyme in the hexosamine biosynthetic pathway, and is involved in the regulation of chitin biosynthesis and glycosylation of proteins. We have isolated and characterized GFAT from the white shrimp Litopenaeus vannamei. Amino acid sequence similarity of the Lv-GFAT (L.vannamei-GFAT) was highest to GFATs isolated from insects and mammals (83 % similarity to that of Haemaphysalis longicornis). The open-reading frame of the Lv-GFAT codes for a protein of 41.6 kDa with a calculated isoelectric point of 5.03. RT-PCR assays showed that endogenous Lv-GFAT mRNA is most strongly expressed in the intestine. Further analysis of Lv-GFAT gene expression in hepatopancreas by quantitative real-time PCR demonstrated that Lv-GFAT transcript levels increased when the shrimp were exposed to alkaline pH (9.3) and cadmium stress, but the time when its mRNA expression level peaked differed under these stresses. We also first expressed the recombinant protein of GFAT from shrimps in Escherichia coli. Western blot analyses confirmed that the Lv-GFAT protein was strongly expressed in the hepatopancreas after exposure to the LC-Cd stress. These results suggest that Lv-GFAT expression is stimulated by alkaline pH and cadmium stress and that it may play important roles in resistance of shrimp to environmental stresses. PMID:25956985

  16. Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer.

    PubMed

    Kreiling, Jodi L; Montgomery, Michelle A; Wheeler, Joseph R; Kopanic, Jennifer L; Connelly, Christopher M; Zavorka, Megan E; Allison, Jenna L; Macdonald, Richard G

    2012-08-01

    Oligomerization of the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is important for optimal ligand binding and internalization. M6P/IGF2R is a tumor suppressor gene that exhibits loss of heterozygosity and is mutated in several cancers. We tested the potential dominant-negative effects of two cancer-associated mutations that truncate M6P/IGF2R in ectodomain repeats 9 and 14. Our hypothesis was that co-expression of the truncated receptors with the wild-type/endogenous full-length M6P/IGF2R would interfere with M6P/IGF2R function by heterodimer interference. Immunoprecipitation confirmed formation of heterodimeric complexes between full-length M6P/IGF2Rs and the truncated receptors, termed Rep9F and Rep14F. Remarkably, increasing expression of either Rep9F or Rep14F provoked decreased levels of full-length M6P/IGF2Rs in both cell lysates and plasma membranes, indicating a dominant-negative effect on receptor availability. Loss of full-length M6P/IGF2R was not due to increased proteasomal or lysosomal degradation, but instead arose from increased proteolytic cleavage of cell-surface M6P/IGF2Rs, resulting in ectodomain release, by a mechanism that was inhibited by metal ion chelators. These data suggest that M6P/IGF2R truncation mutants may contribute to the cancer phenotype by decreasing the availability of full-length M6P/IGF2Rs to perform tumor-suppressive functions such as binding/internalization of receptor ligands such as insulin-like growth factor II. PMID:22681933

  17. D-fructose-6-phosphate aldolase in organic synthesis: cascade chemical-enzymatic preparation of sugar-related polyhydroxylated compounds.

    PubMed

    Concia, Alda Lisa; Lozano, Carles; Castillo, José A; Parella, Teodor; Joglar, Jesús; Clapés, Pere

    2009-01-01

    Novel aldol addition reactions of dihydroxyacetone (DHA) and hydroxyacetone (HA) to a variety of aldehydes catalyzed by D-fructose-6-phosphate aldolase (FSA) are presented. In a chemical-enzymatic cascade reaction approach, 1-deoxynojirimycin and 1-deoxymannojirimycin were synthesized starting from (R)- and (S)-3-(N-Cbz-amino)-2-hydroxypropanal, respectively. Furthermore, 1,4-dideoxy-1,4-imino-D-arabinitol and 1,4,5-trideoxy-1,4-imino-D-arabinitol were prepared from N-Cbz-glycinal. 1-Deoxy-D-xylulose was also synthesized by using HA as the donor and either 2-benzyloxyethanal or 2-hydroxyethanal as acceptors. In both cases the enzymatic aldol addition reaction was fully stereoselective, but with 2-hydroxyethanal 17 % of the epimeric product at C2, 1-deoxy-D-erythro-2-pentulose, was observed due to enolization/epimerization during the isolation steps. It was also observed that D-(-)-threose is a good acceptor substrate for FSA, opening new synthetic possibilities for the preparation of important novel complex carbohydrate-related compounds from aldoses. To illustrate this, 1-deoxy-D-ido-hept-2-ulose was obtained stereoselectively by the addition of HA to D-(-)-threose, catalyzed by FSA. It was found that the reaction performance depended strongly on the donor substrate, HA being the one that gave the best conversions to the aldol adduct. The examples presented in this work show the valuable synthetic potential of FSA for the construction of chiral complex polyhydroxylated sugar-type structures. PMID:19222084

  18. The serum insulin-like growth factor-II/mannose-6-phosphate receptor in normal and diabetic pregnancy.

    PubMed

    Gelato, M C; Rutherford, C; San-Roman, G; Shmoys, S; Monheit, A

    1993-08-01

    The extracellular domain of the insulin-like growth factor-II/mannose-6-phosphate (IGF-II/Man-6-P) receptor is present in the circulation of several species including man. The purpose of the present study was to establish whether this truncated receptor is present in higher concentrations in fetal sera compared with adult sera and whether the metabolic status of the individual alters serum concentrations of this protein. Nondiabetic and diabetic pregnant women were studied throughout gestation, and at term fetal cord sera were obtained. Levels of IGF-I increased throughout pregnancy in normal and diabetic women. IGF-II levels significantly increased during the third trimester in both groups and levels of IGF-I and IGF-II were significantly elevated in fetal cord samples from diabetic women only. Serum samples were gel-filtered on Sephadex G-200, and column fractions were assayed for binding of radiolabeled IGF-II and IGF-I. There was specific binding (SB) of IGF-II in the void volume fractions in all samples examined. Normal women had 3% +/- 0.5% SB, whereas in cord sera SB was 5% +/- 0.7% and in pregnant sera 10% +/- 2%. There was no difference in SB in fetal cord or pregnant samples from normal and diabetic women. In addition, there was a peak of binding activity of both IGF-I and -II in gamma-globulin and postalbumin fractions of the columns in pregnant and nonpregnant women, but only in postalbumin fractions in fetal cord samples.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8345808

  19. MondoA senses non-glucose sugars: regulation of thioredoxin-interacting protein (TXNIP) and the hexose transport curb.

    PubMed

    Stoltzman, Carrie A; Kaadige, Mohan R; Peterson, Christopher W; Ayer, Donald E

    2011-11-01

    Glucose is required for cell growth and proliferation. The MondoA·Mlx transcription factor is glucose-responsive and accumulates in the nucleus by sensing glucose 6-phosphate. One direct and glucose-induced target of MondoA·Mlx complexes is thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, and hence its regulation by MondoA·Mlx triggers a feedback loop that restricts glucose uptake. This feedback loop is similar to the "hexose transport curb" first described almost 30 years ago. We show here that MondoA responds to the non-glucose hexoses, allose, 3-O-methylglucose, and glucosamine by accumulating in the nucleus and activating TXNIP transcription. The metabolic inhibitor 3-bromopyruvate blocks the transcriptional response to allose and 3-O-methylglucose, indicating that their metabolism, or a parallel pathway, is required to stimulate MondoA activity. Our dissection of the hexosamine biosynthetic pathway suggests that in addition to sensing glucose 6-phosphate, MondoA can also sense glucosamine 6-phosphate. Analysis of glucose uptake in wild-type, MondoA-null, or TXNIP-null murine embryonic fibroblasts indicates a role for the MondoA-TXNIP regulatory circuit in the hexose transport curb, although other redundant pathways also contribute. PMID:21908621

  20. Molecular Heterogeneity of Glucose-6-Phosphate Dehydrogenase Deficiency in Burkina Faso: G-6-PD Betica Selma and Santamaria in People with Symptomatic Malaria in Ouagadougou

    PubMed Central

    Ouattara, Abdoul Karim; Yameogo, Pouiré; Diarra, Birama; Obiri-Yeboah, Dorcas; Yonli, Albert; Compaore, Tegwindé Rebeca; Soubeiga, Serge Théophile; Djigma, Florencia Wenkuuni; Simpore, Jacques

    2016-01-01

    The G-6-PD deficiency has an important polymorphism with genotypic variants such as 202A/376G, 376G/542T and 376G/968T known in West African populations. It would confer protection against severe forms of malaria although there are differences between the various associations in different studies. In this study we genotyped six (06) variants of the G-6-PD gene in people with symptomatic malaria in urban areas in Burkina Faso. One hundred and eighty-two (182) patients who tested positive using rapid detection test and microscopy were included in this study. A regular PCR with the GENESPARK G6PD African kit was run followed by electrophoresis, allowing initially to genotype six SNPs (G202A, A376G, A542T, G680T, C563T and T968C). Women carrying the mutations 202A and/or 376G were further typed by real-time PCR using TaqMan probes rs1050828 and rs1050829. In the study population the G-6-PD deficiency prevalence was 9.9%. In addition of G-6-PD A- (202A/376G) variant, 376G/542T and 376G/968T variants were also detected. Hemoglobin electrophoresis revealed that 22.5% (41/182) of the individuals had HbAC compared with2.2% with HbAS and one individual had double heterozygous HbSC. There was no correlation between the G-6-PD deficiency or haemoglobinopathies and symptomatic malaria infections in this study. Our study confirms that the G-6-PD deficiency does not confer protection against Plasmodium falciparum infections. As opposed to previous genotyping studies carried out in Burkina Faso, this study shows for the first time the presence of the variant A- (376G/968C) and warrants further investigation at the national level and in specific ethnic groups. PMID:27413522

  1. Serine Arginine Splicing Factor 3 Is Involved in Enhanced Splicing of Glucose-6-phosphate Dehydrogenase RNA in Response to Nutrients and Hormones in Liver*

    PubMed Central

    Walsh, Callee M.; Suchanek, Amanda L.; Cyphert, Travis J.; Kohan, Alison B.; Szeszel-Fedorowicz, Wioletta; Salati, Lisa M.

    2013-01-01

    Expression of G6PD is controlled by changes in the degree of splicing of the G6PD mRNA in response to nutrients in the diet. This regulation involves an exonic splicing enhancer (ESE) in exon 12 of the mRNA. Using the G6PD model, we demonstrate that nutrients and hormones control the activity of serine-arginine-rich (SR) proteins, a family of splicing co-activators, and thereby regulate the splicing of G6PD mRNA. In primary rat hepatocyte cultures, insulin increased the amount of phosphorylated SR proteins, and this effect was counteracted by arachidonic acid. The results of RNA affinity analysis with nuclear extracts from intact liver demonstrated that the SR splicing factor proteins SRSF3 and SRSF4 bound to the G6PD ESE. Consequently, siRNA-mediated depletion of SRSF3, but not SRSF4, in liver cells inhibited accumulation of both mRNA expressed from a minigene containing exon 12 and the endogenous G6PD mRNA. Consistent with the functional role of SRSF3 in regulating splicing, SRSF3 was observed to bind to the ESE in both intact cells and in animals using RNA immunoprecipitation analysis. Furthermore, refeeding significantly increased the binding of SRSF3 coincident with increased splicing and expression of G6PD. Together, these data establish that nutritional regulation of SRSF3 activity is involved in the differential splicing of the G6PD transcript in response to nutrients. Nutritional regulation of other SR proteins presents a regulatory mechanism that could cause widespread changes in mRNA splicing. Nutrients are therefore novel regulators of mRNA splicing. PMID:23233666

  2. Population study of 1311 C/T polymorphism of Glucose 6 Phosphate Dehydrogenase gene in Pakistan – an analysis of 715 X-chromosomes

    PubMed Central

    Moiz, Bushra; Nasir, Amna; Moatter, Tariq; Naqvi, Zulfiqar Ali; Khurshid, Mohammad

    2009-01-01

    Background Nucleotide 1311 polymorphism at exon 11 of G6PD gene is widely prevalent in various populations of the world. The aim of the study was to evaluate 1311 polymorphism in subjects carrying G6PD Mediterranean gene and in general population living in Pakistan. Results Patients already known to be G6PD deficient were tested for 563C-T (G6PD Mediterranean) and 1311 C-T mutation through RFLP based PCR and gene sequencing. A control group not known to be G6PD deficient was tested for 1311C/T only. C-T transition at nt 1311 was detected in 60/234 X-chromosomes with 563 C-T mutation (gene frequency of 0.26) while in 130 of normal 402 X-chromosomes (gene frequency of 0.32). Conclusion We conclude that 1311 T is a frequent polymorphism both in general populations and in subjects with G6PD Mediterranean gene in Pakistan. The prevalence is higher compared to most of the populations of the world. The present study will help in understanding genetic basis of G6PD deficiency in Pakistani population and in developing ancestral links of its various ethnic groups. PMID:19640310

  3. Glucose-6-Phosphate Dehydrogenase Deficiency and Haemoglobin Drop after Sulphadoxine-Pyrimethamine Use for Intermittent Preventive Treatment of Malaria during Pregnancy in Ghana – A Cohort Study

    PubMed Central

    Owusu, Ruth; Asante, Kwaku Poku; Mahama, Emmanuel; Awini, Elizabeth; Anyorigiya, Thomas; Dosoo, David; Amu, Alberta; Jakpa, Gabriel; Ofei, Emmanuel; Segbaya, Sylvester; Oduro, Abraham Rexford; Gyapong, Margaret; Hodgson, Abraham; Bart-Plange, Constance; Owusu-Agyei, Seth

    2015-01-01

    Background Sulphadoxine-Pyrimethamine (SP) is still the only recommended antimalarial for use in intermittent preventive treatment of malaria during pregnancy (IPTp) in some malaria endemic countries including Ghana. SP has the potential to cause acute haemolysis in G6PD deficient people resulting in significant haemoglobin (Hb) drop but there is limited data on post SP-IPTp Hb drop. This study determined the difference, if any in proportions of women with significant acute haemoglobin drop between G6PD normal, partial deficient and full deficient women after SP-IPTp. Methods and Findings Prospectively, 1518 pregnant women who received SP for IPTp as part of their normal antenatal care were enrolled. Their G6PD status were determined at enrollment followed by assessments on days 3, 7,14 and 28 to document any adverse effects and changes in post-IPTp haemoglobin (Hb) levels. The three groups were comparable at baseline except for their mean Hb (10.3 g/dL for G6PD normal, 10.8 g/dL for G6PD partial deficient and 10.8 g/dL for G6PD full defect women).The prevalence of G6PD full defect was 2.3% and 17.0% for G6PD partial defect. There was no difference in the proportions with fractional Hb drop ≥ 20% as compared to their baseline value post SP-IPTp among the 3 groups on days 3, 7, 14. The G6PD full defect group had the highest median fractional drop at day 7. There was a weak negative correlation between G6PD activity and fractional Hb drop. There was no statistical difference between the three groups in the proportions of those who started the study with Hb ≥ 8g/dl whose Hb level subsequently fell below 8g/dl post-SP IPTp. No study participant required transfusion or hospitalization for severe anaemia. Conclusions There was no significant difference between G6PD normal and deficient women in proportions with significant acute haemoglobin drop post SP-IPTp and lower G6PD enzyme activity was not strongly associated with significant acute drug-induced haemoglobin drop post SP-IPTp but a larger study is required to confirm consistency of findings. PMID:26327623

  4. Prevalence and distribution of glucose-6-phosphate dehydrogenase (G6PD) variants in Thai and Burmese populations in malaria endemic areas of Thailand

    PubMed Central

    2011-01-01

    Background G6PD deficiency is common in malaria endemic regions and is estimated to affect more than 400 million people worldwide. Treatment of malaria patients with the anti-malarial drug primaquine or other 8-aminoquinolines may be associated with potential haemolytic anaemia. The aim of the present study was to investigate the prevalence of G6PD variants in Thai population who resided in malaria endemic areas (western, northern, north-eastern, southern, eastern and central regions) of Thailand, as well as the Burmese population who resided in areas along the Thai-Myanmar border. Methods The ten common G6PD variants were investigated in dried blood spot samples collected from 317 Thai (84 males, 233 females) and 183 Burmese (11 males, 172 females) populations residing in malaria endemic areas of Thailand using PCR-RFLP method. Results Four and seven G6PD variants were observed in samples collected from Burmese and Thai population, with prevalence of 6.6% (21/317) and 14.2% (26/183), respectively. Almost all (96.2%) of G6PD mutation samples collected from Burmese population carried G6PD Mahidol variant; only one sample (3.8%) carried G6PD Kaiping variant. For the Thai population, G6PD Mahidol (8/21: 38.1%) was the most common variant detected, followed by G6PD Viangchan (4/21: 19.0%), G6PD Chinese 4 (3/21: 14.3%), G6PD Canton (2/21: 9.5%), G6PD Union (2/21: 9.5%), G6PD Kaiping (1/21: 4.8%), and G6PD Gaohe (1/21: 4.8%). No G6PD Chinese 3, Chinese 5 and Coimbra variants were found. With this limited sample size, there appeared to be variation in G6PD mutation variants in samples obtained from Thai population in different regions particularly in the western region. Conclusions Results indicate difference in the prevalence and distribution of G6PD gene variants among the Thai and Burmese populations in different malaria endemic areas. Dosage regimen of primaquine for treatment of both Plasmodium falciparum and Plasmodium vivax malaria may need to be optimized, based on endemic areas with supporting data on G6PD variants. Larger sample size from different malaria endemic is required to obtain accurate genetic mapping of G6PD variants in Burmese and Thai population residing in malaria endemic areas of Thailand. PMID:22171972

  5. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    SciTech Connect

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate

  6. Structural Basis for Substrate Specificity in Phosphate Binding (β/α)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12†

    PubMed Central

    Chan, Kui K.; Fedorov, Alexander A.; Fedorov, Elena V.; Almo, Steven C.; Gerlt, John A.

    2008-01-01

    Enzymes that share the (β/α)8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal (β/α)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of D-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates D-ribulose 5-phosphate and D-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493–2503]. We now report functional and structural studies of D-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates D-allulose 6-phosphate and D-fructose 6-phosphate in a catabolic pathway for D-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other’s substrate. The active sites (RPE complexed with D-xylitol 5-phosphate and ALSE complexed with D-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth β-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ΔT196, ΔS197 and ΔG198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that D-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate group

  7. A Demonstration of Erythrocyte Membrane Asymmetry.

    ERIC Educational Resources Information Center

    Pederson, Philip; And Others

    1985-01-01

    A three-period experiment was developed to help students visualize asymmetric distribution of proteins within membranes. It includes: (1) isolating erythrocyte membranes; (2) differential labeling of intact erythrocytes and isolated erythrocyte membranes with an impermeable fluorescent dye; and (3) separating proteins by polyacrylamide gel…

  8. A bioluminescent assay for measuring glucose uptake.

    PubMed

    Valley, Michael P; Karassina, Natasha; Aoyama, Natsuyo; Carlson, Coby; Cali, James J; Vidugiriene, Jolanta

    2016-07-15

    Identifying activators and inhibitors of glucose uptake is critical for both diabetes management and anticancer therapy. To facilitate such studies, easy-to-use nonradioactive assays are desired. Here we describe a bioluminescent glucose uptake assay for measuring glucose transport in cells. The assay is based on the uptake of 2-deoxyglucose and the enzymatic detection of the 2-deoxyglucose-6-phosphate that accumulates. Uptake can be measured from a variety of cell types, it can be inhibited by known glucose transporter inhibitors, and the bioluminescent assay yields similar results when compared with the radioactive method. With HCT 116 cells, glucose uptake can be detected in as little as 5000 cells and remains linear up to 50,000 cells with signal-to-background values ranging from 5 to 45. The assay can be used to screen for glucose transporter inhibitors, or by multiplexing with viability readouts, changes in glucose uptake can be differentiated from overall effects on cell health. The assay also can provide a relevant end point for measuring insulin sensitivity. With adipocytes and myotubes, insulin-dependent increases in glucose uptake have been measured with 10- and 2-fold assay windows, respectively. Significant assay signals of 2-fold or more have also been measured with human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and skeletal myoblasts. PMID:27130501

  9. The insulin-like growth factor II/mannose-6-phosphate receptor is present in monkey serum.

    PubMed

    Gelato, M C; Kiess, W; Lee, L; Malozowski, S; Rechler, M M; Nissley, P

    1988-10-01

    We recently reported that the insulin-like growth factor II (IGF-II)/mannose-6-phosphate (Man-6-P) receptor is present in fetal and postnatal rat serum and that its serum content declined dramatically postnatally between days 20 and 40 . We now provide evidence that the IGF-II/Man-6-P receptor is also present in monkey serum. Serum was gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was greatest in cord serum and decreased with age. Competitive binding studies with [125I]IGF-II and the void volume pools from monkey serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. Radiolabeled IGF-I did not bind specifically to the void volume pools. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from monkey cord serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of monkey serum. A band of approximately the same size as that found with human fibroblast members (approximately 215 K without dithiothreitol) was detected. The IGF-II/Man-6-P receptor band was more intense in cord serum than in the postnatal samples. When cord serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/L acetic acid to separate binding components from free IGF, and IGF-II was measured by RRA, approximately 20% of the circulating IGF-II was found to be associated with this IGF-II/Man-6-P receptor in monkey serum. We conclude that the IGF-II/Man-6-P receptor present in serum may be a significant carrier for IGF-II in the monkey

  10. The insulin-like growth factor II/mannose-6-phosphate receptor is present in fetal and maternal sheep serum.

    PubMed

    Gelato, M C; Rutherford, C; Stark, R I; Daniel, S S

    1989-06-01

    A large mol wt binding protein for insulin-like growth factor II (IGF-II) has been described in fetal sheep serum. We now provide evidence to demonstrate that this binding protein is the IGF-II/mannose-6-phosphate (Man-6-P) receptor. Serum and plasma were gel filtered on Sephadex G-200, and the column fractions were assayed for binding of radiolabeled IGF-II. There was significant binding of [125I]IGF-II to the void volume fractions in addition to binding to the 150K and 40K carrier proteins. Binding to the void volume fractions was increased in fetal serum as well as maternal serum and dramatically decreased in the nonpregnant adult. Competitive binding studies with [125I]IGF-II and the void volume pools from fetal and maternal sheep serum demonstrated that IGF-I competed less potently than IGF-II, and insulin did not compete. There was no specific binding of [125I]IGF-I to the void volume pools of either fetal or maternal samples. Chemical cross-linking of [125I]IGF-II to aliquots of the void volume pools from fetal and maternal sheep serum samples and analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of dithiothreitol demonstrated a specific band at about 240K. Western blotting using a specific antiserum (no. 3637) against rat IGF-II/Man-6-P receptor was performed on aliquots of the Sephadex G-200 void volume pools of fetal, maternal, uterine vein, and adult sheep serum; a band of approximately 210K (without dithiothreitol) was seen. The IGF-II/Man-6-P receptor band was more intense in fetal serum than in either maternal or adult nonpregnant sheep serum. There was also increased binding of [125I]IGF-II in the 40K region of the Sephadex G-200 column fractions in the maternal serum compared to that in serum from nonpregnant adult ewes. When fetal, maternal, and adult nonpregnant sheep serum Sephadex G-200 pools were gel filtered on Sephadex G-50 in 1 mol/liter acetic acid to separate bound from free IGF, and IGF-II was

  11. Synthesis of 2-deoxy-(6-/sup 13/C)glucose

    SciTech Connect

    Walker, T.E.; Unkefer, C.J.; Ehler, D.S.

    1987-05-01

    The authors have prepared 2-deoxy-D-(6-/sup 13/C)glucose which will be used to test the stability of 2-deoxy-D-glucose-6-phosphate in brain tissue. They chose to label 2-deoxy-D-glucose at C-6 because of the large chemical shift difference between C-6 in the free sugar and C-6 in the 6-phosphate analog. Their synthetic scheme is similar to that used for the synthesis of D-(6-/sup 13/C)glucose which involves the removal of C-6 from D-glucose followed by its replacement with /sup 13/C. They first prepare the methyl ..cap alpha..-furanoside using trifluoroacetic acid in methanol. This product is then treated with periodate which cleaves only between C-5 and C-6 to form a hydrated aldehyde which is reacted directly with K/sup 13/CN to form a mixture of nitriles. The enriched nitriles are reduced with hydrogen to a mixture of 6-aldehydo sugars using a 5% Pd on carbon catalyst. These sugars are reduced with NaBH/sub 4/ to a mixture of labeled methyl furanosides. Acid hydrolysis followed by chromatography yields 2-deoxy-D-(6-/sup 13/C)glucose in an overall yield of 10% from K/sup 13/CN.

  12. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins.

    PubMed Central

    Köster, A; Saftig, P; Matzner, U; von Figura, K; Peters, C; Pohlmann, R

    1993-01-01

    Lysosomal enzymes containing mannose 6-phosphate recognition markers are sorted to lysosomes by mannose 6-phosphate receptors (MPRs). The physiological importance of this targeting mechanism is illustrated by I-cell disease, a fatal lysosomal storage disorder caused by the absence of mannose 6-phosphate residues in lysosomal enzymes. Most mammalian cells express two MPRs. Although the binding specificities, subcellular distribution and expression pattern of the two receptors can be differentiated, their coexpression is not understood. The larger of the two receptors with an M(r) of approximately 300,000 (MPR300), which also binds IGFII, appears to have a dominant role in lysosomal enzyme targeting, while the function of the smaller receptor with an M(r) of 46,000 (MPR46) is less clear. To investigate the in vivo function of the MPR46, we generated MPR46-deficient mice using gene targeting in embryonic stem cells. Reduced intracellular retention of newly synthesized lysosomal proteins in cells from MPR46 -/- mice demonstrated an essential sorting function of MPR46. The phenotype of MPR46 -/- mice was normal, indicating mechanisms that compensate the MPR46 deficiency in vivo. Images PMID:8262064

  13. Human acetyl-CoA:glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups up to four carbons in length.

    PubMed

    Brockhausen, Inka; Nair, Dileep G; Chen, Min; Yang, Xiaojing; Allingham, John S; Szarek, Walter A; Anastassiades, Tassos

    2016-04-01

    Glucosamine-6-phosphate N-acetyltransferase1 (GNA1) catalyses the transfer of an acetyl group from acetyl coenzyme A (AcCoA) to glucosamine-6-phosphate (GlcN6P) to form N-acetylglucosamine-6-phosphate (GlcNAc6P), which is an essential intermediate in UDP-GlcNAc biosynthesis. An analog of GlcNAc, N-butyrylglucosamine (GlcNBu) has shown healing properties for bone and articular cartilage in animal models of arthritis. The goal of this work was to examine whether GNA1 has the ability to transfer a butyryl group from butyryl-CoA to GlcN6P to form GlcNBu6P, which can then be converted to GlcNBu. We developed fluorescent and radioactive assays and examined the donor specificity of human GNA1. Acetyl, propionyl, n-butyryl, and isobutyryl groups were all transferred to GlcN6P, but isovaleryl-CoA and decanoyl-CoA did not serve as donor substrates. Site-specific mutants were produced to examine the role of amino acids potentially affecting the size and properties of the AcCoA binding pocket. All of the wild type and mutant enzymes showed activities of both acetyl and butyryl transfer and can therefore be used for the enzymatic synthesis of GlcNBu for biomedical applications. PMID:26935656

  14. Replacement of a phenylalanine by a tyrosine in the active site confers fructose-6-phosphate aldolase activity to the transaldolase of Escherichia coli and human origin.

    PubMed

    Schneider, Sarah; Sandalova, Tatyana; Schneider, Gunter; Sprenger, Georg A; Samland, Anne K

    2008-10-31

    Based on a structure-assisted sequence alignment we designed 11 focused libraries at residues in the active site of transaldolase B from Escherichia coli and screened them for their ability to synthesize fructose 6-phosphate from dihydroxyacetone and glyceraldehyde 3-phosphate using a newly developed color assay. We found one positive variant exhibiting a replacement of Phe(178) to Tyr. This mutant variant is able not only to transfer a dihydroxyacetone moiety from a ketose donor, fructose 6-phosphate, onto an aldehyde acceptor, erythrose 4-phosphate (14 units/mg), but to use it as a substrate directly in an aldolase reaction (7 units/mg). With a single amino acid replacement the fructose-6-phosphate aldolase activity was increased considerably (>70-fold compared with wild-type). Structural studies of the wild-type and mutant protein suggest that this is due to a different H-bond pattern in the active site leading to a destabilization of the Schiff base intermediate. Furthermore, we show that a homologous replacement has a similar effect in the human transaldolase Taldo1 (aldolase activity, 14 units/mg). We also demonstrate that both enzymes TalB and Taldo1 are recognized by the same polyclonal antibody. PMID:18687684

  15. Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation

    PubMed Central

    Hespeels, Boris; Li, Xiang; Flot, Jean-François; Pigneur, Lise-Marie; Malaisse, Jeremy; Da Silva, Corinne; Van Doninck, Karine

    2015-01-01

    The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process. PMID:26161530

  16. Replacement of a Phenylalanine by a Tyrosine in the Active Site Confers Fructose-6-phosphate Aldolase Activity to the Transaldolase of Escherichia coli and Human Origin*S⃞

    PubMed Central

    Schneider, Sarah; Sandalova, Tatyana; Schneider, Gunter; Sprenger, Georg A.; Samland, Anne K.

    2008-01-01

    Based on a structure-assisted sequence alignment we designed 11 focused libraries at residues in the active site of transaldolase B from Escherichia coli and screened them for their ability to synthesize fructose 6-phosphate from dihydroxyacetone and glyceraldehyde 3-phosphate using a newly developed color assay. We found one positive variant exhibiting a replacement of Phe178 to Tyr. This mutant variant is able not only to transfer a dihydroxyacetone moiety from a ketose donor, fructose 6-phosphate, onto an aldehyde acceptor, erythrose 4-phosphate (14 units/mg), but to use it as a substrate directly in an aldolase reaction (7 units/mg). With a single amino acid replacement the fructose-6-phosphate aldolase activity was increased considerably (>70-fold compared with wild-type). Structural studies of the wild-type and mutant protein suggest that this is due to a different H-bond pattern in the active site leading to a destabilization of the Schiff base intermediate. Furthermore, we show that a homologous replacement has a similar effect in the human transaldolase Taldo1 (aldolase activity, 14 units/mg). We also demonstrate that both enzymes TalB and Taldo1 are recognized by the same polyclonal antibody. PMID:18687684

  17. Brain glucose metabolism in an animal model of depression.

    PubMed

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-01

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  18. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases.

    PubMed

    Schurmann, M; Sprenger, G A

    2001-04-01

    We have cloned an open reading frame from the Escherichia coli K-12 chromosome that had been assumed earlier to be a transaldolase or a transaldolase-related protein, termed MipB. Here we show that instead a novel enzyme activity, fructose-6-phosphate aldolase, is encoded by this open reading frame, which is the first report of an enzyme that catalyzes an aldol cleavage of fructose 6-phosphate from any organism. We propose the name FSA (for fructose-six phosphate aldolase; gene name fsa). The recombinant protein was purified to apparent homogeneity by anion exchange and gel permeation chromatography with a yield of 40 mg of protein from 1 liter of culture. By using electrospray tandem mass spectroscopy, a molecular weight of 22,998 per subunit was determined. From gel filtration a size of 257,000 (+/- 20,000) was calculated. The enzyme most likely forms either a decamer or dodecamer of identical subunits. The purified enzyme displayed a V(max) of 7 units mg(-)1 of protein for fructose 6-phosphate cleavage (at 30 degrees C, pH 8.5 in 50 mm glycylglycine buffer). For the aldolization reaction a V(max) of 45 units mg(-)1 of protein was found; K(m) values for the substrates were 9 mm for fructose 6-phosphate, 35 mm for dihydroxyacetone, and 0.8 mm for glyceraldehyde 3-phosphate. FSA did not utilize fructose, fructose 1-phosphate, fructose 1,6-bisphosphate, or dihydroxyacetone phosphate. FSA is not inhibited by EDTA which points to a metal-independent mode of action. The lysine 85 residue is essential for its action as its exchange to arginine (K85R) resulted in complete loss of activity in line with the assumption that the reaction mechanism involves a Schiff base formation through this lysine residue (class I aldolase). Another fsa-related gene, talC of Escherichia coli, was shown to also encode fructose-6-phosphate aldolase activity and not a transaldolase as proposed earlier. PMID:11120740

  19. Identification of the phorbol ester receptor in human and avian erythrocytes

    SciTech Connect

    Kramer, C.M.; Sando, J.J.; Speizer, L.A.

    1986-05-01

    The ability of phorbol esters to inhibit the uptake of a fluorescent glucose analogue in goose but not human erythrocytes is consistent with earlier reports that the human red blood cell lacks the phorbol ester receptor. However, they have located specific phorbol 12,13-dibutyrate binding sites in both human and goose erythrocytes. Human and goose red blood cells contain 2 classes of phorbol ester receptors with similar affinities, however the human erythrocyte contains 1/3 as many phorbol ester receptors as does the goose red blood cell. An additional contrast in the binding of phorbol esters to human and goose red blood cells is the temperature-induced enhancement of binding to goose, but not human erythrocytes. Equilibrium phorbol ester binding to goose red blood cells at 37/sup 0/C is enhanced 3.3 +/- 0.4 times that amount bound at 4/sup 0/C. Equilibrium binding of phorbol esters to human erythrocytes is identical at both temperatures. In vivo and in vitro phosphorylation profiles of C-kinase substrates also differ between the human and goose erythrocyte.

  20. Effect of 3-bromopyruvic acid on human erythrocyte antioxidant defense system.

    PubMed

    Sadowska-Bartosz, Izabela; Bartosz, Grzegorz

    2013-12-01

    3-Bromopyruvate (3-BP) is a promising compound for anticancer therapy, its main mode of action being the inhibition of glycolytic enzymes, but this compound also induces oxidative stress. This study aimed at characterisation of the effect of 3-BP on the antioxidant defense system of erythrocytes. Suspensions of erythrocytes in PBS containing 5 mM glucose were treated with different concentration of 3-BP at 37°C for 1 h. Activities of antioxidant enzymes were estimated by standard colorimetric methods. The antioxidant capacity of erythrocytes was estimated using the 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS(•+)) decolorisation assay and ferricyanide reduction. The content of reduced and oxidized glutathione was estimated fluorimetrically with o-phtalaldehyde. 3-BP did not affect the integrity of the erythrocyte membrane (lack of changes in the osmotic fragility). However, it induced oxidative stress in erythrocytes, as evidenced by the decrease in the content of acid-soluble thiols and reduced glutathione (GSH). Superoxide dismutase (SOD) and glutathione S-transferase (GST) activities were significantly decreased. 3-BP also decreased the transmembrane reduction of ferricyanide. Thus induction of oxidative stress in erythrocytes by 3-BP is due to depletion of glutathione and inhibition of antioxidant enzymes. PMID:23881849

  1. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  2. Effect of pretreatment with pentobarbital on the extent of (/sup 14/C) incorporation from (U-/sup 14/C)glucose into various rat brain glycolytic intermediates: relevance to regulation at hexokinase and phosphofructokinase

    SciTech Connect

    Miller, L.P.; Mayer, S.; Braun, L.D.; Geiger, P.; Oldendorf, W.H.

    1988-04-01

    In the present investigation we monitored the incorporation of (14C) from (U-14C)glucose into various rat brain glycolytic intermediates of conscious and pentobarbital-anesthetized animals. Labeled glucose was delivered to brain by single bolus intracarotid injection and brain tissue was subsequently prepared at 15, 30, and 45 sec by freeze-blowing. Glycolytic intermediates were then separated by column chromatography. Our results showed a gradual decrease with time of 14C-labeled glucose which gave a calculated rate for glucose metabolism of 0.86 mumol/min/g and 0.56 mumol/min/g in conscious and anesthetized animals, respectively. Compared to the results obtained using conscious animals the administration of pentobarbital not only resulted in a significant attenuation of the rate of glucose metabolism but also caused a similar reduction in the amount of 14C incorporated into several glycolytic intermediates. These intermediates included: glucose 6-phosphate, fructose 6-phosphate, fructose 1,6 diphosphate, dihydroxyacetone phosphate and post glycolytic compounds. In addition, pretreatment with pentobarbital resulted in a 75% increase in the endogenous concentration of glucose, 10% increase in glucose 6-phosphate, no change in fructose 6-phosphate and 42% decrease in lactate compared to levels in brains obtained from conscious animals. These results are discussed in relation to control of glycolysis through coupled regulation at hexokinase-phosphofructokinase.

  3. Abnormalities of the Erythrocyte Membrane

    PubMed Central

    Gallagher, Patrick G.

    2014-01-01

    Synopsis Primary abnormalities of the erythrocyte membrane, including the hereditary spherocytosis and hereditary elliptocytosis syndromes, are an important group of inherited hemolytic anemias. Classified by distinctive morphology on peripheral blood smear, these disorders are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Once considered routine, growing recognition of the longterm risks of splenectomy, including cardiovascular disease, thrombotic disorders, and pulmonary hypertension, as well as the emergence of penicillin-resistant pneumococci, a concern for infection in overwhelming postsplenectomy infection, have led to re-evaluation of the role of splenectomy. Current management guidelines acknowledge these important considerations when entertaining splenectomy and recommend detailed discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy. PMID:24237975

  4. Viscoelastic behavior of erythrocyte membrane.

    PubMed Central

    Tözeren, A; Skalak, R; Sung, K L; Chien, S

    1982-01-01

    A nonlinear viscoelastic relation is developed to describe the viscoelastic properties of erythrocyte membrane. This constitutive equation is used in the analysis of the time-dependent aspiration of an erythrocyte membrane into a micropipette. Equations governing this motion are reduced to a nonlinear integral equation of the Volterra type. A numerical procedure based on a finite difference scheme is used to solve the integral equation and to match the experimental data. The data, aspiration length vs. time, is used to determine the relaxation function at each time step. The inverse problem of obtaining the time dependence of the aspiration length from a given relaxation function is also solved. Analytical results obtained are applied to the experimental data of Chien et al. 1978. Biophys. J. 24:463-487. A relaxation function similar to that of a four-parameter solid with a shear-thinning viscous term is proposed. PMID:7104447

  5. Effect of anionic amphophiles on erythrocyte properties.

    PubMed

    McMillan, D E; Utterback, N G; Wujek, J J

    1983-01-01

    This preliminary study describes effects of two pharmacologic agents on erythrocyte behavior. Increased erythrocyte aggregation has been proposed as important in the pathogenesis of a number of disorders, but the exact mechanism by which it plays a role in disease production remains unclear. Several anionic amphophiles have been reported to benefit diabetic vascular disease and atherosclerosis. If anionic amphophiles enter the erythrocyte plasma membrane they can increase its negative charge, reducing the energy of attraction between red blood cells and diminishing erythrocyte aggregation. Erythrocytes were studied after suspension in phosphate-buffered saline containing dextran as an aggregation-promoting agent. A marginal reduction of the suspension's viscosity was found at low shear rate when 2,5- dihydroxybenzene sulfonate was added. Additionally, erythrocyte sedimentation rate was marginally influenced. Both dihydroxybenzene sulfonate and acetylsalicylate protected human erythrocytes from hemolysis at concentrations from 10(-3) to 10(-5) M. The removal of erythrocyte sialic acid using neuraminidase to reduce surface negative charge led to unequivocal interference with aggregation (MAI technique of CHIEN et al., J. Gen. Physiol., 1973) by both anionic amphophiles were studied. Dihydroxybenzene sulfonate and actylsalicylate reduced the aggregation propensity of sialic-free erythrocytes, suggesting that the effect on the low shear rate viscosity of sialic acid-containing erythrocytes, though modest, is real. PMID:6587820

  6. [Glucose-6-phosphatase from nuclear envelope in rat liver].

    PubMed

    González-Mujica, Freddy

    2008-06-01

    Nuclear envelope (NE) and microsomal glucosa-6-phosphatase (G-6-Pase) activities were compared. Intact microsomes were unable to hydrolyze mannose-6-phosphate (M-6-P), on the other hand, intact NE hydrolyzes this substrate. Galactose-6-phosphate showed to be a good substrate for both NE and microsomal enzymes, with similar latency to that obtained with M-6-P using microsomes. In consequence, this substrate was used to measure the NE integrity. The kinetic parameters (Kii and Kis) of the intact NE G-6-Pase for the phlorizin inhibition using glucose-6-phosphate (G-6-P) and M-6-P as substrates, were very similar. The NE T1 transporter was more sensitive to amiloride than the microsomal T1. The microsomal system was more sensitive to N-ethylmalemide (NEM) than the NE and the latter was insensitive to anion transport inhibitors DIDS and SITS, which strongly affect the microsomal enzyme. The above results allowed to postulate the presence of a hexose-6-phosphate transporter in the NE which is able to carry G-6-P and M-6-P, and perhaps other hexose-6-phosphate which could be different from that present in microsomes or, if it is the same, its activity could by modified by the membrane system where it is included. The higher PPi hydrolysis activity of the intact NE G-6-Pase in comparison to the intact microsomal, suggests differences between the Pi/PPi transport (T2) of both systems. The lower sensitivity of the NE G-6-Pase to NEM suggests that the catalytic subunit of this system has some differences with the microsomal isoform. PMID:18717264

  7. Opioids and rat erythrocyte deformability.

    PubMed

    Rhoads, D L; Wei, L X; Lin, E T; Rezvani, A; Way, E L

    1986-01-01

    In previous studies from this laboratory, it was noted that opioids in vitro reduced human red blood cell deformability. The effect was found to be dose-dependent, naloxone reversible and preferentially selective kappa ligands exhibited the highest potency. To extend these findings studies were carried out using rat erythrocytes. The time required for erythrocytes to pass through a 5.0 um pore membrane was determined and used as an index of deformability. Opioids added in vitro produced inhibition of deformability in a dose-dependent, naloxone reversible manner. Injecting naive animals with morphine or nalbuphine also produced dose related reductions in red cell deformability. The degree of inhibition produced by nalbuphine correlated well with its plasma concentrations as measured by high performance liquid chromatography (HPLC). Chronic morphine treatment by pellet implantation resulted in the development of tolerance as evidenced by a loss in the ability of morphine in vitro to inhibit red cell deformability. Addition of naloxone resulted in a decrease in filtration time. Thus, the data confirm and extend previous findings on human red blood cells. In as much as previous data from this laboratory demonstrated that opioids inhibit calcium flux from erythrocytes by inhibiting calcium-ATPase and calcium efflux is necessary for normal deformability, it is concluded that opioids act to reduce red cell deformability by inhibition of the calcium pump. PMID:3123933

  8. Kinetic model for erythrocyte aggregation.

    PubMed

    Bertoluzzo, S M; Bollini, A; Rasia, M; Raynal, A

    1999-01-01

    It is well known that light transmission through blood is the most widely utilized method for the study of erythrocyte aggregation. The curves obtained had been considered empirically as exponential functions. In consequence, the process becomes characterized by an only parameter that varies with all the process factors without discrimination. In the present paper a mathematical model for RBC aggregation process is deduced in accordance with von Smoluchowski's theory about the kinetics of colloidal particles agglomeration. The equation fitted the experimental pattern of the RBC suspension optical transmittance closely and contained two parameters that estimate the most important characteristics of the aggregation process separately, i.e., (1) average size of rouleaux at equilibrium and (2) aggregation rate. The evaluation of the method was assessed by some factors affecting erythrocyte aggregation, such as temperature, plasma dilutions, Dextran 500, Dextran 70 and PVP 360, at different media concentrations, cellular membrane alteration by the alkylating agent TCEA, and decrease of medium osmolarity. Results were interpreted considering the process characteristics estimated by the parameters, and there were also compared with similar studies carried out by other authors with other methods. This analysis allowed us to conclude that the equation proposed is reliable and useful to study erythrocyte aggregation. PMID:10660481

  9. Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence.

    PubMed

    Gitenay, D; Wiel, C; Lallet-Daher, H; Vindrieux, D; Aubert, S; Payen, L; Simonnet, H; Bernard, D

    2014-01-01

    Oncogenic stress-induced senescence (OIS) prevents the ability of oncogenic signals to induce tumorigenesis. It is now largely admitted that the mitogenic effect of oncogenes requires metabolic adaptations to respond to new energetic and bio constituent needs. Yet, whether glucose metabolism affects OIS response is largely unknown. This is largely because of the fact that most of the OIS cellular models are cultivated in glucose excess. In this study, we used human epithelial cells, cultivated without glucose excess, to study alteration and functional role of glucose metabolism during OIS. We report a slowdown of glucose uptake and metabolism during OIS. Increasing glucose metabolism by expressing hexokinase2 (HK2), which converts glucose to glucose-6-phosphate (G6P), favors escape from OIS. Inversely, expressing a glucose-6-phosphatase, [corrected] pharmacological inhibition of HK2, or adding nonmetabolizable glucose induced a premature senescence. Manipulations of various metabolites covering G6P downstream pathways (hexosamine, glycolysis, and pentose phosphate pathways) suggest an unexpected role of the hexosamine pathway in controlling OIS. Altogether, our results show that decreased glucose metabolism occurs during and participates to OIS. PMID:24577087

  10. History of the first synthesis of 2-deoxy-2-fluoro-D-glucose the unlabeled forerunner of 2-deoxy-2-[18F]fluoro-D-glucose.

    PubMed

    Pacák, Josef; Cerný, Miloslav

    2002-10-01

    The history of the first successful synthesis of 2-deoxy-2-fluoro-D-glucose (19FDG) is described. In many aspects, this substance imitates the behavior of naturally occurring glucose. For example, it is transported into the cells and is converted to the corresponding 6-phosphate by the enzyme hexokinase in a manner similar to glucose. Due to the presence of the fluorine atom at C-2, however, this phosphate derivative does not undergo further glycolysis but is metabolically trapped in the cell. Thanks to these properties, eight years after the synthesis of 19FDG, its 18F-labeled derivative was successfully used with positron emission tomography (PET). PMID:14537109

  11. Binding of rabbit muscle aldolase to band 3, the predominant polypeptide of the human erythrocyte membrane.

    PubMed

    Strapazon, E; Steck, T L

    1976-04-01

    Aldolase is a trace protein in isolated human red cell membrane preparations. Following total elution of the endogenous enzyme by a saline wash, the interaction of this membrane with rabbit muscle aldolase was studied. At saturation, exogenous aldolase constituted over 40% of the repleted membrane protein. Scatchard analysis revealed two classes of sites, each numbering approximately 7 X 10(5) per ghost. Specificity was suggested by the exclusive binding of the enzyme to the membrane's inner (cytoplasmic) surface. Furthermore, milimolar levels of fructose 1,6-bisphosphate eluted the enzyme from ghosts, while fructose 6-phosphate and NADH (a metabolite which elutes human erythrocyte glyceraldehyde-3-phosphate dehydrogenase (G3PD) from its binding site) were ineffectuve. Removing peripheral membrane proteins with EDTA and lithium 3,5-diiodosalicylate did not diminish the binding capacity of the membranes. An aldolase-band 3 complex, dissociable by high ionic strength or fructose 1,6-bisphosphate treatment, was demonstrated in Triton X-100 extracts of repleted membranes by rate zonal sedimentation analysis on sucrose gradients. We conclude that the association of rabbit muscle aldolase with isolated human erythrocyte membranes reflects its specific binding to band 3 at the cytoplasmic surface, as is also true of G3PD. PMID:1259946

  12. Radiometric assays for glycerol, glucose, and glycogen.

    PubMed

    Bradley, D C; Kaslow, H R

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus (1971, J. Biol. Chem. 246, 3885-3894) for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays. PMID:2817333

  13. Radiometric assays for glycerol, glucose, and glycogen

    SciTech Connect

    Bradley, D.C.; Kaslow, H.R. )

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with (32P)ATP and glycerokinase, residual (32P)ATP is hydrolyzed by heating in acid, and free (32P)phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays.

  14. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1).

    PubMed

    Chen, Qiushi; Müller, Juliane S; Pang, Poh-Choo; Laval, Steve H; Haslam, Stuart M; Lochmüller, Hanns; Dell, Anne

    2015-01-01

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS) termed "limb-girdle CMS with tubular aggregates". CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A), and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells. PMID:26501342

  15. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1)

    PubMed Central

    Chen, Qiushi; Müller, Juliane S.; Pang, Poh-Choo; Laval, Steve H.; Haslam, Stuart M.; Lochmüller, Hanns; Dell, Anne

    2015-01-01

    Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS) termed “limb-girdle CMS with tubular aggregates”. CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A), and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells. PMID:26501342

  16. Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease

    PubMed Central

    Sun, Baodong; Li, Songtao; Bird, Andrew; Yi, Haiqing; Kemper, Alex; Koeberl, Dwight D.

    2013-01-01

    BACKGROUND Lysosomal storage disorders such as Pompe disease can be more effectively treated, if immune tolerance to enzyme or gene replacement therapy can be achieved. Alternatively, immune responses against acid α-glucosidase (GAA) might be evaded in Pompe disease through muscle-specific expression of GAA with adeno-associated virus (AAV) vectors. METHODS An AAV vector containing the MHCK7 regulatory cassette to drive muscle-specific GAA expression was administered to GAA knockout (KO) mice, immune tolerant GAA-KO mice, and mannose-6-phosphate deficient GAA-KO mice. GAA activity and glycogen content were analyzed in striated muscle to determine biochemical efficacy. RESULTS The biochemical efficacy from GAA expression was slightly reduced in GAA-KO mice, as demonstrated by higher residual glycogen content in skeletal muscles. Next immune tolerance to GAA was induced in GAA-KO mice by co-administration of a second AAV vector encoding liver-specific GAA along with the AAV vector encoding muscle-specific GAA. Antibody formation was prevented by liver-specific GAA, and the biochemical efficacy of GAA expression was improved in absence of antibodies as evidenced by significantly reduced glycogen content in the diaphragm. Efficacy was reduced in old GAA-KO mice despite the absence of antibodies. The greatest impact upon gene therapy was observed in GAA-KO mice lacking the mannose-6-phosphate receptor in muscle. The clearance of stored glycogen was markedly impaired despite high GAA expression in receptor-deficient Pompe disease mice. CONCLUSIONS Overall, antibody formation had a subtle effect upon efficacy, while the absence of mannose-6-phosphate receptors markedly impaired muscle-targeted gene therapy in murine Pompe disease. PMID:20967919

  17. N-Acetyl-beta-D-glucopyranosylamine 6-phosphate is a specific inhibitor of glycogen-bound protein phosphatase 1.

    PubMed Central

    Board, M

    1997-01-01

    Previous work has shown that the C-1-substituted glucose-analogue N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc) is a competitive inhibitor of glycogen phosphorylase (GP) and stimulates the inactivation of this enzyme by GP phosphatase. In addition to its effects on GP, 1-GlcNAc also prevents the glucose-led activation of glycogen synthase (GS) in whole hepatocytes. Such an effect on GS was thought to be due to the formation of 1-GlcNAc-6-P by the action of glucokinase within the hepatocyte [Board, Bollen, Stalmans, Kim, Fleet and Johnson (1995) Biochem. J. 311, 845-852]. To investigate this possibility further, a pure preparation of 1-GlcNAc-6-P was synthesized. The effects of the phosphorylated glucose analogue on the activity of protein phosphatase 1 (PP1), the enzyme responsible for dephosphorylation and activation of GS, are reported. During the present study, 1-GlcNAc-6-P inhibited the activity of the glycogen-bound form of PP1, affecting both the GSb phosphatase and GPa phosphatase activities. A level of 50% inhibition of GSb phosphatase activity was achieved with 85 microM 1-GlcNAc-6-P in the absence of Glc-6-P and with 135 microM in the presence of 10 mM Glc-6-P. At either Glc-6-P concentration, 500 microM 1-GlcNAc-6-P completely inhibited activity. The Glc-6-P stimulation of the GPa phosphatase activity of PP1 was negated by 1-GlcNAc-6-P but there was no inhibition of the basal rate in the absence of Glc-6-P. 1-GlcNAc-6-P inhibition was specific for the glycogen-bound form of PP1 and did not inhibit the GSb phosphatase activity of the cytosolic form of the enzyme. The present work explains our previous observations on the inactivating effects on GS of incubating whole hepatocytes with 1-GlcNAc. These observations have their basis in the inhibition of glycogen-bound PP1 by 1-GlcNAc-6-P. A novel inhibitor of PP1, specific for the glycogen-bound form of the enzyme, is presented. PMID:9371733

  18. Optical tweezer for probing erythrocyte membrane deformability

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Soni, Harsh; Sood, A. K.

    2009-12-01

    We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.

  19. [AGGREGATION OF METABOLICALLY DEPLETED HUMAN ERYTHROCYTES].

    PubMed

    Sheremet'ev, Yu A; Popovicheva, A N; Rogozin, M M; Levin, G Ya

    2016-01-01

    An aggregation of erythrocytes in autologous plasma after blood storage for 14 days at 4 °C was studied using photometry and light microscopy. The decrease of ATP content, the formation of echinocytes and spheroechinocytes, the decrease of rouleaux form of erythrocyte aggregation were observed during the storage. On the other hand the aggregates of echinocytes were formed in the stored blood. The addition of plasma from the fresh blood didn't restore the normal discocytic shape and aggregation of erythrocytes in the stored blood. The possible mechanisms of erythrocytes and echinocytes aggregation are discussed. PMID:27220249

  20. The pentose phosphate pathway of glucose metabolism. Enzyme profiles and transient and steady-state content of intermediates of alternative pathways of glucose metabolism in Krebs ascites cells

    PubMed Central

    Gumaa, K. A.; McLean, Patricia

    1969-01-01

    1. The pentose phosphate pathway in Krebs ascites cells was investigated for regulatory reactions. For comparison, the glycolytic pathway was studied simultaneously. 2. Activities of the pentose phosphate pathway enzymes were low in contrast with those of the enzymes of glycolysis. The Km values of glucose 6-phosphate dehydrogenase for both substrate and cofactor were about four times the reported upper limit for the enzyme from normal tissues. Fructose 1,6-diphosphate and NADPH competitively inhibited 6-phosphogluconate dehydrogenase. 3. About 28% of the hexokinase activity was in the particulate fraction of the cells. The soluble enzyme was inhibited by fructose 1,6-diphosphate and ribose 5-phosphate, but not by 3-phosphoglycerate. The behaviour of the partially purified soluble enzyme in vitro in a system simulating the concentrations of ATP, glucose 6-phosphate and Pi found in vivo is reported. 4. Kinetics of metabolite accumulation during the transient state after the addition of glucose to the cells indicated two phases of glucose phosphorylation, an initial rapid phase followed abruptly by a slow phase extending into the steady state. 5. Of the pentose phosphate pathway intermediates, accumulation of 6-phosphogluconate, sedoheptulose 7-phosphate and fructose 6-phosphate paralleled the accumulation of glucose 6-phosphate. Erythrose 4-phosphate reached the steady-state concentration by 2min., whereas the pentose phosphates accumulated linearly. 6. The mass-action ratios of the pentose phosphate pathway reactions were calculated. The transketolase reaction was at equilibrium by 30sec. and then progressively shifted away from equilibrium towards the steady-state ratio. The glucose 6-phosphate dehydrogenase was far from equilibrium at all times. 7. Investigation of the flux of [14C]glucose carbon confirmed the existence of an operative pentose phosphate pathway in ascites cells, contributing 1% of the total flux in control cells and 10% in cells treated with

  1. Overproduction, crystallization and preliminary X-ray analysis of the putative l-ascorbate-6-phosphate lactonase UlaG from Escherichia coli

    SciTech Connect

    Garces, Fernando; Fernández, Francisco J.; Pérez-Luque, Rosa; Aguilar, Juan; Baldomà, Laura; Coll, Miquel; Badía, Josefa; Vega, M. Cristina

    2008-01-01

    UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in E. coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized in a monoclinic space group. Crystals were obtained by the sitting-drop vapour-diffusion method at 293 K. A data set diffracting to 3 Å resolution was collected from a single crystal at 100 K. UlaG, the putative l-ascorbate-6-phosphate lactonase encoded by the ulaG gene from the utilization of l-ascorbate regulon in Escherichia coli, has been cloned, overexpressed, purified using standard chromatographic techniques and crystallized. Crystals were obtained by sitting-drop vapour diffusion at 293 K. Preliminary X-ray diffraction analysis revealed that the UlaG crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 104.52, b = 180.69, c = 112.88 Å, β = 103.26°. The asymmetric unit is expected to contain six copies of UlaG, with a corresponding volume per protein weight of 2.16 Å{sup 3} Da{sup −1} and a solvent content of 43%.

  2. Pyrophosphate-Dependent Fructose-6-Phosphate 1-Phosphotransferase Induction and Attenuation of Hsp Gene Expression during Endosperm Modification in Quality Protein Maize1[C][W][OA

    PubMed Central

    Guo, Xiaomei; Ronhovde, Kyla; Yuan, Lingling; Yao, Bo; Soundararajan, Madhavan P.; Elthon, Thomas; Zhang, Chi; Holding, David R.

    2012-01-01

    Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large increase in transcript and protein levels of the α-regulatory subunit of PFP (PFPα) in QPM endosperm. In vitro enzyme assays showed a significant increase in forward PFP activity in developing endosperm extracts of QPM relative to the wild type and o2. An expressed retrogene version of PFPα of unknown function that was not up-regulated in QPM was also identified. The elevated expression levels of a number of ATP-requiring heat shock proteins (Hsps) in o2 endosperm are ameliorated in QPM. PFPα is also coinduced with Hsps in maize roots in response to heat, cold, and the unfolded protein response stresses. We propose that reduced ATP availability resulting from the generalized Hsp response in addition to the reduction of pyruvate, orthophosphate dikinase activity in o2 endosperm is compensated in part by increased PFP activity in QPM. PMID:22158678

  3. Characterization, Localization, Essentiality, and High-Resolution Crystal Structure of Glucosamine 6-Phosphate N-Acetyltransferase from Trypanosoma brucei ▿ ‡ §

    PubMed Central

    Mariño, Karina; Güther, M. Lucia Sampaio; Wernimont, Amy K.; Qiu, Wei; Hui, Raymond; Ferguson, Michael A. J.

    2011-01-01

    A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed. PMID:21531872

  4. N-acetylglucosamine-6-phosphate deacetylase (NagA) of Listeria monocytogenes EGD, an essential enzyme for the metabolism and recycling of amino sugars.

    PubMed

    Popowska, Magdalena; Osińska, Magdalena; Rzeczkowska, Magdalena

    2012-04-01

    The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics. PMID:21947170

  5. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae).

    PubMed

    Xiong, Ke-Cai; Wang, Jia; Li, Jia-Hao; Deng, Yu-Qing; Pu, Po; Fan, Huan; Liu, Ying-Hong

    2016-01-01

    Trehalose is the major blood sugar in insects, which plays a crucial role as an instant source of energy and the starting substrate for chitin biosynthesis. In insects, trehalose is synthesized by catalysis of an important enzyme, trehalose-6-phosphate synthase (TPS). In the present study, a trehalose-6-phosphate synthase gene from Bactrocera minax (BmTPS) was cloned and characterized. BmTPS contained an open reading frame of 2445 nucleotides encoding a protein of 814 amino acids with a predicted molecular weight of 92.05kDa. BmTPS was detectable in all developmental stages of Bactrocera minax and expressed higher in the final- (third-) instar larvae. Tissue-specific expression patterns of BmTPS showed that it was mainly expressed in the fat body. The 20-hydroxyecdysone (20E) induced the expression of BmTPS and three genes in the chitin biosynthesis pathway. Moreover, injection of double-stranded RNA into third-instar larvae successfully silenced the transcription of BmTPS in B. minax, and thereby decreased the activity of TPS and trehalose content. Additionally, silencing of BmTPS inhibited the expression of three key genes in the chitin biosynthesis pathway and exhibited 52% death and abnormal phenotypes. The findings demonstrate that BmTPS is indispensable for larval-pupal metamorphosis. Besides, the establishment of RNAi experimental system in B. minax would lay a solid foundation for further investigation of molecular biology and physiology of this pest. PMID:27405007

  6. Accumulation of d-glucose from pentoses by metabolically engineered Escherichia coli.

    PubMed

    Xia, Tian; Han, Qi; Costanzo, William V; Zhu, Yixuan; Urbauer, Jeffrey L; Eiteman, Mark A

    2015-05-15

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  7. Accumulation of d-Glucose from Pentoses by Metabolically Engineered Escherichia coli

    PubMed Central

    Xia, Tian; Han, Qi; Costanzo, William V.; Zhu, Yixuan; Urbauer, Jeffrey L.

    2015-01-01

    Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway. PMID:25746993

  8. Effect of acetoacetate on glucose metabolism in the soleus and extensor digitorum longus muscles of the rat.

    PubMed Central

    Maizels, E Z; Ruderman, N B; Goodman, M N; Lau, D

    1977-01-01

    1. The effect of acetoacetate on glucose metabolism was compared in the soleus, a slow-twitch red muscle, and the extensor digitorum longus, a muscle composed of 50% fast-twitch red and 50% white fibres. 2. When incubated for 2h in a medium containing 5 mM-glucose and 0.1 unit of insulin/ml, rates of glucose uptake, lactate release and glucose oxidation in the soleus were 19.6, 18.6 and 1.47 micronmol/h per g respectively. Acetoacetate (1.7 mM) diminished all three rates by 25-50%; however, it increased glucose conversion into glycogen. In addition, it caused increases in tissue glucose, glucose 6-phosphate and fructose 6-phosphate, suggesting inhibition of phosphofructokinase. The concentrations of citrate, an inhibitor of phosphofructokinase, and of malate were also increased. 3. Rates of glucose uptake and lactate release in the extensor digitorum longus were 50-80% of those in the soleus. Acetoacetate caused moderate increases in tissue glucose 6-phosphate and possibly citrate, but it did not decrease glucose uptake or lactate release. 4. The rate of glycolysis in the soleus was approximately five times that previously observed in the perfused rat hindquarter, a muscle preparation in which acetoacetate inhibits glucose oxidation, but does not alter glucose uptake or glycolysis. A similar rate of glycolysis was observed when the soleus was incubated with a glucose-free medium. Under these conditions, tissue malate and the lactate/pyruvate ratio in the medium were decreased, and acetoacetate did not decrease lactate release or increase tissue citrate or glucose 6-phosphate. An intermediate rate of glycolysis, which was not decreased by acetoacetate, was observed when the soleus was incubated with glucose, but not insulin. 5. The data suggest that acetoacetate glucose inhibits uptake and glycolysis in red muscle under conditions that resemble mild to moderate exercise. They also suggest that the accumulation of citrate in these circumstances is linked to the rate

  9. Induction of Suicidal Erythrocyte Death by Cantharidin

    PubMed Central

    Alzoubi, Kousi; Egler, Jasmin; Briglia, Marilena; Fazio, Antonella; Faggio, Caterina; Lang, Florian

    2015-01-01

    The natural phosphoprotein phosphatase inhibitor cantharidin, primarily used for topical treatment of warts, has later been shown to trigger tumor cell apoptosis and is thus considered for the treatment of malignancy. Similar to apoptosis of tumor cells, erythrocytes may undergo eryptosis, a suicidal cell death characterized by cell shrinkage and translocation of cell membrane phosphatidylserine to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i), ceramide, oxidative stress and dysregulation of several kinases. Phosphatidylserine abundance at the erythrocyte surface was quantified utilizing annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide from antibody binding, and reactive oxidant species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. A 48 h treatment of human erythrocytes with cantharidin significantly increased the percentage of annexin-V-binding cells (≥10 μg/mL), significantly decreased forward scatter (≥25 μg/mL), significantly increased [Ca2+]i (≥25 μg/mL), but did not significantly modify ceramide abundance or ROS. The up-regulation of annexin-V-binding following cantharidin treatment was not significantly blunted by removal of extracellular Ca2+ but was abolished by kinase inhibitor staurosporine (1 μM) and slightly decreased by p38 inhibitor skepinone (2 μM). Exposure of erythrocytes to cantharidin triggers suicidal erythrocyte death with erythrocyte shrinkage and erythrocyte membrane scrambling, an effect sensitive to kinase inhibitors staurosporine and skepinone. PMID:26226001

  10. Spectroscopic analysis of irradiated erythrocytes

    NASA Astrophysics Data System (ADS)

    Selim, Nabila S.; Desouky, Omar S.; Ismail, Nagla M.; Dakrory, Amira Z.

    2011-12-01

    The aim of the present work is to study the effect of gamma radiation on the lipid part of the erythrocyte membrane, and to test the efficiency of lipoic acid as a radioprotector. This effect was evaluated using electron paramagnetic resonance (EPR), and Fourier transform infrared (FT-IR) spectroscopy. The results showed an increase in the number of spin density by 14%, 22% and 65% after exposure to 25, 50 and 100 Gy respectively; whereas there was a decline in the obtained density after incubation with lipoic acid by a factor of approximately 32%. The FT-IR spectra of the irradiated erythrocytes samples showed a marked decrease in the intensity of all characteristic peaks, which increased as the irradiation dose increased. The second-derivative of these spectra, allow the conformationally sensitive membrane acyl chain methylene stretching modes to be separated from the protein (mostly hemoglobin) vibrations that dominate the spectra of intact cells. The 2850 cm -1 band showed changes in the band shape and position after exposure to 50 and 100 Gy. Therefore it can be concluded that the band at 2850 cm -1 only is useful in monitoring the radiation effect of the lipids cell membrane intact cells.

  11. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state

    SciTech Connect

    Magnusson, I.; Chandramouli, V.; Schumann, W.C.; Kumaran, K.; Wahren, J.; Landau, B.R.

    1989-06-01

    The relative contributions of the direct and the indirect pathways to hepatic glycogen formation following a glucose load given to humans four hours after a substantial breakfast have been examined. Glucose loads labeled with (6-(/sup 14/)C)glucose were given to six healthy volunteers along with diflunisal (1 g) or acetaminophen (1.5 g), drugs excreted in urine as glucuronides. Distribution of /sup 14/C in the glucose unit of the glucuronide was taken as a measure of the extent to which glucose was deposited directly in liver glycogen (ie, glucose----glucose-6-phosphate----glycogen) rather than indirectly (ie, glucose----C3-compound----glucose-6-phosphate----glycogen). The maximum contribution to glycogen formation by the direct pathway was estimated to be 77% +/- 4%, which is somewhat higher than previous estimates in humans fasted overnight (65% +/- 1%, P less than 0.05). Thus, the indirect pathway of liver glycogen formation following a glucose load is operative in both the overnight fasted and the fed state, although its contribution may be somewhat less in the fed state.

  12. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    SciTech Connect

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increased in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.

  13. Triggering of Programmed Erythrocyte Death by Alantolactone

    PubMed Central

    Alzoubi, Kousi; Calabrò, Salvatrice; Egler, Jasmin; Faggio, Caterina; Lang, Florian

    2014-01-01

    The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress. PMID:25533522

  14. Vanadate-induced suicidal erythrocyte death.

    PubMed

    Föller, Michael; Sopjani, Mentor; Mahmud, Hasan; Lang, Florian

    2008-01-01

    Vanadium, a trace element, as vanadate (VO4(3-)) is known to interfere with a wide variety of enzymes including Ca2+ ATPase and Na+/+ ATPase. VO4(3-) is excreted mainly via the kidney. In renal insufficiency, the impaired VO4(3-) excretion leads to VO4(3-) accumulation in blood.The present study explored the effect of VO4(3-) on eryptosis, the suicidal death of erythrocytes. Eryptosis is characterized by cell shrinkage and phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are phagocytosed and thus rapidly cleared from circulating blood. Stimulators of eryptosis include an increase of the cytosolic Ca2+ concentration. Erythrocyte Ca2+ activity was estimated from Fluo-3 fluorescence, phosphatidylserine exposure from annexin V-binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to VO4(3-) increased cytosolic Ca2+ concentration, enhanced the percentage of annexin V-binding erythrocytes, decreased erythrocyte forward scatter, and lowered the intracellular ATP concentration. In conclusion, VO4(3-) induces eryptosis at least partially through increase of cytosolic Ca2+ concentration, an effect presumably contributing to the development of anemia in chronic renal failure. PMID:18319605

  15. A novel motor, KIF13A, transports mannose-6-phosphate receptor to plasma membrane through direct interaction with AP-1 complex.

    PubMed

    Nakagawa, T; Setou, M; Seog, D; Ogasawara, K; Dohmae, N; Takio, K; Hirokawa, N

    2000-11-10

    Intracellular transport mediated by kinesin superfamily proteins (KIFs) is a highly regulated process. The molecular mechanism of KIFs binding to their respective cargoes remains unclear. We report that KIF13A is a novel plus end-directed microtubule-dependent motor protein and associates with beta 1-adaptin, a subunit of the AP-1 adaptor complex. The cargo vesicles of KIF13A contained AP-1 and mannnose-6-phosphate receptor (M6PR). Overexpression of KIF13A resulted in mislocalization of the AP-1 and the M6PR. Functional blockade of KIF13A reduced cell surface expression of the M6PR. Thus, KIF13A transports M6PR-containing vesicles and targets the M6PR from TGN to the plasma membrane via direct interaction with the AP-1 adaptor complex. PMID:11106728

  16. [Lysophosphatidic acid and human erythrocyte aggregation].

    PubMed

    Sheremet'ev, Iu A; Popovicheva, A N; Levin, G Ia

    2014-01-01

    The effects of lysophosphatidic acid on the morphology and aggregation of human erythrocytes has been studied. Morphology of erythrocytes and their aggregates were studied by light microscopy. It has been shown that lysophosphatidic acid changes the shape of red blood cells: diskocyte become echinocytes. Aggregation of red blood cells (rouleaux) was significantly reduced in autoplasma. At the same time there is a strong aggregation of echinocytes. This was accompanied by the formation of microvesicles. Adding normal plasma to echinocytes restores shape and aggregation of red blood cells consisting of "rouleaux". A possible mechanism of action of lysophosphatidic acid on erythrocytes is discussed. PMID:25509147

  17. Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites.

    PubMed

    Dienel, G A; Nelson, T; Cruz, N F; Jay, T; Crane, A M; Sokoloff, L

    1988-12-25

    Significant dephosphorylation of glucose 6-phosphate due to glucose-6-phosphatase activity in rat brain in vivo was recently reported (Huang, M., and Veech, R.L. (1982) J. Biol. Chem. 257, 11358-11363). The evidence was an apparent more rapid 3H than 14C loss from the glucose pool and faster [2-3H]glucose than [U-14C]glucose utilization following pulse labeling of the brain with [2-3H,U-14C]glucose. Radiochemical purity of the glucose and quantitative recovery of the labeled products of glucose metabolism isolated from the brain were obviously essential requirements of their study, but no evidence for purity and recovery was provided. When we repeated these experiments with the described isolation procedures, we replicated the results, but found that: 1) the precursor glucose pool contained detritiated, 14C-labeled contaminants arising from glucose metabolism, particularly 2-pyrrolidone-5-carboxylic acid derived from [14C]glutamine; 2) [14C]glucose metabolite were not quantitatively recovered; 3) the procedure used to isolate the glucose itself produced detritiated, 14C-labeled derivatives of [2-3H,U-14C]glucose. These deficiencies in the isolation procedures could fully account for the observations that were interpreted as evidence of significant glucose 6-phosphate dephosphorylation by glucose-6-phosphatase activity. When glucose was isolated by more rigorous procedures and its purity verified in the present studies, no evidence for such activity in rat brain was found. PMID:2848837

  18. Tyr254 hydroxyl group acts as a two-way switch mechanism in the coupling of heterotropic and homotropic effects in Escherichia coli glucosamine-6-phosphate deaminase.

    PubMed

    Montero-Morán, G M; Horjales, E; Calcagno, M L; Altamirano, M M

    1998-05-26

    The involvement of tyrosine residues in the allosteric function of the enzyme glucosamine 6-phosphate deaminase from Escherichia coli was first proposed on the basis of a theoretical analysis of the sequence and demonstrated by spectrophotometric experiments. Two tyrosine residues, Tyr121 and Tyr254, were indicated as involved in the mechanism of cooperativity and in the allosteric regulation of the enzyme [Altamirano et al. (1994) Eur. J. Biochem. 220, 409-413]. Tyr121 replacement by threonine or tryptophan altered the symmetric character of the T --> R transition [Altamirano et al. (1995) Biochemistry 34, 6074-6082]. From crystallographic data of the R allosteric conformer, Tyr254 has been shown to be part of the allosteric pocket [Oliva et al. (1995) Structure 3, 1323-1332]. Although it is not directly involved in binding the allosteric activator, N-acetylglucosamine 6-phosphate, Tyr 254 is hydrogen bonded through its phenolic hydroxyl to the backbone carbonyl from residue 161 in the neighboring polypeptide chain. Kinetic and binding experiments with the mutant form Tyr254-Phe of the enzyme reveal that this replacement caused an uncoupling of the homotropic and heterotropic effects. Homotropic cooperativity diminished and the allosteric activation pattern changed from one of the K-type in the wild-type deaminase to a mixed K-V pattern. On the other hand, Tyr254-Trp deaminase is kinetically closer to a K-type enzyme and it has a higher catalytic efficiency than the wild-type protein. These results show that the interactions of Tyr254 are fundamental in coupling binding in the active site to events occurring in the allosteric pocket of E. coli glucosamine 6-P deaminase. PMID:9601045

  19. Increased mannosylphosphorylation of N-glycans by heterologous expression of YlMPO1 in glyco-engineered Saccharomyces cerevisiae for mannose-6-phosphate modification.

    PubMed

    Gil, Jin Young; Park, Jeong-Nam; Lee, Kyung Jin; Kang, Ji-Yeon; Kim, Yeong Hun; Kim, Seonghun; Kim, Sang-Yoon; Kwon, Ohsuk; Lim, Yong Taik; Kang, Hyun Ah; Oh, Doo-Byoung

    2015-07-20

    Mannosylphosphorylated N-glycans found in yeasts can be converted to those containing mannose-6-phosphate, which is a key factor for lysosomal targeting. In the traditional yeast Saccharomyces cerevisiae, both ScMNN4 and ScMNN6 genes are required for efficient mannosylphosphorylation. ScMnn4 protein has been known to be a positive regulator of ScMnn6p, a real enzyme for mannosylphosphorylation. On the other hand, YlMpo1p, a ScMnn4p homologue, mediates mannosylphosphorylation in Yarrowia lypolytica without the involvement of ScMnn6p homologues. In this study, we show that heterologous expression of YlMpo1p can perform and enhance mannosylphosphorylation in S. cerevisiae in the absence of ScMnn4p and ScMnn6p. Moreover, the level of mannosylphosphorylation of N-glycans enhanced by YlMpo1p overexpression is much higher than that with ScMnn4p overexpression, and this is highlighted further in Scmnn4- and Scmnn6-disrupted mutants. When YlMpo1p overexpression is applied to glyco-engineered S. cerevisiae in which the synthesis of immunogenic glycans is abolished, a great increase of bi-mannosylphosphorylated glycan is observed. Through an in vitro process involving the uncapping of the outer mannose residue, this bi-mannosylphosphorylated structure is changed to a bi-phosphorylated structure with high affinity for mannose-6-phosphate receptor. The superior ability of YlMpo1p to increase bi-mannosylphosphorylated glycan in yeast shows promise for the production of therapeutic enzymes with improved lysosomal targeting capability. PMID:25907834

  20. Altered Erythrocyte Glycolytic Enzyme Activities in Type-II Diabetes.

    PubMed

    Mali, Aniket V; Bhise, Sunita S; Hegde, Mahabaleshwar V; Katyare, Surendra S

    2016-07-01

    The activity of enzymes of glycolysis has been studied in erythrocytes from type-II diabetic patients in comparison with control. RBC lysate was the source of enzymes. In the diabetics the hexokinase (HK) activity increased 50 % while activities of phosphoglucoisomerase (PGI), phosphofructokinase (PFK) and aldolase (ALD) decreased by 37, 75 and 64 % respectively but were still several folds higher than that of HK. Hence, it is possible that in the diabetic erythrocytes the process of glycolysis could proceed in an unimpaired or in fact may be augmented due to increased levels of G6P. The lactate dehydrogenase (LDH) activity was comparatively high in both the groups; the diabetic group showed 85 % increase. In control group the HK, PFK and ALD activities showed strong positive correlation with blood sugar level while PGI activity did not show any correlation. In the diabetic group only PFK activity showed positive correlation. The LDH activity only in the control group showed positive correlation with marginal increase with increasing concentrations of glucose. PMID:27382204

  1. Functional analysis of erythrocyte determinants of Plasmodium infection

    PubMed Central

    Bei, Amy K.; Duraisingh, Manoj T.

    2012-01-01

    The Plasmodium falciparum parasite is an obligate intracellular pathogen whose invasion and remodeling of the human erythrocyte results in the clinical manifestations of malarial disease. The functional analysis of erythrocyte determinants of invasion and growth is a relatively unexplored frontier in malaria research, encompassing studies of natural variation of the erythrocyte, as well as genomic, biochemical and chemical biological and transgenic approaches. These studies have allowed the functional analysis of the erythrocyte in vitro, resulting in the discovery of critical erythrocyte determinants of Plasmodium infection. Here, we will focus on the varied approaches used for the study of the erythrocyte in Plasmodium infection, with a particular emphasis on erythrocyte invasion. PMID:22726752

  2. The glucosidic pathways and glucose production by frog muscle.

    PubMed

    Fournier, P A; Petrof, E O; Guderley, H

    1992-04-25

    Resting muscle is generally perceived as a glucose-utilizing organ; however, we show that resting well-oxygenated frog muscle recovering from strenuous exercise can release significant amounts of glucose. The metabolic pathway responsible for this process does not involve glucose-6-phosphatase because this enzyme is undetectable in frog muscle. The participation of amylo-1,6-glucosidase in the production of glucose is also ruled out since neither marked net phosphorolytic breakdown of glycogen nor considerable cycling between glycogen and glucose 6-phosphate occur. The glucosidic pathways of glycogen breakdown are the likely source of glucose as they are the only metabolic avenues with sufficient capacity to account for the rate at which glucose is released from post-exercised muscle. This rate of glucose production is high enough to be of physiological importance. Our results clearly indicate that to measure lactate glycogenesis in muscle, the simultaneous hydrolysis of muscle glycogen by the glucosidic pathways must be taken into account to prevent marked underestimation of the rate of glycogen synthesis. The glucosidic pathways seem the predominant avenues of glycogen breakdown in post-exercised resting frog muscle and are active enough to account for the rate of glycogen breakdown in resting muscle, suggesting that these rather than the phosphorolytic pathways are the chief routes of glycogen breakdown in resting muscle. PMID:1569076

  3. Novel Stable Isotope Analyses Demonstrate Significant Rates of Glucose Cycling in Mouse Pancreatic Islets

    PubMed Central

    Pound, Lynley D.; Trenary, Irina; O’Brien, Richard M.

    2015-01-01

    A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat–fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans. PMID:25552595

  4. Characterization of lipid domains in erythrocyte membranes.

    PubMed Central

    Rodgers, W; Glaser, M

    1991-01-01

    Fluorescence digital imaging microscopy was used to study the lateral distribution of the lipid components in erythrocyte membranes. Intact erythrocytes labeled with phospholipids containing a fluorophore attached to one fatty acid chain showed an uneven distribution of the phospholipids in the membrane thereby demonstrating the presence of membrane domains. The enrichment of the lipotropic compound chlor-promazine in domains in intact erythrocytes also suggested that the domains are lipid-enriched regions. Similar membrane domains were present in erythrocyte ghosts. The phospholipid enrichment was increased in the domains by inducing membrane protein aggregation. Double-labeling experiments were done to determine the relative distributions of different phospholipids in the membrane. Vesicles made from extracted lipids did not show the presence of domains consistent with the conclusion that membrane proteins were responsible for creating the domains. Overall, it was found that large domains exist in the red blood cell membrane with unequal enrichment of the different phospholipid species. Images PMID:1996337

  5. Induction of Suicidal Erythrocyte Death by Nelfinavir

    PubMed Central

    Bissinger, Rosi; Waibel, Sabrina; Lang, Florian

    2015-01-01

    The HIV protease inhibitor, nelfinavir, primarily used for the treatment of HIV infections, has later been shown to be effective in various infectious diseases including malaria. Nelfinavir may trigger mitochondria-independent cell death. Erythrocytes may undergo eryptosis, a mitochondria-independent suicidal cell death characterized by cell shrinkage and phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress and increase of cytosolic Ca2+-activity ([Ca2+]i). During malaria, accelerated death of infected erythrocytes may decrease parasitemia and thus favorably influence the clinical course of the disease. In the present study, phosphatidylserine abundance at the cell surface was estimated from annexin V binding, cell volume from forward scatter, reactive oxidant species (ROS) from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, and [Ca2+]i from Fluo3-fluorescence. A 48 h treatment of human erythrocytes with nelfinavir significantly increased the percentage of annexin-V-binding cells (≥5µg/mL), significantly decreased forward scatter (≥2.5µg/mL), significantly increased ROS abundance (10 µg/mL), and significantly increased [Ca2+]i (≥5 µg/mL). The up-regulation of annexin-V-binding following nelfinavir treatment was significantly blunted, but not abolished by either addition of the antioxidant N-acetylcysteine (1 mM) or removal of extracellular Ca2+. In conclusion, exposure of erythrocytes to nelfinavir induces oxidative stress and Ca2+ entry, thus leading to suicidal erythrocyte death characterized by erythrocyte shrinkage and erythrocyte membrane scrambling. PMID:26008229

  6. Triggering of Erythrocyte Death by Triparanol

    PubMed Central

    Officioso, Arbace; Manna, Caterina; Alzoubi, Kousi; Lang, Florian

    2015-01-01

    The cholesterol synthesis inhibitor Triparanol has been shown to trigger apoptosis in several malignancies. Similar to the apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress which may activate erythrocytic Ca2+ permeable unselective cation channels with subsequent Ca2+ entry and increase of cytosolic Ca2+ activity ([Ca2+]i). The present study explored whether and how Triparanol induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and ROS formation from 2’,7’-dichlorodihydrofluorescein diacetate (DCFDA) dependent fluorescence. As a result, a 48 h exposure of human erythrocytes to Triparanol (20 µM) significantly increased DCFDA fluorescence and significantly increased Fluo3-fluorescence. Triparanol (15 µM) significantly increased the percentage of annexin-V-binding cells, and significantly decreased the forward scatter. The effect of Triparanol on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. In conclusion, Triparanol leads to eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane. Triparanol is at least in part effective by stimulating ROS formation and Ca2+ entry. PMID:26305256

  7. Mechanisms of human erythrocytic bioactivation of nitrite.

    PubMed

    Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C; Lee, Amber N; Belanger, Andrea M; Diz, Debra I; Laurienti, Paul J; Caudell, David L; Wang, Jun; Gladwin, Mark T; Kim-Shapiro, Daniel B

    2015-01-01

    Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

  8. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes.

    PubMed

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  9. Effects of glucose metabolism during in vitro maturation on cytoplasmic maturation of mouse oocytes

    PubMed Central

    Xie, Hong-Li; Wang, Yan-Bo; Jiao, Guang-Zhong; Kong, De-Ling; Li, Qing; Li, Hong; Zheng, Liang-Liang; Tan, Jing-He

    2016-01-01

    Although there are many reports on the effect of glucose metabolism on oocyte nuclear maturation, there are few studies on its effect on ooplasmic maturation. By manipulating glucose metabolism pathways using a maturation medium that could support oocyte nuclear maturation but only a limited blastocyst formation without glucose, this study determined effects of glucose metabolism pathways on ooplasmic maturation. During maturation of cumulus-oocyte-complexes (COCs) with glucose, the presence of PPP inhibitor, DHEA or glycolysis inhibitor, iodoacetate significantly decreased blastocyst rates, intraoocyte glutathione and ATP. While blastocyst rates, GSH/GSSG ratio and NADPH were higher, ROS was lower significantly in COCs matured with iodoacetate than with DHEA. Fructose-6-phosphate overcame the inhibitory effect of DHEA on PPP. During maturation of COCs with pyruvate, electron transport inhibitor, rotenone or monocarboxylate transfer inhibitor, 4-CIN significantly decreased blastocyst rates. Cumulus-denuded oocytes had a limited capacity to use glucose or lactate, but they could use pyruvate to support maturation. In conclusion, whereas glycolysis promoted ooplasmic maturation mainly by supplying energy, PPP facilitated ooplasmic maturation to a greater extent by both reducing oxidative stress and supplying energy through providing fructose-6-phosphate for glycolysis. Pyruvate was transferred by monocarboxylate transporters and utilized through mitochondrial electron transport to sustain ooplasmic maturation. PMID:26857840

  10. Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice.

    PubMed

    Yang, Yingjuan; Tarabra, Elena; Yang, Gong-She; Vaitheesvaran, Bhavapriya; Palacios, Gustavo; Kurland, Irwin J; Pessin, Jeffrey E; Bastie, Claire C

    2013-01-01

    Previous studies have demonstrated that glucose disposal is increased in the Fyn knockout (FynKO) mice due to increased insulin sensitivity. FynKO mice also display fasting hypoglycaemia despite decreased insulin levels, which suggested that hepatic glucose production was unable to compensate for the increased basal glucose utilization. The present study investigates the basis for the reduction in plasma glucose levels and the reduced ability for the liver to produce glucose in response to gluconeogenic substrates. FynKO mice had a 5-fold reduction in phosphoenolpyruvate carboxykinase (PEPCK) gene and protein expression and a marked reduction in pyruvate, pyruvate/lactate-stimulated glucose output. Remarkably, de novo glucose production was also blunted using gluconeogenic substrates that bypass the PEPCK step. Impaired conversion of glycerol to glucose was observed in both glycerol tolerance test and determination of the conversion of (13)C-glycerol to glucose in the fasted state. α-glycerol phosphate levels were reduced but glycerol kinase protein expression levels were not changed. Fructose-driven glucose production was also diminished without alteration of fructokinase expression levels. The normal levels of dihydroxyacetone phosphate and glyceraldehyde-3-phosphate observed in the FynKO liver extracts suggested normal triose kinase function. Fructose-bisphosphate aldolase (aldolase) mRNA or protein levels were normal in the Fyn-deficient livers, however, there was a large reduction in liver fructose-6-phosphate (30-fold) and fructose-1,6-bisphosphate (7-fold) levels as well as a reduction in glucose-6-phosphate (2-fold) levels. These data suggest a mechanistic defect in the allosteric regulation of aldolase activity. PMID:24312371

  11. Glucose transport and glucose transporter GLUT4 are regulated by product(s) of intermediary metabolism in cardiomyocytes.

    PubMed Central

    Fischer, Y; Böttcher, U; Eblenkamp, M; Thomas, J; Jüngling, E; Rösen, P; Kammermeier, H

    1997-01-01

    Alternative substrates of energy metabolism are thought to contribute to the impairment of heart and muscle glucose utilization in insulin-resistant states. We have investigated the acute effects of substrates in isolated rat cardiomyocytes. Exposure to lactate, pyruvate, propionate, acetate, palmitate, beta-hydroxybutyrate or alpha-oxoglutarate led to the depression of glucose transport by up to 50%, with lactate, pyruvate and propionate being the most potent agents. The percentage inhibition was greater in cardiomyocytes in which glucose transport was stimulated with the alpha-adrenergic agonist phenylephrine or with a submaximal insulin concentration than in basal or fully insulin-stimulated cells. Cardiomyocytes from fasted or diabetic rats displayed a similar sensitivity to substrates as did cells from control animals. On the other hand, the amination product of pyruvate (alanine), as well as valine and the aminotransferase inhibitors cycloserine and amino-oxyacetate, stimulated glucose transport about 2-fold. In addition, the effect of pyruvate was counteracted by cycloserine. Since reversible transamination reactions are known to affect the pool size of the citrate cycle, the influence of substrates, amino acids and aminotransferase inhibitors on citrate, malate and glutamate content was examined. A significant negative correlation was found between alterations in glucose transport and the levels of citrate (P < 0.01) or malate (P < 0.01), and there was a positive correlation between glucose transport and glutamate levels (P < 0.05). In contrast, there was no correlation with changes in [1-(14)C]pyruvate oxidation or in glucose-6-phosphate levels. Finally, pyruvate decreased the abundance of GLUT4 glucose transporters at the surface of phenylephrine- or insulin-stimulated cells by 34% and 27 % respectively, as determined by using the selective photoaffinity label [3H]ATB-BMPA [[3H]2-N-[4-(1-azi-2,2,2-trifluoroethyl)benzoyl]-1,3-bis-(D-man nos-4-yloxy

  12. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  13. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    SciTech Connect

    Jin, Hua; Xing, Xiaobo; Zhao, Hongxia; Chen, Yong; Huang, Xun; Ma, Shuyuan; Ye, Hongyan; Cai, Jiye

    2010-01-22

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  14. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.

    PubMed

    Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho

    2013-06-01

    Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity. PMID:23404100

  15. Rotaviruses Reach Late Endosomes and Require the Cation-Dependent Mannose-6-Phosphate Receptor and the Activity of Cathepsin Proteases To Enter the Cell

    PubMed Central

    Díaz-Salinas, Marco A.; Silva-Ayala, Daniela; López, Susana

    2014-01-01

    ABSTRACT Rotaviruses (RVs) enter cells through different endocytic pathways. Bovine rotavirus (BRV) UK uses clathrin-mediated endocytosis, while rhesus rotavirus (RRV) employs an endocytic process independent of clathrin and caveolin. Given the differences in the cell internalization pathway used by these viruses, we tested if the intracellular trafficking of BRV UK was the same as that of RRV, which is known to reach maturing endosomes (MEs) to infect the cell. We found that BRV UK also reaches MEs, since its infectivity depends on the function of Rab5, the endosomal sorting complex required for transport (ESCRT), and the formation of endosomal intraluminal vesicles (ILVs). However, unlike RRV, the infectivity of BRV UK was inhibited by knocking down the expression of Rab7, indicating that it has to traffic to late endosomes (LEs) to infect the cell. The requirement for Rab7 was also shared by other RV strains of human and porcine origin. Of interest, most RV strains that reach LEs were also found to depend on the activities of Rab9, the cation-dependent mannose-6-phosphate receptor (CD-M6PR), and cathepsins B, L, and S, suggesting that cellular factors from the trans-Golgi network (TGN) need to be transported by the CD-M6PR to LEs to facilitate RV cell infection. Furthermore, using a collection of UK × RRV reassortant viruses, we found that the dependence of BRV UK on Rab7, Rab9, and CD-M6PR is associated with the spike protein VP4. These findings illustrate the elaborate pathway of RV entry and reveal a new process (Rab9/CD-M6PR/cathepsins) that could be targeted for drug intervention. IMPORTANCE Rotavirus is an important etiological agent of severe gastroenteritis in children. In most instances, viruses enter cells through an endocytic pathway that delivers the viral particle to vesicular organelles known as early endosomes (EEs). Some viruses reach the cytoplasm from EEs, where they start to replicate their genome. However, other viruses go deeper into the

  16. Determination of erythrocyte sodium sensitivity in man.

    PubMed

    Oberleithner, Hans; Wilhelmi, Marianne

    2013-10-01

    Sodium buffer capacity of vascular endothelium depends on an endothelial glycocalyx rich in negatively charged heparan sulfate. It has been shown recently that after the mechanical interaction of blood with heparan sulfate-depleted endothelium, erythrocytes also lose this glycocalyx constituent. This observation led to the conclusion that the vascular sodium buffer capacity of an individual could be derived from a blood sample. A test system (salt blood test (SBT)) was developed based upon the sodium-dependent erythrocyte zeta potential. Erythrocyte sedimentation velocity was measured in isosmotic, biopolymer-supplemented electrolyte solutions of different sodium concentrations. Erythrocyte sodium sensitivity (ESS), inversely related to erythrocyte sodium buffer capacity, was expressed as the ratio of the erythrocyte sedimentation velocities of 150 mM over 125 mM Na(+) solutions (ESS = Na(+) 150/Na(+) 125). In 61 healthy individuals (mean age, 23 ± 0.5 years), ESS ranged between 2 and 8. The mean value was 4.3 ± 0.19. The frequency distribution shows two peaks, one at about 3 and another one at about 5. To test whether ESS reflects changes of the endothelial glycocalyx, a cultured endothelial monolayer was exposed for 3 hours to a rhythmically moving blood layer (drag force experiment). When applying this procedure, we found that ESS was reduced by about 21 % when the endothelium was pretreated for 4 days with the glycocalyx protective agent WS 1442. In conclusion, the SBT could possibly serve as an in vitro test system for the evaluation of erythrocyte/vascular salt sensitivity allowing follow-up measurements in the prevention and treatment of vascular dysfunctions. PMID:23686295

  17. Facilitated uptake of a bioactive metabolite of maritime pine bark extract (pycnogenol) into human erythrocytes.

    PubMed

    Kurlbaum, Max; Mülek, Melanie; Högger, Petra

    2013-01-01

    Many plant secondary metabolites exhibit some degree of biological activity in humans. It is a common observation that individual plant-derived compounds in vivo are present in the nanomolar concentration range at which they usually fail to display measurable activity in vitro. While it is debatable that compounds detected in plasma are not the key effectors of bioactivity, an alternative hypothesis may take into consideration that measurable concentrations also reside in compartments other than plasma. We analysed the binding of constituents and the metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), that had been previously detected in plasma samples of human consumers of pine bark extract Pycnogenol, to human erythrocytes. We found that caffeic acid, taxifolin, and ferulic acid passively bind to red blood cells, but only the bioactive metabolite M1 revealed pronounced accumulation. The partitioning of M1 into erythrocytes was significantly diminished at higher concentrations of M1 and in the presence of glucose, suggesting a facilitated transport of M1 via GLUT-1 transporter. This concept was further supported by structural similarities between the natural substrate α-D-glucose and the S-isomer of M1. After cellular uptake, M1 underwent further metabolism by conjugation with glutathione. We present strong indication for a transporter-mediated accumulation of a flavonoid metabolite in human erythrocytes and subsequent formation of a novel glutathione adduct. The physiologic role of the adduct remains to be elucidated. PMID:23646194

  18. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.

    PubMed

    Prokic, Marko D; Paunovic, Milica G; Matic, Milos M; Djordjevic, Natasa Z; Ognjanovic, Branka I; Stajn, Andras S; Saicic, Zorica S

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2 .-), hydrogen peroxide (H2O2), peroxynitrite (?N??-) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes. PMID:25431414

  19. Drug-induced erythrocyte membrane internalization

    PubMed Central

    Ben-Bassat, Isaac; Bensch, Klaus G.; Schrier, Stanley L.

    1972-01-01

    In vitro erythrocyte membrane internalization, resulting in the formation of membrane-lined vacuoles, can be quantified by a radioisotopic method. A complex of 37Co-labeled vitamin B12 and its plasma protein binders is first adsorbed to the cell surface, and after vacuoles are formed, the noninternalized label is removed by washing and trypsin treatment. The residual radioactivity represents trapped label and can be used to measure the extent of membrane internalization. Using this method, it was found that in addition to primaquine, a group of membrane-active drugs, specifically hydrocortisone, vinblastine, and chlorpromazine can induce membrane internalization in erythrocytes. This is a metabolic process dependent on drug concentration, temperature, and pH. Vacuole formation by all agents tested can be blocked by prior depletion of endogenous substrates or by poisoning the erythrocytes with sodium fluoride and sulfhydryl blocking agents. This phenomenon resembles in some respects the previously reported membrane internalization of energized erythrocyte ghosts. It is suggested that membrane internalization is dependent on an ATP-energized state and is influenced by the balance between the concentrations of magnesium and calcium in the membrane. This study provides a basis for proposing a unifying concept of the action of some membrane-active drugs, and for considering the role of erythrocyte membrane internalization in pathophysiologic events. Images PMID:4555785

  20. Structural and Functional Characterization of the Clostridium perfringens N-Acetylmannosamine-6-phosphate 2-Epimerase Essential for the Sialic Acid Salvage Pathway*

    PubMed Central

    Pélissier, Marie-Cécile; Sebban-Kreuzer, Corinne; Guerlesquin, Françoise; Brannigan, James A.; Bourne, Yves; Vincent, Florence

    2014-01-01

    Pathogenic bacteria are endowed with an arsenal of specialized enzymes to convert nutrient compounds from their cell hosts. The essential N-acetylmannosamine-6-phosphate 2-epimerase (NanE) belongs to a convergent glycolytic pathway for utilization of the three amino sugars, GlcNAc, ManNAc, and sialic acid. The crystal structure of ligand-free NanE from Clostridium perfringens reveals a modified triose-phosphate isomerase (β/α)8 barrel in which a stable dimer is formed by exchanging the C-terminal helix. By retaining catalytic activity in the crystalline state, the structure of the enzyme bound to the GlcNAc-6P product identifies the topology of the active site pocket and points to invariant residues Lys66 as a putative single catalyst, supported by the structure of the catalytically inactive K66A mutant in complex with substrate ManNAc-6P. 1H NMR-based time course assays of native NanE and mutated variants demonstrate the essential role of Lys66 for the epimerization reaction with participation of neighboring Arg43, Asp126, and Glu180 residues. These findings unveil a one-base catalytic mechanism of C2 deprotonation/reprotonation via an enolate intermediate and provide the structural basis for the development of new antimicrobial agents against this family of bacterial 2-epimerases. PMID:25320079

  1. A Selaginella lepidophylla Trehalose-6-Phosphate Synthase Complements Growth and Stress-Tolerance Defects in a Yeast tps1 Mutant1

    PubMed Central

    Zentella, Rodolfo; Mascorro-Gallardo, José O.; Van Dijck, Patrick; Folch-Mallol, Jorge; Bonini, Beatriz; Van Vaeck, Christophe; Gaxiola, Roberto; Covarrubias, Alejandra A.; Nieto-Sotelo, Jorge; Thevelein, Johan M.; Iturriaga, Gabriel

    1999-01-01

    The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Δ mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Δ mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39°C and induced thermotolerance at 50°C. The osmosensitive phenotype of the yeast tps1Δ mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla. PMID:10198107

  2. Impact of temperature stress and validamycin A on compatible solutes and fumonisin production in F. verticillioides: role of trehalose-6-phosphate synthase.

    PubMed

    Boudreau, Beth A; Larson, Troy M; Brown, Daren W; Busman, Mark; Roberts, Ethan S; Kendra, David F; McQuade, Kristi L

    2013-08-01

    Fusarium verticillioides is a pathogen of maize that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Environmental stresses such as heat and drought influence disease severity and toxin production, but the effects of abiotic stress on compatible solute production by F. verticillioides have not been fully characterized. We found that decreasing the growth temperature leads to a long-term reduction in polyol levels, whereas increasing the temperature leads to a transient increase in polyols. The effects of temperature shifts on trehalose levels are opposite the effects on polyols and more dramatic. Treatment with validamycin A, a trehalose analog with antifungal activity, leads to a rapid reduction in trehalose levels, despite its known role as a trehalase inhibitor. Mutant strains lacking TPS1, which encodes a putative trehalose-6-phosphate synthase, have altered growth characteristics, do not produce detectable amounts of trehalose under any condition tested, and accumulate glycogen at levels significantly higher than wild-type F. verticillioides. TPS1 mutants also produce significantly less fumonisin than wild type and are also less pathogenic than wild type on maize. These data link trehalose biosynthesis, secondary metabolism, and disease, and suggest that trehalose metabolic pathways may be a viable target for the control of Fusarium diseases and fumonisin contamination of maize. PMID:23751979

  3. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  4. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    SciTech Connect

    Ackermann, R.F.; Lear, J.L. )

    1989-12-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially ad