Design of the ALS transverse coupled-bunch feedback system
Barry, W.; Byrd, J.M.; Corlett, J.N.; Hinkson, J.; Johnson, J.; Lambertson, G.R.; Fox, J.D.
1993-05-01
Calculations of transverse coupled bunch growth rates in the Advanced Light Source (ALS), a 1.5 GeV electron storage ring for producing synchrotron radiation, indicate the need for damping via a transverse feedback (TFB) system. We present the design of such a system. The maximum bunch frequency is 500 MHz, requiring that the FB system have a broadband response of at least 250 MHz. We described, in detail, the choice of broadband components such as kickers, pickups, power amplifiers, and electronics.
Electronic systems for transverse coupled-bunch feedback in the Advanced Light Source (ALS)
Barry, W.; Lambertson, G.R.; Lo, C.C.
1993-10-01
In order to effectively control a large number of transverse coupled-bunch modes in the LBL Advanced Light Source (ALS) storage ring, a broad-band, bunch-by-bunch feedback system has been designed, and is beginning to undergo testing and commissioning. This paper addresses, in some detail, the major electronic components of the feedback system. In particular, the components described include: broad-band microwave position detection receivers, closed orbit offset signal rejection circuitry, and baseband quadrature processing circuitry.
Studies of transverse coherent bunch instabilities for the Advanced Light Source (ALS)
Meddahi, M.; Bengtsson, J.
1994-05-31
We have studied the transverse coherent bunch instabilities for the Advanced Light Source (ALS). We have in particular applied a Hamiltonian formalism to obtain the linearized averaged equations of motion (i.e. the one turn map) for the resistive wall effect to obtain the corresponding localized kick when the beta function is varying along the lattice. We have also included a 2-dimensional model for the transverse higher order cavity modes. In addition, we have used power series maps to represent the lattice which enabled us to include non-linear effects. These models have been implemented in a computer code and numerical simulations have been carried out for ALS. The model was successfully verified against analytical calculations in cases where they overlap. The non-linear effects from the lattice proved to be important, since they led to a qualitative change of the dynamics for the stored beam. We also studied the injection process in some detail and found that the non-linear effects also fundamentally change the injection dynamics.
Grain Refinement in Al-Mg-Si Alloy TIG Welds Using Transverse Mechanical Arc Oscillation
NASA Astrophysics Data System (ADS)
Biradar, N. S.; Raman, R.
2012-11-01
Reduction in grain size in weld fusion zones (FZs) presents the advantages of increased resistance to solidification cracking and improvement in mechanical properties. Transverse mechanical arc oscillation was employed to obtain grain refinement in the weldment during tungsten inert gas welding of Al-Mg-Si alloy. Electron backscattered diffraction analysis was carried out on AA6061-AA4043 filler metal tungsten inert gas welds. Grain size, texture evolution, misorientation distribution, and aspect ratio of weld metal, PMZ, and BM have been observed at fixed arc oscillation amplitude and at three different frequencies levels. Arc oscillation showed grain size reduction and texture formation. Fine-grained arc oscillated welds exhibited better yield and ultimate tensile strengths and significant improvement in percent elongation. The obtained results were attributed to reduction in equivalent circular diameter of grains and increase in number of subgrain network structure of low angle grain boundaries.
AlGaAs/GaAs transverse junction stripe lasers with distributed feedback
NASA Technical Reports Server (NTRS)
Hafich, M. J.; Skogman, R. A.; Petersen, P. E.; Kawanishi, H.
1981-01-01
Transverse junction stripe (TJS) lasers with periodic feedback were fabricated in two geometries. An interferometric and wet chemical etching technique was used to create a feedback grating across the entire pumping region for the distributed feedback (DFB) TJS laser and to create the separate distributed Bragg reflectors/DBR) for the TJS/DBR laser. The TJS/DFB laser was a double heterostructure device grown by liquid phase epitaxy (LPE) and had a third order grating etched in the top ALO.2GaO.8As layer. The grating was buried by growing an ALO.35GaO.65As layer on the grating by metal organic chemical vapor deposition (MO-CVD). The TJS/DBR laser was also fabricated in an LPE double heterostructure. The top AlGaAs layer was thinned to 0.1 micron over more than half of the laser so that the grating would be close to the GaAs active layer and optical field. Single mode operation in both configurations was obtained. The thermal shift of the laser wavelength in both cases was less than 1 Angstrom/deg K, compared to the 3 Angstrom/deg K shift of the spontaneous emission peak.
NASA Astrophysics Data System (ADS)
Guan, Guang; Du, Dafan; Fautrelle, Yves; Moreau, Rene; Ren, Zhongming; Li, Xi
2015-07-01
The effect of a transverse magnetic field on solidification structure in directionally solidified Al-Cu-Ag ternary alloys was investigated experimentally. The results show that the application of the transverse magnetic field significantly modified the solidification structures. Indeed, the magnetic field caused the formation of macrosegregation and the transformation of the liquid/solid interface from cellular to planar. Moreover, it was found that the magnetic field refined the eutectic cell and decreased the mushy zone length. This may be attributed to the thermoelectric magnetic convection between eutectic cells.
Reich, Christoph Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Feneberg, Martin; Goldhahn, Rüdiger; Rass, Jens; Kneissl, Michael; Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus
2015-10-05
The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.
NASA Astrophysics Data System (ADS)
Barone, Vincenzo; Ratcliffe, Philip G.
Introduction. Purpose and status of the Italian Transversity Project / F. Bradamante -- Opening lecture. Transversity / M. Anselmino -- Experimental lectures. Azimuthal single-spin asymmetries from polarized and unpolarized hydrogen targets at HERMES / G. Schnell (for the HERMES Collaboration). Collins and Sivers asymmetries on the deuteron from COMPASS data / I. Horn (for the COMPASS Collaboration). First measurement of interference fragmentation on a transversely polarized hydrogen target / P. B. van der Nat (for the HERMES Collaboration). Two-hadron asymmetries at the COMPASS experiment / A. Mielech (for the COMPASS Collaboration). Measurements of chiral-odd fragmentation functions at Belle / R. Seidl ... [et al.]. Lambda asymmetries / A. Ferrero (for the COMPASS Collaboration). Transverse spin at PHENIX: results and prospects / C. Aidala (for the PHENIX Collaboration). Transverse spin and RHIC / L. Bland. Studies of transverse spin effects at JLab / H. Avakian ... [et al.] (for the CLAS Collaboration). Neutron transversity at Jefferson Lab / J. P. Chen ... [et al.] (for the Jefferson Lab Hall A Collaboration). PAX: polarized antiproton experiments / M. Contalbrigo. Single and double spin N-N interactions at GSI / M. Maggiora (for the ASSIA Collaboration). Spin filtering in storage rings / N. N. Nikolaev & F. F. Pavlov -- Theory lectures. Single-spin asymmetries and transversity in QCD / S. J. Brodsky. The relativistic hydrogen atom: a theoretical laboratory for structure functions / X. Artru & K. Benhizia. GPD's and SSA's / M. Burkardt. Time reversal odd distribution functions in chiral models / A. Drago. Soffer bound and transverse spin densities from lattice QCD / M. Diehl ... [et al.]. Single-spin asymmetries and Qiu-Sterman effect(s) / A. Bacchetta. Sivers function: SIDIS data, fits and predictions / M. Anselmino ... [et al.]. Twist-3 effects in semi-inclusive deep inelastic scattering / M. Schlegel, K. Goeke & A. Metz. Quark and gluon Sivers functions / I
NASA Astrophysics Data System (ADS)
Seeber, B.; Ferreira, A.; Mondonico, G.; Buta, F.; Senatore, C.; Flükiger, R.; Takeuchi, T.
2011-03-01
The electromechanical behavior of a Nb3Al wire manufactured according to the RHQT process (rapid-heating, quenching and transformation) has been investigated at magnetic fields between 15 and 19 T at 4.2 K. Of particular interest was the critical current, Ic, as a function of transverse pressure up to 300 MPa and as a function of axial tensile stress. The studied wires are pieces of a 870 m long copper stabilized Nb3Al wire with a rectangular cross section of 1.81 mm × 0.80 mm. It was observed that the critical current at 300 MPa transverse pressure, applied to the narrow side, is reduced to 93%, 90% and 88% of its stress free value at 15 T, 17 T and 19 T, respectively. After unloading from 300 MPa Ic recovers to 94% and 97% at 19 T and 15 T, respectively. A field dependence of the effect is visible above 200 MPa. For completeness, the critical current was also measured under axial tensile strain. The maximum of Ic is at 0.15% applied strain and irreversibility has been observed above 0.26%. Finally a stress versus strain measurement at 4.2 K has been carried out allowing the conversion from axial strain to stress.
Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal
NASA Astrophysics Data System (ADS)
Sampath, K.
2009-12-01
AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.
NASA Astrophysics Data System (ADS)
Ding, W.; Bowen, P.
2002-09-01
A micromodeling analysis of unidirectionally reinforced Ti-6-4/SM1140+ composites subjected to transverse tensile loading has been performed using the finite-element method (FEM). The composite is assumed to the infinite and regular, with either hexagonal or rectangular arrays of fibers in an elastic-plastic matrix. Unit cells of these arrays are applied in this modeling analysis. Factors affecting transverse properties of the composites, such as thermal residual stresses caused by cooling from the composite processing temperature, fiber-matrix interface conditions, fiber volume fraction, fiber spacing, fiber packing, and test temperature are discussed. Predictions of stress-strain curves are compared with experimental results. A hexagonal fiber-packing model with a weak fiber-matrix interfacial strength predicts the transverse tensile behavior of the composite Ti-6-4/SM1140+ most accurately.
Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.
2015-01-26
We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.
Firsov, D. A.; Vorobjev, L. E.; Vinnichenko, M. Ya. Balagula, R. M.; Kulagina, M. M.; Vasil’iev, A. P.
2015-11-15
The photoluminescence and intersubband absorption spectra are studied in GaAs/AlGaAs tunnel- coupled quantum well structures. The peak positions in the photoluminescence and absorption spectra are consistent with the theoretically calculated energies of optical carrier transitions. The effect of a transverse electric field and temperature on intersubband light absorption is studied. It is caused by electron redistribution between the size-quantization levels and a variation in the energy spectrum of quantum wells. The variation in the refractive index in the energy region of observed intersubband transitions is estimated using Kramers–Kronig relations.
NASA Astrophysics Data System (ADS)
Li, Xi; Gagnoud, Annie; Fautrelle, Yves; Moreau, Rene; Du, Dafan; Ren, Zhongming; Lu, Xionggang
2016-03-01
The influence of a transverse magnetic field on the microstructures in unmodified and Sr-modified Al-7wtpctSi alloys during directional solidification was investigated. Experimental results indicated that the magnetic field caused the channel and freckle macrosegregations during directional solidification. Comparison of the microstructures in unmodified and Sr-modified Al-7wtpctSi alloys showed that the Sr-addition enhanced the convection effects. Moreover, the EBSD analysis revealed that the magnetic field changed the alignment of the α-Al dendrite and modified the distribution of dendrite fragments in both unmodified and Sr-modified Al-7wtpctSi alloys. Indeed, the application of the magnetic field caused the <001>-crystal direction of the α-Al dendrite to deflect from the solidification direction and induced the formation of dendrite fragments on one side of the sample. Further, the Seebeck signal ( E S) at the liquid/solid interface was measured in situ during directional solidification of Al-7wtpct Si alloy and the results indicated that the value of the E S was of the order of 10 μV and decreased with the increase of the growth speed. The above results may be attributed to the thermoelectric magnetic convection and its effect on the distribution of the solute Si. It is proven that solute effects are primarily responsible for dendrite fragmentation.
NASA Astrophysics Data System (ADS)
Hu, Y. Y.; Zhou, T. F.; Zheng, S. N.; Liu, X. H.; Zhao, J. J.; Su, X. J.; Huang, J.; Qiu, Y. X.; Zhang, J. C.; Xu, K.
2016-05-01
In this study, we present a microspectroscopic investigation on the quasi-transverse optical phonon modes Q(TO) in some self-generated aluminum nitride (AlN) grains grown on sapphire using hydride vapor phase epitaxy. Using X-ray diffraction and transmission electron microscope, these grains were confirmed to be embedded in (0001)-AlN (c-AlN) epitaxial matrix with an appearance plane of (10 1 ¯ 1 ) (s-plane). Two beam bright field images further showed that the AlN grains were free of dislocation. In-plane phonon anisotropy of the AlN grains was discussed in detail using angular-dependent polarized Raman spectroscopy. The dependence of pure Raman phonons intensity on rotation angle agrees well with the calculation. The Q(TO) phonon intensity exhibited similar behavior to that of A1(TO) phonon, which can be explained by Loudon's formula. However, the observed frequency fluctuation for the Q(TO) phonon differs from that of the pure phonon modes, which cannot be directly understood from the classic Loudon's formula. A modified Loudon's formula appropriate to non-normal incidence was presented to explain the observed Q(TO) phonon frequency fluctuation. Combining with the angular-dependent Raman spectra, we proposed that a small inclination of s-plane along with the various in-plane orientations in c-AlN matrix lead to the frequency fluctuation of Q(TO) in these embedded semipolar AlN grains.
NASA Astrophysics Data System (ADS)
Nakanishi, Hidekazu; Nakamura, Hiroyuki; Tsurunari, Tetsuya; Fujiwara, Joji; Hamaoka, Yosuke; Hashimoto, Ken-ya
2012-07-01
In this paper, we describe a suppression technique of transverse-mode spurious responses for a surface acoustic wave (SAW) resonator with a near zero temperature coefficient of frequency (TCF) on a SiO2/Al/LiNbO3 structure. We investigated the thinning of SiO2 on the dummy electrode region and studied how the transverse-mode responses change with remaining SiO2 thickness h on the dummy electrode region. As the results, we clarified that the remaining SiO2 thickness h on the dummy electrode region has an optimum value and could suppress the transverse-mode spurious responses completely when H and h are set at 0.35 λ and 0.20 λ, respectively. It was demonstrated that the selective SiO2 removal technique is effective to suppress transverse-mode spurious responses for SAW resonators employing the SiO2/Al/LiNbO3 structure for a wide range of SiO2 thicknesses, provided that the SiO2 thickness at the dummy electrode region is adjusted properly.
Black, M.J.; Motaghedi, B.; Robitaille, Y.
1980-05-01
Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented.
Nakamura, Hiroyuki; Nakanishi, Hidekazu; Goto, Rei; Hashimoto, Ken-ya
2011-10-01
A SiO(2)/Al/LiNbO(3) structure has a large electromechanical coupling factor (K(2)) and good temperature coefficient of frequency (TCF) for applications as a SAW duplexer of the Universal Mobile Telecommunications System (UMTS) Band I. However, the SiO(2)/Al/LiNbO(3) structure also supports two unwanted spurious responses; one is caused by the Rayleigh mode and the other by the transverse mode. As the authors have previously discussed, the Rayleigh-mode spurious response can be suppressed by controlling the cross-sectional shape of a SiO(2) overlay deposited on resonator electrodes. In this paper, a new technique to suppress the transverse-mode spurious responses is proposed. In the technique, the SiO(2) overlay is selectively removed from the dummy electrode region. The spurious responses are analyzed by the laser probe system. The results indicate that the spurious responses in question were hybrid modes caused by the coupling between the main (SH) SAW and another (Rayleigh) SAW with different velocities. The hybrid-mode spurious behavior was dependent on the velocities in the IDT and the dummy regions (v(i) and v(d)). The hybrid-mode spurious responses could be suppressed by selectively removing SiO(2). Furthermore, the SAW energy confinement could be enhanced in the IDT electrode region when v(i) < v(d). The transverse-mode spurious responses were successfully suppressed without degrading the SAW resonator performances. PMID:21989882
NASA Astrophysics Data System (ADS)
Komatsu, Tomoya; Nakamura, Hiroyuki; Nakanishi, Hidekazu; Turunari, Tetsuya; Fujiwara, Joji
2013-07-01
In this paper, we propose a new structure for reducing the extent of transverse surface acoustic wave (SAW) leakage for the SAW resonator on a 42° YX-LiTaO3 substrate. Such leakage occurs from the interdigital region toward the busbar region in the SAW resonators. The new structure has a Ta2O5 film outside the interdigital region. This structure can make the SAW velocity in the busbar region lower than the velocity in the interdigital region. Therefore, the new structure could reduce the extent of leakage, and contribute to confine the SAW energy in the interdigital region. This structure was applied in SAW resonators and ladder-type SAW filters fabricated on a 42° YX-LiTaO3 substrate. The insertion loss could be improved by suppressing transverse SAW leakage. This technique could be applied to the fabrication of the filters and duplexers using leaky SAW on a 42° YX-LiTaO3 substrate, and the SAW devices could exhibit excellent performance.
Global transverse energy distributions in Si+Al, Au at 14.6 A GeV/ c and Au+Au at 11.6 A GeV/ c
NASA Astrophysics Data System (ADS)
Ahle, L.; Akiba, Y.; Beavis, D.; Britt, H. C.; Budick, B.; Chasman, C.; Chen, Z.; Chi, C. Y.; Chu, Y. Y.; Cianciolo, V.; Cole, B. A.; Costales, J. B.; Crawford, H. J.; Cumming, J. B.; Debbe, R.; Engelage, J.; Fung, S. Y.; Gonin, M.; Gushue, S.; Hamagaki, H.; Hansen, O.; Hayano, R. S.; Hayashi, S.; Homma, S.; Kaneko, H.; Kang, J.; Kaufman, S.; Kehoe, W. L.; Kurita, K.; LeVine, M. J.; Miake, Y.; Morrison, D. P.; Moskowitz, B.; Nagamiya, S.; Namboodiri, M. N.; Nayak, T. K.; Olness, J.; Remsberg, L. P.; Rothschild, P.; Sangster, T. C.; Seto, R.; Shigaki, K.; Soltz, R.; Steadman, S. G.; Stephans, G. S. F.; Sung, T.; Tannenbaum, M. J.; Thomas, J.; Tonse, S.; Ueno, S.; van Dijk, J. H.; Videbaek, F.; Vossnack, O.; Wang, F. Q.; Wang, Y.; Wegner, H. E.; Woodruff, D. S.; Wu, Y. D.; Yagi, K.; Yang, X.; Zachary, D.; Zajc, W. A.; E-802 Collaboration
1994-07-01
Measurements of the global transverse energy distributions dσ/ dET and dET/ dη using the new AGS beam of 197Au at 11.6 A GeV/ c on a Au target, as well as a beam of 28Si at 14.6 A GeV/ c on Al and Au targets, are presented for a leadglass detector with acceptance 1.3 ≤ η ≤ 2.4 and 0 ≤ φ < 2 π. The dσ/ dET spectra are observed to have different shapes for the different systems and simple energy rescaling does not account for the projectile dependence. The Au+Au dσ/ dET spectrum is satisfactorily constructed from the upper edge of Si+Au by the geometric Wounded Projectile Nucleon Model after applying a correction for the beam energy.
TRANSVERSITY SINGLE SPIN ASYMMETRIES.
BOER,D.
2001-04-27
The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.
Transverse gravity versus observations
Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es
2009-07-01
Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.
Transverse gravity versus observations
NASA Astrophysics Data System (ADS)
Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J. J.
2009-07-01
Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂μξμ = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.
Transverse instability of dunes.
Parteli, Eric J R; Andrade, José S; Herrmann, Hans J
2011-10-28
The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation. PMID:22107675
Transverse Instability of Dunes
NASA Astrophysics Data System (ADS)
Parteli, Eric J. R.; Andrade, José S., Jr.; Herrmann, Hans J.
2011-10-01
The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.
TRANSVERSE INSTABILITIES IN RHIC.
Blaskiewicz, M; Cameron, P; Catalan-Lasheras, N; Dawson, C; Degen, C; Drees, K; Fischer, W; Koropsak, E; Michnoff, R; Montag, C; Roser, T
2003-05-12
The beam quality in RHIC can be significantly impacted by a transverse instability which can occur just after transition [1]. Data characterizing the instability are presented and analyzed. Techniques for ameliorating the situation are considered.
Transverse Schwarzschild field
Belinfante, F.J.
1982-06-15
For Schwarzschild's static spherically symmetric external field, a coordinate system is determined in which the metric field is the transverse field satisfying the coordinate conditions of Arnowitt, Deser, and Misner.
Plasma fluctuations and x-ray laser transverse coherence
NASA Astrophysics Data System (ADS)
Amendt, Peter; Strauss, Moshe; London, Richard A.
1996-01-01
The effect of plasma fluctuations on transverse spatial coherence of x-ray lasers is investigated. Hose type (random) transverse displacements of the x-ray lasing medium induced by pump-laser nonuniformities are considered in detail. Such displacements lead to decreased transverse coherence via reduced gain discrimination from mode coupling. This effect may be related to a previously reported insensitivity of transverse coherence to laser length in neonlike selenium at 206 and 210 Å [Trebes et al.,
Transverse colon conduit diversion
Schmidt, J.D.; Buchsbaum, H.J.
1986-05-01
The versatility and other advantages of the transverse colon conduit for urinary diversion have been described and implemented in 50 patients. Because most patients considered for this procedure will be at high risk because of a history of significant pelvic irradiation, underlying malignancy, poor renal function, fistula, and so forth, the technical details of surgery and patient selection cannot be minimized. The transverse colon segment is indicated for primary supravesical diversion as well as for salvage of problems related to ileal conduits. Adenocarcinoma of the colon is an unlikely long-term complication of this form of diversion because the fecal stream is absent. Now that the transverse colon conduit has been used for more than 10 years, meaningful comparisons with ileal segments should soon be available.
Nondiffracting transversally polarized beam.
Yuan, G H; Wei, S B; Yuan, X-C
2011-09-01
Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250
Deconstructed transverse mass variables
NASA Astrophysics Data System (ADS)
Ismail, Ahmed; Schwienhorst, Reinhard; Virzi, Joseph S.; Walker, Devin G. E.
2015-04-01
Traditional searches for R-parity conserving natural supersymmetry (SUSY) require large transverse mass and missing energy cuts to separate the signal from large backgrounds. SUSY models with compressed spectra inherently produce signal events with small amounts of missing energy that are hard to explore. We use this difficulty to motivate the construction of "deconstructed" transverse mass variables which are designed preserve information on both the norm and direction of the missing momentum. We demonstrate the effectiveness of these variables in searches for the pair production of supersymmetric top-quark partners which subsequently decay into a final state with an isolated lepton, jets and missing energy. We show that the use of deconstructed transverse mass variables extends the accessible compressed spectra parameter space beyond the region probed by traditional methods. The parameter space can further be expanded to neutralino masses that are larger than the difference between the stop and top masses. In addition, we also discuss how these variables allow for novel searches of single stop production, in order to directly probe unconstrained stealth stops in the small stop- and neutralino-mass regime. We also demonstrate the utility of these variables for generic gluino and stop searches in all-hadronic final states. Overall, we demonstrate that deconstructed transverse variables are essential to any search wanting to maximize signal separation from the background when the signal has undetected particles in the final state.
NASA Astrophysics Data System (ADS)
Wang, Xiaorong
2016-03-01
In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.
Partonic Transverse Momentum Distributions
Rossi, Patrizia
2010-08-04
In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.
Transverse testicular ectopia.
Yıldız, Abdullah; Yiğiter, Murat; Oral, Akgün; Bakan, Vedat
2014-02-01
Described herein are six cases of transverse testicular ectopia. All patients who underwent orchidopexy at the one pediatric surgical unit between October 2001 and January 2008 were evaluated. The medical records of all patients diagnosed with transverse testicular ectopia were evaluated retrospectively. Five patients (84%) were admitted with a symptomatic right inguinal hernia and empty scrotum on the left side. Only one child (16%) had left-sided hernia and right non-palpable testis (age ranged from 1 month to 3 years). Four patients (66%) were diagnosed in the operating theatre and the last two (33%) on inguinal ultrasound preoperatively. Magnetic resonance imaging was also performed in the last patient. Herniorrhaphy with fixation of the ectopic gonad to the opposite hemiscrotum through a transseptal incision was performed in all patients. Postoperative complications were not observed. PMID:24548194
[Ettore Majoran's transversal epistemology].
Bontems, Vincent
2013-01-01
« Il valore delle leggi statistiche nella fisica e nelle scienze sociali » is Ettore Majorana's only work on science. It offers a critique of classical determinism, establishing an analogy between the laws of quantum mechanics and social science and arguing that both are intrinsically linked to probability. This article first studies this argument from the standpoing of metaphysics, physics, and sociology, and then assesses the significance of this transversal epistemology. PMID:23636783
Neutron Transversity at Jefferson Lab
Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu
2005-09-07
Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.
Transverse field focused system
Anderson, Oscar A.
1986-01-01
A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.
Transverse Compression of Tendons.
Samuel Salisbury, S T; Paul Buckley, C; Zavatsky, Amy B
2016-04-01
A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon. PMID:26833218
Transversity quark distributions in a covariant quark-diquark model
I.C. Cloet; W. Bentz; A.W. Thomas
2008-01-01
Transversity quark light-cone momentum distributions are calculated for the nucleon. We utilize a modified Nambu--Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquark channels are included. Particular attention is paid to comparing our results with the recent experimental extraction of the transversity distributions by Anselmino et al. We also compare our transversity results with earlier spin-independent and helicity quark distributions calculated in the same approach.
A new fifth parameter for transverse isotropy
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2016-01-01
Properties of a new parameter, ηκ, that is recently introduced by Kawakatsu et al. for transverse isotropy are examined. It is illustrated that the parameter nicely characterizes the incidence angle dependence of bodywave phase velocities for vertical transverse isotropy models that share the same P- and S-wave anisotropy. When existing models of upper-mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220 km), ηκ < 1 in the upper half and ηκ > 1 in the lower half. If ηκ > 1, anisotropy cannot be attributed to a layering of homogeneous isotropic layers, and thus requires the presence of intrinsic anisotropy.
Transverse Spin Effects at COMPASS
Wollny, H.
2009-08-04
The measurement of transverse spin effects in semi-inclusive deep-inelastic scattering (SIDIS) is an important part of the COMPASS physics program. In the years 2002-2004 data was taken by scattering a 160 GeV/c muon beam off a transversely polarized deuteron target. In 2007, additional data was collected on a transversely polarized proton target. New preliminary results for the Collins and Sivers asymmetries from the analysis of the proton data are presented.
Transverse wobbling in ^{135}pr.
Matta, J T; Garg, U; Li, W; Frauendorf, S; Ayangeakaa, A D; Patel, D; Schlax, K W; Palit, R; Saha, S; Sethi, J; Trivedi, T; Ghugre, S S; Raut, R; Sinha, A K; Janssens, R V F; Zhu, S; Carpenter, M P; Lauritsen, T; Seweryniak, D; Chiara, C J; Kondev, F G; Hartley, D J; Petrache, C M; Mukhopadhyay, S; Lakshmi, D Vijaya; Raju, M Kumar; Madhusudhana Rao, P V; Tandel, S K; Ray, S; Dönau, F
2015-02-27
A pair of transverse wobbling bands is observed in the nucleus ^{135}Pr. The wobbling is characterized by ΔI=1, E2 transitions between the bands, and a decrease in the wobbling energy confirms its transverse nature. Additionally, a transition from transverse wobbling to a three-quasiparticle band comprised of strong magnetic dipole transitions is observed. These observations conform well to results from calculations with the tilted axis cranking model and the quasiparticle rotor model. PMID:25768759
Pediatric transverse myelitis.
Absoud, Michael; Greenberg, Benjamin M; Lim, Ming; Lotze, Tim; Thomas, Terrence; Deiva, Kumaran
2016-08-30
Pediatric acute transverse myelitis (ATM) is an immune-mediated CNS disorder and contributes to 20% of children experiencing a first acquired demyelinating syndrome (ADS). ATM must be differentiated from other presentations of myelopathy and may be the first presentation of relapsing ADS such as neuromyelitis optica (NMO) or multiple sclerosis (MS). The tenets of the diagnostic criteria for ATM established by the Transverse Myelitis Consortium Working Group can generally be applied in children; however, a clear sensory level may not be evident in some. MRI lesions are often centrally located with high T2 signal intensity involving gray and neighboring white matter. Longitudinally extensive ATM occurs in the majority. Asymptomatic lesions on brain MRI are seen in more than one-third and predict MS or NMO. The role of antibodies such as myelin oligodendrocyte glycoprotein in monophasic and relapsing ATM and their significance in therapeutic approaches remain unclear. ATM is a potentially devastating condition with variable outcome and presents significant cumulative demands on health and social care resources. Children generally have a better outcome than adults, with one-half making a complete recovery by 2 years. There is need for standardization of clinical assessment and investigation protocols to enable international collaborative studies to delineate prognostic factors for disability and relapse. There are no robust controlled trials in children or adults to inform optimal treatment of ATM, with one study currently open to recruitment. This review provides an overview of current knowledge of clinical features, investigative workup, pathogenesis, and management of ATM and suggests future directions. PMID:27572861
Kinesthetic Transverse Wave Demonstration
NASA Astrophysics Data System (ADS)
Pantidos, Panagiotis; Patapis, Stamatis
2005-09-01
This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.
Transverse Spin Physics at HERMES
Marco, Contalbrigo
2009-08-04
HERMES results on azimuthal single-spin asymmetries in semi-inclusive leptoproduction of pions and charged kaons from a transversely polarised hydrogen target are presented. Preliminary results for both Collins and Sivers Fourier amplitudes are extracted with a much higher statistical significance than the evidence firstly published by HERMES for charged pions in 2005. The first evidence for a correlation between the transverse target polarization and the azimuthal orientation of the plane containing a pair of produced pions is also observed. It is expected to be related to the product of the transversity and an as-yet unmeasured dihadron fragmentation function.
Acute Transverse Myelitis Associated with Buserelin Use during IVF.
Alleemudder, Djavid I; Sadek, Khaled; Fountain, Shaun; Davies, Sallie
2013-01-01
A healthy woman undergoing in vitro fertilization (IVF) developed acute transverse myelitis (ATM) following the use of Buserelin. ATM has a multifactorial etiology and may develop as a result of the activation of immune responses. Infectious agents have been postulated as possible triggers of an immune response (Sá, 2009). Gonadotropin-releasing agonists may have a similar role and trigger the acceleration of preexisting disease by the activation of immune responses (Ho et al., 1995, and Umesaki et al., 1999). PMID:23607013
Novel itinerant transverse spin waves
NASA Astrophysics Data System (ADS)
Feldmann, John Delaney
In 1956, Lev Davidovich Landau put forth his theory on systems of interacting fermions, or fermi liquids. A year later, Viktor Pavlovich Silin described spin waves that such a system of fermions would support. The treatment of the contribution of the molecular field to the spin wave dispersion was a novel aspect of these spin waves. Silin predicted that there would exist a hierarchy of spin waves in a fermi liquid, one for each component of the spherical harmonic expansion of the fermi surface. In 1968, Anthony J. Leggett and Michael J. Rice derived from fermi liquid theory how the behavior of the spin diffusion coefficient of a fermi liquid could be directly experimentally observable via the spin echo effect [24]. Their prediction, that the diffusion coefficient of a fermi liquid would not decay exponentially with temperature, but rather would have a maximum at some non-zero temperature, was a direct consequence of the fermi liquid molecular field and spin wave phenomena, and this was corroborated by experiment in 1971 by Corruccini, et al. [13]. A parallel advancement in the theory of fermi liquid spin waves came with the extension of the theory to describe weak ferromagnetic metals. In 1959, Alexei Abrikosov and I. E. Dzyaloshiski put forth a theoretical description of a ferromagnetic fermi liquid [1]. In 2001, Kevin Bedell and Krastan Blagoev showed that a non-trivial contribution to the dispersion of the ferromagnetic current spin wave arises from the necessary consideration of higher harmonic moments in the distortion of the fermi surface from its ground state [8]. In the chapters to follow, the author presents new results for transverse spin waves in a fermi liquid, which arise from a novel ground state of a fermi liquid-one in which an l = 1 harmonic distortion exists in the ground state polarization. It is shown that such an instability can lead to spin waves with dispersions that are characterized by a linear dependence on the wave number at long
Transverse deformations of extreme horizons
NASA Astrophysics Data System (ADS)
Li, Carmen; Lucietti, James
2016-04-01
We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.
Flutter analysis using transversality theory
NASA Technical Reports Server (NTRS)
Afolabi, D.
1993-01-01
A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.
Transverse Magnetic Field Propellant Isolator
NASA Technical Reports Server (NTRS)
Foster, John E.
2000-01-01
An alternative high voltage isolator for electric propulsion and ground-based ion source applications has been designed and tested. This design employs a transverse magnetic field that increases the breakdown voltage. The design can greatly enhance the operating range of laboratory isolators used for high voltage applications.
Small, D.W.; Wong, R.K.; Colson, W.B.
1995-12-31
In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.
Transverse angular momentum of photons
Aiello, Andrea
2010-05-15
We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.
Transverse spin effects at COMPASS
Pesaro, G.
2009-03-23
The COMPASS experiment at the CERN SPS has a broad physics program focused on the nucleon spin structure and on hadron spectroscopy, using both muon and hadron beams. One of the main objectives for the spin program with the muon beam is the measurement of transverse spin effects in semi inclusive deep inelastic scattering. A longitudinally polarized 160 GeV/c muon beam is impinging on a transversely polarized target: from 2002 to 2004 a {sup 6}LiD(deuteron) target has been used, while during 2007 data taking a NH{sub 3}(proton) target was put in place. All measured transverse asymmetries on deuteron have been found to be small, and compatible with zero, within the few percent statistical errors. These results, which are currently used as input for global fits, can be interpreted as cancellation between u and d quark contribution in the deuteron. The first results for the Collins and Sivers asymmetries for charged hadrons from the 2007 proton COMPASS data are also presented and discussed.
QCD Evolution of Helicity and Transversity TMDs
Prokudin, Alexei
2014-01-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Transversity distribution functions in the valon model
NASA Astrophysics Data System (ADS)
Alizadeh Yazdi, Z.; Taghavi-Shahri, F.; Arash, F.; Zomorrodian, M. E.
2014-05-01
We use the valon model to calculate the transversity distribution functions inside the nucleon. Transversity distributions indicate the probability to find partons with spin aligned (antialigned) to the transversely polarized nucleon. The results are in good agreement with all available experimental data and also global fits.
Transverse Force on Quarks in DIS
Burkardt, Matthias
2009-01-01
The $x^2$-moment of the twist-3 polarized parton distribution $g_2(x)$ is related to the transverse force acting on the active quark in deep-inelastic scattering off a transversely polarized nucleon immediately after it has absorbed the virtual photon. Lattice calculations of the corresponding matrix element as well as experimental measurements of $g_2(x)$ are used to estimate sign and magnitude of this force. Similarly, the $x^2$-moment of the chirally odd twist-3 unpolarized parton distribution $e(x)$ can be related to the transverse force experienced by a transversely polarized quark ejected from a transversely polarized nucleon.
A new fifth parameter for transverse isotropy
NASA Astrophysics Data System (ADS)
Kawakatsu, H.
2015-12-01
Kawakatsu et al. (2015) recently proposed a new parameter, ¥eta¥kappa that properly characterizes the incidence angle dependence (relative to the symmetry axis) of seismic bodywaves in a transverse isotropy (TI) system. While the commonly used fifth parameter in global seismology to describe TI system, ¥eta=F/(A-2L) , has no simple physical meaning, the newly defined parameter, ¥[¥eta_{¥kappa} = ¥frac{F+L}{ (A-L)^{1/2}(C-L)^{1/2} } ,¥] where A, C, F and L denote the Love's elastic constants for TI, measures the departure from the ``elliptic condition" (Thomsen, 1986) when ¥eta¥kappa not equal to unity, and characterizes nicely the incidence angle dependence of bodywaves. When existing models of upper mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220km), ¥eta¥kappa < 1 in the top half and ¥eta¥kappa > 1 in the lower half. If ¥eta¥kappa > 1, anisotropy cannot be attributed to the layering of homogeneous layers. While how well the fifth parameter is constrained from data needs to be carefully examined, we now have, at least, a parameter that properly characterizes the TI system. I suggest (hope) this parameter to be used in future surface wave and bodywave studiesof the mantle anisotropy, rather than the conventional ¥eta.¥bigskip¥noindent{¥bf Reference:} ¥¥¥noindentKawakatsu, H, J-P Montagner, and T-R A Song, On DLA's ¥eta, in The Interdisciplinary Earth: A volume in honor of Don L. Anderson, edited by Foulger et al., GSA, in press (2015).
TRANSVERSE ECHO MEASUREMENTS IN RHIC.
FISCHER, W.
2005-09-18
Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular they examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.
Transverse SSA in inclusive DIS
NASA Astrophysics Data System (ADS)
Pitonyak, Daniel
2013-10-01
We analyze the transverse single spin asymmetry (SSA) in inclusive deep inelastic scattering (DIS), which requires a two-photon exchange to generate a non-zero effect. We present numerical results for the SSA that allow us to comment on the so-called "sign mismatch" issue invloving the Efremov-Teryaev-Qiu-Sterman (ETQS) function TF(x,x). In particular, we discuss how our results indicate a collinear twist-3 Sivers-type effect may not be the main cause of the SSAs seen in proton-proton (pp) collisions.
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
Transverse Echo Measurements in RHIC
Fischer, Wolfram
2006-03-20
Diffusion counteracts cooling and the knowledge of diffusion rates is important for the calculation of cooling times and equilibrium beam sizes. Echo measurements are a potentially sensitive method to determine diffusion rates, and longitudinal measurements were done in a number of machines. We report on transverse echo measurements in RHIC and the observed dependence of echo amplitudes on a number of parameters for beams of gold and copper ions, and protons. In particular we examine the echo amplitudes of gold and copper ion bunches of varying intensity, which exhibit different diffusion rates from intrabeam scattering.
A new fifth parameter for transverse isotropy
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2016-04-01
Kawakatsu et al. (2015) recently proposed a new parameter, ηκ that properly characterizes the incidence angle dependence (relative to the symmetry axis) of seismic bodywaves in a transverse isotropy (TI) system. While the commonly used fifth parameter in global seismology to describe TI system, η = F/(A ‑ 2L), has no simple physical meaning, the newly defined parameter, ηκ = (F + L)/[(A ‑ L)1/2(C ‑ L)1/2] where A, C, F and L denote the Love's elastic constants for TI, measures the departure from the "elliptic condition" when ηκ not equal to unity, and characterizes nicely the incidence angle dependence of bodywaves. When existing models of upper mantle radial anisotropy are compared in terms of this new parameter, PREM shows a distinct property. Within the anisotropic layer of PREM (a depth range of 24.4-220km), ηκ < 1 in the top half and ηκ > 1 in the lower half. If ηκ > 1, anisotropy cannot be attributed to the layering of homogeneous layers, and thus requires the presence of intrinsic anisotropy (Kawakatsu, 2016). To further investigate significance of the new parameter for long-period seismology, partial derivatives of surface wave phase velocity and normal mode eigen-frequency for the new set of five parameters are examined. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ is more resolved than is usually considered. While partial derivatives for (anisotropic) S-velocities are not so changed, those for (anisotropic) P-velocities are significantly modified; the sensitivity for anisotropic P-velocities is greatly reduced. In contrary to Dziewonski and Anderson (1981)'s suggestion, there is not much control on the anisotropic P-velocities. The significance of ηκ for the long-period seismology has been shown. While how well the fifth parameter is constrained from data needs to be carefully examined, we now have, at least, a parameter that properly characterizes the TI system. This
Transverse excitations in liquid metals
NASA Astrophysics Data System (ADS)
Hosokawa, S.; Munejiri, S.; Inui, M.; Kajihara, Y.; Pilgrim, W.-C.; Baron, A. Q. R.; Shimojo, F.; Hoshino, K.
2013-02-01
The transverse acoustic excitation modes were detected by inelastic x-ray scattering in liquid Ga, Cu and Fe in the Q range around 10 nm-1 using a third-generation synchrotron radiation facility, SPring-8, although these liquid metals are mostly described by a simple hard-sphere liquid. Ab initio molecular dynamics simulations clearly support this finding for liquid Ga. From the detailed analyses for the S(Q,ω) spectra with good statistic qualities, the lifetime of less than 1 ps and the propagating length of less than 1 nm can be estimated for the transverse acoustic phonon modes, which correspond to the lifetime and size of cages formed instantaneously in these liquid metals. The microscopic Poisson's ratio estimated from the dynamic velocities of sound is 0.42 for liquid Ga and about -0.2 for liquid transition metals, indicating a rubber-like soft and extremely hard elastic properties of the cage clusters, respectively. The origin of these microscopic elastic properties is discussed in detail.
Transverse shear stiffness of laminated anisotropic shells
NASA Technical Reports Server (NTRS)
Cohen, G. A.
1978-01-01
Equations are derived for the transverse shear stiffness of laminated anisotropic shells. Without making assumptions for thickness distribution for either transverse shear stresses or strains, constitutive equations for the transverse shear deformation theory of anisotropic heterogeneous shells are found. The equations are based on Taylor series expansions about a generic point for stress resultants and couples, identically satisfying plate equilibrium equations. These equations are used to find statically correct expressions for in-surface stresses, transverse shear stresses, and the area density of transverse shear strain energy, in terms of transverse shear stress resultants and redundants. The application of Castigliano's theorem of least work minimizes shear strain energy with respect to the redundants. Examples are presented for several laminated walls. Good agreement is found between the results and those of exact three-dimensional elasticity solutions for the cylindrical bending of a plate.
Transversal magnetoresistance in Weyl semimetals
NASA Astrophysics Data System (ADS)
Klier, J.; Gornyi, I. V.; Mirlin, A. D.
2015-11-01
We explore theoretically the magnetoresistivity of three-dimensional Weyl and Dirac semimetals in transversal magnetic fields within two alternative models of disorder: (i) short-range impurities and (ii) charged (Coulomb) impurities. Impurity scattering is treated using the self-consistent Born approximation. We find that an unusual broadening of Landau levels leads to a variety of regimes of the resistivity scaling in the temperature-magnetic field plane. In particular, the magnetoresistance is nonmonotonous for the white-noise disorder model. For H →0 the magnetoresistance for short-range impurities vanishes in a nonanalytic way as H1 /3. In the limits of strongest magnetic fields H , the magnetoresistivity vanishes as 1 /H for pointlike impurities, while it is linear and positive in the model with Coulomb impurities.
Transverse section radionuclide scanning system
Kuhl, David E.; Edwards, Roy Q.
1976-01-01
This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.
Transverse-longitudinal integrated resonator
Hutchinson, Donald P; Simpson, Marcus L; Simpson, John T
2003-03-11
A transverse-longitudinal integrated optical resonator (TLIR) is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide. The PBG is positioned between the first and second subwavelength resonant gratings. An electro-optic waveguide material may be used to permit tuning the TLIR and to permit the TLIR to perform signal modulation and switching. The TLIR may be positioned on a bulk substrate die with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a TLIR including fabricating a broadband reflective grating is disclosed. A method for tuning the TLIR's transmission resonance wavelength is also disclosed.
Gluonic transversity from lattice QCD
NASA Astrophysics Data System (ADS)
Detmold, W.; Shanahan, P. E.
2016-07-01
We present an exploratory study of the gluonic structure of the ϕ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-2 double-helicity-flip gluonic structure function Δ (x ,Q2). This structure function only exists for targets of spin J ≥1 and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and nonflip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where Δ (x ,Q2) is an "exotic glue" observable probing gluons in a nucleus not associated with individual nucleons.
Transverse Reinforcement in Reinforced Concrete Columns
NASA Astrophysics Data System (ADS)
Gramblička, Štefan; Veróny, Peter
2013-11-01
In the article we are dealing with the influence of transverse reinforcement to the resistance of a cross-section of the reinforced concrete columns and also with the effective detailing of the column reinforcement. We are verifying the correctness of design guides for detailing of transverse reinforcement. We are also taking into account the diameter of stirrups and its influence over transverse deformation of column.
TRANSVERSE POLARIZATION DISTRIBUTION AND FRAGMENTATION FUNCTIONS
BOER,D.
2000-04-11
The authors discuss transverse polarization distribution and fragmentation functions, in particular, T-odd functions with transverse momentum dependence, which might be relevant for the description of single transverse spin asymmetries. The role of intrinsic transverse momentum in the expansion in inverse powers of the hard scale is elaborated upon. The sin {phi} single spin asymmetry in the process e {rvec p} {r_arrow} e{prime} {pi}{sup +} X as recently reported by the HERMES Collaboration is investigated, in particular, by using the bag model.
Theory of Transverse Spin and Transverse Structure of the Nucleon
NASA Astrophysics Data System (ADS)
Koike, Yuji
2009-10-01
Large single transverse spin asymmetries (SSA) observed in various collision processes opened a new window to disentangle QCD dynamics and quark-gluon substructure of the nucleon. Since SSA is a ``naively T-odd'' observable, it can only occur as an interference between the scattering amplitudes which have different complex phases in a time-reversal invariant theory like QCD. A conventional framework for hard inclusive processes, i.e. perturbative QCD in the twist-2 level, can only give rise to a negligible asymmetry and thus can not explain the observed data. Understanding the origin of the large SSAs requires the extention of the framework of the QCD hard processes, and by now QCD mechanisms leading to large SSAs have been clarified in greater detail. These mechanisms based on different perspectives introduce new concepts describing the nucleon structure not present in the conventional parton model, such as ``parton's intrinsic transverse momentum'' and ``multi-parton correlations.'' Precise and unambiguous definition of these ideas requires much more careful theoretical analyses than the twist-2 case, in particular, in connection with the universality of the parton distribution/fragmentation functions, gauge invariance and factorization properties of the cross sections. In the literature, QCD mechanisms for SSAs are often classified into two categories. One is based on the (naively) ``T-odd'' distribution and fragmentation functions in the transverse momentum dependent (TMD) factorization approach. Sivers and Collins functions are typical examples for this one. The other one is based on the twist-3 quark-gluon (more generally, multi-parton such as triple-gluon) correlation functions in the collinear factorization approaches. The former mechanism can describe SSAs in the small-pT region (pTQ) as a leading-twist effect, while the latter one describes SSAs in the large pT region as a twist-3 effect. Both approaches have been applied to study SSAs in various
Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions
Prokudin, Alexei; Bacchetta, Alessandro
2013-07-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions
Prokudin, Alexey; Bacchetta, Alessandro
2013-10-01
We examine the QCD evolution of the helicity and transversity parton distribution functions when including also their dependence on transverse momentum. Using an appropriate definition of these polarized transverse momentum distributions (TMDs), we describe their dependence on the factorization scale and rapidity cutoff, which is essential for phenomenological applications.
Transverse instability at the recycler ring
Ng, K.Y.; /Fermilab
2004-10-01
Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.
Acute transverse myelopathy complicating systemic lupus erythematosus.
Propper, D J; Bucknall, R C
1989-01-01
A sixteen year old girl with systemic lupus erythematosus developed acute transverse myelopathy. She was treated with high dose steroids, cyclophosphamide, and plasma exchange and regained partial neurological function. Previous descriptions of transverse myelopathy complicating systemic lupus erythematosus are reviewed, with particular reference to the efficacy of high dose steroid treatment. PMID:2662918
Cladding For Transversely-Pumped Laser Rod
NASA Technical Reports Server (NTRS)
Byer, Robert L.; Fan, Tso Yee
1989-01-01
Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.
Transverse Mercator Projection Via Elliptic Integrals
NASA Technical Reports Server (NTRS)
Wallis, David E.
1992-01-01
Improved method of construction of U.S. Army's universal transverse Mercator grid system based on Gauss-Kruger transverse Mercator projection and on use of elliptic integrals of second kind. Method can be used to map entire northern or southern hemisphere with respect to single principal meridian.
Recent COMPASS Results on Transverse Physics
Iwata, Takahiro; Collaboration: COMPASS Collaboration
2011-12-14
The investigation of transverse spin and transverse momentum dependent effects in deep inelastic scattering of muons off nucleons is one of the key physics programs of the COMPASS collaboration at CERN. We have investigated the effects from the data obtained with a polarized proton target. In order to access the transversity distribution function, following channels have been analyzed: The azimuthal distribution of single hadrons, the azimuthal dependence of the plane containing hadron pairs, and the measurement of the transverse polarization of lambda hyperons in the final state. The Sivers distribution function which is one of the transverse momentum dependent functions has been investigated also from the azimuthal distribution of single hadrons. Azimuthal asymmetries in unpolarized deep inelastic scattering give important information on the inner structure of the nucleon to access the so-far unmeasured Boer-Mulders function. We have measured these asymmetries using spin-averaged {sup 6}L{sub i}D.
Transverse Spin Effects in SIDIS at COMPASS
Joosten, Rainer
2009-12-17
The measurement of single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target is an important part of the COMPASS physics program. It allows us to investigate the transversity distribution functions as well as transverse momentum dependent distribution functions by measuring azimuthal asymmetries in the hadron production. After COMPASS took data in the years 2002-2004 by scattering a 160 GeV/c muon beam off a transversely polarized deuteron ({sup 6}LiD) target, in 2007 additional data was collected on a transversely polarized proton (NH{sub 3}) target. In this contribution, the latest results on the Collins and Sivers asymmetries in single hadron production as well as two-hadron asymmetries from the analysis of the proton data are presented and compared with existing model predictions.
Transverse and longitudinal vibrations in amorphous silicon
NASA Astrophysics Data System (ADS)
Beltukov, Y. M.; Fusco, C.; Tanguy, A.; Parshin, D. A.
2015-12-01
We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector q. For this purpose we define the transverse component of the eigenvector with given ω as a component, which does not change the volumes of Voronoi cells around atoms. The longitudinal component is the remaining orthogonal component. We have found the longitudinal and transverse components of the vibrational density of states for numerical model of amorphous silicon. The vibrations are mostly transverse below 7 THz and above 15 THz. In the frequency interval in between the vibrations have a longitudinal nature. Just this sudden transformation of vibrations at 7 THz from almost transverse to almost longitudinal ones explains the prominent peak in the diffusivity of the amorphous silicon just above 7 THz.
Transverse mode coupling in RHIC
Raka, E.
1990-02-21
In the Proceedings of the Workshop on the RHIC Performance, it was stated that the transverse mode coupling instability, posed a potential intensity limitation for protons. This was based on the expression I{sub b} = 4(E{sub t}/qe) Q{sub s} 4 {radical}{pi} {sigma} {ell}/(Im (Z{sub {perpendicular}}) < {beta}{sub {perpendicular}} > R 3) where E{sub t} is the total energy, q the charge state, Q{sub s} the synchrotron tune, < {beta}{sub {perpendicular}} > the average beta function, R the machine radius, and {sigma}{sub {ell}} the rms bunch length of a Gaussian distribution in longitudinal phase space. For a < {beta}{sub {perpendicular}} > of 55 m and 10{sup 11} protons/bunch, the allowed impedance Z{sub {perpendicular}} for protons at injection, where Q{sub s} = 0.11 {times} 10{sup {minus}3}, would be less than 1.2 M{Omega}/m. The purpose of this report is to discuss the consequences of two factors that were omitted in this equation, which comes from the ZAP program, to RHIC. These are the space charge impedance and the incoherent tune spread of the beam.
Orbital angular momentum and generalized transverse momentum distribution
NASA Astrophysics Data System (ADS)
Zhao, Yong; Liu, Keh-Fei; Yang, Yi-Bo
2016-03-01
We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular momentum operators defined in the nucleon spin sum rule of Chen et al. are the same as those whose matrix elements correspond to the moments of generalized transverse momentum distributions. This completes the connection between the infinite momentum limit of each term in that sum rule and experimentally measurable observables. We also show that these orbital angular momentum operators can be defined locally and discuss the strategies of calculating them in lattice QCD.
SCALING PROPERTIES OF THE TRANSVERSE MASS SPECTRA.
SCHAFFNER-BIELICH,J.; KHARZEEV,D.; MCLERRAN,L.; VENUGOPALAN,R.
2002-01-13
Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's Relativistic Heavy-Ion Collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m{sub t}. The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m{sub t}-scaling is also present in proton-antiproton collider data and compare it to m{sub t}-scaling at RHIC.
Ferroelectric Cathodes in Transverse Magnetic Fields
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-07-29
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.
Exploring the transverse spin structure of the nucleon
D'Alesio, Umberto
2008-10-13
We discuss our present understanding of the transverse spin structure of the nucleon and of related properties originating from parton transverse motion. Starting from the transversity distribution and the ways to access it, we then address the role played by spin and transverse momentum dependent (TMD) distributions in azimuthal and transverse single spin asymmetries. The latest extractions of the Sivers, Collins and transversity functions are also presented.
Transverse damping systems in modern synchrotrons
NASA Astrophysics Data System (ADS)
Zhabitsky, V. M.
2006-12-01
Transverse feedback systems for suppression of transverse coherent beam oscillations are used in modern synchrotrons for preventing the development of transverse instabilities and damping residual beam oscillations after injection. Information on damper systems for the Large Hadron Collider (LHC; CERN, Geneva) and the accelerator complex FAIR (GSI, Darmstadt) is presented. The project for the LHC is being performed at the Laboratory of Particle Physics of the Joint Institute for Nuclear Research in collaboration with CERN. The information concerning the state of the project and the plans of its completion at the LHC is given. The results of the first design activity on transverse damping systems at the SIS100 and SIS300 synchrotrons, to be created in the framework of the new international project FAIR, are presented.
Transverse-longitudinal coupling in intense beams
Wang, T.S.F.; Smith, L.
1981-03-01
The coupling between transverse and longitudinal perturbations is studied self-consistently by considering a beam of K-V distribution. The analysis is carried out within the context of linearized Vlasov-Maxwell equations and electrostatic approximation. The perturbation is assumed to be azimuthally symmetric but axially non-uniform (k/sub z/ is not equal to 0). It is shown that the coupling affects both the longitudinal and transverse modes significantly in the high density and low frequency region. Two new classes of longitudinal modes are found which would not exist if the transverse motions of particles are neglected. The effect of resistive wall impedance on beam stability is also studied. It is found that the longitudinal impedance can cause the transverse modes also to be weakly unstable.
Development of Transverse Modes Damped DLA Structure
Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.
2009-01-22
As the dimensions of accelerating structures become smaller and beam intensities higher, the transverse wakefields driven by the beam become quite large with even a slight misalignment of the beam from the geometric axis. These deflection modes can cause inter-bunch beam breakup and intra-bunch head-tail instabilities along the beam path, and thus BBU control becomes a critical issue. All new metal based accelerating structures, like the accelerating structures developed at SLAC or power extractors at CLIC, have designs in which the transverse modes are heavily damped. Similarly, minimizing the transverse wakefield modes (here the HEMmn hybrid modes in Dielectric-Loaded Accelerating (DLA) structures) is also very critical for developing dielectric based high energy accelerators. In this paper, we present the design of a 7.8 GHz transverse mode damped DLA structure currently under construction, along with plans for the experimental program.
Transversally periodic solitary gravity-capillary waves.
Milewski, Paul A; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity-capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity-capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
Adjustable Fiber Optic Microwave Transversal Filters
NASA Technical Reports Server (NTRS)
Shadaram, Mehdi; Lutes, George F.; Logan, Ronald T.; Maleki, Lutfollah
1994-01-01
Microwave transversal filters implemented as adjustable tapped fiber optic delay lines developed. Main advantages of these filters (in comparison with conventional microwave transversal filters) are small size, light weight, no need for matching of radio-frequency impedances, no need for shielding against electromagnetic radiation at suboptical frequencies, no need for mechanical tuning, high stability of amplitude and phase, and active control of transfer functions. Weights of taps in fiber optic delay lines adjusted.
Transversity and intrinsic motion of the constituents
Efremov, A.V.; Teryaev, O.V.; Zavada, P.
2004-09-01
The probabilistic model of parton distributions, previously developed by one of the authors, is generalized to include the transversity distribution. When interference effects are attributed to quark level only, the intrinsic quark motion produces the transversity, which is about twice as large as the usual polarized distribution. The applicability of such a picture is considered and possible corrections, accounting for interference effects at the parton-hadron transition stage are discussed.
Results from the AGS Booster transverse damper
Russo, D.; Brennan, M.; Meth, M.; Roser, T.
1993-01-01
To reach the design intensity of 1.5 [times] 10[sup 13] protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s[sup [minus]1] have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.
Results from the AGS Booster transverse damper
Russo, D.; Brennan, M.; Meth, M.; Roser, T.
1993-06-01
To reach the design intensity of 1.5 {times} 10{sup 13} protons per pulse in the AGS Booster, transverse coupled bunch instabilities with an estimated growth rate of 1500s{sup {minus}1} have to be dampened. A prototype transverse damper has been tested successfully using a one turn digital delay and closed orbit suppression implemented in a programmable gate array. An updated damper, which includes an algorithm to optimize damping for a changing betatron rune, will also be presented.
Chiral dynamics and peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Transverse structure of the QCD string
Meyer, Harvey B.
2010-11-15
The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.
NASA Astrophysics Data System (ADS)
Hardi, J. S.; Oschwald, M.
2016-07-01
The intact length of the dense oxygen core from an oxygen-hydrogen shear coaxial rocket injector was measured. The measurements were made in a rectangular rocket combustor with optical access and acoustic forcing. The combustor was operated at chamber pressures of 40 and 60 bar, with either ambient temperature or cryogenic hydrogen. The multielement injection spray is subjected to forced transverse gas oscillations of two different acoustic resonance modes; the first transverse (1T) mode at 4200 Hz and the first combined longitudinal-transverse (1L1T) at 5500 Hz. Intact core length is measured from high-speed shadowgraph imaging. The dependence of intact core length with increasing acoustic amplitude is compared for the two modes of excitation.
Nucleon Spin Structure: Longitudinal and Transverse
Jian-Ping Chen
2011-02-01
Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.
Strange hadron production at low transverse momenta
NASA Astrophysics Data System (ADS)
Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.
2004-01-01
Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.
State machine components selection based on minimal transversals
NASA Astrophysics Data System (ADS)
Stefanowicz, Łukasz; Mróz, Piotr
2015-12-01
The article relates to the problem of State Machine Components selection using hypergraphs theory. The base method of exact transversals was presented as well as exact transversal and simple transversal computation. Due to limitations of xt-hypergraph application, authors proposed to extend the baseline method by usage of minimal transversals.
46 CFR 154.174 - Transverse contiguous hull structure.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull...) The transverse contiguous hull structure of a vessel having cargo containment systems with...
46 CFR 154.174 - Transverse contiguous hull structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull...) The transverse contiguous hull structure of a vessel having cargo containment systems with...
46 CFR 154.174 - Transverse contiguous hull structure.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull...) The transverse contiguous hull structure of a vessel having cargo containment systems with...
Measuring the transverse spin density of light.
Neugebauer, Martin; Bauer, Thomas; Aiello, Andrea; Banzer, Peter
2015-02-13
We generate tightly focused optical vector beams whose electric fields spin around an axis transverse to the beams' propagation direction. We experimentally investigate these fields by exploiting the directional near-field interference of a dipolelike plasmonic field probe placed adjacent to a dielectric interface. This directionality depends on the transverse electric spin density of the excitation field. Near- to far-field conversion mediated by the dielectric interface enables us to detect the directionality of the emitted light in the far field and, therefore, to measure the transverse electric spin density with nanoscopic resolution. Finally, we determine the longitudinal electric component of Belinfante's elusive spin momentum density, a solenoidal field quantity often referred to as "virtual." PMID:25723220
Transverse current on strip dipole antenna
NASA Astrophysics Data System (ADS)
Wunsch, A. D.
1982-07-01
Analyses of the current of thin wire dipole antennas presuppose that the current is parallel to the antenna axis. It is pointed out that a component of current transverse to the antenna axis can exist for antennas having a noncircular cross section, such as the strip dipole. The present investigation is concerned with a perfectly conducting strip antenna which is center driven by a delta function generator, taking into account the surface current-density components Kx(x,z) and Kz(x,z). In the solution of the resulting integral equations, it is assumed that Kz is considerably stronger than the transverse surface current density Kx. After obtaining an approximation to Kz, the second integral equation is solved for Kx. Results for the normalized transverse surface current density are presented in graphs.
Transverse-mode dependence of femtosecond filamentation.
Song, Zhenming; Zhang, Zhigang; Nakajima, Takashi
2009-07-20
We theoretically investigate the transverse-mode dependence of femtosecond filamentation in Ar gas. Three different transverse modes, Bessel, Gaussian, and Laguerre modes, are considered for incident laser pulses. By solving the extended nonlinear Schrödinger equation coupled with the electron density equation, we find that the lengths of the filament and the plasma channel induced by the Bessel incident beam is much longer than the other transverse modes with the same peak intensity, pulse duration, and beam diameter. Moreover we find that the temporal profile of the pulse with the Bessel incident mode is nearly undistorted during the propagation. Since the pulse energy that the Bessel beam can carry is more than one order of magnitude larger than the other modes for the same peak intensity, pulse duration, and beam diameter, the Bessel beam can be a very powerful tool in ultrafast nonlinear optics involving propagation in a Kerr medium. PMID:19654624
Evolution of transverse modes in FELIX macropulses
Weits, H.H.; Lin, L.; Werkhoven, G.H.C. van
1995-12-31
We present ringdown measurements of both the intracavity beam, using a low reflection beamsplitter, as well as the hole-outcoupled beam of FELIX, the intracavity measurements being taken at various sets of transverse coordinates. Recent measurements show a significant difference in the decay of the signals at different radial positions, suggesting the presence of higher order transverse modes. The formation of transverse modes depends on the properties of the cold cavity and its losses (i.e. resonator parameters, diffraction and outcoupling at the hole, absorption and edge losses on the mirrors, waveguide clipping), as well as on the gain mechanism. Both simulations with the axisymmetric ELIXER code and previous hole-outcoupled measurements indicated a substantial energy content of the 2nd or 4th Gauss-Laguerre (GL) mode for the 20-30 {mu}m regime of FELIX. Moreover, as FELIX has a phase degenerate cavity, the fundamental and higher order transverse modes can interplay to create a reduced outcoupling efficiency at the hole. For example, in contrast to the decay rate of 13% per roundtrip that we would expect for a pure gaussian beam when we include a loss of 6% for the reflection at the intracavity beamsplitter, recent simulations indicate a decay rate as high as 23% of the hole-outcoupled signal. In this case the 2nd order GL mode contains 30% of the total intracavity power. The effect of transverse modes on subpulses in the limit cycle regime is an interesting aspect. As soon as a subpulse is losing contact with the electrons, its transverse pattern will exhibit an on-axis hole after a few roundtrips, according to the simulations. This process could mean that the subpulses are less pronounced in the hole-outcoupled signal of FELIX 1.
Helicity and Transversity Distributions at HERMES
De Nardo, Lara
2005-02-10
Results obtained by the HERMES Collaboration for the polarized parton distributions {delta}u, {delta}d, {delta}u-bar, {delta}d-bar, {delta}s extracted from inclusive and semi-inclusive asymmetries on H and D in a LO analysis are presented. The up and down distributions are measured with good precision and are determined to be positive and negative respectively. The sea distributions have been extracted for the first time and the strange sea is consistent with zero within errors.Single spin asymmetries on transversely polarized hydrogen target provide evidence of transversity distributions.
Program Computes Universal Transverse Mercator Projection
NASA Technical Reports Server (NTRS)
Wallis, David E.
1991-01-01
Computer program produces Gauss-Kruger (constant meridional scale) transverse Mercator projection, used to construct U.S. Army's universal transverse Mercator (UTM) grid system. Capable of mapping entire Northern Hemisphere of Earth (and, by symmetry of projection, entire Earth) accurately with respect to single principal meridian. Mathematically insensitive to proximity to pole or equator and insensitive to departure of meridian from central meridian. Useful to any mapmaking agency. FORTRAN 77 program developed on IBM PC-series computer equipped with Intel Math Coprocessor.
Chatter in a transverse grinding process
NASA Astrophysics Data System (ADS)
Yan, Yao; Xu, Jian; Wiercigroch, Marian
2014-02-01
In transverse grinding, the wheel moves along the workpiece, which induces unique grinding dynamics. To understand these dynamic phenomena, specifically the grinding chatter, a new dynamical model of the process is proposed, in which the wheel position is assumed to be quasi-static since the transverse wheel velocity is small. From the stability and bifurcation analyses of the chatter vibration, it appears that the dynamics of the process is governed by the quasi-static interactions. Moreover, the obtained results also show that the wheel and workpiece chatters are quite different, having continuous and intermittent characters respectively.
Injection coupling with high amplitude transverse modes: Experimentation and simulation
NASA Astrophysics Data System (ADS)
Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien
2009-06-01
High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).
Transverse liquid fuel jet breakup, burning, and ignition
Li, H.
1990-12-31
An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.
Transverse liquid fuel jet breakup, burning, and ignition
Li, H.
1990-01-01
An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.
Thomas, R Z; Ruben, J L; de Vries, J; ten Bosch, J J; Huysmans, M C D N J M
2006-01-01
This paper describes a microradiographic method for measuring mineral concentration in a transversal geometry with thick (< or =3.2 mm) sections: transversal wavelength-independent microradiography (T-WIM). It was tested on bovine enamel and dentin samples in vitro, and the results were validated with those of transversal microradiography (TMR). 48 enamel and 48 dentin samples (3.2 x 3.2 x 1.5 mm) were embedded in acrylic resin, randomly divided into six groups of 8 dentin or 8 enamel samples, and demineralized for 0 (sound control), 1, 2, 3, 4, or 5 weeks. For T-WIM, samples were imaged on film with polychromatic 40-kV Cu X-rays with an Al (0.25 mm)/Ni (0.02 mm) filter together with an aluminium/zinc step wedge. TMR slices (about 80 mum for enamel and about 130 mum for dentine) were subsequently cut from the centre of the samples and subjected to TMR. Microradiographs from both methods were digitized and image analysis software was used to calculate lesion depth and mineral loss. The relations between T-WIM and TMR results for mineral loss (DeltaZ) and lesion depth were nearly linear (r > or = 0.96) for both enamel and dentin. The slopes of the regression lines were between 0.99 and 1.02 except for DeltaZ in dentine, which was 0.89. It was concluded that T-WIM is a suitable method for TMR on thick samples. PMID:16741358
Mitigating chromatic effects for the transverse focusing of intense charged particle beams
NASA Astrophysics Data System (ADS)
Mitrani, James; Kaganovich, Igor; Davidson, Ronald
2013-09-01
A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.
Cohen, B; Lai, W M; Mow, V C
1998-08-01
Using the biphasic theory for hydrated soft tissues (Mow et al., 1980) and a transversely isotropic elastic model for the solid matrix, an analytical solution is presented for the unconfined compression of cylindrical disks of growth plate tissues compressed between two rigid platens with a frictionless interface. The axisymmetric case where the plane of transverse isotropy is perpendicular to the cylindrical axis is studied, and the stress-relaxation response to imposed step and ramp displacements is solved. This solution is then used to analyze experimental data from unconfined compression stress-relaxation tests performed on specimens from bovine distal ulnar growth plate and chondroepiphysis to determine the biphasic material parameters. The transversely isotropic biphasic model provides an excellent agreement between theory and experimental results, better than was previously achieved with an isotropic model, and can explain the observed experimental behavior in unconfined compression of these tissues. PMID:10412420
Transverse agarose pore gradient gel electrophoresis of DNA.
Fawcett, J S; Wheeler, D; Chrambach, A
1992-06-01
Transverse agarose pore gradient gels were prepared on GelBond in the concentration range of nominally 0.2-1.5% SeaKem GTG agarose, using density stabilization by glycerol and incorporation of a dye to define the gel concentration at each point on the pore gradient gel. The distribution of the dye was evaluated by photography, video-acquisition and digitization of the gradient mixture and by densitometry of the gel. The gel was applied to the electrophoresis of a 1-kb standard ladder of DNA fragments, using standard submarine apparatus. The method extends to agarose gel electrophoresis the benefits of semi-automated analysis of 'Ferguson curves' described in application to polyacrylamide gel by Wheeler et al. (J. Biochem. Biophys. Methods 24, 171-180). PMID:1640052
A new fifth parameter for transverse isotropy II: partial derivatives
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2016-07-01
Kawakatsu et al. and Kawakatsu introduced a new fifth parameter, ηκ, to describe transverse isotropy (TI). Considering that ηκ characterizes the incidence angle dependence of body wave phase velocities for TI models, its relevance for body wave seismology is obvious. Here, we derive expressions for partial derivatives (sensitivity kernels) of surface wave phase velocity and normal mode eigenfrequency for the new set of five parameters. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ should be more readily resolved. While partial derivatives for S velocities are not so changed, those for P velocities are significantly modified; the sensitivity for anisotropic P velocities is greatly reduced. In contrary to the suggestion by Dziewonski & Anderson and Anderson & Dziewonski, there is not much control on the anisotropic P velocities. On the other hand, the significance of ηκ for long-period seismology has become clear.
DNA sequencing via transverse electronic transport
NASA Astrophysics Data System (ADS)
Lagerqvist, Johan; Zwolak, Michael; di Ventra, Massimiliano
2006-03-01
Recently, it was theoretically shown that transverse current measurements could be used to distinguish the different bases of single stranded DNA. [1] If electrodes are embedded in a device, e.g., a nanopore, which allows translocation of ss-DNA, the strand can be sequenced by continuous measurement of the current in the direction perpendicular to the DNA backbone. [1] However, variations of the electronic signatures of each base in a real device due to structural fluctuations, counter-ions, water and other sources of noise will be important obstacles to overcome in order to make this theoretical proposal a reality. In order to explore these effects we have coupled molecular dynamics simulations with transport calculations to obtain the real time transverse current of ss-DNA translocating into a nanopore. We find that distributions of currents for each base are indeed different even in the presence of all the sources of noise discussed above. These results support even more the original proposal [1] that fast DNA sequencing could be done using transverse current measurements. Work supported by the National Humane Genome Research Institute. [1] M. Zwolak and M. Di Ventra, ``Electronic Signature of DNA Nucleotides via Transverse Transport'', Nano Lett. 5, 421 (2005).
Observation of transverse spin freezing by TDPAC
NASA Astrophysics Data System (ADS)
Webb, T. A.; Ryan, D. H.
2013-05-01
We use 181Hf time-differential perturbed angular correlation (TDPAC) spectroscopy to investigate magnetic ordering in the bond-frustrated metallic glass: a - Fe91Hf9. We show that TDPAC can be used to observe the magnetic fluctuations that are associated with the freezing of transverse spin components at T xy .
Transverse stability in a Stark decelerator
Meerakker, Sebastiaan Y. T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard
2006-02-15
The concept of phase stability in a Stark decelerator ensures that polar molecules can be accelerated, guided, or decelerated without loss; molecules within a certain position and velocity interval are kept together throughout the deceleration process. In this paper the influence of the transverse motion on phase stability in a Stark decelerator is investigated. For typical deceleration experiments--i.e., for high values of the phase angle {phi}{sub 0}--the transverse motion considerably enhances the region in phase space for which phase stable deceleration occurs. For low values of {phi}{sub 0}, however, the transverse motion reduces the acceptance of a Stark decelerator and unstable regions in phase space appear. These effects are quantitatively explained in terms of a coupling between the longitudinal and transverse motion. The predicted longitudinal acceptance of a Stark decelerator is verified by measurements on a beam of OH (X {sup 2}{pi}{sub 3/2},J=3/2) radicals passing through a Stark decelerator.
Measuring transverse shape with virtual photons
Hoyer, Paul; Kurki, Samu
2011-06-01
A two-dimensional Fourier transform of hadron form factors allows to determine their charge density in transverse space. We show that this method can be applied to any virtual photon induced transition, such as {gamma}{sup *}(q)+N{yields}{pi}N. Only Fock states that are common to the initial and final states contribute to the amplitudes, which are determined by the overlap of the corresponding light-front wave functions. Their transverse extent may be studied as a function of the final state configuration, allowing qualitatively new insight into strong interaction dynamics. Fourier transforming the cross section (rather than the amplitude) gives the distribution of the transverse distance between the virtual photon interaction vertices in the scattering amplitude and its complex conjugate. While the measurement of parton distributions in longitudinal momentum depends on the leading twist approximation (-q{sup 2}{yields}{infinity} limit), all q{sup 2}<0 values contribute to the Fourier transform, with the transverse resolution increasing with the available range in q{sup 2}. We illustrate the method using QED amplitudes.
Variation of transverse momentum in hadronic collisions
NASA Technical Reports Server (NTRS)
Saint Amand, J.; Uritam, R. A.
1975-01-01
The paper presents a detailed parameterization of the transverse momentum in hadronic collisions on multiplicity and on beam momentum. Hadronic collisions are considered at energies below the ultra-high energy domain, on the basis of an uncertainty relation and a naive eikonal model with an impact-parameter-dependent multiplicity.
Sex Education as a Transversal Subject
ERIC Educational Resources Information Center
Rabelo, Amanda Oliveira; Pereira, Graziela Raupp; Reis, Maria Amélia; Ferreira, António G.
2015-01-01
Currently, sex education is in many countries a transversal subject, in which the school becomes a privileged place for the implementation of policies that aim at promoting "public health." Its design as a cross-cutting subject envisages fostering the dissemination of these subjects in all pedagogical and curricular fields; however, we…
Maximum Possible Transverse Velocity in Special Relativity.
ERIC Educational Resources Information Center
Medhekar, Sarang
1991-01-01
Using a physical picture, an expression for the maximum possible transverse velocity and orientation required for that by a linear emitter in special theory of relativity has been derived. A differential calculus method is also used to derive the expression. (Author/KR)
Barium granuloma of the transverse colon.
McKee, P. H.; Cameron, C. H.
1978-01-01
A case of barium sulphate granuloma of the transverse colon following gunshot wounds to the abdomen has been described. Scanning electron microscopy with electron probe microanalysis was used to confirm the presence of barium sulphate and the absence of lead or other elements related to the gunshot wounds. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:740599
Transverse instability of transverse-magnetic solitons and nonlinear surface plasmons.
Lin, Yuan-Yao; Lee, Ray-Kuang; Kivshar, Yuri S
2009-10-01
We analyze stability of the TM polarized optical solitons and nonlinear guided waves localized at a metal-dielectric interface. We demonstrate, both analytically and numerically, that the spatial solitons can experience vectorial transverse modulational instability that leads to the generation of arrays of two-dimensional TM polarized self-trapped localized beams. In a sharp contrast, we reveal that the transverse instability is completely eliminated for nonlinear surface plasmons. PMID:19794789
Resources - ALS ... The following organizations are good resources for information on amyotrophic lateral sclerosis : Muscular Dystrophy Association -- mda.org/disease/amyotrophic-lateral-sclerosis National Amyotrophic Lateral Sclerosis (ALS) Registry -- ...
... ALS. Find Out How Our Mission Leading the fight to treat and cure ALS through global research ... you participate, advocate, and donate, you advance the fight to find the cure and lead us toward ...
Strong Transverse Coupling in the Tevatron
NASA Astrophysics Data System (ADS)
Syphers, Michael
2004-05-01
During the 20 years since it was first commissioned, the Fermilab Tevatron has developed strong coupling between the two transverse degrees of freedom. A distributed zeroth harmonic skew quadrupole circuit has traditionally been used to correct for transverse coupling, and the strength required of this circuit has increased since 1983 by more than an order of magnitude. In recent years changes to the Tevatron for colliding beams operation have altered the skew quadrupole corrector distribution and strong local coupling has become evident, often encumbering routine operation. In February 2003 it was discovered that the superconducting coils within the main bending magnets of the Tevatron had become vertically displaced within their iron yokes relative to their measured positions in the early 1980's during construction. The ensuing systematic skew quadrupole field introduced by this displacement accounts for the required corrector settings and observed beam behavior. Beam observations, explanations, and remedial measures are presented.
Microdomain Effects on Transverse Cardiac Propagation
Lin, Joyce; Keener, James P.
2014-01-01
The effect of gap junctional coupling, sodium ion channel distribution, and extracellular conductivity on transverse conduction in cardiac tissue is explored using a microdomain model that incorporates aspects of the inhomogeneous cellular structure. The propagation velocities found in our model are compared to those in the classic bidomain model and indicate a strong ephaptic microdomain contribution to conduction depending on the parameter regime. We show that ephaptic effects can be quite significant in the junctional spaces between cells, and that the cell activation sequence is modified substantially by these effects. Further, we find that transverse propagation can be maintained by ephaptic effects, even in the absence of gap junctional coupling. The mechanism by which this occurs is found to be cablelike in that the junctional regions act like inverted cables. Our results provide insight into several recent experimental studies that indirectly indicate a mode of action potential propagation that does not rely exclusively on gap junctions. PMID:24559995
From transverse angular momentum to photonic wheels
NASA Astrophysics Data System (ADS)
Aiello, Andrea; Banzer, Peter; Neugebauer, Martin; Leuchs, Gerd
2015-12-01
Scientists have known for more than a century that light possesses both linear and angular momenta along the direction of propagation. However, only recent advances in optics have led to the notion of spinning electromagnetic fields capable of carrying angular momenta transverse to the direction of motion. Such fields enable numerous applications in nano-optics, biosensing and near-field microscopy, including three-dimensional control over atoms, molecules and nanostructures, and allowing for the realization of chiral nanophotonic interfaces and plasmonic devices. Here, we report on recent developments of optics with light carrying transverse spin. We present both the underlying principles and the latest achievements, and also highlight new capabilities and future applications emerging from this young yet already advanced field of research.
Distribution of transverse distances in directed animals
NASA Astrophysics Data System (ADS)
Sumedha; Dhar, Deepak
2003-04-01
We relate phi(x, s), the average number of sites at a transverse distance x in the directed animals with s sites in d transverse dimensions, to the two-point correlation function of a lattice gas with nearest neighbour exclusion in d dimensions. For large s, phi(x, s) has the scaling form s/Rds f(|x|/Rs), where Rs is the root-mean square radius of gyration of animals of s sites. We determine the exact scaling function for d = 1 to be f(r) = surdpi/2surd3 erfc(r/surd3). We also show that phi(x = 0, s) can be determined in terms of the animal number generating function of the directed animals.
Transverse acousto-electric effect in superconductors
NASA Astrophysics Data System (ADS)
Lipavský, P.; Koláček, J.; Lin, P.-J.
2016-06-01
We formulate a theory based on the time-dependent Ginzburg-Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman-Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.
Transverse ranges and neotectonics of southern California
Hill, M.L.
1990-01-01
The Transverse Ranges and the east-trending folds and reverse faults that elevate them began forming in mid-Pleistocene time by regional north-south crustal shortening. The adjacent Mojave Desert and Basin and Range provinces continue to respond to this regional strain by east-west crustal extension. Before {approximately}5 Ma the regional structure was characterized by conjugate northwest-trending right-slip faults (San Andreas set) and northeast-trending left-slip faults (Garlock set). Thereafter, the San Andreas set of faults became simple shears separating the North American and Pacific plates. With the mid-Pleistocene inception of the Transverse Ranges, the San Andreas fault deviated from its N40{degree} - 45{degree}W trend in short N75{degree}W-trending segments on the north and south sides of these mountains in response to the new, and local, strain system of upward crustal extension.
Transverse Instabilities in the Fermilab Recycler
Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab
2011-07-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.
Congenital urethrovaginal fistula with transverse vaginal septum.
Amer, Mohamed Ibrahim; Ahmed, Mortada El-Sayed; Ali, Ali Hagag
2016-08-01
Congenital urethrovaginal fistula is an extremely rare genitourinary anomaly. Literature search identified only five reported cases, all of which were associated with urogenital abnormalities. Transverse vaginal septum is another rare condition, resulting from abnormalities in the vertical fusion between the vaginal components of the Mullerian ducts and the urogenital sinus; and associated fistulous connection of the vagina with the urethra is even rarer. Herein we describe the case of a 35-year-old woman who presented with dyspareunia, and a 1-year history of infertility, who was found to have a urethrovaginal fistula with low transverse vaginal septum. The patient was successfully treated with excision of the septum and closure of the urethrovaginal fistula. PMID:27170419
Transverse mode imaging of guided matter waves
Dall, R. G.; Hodgman, S. S.; Johnsson, M. T.; Baldwin, K. G. H.; Truscott, A. G.
2010-01-15
Ultracold atoms whose de Broglie wavelength is of the same order as an extended confining potential can experience waveguiding along the potential. When the transverse kinetic energy of the atoms is sufficiently low, they can be guided in the lowest order mode of the confining potential by analogy with light guided by a single mode optical fiber. We have obtained the first images of the transverse mode structure of guided matter waves in a confining potential with up to 65% of atoms in the lowest order mode. The coherence of the guided atomic de Broglie waves is demonstrated by the diffraction pattern produced when incident upon a two dimensional periodic structure. Such coherent waveguides will be important atom optic components in devices with applications such as atom holography and atom interferometry.
MEASUREMENT OF TRANSVERSE ECHOES IN RHIC.
FISCHER, W.; SATOGATA, T.; TOMAS. R.
2005-05-16
Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time {tau} after the dipole kick, the beam re-cohered at time 2{tau} thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering.
Characteristics of transverse waves in chromospheric mottles
Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P.; Verth, G.; Erdélyi, R.; Morton, R. J.; Christian, D. J.
2013-12-10
Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ∼2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ∼280 ± 80 km.
[Acute transverse myelitis in a traveler].
García Allende, Natalia; García Posada, Mara J; Radosta, Mariana F; Sánchez, Ana V; Mayer Wolf, Micaela; Rodríguez, Viviana
2016-01-01
Acute transverse myelitis is defined as an acquired neuroimmune disorder of the spinal cord, which occurs as a consequence of a primary event, or directly related to an autoimmune inflammatory disease, an infectious or post-infectious disease. Amongst infectious etiologies, Borrelia spp., a tick-bourne anthropozoonosis of the ixodidae family, prevails. Approximately 10 to 15% of patients with Lyme disease undergo neurologic manifestations, with an assorted and uncertain array of clinical syndromes. Transverse myelitis accounts for up to 5% of Lyme neuroborreliosis. We describe the case of a traveler from endemic zone for Lyme disease, with encephalomyelitis secondary to acute infection by Borrelia burgderfori, with complete resolution of symptoms after concluding adequate antibiotic treatment. PMID:27576284
Single transverse-spin asymmetry in QCD
NASA Astrophysics Data System (ADS)
Koike, Yuji
2014-09-01
So far large single transverse-spin asymmetries (SSA) have been observed in many high-energy processes such as semi-inclusive deep inelastic scattering and proton-proton collisions. Since the conventional parton model and perturbative QCD can not accomodate such large SSAs, the framework for QCD hard processes had to be extended to understand the mechanism of SSA. In this extended frameworks of QCD, intrinsic transverse momentum of partons and the multi-parton (quark-gluon and pure-gluonic) correlations in the hadrons, which were absent in the conventional framework, play a crucial role to cause SSAs, and well-defined formulation of these effects has been a big challenge for QCD theorists. Study on these effects has greatly promoted our understanding on QCD dynamics and hadron structure. In this talk, I will present an overview on these theoretical activity, emphasizing the important role of the Drell-Yan process.
Transverse Momentum Dependent Hadron Multiplicities at COMPASS
NASA Astrophysics Data System (ADS)
Makke, Nour
2016-02-01
Unpolarised semi-inclusive deep inelastic scattering is receiving a growing interest as a powerful tool to access poorly known transverse momentum dependent parton distributions and fragmentation functions that play a key role in many processes, in particular in the study of the spin structure of the nucleon. These functions can be investigated through experimental observables. New results on these observables by the COMPASS experiment at CERN will be shown and discussed.
TRANSVERSE IMPEDANCE MEASUREMENT AT THE RHIC.
ZHANG,S.Y.; HUANG,H.; CAMERON,P.; DREES,A.; FLILLER,R.; SATOGATA,T.
2002-06-02
The RHIC transverse impedance was measured during the last operation run. Measurement of the imaginary part of the broadband impedance was the main goal. No large difference between the two rings was found nor in either plane. The measured tune shift is larger than the expected by a factor of 2.5 to 3. Several other issues such as the real part impedance measurement are also presented.
Broadband transverse electric surface wave in silicene
NASA Astrophysics Data System (ADS)
Ukhtary, M. Shoufie; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Saito, Riichiro
2016-08-01
Transverse electric (TE) surface wave in silicine is theoretically investigated. The TE surface wave in silicene is found to exhibit better characteristics compared with that in graphene, in terms of a broader frequency range and more confinement to the surface which originate from the buckled structure of silicene. We found that even undoped silicene can support the TE surface wave. We expect the similar characteristics of the TE surface wave in other two-dimensional materials that have a slightly buckled honeycomb lattice.
Ferrimagnetic behaviors in a transverse Ising nanoisland
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
In this paper, the phase diagrams and magnetizations of a magnetic nanoisland described by the transverse Ising model (TIM) are investigated by the use of the effective-field theory (EFT) with correlations. A lot of characteristic behaviors observed in standard ferrimagnetic materials as well as novel phenomena have been obtained, although the system consists of two finite spin-1/2 layers coupled antiferromagnetically with a negative interlayer coupling.
Transverse Stress Fracture of the Proximal Patella
Atsumi, Satoru; Arai, Yuji; Kato, Ko; Nishimura, Akinobu; Nakazora, Shigeto; Nakagawa, Shuji; Ikoma, Kazuya; Fujiwara, Hiroyoshi; Sudo, Akihiro; Kubo, Toshikazu
2016-01-01
Abstract Among stress fractures associated with sports activities, patellar stress fracture is rare. Regarding patella stress fractures, so far only distal transverse or lateral longitudinal fractures have been reported, but there are no reports of transverse fractures occurring in the proximal patella. We describe an extremely rare case of transverse stress fracture of proximal patella in a 9-year-old athlete. A 9-year old boy, who participated in sports (sprints and Kendo) presented with left knee pain without any external injury. In plain radiographs, a fracture line was observed in the proximal 1/3 of the left patella, and a patella stress fracture was diagnosed. For treatment, because 7 months of conservative therapy showed no improvement, internal fixation was carried out using Acutrak screws, and bone union was thus achieved. Three months after the operation, he was able to return to his previous level of athletic sports activity. Regarding the mechanism of onset, it is believed that the causes are longitudinal traction force and patellofemoral contact pressure. On the other hand, the contact region of the patella with the femur changes with the flexion angle of the knee. In the current case, the fracture occurred at a site where the patella was in contact with the femur at a flexion angle of >90°, so it is believed that it occurred as a clinical condition from being subjected to repeated longitudinal traction force and patellofemoral contact pressure at a flexion angle of >90°, during the sports activities of sprints and Kendo. The nonunion of the transverse stress fracture of his proximal patella was successfully treated with internal fixation using Acutrak screws. PMID:26871789
Electron in a transverse harmonic cavity
Honkanen, H.; Maris, P.; Vary, J.P.; Brodsky, S.J.; /SLAC
2010-10-27
We employ Hamiltonian light-front quantum field theory in a basis function approach to solve the non-perturbative problem of an electron in a strong scalar transverse confining potential. We evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the anticipated accuracy.
Extraction of Transversity and Collins Functions
Anselmino, Mauro; Boglione, Mariaelena; D'Alesio, Umberto; Melis, Stefano; Murgia, Francesco; Prokudin, Alexei
2014-01-01
We present a global re-analysis of recent experimental data on azimuthal asymmetries in semi-inclusive deep inelastic scattering, from the HERMES and COMPASS Collaborations, and in e{sup +}e{sup -} --> h_1h_2X processes, from the Belle Collaboration. The transversity distribution and the Collins functions are extracted simultaneously, in a revised analysis which also takes into account a new parameterization of the unknown functions.
Observations of the PSR transverse instability
Colton, E. ); Fitzgerald, D.; Hardek, T.; Macek, R.J.; Plum, M.A.; Thiessen, H.A.; Wang, T.S. ); Neuffer, D. )
1991-01-01
A fast instability with beam loss is observed in the Los Alamos Proton Storage Ring (PSR) when the injected beam current exceeds thresholds, with both bunched and unbunched beams. Large coherent transverse oscillations occur before and during beam loss. Recent observations of the instability indicate that it is an e-p''-type instability, driven by coupled oscillations due to electrons trapped within the proton beam. 5 refs., 3 figs.
Superparamagnetism and dynamic transverse susceptibility in magnetic
NASA Astrophysics Data System (ADS)
Spinu, L.; Srikanth, H.; O'Connor, C. J.
2000-03-01
Dynamic transverse susceptibility (\\chi _T) measurements yield important information about spin dynamics in magnetic materials. They also provide a very sensitive and unique way to probe the magnetic anisotropy in novel systems like nanoparticles. We have developed a resonant method based on a tunnel-diode oscillator (TDO) operating at around 5 MHz to accurately measure the variation in dynamic transverse susceptibility over a wide range in temperature (5K to 300K) and static magnetic fields (0 to 9 T). Our experiments on magnetic nanoparticles (γ -Fe_2O_3/Ag nanocomposites), synthesized using reverse-micelle technique, reveal singular peaks in the low temperature transverse susceptibility at characteristic anisotropy fields (± 400 Oe). As the temperature is increased, the peaks evolve from being asymmetric to symmetric and eventually disappear at high temperatures well into the superparamagnetic regime. For the first time, we have mapped the complete variation of \\chi T in the H-T plane. We have also theoretically analyzed our results based on coherent rotation and find good agreement with a two-level model developed by us that includes thermal relaxation effects. This work is supported by DARPA through grant No. MDA 972-97-1-003
Viscoelasticity of Tendons Under Transverse Compression.
Paul Buckley, C; Samuel Salisbury, S T; Zavatsky, Amy B
2016-10-01
Tendons are highly anisotropic and also viscoelastic. For understanding and modeling their 3D deformation, information is needed on their viscoelastic response under off-axis loading. A study was made, therefore, of creep and recovery of bovine digital extensor tendons when subjected to transverse compressive stress of up to ca. 100 kPa. Preconditioned tendons were compression tested between glass plates at increasing creep loads. The creep response was anomalous: the relative rate of creep reduced with the increasing stress. Over each ca. 100 s creep period, the transverse creep deformation of each tendon obeyed a power law dependence on time, with the power law exponent falling from ca. 0.18 to an asymptote of ca. 0.058 with the increasing stress. A possible explanation is stress-driven dehydration, as suggested previously for the similar anomalous behavior of ligaments. Recovery after removal of each creep load was also anomalous. Relative residual strain reduced with the increasing creep stress, but this is explicable in terms of the reducing relative rate of creep. When allowance was made for some adhesion occurring naturally between tendon and the glass plates, the results for a given load were consistent with creep and recovery being related through the Boltzmann superposition principle (BSP). The tendon tissue acted as a pressure-sensitive adhesive (PSA) in contact with the glass plates: explicable in terms of the low transverse shear modulus of the tendons. PMID:27496279
Cladding for transverse-pumped solid-state laser
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)
1989-01-01
In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.
Xodo, Serena; Saccone, Gabriele; Cromi, Antonella; Ozcan, Pinar; Spagnolo, Emanuela; Berghella, Vincenzo
2016-07-01
It is imperative to have evidence-based guidelines for cesarean delivery. The aim of this meta-analysis was to evaluate the effectiveness of a cephalad-caudad compared to transverse blunt expansion of the uterine incision to reduce blood loss in women who underwent low-segment transverse cesarean delivery. We therefore performed a systematic search in electronic databases from their inception until March 2016. We included all randomized trials comparing cephalad-caudad versus transverse (control group) blunt expansion of the uterine incision in women who underwent a low transverse cesarean delivery. The primary outcome was postpartum blood loss, defined as the mean amount of blood loss (mL). Two trials (921 women) were analyzed. After the transverse uterine incision in the lower uterine segment with the scalpel, the uterine incision was then bluntly expanded by the designated method. Blunt expansion of the primary incision was derived by placing the index fingers of the operating surgeon into the incision and pulling the fingers apart laterally (transverse group) or cephalad (cephalad-caudad group). Women who were randomized in the cephalad-caudad group had lower: mean of postpartum blood loss, hemoglobin drop and hematocrit drop 24h after cesarean, unintended extension, uterine vessels injury, blood loss >1500mL and need for additional stitches. There was no statistically significant difference in the incidence of blood loss >1000mL, in the operating time and in post-operative pain. In conclusion, expansion of the uterine incision with fingers in a cephalad-caudad direction is associated with better maternal outcomes and, therefore, should be preferred to transverse expansion during a cesarean delivery. PMID:27180273
Longitudinal and transverse mode evolution in free electron laser
Dattoli, G.; Giannessi, L.; Georgii, R.
1995-12-31
We use the method of Padg approximants and Fourier transform techniques to treat analytically the problem of transverse and longitudinal mode evolution in FELs. We obtain simple relations providing a transparent understanding of the dynamic of pulse propagation effects and of transverse mode guiding. We discuss the interplay with inhomogeneous broadening effects and derive gain formulae including longitudinal and transverse mode couplings.
New transverse piezoresistance and pinch effect electromechanical transducers - A concept
NASA Technical Reports Server (NTRS)
Pittelli, E.; Rinder, W.
1970-01-01
Device, under longitudinal bias, responds to pressure input with a transverse voltage proportional to the pressure signal. In the absence of a signal, the transverse voltage is zero even with bias, and, regardless of temperature, if the transverse contacts are appropriately positioned along a zero-pressure equipotential.
46 CFR 154.174 - Transverse contiguous hull structure.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards...
46 CFR 154.174 - Transverse contiguous hull structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards...
Physical modeling of transverse drainage mechanisms
NASA Astrophysics Data System (ADS)
Douglass, J. C.; Schmeeckle, M. W.
2005-12-01
Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
NASA Astrophysics Data System (ADS)
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers
Transversity GPD in photo- and electroproduction of two vectormesons
Enberg, Rikard; Pire, Bernard; Szymanowski, Lech
2006-01-17
The chiral-odd generalized parton distribution (GPD), or transversity GPD, of the nucleon can be accessed experimentally through the photo- or electroproduction of two vector mesons on a polarized nucleon target, {gamma}{sup (*)}N {yields} {rho}{sub 1}{rho}{sub 2}N', where {rho}{sub 1} is produced at large transverse momentum, {rho}{sub 2} is transversely polarized, and the mesons are separated by a large rapidity gap. We predict the cross section for this process for both transverse and longitudinal {rho}{sub 2} production. To this end we propose a model for the transversity GPDH{sub T}(x,{zeta},t), and give an estimate of the relative sizes of the transverse and longitudinal {rho}{sub 2}cross sections. We show that a dedicated experiment at high energy should be able to measure the transversity content of the proton.
Transversity, Transversity-Odd Distributions and Asymmetries in DRELL-YAN Processes
NASA Astrophysics Data System (ADS)
Goldstein, Gary R.; Gamberg, L. P.
After a brief recap of Transversity it is noted that Drell-Yan unpolarized processes display large azimuthal asymmetries. One such asymmetry, cos(2π), is directly related to the leading twist transversity distribution h⊥1(x, kT). We use a model developed for semi-inclusive deep inelastic scattering that determines the Sivers function f⊥1T(x, kT) to predict the Drell-Yan asymmetry ν as a function of q2, qT and x. The resulting predictions include a non-leading twist contribution from spin-averaged distributions that measurably effect lower energy results.
Melamed, Timor; Abuhasira, Dor; Dayan, David
2012-06-01
The present contribution is concerned with applying beam-type expansion to a planar aperture time-dependent (TD) electromagnetic field in which the propagating elements, the electromagnetic pulsed-beams, are a priori decomposed into transverse electric (TE) and transverse magnetic (TM) field polarizations. The propagating field is described as a discrete superposition of tilted, shifted, and delayed TE and TM electromagnetic pulsed-beam propagators over the frame spectral lattice. These waveobjects are evaluated by using TD plane-wave spectral representations. Explicit asymptotic expressions for electromagnetic isodiffracting pulsed-quadratic beam propagators are presented, as well as a numerical example. PMID:22673443
Single hadron transverse spin asymmetries from COMPASS
Bradamante, Franco
2007-06-13
Transverse spin physics is an important part of the scientific programme of the COMPASS experiment at CERN. The analysis of the data taken with the target polarized orthogonally to the 160 GeV/c muon beam momentum has allowed to measure for the first time the Collins and Sivers asymmetries of the deuteron. Both for the positive and the negative hadrons produced in semi-inclusive DIS the measured asymmetries are small and, within errors, compatible with zero. New results for {pi}{+-} ans K{+-} are presented here.
Macrocrack interaction with transverse array of microcracks
NASA Technical Reports Server (NTRS)
Rubinstein, A. A.; Choi, H. C.
1988-01-01
General formulation of a problem involving a macrocrack propagating through an area with microcracks is considered. The analysis is based on the simultaneous solution of a system of singular integral equations. Various methods described in the literature are discussed in detail and compared. The specific problem considered was a macrocrack approaching an infinite transverse array of microcracks. Results illustrate the effects of different loading types and can be used for interpretation of the microcrack toughening mechanisms. Numerical comparisons are made with data recently appearing in literature which demonstrates the importance of numerical accuracy. Reported results differ by a factor in certain cases as compared with data given in other literature.
Macrocrack interaction with transverse array of microcracks
NASA Technical Reports Server (NTRS)
Rubinstein, A. A.; Choi, H. C.
1987-01-01
General formulation of a problem involving a macrocrack propagating through an area with microcracks is considered. The analysis is based on the simultaneous solution of a system of singular integral equations. Various methods described in the literature are discussed in detail and compared. The specific problem considered was a macrocrack approaching an infinite transverse array of microcracks. Results illustrate the effects of different loading types and can be used for interpretation of the microcrack toughening mechanisms. Numerical comparisons are made with data recently appearing in literature which demonstrates the importance of numerical accuracy. Reported results differ by a factor in certain cases as compared with data given in other literature.
Ferrimagnetism in a transverse Ising antiferromagnet
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
The phase diagrams and temperature dependences of total magnetization mT in a transverse Ising antiferromagnet consisting of alternating two (A and B) layers are studied by the uses of the effective-field theory with correlations and the mean-field-theory. A lot of characteristic phenomena, namely ferrimagnetic behaviors, have been found in the mT, when the crystallographically equivalent conditions between the A and B layers are broken. The appearance of a compensation point has been found below its transition temperature.
Interacting dark sector with transversal interaction
Chimento, Luis P.; Richarte, Martín G.
2015-03-26
We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.
Transversely isotropic elasticity imaging of cancellous bone.
Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F
2011-06-01
To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally
Tornados and Transverse Oscillations during Prominence Eruption
NASA Astrophysics Data System (ADS)
Banerjee, Dipankar; Chandrashekhar, K.; Morton, Richard; Pant, Vaibhav; Datta, Ajanta
2016-07-01
We report and analyse different phases of a prominence eruption. The winding-unwinding of two footpoints and a tornado like swirling motion is studied. The prominence eruption is observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). This prominence eruption is associated with a CME at a central principal angle of 340 degree, according to the SOHO/LASCO CME catalogue. We can observe the prominence threads and the time distance maps reveal that the loop threads are entangled. We also study the transverse oscillations in the threads. Swirling motions after the eruptions are also quantified and its possible link with the CME kinematics is also studied
Transversely Hessian foliations and information geometry
NASA Astrophysics Data System (ADS)
Boyom, Michel Nguiffo; Wolak, Robert
2015-01-01
A family of probability distributions parametrized by an open domain Λ in Rn defines the Fisher information matrix on this domain which is positive semi-definite. In information geometry the standard assumption has been that the Fisher information matrix is positive definite defining in this way a Riemannian metric on Λ. If we replace the "positive definite" assumption by "0-deformable" condition a foliation with a transvesely Hessian structure appears naturally. We develop the study of transversely Hessian foliations in view of applications in information geometry.
Transverse profile imager for ultrabright electron beams
NASA Astrophysics Data System (ADS)
Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem
2015-08-01
A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.
Torsion and transverse sensing of conical shells
NASA Astrophysics Data System (ADS)
Li, H.; Chen, Z. B.; Tzou, H. S.
2010-10-01
Conical shells are widely used as payload/rocket adapters in rocket fairing systems. Generally, the conical shells are clamped at the major end and free at the minor end, where the payload is mounted. This study focuses on the dynamic sensing of conical shells with fix-free boundary conditions (BCs) by using distributed piezoelectric helical sensors. Two types of motion are studied, i.e., the transverse modes and the torsion modes. The shear-type sensors for shells sensing are presented first. Formulations of sensing signals of a general shell of revolution are presented, and then simplified to conical shells. For sensing of transverse vibrations, thin piezoelectric sensors are laminated on the top surface. Two types of sensor distribution are considered: a fully distributed and a helical or diagonal laminated. The total signal consists of four components resulting from the four strain components, and each of them is evaluated in detail. For sensing of torsion vibrations, a meridional polarized shear-type sensor with side electrodes is layered on the top surface of the shell structure. Sensing signals of natural shell modes are also evaluated. Analyses show that, in low order modes, the sensing signals induced by the circumferential membrane strains are the primary components of the total signal generations. The numerical results indicate the optimal location of the sensors. The proposed method is capable of determining the modal participation factors, while the testing signal is available; it is also capable of determining the mode shapes by using several distributed sensor segments.
Transversely accelerated ions in the topside ionosphere
NASA Technical Reports Server (NTRS)
Retterer, John M.; Chang, Tom; Jasperse, J. R.
1994-01-01
Data from the rocket campaigns Mechanism in the Auroral Region for Ion Energization (MARIE) and TOpside Probe of the Auroral Zone (TOPAZ) III, within regions of low-altitude transversely accelerated ions, are interpreted to explain the acceleration of the ions. Using the Monte Carlo kinetic technique to evaluate the ion heating produced by the simultaneously observed lower hybrid waves, we find that their observed electric field amplitudes are sufficient to explain the observed ion energies in the MARIE event. Much of the uncertainty in evaluating the efficiency of a plasma wave induced particle heating process which is dependent on a velocity resonance comes from the lack of information on the phase velocities of the waves. In the case of the MARIE observations, our modeling efforts show that features in the ion velocity distribution are consistent with the wave phase velocities inferred from interferometer measurements of wavelengths. The lower hybrid waves with which low-altitude transversely accelerated ions are associated are frequently observed to be concentrated in small-scale wave packets called 'spikelets'. We demonstrate through the scaling of the size of these wave packets that they are consistent with the theory of lower hybrid collapse. Using the Monte Carlo technique, we find that if the lower hybrid field energy is concentrated in these wave packets, it is still adequate to accelerate the ionospheric ions to the observed energies.
Single transverse spin asymmetry of forward neutrons
NASA Astrophysics Data System (ADS)
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Iván; Soffer, J.
2011-12-01
We calculate the single transverse spin asymmetry AN(t), for inclusive neutron production in pp collisions at forward rapidities relative to the polarized proton in the energy range of RHIC. Absorptive corrections to the pion pole generate a relative phase between the spin-flip and nonflip amplitudes, leading to a transverse spin asymmetry which is found to be far too small to explain the magnitude of AN observed in the PHENIX experiment. A larger contribution, which does not vanish at high energies, comes from the interference of pion and a1-Reggeon exchanges. The unnatural parity of a1 guarantees a substantial phase shift, although the magnitude is strongly suppressed by the smallness of diffractive πp→a1p cross section. We replace the Regge a1 pole by the Regge cut corresponding to the πρ exchange in the 1+S state. The production of such a state, which we treat as an effective pole a, forms a narrow peak in the 3π invariant mass distribution in diffractive πp interactions. The cross section is large, so one can assume that this state saturates the spectral function of the axial current and we can determine its coupling to nucleons via the partially conserved axial-vector-current constraint Goldberger-Treiman relation and the second Weinberg sum rule. The numerical results of the parameter-free calculation of AN are in excellent agreement with the PHENIX data.
Transversal mixing in the gastrointestinal tract
NASA Astrophysics Data System (ADS)
Vainchtein, Dmitri; Orthey, Perry; Parkman, Henry
2015-11-01
We discuss results of numerical simulations and analytical modeling of transversal intraluminal mixing in the GI tract produced by segmentation and peristaltic contractions. Particles that start in different parts of the small intestine are traced over several contractions and mixing is described using the particles' probability distribution function. We show that there is optimal set of parameters of contractions, such as the depth and frequency, that produces the most efficient mixing. We show that contractions create well-defined advection patterns in transversal direction. The research is inspired by several applications. First, there is the study of bacteria populating the walls of the intestine, which rely on fluid mixing for nutrients. Second, there are gastrointestinal diseases, such as Crohn's disease, which can be treated effectively using a drug delivery capsule through GI tract, for which it is needed to know how long it takes for a released drug to reach the intestinal wall. And finally, certain neurological and muscular deceases change the parameters of contractions, thus reducing the efficiency of mixing. Understanding an admissible range of the parameters (when mixing is still sufficient for biological purposes) may indicate when the medical action is required.
Transversal and longitudinal mixing in compound channels
NASA Astrophysics Data System (ADS)
Besio, G.; Stocchino, A.; Angiolani, S.; Brocchini, M.
2012-12-01
An experimental campaign, based on particle image velocimetry (PIV) measurements of free-surface velocities, forms the basis for an analysis of the mixing processes which occur in a compound-channel flow. The flow mixing is characterized in terms of Lagrangian statistics (absolute dispersion and diffusivity) and of the related mean flow characteristics. Mixing properties strongly depend on the ratiorh between the main channel flow depth (h*mc) and the floodplain depth (h*fp), and three flow classes can be identified, namely shallow, intermediate, and deep flows. In the present study the large time asymptotic behavior of the mixing characteristics is analyzed in terms of the absolute diffusivity in order to characterize typical values of longitudinal and transversal diffusivity coefficients. Various sets of experiments, which cover a wide range of the governing physical parameters, have been performed and the asymptotic values of the absolute diffusivity have been evaluated. The results are then compared with several studies of flow dispersion for both the longitudinal diffusivity coefficient and the transversal turbulent mixing coefficient. The present results highlight a stronger dependence of such coefficients with the flow-depth ratio than with the flow regime (Froude number).
Missing transverse energy performance of the CMS detector
Chatrchyan, Serguei; et al.
2011-09-01
During 2010 the LHC delivered pp collisions with a centre-of-mass energy of 7 TeV. In this paper, the results of comprehensive studies of missing transverse energy as measured by the CMS detector are presented. The results cover the measurements of the scale and resolution for missing transverse energy, and the effects of multiple pp interactions within the same bunch crossings on the scale and resolution. Anomalous measurements of missing transverse energy are studied, and algorithms for their identification are described. The performances of several reconstruction algorithms for calculating missing transverse energy are compared. An algorithm, called missing-transverse-energy significance, which estimates the compatibility of the reconstructed missing transverse energy with zero, is described, and its performance is demonstrated.
Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration
Cho, Myung-Hoon; Kim, Young-Kuk; Hur, Min Sup
2013-09-15
We present electron trapping in an ellipsoidal bubble which is not well explained by the spherical bubble model by [Kostyukov et al., Phys. Rev. Lett. 103, 175003 (2009)]. The formation of an ellipsoidal bubble, which is elongated transversely, frequently occurs when the spot size of the laser pulse is large compared to the plasma wavelength. First, we introduce the relation between the bubble size and the field slope inside the bubble in longitudinal and transverse directions. Then, we provide an ellipsoidal model of the bubble potential and investigate the electron trapping condition by numerical integration of the equations of motion. We found that the ellipsoidal model gives a significantly less restrictive trapping condition than that of the spherical bubble model. The trapping condition is compared with three-dimensional particle-in-cell simulations and the electron trajectory in test potential simulations.
A new fifth parameter for transverse isotropy II: partial derivatives
NASA Astrophysics Data System (ADS)
Kawakatsu, Hitoshi
2016-04-01
Kawakatsu et al. (2015) and Kawakatsu (2016) introduced a new fifth parameter, ηκ, to describe transverse isotropy (TI). Considering that ηκ characterizes the incidence angle dependence of bodywave phase velocities for TI models, its relevance for bodywave seismology is obvious. Here we derive expressions for partial derivatives (sensitivity kernels) of surface wave phase velocity and normal mode eigen-frequency for the new set of five parameters. The partial derivative for ηκ is about twice as large as that for the conventional η, indicating that ηκ should be more readily resolved. While partial derivatives for S-velocities are not so changed, those for P-velocities are significantly modified; the sensitivity for anisotropic P-velocities is greatly reduced. In contrary to the suggestion by Dziewonski & Anderson (1981) and Anderson & Dziewonski (1982), there is not much control on the anisotropic P-velocities. On the other hand, the significance of ηκ for long-period seismology has become clear.
TRANSVERSE OSCILLATIONS OF A LONGITUDINALLY STRATIFIED CORONAL LOOP SYSTEM
Fathalian, N.; Safari, H. E-mail: safari@znu.ac.i
2010-11-20
Collective transverse coronal loop oscillations seem to be detected in observational studies. In this regard, Luna et al. modeled the collective kink-like normal modes of several cylindrical loop systems using the T-matrix theory. This paper investigates the effects of longitudinal density stratification along the loop axis on the collective kink-like modes of the system of coronal loops. The coronal loop system is modeled as cylinders of parallel flux tubes, with two ends of each loop at the dense photosphere. The flux tubes are considered as uniform magnetic fields, with stratified density along the loop axis which changes discontinuously at the lateral surface of each cylinder. The MHD equations are reduced to solve a set of two coupled dispersion relations for frequencies and wavenumbers, in the presence of a stratification parameter. The fundamental and first overtone frequencies and longitudinal wavenumbers are computed. The previous results are verified for an unstratified coronal loop system. Finally, we conclude that an increased longitudinal density stratification parameter will result in an increase of the frequencies. The frequency ratios, first overtones to fundamentals, are very sensitive functions of the density scale height parameter. Therefore, stratification should be included in dynamics of coronal loop systems. For unstratified coronal loop systems, these ratios are the same as monoloop ones.
Mediterranean diet and faecal microbiota: a transversal study.
Gutiérrez-Díaz, I; Fernández-Navarro, T; Sánchez, B; Margolles, A; González, S
2016-05-18
Despite the existing evidence on the impact of olive oil and red wine on the intestinal microbiota, the effect of the global Mediterranean Diet (MD) has not been sufficiently studied. We explored the association between the adherence to a Mediterranean dietary pattern, and its components, with faecal microbiota in a cohort of adults with non-declared pathology. This transversal study involved 31 adults without a previous diagnosis of cancer, autoimmune or digestive diseases. Based on the data obtained by means of an annual food frequency questionnaire (FFQ), and the information existing in the literature, a Mediterranean Diet Score (MDS) was calculated. Dietary fibre was obtained from Marlett et al. tables and Phenol-Explorer Database was used for phenolic compounds intake. Quantification of microbial groups was performed by Ion Torrent 16S rRNA gene-based analysis and quantification of short-chain fatty acids (SCFAs) was performed using gas chromatography-mass spectrometry (MS). MDS was associated with a higher abundance of Bacteroidetes (p = 0.001), Prevotellacea (p = 0.002) and Prevotella (p = 0.003) and a lower concentration of Firmicutes (p = 0.003) and Lachnospiraceae (p = 0.045). Also, in subjects with MDS ≥ 4, higher concentrations of faecal propionate (p = 0.034) and butyrate (p = 0.018) were detected. These results confirm the complexity of the diet-microbiota interrelationship. PMID:27137178
Simulations of a Detonation Wave in Transverse Magnetic Fields
NASA Astrophysics Data System (ADS)
Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc
2010-11-01
Numerical simulations of magneto-hydrodynamic (MHD) effects on detonation wave structures are performed, with applications to flow control and MHD power extraction in Pulse Detonation Engines (PDE) and their design variations. In contrast to prior studies of MHD interactions in PDEs,ootnotetextCambier, et al., AIAA-2008-4688 the effects of the finite relaxation length scale for ionization on the stability of the detonation wave are examined. Depending on the coupling parameters, the magnetic field can quench the detonation and effectively act as a barrier to its propagation. Conversely, an applied transient magnetic field can exert a force on a pre-ionized gas and accelerate it. The dynamics are subject to non-linear effects; a propagating transverse magnetic field will initially exert a small force if the gas has a low conductivity and the magnetic Reynolds number (Rem) is low. Nevertheless, the gas accelerated by the "piston" action of the field can pre-heat the ambient gas and increase its conductivity. As the wave progresses, Rem increases and the magnetic field becomes increasingly effective. The dynamics of this process are examined in detail with a high-order shock-capturing method and full kinetics of combustion and ionization. The complex chemical kinetics calculations are ported onto a GPU using the CUDA language, and computational performance is compared with standard CPU-based computations.
Transverse chromatic aberration after corneal refractive surgery
NASA Astrophysics Data System (ADS)
Anera, R. G.; Jiménez, J. R.; Jiménez del Barco, L.; Hita, E.
2005-05-01
An expression has been deduced theoretically from a schematic-eye model, for the transverse or lateral chromatic aberration (TCA) after refractive surgery. The aim was to investigate analytically how chromatic aberration varies after the emmetropization process. These changes in the TCA have been characterized from changes in corneal asphericity. The results indicate that TCA after refractive surgery diminishes as the degree of myopia increases, a trend contrary to that occurring with monochromatic aberrations, such as spherical or coma. These results can explain the fact that the real deterioration of the visual function under photopic conditions detected in those operated on for myopia is less than expected when only monochromatic aberrations are taken into account.
Definition and Evolution of Transverse Momentum Distributions
NASA Astrophysics Data System (ADS)
Echevarría, Miguel G.; Idilbi, Ahmad; Scimemi, Ignazio
We consider the definition of unpolarized transverse-momentum-dependent parton distribution functions while staying on-the-light-cone. By imposing a requirement of identical treatment of two collinear sectors, our approach, compatible with a generic factorization theorem with the soft function included, is valid for all non-ultra-violet regulators (as it should), an issue which causes much confusion in the whole field. We explain how large logarithms can be resummed in a way which can be considered as an alternative to the use of Collins-Soper evolution equation. The evolution properties are also discussed and the gauge-invariance, in both classes of gauges, regular and singular, is emphasized.
PEP-II Transverse Feedback Electronics Upgrade
Weber, J.; Chin, M.; Doolittle, L.; Akre, R.
2005-05-09
The PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC) requires an upgrade of the transverse feedback system electronics. The new electronics require 12-bit resolution and a minimum sampling rate of 238 Msps. A Field Programmable Gate Array (FPGA) is used to implement the feedback algorithm. The FPGA also contains an embedded PowerPC 405 (PPC-405) processor to run control system interface software for data retrieval, diagnostics, and system monitoring. The design of this system is based on the Xilinx(R) ML300 Development Platform, a circuit board set containing an FPGA with an embedded processor, a large memory bank, and other peripherals. This paper discusses the design of a digital feedback system based on an FPGA with an embedded processor. Discussion will include specifications, component selection, and integration with the ML300 design.
PEP-II Transverse Feedback Electronics Upgrade
Weber, J.M.; Chin, M.J.; Doolittle, L.R.; Akre, R.; /SLAC
2006-03-13
The PEP-II B Factory at the Stanford Linear Accelerator Center (SLAC) requires an upgrade of the transverse feedback system electronics. The new electronics require 12-bit resolution and a minimum sampling rate of 238 Msps. A Field Programmable Gate Array (FPGA) is used to implement the feedback algorithm. The FPGA also contains an embedded PowerPC 405 (PPC-405) processor to run control system interface software for data retrieval, diagnostics, and system monitoring. The design of this system is based on the Xilinx{reg_sign} ML300 Development Platform, a circuit board set containing an FPGA with an embedded processor, a large memory bank, and other peripherals. This paper discusses the design of a digital feedback system based on an FPGA with an embedded processor. Discussion will include specifications, component selection, and integration with the ML300 design.
Transverse effects of microbunch radiative interaction
Derbenev, Ya.S.; Shiltsev, V.D.
1996-06-03
In this article the authors study effects of microbunch cooperative electromagnetic radiation in a bend on transverse beam dynamics. An overtaking radiative interaction between different parts of the bunch results in three major forces variable along the bunch. Longitudinal force leads to energy loss and causes the bunch emittance growth in the bend due to the dispersion effect. Radial force consists of logarithmically large ``Talman`` centrifugal force and smaller centripetal force. Due to general radius-energy dependence in the bend, the ``Talman`` force does not affect beam dynamics while the centripetal force leads to projected emittance growth. Finally, radial and vertical focusing forces lead to trajectory distortions which vary along the bunch. These cooperative forces significantly affect the dynamics of short high-populated bunch in bends.
Inclusive Higgs Production at Large Transverse Momentum
NASA Astrophysics Data System (ADS)
Zhang, Hong; Braaten, Eric
2016-03-01
The transverse momentum (pT) distribution of Higgs is important to check our understanding of the Standard Model, and study new physics. The effective field theory for Higgs, obtained by integrating out the top quark, breaks down when pT is larger than 200 GeV. We calculate the pT distribution at much larger pT using the framework of factorization, in which the cross section is expressed as convolutions of hard-scattering cross sections and fragmentation functions, with the leading logarithms of pT2 /mH2 resummed to all orders. By separating the scales mH and pT, the higher order radiative correction can be greatly simplified. Work supported in part by the Department of Energy under Grant DE-SC0011726.
Transverse susceptibility method in nanoparticulate magnetic media.
Cimpoesu, Dorin; Spinu, Leonard; Stancu, Alexandru
2008-06-01
Transverse susceptibility (TS) method is a reliable method for the determination of anisotropy in nanoparticulate media. To correctly evaluate the value of anisotropy in various modern nanostructured materials, a number of theoretical problems related to the method have to be well understood to avoid significant systematic errors. This paper presents the state of the art in the TS method which includes the expression for single domain particles with any type of anisotropy, the theoretical and micromagnetic, using Landau-Lifshitz-Gilbert (LLG) equation and stochastic LLG equation studies of the effects of ac field amplitude, inter-particle interactions, and magnetic relaxation. The problem of both real and imaginary parts of the TS signal is also discussed. PMID:18681012
First-principles transversal DNA conductance deconstructed
Zhang, Xiaoguang; Krstic, Predrag; Zikic, Radomir; Wells, Jack C; Fuentes-Cabrera, Miguel A
2006-01-01
First-principles calculation of the transverse conductance across DNA fragments placed between gold nanoelectrodes, reveals that such conductance describes electron tunneling that depends critically on geometrical rather than electronic-structure properties. By factoring the first-principles result into two simple and approximately independent tunneling factors, we show that the conductances of the A, C, G, and T fragments differ only because of their sizes: the larger is the DNA base, the smaller is the distance that separates the electrode from the corresponding molecule, and the larger is its conductance. Because the geometrical factors are difficult to control in an experiment, the DC-current measurements across DNA may not be a convenient approach to DNA sequencing.
Potentials for transverse trace-free tensors
NASA Astrophysics Data System (ADS)
Conboye, Rory; Murchadha, Niall Ó.
2014-04-01
In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space.
Coronal seismology using transverse loop oscillations
NASA Astrophysics Data System (ADS)
Verwichte, E.; Foullon, C.; Van Doorsselaere, T.; Smith, H. M.; Nakariakov, V. M.
2009-12-01
Coronal seismology exploits the properties of magnetohydrodynamics in the corona of the Sun to diagnose the local plasma. Therefore, seismology complements direct diagnostic techniques, which suffer from line-of-sight integration or may not give access to all physical quantities. In particular, the seismological exploitation of fast magnetoacoustic oscillations in coronal loops provides information about the global magnetic and density structuring of those loops acting as wave guides. From the oscillation period and damping time it is shown how to obtain information about the local coronal magnetic field as well as the longitudinal and transverse structuring. Furthermore, such studies motivate the development of coronal wave theories, which are also relevant to the coronal heating problem.
A Hardware transverse beam frequency response simulator
Ning, J.; Tan, C.Y.; /Fermilab
2005-05-01
We built an electronic instrument that can mimic the transverse beam frequency response. The instrument consists of (1) a time delay circuit with an analog-to-digital converter (ADC) which contains a first-in-first-out random assess memory (FIFO RAM) and a digital-to-analog converter (DAC); (2) a variable phase shifter circuit which is based on an all pass filter with a bandwidth of 25kHz to 30kHz and (3) a commutating filter which is a nonlinear band pass filter. With this instrument, we can dynamically adjust the betatron tune, the synchrotron tune, and the chromaticity. Using this instrument, we are able to test other beam systems without using actual beam.
Transverse (Harris) lines in Irish archaeological remains.
Hughes, C; Heylings, D J; Power, C
1996-09-01
Transverse lines were examined in 633 long bones from 73 individuals exhumed from two burial sites in the Republic of Ireland: Waterford City and Tintern Abbey. The burials cover four distinct periods between the 11th and 17th centuries. Lines were most numerous in the tibia, especially in the distal segment, and were not seen in the humerus nor the proximal part of the femur. The number of lines varied between the proximal and distal segments of each long bone, and though apparently equal in number across the midline, there were significant differences in the incidence of lines between corresponding pairs of bones. Thus, it is unwise to rely on the results of a single bone or one type of long bone alone either to indicate the health status of an individual, or as the basis for assessing the health status of a small population. Such results should be used only in association with other indicators. PMID:8876817
Formability Studies on Transverse Tailor Welded Blanks
Bhaskar, V. Vijay; Narasimhan, K.
2005-08-05
Tailor Welded Blanks (TWB) technology is one of the several approaches that have been used to reduce the weight of the automobile body. TWBs are made up of two or more blanks having different/same properties (geometry, material etc.) prior to forming. The formability of these blanks depends on material and geometric parameters like strength ratio and thickness ratio. The study of these blanks can be classified on the basis of the weld orientation chosen viz. transverse weld or longitudinal weld with respect to the major straining direction.This paper studies the formability issues related to transverse TWB by FE simulation. The formability is assessed by analyzing tensile and Limit Dome Height (LDH) tests. The weld region is assumed to be a line in all the simulations. While modeling the tensile test, ultimate tensile strength (UTS) and elongation are monitored, and in LDH testing, pole height and maximum load (in near plane strain condition) are monitored. LDH testing shows that as thickness ratio increases, the load bearing capacity and the pole height decreases. There is a contribution from both the thicker and the thinner blank to the overall deforming volume. Failure location analysis shows that there is an abrupt change in the location of the failure from punch nose region to weld line region as the thickness ratio reaches a critical magnitude (1.08).The study of material properties shows that as the yield strength ratio (S ratio) and strain hardening exponent ratio (N ratio) between the blanks increases, the maximum load which the blank can sustain without failure (UTS) increases. This becomes constant and comparable to that of single sheet at higher N and S ratios.
Transversity from First Principles in QCD
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2012-02-16
Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = 0 fixed pole contribution which appears in the real part of the virtual Compton amplitude. AdS/QCD, together with 'Light-Front Holography', provides a simple Lorentz-invariant color-confining approximation to QCD which is successful in accounting for light-quark meson and baryon spectroscopy as well as hadronic LFWFs.
PKU-RBRC Workshop on Transverse Spin
Avakian,H.; Bunce, G.; Yuan, F.
2008-06-30
Understanding the structure of the nucleon is a fundamental question in subatomic physics, and it has been under intensive investigation for the last several years. Modern research focuses in particular on the spin structure of the nucleon. Experimental and theoretical investigations worldwide over the last few decades have established that, contrary to nave quark model expectations, quarks carry only about 30% of the totd spin of the proton. The origin of the remaining spin is the key question in current hadronic physics and also the major driving forces for the current and future experiments, such as RHIC and CEBAF in US, JPARC in Japan, COMPASS at CERN in Europe, FAIR at GSI in Germany. Among these studies, the transverse-spin physics develops actively and rapidly in the last few years. Recent studies reveal that transverse-spin physics is closely related to many fundamental properties of the QCD dynamics such as the factorization, the non-trivial universality of the parton distribution and fragmentation functions. It was very timely to bring together the theorists and experimentalists in this field at this workshop to review and discuss the latest developments and future perspective in hadronic spin physics. This workshop was very success iu many aspects. First of all, it attracted almost every expert working in this field. We had more than eighty participants in total, among them 27 came from the US institutes, 13 from Europe, 3 from Korea, and 2 from Japan. The rest participants came from local institutes in China. Second, we arranged plenty physics presentations, and the program covers all recent progresses made in the last few years. In total, we had 47 physics presentations, and two round table discussions. The discussion sessions were especially very useful and very much appreciated by all participants. In addition, we also scheduled plenty time for discussion in each presentation, and the living discussions impressed and benefited all participants.
High Density Sliding at Ta/Al and Al/Al Interfaces
Hammerberg, J. E.; Germann, T. C.; Ravelo, R.
2006-07-28
We present 3D-nonequilibrium molecular dynamics results for the velocity dependence of the frictional force at smooth sliding interfaces for Ta and Al single crystals. For Ta/Al we consider Al(100)/Ta(100) and Al(111)/Ta(110) interfaces sliding along [001] and [11(bar sign)0]fcc /[001]bcc respectively. These are compared with Al(111)/Al(100) interfaces at the same loads, corresponding to a pressure of 15 GPa. Both interfacial pairs show similar behavior in the velocity dependence of the frictional force: a low velocity regime with an increasing frictional force followed by a strain induced transformation regime at velocities above approximately 1/10 the transverse sound speed, followed by a fluidized interface at high velocities. For both interfacial pairs, the high velocity dependence of the frictional force exhibits power law behavior, Ft {proportional_to} v-{beta} with {beta}=3/4. We discuss the structural changes that influence dissipation in each of these regimes.
Site Plan & Transverse Section Chickamauga National Military Park ...
Site Plan & Transverse Section - Chickamauga National Military Park Tour Roads, Alexander's Bridge, At the confluence of West Chickamauga Creek and Gordon's Slough, Fort Oglethorpe, Catoosa County, GA
Transversity signals in two hadron correlation at COMPASS
Joosten, Rainer
2006-07-11
Measurement of two hadron production introducing the chiral odd interference fragmentation function H{sub 1}{sup arcl} is considered a new probe of the transverse spin distribution {delta}Tq(x). COMPASS is a fixed target experiment on the SPS M2 beamline at CERN. Its target can be polarised both longitudinally and transversely with respect to the polarised 160 GeV/c {mu}+ beam. In 2002, 2003, and 2004, 20% of the beam-time was spent in the transverse configuration on a 6LiD target, allowing the measurement of transversity effects. First results of the analysis of two hadron production will be reported.
Transversity signals in two hadron correlation at COMPASS
Joosten, Rainer
2005-10-06
Measurement of two hadron production introducing the chiral odd interference fragmentation function H{sub 1} is considered a new probe of the transverse spin distribution {delta}Tq(x). COMPASS is a fixed target experiment on the SPS M2 beamline at CERN. Its target can be polarised both longitudinally and transversally with respect to the polarised 160 GeV/c {mu}+ beam. In 2002, 2003, and 2004, 20% of the beam-time was spent in the transverse configuration on a 6LiD target, allowing the measurement of transversity effects. First results of the analysis of two hadron production will be reported.
Cooling power of transverse thermoelectrics for cryogenic cooling
NASA Astrophysics Data System (ADS)
Tang, Yang; Ma, Ming; Grayson, M.
2016-05-01
Transverse Peltier coolers have been experimentally and theoretically studied since 1960s due to their capability of achieving cooling in a single-leg geometry. Recently proposed pxn-type transverse thermoelectrics reveal the possibility of intrinsic or undoped transverse coolers that can, in principle, function at cryogenic temperatures, which has drawn more attention to the performance of such transverse coolers. However, unlike longitudinal thermoelectrics, the equations for transverse thermoelectrics cannot be solved analytically. In this study, we therefore calculate the thermoelectric transport in transverse coolers numerically, and introduce a normalized notation, which reduces the independent parameters in the governing equations to a normalized electric field E* and a hot-side transverse figure of merit zTh, only. A numerical study of the maximum cooling temperature difference and cooling power reveals the superior performance of transverse thermoelectric coolers compared to longitudinal coolers with the same figure of merit, providing another motivation in the search for new transverse thermoelectric materials with large figure of merit.
Emergence of transverse spin in optical modes of semiconductor nanowires.
Alizadeh, M H; Reinhard, Björn M
2016-04-18
The transverse spin angular momentum of light has recently received tremendous attention as it adds a new degree of freedom for controlling light-matter interactions. In this work we demonstrate the generation of transverse spin angular momentum by the weakly-guided mode of semiconductor nanowires. The evanescent field of these modes in combination with the transversality condition rigorously accounts for the occurrence of transverse spin angular momentum. The intriguing and nontrivial spin properties of optical modes in semiconductor nanowires are of high interest for a broad range of new applications including chiral optical trapping, quantum information processing, and nanophotonic circuitry. PMID:27137285
The First Measurement of Neutron Transversity on a Transversely Polarized 3He Target
Yi Qiang
2009-12-01
We recently measured the neutron target single spin asymmetry in the semi-inclusive deep inelastic 3He (e,e',pi+/-)X reactions with a transversely polarized 3He target. The experiment was performed in Hall A at Jefferson Lab from October 2008 to February 2009. Pions were detected in the high-resolution spectrometer in coincidence with scattered electrons detected by the BigBite spectrometer. The kinematic coverage focuses on the valence quark region, x = 0.1 - 0.4, at Q2 = 1-3 (GeV/c)2. With good particle identifications using a RICH detector and an aerogel Cherenkov counter, data on kaons were obtained at the same time. The data from this experiment, when combined with the world data, will provide constraints on the Transversity and Sivers distributions on both u-quark and d-quark in the valence quark region.
Mechanical anisotropy in sheets of {gamma}-TiAl alloys
Bartels, A.; Hartig, C.; Mecking, H.; Clemens, H.
1997-12-31
At room temperature sheets of {gamma}-TiAl exhibit a higher yield stress in the rolling direction than in the transverse direction. Around 700 C the opposite behavior is observed. The texture mainly consists of a modified cube component. The tetragonal c-axis <001> is aligned in the sheet plane transversely to the rolling direction. Taken into account this special texture and the single crystal yield surface of {gamma}-TiAl the authors conclude that around 700 C the CRSS of super-dislocations is higher than the CRSS of ordinary dislocations. At RT the relation changes to the opposite.
Strong transverse coupling in the Tevatron
Annala, G; Carson, J; Edwards, Don; Gelfand, N; Harding, D; Johnson, T; Johnstone, J; Martens, M; Sen, T; Syphers, Mike
2003-03-01
The Tevatron was designed with an extensive set of correction and adjustment magnets built into the spool pieces in recognition of the circumstance that a superconducting synchrotron was not as easy to modify as its conventional forebearers. Recently, concern has mounted at the high excitation of the skew quadrupole correctors. The purpose of this note is to account for this situation. When slow extraction was attempted from the Main Ring in the summer of 1970 horizontal-vertical coupling prevented adequate transverse oscillation growth for efficient slow spill. This situation was corrected by an 8 mrad roll of each of twelve equi-spaced quadrupoles [1]. In order to avoid a repetition of this problem in the Tevatron, an extremely strong skew quadrupole circuit was built in at the outset. When the Tevatron was commissioned only 4$ of the capability of this circuit was required. Now, 20 years later, the excitation of this skew quadrupole circuit is approximately 60%. Other skew quadrupole correctors were installed in the neighborhood of the long straight sections, and for a variety of reasons the number of elements in the strong circuit was reduced from 48 to 42. These are relatively minor changes in the present context. Recall that in the normal Tevatron tuning process the skew quad circuits are adjusted to minimize the difference between the horizontal and vertical tunes to the level of {Delta}{nu}{sub min} {approx} 0.003. Normally the horizontal-vertical coupling is not observed directly by orbit measurements during this procedure. it was recognized that the strength of the skew quadrupole settings would imply an uncorrected minimum tune difference of 0.2 units. Clearly, with the skew quad circuit turned off the coupling of the orbital motion should be easily observable. In the following sections, the authors describe the recent Tevatron studies that exhibit the transverse coupling and the analyses that link these observations to the long term development of a
TRANSVERSE OSCILLATIONS OF A COOLING CORONAL LOOP
Morton, R. J.; Erdelyi, R. E-mail: Robertus@sheffield.ac.u
2009-12-10
Here we present an investigation into how cooling of the plasma influences the oscillation properties (e.g., eigenfunctions and eigenfrequencies) of transverse (i.e., kink) magnetohydrodynamic (MHD) waves in a compressible magnetic flux tube embedded in a gravitationally stratified and uniformly magnetized atmosphere. The cooling is introduced via a temperature-dependent density profile. A time-dependent governing equation is derived and an approximate zeroth-order solution is then obtained. From this the influence of cooling on the behavior of the eigenfrequencies and eigenfunctions of the transverse MHD waves is determined for representative cooling timescales. It is shown analytically, as the loop cools, how the amplitude of the perturbations is found to decrease as time increases. For cooling timescales of 900-2000 s (as observed in typical EUV loops), it is shown that the cooling has important and relevant influence on the damping times of loop oscillations. Next, the theory is put to the test. The damping due to cooling is fitted to a representative observation of standing kink oscillation of EUV loops. It is also shown with an explicit approximate analytical form, how the period of the fundamental and first harmonic of the kink mode changes with time as the loop cools. A consequence of this is that the value of the period ratio P {sub 1}/P {sub 2}, a tool that is popular in magneto-seismological studies in coronal diagnostics, decreases from the value of a uniform loop, 2, as the temperature decreases. The rate of change in P {sub 1}/P {sub 2} is dependent upon the cooling timescale and is well within the observable range for typical EUV loops. Further to this, the magnitude of the anti-node shift of the eigenfunctions of the first harmonic is shown to continually increase as the loop cools, giving additional impetus to the use of spatial magneto-seismology of the solar atmosphere. Finally, we suggest that measurements of the rate of change in the
Communicating with Transverse Modes of Light
NASA Astrophysics Data System (ADS)
Rodenburg, Brandon
Shannon's theory of communication created a set of tools for studying complex systems in an abstract and powerful way, providing the core foundations for the field of information theory. This thesis uses these ideas to provide a framework for studying the transverse degree of freedom of an optical field, appropriate for both classical and quantum states of light. This degree of freedom is in principle an unbounded space, providing a complex resource for encoding a large amount of information. This work focuses on studying the physical limits to the information of this space, both in terms of fundamental theoretical limitations as well as practical limitations due to experimental implementation and error. This thesis will pay particular interest to the design and implementation of a quantum key distribution system encoded using a particular set of transverse modes for encoding known as orbital angular momentum states, which represent normal modes of a typical free-space optical system. This specific technological implementation provides a motivation that acts to unify many of the themes in this work including quantum state preparation, state detection or discrimination, and state evolution or propagation. Additionally, such a setup gives a specific physical meaning to the abstract tools we will be utilizing as the information that we will be quantifying can be thought of as a measure of the possible complexity or information content of a single photon. Chapter 1 provides a brief introduction to information theory and the basic concepts and tools that are used throughout this work, as well as a basic introduction to quantum key distribution. Chapter 2 theoretically explores the fundamental limits of the information capacity of a channel due to diffraction, as well as computes the communication modes of a channel using a normal mode approach to propagation. Chapter 3 concerns the experimental implementation of a free-space quantum key distribution system including
Simulation of transverse combining of space-charge dominated beams
Celata, C.M.
1986-06-01
Rms emittance growth in the transverse plane due to the transverse combining of four identical elliptical beams of uniform density has been investigated. The emittance growth can be related by conservation of energy to the change in the electrostatic field energy. Its dependence on initial beam positions and radii has been calculated analytically for round beams and by computer simulation for elliptical beams.
Extraction of Transversity from COMPASS and Belle Data
NASA Astrophysics Data System (ADS)
Bradamante, Franco
2016-02-01
The valence transversity distributions of the u- and the d-quarks have been extracted point-by-point from single-hadron production and dihadron production data measured in semi-inclusive deep inelastic scattering and in e+e annihilation. The transversity distributions are found to be compatible with each other and with previous analyses.
17. Interior detail, pilaster on transverse wall at the northeast ...
17. Interior detail, pilaster on transverse wall at the northeast end of the Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). Note the offset top of the pilaster, a feature common to all interior transverse wall pilasters. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV
Coupling of transverse and longitudinal waves in piano strings.
Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R
2015-04-01
The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play. PMID:25920829
Exploring universality of transversity in proton-proton collisions
NASA Astrophysics Data System (ADS)
Radici, Marco; Ricci, Alessandro M.; Bacchetta, Alessandro; Mukherjee, Asmita
2016-08-01
We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR Collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions, and it allows us to test its universality.
Morphological Analysis of the Transverse Carpal Ligament
Pacek, Corey A.; Chakan, Matthew; Goitz, Robert J.; Kaufmann, Robert A.
2009-01-01
Transection of the transverse carpal ligament (TCL) for carpal tunnel syndrome is commonly performed, yet actual knowledge of TCL morphology is rudimentary and the anatomical terminology is inconsistently used. The purpose of this study was to perform a morphological analysis of the TCL, to redefine the anatomical terminology concerning the TCL and surrounding structures, and to evaluate any correlation between external, measurable hand dimensions, and TCL dimensions. A silicone casting technique and digitization were employed to measure the morphology of the TCL in cadaveric specimens and to construct a three-dimensional TCL model. The TCL was the thickest distally at the midline and ulnar segments and the thickest proximally at the radial segment. External hand dimensions did not significantly correlate with TCL dimensions. The TCL thickness distribution is variable along the radioulnar axis. The thickness of the TCL was 2.1 ± 0.8 mm, ranging from 1.3 to 3.0 mm. PMID:19701670
Inclusive Higgs production at large transverse momentum
NASA Astrophysics Data System (ADS)
Braaten, Eric; Zhang, Hong
2016-03-01
We present a factorization formula for the inclusive production of the Higgs boson at large transverse momentum PT that includes all terms with the leading power of 1 /PT2. The cross section is factorized into convolutions of parton distributions, infrared-safe hard-scattering cross sections for producing a parton, and fragmentation functions that give the distribution of the longitudinal momentum fraction of the Higgs relative to the fragmenting parton. The infrared-safe cross sections and the fragmentation functions are perturbatively calculable. The most important fragmentation functions are those for which the fragmenting parton is the top quark, gluon, W , Z , and the Higgs itself. We calculate the fragmentation functions at leading order in the Standard Model coupling constants. The factorization formula enables the resummation of large logarithms of PT/MH due to final-state radiation by integrating evolution equations for the fragmentation functions. By comparing the cross section for the process q q ¯→H t t ¯ from the leading-power factorization formula at leading order in the coupling constants with the complete leading-order cross section, we infer that the error in the factorization formula decreases to less than 5% for PT>600 GeV at a future 100 TeV collider.
Quark transversity distribution in perturbative QCD: light-front Hamiltonian approach
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Chakrabarti, D.
2001-05-01
To resolve the current ambiguity in the splitting function corresponding to the quark transversity distribution h1(x), we calculate h1(x) for a dressed quark in light-front Hamiltonian perturbation theory. Our result agrees with the expected form of the splitting function found in the literature and disagrees with the recent calculation in M. Meyer-Hermann et al., hep-ph/0012226. We emphasize the importance of quark mass in h1(x) in perturbative QCD and show its connection with a part of gT.
On the methods for determining the transverse dispersion coefficient in river mixing
NASA Astrophysics Data System (ADS)
Baek, Kyong Oh; Seo, Il Won
2016-04-01
In this study, the strengths and weaknesses of existing methods for determining the dispersion coefficient in the two-dimensional river mixing model were assessed based on hydraulic and tracer data sets acquired from experiments conducted on either laboratory channels or natural rivers. From the results of this study, it can be concluded that, when the longitudinal dispersion coefficient as well as the transverse dispersion coefficients must be determined in the transient concentration situation, the two-dimensional routing procedures, 2D RP and 2D STRP, can be employed to calculate dispersion coefficients among the observation methods. For the steady concentration situation, the STRP can be applied to calculate the transverse dispersion coefficient. When the tracer data are not available, either theoretical or empirical equations by the estimation method can be used to calculate the dispersion coefficient using the geometric and hydraulic data sets. Application of the theoretical and empirical equations to the laboratory channel showed that equations by Baek and Seo [[3], 2011] predicted reasonable values while equations by Fischer [23] and Boxwall and Guymer (2003) overestimated by factors of ten to one hundred. Among existing empirical equations, those by Jeon et al. [28] and Baek and Seo [6] gave the agreeable values of the transverse dispersion coefficient for most cases of natural rivers. Further, the theoretical equation by Baek and Seo [5] has the potential to be broadly applied to both laboratory and natural channels.
Piekarczyk, Wojciech; Kata, Dariusz
2016-09-01
The paper presents the methodology and results of the ultrasound determination of material constants of anisotropic materials belonging to the transversely isotropic system. Ultrasound through-transmission method was used for determining material constants. Based on the measurements of velocities of longitudinal and transverse ultrasounds waves propagation, respectively polarized in required directions all the elastic and the material constant of the test materials were determined. Measurements of all the velocities necessary to determine the elastic constants were performed on a specially prepared individual samples. The tests were carried out on porous polycrystalline anisotropic graphites of anisotropy in Young's modulus of up to 26% and Al2O3 composites with up to 30% of hBN causing anisotropy of Young's modulus of up to 50%. It was found that for all tested samples the value of Young's modules and modules stiffness decreasing with increasing porosity in the graphites and increasing content of hBN in Al2O3. PMID:27395009
Paleogene depositional framework of western Transverse ranges
Dickinson, W.R.
1988-03-01
In the western Transverse Ranges, widespread Paleogene sequences (mid-Paleocene to mid-Oligocene) accumulated to thicknesses locally in excess of 5000 m. The Paleogene basin occupied a complex forearc setting located near the offshore Franciscan trench, but distant from the inland Laramide orogenic system, where magmatism was quiescent during the interval of most rapid sedimentation. The pre-Tertiary substratum, largely masked by its Paleogene cover, was probably disrupted by transpressional and/or transtensional tectonics associated with separate episodes of mid-Cretaceous sinistral and Late Cretaceous (to Paleocene.) dextral dislocation of the continental margin. Paleogene strata include diachronous facies of intertonguing deep-marine, shallow-marine, marginal-marine, and nonmarine clastic strata representing varied depositional systems. Turbidite assemblages include both progradational and retrogradational phases of canyon-fed submarine fans and delta-fed submarine ramps. Exposed shelf-break successions were deposited offshore from strandline complexes fringing delta margins and broad coastal plains. Sparse but diagnostic nonclastic facies include local algal carbonate edifices built on isolated submarine banks, and minor lagoonal beds of algal carbonates and gypsiferous evaporites associated with emergent delta platforms. The complex Paleogene forearc basin was flanked on the northeast by Salinian basement rocks and on the southwest by a tectonic ridge of subduction complex uplifted along the Paleogene trench-slope break. The present geographic distribution of Paleogene facies tracts is fully compatible with proposed Neogene tectonic rotations of panel-like basin segments, bounded by antithetic sinistral faults within the dextral San Andreas system, as detected by recent paleomagetic investigations.
Transverse intensity transformation by laser amplifiers
NASA Astrophysics Data System (ADS)
Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.
2015-03-01
Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.
NASA Astrophysics Data System (ADS)
Chandanayaka, Tharaka; Azarmi, Fardad
2014-05-01
In the present study, cold spraying technique was used to fabricate a metal matrix composite (MMC) that consists of Ni matrix and 20 vol.% Ni3Al particles at two different particle sizes as reinforcement. This study intends to investigate the effect of reinforcement particle size on microstructural and mechanical properties of cold sprayed MMCs. Two different Ni3Al powders with nominal particle size of -45 to +5 and +45 to 100 μm were used as reinforcement in this study. Cold sprayed Ni-Ni3Al samples were subjected to the microstructural observation and characterization prior to any mechanical testing. Then, samples were tested using nano-indentation, Knoop hardness, Vickers hardness, and Resonance frequency to evaluate their mechanical properties. No significant changes were observed in microstructural characteristics due to different particle sizes. The results obtained from a variety of mechanical testings indicated that the increasing reinforcement particle size resulted in the slight reduction of mechanical properties such as elastic modulus and hardness in cold sprayed MMCs. The mechanical interlock between deposited particles defines the bonding strength in cold sprayed samples. Small size particles have a higher velocity and impact resulting in stronger interlock between deformed particles.
FIRST DIRECT MEASUREMENTS OF TRANSVERSE WAVES IN SOLAR POLAR PLUMES USING SDO/AIA
Thurgood, J. O.; Morton, R. J.; McLaughlin, J. A.
2014-07-20
There is intense interest in determining the precise contribution of Alfvénic waves propagating along solar structures to the problems of coronal heating and solar wind acceleration. Since the launch of SDO/AIA, it has been possible to resolve transverse oscillations in off-limb solar polar plumes and recently McIntosh et al. concluded that such waves are energetic enough to play a role in heating the corona and accelerating the fast solar wind. However, this result is based on comparisons to Monte Carlo simulations and confirmation via direct measurements is still outstanding. Thus, this Letter reports on the first direct measurements of transverse wave motions in solar polar plumes. Over a four hour period, we measure the transverse displacements, periods, and velocity amplitudes of 596 distinct oscillations observed in the 171 Å channel of SDO/AIA. We find a broad range of non-uniformly distributed parameter values which are well described by log-normal distributions with peaks at 234 km, 121 s, and 8 km s{sup –1}, and mean and standard deviations of 407 ± 297 km, 173 ± 118 s, and 14 ± 10 km s{sup –1}. Within standard deviations, our direct measurements are broadly consistent with previous results. However, accounting for the whole of our observed non-uniform parameter distribution we calculate an energy flux of 9-24 W m{sup –2}, which is 4-10 times below the energy requirement for solar wind acceleration. Hence, our results indicate that transverse magnetohydrodynamic waves as resolved by SDO/AIA cannot be the dominant energy source for fast solar wind acceleration in the open-field corona.
Transverse thermal expansion of carbon fiber/epoxy matrix composites
NASA Technical Reports Server (NTRS)
Helmer, J. F.; Diefendorf, R. J.
1983-01-01
Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.
Measurement of Transverse Asymmetries from Interference Fragmentation at HERMES
Marco, Contalbrigo
2007-06-13
The HERMES experiment has measured for the first time single target-spin asymmetries in semi-inclusive two-pion production using a transversely polarized hydrogen target. These asymmetries are related to the product of two unknowns: the transversity distribution function and the interference fragmentation function. The measured asymmetries are found to be non-zero in the invariant mass range 0.51 GeV < M{pi}{pi} < 0.97 GeV, indicating that two-pion semi-inclusive deep-inelastic scattering can be used to probe transversity.
T-Odd Gluon TMDs Inside a Transversely Polarized Hadron
NASA Astrophysics Data System (ADS)
Echevarria, Miguel G.
2016-03-01
We consider the relevant gluon transverse momentum dependent distributions (TMDs) in the spin asymmetries generated by the scattering off transversely polarized hadrons. At large transverse momentum they can be expressed in terms of different collinear distributions, via perturbatively calculable Wilson coefficients. We calculate these coefficients at next-to-leading order, and show that when the small-x limit is taken only one independent function remains for dipole-type gluon TMDs: the so-called spin-dependent odderon. This universal origin for the spin asymmetries is of importance to better understand hadron substructure.
Transverse mode competition in index-antiguided waveguide lasers
NASA Astrophysics Data System (ADS)
Liu, Yuanye; Casperson, Lee W.; Her, Tsing-Hua
2015-12-01
Transverse mode competition in large-mode-area index-antiguided planar waveguide lasers is investigated. We show that, with very large core width and/or index difference between the core and cladding, high-order modes can oscillate and contribute to output lasing power. We have developed a theoretical model for transverse mode competition that takes into account transverse spatial hole burning. Experiments conducted on index-antiguided waveguide lasers with core width of 220 μm and 400 μm are compared to theory with good agreement.
First order tune shift calculations for transverse betatron dynamics
Garavaglia, T.
1991-09-01
An effective Hamiltonian, with non-linear magnetic multipole terms and momentum dispersion contributions, is used to obtain the first order tune-shift results for transverse betatron motion for protons in the Superconducting Super Collider (SSC). This Hamiltonian is represented in terms of action angle variables, and analytical results are obtained using symbolic algebra methods. Mathematical derivations of the transverse multipole expansion and of the transverse betatron equations, using an invariant action and curvilinear coordinates, are given in the appendices. Numerical and graphical tune-space results are given that illustrate the dependence of tune-shifts on injection amplitude and momentum spread. 10 refs., 7 figs.
Penetrating intracranial gunshot wound transecting the right transverse sinus
Beaty, Narlin Bennet; Diaz, Cara; Crandall, Kenneth; Sansur, Charles
2012-01-01
A 23-year-old man sustained a gunshot wound to the posterior head. Imaging demonstrated a transection of the right transverse sinus, a retained bullet fragment and significant cerebellar oedema. The patient emergently underwent suboccipital decompression associated with brisk bleeding from the transverse sinus. Reported examples of surgical management of cerebral venous sinuses include: packing, grafting, patching and ligation. Our patient had a codominant transverse sinus and underwent successful unilateral ligation. His postoperative course was uneventful, however, he did require a ventriculoperitoneal shunt. He was subsequently discharged to rehab with a favourable outcome. PMID:22987903
Broadband gold nanoantennas arrays with transverse dimension effects.
Su, Chen-Wei; Chen, Kuo-Ping
2016-08-01
Broadband resonance in gold paired-rods nanoantennas and paired-strips gratings is investigated when the nanostructure's transverse (non-polarization) dimension is changed from paired-rods to paired-strips. Increasing the transverse dimension blue shifts the resonance wavelength and widens its bandwidth due to cancellation of the magnetic field between nanoantennas. A derived resistor-inductor-capacitor (RLC) equivalent circuit model verifies the nanostructures' resonance when elongating the transverse dimensions. Paired-strips gratings have a bandwidth 2.04 times that of paired-rods nanoantennas. PMID:27505744
Analysis of Slice Transverse Emittance Evolution ina Photocathode RF Gun
Huang, Z.; Ding, Y.; Qiang, J.; /LBL, Berkeley
2007-10-17
The slice transverse emittance of an electron beam is of critical significance for an x-ray FEL. In a photocathode RF gun, the slice transverse emittance is not only determined by the emission process, but also influenced strongly by the non-linear space charge effect. In this paper, we study the slice transverse emittance evolution in a photocathode RF gun using a simple model that includes effects of RF acceleration, focusing, and space charge force. The results are compared with IMPACT-T space charge simulations and may be used to understand the development of the slice emittance in an RF gun.
2012-01-01
Definition of the disease AL amyloidosis results from extra-cellular deposition of fibril-forming monoclonal immunoglobulin (Ig) light chains (LC) (most commonly of lambda isotype) usually secreted by a small plasma cell clone. Most patients have evidence of isolated monoclonal gammopathy or smoldering myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The key event in the development of AL amyloidosis is the change in the secondary or tertiary structure of an abnormal monoclonal LC, which results in instable conformation. This conformational change is responsible for abnormal folding of the LC, rich in β leaves, which assemble into monomers that stack together to form amyloid fibrils. Epidemiology AL amyloidosis is the most common type of systemic amyloidois in developed countries with an estimated incidence of 9 cases/million inhabitant/year. The average age of diagnosed patients is 65 years and less than 10% of patients are under 50. Clinical description The clinical presentation is protean, because of the wide number of tissues or organs that may be affected. The most common presenting symptoms are asthenia and dyspnoea, which are poorly specific and may account for delayed diagnosis. Renal manifestations are the most frequent, affecting two thirds of patients at presentation. They are characterized by heavy proteinuria, with nephrotic syndrome and impaired renal function in half of the patients. Heart involvement, which is present at diagnosis in more than 50% of patients, leading to restrictive cardiopathy, is the most serious complication and engages prognosis. Diagnostic methods The diagnosis relies on pathological examination of an involved site showing Congo red-positive amyloid deposits, with typical apple-green birefringence under polarized light, that stain positive with an anti-LC antibody by immunohistochemistry and/or immunofluorescence. Due to the
Boost Effects in the (e,e') Transverse Response of 3He
NASA Astrophysics Data System (ADS)
Tomusiak, Edward; Efros, Victor; Leidemann, Winfried; Orlandini, Giuseppina; Yuan, Luping
2015-10-01
In an earlier paper Efros et al. investigated frame dependence in calculations of the transverse (e,e') response function of 3He. These calculations were non-relativistic but did incorporate relativistic corrections in the electromagnetic operators. Those corrections, taken from the work of Ritz et al. are of order M-3 and represent kinematical effects. It was found that in the region of the quasi-elastic peak, with one proviso, frame dependence held to a good approximation up to q = 700 MeV/c. The one proviso was that we not include one of the corrections - the so-called ω-dependent term. Although this term vanishes in one of the frames (the ANB frame) the question arises as to whether or not another correction exists which might nearly restore frame independence. This work investigates the possibility that Boost effects may provide an explanation. We report on our progress in this regard.
Quantum deflagration in Mn12-acetate in the presence of a transverse field
NASA Astrophysics Data System (ADS)
Subedi, Pradeep; Velez, Saul; Li, Shiqi; Sarachik, Myriam; Tejada, Javier; Kent, Andrew; Mukherjee, Shreya; Christou, George
2012-02-01
Mn12-acetate single crystal have been shown to exhibit abrupt reversal of the magnetic moment through propagation of a narrow front at subsonic velocities, termed magnetic deflagration [1]. Experiments where avalanches in Mn12-acetate are triggered at a fixed applied field have shown that the velocity of the front has maxima at resonant fields (kHo, Ho = 0.45 T, k>1), due to thermally assisted tunneling of magnetization [2]. Application of a transverse field increases the tunnel splitting, which increases the magnetic relaxation and allows us to explore the deflagration for the first time at small longitudinal fields (k=0 and 1). Using time resolved measurements of local magnetization by an array of micron sized Hall sensors at temperature of 350 mK, we present the measurements on both spontaneously ignited and triggered deflagration for a large transverse field (> 3 T) allowing us to explore directly the effect of a significant tunneling splitting on both the ignition and the velocity of the front. [1] Y. Suzuki, et. al PRL 95, 147201 (2005) [2] A. Hernandez-Minguez, et. al, PRL 95, 217205 (2005)
Transverse momentum distributions inside the nucleon from lattice QCD
Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.
2011-07-15
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
19. Detail, center hinge of south span arches, transverse floor ...
19. Detail, center hinge of south span arches, transverse floor beams, deck cantilever, railings; view to northwest. - Parks Bar Bridge, Spanning Yuba River at State Highway 20, Smartville, Yuba County, CA
Site Plan and Transverse Section Chickamauga National Military Park ...
Site Plan and Transverse Section - Chickamauga National Military Park Tour Roads, Gordon's Slough Bridge, At the confluence of Alexander's Bridge Road and Gordon's Slough, southeast of Alexander's Bridge, Fort Oglethorpe, Catoosa County, GA
Transverse section through the Grand Lodge and Grand Chapter rooms ...
Transverse section through the Grand Lodge and Grand Chapter rooms of James H. Windrim and George Summerss neoclassical competition design for the New Masonic Temple, Philadelphia, 1867 - Masonic Temple, 1 North Broad Street, Philadelphia, Philadelphia County, PA
Onset of transverse instabilities of confined dark solitons
NASA Astrophysics Data System (ADS)
Hoefer, M. A.; Ilan, B.
2016-07-01
We investigate propagating dark soliton solutions of the two-dimensional defocusing nonlinear Schrödinger or Gross-Pitaevskii (NLS-GP) equation that are transversely confined to propagate in an infinitely long channel. Families of single, vortex, and multilobed solitons are computed using a spectrally accurate numerical scheme. The multilobed solitons are unstable to small transverse perturbations. However, the single-lobed solitons are stable if they are sufficiently confined along the transverse direction, which explains their effective one-dimensional dynamics. The emergence of a transverse modulational instability is characterized in terms of a spectral bifurcation. The critical confinement width for this bifurcation is found to coincide with the existence of a propagating vortex solution and the onset of a "snaking" instability in the dark soliton dynamics that, in turn, give rise to vortex or multivortex excitations. These results shed light on the superfluidic hydrodynamics of dispersive shock waves in Bose-Einstein condensates and nonlinear optics.
Transverse voltage in superconductors at zero applied magnetic field
NASA Astrophysics Data System (ADS)
da Luz, M. S.; dos Santos, C. A. M.; Shigue, C. Y.; de Carvalho, F. J. H.; Machado, A. J. S.
2009-01-01
A systematic study of the transverse voltage at zero magnetic field in the superconducting state is reported. The effects of warming rate, temperature, applied magnetic field, and electrical current on the transversal resistance ( RXY) of polycrystalline superconducting sample are taken into account. At zero magnetic field two peaks are observed in RXY( T) curves which are related to the double superconducting transition in the RXX( T) component. In the superconducting ( RXX = zero) and normal states no transverse voltage has been detected at zero magnetic field as expected. The results are discussed within the framework of the motion of Abrikosov and Josephson vortices and anti-vortices. A new scaling relation between transverse and longitudinal components given by RXY ∼ d RXX/d T has been confirmed.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-05-01
Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.
Transverse Gradient Undulators and FEL operating with large energy spread
NASA Astrophysics Data System (ADS)
Ciocci, F.; Dattoli, G.; Sabia, E.
2015-12-01
Undulators exhibiting a gradient of the field in the transverse direction have been proposed to mitigate the effects of the gain dilution in Free Electron Laser devices operating with large energy spread. The actual use of the device depends on the realization of a field distribution with quasi-vanishing quadrupolar terms in the tapering directions. We analyze the effect of a Transverse Gradient Undulator on the FEL operation and critically review the possibility of an appropriate field implementation.
Negative ion source with low temperature transverse divergence optical system
Whealton, John H.; Stirling, William L.
1986-01-01
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Negative ion source with low temperature transverse divergence optical system
Whealton, J.H.; Stirling, W.L.
1985-03-04
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Transverse effects in plasma wakefield acceleration at FACET - Simulation studies
Adli, E.; Hogan, M.; Frederico, J.; Litos, M. D.; An, W.; Mori, W.
2012-12-21
We investigate transverse effects in the plasma-wakefield acceleration experiments planned and ongoing at FACET. We use PIC simulation tools, mainly QuickPIC, to simulate the interaction of the drive electron beam and the plasma. In FACET a number of beam dynamics knobs, including dispersion and bunch length knobs, can be used to vary the beam transverse characteristics in the plasma. We present simulation results and the status of the FACET experimental searches.
The Transverse Momentum Dependent Statistical Parton Distributions Revisited
NASA Astrophysics Data System (ADS)
Bourrely, Claude; Buccella, Franco; Soffer, Jacques
2013-04-01
The extension of the statistical parton distributions to include their transverse momentum dependence (TMD) is revisited by considering that the proton target has a finite longitudinal momentum. The TMD will be generated by means of a transverse energy sum rule. The new results are mainly relevant for electron-proton inelastic collisions in the low Q2 region. We take into account the effects of the Melosh-Wigner rotation for the helicity distributions.
Graphene transverse electric surface plasmon detection using nonreciprocity modal discrimination
NASA Astrophysics Data System (ADS)
Chamanara, Nima; Caloz, Christophe
2016-08-01
We present a magnetically biased graphene-ferrite structure discriminating the transverse electric (TE) and transverse magnetic (TM) plasmonic modes of graphene. In this structure, the graphene TM plasmons interact reciprocally with the structure. In contrast, the graphene TE plasmons exhibit nonreciprocity. This nonreciprocity is manifested in unidirectional TE propagation in a frequency band close to the interband threshold frequency. The proposed structure provides a unique platform for the experimental demonstration of the unusual existence of the TE plasmonic mode in graphene.
Transverse spin physics at CLAS and CLAS12
Harutyun Avagyan
2011-10-01
We present ongoing and future measurement of spin-azimuthal asymmetries in semi-inclusive production of pions in deep inelastic scattering using the CLAS detector at the Thomas Jefferson National Accelerator Facility (JLab). The azimuthal modulations of the double and single spin asymmetries have been measured in a wide kinematic range, providing access to transverse momentum distributions of partons. An extensive experimental program has been proposed for the upgraded JLab, which will allow precision studies of the transverse structure of the nucleon
On Gravitational Form Factors and Transverse Spin Sum Rule
NASA Astrophysics Data System (ADS)
Chakrabarti, D.; Mondal, C.; Mukherjee, A.
2016-06-01
Using the light front wave functions of the scalar quark-diquark model for nucleon predicted by the soft-wall AdS/QCD, we calculate the flavor dependent gravitational form factors. We evaluate the matrix element of Pauli-Lubanski operator in this model and show that the intrinsic spin sum rule involves the higher twist form factor {bar{C}}. The longitudinal momentum densities in the transverse impact parameter space are also discussed for both unpolarized and transversely polarized nucleons.
Transversity signals in two hadron correlation at COMPASS
Joosten, Rainer
2007-06-13
Over the last couple of years, transverse spin physics has gained increasing attention as well from theoretical as from experimental side. To fully specify the quark structure of the nucleon at the twist-two level, the transverse spin distribution function {delta}Tq(x) has to be taken into account. The measurement of two hadron production introducing the chiral odd interference fragmentation function H{sub 1} is considered a new probe of the transverse spin distribution function.COMPASS is a fixed target experiment on the SPS M2 beamline at CERN. Its target can be polarised both longitudinally and transversally with respect to the polarised 160 GeV/c {mu}+ beam. In 2002, 2003, and 2004, 20% of the beam-time was spent in the transverse configuration on a 6LiD target, allowing the measurement of transversity effects on a deuterium target. The results of the analysis of two hadron production based on the full statistics on the deuterium target are reported.
Beam-shape distortion caused by transverse wake fields
Chao, A.W.; Kheifets, S.
1983-02-01
As a particle bunch in a storage ring passes through a region with a transverse impedance, it generates a transverse wake electromagnetic field that is proportional to the transverse displacement of the bunch in the region. The field acts back on the bunch, causing various effects (such as instabilities) in the motion of the bunch. We study one such effect in which a transverse impedance causes the beam to be distorted in its shape. Observed at a fixed location in the storage ring, this distortion does not change from turn to turn; rather, the distortion is static in time. To describe the distortion, the bunch is considered to be divided longitudinally into many slices and the centers of change of the slices are connected into a curve. In the absence of transverse impedance, this curve is a straight line parallel to the direction of motion of the bunch. Perturbed by the transverse wake field, the curve becomes distorted. What we find in this paper is the shape of such a curve. The results obtained are applied to the PEP storage ring. The impedance is assumed to come solely from the rf cavities. We find that the beam shape is sufficiently distorted and hence that loss of luminosity due to this effect becomes a possibility.