Science.gov

Sample records for estimate groundwater flow

  1. 3PE: A Tool for Estimating Groundwater Flow Vectors

    EPA Science Inventory

    Evaluation of hydraulic gradients and the associated groundwater flow rates and directions is a fundamental aspect of hydrogeologic characterization. Many methods, ranging in complexity from simple three-point solution techniques to complex numerical models of groundwater flow, ...

  2. Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Haw; Chen, Wei-Ping; Lee, Ru-Huang

    2006-10-01

    In this paper, the long-term mean annual groundwater recharge of Taiwan is estimated with the help of a water-balance approach coupled with the base-flow-record estimation and stable-base-flow analysis. Long-term mean annual groundwater recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from daily streamflow data obtained from streamflow gauging stations in Taiwan. Mapping was achieved by using geographic information systems (GIS) and geostatistics. The presented approach does not require complex hydrogeologic modeling or detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Contours of the resulting long-term mean annual P, BFI, runoff, groundwater recharge, and recharge rates fields are well matched with the topographical distribution of Taiwan, which extends from mountain range toward the alluvial plains of the island. The total groundwater recharge of Taiwan obtained by the employed method is about 18 billion tons per year.

  3. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling

    USGS Publications Warehouse

    Wagner, B.J.

    1992-01-01

    Parameter estimation and contaminant source characterization are key steps in the development of a coupled groundwater flow and contaminant transport simulation model. Here a methodologyfor simultaneous model parameter estimation and source characterization is presented. The parameter estimation/source characterization inverse model combines groundwater flow and contaminant transport simulation with non-linear maximum likelihood estimation to determine optimal estimates of the unknown model parameters and source characteristics based on measurements of hydraulic head and contaminant concentration. First-order uncertainty analysis provides a means for assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability of the flow and transport model predictions. A series of hypothetical examples is presented to demonstrate the ability of the inverse model to solve the combined parameter estimation/source characterization inverse problem. Hydraulic conductivities, effective porosity, longitudinal and transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-dimensional groundwater system. In addition, characterization of the history of contaminant disposal or location of the contaminant source is demonstrated. Finally, the problem of estimating the statistical parameters that describe the errors associated with the head and concentration data is addressed. A stage-wise estimation procedure is used to jointly estimate these statistical parameters along with the unknown model parameters and source characteristics. ?? 1992.

  4. Two-Dimensional Advective Transport in Ground-Water Flow Parameter Estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of regression and related techniques produced significant insight into the physical system.

  5. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Michael J. Wiley; Douglas A. Wilcox

    2015-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0?mm?d?1 to 6.6?mm?d?1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5?mm?d?1 to 4.3?mm?d?1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions.

  6. Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Stolp, B. J.; Danskin, W. R.

    2012-03-01

    The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr-1 from the San Diego River basin for the calibration period (1982-2009) to 48.8 million m3 yr-1 from all major river basins for the entire coastal plain for the long-term period 1940-2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.

  7. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    USGS Publications Warehouse

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  8. Vertical groundwater flow estimated from the bomb pulse of 36Cl and tritiogenic 3He

    NASA Astrophysics Data System (ADS)

    Mahara, Y.; Ohta, T.

    2011-12-01

    The boring well was approximately excavated to 400 m depth from the ground surface on the tableland in the Central Shimokita Peninsula, Japan. Collecting pore-water, some fresh boring cores were sampled on the site during the excavation of borehole. Samples of groundwater were collected by using the sampling device with the water inflating packer system to protect various contaminations, after excavating the borehole. The atmospheric maximum concentration in bomb pulse in the northern hemisphere was reported to observe in 1955 for 36Cl and in 1963 for 3H, respectively. Since the half-life of 36Cl is much longer than 3H, the decay loss of 36Cl was negligible small for a short time until sampling groundwater in 2001 and 2003. On the other hand, the half-life of 3H is very short compared with that of 36Cl. Most of 3H was converted into the tritiogenic 3He in groundwater for the past 38 years after rainwater infiltrating toward the groundwater table. Profiles of dissolved 4He concentration, tritiogenic 3He and 36Cl/Cl ratio were observed in groundwater of the borehole. The total dissolved 4He concentration ranged from 5.8×10-8 at the ground surface to 7.5×10-8 ccSTP/g at the depth of 200 m below the ground surface and it was almost equilibrated with the atmospheric 4He in pore-water (Fig. 1). The bomb pulses of tritiogenic 3He and 36Cl were left from the depth of 101 m below the ground surface to the depth of 132 m, respectively (Figs. 2 and 3). There was a slight difference in the location between the bomb pulse of 36Cl and that of tritiogenic 3He. The downward flow velocity of groundwater were simply estimated to be 2.8 m/y from the marked position of bomb pulse in the profile of 36Cl/Cl ratio and to be 2.7 m/y from the position of the bomb pulse peak of tritiogenic 3He, separately. These two rough estimations were good agreed with each other. The estimation suggests that the vertical flow of groundwater on the tableland is approximated with the downward piston flow with small diffusion without turbulence.

  9. Groundwater dating by estimation of groundwater flow velocity and dissolved 4He accumulation rate calibrated by 36Cl in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    Mahara, Y.; Habermehl, M. A.; Hasegawa, T.; Nakata, K.; Ransley, T. R.; Hatano, T.; Mizuochi, Y.; Kobayashi, H.; Ninomiya, A.; Senior, B. R.; Yasuda, H.; Ohta, T.

    2009-09-01

    We tested two methods for dating groundwaters that cannot be reliably measured by 36Cl dating alone, one based on groundwater flow velocity plus distance along a flow path and the other based on 4He accumulation rates calibrated with 36Cl dates. We sampled groundwaters along six inferred regional groundwater flow paths in the Great Artesian Basin (GAB) of Australia. We selected three groundwater paths where the decrease in 36Cl was largely controlled by cosmogenic 36Cl radioactive decay without a significant increase in chloride concentration. The extrapolated groundwater velocities were 0.133 ± 0.018 m/y to 0.433 ± 0.140 m/y. The estimated residence time of 1.06 × 10 6 y at the discharge area around Lake Eyre was comparable to the estimate of (1-2.2) × 10 6 y in previous studies. On the other hand, our estimated 4He accumulation rates for the selected three groundwater flow paths (1.85 ± 0.31 × 10 - 11 to 1.51 ± 0.63 × 10 - 10 ccSTP/cm 3•y) were approximately 2-15 times lower than previously reported rates for the central GAB. Our estimated rate of 1.51 × 10 - 10 ccSTP/cm 3•y - 1 in the western GAB is compatible with previous estimates based on 81Kr ages. The groundwater residence time estimated from the 4He accumulation rate was approximately 7 × 10 5 y near the discharge area at Lake Eyre. Finally, both estimations were mutually compatible with a 30% error.

  10. Estimates of consumptive use and ground-water return flow using water budgets in Palo Verde Valley, California

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.; Kimsey, Steven L.

    1987-01-01

    Palo Verde Valley, California, is an agricultural area in the flood plain of the Colorado River where irrigation water is diverted from the river and groundwater is discharged to a network of drainage ditches and (or) the river. Consumptive use by vegetation and groundwater return flow were calculated using water budgets. Consumptive use by vegetation was 484,000 acre-ft in 1981, 453,600 acre-ft in 1982, 364,400 acre-ft in 1983, and 374,300 acre-ft in 1984. The consumptive-use estimates are most sensitive to two measured components of the water budget, the diversion at Palo Verde Dam and the discharge from drainage ditches to the river. Groundwater return flow was 31,700 acre-ft in 1981, 24,000 acre-ft in 1982, 2,500 acre-ft in 1983, and 7 ,900 acre-ft in 1984. The return-flow estimates are most sensitive to discharge from drainage ditches; various irrigation requirements and crop areas, particularly alfalfa; the diversion at Palo Verde Dam; and the estimate of consumptive use. During increasing flows in the river, the estimate of groundwater return flow is sensitive also to change in groundwater storage. Change in groundwater storage was estimated to be -5,700 acre-ft in 1981, -12,600 acre-ft in 1982, 5,200 acre-ft in 1983, and 11 ,600 acre-ft in 1984. Changes in storage can be a significant component in the water budget used to estimate groundwater return flow but is negligible in the water budget used to estimate consumptive use. Change in storage was 1 to 3% of annual consumptive use. Change in storage for the area drained by the river ranged from 7 to 96% of annual groundwater return flow during the 4 years studied. Consumptive use calculated as diversions minus return flows was consistently lower than consumptive use calculated in a water budget. Water-budget estimates of consumptive use account for variations in precipitation, tributary inflow, river stage, and groundwater storage. The calculations for diversions minus return flows do not account for these components, which can be large enough to affect the estimates of consumptive use. (Author 's abstract)

  11. Linking soil moisture balance and source-responsive preferential flow models for estimating groundwater recharge

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2012-04-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a fieldsite in Shropshire, UK. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. However, recharge does not occur until near-positive pressures are achieved at the top of the glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Thus, although the wetting process in the topsoil is highly complex, a soil moisture balance model (SMBM) is shown to be skilful in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table suggests that Stokes type film flow rather than Richards type capillarity dominated flow is occurring and this conjecture is tested using a range of numerical models. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well, when linked to a SMBM as the source of recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils. If the conceptual and numerical models can be shown to be transferable to other ploughed soils, it promises to be a very useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation. Nimmo, J. R. (2010). Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow. Vadose Zone Journal, 9, 295-306.

  12. Relative efficiency of four parameter-estimation methods in steady-state and transient ground-water flow models

    USGS Publications Warehouse

    Hill, M.C.

    1990-01-01

    Parameters in numerical ground-water flow models have been successfully estimated using nonlinear-optimization methods such as the modified Gauss-Newton (GN) method and conjugate-direction methods. This paper investigates the relative efficiency of GN and three conjugate-direction parameter-estimation methods on two-dimensional, steady-state and transient ground-water flow test cases. The steady-state test cases are included to compare the performance of the algorithm with published examples. The three conjugate-direction methods are the Fletcher-Reeves (FR) and quasi-Newton (QN) regression methods, and combination Fletcher-Reeves quasi-Newton (FR-QN). All three are combined with Newton's method of calculating step size. The numerical ground-water flow model is described by McDonald and Harbaugh.

  13. Estimated Ground-water Withdrawals From the Death Valley Regional Flow System, Nevada and California, 1913-98

    SciTech Connect

    M.T. Moreo; K.J. Halford; R.J. LaCamera; and R.J. Laczniak

    2003-09-30

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional,three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  14. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  15. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect

    W.R. Belcher; P.E. Elliott; A.L. Geldon

    2001-12-31

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model, were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  16. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  17. Death Valley regional groundwater flow model calibration using optimal parameter estimation methods and geoscientific information systems

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

    1996-01-01

    A three-layer Death Valley regional groundwater flow model was constructed to evaluate potential regional groundwater flow paths in the vicinity of Yucca Mountain, Nevada. Geoscientific information systems were used to characterize the complex surface and subsurface hydrogeological conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. The high contrasts and abrupt contacts of the different hydrogeological units in the subsurface make zonation the logical choice for representing the hydraulic conductivity distribution. Hydraulic head and spring flow data were used to test different conceptual models by using nonlinear regression to determine parameter values that currently provide the best match between the measured and simulated heads and flows.

  18. Scarce water resources and scarce data: Estimating recharge for a complex 3D groundwater flow model in arid regions

    NASA Astrophysics Data System (ADS)

    Gräbe, A. C.; Guttman, J.; Rödiger, T.; Siebert, C.; Merz, R.; Kolditz, O.

    2012-12-01

    Semi-arid to arid regions are usually characterized by a scarcity of precipitation and a lack of stream flow. Especially in desert environments, groundwater is one of the most important fresh water sources and its recharge is basically controlled by two main mechanisms: the direct regional infiltration of precipitation in the mountains and interdrainage areas in the first place and secondly the flood water infiltration through ephemeral channel beds (transmission loss). Due to extensive spatio-temporal data scarcity, direct quantitative estimations of groundwater recharge are often difficult to perform, and numerical models simulating the water fluxes, have to be applied to enable a quantitative approximation of the groundwater recharge. We made an assumption about the quantity of recharge for the subsurface catchment of the western Dead Sea escarpment, which is at the same time the input for the complex groundwater flow model of the Judea Group Aquifer. This can only be suggested if the hydrogeological situation in the tectonically complex region is fully understood. A number of simplified models of the Judea Group aquifer have been formulated and employed using a two-dimensional (one horizontal layered) numerical simulation of groundwater flow (Baida et al. 1978; Goldschtoff & Shachnai, 1980; Guttman, 2000; Laronne Ben-Itzhak & Gvirtzmann, 2005). However, all previous approaches focused only on a limited area of the Judea Group aquifer. We developed a high resolution regional groundwater flow model for the entire western basin of the Dead Sea. Whereas the structural model could be defined using a large geological dataset, the challenge was to generate the groundwater flow model with only limited well data. With the help of the scientific software OpenGeoSys (OGS) the challenge was reliably solved resulting in a simulation of the hydraulic characteristics (hydraulic conductivity and hydraulic head) of the cretaceous aquifer system, which was calibrated using PEST.

  19. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment

    USGS Publications Warehouse

    Loheide, S.P., II; Butler, J.J., Jr.; Gorelick, S.M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult-to-measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated-unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified. Copyright 2005 by the American Geophysical Union.

  20. Groundwater hydrology: Coastal flow

    NASA Astrophysics Data System (ADS)

    Sanford, Ward E.

    2010-10-01

    How groundwater flow varies when long-term external conditions change is little documented. Geochemical evidence shows that sea-level rise at the end of the last glacial period led to a shift in the flow patterns of coastal groundwater beneath Florida.

  1. Systematic Parameter Estimation of a Density-Dependent Groundwater-Flow and Solute-Transport Model

    NASA Astrophysics Data System (ADS)

    Stanko, Z.; Nishikawa, T.; Traum, J. A.

    2013-12-01

    A SEAWAT-based, flow and transport model of seawater-intrusion was developed for the Santa Barbara groundwater basin in southern California that utilizes dual-domain porosity. Model calibration can be difficult when simulating flow and transport in large-scale hydrologic systems with extensive heterogeneity. To facilitate calibration, the hydrogeologic properties in this model are based on the fraction of coarse and fine-grained sediment interpolated from drillers' logs. This approach prevents over-parameterization by assigning one set of parameters to coarse material and another set to fine material. Estimated parameters include boundary conditions (such as areal recharge and surface-water seepage), hydraulic conductivities, dispersivities, and mass-transfer rate. As a result, the model has 44 parameters that were estimated by using the parameter-estimation software PEST, which uses the Gauss-Marquardt-Levenberg algorithm, along with various features such as singular value decomposition to improve calibration efficiency. The model is calibrated by using 36 years of observed water-level and chloride-concentration measurements, as well as first-order changes in head and concentration. Prior information on hydraulic properties is also provided to PEST as additional observations. The calibration objective is to minimize the squared sum of weighted residuals. In addition, observation sensitivities are investigated to effectively calibrate the model. An iterative parameter-estimation procedure is used to dynamically calibrate steady state and transient simulation models. The resulting head and concentration states from the steady-state-model provide the initial conditions for the transient model. The transient calibration provides updated parameter values for the next steady-state simulation. This process repeats until a reasonable fit is obtained. Preliminary results from the systematic calibration process indicate that tuning PEST by using a set of synthesized observations generated from model output reduces execution times significantly. Parameter sensitivity analyses indicate that both simulated heads and chloride concentrations are sensitive to the ocean boundary conductance parameter. Conversely, simulated heads are sensitive to some parameters, such as specific fault conductances, but chloride concentrations are insensitive to the same parameters. Heads are specifically found to be insensitive to mobile domain texture but sensitive to hydraulic conductivity and specific storage. The chloride concentrations are insensitive to some hydraulic conductivity and fault parameters but sensitive to mass transfer rate and longitudinal dispersivity. Future work includes investigating the effects of parameter and texture characterization uncertainties on seawater intrusion simulations.

  2. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.

  3. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    NASA Astrophysics Data System (ADS)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993): Recharge and salination processes in the carbonate aquifers in Israel. Environmental Geology (1993) 21: 152-159. Lerner, D. N., A. S. Issar, I. Simmers (1990): Groundwater recharge: a guide to understanding and estimating natural recharge. International contributions to hydrogeology: Vol. 8. Marei, A., S. Khayat, S. Weise, S. Ghannam., M. Sbaih, S. Geyer (2010): Estimating groundwater recharge using chloride mass-balance method in the West Bank. Hydrol. Sc 01/2010; 55(5): 780-792.

  4. Natural Recharge Estimation and Uncertainty Analysis of an Adjudicated Groundwater Basin using a Regional-Scale Groundwater Flow and Subsidence Model

    NASA Astrophysics Data System (ADS)

    Siade, A. J.; Nishikawa, T.; Martin, P.

    2011-12-01

    The Superior Court of California recently ruled that the Antelope Valley groundwater basin is in overdraft-groundwater extractions are in excess of the "safe yield" of the groundwater basin. As defined by the Court, "safe yield is the amount of annual extractions of water from an aquifer over time equal to the amount of water needed to recharge the groundwater aquifer and maintain it in equilibrium, plus any temporary surplus." Natural recharge is an important component of total groundwater recharge in Antelope Valley; however, the exact quantity and distribution of natural recharge is uncertain with estimates ranging from 30,000 to 160,000 acre-feet per year. Weighing the evidence presented by experts, the Court determined that the "safe yield" of the adjudicated area of the basin was 110,000 acre-feet per year. Knowledge of the quantity and distribution of natural recharge is needed to evaluate whether the Court-defined "safe yield" estimate for the basin will minimize additional storage depletion, and related land subsidence, resulting from continued groundwater extraction. The objective of this study is to systematically address the uncertainty in estimates of natural recharge and related aquifer parameters using a groundwater-flow and land-subsidence model with observational data and expert knowledge. Observational data include measured water levels, land-surface deformation, and estimates of transmissivity throughout the basin. An example of expert knowledge is the distribution of artesian conditions for pre-development times. Even though a great wealth of data is available, the problem of non-uniqueness remains present throughout the calibration process. Regularization is used to systematically identify combinations of parameters that can be uniquely estimated as well as to impose expert knowledge onto the parameter identification process. Once the model was calibrated with a reasonable parameter set, the parameter null-space was identified (i.e., the combinations of parameters that cannot be estimated given the available observation data). The majority of the parameter uncertainty is represented by the parameter null-space. Uncertainty in the average annual recharge was evaluated using the null-space Monte-Carlo method. Preliminary results indicate that the total natural recharge ranges between 30,000 and 50,000 acre-ft/yr, which is significantly lower than the Court-determined "safe yield".

  5. Groundwater Flow in Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Allen, Diana; Voeckler, Hendrik; Welch, Laurie

    2014-05-01

    Mountain watersheds are unique high-relief environments that exhibit geological, landscape, climate, and other characteristics that are distinctive from other types of watersheds/basins. As such, they give rise to complex groundwater systems that circulate water over a range of spatial and temporal scales. This presentation highlights the results of two modeling studies that were conducted to investigate deep groundwater flow processes within mountain watersheds in British Columbia, Canada. The first study focuses on a headwater catchment, and demonstrates that extending the model domain into the bedrock and allowing groundwater to exit the catchment does not compromise the calibration. Deep groundwater loss is estimated at up to 6% of the annual water balance. The second study focuses on deep groundwater flow within the mountain block, which contributes to mountain front recharge. Mountain front recharge is an important source of water to valley-bottom aquifers. Mountain front recharge derives from both mountain streams, which gain water as baseflow from deeply circulating groundwater, and mountain block recharge, which is the subsurface discharge of deep groundwater from the bedrock mountain block to the valley bottom sediments. Baseflow in the mountain streams is found to be sensitive to changes in groundwater recharge across the mountain block.

  6. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370 hydrologic units in Pennsylvania predicted a range of ground-water recharge from about 6.0 to 22 inches per year. A map of the predicted recharge illustrates the general magnitude and variability of recharge throughout Pennsylvania.

  7. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  8. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge areas in three drainages, the Wissahickon, Towamencin, and Neshaminy Creeks.Ground-water flow was simulated for different pumping patterns representing past and current conditions. The three-dimensional numerical flow model (MODFLOW) was automatically calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. Model calibration indicates that estimated recharge is 8.2 inches (208 millimeters) and the regional anisotropy ratio for the sedimentary-rock aquifer is about 11 to 1, with permeability greatest along strike. The regional anisotropy is caused by up- and down-dip termination of high-permeability bed-oriented features, which were not explicitly simulated in the regional-scale model. The calibrated flow model was used to compare flow directions and capture zones in Lansdale for conditions corresponding to relatively high pumping rates in 1994 and to lower pumping rates in 1997. Comparison of the 1994 and 1997 simulations indicates that wells pumped at the lower 1997 rates captured less ground water from known sites of contamination than wells pumped at the 1994 rates. Ground-water flow rates away from Lansdale increased as pumpage decreased in 1997.A preliminary evaluation of the relation between ground-water chemistry and conditions favorable for the degradation of chlorinated solvents was based on measurements of dissolved-oxygen concentration and other chemical constituents in water samples from 92 wells. About 18 percent of the samples contained less than or equal to 5 milligrams per liter dissolved oxygen, a concentration that indicates reducing conditions favorable for degradation of chlorinated solvents.

  9. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    USGS Publications Warehouse

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  10. Coupled Modeling of Self Potential and Groundwater Flow to Estimate Permeability Structure of the Elkhorn Fault, South Park, Colorado

    NASA Astrophysics Data System (ADS)

    Ball, L.; Jardani, A.; Revil, A.; Ge, S.; Caine, J.

    2008-12-01

    Faults are commonplace in the subsurface and can have substantial impacts on fluid flow at multiple scales. However, there are few field data on the hydraulic properties of fault zones that can be used to quantify their impact on fluid flow, particularly at well-field to regional scales. These data are lacking in part because hydrologic test data are difficult and costly to collect, their quality is highly dependent on the spatial distribution of available wells, and permeability estimates using these data may not capture the internal heterogeneity of fault zone hydraulic properties, particularly at scales larger than the hydraulic influence of the test itself. Here we explore the advantages of supplementing traditional aquifer test data with electrical geophysical data. Self-potential data were coupled with a steady-state groundwater-flow model of the Elkhorn fault, a Laramide-aged contractional fault that juxtaposes two aquifers in South Park, Colorado; a fractured granite aquifer against the upper arkosic sandstone member of the South Park Formation. This coupled modeling approach allows us to develop estimates of fault zone permeability structure and to explore the sensitivity of the self-potential method to different hydrologic scenarios at this site. Self-potential data were collected along several transects across the Elkhorn fault in the vicinity of five monitoring wells in the hanging wall and footwall. Using the geologic structure defined by co-located electrical resistivity tomography data and geologic descriptions from the wells, a two-dimensional finite- element model was developed with three major geologic components: granite hanging wall, fault zone, and sandstone footwall. In this physical domain, groundwater-flow and electrical models were coupled to examine possible permeability structures of the fault zone. Steady-state water level data from four wells were used to calibrate the groundwater-flow model. The self-potential anomaly resulting from the modeled potentiometric surface was examined and compared to measured self-potential data from across the transect. The permeability structure of the fault zone was adjusted to optimize the model fit to both the hydrological and self-potential data. Through several iterations, possible fault zone permeability structures were identified that satisfy both datasets.

  11. Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A.

    USGS Publications Warehouse

    Sophocleous, M.A.

    1984-01-01

    The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.

  12. Ground-water and surface-water flow and estimated water budget for Lake Seminole, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.

    2004-01-01

    Lake Seminole is a 37,600-acre impoundment formed at the confluence of the Flint and Chattahoochee Rivers along the Georgia?Florida State line. Outflow from Lake Seminole through Jim Woodruff Lock and Dam provides headwater to the Apalachicola River, which is a major supply of freshwater, nutrients, and detritus to ecosystems downstream. These rivers,together with their tributaries, are hydraulically connected to karst limestone units that constitute most of the Upper Floridan aquifer and to a chemically weathered residuum of undifferentiated overburden. The ground-water flow system near Lake Seminole consists of the Upper Floridan aquifer and undifferentiated overburden. The aquifer is confined below by low-permeability sediments of the Lisbon Formation and, generally, is semiconfined above by undifferentiated overburden. Ground-water flow within the Upper Floridan aquifer is unconfined or semiconfined and discharges at discrete points by springflow or diffuse leakage into streams and other surface-water bodies. The high degree of connectivity between the Upper Floridan aquifer and surface-water bodies is limited to the upper Eocene Ocala Limestone and younger units that are in contact with streams in the Lake Seminole area. The impoundment of Lake Seminole inundated natural stream channels and other low-lying areas near streams and raised the water-level altitude of the Upper Floridan aquifer near the lake to nearly that of the lake, about 77 feet. Surface-water inflow from the Chattahoochee and Flint Rivers and Spring Creek and outflow to the Apalachicola River through Jim Woodruff Lock and Dam dominate the water budget for Lake Seminole. About 81 percent of the total water-budget inflow consists of surface water; about 18 percent is ground water, and the remaining 1 percent is lake precipitation. Similarly, lake outflow consists of about 89 percent surface water, as flow to the Apalachicola River through Jim Woodruff Lock and Dam, about 4 percent ground water, and about 2 percent lake evaporation. Measurement error and uncertainty in flux calculations cause a flow imbalance of about 4 percent between inflow and outflow water-budget components. Most of this error can be attributed to errors in estimating ground-water discharge from the lake, which was calculated using a ground-water model calibrated to October 1986 conditions for the entire Apalachicola?Chattahoochee?Flint River Basin and not just the area around Lake Seminole. Evaporation rates were determined using the preferred, but mathematically complex, energy budget and five empirical equations: Priestley-Taylor, Penman, DeBruin-Keijman, Papadakis, and the Priestley-Taylor used by the Georgia Automated Environmental Monitoring Network. Empirical equations require a significant amount of data but are relatively easy to calculate and compare well to long-term average annual (April 2000?March 2001) pan evaporation, which is 65 inches. Calculated annual lake evaporation, for the study period, using the energy-budget method was 67.2 inches, which overestimated long-term average annual pan evaporation by 2.2 inches. The empirical equations did not compare well with the energy-budget method during the 18-month study period, with average differences in computed evaporation using each equation ranging from 8 to 26 percent. The empirical equations also compared poorly with long-term average annual pan evaporation, with average differences in evaporation ranging from 3 to 23 percent. Energy budget and long-term average annual pan evaporation estimates did compare well, with only a 3-percent difference between estimates. Monthly evaporation estimates using all methods ranged from 0.7 to 9.5 inches and were lowest during December 2000 and highest during May 2000. Although the energy budget is generally the preferred method, the dominance of surface water in the Lake Seminole water budget makes the method inaccurate and difficult to use, because surface water makes up m

  13. Groundwater hydrology--coastal flow

    USGS Publications Warehouse

    Sanford, Ward E.

    2010-01-01

    How groundwater flow varies when long-term external conditions change is little documented. Geochemical evidence shows that sea-level rise at the end of the last glacial period led to a shift in the flow patterns of coastal groundwater beneath Florida.

  14. Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

  15. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  16. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  17. Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.

    PubMed

    Siebert, Christian; Rödiger, Tino; Mallast, Ulf; Gräbe, Agnes; Guttman, Joseph; Laronne, Jonathan B; Storz-Peretz, Yael; Greenman, Anat; Salameh, Elias; Al-Raggad, Marwan; Vachtman, Dina; Ben Zvi, Arie; Ionescu, Danny; Brenner, Asher; Merz, Ralf; Geyer, Stefan

    2014-07-01

    The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58–66 × 10(6) m(3) a(−1) (western wadis: 7–15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole. PMID:24767316

  18. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  19. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the Joshua Tree ground-water subbasin and 5 in the Copper Mountain ground-water subbasin) between 1980 and 2002 and analyzing the samples for major ions, nutrients, and selected trace elements. Selected samples also were analyzed for oxygen-18, deuterium, tritium, and carbon-14. The water-quality data indicated that dissolved solids and nitrate concentrations were below regulatory limits for potable water; however, fluoride concentrations in the lower aquifer exceeded regulatory limits. Arsenic concentrations and chromium concentrations were generally below regulatory limits; however, arsenic concentrations measured in water from wells perforated in the lower aquifer exceeded regulatory limits. The carbon-14 activities ranged from 2 to 72 percent modern carbon and are consistent with uncorrected ground-water ages (time since recharge) of about 32,300 to 2,700 years before present. The oxygen-18 and deuterium composition of water sampled from the upper aquifer is similar to the volume-weighted composition of present-day winter precipitation indicating that winter precipitation was the predominant source of ground-water recharge. Field studies, conducted during water years 2001 through 2003 to determine the distribution and quantity of recharge, included installation of instrumented boreholes in selected washes and at a nearby control site. Core material and cuttings from the boreholes were analyzed for physical, chemical, and hydraulic properties. Instruments installed in the boreholes were monitored to measure changes in matric potential and temperature. Borehole data were supplemented with temperature data collected from access tubes installed at additional sites along study washes. Streambed hydraulic properties and the response of instruments to infiltration were measured using infiltrometers. Physical and geochemical data collected away from the stream channels show that direct infiltration of precipitation to depths below the root zone and subsequent gro

  20. Transient modeling of regional groundwater flow using parameter estimates from steady-state automatic calibration

    NASA Astrophysics Data System (ADS)

    Sonnenborg, Torben O.; Christensen, Britt S. B.; Nyegaard, Per; Henriksen, Hans Jørgen; Refsgaard, Jens Christian

    2003-03-01

    Use of automatic calibration of large physically based hydrological models running in a transient mode is severely constrained by the long simulation time. Here, the possibility of using a steady-state model, with fast model execution, as the basis for automatic calibration of the involved parameters is examined. It is tested if the parameters estimated with the steady-state model can be used for the subsequent transient modeling of the same hydrological system. The problem is analysed for the 5900 km 2 South Jutland area, being one of the 11 model areas of the National Water Resource Model of Denmark. The area is modelled using the MIKE SHE code while UCODE is used for optimization. Hydraulic head data and stream discharge data are available for calibration. It is examined how the estimated parameters are affected by the choice of (a) recharge input to the steady-state model, and (b) target data used for calibration. The reliability of the parameters is evaluated and the resulting ability of the optimized models to simulate the transient response of the system is assessed. The results show that the estimated parameters are highly sensitive to the way that the steady-state model is conceptualized. The study suggests how the steady-state model should be conceptualized in order to obtain reliable parameter estimates that produce acceptable transient model results.

  1. Groundwater flow modeling of two-levels perched karstic leaking aquifers as a tool for estimating recharge and hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Gvirtzman, Haim

    2010-06-01

    SummaryPerched springs in nature emerge from aquifers laying on aquitards within the unsaturated zone, some of which emerge one above the other. A finite element model was introduced, using the FEFLOW code, for simulating the groundwater flow regime in each of these aquifers, for quantifying the fraction of rain that recharges the aquifers, and for estimating the hydrogeological parameters of the aquifers and aquitards. Many of the perched springs in Israel are found in the Judea Group aquifer, a stratified carbonate rock unit, characterised by a well-developed karst system. The Batir and Jamia springs exemplifies such a system, where Batir is the upper spring discharging at the contact between Aminadav and Moza Formations, and Jamia is the lower one, discharging at the contact between Kesalon and Sorek Formations. The 25-year-long measured spring's hydrographs were used to calibrate the spring's coefficients, the hydraulic conductivities of the different layers, the karst features and the yearly amount of rain recharging the spring.

  2. Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  3. Estimates of consumptive use and ground-water return flow using water budgets in Parker Valley, Arizona and California, 1981-84

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1988-01-01

    Annual water budgets were used to estimate consumptive use by vegetation and groundwater return flow in Parker Valley, Arizona and California. Consumptive use by vegetation was estimated to be 482,800 acre-ft in 1981, 432,000 acre-ft in 1982, 413,500 acre-ft in 1983, and 420,900 acre-ft in 1984 on the Arizona side of the Colorado River, and 45,400 acre-ft in 1984 on the California side of the river. Groundwater return flow from the area north of Tyson Wash in Arizona was estimated to be 0 acre-ft in 1981, 1983, and 1984 and 1,900 acre-ft in 1982. Water budget estimates of consumptive use by vegetation were compared to estimates of evapotranspiration. Estimates of evapotranspiration were from 1% less to 9% higher than estimates of consumptive use by vegetation in the area north of Tyson Wash. The percentage differences in the two estimates were within the measurement errors of the two major measured components in the water budget regardless of differences in year-to-year conditions. Estimates of consumptive use of Colorado River water calculated as measured diversions minus return flows were consistently lower than estimates of consumptive use by vegetation. Estimates of consumptive use of Colorado River water were from 18 to 37% lower than estimates of consumptive use by vegetation variations in tributary inflow, river stage, and induced seepage from the river to replace groundwater transpired by phreatophytes are not accounted for in the calculation. (USGS)

  4. Death valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

    1999-01-01

    A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing high contrasts and abrupt contacts. This characteristic, combined with the large scale of the model, make zonation the logical choice for representing the hydraulic-conductivity distribution. Different conceptual models were evaluated using sensitivity analysis and were tested by using nonlinear regression to determine parameter values that are optimal, in that they provide the best match between the measured and simulated heads and flows. The different conceptual models were judged based both on the fit achieved to measured heads and spring flows, and the plausibility of the optimal parameter values. One of the conceptual models considered appears to represent the system most realistically. Any apparent model error is probably caused by the coarse vertical and horizontal discretization.A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing high contrasts and abrupt contacts. This characteristic, combined with the large scale of the model, make zonation the logical choice for representing the hydraulic-conductivity distribution. Different conceptual models were evaluated using sensitivity analysis and were tested by using nonlinear regression to determine parameter values that are optimal, in that they provide the best match between the measured and simulated heads and flows. The different conceptual models were judged based both on the fit achieved to measured heads and spring flows, and the plausibility of the optimal parameter values. One of the conceptual models considered appears to represent the system most realistically. Any apparent model error is probably caused by the coarse vertical and horizontal discretization.

  5. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  6. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  7. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  8. Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005

    USGS Publications Warehouse

    Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

    2011-01-01

    This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston-flow model is based on the potentially limiting assumptions that tracer transport is advective and that no mixing occurs. Additional uncertainties can arise from tracer degradation, sorption, contamination, or fractionation; terrigenic (natural) sources of tracers; spatially variable atmospheric tracer concentrations; and incomplete understanding of mechanisms of recharge or of the conditions under which atmospheric tracers were partitioned to recharge. The effects of some of these uncertainties are considered herein. For example, degradation, contamination, or fractionation often can be identified or inferred. However, detailed analysis of the effects of such uncertainties on the tracer-based piston-flow ages is constrained by sparse data and an absence of complementary lines of evidence, such as detailed solute transport simulations. Thus, the tracer-based piston-flow ages compiled in this report represent only an initial interpretation of the tracer data.

  9. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    USGS Publications Warehouse

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  10. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    NASA Astrophysics Data System (ADS)

    Siade, Adam; Nishikawa, Tracy; Martin, Peter

    2015-09-01

    Groundwater has provided 50-90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court's decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  11. A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades

    NASA Astrophysics Data System (ADS)

    Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.

    2011-07-01

    Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory during the dry season where surface flow in the area is confined to the Taylor River channel. The model also provided guidance on the importance of capturing the overland flow component, which enters the area as sheet flow during the rainy season. Overall, the modeling approach is suitable to reach better understanding of the water budget in the mangrove region. However, more detailed field data is needed to ascertain model predictions by further calibrating overland flow parameters.

  12. Effects of wetlands creation on groundwater flow

    USGS Publications Warehouse

    Hensel, B.R.; Miller, M.V.

    1991-01-01

    Changes in groundwater flow were observed near four Experimental Wetland Areas (EWAs) constructed along a reach of the Des Plaines River in northeastern Illinois. These changes were observed during monthly monitoring of groundwater elevation in nested piezometers and shallow observation wells before and after the wetlands were filled with water. A numerical model was calibrated with observed data and used to estimate seepage from the wetlands into the Des Plaines River. After the wetlands became operational, groundwater levels in adjacent wells increased by about 0.5m, while water levels in wells distant from the wetlands decreased. The increase in groundwater levels near the wetlands is a result of seepage from the wetlands. Numerical predictions of seepage from the wetlands are 60-150 m3 day-1 for two wetlands situated over sand and gravel and less than 1 m3 day-1 for two wetlands situated over clayey till. The difference in seepage rates is attributed to two factors. First, the hydraulic conductivity of the sand and gravel unit is greater than that of the till, and thus there is less mounding and a greater capacity for transmitting water beneath the wetlands overlying this deposit. Secondly, the wetlands located over till are groundwater flow-through ponds, whereas the wetlands over the sand and gravel are primarily groundwater recharge areas. The model was used to estimate that seepage from the wetlands will double groundwater discharge into the Des Plaines River and a tributary relative to pre-operational discharge from the study area. Overall, the wetlands have acted as a constant head boundary, stabilizing groundwater flow patterns. ?? 1991.

  13. Geothermal properties and groundwater flow estimated with a three-dimensional geological model in a late Pleistocene terrace area, central Japan

    NASA Astrophysics Data System (ADS)

    Funabiki, A.; Takemura, T.; Hamamoto, S.; Komatsu, T.

    2012-12-01

    1. Introduction The ground source heat pump (GSHP) is a highly efficient and renewable energy technology for space heating and cooling, with benefits that include energy conservation and reductions in greenhouse gas emissions. One result of the huge Tohoku-oki earthquake and tsunami and the subsequent nuclear disasters is that GSHPs are receiving more attention from the media and they are being introduced by some local governments. Heat generated by underground GSHP installation, however, can pollute the geothermal environment or change groundwater flow patterns . In this study, we estimated possible effects from the use of GSHPs in the Tokyo area with a three-dimensional (3D) geological model. 2. Geological model The Tokyo Metropolitan Area is surrounded by the Late Pleistocene terraces called the Musashino uplands. The terrace surfaces are densely populated residential areas. One of these surfaces, the Shimosueyohi surface, formed along the Tama River during the last deglacial period. The CRE-NUCHS-1 core (Funabiki et al., 2011) was obtained from this surface, and the lithology, heat transfer coefficients, and chemical characteristics of the sediments were analyzed. In this study, we used borehole log data from a 5 km2 area surrounding the CRE-NUCHS-1 core site to create a 3D geological model. In this area, the Pleistocene Kazusa Group is overlain by terrace gravels and a volcanic ash layer called the Kanto Loam. The terrace gravels occur mainly beneath the Kanda, Kitazawa, and Karasuyama rivers , which flow parallel to the Tama River, whereas away from the rivers , the Kanto Loam directly overlies the Kazusa Group sediments. 3. Geothermal disturbance and groundwater flow Using the geological model, we calculated the heat transfer coefficients and groundwater flow velocities in the sediments. Within the thick terrace gravels, which are at relatively shallow depth (8-20 m), heat transfer coefficients were high and groundwater flow was relatively fast. The amount of disturbance of the geothermal environment and groundwater flow caused by the use of GSHPs, therefore, would depend on the thickness of these gravels. Reference Funabiki, A., Nagoya, K., Kaneki, A., Uemura, K., Kurihara, M., Obara, H., Goto, A., Chiba, T., Naya, T., Ueki, T., and Takemura, T. (2011) Sedimentary facies and physical properties of the sediment core CRE-NUCHS-1 in Setagaya district, Tokyo, central Japan. Abstracts, The 118th Annual Meeting of theGeological Society of Japan. Acknowledgement This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST).

  14. Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States

    USGS Publications Warehouse

    Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.

    2005-01-01

    This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.

  15. Estimates of consumptive use and ground-water return flow and the effect of rising and sustained high river stage on the method of estimation in Cibola Valley, Arizona and California, 1983 and 1984

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1990-01-01

    In Cibola Valley, Arizona, water is pumped from the Colorado River to irrigate crops and to maintain wildlife habitat. Unused water percolates to the water table and, as groundwater, moves downgradient into areas of phreatophytes, into a drainage ditch, out of the flood plain, and back to the river. In 1983 and 1984, groundwater return flow was negligible because in most of Cibola Valley the river lost water to the aquifer. Evapotranspiration was used as an approximation for consumptive use by vegetation. Evapotranspiration was calculated as the sum of the products of the area of vegetation types and water-use rate by vegetation type. Evapotranspiration was estimated to be 70,100 acre-ft in 1983 and 62,600 acre-ft in 1984. These estimates may be in error because of the effect of sustained inundation on the rate of water use by phreatophytes. The effects cannot be quantified and therefore adjustments to rates calculated for dry-surface conditions could not be made. The method of estimating consumptive use of water by vegetation and groundwater return flow is affected by changing conditions during years of rising and sustained high river stage caused by flood-control releases at Parker Dam. Most of the bank storage that will return to the river when the high river stage subsides did not originate as irrigation water. High river stage caused some areas to be flooded directly or raised groundwater levels above the land surface. No crops could be grown in flooded fields. The decreased depth to water and inundation with fresh water resulted in new phreatophyte growth in some areas. In some areas that were flooded, many phreatophytes died. Changes in the inundated and flooded areas throughout the years made it difficult to estimate the evaporation losses from the increased water surface. (USGS)

  16. Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes

    NASA Astrophysics Data System (ADS)

    Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.

    2013-05-01

    In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

  17. West Maui Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  18. West Maui Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  19. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    : Belcher, Wayne R., (Edited By); Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  20. Geomorphic aspects of groundwater flow

    NASA Astrophysics Data System (ADS)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation résultante fait apparaître des rognons, des pentes qui s'évasent, des roches en équilibre, des inselbergs et des plaines de corrosion d'extension régionale. La migration des sels dissous des eaux souterraines crée des croûtes de compositions variées, qui constituent des paysages particuliers. (3) Les processus d'érosion des sols et des roches par les eaux souterraines comprennent les phénomènes suivants: la chenalisation, l'érosion par suintement, le sapement, qui tous sont des agents notables du recul des versants et d'érosion régressive vers l'amont. Les seuils et les limites sont importants dans de nombreuses actions chimiques et mécaniques des eaux souterraines. Une approche morphométrique quantitative des formes et des processus liés aux eaux souterraines est donnée en exemple à partir d'études choisies dans les terrains carbonatés et détritiques d'origine aussi bien ancienne que récente. Resumen Las aguas subterráneas tienen una importancia fundamental en la evolución de los paisajes geomorfológicos. En este artículo se consideran tres grandes categorías de procesos ligados al agua subterránea y sus correspondientes paisajes resultantes: (1) La disolución crea distintas geometrías kársticas, fundamentalmente en rocas carbonatadas, como respuesta a las condiciones de recarga, condicionantes geológicos, litologías y al propio flujo de agua subterránea. La velocidad de denudación y formación de cavernas se puede estimar a partir de los parámetros cinéticos e hidráulicos. (2) La erosión producida por las aguas subterráneas genera regolitas de alteración residual en los frentes de erosión, con los subsiguientes afloramientos de rocas inalteradas, inselbergs, rocas oscilantes o llanuras de corrosión de carácter regional. La recolocación de las sales disueltas crea costras superficiales de diferente composición. (3) La erosión de rocas y suelos por procesos ligados al agua subterránea, como filtración y arrastre de finos da lugar a un movimiento de retroceso de taludes y barrancos. La existencia de umbrales y límites de actuación es muy importante en muchas acciones químicas y mecánicas. Una metodología para el estudio de relieves y procesos, basada en aspectos cuantitativos y morfométricos se ejemplifica mediante estudios realizados en rocas carbonatadas y en terrenos clásticos de diferentes edades.

  1. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R., (Edited By)

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  2. Influence of perched groundwater on base flow

    USGS Publications Warehouse

    Niswonger, R.G.; Fogg, G.E.

    2008-01-01

    Analysis with a three-dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine-sediment unit and the hydraulic conductivity of the fine-sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000-m stream reach. Generally, the rate of perched-groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine-sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine-sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched-groundwater discharge nearly 75%. Copyright 2008 by the American Geophysical Union.

  3. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  4. Estimates of tracer-based piston-flow ages of groundwater from selected sites: National Water-Quality Assessment Program, 2006-2010

    USGS Publications Warehouse

    Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.; Runkle, Donna L.

    2012-01-01

    Piston-flow age dates were interpreted from measured concentrations of environmental tracers from 812 National Water-Quality Assessment (NAWQA) Program groundwater sites from 27 Study Units across the United States. The tracers of interest include chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis were collected from 2006 to 2010 from groundwater wells in NAWQA studies, including: * Land-Use Studies (LUS, shallow wells, usually monitoring wells, located in recharge areas under dominant land-use settings), * Major-Aquifer Studies (MAS, wells, usually domestic supply wells, located in principal aquifers and representing the shallow drinking water supply), * Flow System Studies (FSS, networks of clustered wells located along a flowpath extending from a recharge zone to a discharge zone, preferably a shallow stream) associated with Land-Use Studies, and * Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) also associated with Land-Use Studies. Tracer data were evaluated using documented methods and are presented as aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), and tracer-based piston-flow ages. Selected ancillary data, such as redox data, well-construction data, and major dissolved-gas (N2, O2, Ar, CH4, and CO2) data, also are presented. Recharge temperature was inferred using climate data (approximated by mean annual air temperature plus 1°C [MAAT +1°C]) as well as major dissolved-gas data (N2-Ar-based) where available. The N2-Ar-based temperatures showed significantly more variation than the climate-based data, as well as the effects of denitrification and degassing resulting from reducing conditions. The N2-Ar-based temperatures were colder than the climate-based temperatures in networks where recharge was limited to the winter months when evapotranspiration was reduced. The tracer-based piston-flow ages compiled in this report are provided as a consistent means of reporting the tracer data. The tracer-based piston-flow ages may provide an initial interpretation of age in cases in which mixing is minimal and may aid in developing a basic conceptualization of groundwater age in an aquifer. These interpretations are based on the assumption that tracer transport is by advection only and that no mixing occurs. In addition, it is assumed that other uncertainties are minimized, including tracer degradation, sorption, contamination, or fractionation, and that terrigenic (natural) sources of tracers, and spatially variable atmospheric tracer concentrations are constrained.

  5. Considering Barometric Pressure in Groundwater Flow Investigations

    SciTech Connect

    Spane, Frank A. )

    2002-06-18

    Well water-level elevation measurements are commonly used as the basis to delineate groundwater-flow patterns (i.e., flow direction and hydraulic gradient). Barometric pressure fluctuations, however, can have a discernable impact on well water-levels. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. For low-gradient, unconfined aquifer sites exhibiting variable vadose zone characteristics (e.g., thickness, pneumatic diffusivity), barometric pressure fluctuations can also cause actual, temporal changes in lateral flow direction and flow velocity. Discrete water-level measurements used to determine the average or long-term groundwater-flow conditions, therefore, may provide non-representative results. Calculation of the barometric response characteristics for individual wells provides the basis to account for the temporal effects of barometric pressure fluctuations from monitor well measurements, so that average, long-term groundwater-flow pattern behavior can be determined.

  6. Salinity and groundwater flow below beaches

    NASA Astrophysics Data System (ADS)

    Evans, T. B.; Wilson, A. M.; Moore, W. S.

    2013-12-01

    High rates of exchange between seawater and fresh groundwater in beach sediments drive significant chemical reactions, but the groundwater flow that controls this is poorly understood. Current conceptual models for groundwater flow in beaches highlight an upper saline plume, which is separated from the traditional freshwater-saltwater interface by a zone of brackish to fresh groundwater discharge. The lack of an upper saline plume at our study site led us to ask whether the plume exists in all beaches and what hydrogeological features control its formation. We used variable-density, saturated-unsaturated, transient groundwater flow models to investigate the geometry of the freshwater-saltwater interface in beaches with slopes varying from 0.1 to 0.01. We also varied hydraulic conductivity, dispersivity, tidal amplitude, inflow of fresh groundwater and precipitation. All models showed that a salinity gradient developed between the fresh groundwater and seawater in the intertidal zone, but the magnitude of the gradient was variable. The hydraulic conductivity was an important control on the development of an upper saline plume. A hydraulic conductivity of 100 m/d allowed the formation of an upper saline plume in every beach slope. No upper saline plumes formed in any beach with hydraulic conductivities less than 10 m/d. The slope of the beach was also a significant control. In models using a representative hydraulic conductivity of 10 m/d, the upper saline plume only formed in beaches with a slope of 0.5 or greater. The salinity of brackish groundwater that discharges seaward of the upper saline plume was inversely proportional to the input of fresh groundwater. Prior studies of groundwater flow and salinity in beaches have used very small dispersivities, but we found that the upper saline plume becomes much less distinct when larger dispersivities are used. Real beaches are highly mixed environments and the appropriate magnitude of dispersivity remains unclear. Our results suggest that upper saline plumes may not form in beaches of the U.S. Southeast, which are characterized by fine-grained sediment and moderate slopes. The concentration gradient between the upper saline plume and adjacent groundwater discharge zone increased with decreasing longitudinal dispersivity.

  7. Comparison of Estimated Areas Contributing Recharge to Selected Springs in North-Central Florida by Using Multiple Ground-Water Flow Models

    USGS Publications Warehouse

    Shoemaker, W. Barclay; O'Reilly, Andrew M.; Sepulveda, Nicasio; Williams, Stanley A.; Motz, Louis H.; Sun, Qing

    2004-01-01

    Areas contributing recharge to springs are defined in this report as the land-surface area wherein water entering the ground-water system at the water table eventually discharges to a spring. These areas were delineated for Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs in north-central Florida using four regional ground-water flow models and particle tracking. As expected, different models predicted different areas contributing recharge. In general, the differences were due to different hydrologic stresses, subsurface permeability properties, and boundary conditions that were used to calibrate each model, all of which are considered to be equally feasible because each model matched its respective calibration data reasonably well. To evaluate the agreement of the models and to summarize results, areas contributing recharge to springs from each model were combined into composite areas. During 1993-98, the composite areas contributing recharge to Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs were about 130, 730, 110, and 120 square miles, respectively. The composite areas for all springs remained about the same when using projected 2020 ground-water withdrawals.

  8. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  9. Regionally compartmented groundwater flow on Mars

    NASA Astrophysics Data System (ADS)

    Harrison, Keith P.; Grimm, Robert E.

    2009-04-01

    Groundwater flow on Mars likely contributed to the formation of several types of morphologic and mineralogic features, including chaotic terrains, valley networks, Meridiani Planum geologic units and, potentially, sulfate and phyllosilicate deposits. A central issue for these features is the spatial scale of groundwater flow required for their formation. For groundwater simulation purposes, a global Martian aquifer has frequently been assumed, but the validity of this assumption has not been tested. Chaotic terrains, thought to have formed owing to the disruption of a cryosphere under high aquifer pore pressures, provide the basis for such a test. Specifically, we use groundwater models to predict regions of cryosphere disruption due to recharge-driven pore pressure increases, and we compare these regions to observed Martian chaotic terrains. Our results suggest that a globally connected aquifer cannot give rise to cryosphere disruption at the two locations where large chaotic terrains are observed (the circum-Chryse region and the eastern Hellas Planitia). Conversely, modeled cryosphere disruption occurs in locations such as Amazonis Planitia and west Hellas Planitia where no supporting evidence is present, suggesting again that groundwater flow was likely regionally compartmented. Furthermore, the consistent occurrence of modeled breakouts in the Valles Marineris canyon system suggests that large-scale fractures there likely discharged most of the groundwater required for circum-Chryse outflow channel formation, with only minor contributions from chaotic terrains. The fractures are close to a likely source of recharge over Tharsis, and their low elevations lead to high pore pressures even if groundwater flow is regionally compartmented.

  10. GROUNDWATER FLOW IN LOW-PERMEABILITY ENVIRONMENTS.

    USGS Publications Warehouse

    Neuzil, C.E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow systems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of petroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters.

  11. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect. Although the part of the lower Great Miami River Buried Valley Aquifer System where the Hamilton North Well Field is located is semiconfined, unconfined, or locally confined and not directly connected to the Great Miami River, the discontinuity of the clay/till layers beneath the river indicates that other, deeper parts of the aquifer system may be directly connected to the Great Miami River.

  12. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    SciTech Connect

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  13. Post processing of zone budgets to generate improved groundwater influx estimates associated with longwall mining.

    PubMed

    Mackie, C D

    2014-01-01

    Impacts of underground longwall mining on groundwater systems are commonly assessed using numerical groundwater flow models that are capable of forecasting changes to strata pore pressures and rates of groundwater seepage over the mine life. Groundwater ingress to a mining operation is typically estimated using zone budgets to isolate relevant parts of a model that represent specific mining areas, and to aggregate flows at nominated times within specific model stress periods. These rates can be easily misinterpreted if simplistic averaging of daily flow budgets is adopted. Such misinterpretation has significant implications for design of underground dewatering systems for a new mine site or it may lead to model calibration errors where measured mine water seepage rates are used as a primary calibration constraint. Improved estimates of groundwater ingress can be made by generating a cumulative flow history from zone budget data, then differentiating the cumulative flow history using a low order polynomial convolved through the data set. PMID:23895016

  14. Estimating exposure to groundwater contaminants in karst areas

    NASA Astrophysics Data System (ADS)

    Butscher, C.

    2012-12-01

    Large multidisciplinary projects investigate health effects and environmental impacts of contamination. Such multidisciplinary projects challenge groundwater hydrologist because they demand estimations of human or environmental exposure to groundwater contaminants. But especially in karst regions, groundwater quality is subject to rapid changes resulting from highly dynamic flow systems with rapid groundwater recharge and contaminant transport in karst conduits. There is a strong need for tools that allow the quantification of the risk of contaminant exposure via the karst groundwater and its temporal variation depending on rainfall events and overall hydrological conditions. A fact that makes the assessment of contaminant exposure even more difficult is that many contaminants behave differently in the subsurface than the groundwater, because they do not dissolve and exist as a separate phase. Important examples are particulate contaminants, such as bacteria, and non-aqueous phase liquids (NAPLs), such as many organic compounds. Both are ubiquitous in the environment and have large potential for health impacts. It is known from bacterial contamination of karst springs that such contamination is strongly related to flow conditions. Bacteria, which are present at the land surface, in the soil, rock matrix or the conduit system, are immobile during base flow conditions. During storm events however, they become mobilized and are rapidly transported through the conduit flow system from sources to areas of potential exposure. As a result, bacteria concentrations that most times are low at a spring can show a high peak during storm flow. Conceptual models exist that suggest that the transport of NAPLs in karst aquifers is, just like bacterial contamination, related to flow conditions. Light NAPLs that reach the saturated zone float and accumulate on the water table; and dense NAPLs sink downward in the aquifer until they are trapped in pores, fractures and conduits where they remain stationary under base flow conditions. During storm flows, however, they can be dragged downstream or flushed as suspensions and emulsions. As a result, storm flow can send previously immobilized NAPLs to exposure zones in toxic pulses. An approach is presented to estimate the risk of contaminant exposure by bacteria and NAPLs via the groundwater under variable hydrological conditions (Butscher et al. 2011). The approach uses an indicator that is expressed as the Dynamic Vulnerability Index (DVI). This index is defined as the ratio of conduit to matrix flow contributions to spring discharge, and is calculated based on a numerical model simulating karst groundwater flow. The approach is illustrated at a test site in Switzerland, where calculated DVI was compared to the occurrence of fecal indicators during five storm flow events. Key words: karst hydrogeology; groundwater contamination; fecal indicators; NAPLs; numerical modeling References: Butscher, C. Auckenthaler, A., Scheidler, S., Huggenberger, P. (2011). Validation of a Numerical Indicator of Microbial Contamination for Karst Springs. Ground Water 49 (1), 66-76.

  15. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (PAPER)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  16. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (ABSTRACT)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  17. A nested modeling scheme to integrate regional groundwater flow and local groundwater flow/land subsidence processes; an application to the Tokyo metropolitan area, Japan

    NASA Astrophysics Data System (ADS)

    Aichi, M.; Tokunaga, T.; Hayashi, T.

    2007-05-01

    Many mega cities have experienced huge land subsidence due to significant groundwater extraction, and hence, enacted strict regulation of groundwater use. In Tokyo metropolitan area, the groundwater potential has recovered relatively rapidly after the cessation of groundwater extraction, however, it has caused damages to the underground infrastructures. Now, some researchers state that it is better to re-start using appropriate amount of groundwater to reduce the costs necessary for maintain underground infrastructures. To incarnate this, it is desirable to quantitatively estimate what amount of ground re-subsidence might occur by groundwater extraction. In the fields where both significant drawdown/land subsidence and the recovery of groundwater potential have been experienced, past maximum effective stress inside clayey layers is critical for estimating subsidence behavior. To trace the effective stress profiles in the clayey layers by numerical simulation, spatially high- resolution modeling is necessary. On the other hand, groundwater flow regime is rather large in space, and hence, it is difficult to set the boundary condition for the area of interest. Thus, combining both regional flow model with high resolution groundwater flow/land deformation model is desirable. We developed a new scheme to integrate regional groundwater flow and local groundwater flow/land subsidence coupled models to reduce computer load without large errors and applied it to the Tokyo metropolitan area, Japan. This modeling scheme could represent temporal changes of the stress profile in clayey layers, land subsidence in the drawdown period and land expansion in the groundwater recovery period in the Tokyo lowland quite well, and we believe that this scheme works out for predicting future groundwater potentials and land deformation in urban areas.

  18. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    PubMed

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area. PMID:20213054

  19. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, R.M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  20. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    USGS Publications Warehouse

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  1. Multiphase groundwater flow near cooling plutons

    NASA Astrophysics Data System (ADS)

    Hayba, Daniel O.; Ingebritsen, Steven E.

    1997-06-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200°C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ≤10-16 m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  2. Sublacustrine groundwater discharge in esker aquifers; fully integrated groundwater flow modeling compared with novel field techniques

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-04-01

    Groundwater (GW) discharge to surface water bodies such as streams, lakes and wetlands can greatly affect their water quantity, quality and related aquatic ecology. Therefore better understanding of GW - surface water interaction is needed in integrated management of water resources. Sublacustrine groundwater discharge (SGD) to lakes was studied in a complex unconfined Rokua esker aquifer system. SGD was studied for 12 lakes in the area to better understand water and solute inputs through lake beds and thereby the role of GW on lake water budget and solute concentrations. The locations and fluxes of SGD were simulated using a fully integrated groundwater flow model HydroGeoSphere. The used hydrological simulator allows water to flow and partition into overland and stream flow, evaporation, infiltration, and subsurface discharge into surface water features in a physically-based way, which was needed in simulating SGD of the complex aquifer system. The model was first calibrated for subsurface hydraulic conductivity in steady state using data of measured long-term average groundwater and lake levels and stream baseflow. The model performance in transient simulations was then examined against recorded hydrographs for lake and groundwater levels and stream flow. After model performance was verified, the simulated locations and fluxes of SGD were extracted from the model and compared with results from three independent field methods: airborne thermal imaging, stable isotope water balance and seepage meter measurements. Airborne thermal imaging was used to infer locations of SGD into lakes based on temperature anomalies at lakes shorelines due to discharging cold groundwater. Isotopic composition (H2 and O18) was analysed for lake water, groundwater and the data was used to estimate SGD flux into lakes. Finally, seepage meter measurements were conducted for one of the lakes to establish both locations and fluxes of SGD in detail. The simulated and field-based estimated of SGD fluxes and locations compared favourably between the used methods. General pattern of the observed SGD locations using areal thermal imaging was reproduced by the simulations. Order of magnitude in the SGD fluxes agreed between the simulations and stable isotope method, though the isotope-based estimates were consistently higher. The novelty of work was in identifying and quantifying SGD in an esker aquifer using several field based methods and a state of the art modeling approach. The results confirmed that GW is an important component of lake water balance in the area, and likely plays a significant role in solute inflow to lakes and thereby lake trophy status. The study produced new information water fluxes at groundwater and surface water interface in esker aquifers, which is needed in integrated water resource management of these complex aquifer systems.

  3. Use of Chemical and Isotopic Tracers for Estimating Ground-Water Recharge, Flow Paths, and Residence Times in the Middle San Pedro Basin, Southeast Arizona

    NASA Astrophysics Data System (ADS)

    Adkins, C. B.; McIntosh, J.; Eastoe, C.; Dickinson, J.

    2008-12-01

    Ground water is often the primary source of water for rapidly growing populations in the semi-arid southwestern United States. In addition, ground-water discharge to streams sustains wildlife in riparian areas. Improved understanding of the sources of ground water, recharge areas, flow paths, and water quality of basin aquifer systems is needed to assess water availability and develop effective water management policies. This study analyzes variations of major ion (Ca, Na, K, Mg, Sr, Fe, Si, Zn, F, Cl, Br, NO3, SO4) and isotope (18O, 2H, 3H, 34S, 13C, 14C) chemistry of ground water, surface waters and precipitation with in conjunction with hydrogeologic data (e.g. hydraulic head, subsurface structure, and stratigraphy) to infer recharge areas, mixing of water sources, and residence times of ground water within the middle San Pedro watershed in southeastern Arizona. The San Pedro basin is bound by crystalline and carbonate rocks of the Whetstone and Rincon Mountains on the west and by crystalline rocks of the Dragoon Mountains to the east. Differences in mineral assemblages of these mountain blocks impart distinct chemical signatures in ground waters through mineral weathering. Potentially, these differences in water chemistry can serve as chemical tracers for identifying ground-water flow paths and mixing relations. Ground-water chemistry variations suggest compartmentalization of waters into an upper and lower alluvial aquifer system comprised of permeable sands and gravels ranging in depth from ten to over one thousand feet in the basin center; the units are separated by confining units of silt and clay in the basin center. Variations include higher fluoride (up to 8 ppm) near the Dragoon Mountains, higher chloride (up to 54 ppm) near the Whetstone Mountains, and higher sulfate (up to 750 ppm) concentrations in both upper and lower sands and gravels owing to interaction with thick Permian or Neocene evaporites. Chloride is generally lower (less than 8 ppm) in the lower unit of the aquifer due to limited evaporation. The presence of high nitrates (up to 32 ppm) in the upper sands and gravels indicate modern recharge to this unit. ä18O values ranging from -6.8 to -8.9 suggest that recharge to upper unit originates mostly from summer monsoon precipitation especially along certain reaches of the San Pedro River. Oxygen isotope values between -7.2 and -11.8 indicate that recharge to lower units originates from a mixture of summer and winter precipitation and high elevation recharge. Low percent modern carbon values (8.0 to 37.8 PMC) within lower units indicate recharge within the past ~14,000 years. Detectable tritium (1.0-6.8 TU) near bounding mountain blocks and shallow units near the river indicate recharge within the past sixty years. These parameters yield a complex snapshot of groundwater variability and indicate modern recharge is occurring within high elevation areas and along stretches of the river. The lower unit's geochemical signature suggests it may be hydrologically isolated from modern recharge.

  4. Effects of intraborehole flow on groundwater age distribution

    USGS Publications Warehouse

    Zinn, B.A.; Konikow, L.F.

    2007-01-01

    Environmental tracers are used to estimate groundwater ages and travel times, but the strongly heterogeneous nature of many subsurface environments can cause mixing between waters of highly disparate ages, adding additional complexity to the age-estimation process. Mixing may be exacerbated by the presence of wells because long open intervals or long screens with openings at multiple depths can transport water and solutes rapidly over a large vertical distance. The effect of intraborehole flow on groundwater age was examined numerically using direct age transport simulation coupled with the Multi-Node Well Package of MODFLOW. Ages in a homogeneous, anisotropic aquifer reached a predevelopment steady state possessing strong depth dependence. A nonpumping multi-node well was then introduced in one of three locations within the system. In all three cases, vertical transport along the well resulted in substantial changes in age distributions within the system. After a pumping well was added near the nonpumping multi-node well, ages were further perturbed by a flow reversal in the nonpumping multi-node well. Results indicated that intraborehole flow can substantially alter groundwater ages, but the effects are highly dependent on local or regional flow conditions and may change with time. ?? Springer-Verlag 2007.

  5. Analytical groundwater modeling flow and contaminant migration

    SciTech Connect

    Walton, W.C.

    1989-01-01

    This book includes four analytical microcomputer programs for simulation and graphing of uncomplicated two-dimensional groundwater flow and contaminant migration situations. Program operation, concepts, techniques, and methods are described in detail. The Basic programs feature simulations of the following features: contaminant source areas and plumes and production and injection wells, drains, and mines. A graphics subprogram displays drawdown and concentration graphs and contour maps.

  6. Groundwater flow as a cooling agent of the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Kooi, Henk

    2016-03-01

    Groundwater that flows through the outer shell of the Earth as part of the hydrologic cycle influences the distribution of heat and, thereby, the temperature field in the Earth’s crust. Downward groundwater flow in recharge areas lowers crustal temperatures, whereas upward flow in discharge areas tends to raise temperatures relative to a purely conductive geothermal regime. Here I present numerical simulations of generalized topography-driven groundwater flow. The simulations suggest that groundwater-driven convective cooling exceeds groundwater-driven warming of the Earth’s crust, and hence that groundwater flow systems cause net temperature reductions of groundwater basins. Moreover, the simulations demonstrate that this cooling extends into the underlying crust and lithosphere. I find that horizontal components of groundwater flow play a central role in this net subsurface cooling by conveying relatively cold water to zones of upward groundwater flow. The model calculations suggest that the crust and lithosphere beneath groundwater basins can cool by several tens of degrees Celsius where groundwater flows over large distances in basins that consist of crustal rock. In contrast, groundwater-induced cooling is small in unconsolidated sedimentary settings, such as deltas.

  7. Estimated Water Flows in 2005: United States

    SciTech Connect

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

  8. Regional groundwater flow in hard rocks.

    PubMed

    Pacheco, Fernando A L

    2015-02-15

    The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW-SE trending ductile shear zones and NNE-SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. PMID:25460951

  9. Patterns in groundwater chemistry resulting from groundwater flow

    NASA Astrophysics Data System (ADS)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la qualité de l'eau vers une absence de fluctuations, de polluées vers non polluées, d'acides vers basiques, d'oxygénées vers anoxiques et méthanogènes, depuis des échanges de base inexistants vers des échanges significatifs, de l'eau douce vers l'eau saumâtre. Ceci est montré pour une nappe d'eau douce dans une dune côtière des Pays-Bas. Dans "l'hydrosome", on montre que la disparition du carbonate de calcium par lessivage à plus de 15m et celle de cations adsorbés d'origine marine (Na+, K+ et Mg2+) à plus de 2500m vers l'aval-gradient correspond à environ 5000 ans d'écoulement, depuis que la barrière de la plage avec les dunes s'est mise en place. Les zones d'alimentation ponctuelle dans les dunes sont mises en évidence par l'eau souterraine montrant une plus faible évolution prograde de sa qualité que l'eau souterraine de la dune alentour. L'eau du Rhin utilisée pour la réalimentation artificielle dans les dunes a fourni des types hydrochimiques distincts, qui marquent l'écoulement, le mélange et les âges de l'eau souterraine. Resumen El flujo subterráneo tiene una gran importancia sobre la hidroquímica de un sistema ya que reduce la mezcla por difusión, transporta las huellas químicas y biológicas de las acciones antrópicas en la zona de recarga y drena el sistema acuífero. Las tendencias globales vienen regidas por las diferencias en el flujo de agua meteórica que atraviesa el subsuelo. En un hidrosoma individual (cuerpo de agua de un origen específico), se suele desarrollar la siguiente línea de evolución (secuencia de facies) en la dirección del flujo: de gran a nula fluctuación en la calidad del agua, de agua contaminada a no contaminada, de ácida a básica, de óxica a anóxica-metanogénica, de nulo a importante cambio de base y de agua dulce a salobre. Esto puede verse, por ejemplo, en las aguas dulces presentes en las dunas costeras de Holanda. En este hidrosoma, el lixiviado de carbonato cálcico, hasta 15m, y de cationes de adsorción marina (Na+, K+ and Mg2+), hasta 2500m en la dirección del flujo corresponde a unos 5000 años de lavado desde que se desarrolló la barrera de dunas. Áreas de recarga concentrada en las dunas se evidencian porque el agua subterránea muestra un bajo estado de evolución dentro de la línea de evolución antes presentada, si se compara con el agua circundante. La recarga artificial en las dunas con agua del Río Rin proporciona características hidroquímicas diferenciadas, lo que permite caracterizar el flujo subterráneo, la mezcla y las edades de las aguas.

  10. Groundwater velocities at the Nevada Test Site: {sup 14}Carbon-based estimates

    SciTech Connect

    Chapman, J.B.; Hershey, R.L.; Lyles, B.F.

    1995-07-01

    Chemical and isotopic data can be used to constrain and validate groundwater flow models. This study examines probable groundwater flowpaths at the Nevada Test Site (NTS) and estimates groundwater velocities for these flowpaths using water chemistry and carbon isotopes. These velocities are provided for comparison to velocities calculated by a numerical flow model developed by GeoTrans, Inc. Similar to numerical flow models, models of chemical and isotopic evolution are not unique; any number of combinations of reactions can simulate evolution from one water to another, but are no guarantee that the simulation is correct. Knowledge of the hydrology, mineralogy, and chemistry must be combined to produce feasible evolutionary paths.

  11. Groundwater Flow Model for Taos, New Mexico

    NASA Astrophysics Data System (ADS)

    Burck, P. W.; Barroll, P. W.; Core, A. B.; Rappuhn, D.

    2003-12-01

    The New Mexico Office of the State Engineer - Hydrology Bureau (OSE) has developed a regional groundwater flow model for Taos, New Mexico. The MODFLOW 2000 model will serve as a tool to evaluate alternatives in settlement negotiations in an on-going water rights adjudication. If current settlement negotiations fail, it is conceivable that the model might be used in support of litigation. OSE produced the model in cooperation with technical representatives of the various parties to the adjudication. Regional hydrogeologic data including well records, aquifer test results, stream flow measurements and seepage studies have been shared relatively freely among the parties. A recent deep drilling program conducted in conjunction with the negotiation effort has added substantially to the hydrogeologic data set. Among the hydrologic processes simulated by the model are mountain front recharge; areal recharge from precipitation; evapotranspiration; discharge from springs; river and stream flow; accretions to groundwater from irrigation return flow, seepage from acequias, canals, and ditches, and deep percolation; and pumping by municipal entities and mutual domestic water users associations. The resulting model files are available for all parties to review and evaluate. Comments are assessed and many have resulted in significant improvements to the model. At this stage, however, it is unclear whether adopting this cooperative approach will increase the likelihood of model acceptance by the parties.

  12. Estimating the distribution of contemporary (<50 year old) groundwater on Earth

    NASA Astrophysics Data System (ADS)

    Befus, K. M.; Gleeson, T. P.; Luijendijk, E.; Jasechko, S.; Cardenas, M. B.

    2014-12-01

    Time-scales of groundwater dynamics can control how groundwater interacts with many Earth system processes, including weathering, the transport of solutes or contaminants, and hydrologic responses to climate change. In this study, we quantified the global volume and distribution of groundwater that has been recharged over the past 50 years, a time-scale relevant to current policy planning and intimately tied to human generations. We modelled groundwater residence time distributions with several thousand two-dimensional flow and age-as-mass transport simulations guided by global datasets of basin geometric and hydraulic properties. The models suggest that less than 15% of the groundwater on Earth to 2 km depth was recharged in the past 50 years. For most watersheds on Earth, this young groundwater is restricted to the upper 100 m of the Earth's crust. Uncertainty in our estimate stems from the simplification of two-dimensional flow and uncertainty in permeability and porosity.

  13. Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 2. Quantitative hydrologic assessment

    USGS Publications Warehouse

    Fio, John L.; Deverel, S.J.

    1991-01-01

    Groundwater flow modeling was used to quantitatively assess the hydrologic processes affecting ground water and solute movement to drain laterals. Modeling results were used to calculate the depth distribution of groundwater flowing into drain laterals at 1.8 m (drain lateral 1) and 2.7 m (drain lateral 2) below land surface. The simulations indicated that under nonirrigated conditions about 89% of the flow in drain lateral 2 was from groundwater originating from depths greater than 6 m below land surface. The deep groundwater has higher selenium concentrations than shallow groundwater. Simulation of irrigated conditions indicates that as recharge (deep percolation) increases, the proportional contribution of deep groundwater to drain lateral flow decreases. Groundwater flow paths and travel times estimated from the simulation results indicate that groundwater containing high concentrations of selenium (greater than 780 ?g L?1) probably will continue to enter drain lateral 2 for decades.

  14. Groundwater Flooding: Practical Methods for the Estimation of Extreme Groundwater Levels

    NASA Astrophysics Data System (ADS)

    Bichler, A.; Fürst, J.

    2012-04-01

    Floods are in general recognized as a consequence of high flows in surface waters. Only recently awareness has been raised for potential flooding and flood risk from groundwater sources. In particular, information about high groundwater levels is relevant where basements of buildings or vulnerable installations might be affected. Also, the EU Floods Directive addresses the potential flood risk arising from groundwater sources. While the statistical analysis of extreme values is widely used in surface hydrology, there are currently only few studies that consider the specific properties of extreme groundwater levels. The main objective of this investigation is the application of at-site and regional frequency analysis in the field of hydrogeology. Extreme groundwater levels with a given return period (e.g. 100 years) are estimated with the method of L-moments and their uncertainty is quantified. Moreover, software tools are developed in order to make extreme value analysis a feasible technique for practical application by the Austrian Hydrological Service. These tools address demand for user-friendly handling as well as integration and an update of existing and readily derivable data. Lastly, the estimates are regionalized, thus information of extreme groundwater levels and accuracy of estimation can be retrieved at any point of the investigation area. The analysis is applied in four shallow, porous aquifers in Austria, with a total of more than 1000 time series records of groundwater levels, covering 10 - 50 years of observation. Firstly, local frequency analysis (LFA) is performed on a series of annual maximum peaks. The analysis of annual maxima allows for easy handling, but comes with the drawback of requiring 20-30 years of observation as minimum sample size. Due to anthropogenic impacts, natural changes of the hydrologic system, etc. this requirement cannot be met in numerous cases. Hence, the peaks over threshold (POT) approach and regional frequency analysis (RFA) is implemented. Thus, sufficiently large sample size can be derived from shorter time series either by selecting exceedances over a variable threshold (POT), or accounting for data from related observations (RFA, "trading space for time"). The results show, that at-site frequency analysis is applicable at 63% of the records, at which the peaks over threshold method yields more accurate estimates compared to the annual maxima. Regional frequency analysis can be applied at 51% of the samples and results in even further reduction of uncertainty. In the four case studies 12 - 45 % of the investigated area is susceptible to groundwater flood risk, i.e. an event with a return period of 100 years is likely to reach the terrain surface. As one of the outcomes, maps of depth to the groundwater table make it possible to identify areas prone to groundwater flooding or suitable for development at a glance.

  15. Groundwater Flow in Low-Permeability Environments

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.

    1986-08-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow sytems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of pertroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters. These limitations have resulted in rather distinct small- and large-scale approaches to the problem. The first part of the review considers experimental investigations of low-permeability flow, including in situ testing; these are generally conducted on temporal and spatial scales which are relatively small compared with those of interest. Results from this work have provided increasingly detailed information about many aspects of the flow but leave certain questions unanswered. Recent advances in laboratory and in situ testing techniques have permitted measurements of permeability and storage properties in progressively "tighter" media and investigation of transient flow under these conditions. However, very large hydraulic gradients are still required for the tests; an observational gap exists for typical in situ gradients. The applicability of Darcy's law in this range is therefore untested, although claims of observed non-Darcian behavior appear flawed. Two important nonhydraulic flow phenomena, osmosis and ultrafiltration, are experimentally well established in prepared clays but have been incompletely investigated, particularly in undisturbed geologic media. Small-scale experimental results form much of the basis for analyses of flow in low-permeability environments which occurs on scales of time and size too large to permit direct observation. Such large-scale flow behavior is the focus of the second part of the review. Extrapolation of small-scale experimental experience becomes an important and sometimes controversial problem in this context. In large flow systems under steady state conditions the regional permeability can sometimes be determined, but systems with transient flow are more difficult to analyze. The complexity of the problem is enhanced by the sensitivity of large-scale flow to the effects of slow geologic processes. One-dimensional studies have begun to elucidate how simple burial or exhumation can generate transient flow conditions by changing the state of stress and temperature and by burial metamorphism. Investigation of the more complex problem of the interaction of geologic processes and flow in two and three dimensions is just beginning. Because these transient flow analyses have largely been based on flow in experimental scale systems or in relatively permeable systems, deformation in response to effective stress changes is generally treated as linearly elastic; however, this treatment creates difficulties for the long periods of interest because viscoelastic deformation is probably significant. Also, large-scale flow simulations in argillaceous environments generally have neglected osmosis and ultrafiltration, in part because extrapolation of laboratory experience with coupled flow to large scales under in situ conditions is controversial. Nevertheless, the effects are potentially quite important because the coupled flow might cause ultra long lived transient conditions. The difficulties associated with analysis are matched by those of characterizing hydrologic conditions in tight environments; measureme

  16. Groundwater app to determine flow direction and gradient.

    PubMed

    Morrison, Derek; Munster, Clyde

    2015-01-01

    A computational program, called the groundwater flow calculator, was created to quickly and easily determine the hydraulic gradient and direction of groundwater flow. The groundwater flow calculator automates the hand-drawn process by Ralph Heath in the U.S. Geological Survey (USGS) Water Supply Paper 2220. In addition, a mobile app was developed to allow this procedure to run on a smart phone for use in the field. PMID:24898497

  17. A conceptual framework of groundwater flow in some crystalline aquifers in Southeastern Ghana

    NASA Astrophysics Data System (ADS)

    Yidana, Sandow Mark; Ganyaglo, Samuel; Banoeng-Yakubo, Bruce; Akabzaa, Thomas

    2011-02-01

    A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10 -5 m/d to 7.14 × 10 -4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m 3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast-southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.

  18. Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yumi; Nakamura, Kimihito; Horino, Haruhiko; Kawashima, Shigeto

    2014-12-01

    Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73-98 % relative to no crop rotation.

  19. Comparison and modification of methods for estimating evapotranspiration using diurnal groundwater level fluctuations in arid and semiarid regions

    NASA Astrophysics Data System (ADS)

    Yin, Lihe; Zhou, Yangxiao; Ge, Shemin; Wen, Dongguang; Zhang, Eryong; Dong, Jiaqiu

    2013-07-01

    In arid and semiarid regions, vegetation growth largely depends on groundwater, and causes diurnal fluctuations of shallow groundwater levels. Diurnal groundwater level fluctuations have been widely used to estimate groundwater evapotranspiration (ETG) in several methods. This study compared ETG estimated by three commonly used methods. A groundwater flow model was created to generate synthetic diurnal groundwater level fluctuations caused by a given evapotranspiration. The model also calculates the change in groundwater storage and net groundwater inflow at locations of observation wells. The White method, the Hays method, and the Loheide method were applied to estimate ETG with the model-generated diurnal groundwater levels. The comparison of the actual and estimated ETG revealed the accuracy of each method and indentified the applicability of the methods. When the recovery limb of the groundwater level hydrograph is nonlinear, these existing methods underestimate daily ETG. The Loheide method is comparatively better and can be improved by representing the rate of water table increase in the recovery limb of the hydrograph using an exponential equation. When the recovery limb of the groundwater level hydrograph is linear, all three methods can accurately estimate the daily ETG. The modified White method can provide hourly ETG estimates and is recommended for general use. In practical applications, the analysis of the shape of the water table recovery limb and the up and down gradient groundwater head differences can be used to identify the proper method for estimating ETG.

  20. Analysis of groundwater flow in mountainous, headwater catchments with permafrost

    NASA Astrophysics Data System (ADS)

    Evans, Sarah G.; Ge, Shemin; Liang, Sihai

    2015-12-01

    Headwater catchments have a direct impact on the water resources of downstream lowland regions as they supply freshwater in the form of surface runoff and discharging groundwater. Often, these mountainous catchments contain expansive permafrost that may alter the natural topographically controlled groundwater flow system. As permafrost could degrade with climate change, it is imperative to understand the effect of permafrost on groundwater flow in headwater catchments. This study characterizes groundwater flow in mountainous headwater catchments and evaluates the effect of permafrost in the context of climate change on groundwater movement using a three-dimensional, finite element, hydrogeologic model. The model is applied to a representative headwater catchment on the Qinghai-Tibet Plateau, China. Results from the model simulations indicate that groundwater contributes significantly to streams in the form of baseflow and the majority of groundwater flow is from the shallow aquifer above the permafrost, disrupting the typical topographically controlled flow pattern observed in most permafrost-free headwater catchments. Under a warming scenario where mean annual surface temperature is increased by 2°C, reducing the areal extent of permafrost in the catchment, groundwater contribution to streamflow may increase three-fold. These findings suggest that, in headwater catchments, permafrost has a large influence on groundwater flow and stream discharge. Increased annual air temperatures may increase groundwater discharge to streams, which has implications for ecosystem health and the long-term availability of water resources to downstream regions.

  1. Ground-water flow and solute transport at a municipal landfill site on Long Island, New York; Part 2, Simulation of ground-water flow

    USGS Publications Warehouse

    Wexler, E.J.; Maus, P.E.

    1988-01-01

    Data on the hydrogeology of a 26-sq-mi area surrounding the Brookhaven landfill site in central Suffolk County were collected as part of a hydrologic investigation of solute transport from the site. These data were used to develop a steady-state groundwater flow model of the upper glacial (water table) aquifer in the area. The model accounts for the leakage through confining units underlying the aquifer, seepage to streams, recharge from precipitation, and pumpage and redistribution of water. Refined estimates of aquifer and confining-unit properties were obtained through model calibrations. Water table altitudes generated by the calibrated model were used to determine groundwater velocities and probable flow paths in the vicinity of the site under long-term average hydrologic conditions. Groundwater velocities and probable flow paths in the study area were calculated from simulated water table altitudes generated by the calibrated flow model. Groundwater at the center of the site flows southeastward at a velocity of 1.1 ft/d. The report is the second in a three part series describing the hydrologic conditions and groundwater quality, groundwater flow, and solute transport in the vicinity of the Brookhaven landfill. (USGS)

  2. A correction on coastal heads for groundwater flow models.

    PubMed

    Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Luo, Jian

    2015-01-01

    We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((??+?1)/?)hs ?-?B/2?, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and ? is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+?/?. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models. PMID:24571623

  3. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    NASA Astrophysics Data System (ADS)

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min-Hui; Famiglietti, James S.; Swenson, Sean; Rodell, Matthew

    2015-07-01

    Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long-term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large-scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3.

  4. CONCEPTUAL FRAMEWORK FOR REGRESSION MODELING OF GROUND-WATER FLOW.

    USGS Publications Warehouse

    Cooley, Richard L.

    1985-01-01

    The author examines the uses of ground-water flow models and which classes of use require treatment of stochastic components. He then compares traditional and stochastic procedures for modeling actual (as distinguished from hypothetical) systems. Finally, he examines the conceptual basis and characteristics of the regression approach to modeling ground-water flow.

  5. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  6. Estimating contributions of nitrate and herbicides from groundwater to headwater streams, northern Atlantic Coastal Plain, USA

    USGS Publications Warehouse

    Ator, Scott; Denver, Judith

    2012-01-01

    Groundwater transport often complicates understanding of surface-water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late-winter or spring base-flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base-flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base-flow flux of alachlor and metolachlor is <3% of the total base-flow flux of those compounds plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications is typically highest in well-drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base-flow nitrate flux represents 70% of total nitrogen flux in headwater streams.

  7. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  8. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  9. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, ?13C, ?18O, ?2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower ?18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

  10. Regional Groundwater Flow in the Louisville Aquifer.

    PubMed

    Tiaif, Syafrin; Serrano, Sergio E

    2015-01-01

    The unconfined alluvial aquifer at Louisville, Kentucky, is an important source of water for domestic and industrial uses. It has been the object of several modeling studies in the past, particularly via the application of classical analytical solutions, and numerical solutions (finite differences and finite elements). A new modeling procedure of the Louisville aquifer is presented based on a modification of Adomian's Decomposition Method (ADM) to handle irregularly shaped boundaries. The new approach offers the simplicity, stability, and spatial continuity of analytical solutions, in addition to the ability to handle irregular boundaries typical of numerical solutions. It reduces to the application of a simple set of algebraic equations to various segments of the aquifer. The calculated head contours appear in reasonably agreement with those of previous studies, as well as with those from measured head values from the U.S. Geological Survey field measurement program. A statistical comparison of the error standard deviation is within the same range as that reported in previous studies that used complex numerical solutions. The present methodology could be easily implemented in other aquifers when preliminary results are needed, or when scarce hydrogeologic information is available. Advantages include a simple approach for preliminary groundwater modeling; an analytic description of hydraulic heads, gradients, fluxes, and flow rates; state variables are described continuously over the spatial domain; complications from stability and numerical roundoff are minimized; there is no need for a numerical grid or the handling of large sparse matrices; there is no need to use specialized groundwater software, because all calculations may be done with standard mathematics or spreadsheet programs. Nonlinearity, the effect of higher order terms, and transient simulations could be included if desired. PMID:25070643

  11. Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Hadfield, John; Stenger, Roland

    2014-05-01

    Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification on nitrate fluxes it is insufficient to consider only the spatial distribution of oxic and anoxic zones; the flow through these zones needs to be quantified. If the majority of groundwater passes through the oxic zones rather the anoxic zones, insignificant N attenuation must be expected. Our results indicate about an order of magnitude lower vertical flow velocity and flux through anoxic zones compared to oxic zones. The age distribution of the groundwater allows identification of groundwater flow path ways, which in the Lake Taupo catchment is characterised by high piston flow, indicating groundwater flow between widely connected impermeable layers, probably paleosol layers. Groundwater dating has become an important tool for management of nitrate contamination.

  12. Using Springs to Study Groundwater Flow and Active Geologic Processes

    NASA Astrophysics Data System (ADS)

    Manga, Michael

    Spring water provides a unique opportunity to study a range of subsurface processes in regions with few boreholes or wells. However, because springs integrate the signal of geological and hydrological processes over large spatial areas and long periods of time, they are an indirect source of information. This review illustrates a variety of techniques and approaches that are used to interpret measurements of isotopic tracers, water chemistry, discharge, and temperature. As an example, a set of springs in the Oregon Cascades is considered. By using tracers, temperature, and discharge measurements, it is possible to determine the mean-residence time of water, infer the spatial pattern and extent of groundwater flow, estimate basin-scale hydraulic properties, calculate the regional heat flow, and quantify the rate of magmatic intrusion beneath the volcanic arc.

  13. Rapid, cost-effective estimation of groundwater age based on hydrochemistry

    NASA Astrophysics Data System (ADS)

    Beyer, M.; Morgenstern, U.; Jackson, B. M.; Daughney, C.

    2013-12-01

    In order to manage and protect groundwater resources, the complex and diverse recharge, mixing and flow processes occurring in groundwater systems need to be better understood. Groundwater age information can give valuable information on groundwater flow, recharge sources, and aquifer volumes. However current groundwater dating techniques, for example tracers such as tritium or CFCs, or hydrological models, have limitations and method specific application ranges and uncertainties. Due to this, ambiguous age interpretation is a problem. New technique(s) are essential to overcome limitations and complement existing methods. The aim of this study is to advance the use of hydrochemistry for groundwater dating. To date, hydrochemistry has only been applied sparsely to support groundwater age determination, despite its wide availability from national groundwater monitoring programs. This is due to the lack of any established distinct relationships between hydrochemistry and groundwater age. Establishing these is complex, since hydrochemistry is influenced by complex interrelationships of aquifer specific processes. Therefore underlying processes, such as mineral weathering and redox reactions, and diverse reactions, such as quartz dissolution, are not directly interpretable from hydrochemistry data. Additionally reaction kinetics (of e.g. quartz dissolution) are often aquifer specific, and field data are sparse; furthermore data gained in laboratory environments are difficult to relate back to field situations as comparative studies have found lab and field measurements can differ by orders of magnitude. We wish to establish relationships between hydrochemistry and groundwater age, to allow hydrochemical data to better inform groundwater dating through two separate approaches. Firstly relationships between groundwater age (determined by state of the art dating techniques) and single hydrochemistry parameters, such as silica concentration, can be established in a given aquifer. This relation can then be used in the same or similar aquifer to infer groundwater age from given hydrochemistry. Secondly specific reaction rates of underlying reactions, such as quartz dissolution, can be determined and used to determine specific and ';generic' reaction rates for field environments. We postulate this may in future lead to groundwater dating directly from specific hydrochemistry data in any given aquifer by using ';generic' kinetics. To illustrate these two approaches, regularly measured hydrochemistry data and estimates of groundwater age inferred from tritium, SF6 and CFC-12 within the Lower Hutt Groundwater Zone, a gravel aquifer in Wellington, New Zealand, are used. Correlations of hydrochemistry parameters and groundwater age are presented. Hierarchical Cluster and Factor Analysis are used to investigate major processes which caused the given hydrochemistry. Inverse modelling is used to identify specific underlying reactions, such as weathering of quartz. Reaction kinetics are investigated and results presented.

  14. Estimation of ecological high flow

    NASA Astrophysics Data System (ADS)

    Lin, Jen-Yang; Chen, Yen-Chang; Hsienshao Tsao, Eric

    2006-02-01

    Floods can destroy fish habitat. During a flood a fish has to seek shelters (refuges) to survive. It is necessary to know the maximum discharge that the fish can sustain against the strong current. Ecological and hydraulic engineers can simulate the flow condition of high flow for designing the refuge when restoring and enhancing the rivers are needed. Based on the average ratio of the mean and maximum velocities invariant with time, discharge and water level, this paper tries to introduce the concept of ecological high flow. The mean-maximum velocity ratio can be used to estimate the mean velocity of the river. If the maximum velocity of the cross section is replaced by the maximum sustained swimming speeds of fish, the mean velocity of ecological high flow can be calculated with the constant ratio. The cross-sectional area can be estimated by the gage height. Then the ecological high flow can be estimated as the product of mean velocity of ecological high flow multiplied by the cross-sectional area. The available data of the upstream of the Dacha River where is the habitat of the Formosan landlocked salmon were used to illustrate the estimation of the ecological high flow. Any restoration project at Sonmou that try to improve the stream habitat can use the ecological high flow to design the hydraulic structure at suitable location to offer refuges for the Formosan landlocked salmon that is an endangered species in Taiwan

  15. Groundwater balance estimation in karst by using simple conceptual rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Željković, Ivana; Kadić, Ana; Denić-Jukić, Vesna

    2014-05-01

    The objective of this work is the study of Opačac karst spring which geographically lies in Dalmatia (Croatia). Numerous studies have been carried out in karst aiming the investigation of groundwater regime. The karst spring hydrograph can reflect the groundwater regime and consequently the analysis is based on them. A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components including the influences of time invariant catchment boundaries and intercatchment flows. The proposed parameter estimation procedure merges the soil-moisture balance and the groundwater balance approaches to obtain the complete groundwater budget. The effective rainfall is calculated by using mathematical model based on soil-moisture balance equations i.e. Palmer's fluid mass balance method. The parameters of model of effective rainfall are determined by using simple conceptual rainfall-runoff model consisting of two linear reservoirs representing the fast and slow flow component of the recession. The weight coefficient between the fast and slow component is determined by using BFI (Base Flow Index) analysis of hydrograph. Recession coefficient of the slow flow component and the weight coefficient are determined from hydrograph analysis. Available data from nearby meteorological station includes on daily basis daily average discharge, the amount of precipitation, the average temperature and the humidity from 1995-2010. The average catchment area is also estimated with the average yearly runoff deficit using Turc's method and compared with the values obtained from the application of the rainfall-runoff model. Nash-Sutcliffe model efficiency coefficient for simulated hydrograph is applied to assess the predictive power of model. Calculated groundwater balance shows that the Opačac Spring aquifer contains a significant storage capacity. The application of series of linear reservoirs is a classical and common technique, but the proposed simple approach enables the estimation of the components of groundwater balance in karst areas.

  16. Comparison of different estimation techniques to quantify groundwater recharge in Pirna, Germany

    NASA Astrophysics Data System (ADS)

    Ringleb, Jana; Sallwey, Jana; Stefan, Catalin

    2015-04-01

    Water scarcity in combination with groundwater exploitation is a major concern worldwide because of climate change, population growth and rising water demand. To be able to sustainably manage and protect groundwater resources, it is necessary to quantify the amount of water which leaks through the unsaturated zone and recharges the aquifer naturally. However, quantifying the spatial and temporal distribution of recharge is difficult because of soil heterogeneity and the influence of vegetation. For that reason and because field measurements of recharge are difficult to obtain, models are valuable tools to quantify recharge. Numerical models need a lot of parameters which are hard to measure and hence can only be estimated. Therefore analytical models or empirical equations which use less and / or easier obtainable parameters could estimate groundwater recharge as well as numerical models because of the underlying uncertainty in parameter estimation. Recharge estimation methods which use different model approaches and have varying complexity were compared at Pirna test field site, Germany to select suitable methods which will later be integrated into a web-based Decision Support System (DSS) developed for the sustainable management of groundwater. The complexity of the used methods covers numerical models, analytical models as well as empirical equations. Different model approaches were used to estimate groundwater recharge including amongst others a groundwater flow model, an unsaturated zone model and a watershed model. The resulting groundwater recharge estimates received from the numerical and analytical models and from empirical equations were compared to evaluate whether the methods are suitable to estimate groundwater recharge considering the complexity, data requirements and time-consumption of each method.

  17. Separation of base flow from streamflow using groundwater levels - illustrated for the Pang catchment (UK)

    NASA Astrophysics Data System (ADS)

    Peters, E.; van Lanen, H. A. J.

    2005-03-01

    A new filter to separate base flow from streamflow has developed that uses observed groundwater levels. To relate the base flow to the observed groundwater levels, a non-linear relation was used. This relation is suitable for unconfined aquifers with deep groundwater levels that do not respond to individual rainfall event. Because the filter was calibrated using total streamflow, an estimate of the direct runoff was also needed. The direct runoff was estimated from precipitation and potential evapotranspiration using a water balance model. The parameters for the base flow and direct runoff were estimated simultaneously using a Monte Carlo approach. Instead of one best solution, a range of satisfactory solutions was accepted. The filter was applied to data from two nested gauging stations in the Pang catchment (UK). Streamflow at the upstream station (Frilsham) is strongly dominated by base flow from the main aquifer, whereas at the downstream station (Pangbourne) a significant component of direct runoff also occurs. The filter appeared to provide satisfactory estimates at both stations. For Pangbourne, the rise of the base flow was strongly delayed compared with the rise of the streamflow. However, base flow exceeded streamflow on several occasions, especially during summer and autumn, which might be explained by evapotranspiration from riparian vegetation. To evaluate the results, the base flow was also estimated using three existing base-flow separation filters: an arithmetic filter (BFI), a digital filter (Boughton) and another filter based on groundwater levels (Kliner and Knek). Both the BFI and Boughton filters showed a much smaller difference in base flow between the two stations. The Kliner and Knek filter gave consistently lower estimates of the base flow. Differences and lack of clarity in the definition of base flow complicated the comparison between the filters. An advantage of the method introduced in this paper is the clear interpretation of the separated components. A disadvantage is the high data requirement.

  18. Surface water seepage effects on shallow groundwater and Rio Grande flow in northern New Mexico

    NASA Astrophysics Data System (ADS)

    Fernald, A.; Helmus, A.; Ochoa, C.; Ortiz, M.; Brown, C.

    2006-12-01

    Timing, amount, and quality of upper Rio Grande flow may be importantly affected by irrigation water that seeps from canals and fields, percolates to shallow groundwater, and returns to the river along subsurface flow paths. In northern New Mexico, changing land use patterns point to potential future reductions in river water deliveries through traditional acequia irrigation canals. We assembled a suite of measurement and modeling technologies to determine the fate of irrigation water and its effects on groundwater and river water. Our 20 km-long study area is a 1 to 2 km-wide irrigated agricultural corridor in a late-Pleistocene floodplain overlain with Holocene alluvial deposits. After the onset of the irrigation season in spring, 12-16% of canal flow seeps below the earthen canal, and 25-60% of flood irrigation applications seep below the plant rooting zone. Water balance and 1-D modeling (Root Zone Water Quality Model) techniques show this seepage creates a 1-2 m rise in the shallow groundwater table, and subsurface flow paths orient towards the river. Water quality analysis shows dilution of resident shallow groundwater by irrigation seepage and interactions between river surface water and near-river groundwater. Remote sensing-based estimates of riparian forest evapotranspiration show the total riparian extraction of groundwater is small compared to groundwater return flow that originated as irrigation seepage. Hydrometric analysis indicates spring and early summer peak flows are redistributed through the irrigation seepage to groundwater pathway; the water returns to the river 6 to 10 weeks after diversion into irrigation systems, and generates up to 25% augmentation of late summer and early fall river flow. 2-D (Hydrus) modeling within the floodplain and 3-D (MODFLOW) modeling of the larger valley will integrate characterizations of hydrologic fluxes to simulate irrigation seepage effects on amount and timing of river flow.

  19. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    PubMed Central

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large‐scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3. PMID:26900184

  20. Locating groundwater flow in karst by acoustic emission surveys

    SciTech Connect

    Stokowski, S.J. Jr.; Clark, D.A.

    1985-01-01

    An acoustic emission survey of Newala Fm. (primarily dolomite) karst has helped to locate subsurface water flow. This survey was performed on the Rock Quarry Dome, Sevier County, Tennessee. A Dresser RS-4 recording seismograph, adjusted to provide a gain of 1000, collected acoustic emission data using Mark Products CN368 vertical geophones with 3-inch spikes. Data was collected for 5-15 second intervals. The geophones were laid out along traverses with 10, 20, or 30-ft spacing and covered with sand bags in locations of high ambient noise. Traverses were laid out: along and across lineaments known to correspond with groundwater flow in natural subsurface channels; across and along a joint-controlled sink suspected of directing groundwater flow; and across a shallow sinkhole located tangentially to the Little Pigeon River and suspected of capturing river water for the groundwater system. Acoustic emissions of channelized flowing groundwater have a characteristic erratic spiked spectral signature. These acoustic emission signatures increase in amplitude and number in the immediate vicinity of the vertical projection of channelized groundwater flow if it occurs within approximately 30 feet of the surface. If the groundwater flow occurs at greater depths the emissions may be offset from the projection of the actual flow, due to propagation of the signal along rock pinnacles or attenuation by residual soils.

  1. Improved methods for GRACE-derived groundwater storage change estimation in large-scale agroecosystems

    NASA Astrophysics Data System (ADS)

    Brena, A.; Kendall, A. D.; Hyndman, D. W.

    2013-12-01

    Large-scale agroecosystems are major providers of agricultural commodities and an important component of the world's food supply. In agroecosystems that depend mainly in groundwater, it is well known that their long-term sustainability can be at risk because of water management strategies and climatic trends. The water balance of groundwater-dependent agroecosystems such as the High Plains aquifer (HPA) are often dominated by pumping and irrigation, which enhance hydrological processes such as evapotranspiration, return flow and recharge in cropland areas. This work provides and validates new quantitative groundwater estimation methods for the HPA that combine satellite-based estimates of terrestrial water storage (GRACE), hydrological data assimilation products (NLDAS-2) and in situ measurements of groundwater levels and irrigation rates. The combined data can be used to elucidate the controls of irrigation on the water balance components of agroecosystems, such as crop evapotranspiration, soil moisture deficit and recharge. Our work covers a decade of continuous observations and model estimates from 2003 to 2013, which includes a significant drought since 2011. This study aims to: (1) test the sensitivity of groundwater storage to soil moisture and irrigation, (2) improve estimates of irrigation and soil moisture deficits (3) infer mean values of groundwater recharge across the HPA. The results show (1) significant improvements in GRACE-derived aquifer storage changes using methods that incorporate irrigation and soil moisture deficit data, (2) an acceptable correlation between the observed and estimated aquifer storage time series for the analyzed period, and (3) empirically-estimated annual rates of groundwater recharge that are consistent with previous geochemical and modeling studies. We suggest testing these correction methods in other large-scale agroecosystems with intensive groundwater pumping and irrigation rates.

  2. Quantifying Groundwater Flow to a Subtropical Spring-fed River Using Automated 222Rn Measurement

    NASA Astrophysics Data System (ADS)

    Khadka, M. B.; Martin, J. B.

    2014-12-01

    The magnitude of groundwater discharge to streams can alter stream water chemistry, thereby affecting riverine ecosystems and surface water quality. Point groundwater discharge to streams can be measured using a variety of techniques; however, integrating point and diffuse discharge is difficult over large stream reaches. We applied an automated radon-in-water technique for continuous measurements of 222Rn activities along a 5 km length of the spring-fed Ichetucknee River in north-central Florida. Integration of longitudinal 222Rn distribution, measured on three separate occasions, with groundwater and spring water end members in a mass balance equation allowed temporal and spatial assessment of groundwater flow to the stream. The 222Rn activities indicate groundwater fluxes are higher in the upper reach of the river, which has a narrow flood plain, than in the lower reach, with a wide flood plain. A wide flood plain enhances evapotranspiration, which may cause the observed difference in groundwater seepage. Groundwater flow to the upper reach increases following rain events as diffuse recharge within the catchment increases hydraulic gradients toward the river. Groundwater recharge to the lower reach is smaller and less variable than the upper reach regardless of the river flow. The lower reach can back flood when the Santa Fe River, the receiving stream, floods because of the low gradient of the Ichetucknee River (<2 m/km). Back flooding reduces flow, increases water level and inundates the floodplain, reducing the hydraulic head gradient and groundwater inflow. Based on the 222Rn mass balance, cumulative groundwater inflow is estimated to be 2.5 ± 1 m3/s (±SD) during low flow and 3.2 ± 1.5 m3/s during high flow. The estimated ground water inflows to the Ichetucknee River from the 222Rn mass balance are about twice the estimates of 1.2 m3/s and 1.5 m3/s obtained from dye tracer and ionic chemical tracer methods, respectively. The estimated higher fluxes from 222Rn method than the other techniques could reflect an additional input of 222Rn to the stream, possibly through the hyporheic exchange. The 222Rn mass balance technique appears useful for distinguishing relative amounts of groundwater and hyporheic inflow when combined with the other techniques.

  3. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  4. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  5. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  6. Estimating Groundwater Quality Changes Using Remotely Sensed Groundwater Storage and Multivariate Regression

    NASA Astrophysics Data System (ADS)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2014-12-01

    Global groundwater dependence is likely to increase with continued population growth and climate-driven freshwater redistribution. Recent groundwater quantity studies have estimated large-scale aquifer depletion rates using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. These innovative approaches currently fail to evaluate groundwater quality, integral to assess the availability of potable groundwater resources. We present multivariate relationships to predict total dissolved solid (TDS) concentrations as a function of GRACE-derived variations in water table depth, dominant land use, and other physical parameters in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. Model evaluations were performed using goodness of fit procedures and cross validation to identify general model forms. Results of this work demonstrate the potential to characterize global groundwater potability using remote sensing.

  7. Influence of vertical flows in wells on groundwater sampling

    NASA Astrophysics Data System (ADS)

    McMillan, Lindsay A.; Rivett, Michael O.; Tellam, John H.; Dumble, Peter; Sharp, Helen

    2014-11-01

    Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10 m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

  8. An evaluation of GRACE groundwater estimates over East Africa

    NASA Astrophysics Data System (ADS)

    Nanteza, J.; Thomas, B. F.; de Linage, C.; Famiglietti, J. S.

    2013-12-01

    The East African (EA) region, comprised of five countries (Uganda, Kenya, Tanzania, Rwanda and Burundi), is among those regions characterized as vulnerable to water stress. The region's freshwater resources, both surface and groundwater, are impacted due to increased pressure from changes in climate and human activities. Better management approaches are required to ensure that these pressures do not significantly impact water availability and accessibility. However, the lack of adequate ground-based observation networks to monitor freshwater resources - especially groundwater (the major source of freshwater in EA), limits effective management of the available water resources. In this study, we explore the potential of using remotely sensed data to monitor freshwater resources over EA. The study uses data from the Gravity Recovery and Climate Experiment (GRACE) satellite to estimate groundwater storage variations over EA during the last decade. The satellite's performance in accurately observing changes in groundwater storage is examined by evaluating the GRACE groundwater estimates against spatially interpolated in-situ groundwater observations using goodness of fit criteria including linear regression coefficient, coefficient of determination and root mean square errors. The results demonstrate that GRACE performs well in observing the behavior of groundwater storage. These results can be useful in improving land surface model simulations - a basis for better decision making in water resources management in the region.

  9. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  10. Quantitative dye-tracing of karst ground-water flow

    USGS Publications Warehouse

    Smoot, James; Mull, Donald; Liebermann, Timothy

    1989-01-01

    Analysis of the results of repeat quantitative dye traces between a sinkhole and a spring used for public water supply were used to describe predictive relations between discharge, mean travel time, apparent ground-water flow velocity and solute transport characteristics. Normalized peak concentration, mean travel time, and standard deviation of travel times were used to produce a dimensionless, composite type curve that was used to produce a dimensionless, composite type curve that was used to simulate solute transport characteristics for selected discharges. Using this curve and previously developed statistical relations, a water manager can estimate the arrival time, peak concentration, and persistence of a soluble contaminant at a supply spring or well based on discharge and the quantity of spilled contaminant.

  11. Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 1. Geochemical assessment

    USGS Publications Warehouse

    Deverel, S.J.; Fio, John L.

    1991-01-01

    A study was undertaken to quantitatively evaluate the hydrologic processes affecting the chemical and isotopic composition of drain lateral water in a drained agricultural field in the western San Joaquin Valley, California. The results elucidate the process of mixing of deep and shallow groundwater (below and within 6 m from land surface) entering the drain laterals. The deep groundwater was subject to evapoconcentration prior to drainage system installation and has been displaced downward (to depths greater than 6 m) in the groundwater system. The proportions of deep and shallow groundwater entering the drain laterals was calculated from the end-member oxygen 18 compositions determined in groundwater samples. The percentage of total drain lateral flow which is deep groundwater flow is about 30% for the shallow drain lateral (1.8 m below land surface) (drain lateral 1)) and 60% for the deep drain lateral (2.7 m below land surface (drain lateral 2)). During irrigation, the percentages of deep groundwater flow decrease to 0 and 30% for the shallow and deep drain laterals, respectively. Selenium concentrations in drain lateral waters decrease during irrigation but selenium loads increase. Total estimated annual loads were 1.1 and 5.4 kg of selenium for drain laterals 1 and 2, respectively. Substantial percentages of the annual load occurred during 8 days of irrigation, 23 and 9% for drain laterals 1 and 2, respectively.

  12. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  13. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  14. Impact of Model Input Uncertainty on Estimated Parameters and Results of Groundwater Models

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Valocchi, A. J.; Cai, X.

    2008-12-01

    It is widely recognized that groundwater modeling results are subject to uncertainty that stem from various sources including natural randomness, input (forcing) data, model parameters, model structure etc. However, groundwater models are often calibrated using the least-squares regression techniques (implemented through tools such as PEST or UCODE), which assume that parameter estimation error is the only source of model uncertainty. Ignoring the remaining sources of uncertainty from the calibration process can seriously compromise groundwater modeling and yield biased and misleading results. In particular, model forcing terms related to water uses such as irrigation and the associated recharge from return flow are not known with certainty since reliable records of water use for irrigation are often lacking. Pumping data are usually obtained by mixed direct measurement and qualitative estimation, and involve significant bias and uncertainty. It is thus an important research challenge to understand and incorporate the potential impact of the error and uncertainty of pumping records into the inversion modeling process. This study evaluates the general effect of input uncertainty on parameter estimate and model prediction, and evaluates the impact in terms of the levels of model's input and output measurement uncertainty, and the size of dataset used for calibration. Alternative approaches to the least-squares parameter estimation methods will be investigated. In particular, the effectiveness of the total least-squares method, which allows estimating model parameters under uncertain model inputs, will be examined. The results will be demonstrated using both analytical and experimental groundwater flow examples.

  15. 2007 Estimated International Energy Flows

    SciTech Connect

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  16. Estimation of evapotranspiration using diurnal groundwater level fluctuations: Comparison of different approaches with groundwater lysimeter data

    NASA Astrophysics Data System (ADS)

    Fahle, Marcus; Dietrich, Ottfried

    2014-01-01

    In wetlands or riparian areas, water withdrawal by plants with access to groundwater or the capillary fringe often causes diurnal groundwater fluctuations. Various approaches use the characteristics of these fluctuations for estimation of daily groundwater evapotranspiration rates. The objective of this paper was to review the available methods, compare them with measured evapotranspiration and assess their recharge assumptions. For this purpose, we employed data of 85 rain-free days of a weighable groundwater lysimeter situated at a grassland site in the Spreewald wetland in north-east Germany. Measurements of hourly recharge and daily evapotranspiration rates were used to assess the different approaches. Our results showed that a maximum of 50% of the day to day variance of the daily evapotranspiration rates could be explained by the approaches based on groundwater fluctuations. Simple and more complex methods performed similarly. For some of the approaches, there were indications that erroneous assumptions compensated each other (e.g., when overestimated recharge counteracted underestimated storage change). We found that the usage of longer time spans resulted in improved estimates of the daily recharge rates and that the estimates were further enhanced by including two night averages. When derived from fitting estimates of recharge or evapotranspiration with according measurements the specific yield, needed to convert changes in water level to water volumes, differed considerably among the methods (from 0.022 to 0.064). Thus, the specific yield can be seen as "correction factor" that compensates for inadequate process descriptions.

  17. Incorporation of prior information on parameters into nonlinear regression groundwater flow models 2. Applications.

    USGS Publications Warehouse

    Cooley, R.L.

    1983-01-01

    Investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. -from Author

  18. Multivariate analyses with end-member mixing to characterize groundwater flow: Wind Cave and associated aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Valder, Joshua F.

    2011-01-01

    Principal component analysis (PCA) applied to hydrochemical data has been used with end-member mixing to characterize groundwater flow to a limited extent, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The method presented herein is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and the associated karst aquifer in the Black Hills of South Dakota, USA. The end-member mixing model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge with an additional 33% from an upgradient aquifer. Artesian springs in the vicinity of Wind Cave primarily received water from regional groundwater flow.

  19. Groundwater storage trends in the Loess Plateau of China estimated from streamflow records

    NASA Astrophysics Data System (ADS)

    Gao, Zhaoliang; Zhang, Lu; Cheng, Lei; Zhang, Xiaoping; Cowan, Tim; Cai, Wenju; Brutsaert, Wilfried

    2015-11-01

    The catchments in the Loess Plateau in China have experienced significant land use change since the 1950s with a great number of soil conservation measures such as revegetation being implemented. Such soil conservation measures and climate variability have had considerable impacts on annual streamflow from these catchments. However, much less is known about changes in groundwater storage as the period of direct groundwater storage measurements is too short to reliably infer groundwater storage trends. For this study, annual values of groundwater storage from 38 catchments in the Loess Plateau were estimated from daily streamflow records based on groundwater flow theory. It was found that over the period of record (viz. 1955-2010), statistically significant (p < 0.1) downward trends have been identified in 20 selected catchments with an average reduction of -0.0299 mm per year, mostly located in the northern part of the Loess Plateau. Upward groundwater storage trends were observed in 10 catchments with an average increase of 0.00467 mm per year; these upward trends occurred in southern parts of the study area. Groundwater storage showed no statistically significant trends in 8 out of the 38 selected catchments. Soil conservation measures implemented in the Loess Plateau such as large-scale revegetation may have contributed to the estimated groundwater storage trends. Changes in sea surface temperature in the tropical Pacific Ocean, as indicated by shifts in climate variability modes such as El Niño-Southern Oscillation and the Pacific Decadal Oscillation, appear to have also contributed to the decreasing trends in groundwater storage in this region.

  20. Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina

    USGS Publications Warehouse

    Spruill, T.B.; Bratton, J.F.

    2008-01-01

    A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86??108 to 4.33??108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy's Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s-1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3-9 m3 s-1) and Darcy's Law (about 9 m3 s-1). A groundwater flux of 9 m 3 s-1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills. ?? 2008 Coastal and Estuarine Research Federation.

  1. Regional ground-water flow in the Lower Peninsula of Michigan

    SciTech Connect

    Grannemann, N.G.; Huffman, G.C. )

    1994-04-01

    A steady-state, numerical model is being developed to simulate groundwater flow in four regional aquifers in Michigan's Lower Peninsula. The uppermost layer in the model simulates flow in the glaciofluvial aquifer and the second layer simulates flow in the Saginaw aquifer, both of which contain freshwater. The lower two modeled units simulate flow in the Parma-Bayport and Marshall aquifers, both of which contain saline water or brine, except at or near their subcrop, where they contain freshwater. The US Geological Survey's Modular Model (MODFLOW) was modified to simulate variable-density groundwater flow in the lower two aquifers by assuming that groundwater density and viscosity differ from place to place but do not change over time. The model simulates groundwater conditions prior to large-scale withdrawals from the aquifer. Boundaries for the model include constant-head boundaries at the shorelines of Lakes Michigan, Huron, St. Clair, and Erie, as well as the St. Clair and Detroit Rivers. The southern boundary is simulated as a no-flow condition along several major stream divides in Michigan and Indiana. Recharge to the glaciofluvial aquifer is estimated to range from 0.2 to 22 inches per year and averages 8.4 inches per year. Regional groundwater flow occurs in areas where the bedrock aquifers are confined and in parts of the glaciofluvial aquifer, such as in the north-central part of the Lower Peninsula. Regional discharge primarily occurs to Saginaw Bay and to streams in the Saginaw and Michigan Lowlands. Parts of the Grand and Maple rivers may also receive discharge on a regional scale. Local flow systems control the direction and rate of groundwater flow in areas where aquifers are unconfined or hydraulically connected to overlying glacial deposits.

  2. Modelling groundwater flow and transport in fractured crystalline rock

    SciTech Connect

    Gustafson, G.; Hodgkinson, D.; Stroem, A.

    1995-12-31

    Studies on the validity of commonly used approaches of modelling groundwater flow and transport in fractured crystalline rocks have been made during recent years in two research facilities in Sweden, The Stripa Mine and the Aspo Flard Rock Laboratory. In both cases predictive modelling of a suite of groundwater flow and transport experiments were made in parallel by a number of modelling groups with different approaches. The modelling was in both cases followed by peer groups, that set objectives and scrutinised the results in order to assess the validity of the models. An overall conclusion of the work is that groundwater modelling is both useful and feasible for describing groundwater movements in a fractured crystalline rock. The modelling approach to use is, however dependent on the entity being modelled. There is also a concensus that a better understanding of transport processes is necessary.

  3. Estimation of groundwater velocities from Yucca Flat to the Amargosa Desert using geochemistry and environmental isotopes

    SciTech Connect

    Hershey, R.L.; Acheampong, S.Y.

    1997-06-01

    Geochemical and isotopic data from groundwater sampling locations can be used to estimate groundwater flow velocities for independent comparison to velocities calculated by other methods. The objective of this study was to calculate groundwater flow velocities using geochemistry and environmental isotopes from the southern end of Yucca Flat to the Amargosa Desert, considering mixing of different groundwater inputs from sources each and southeast of the Nevada Test Site (NTS). The approach used to accomplish the objective of this study consisted of five steps: (1) reviewing and selecting locations where carbon isotopic groundwater analyses, reliable ionic analysis, and well completion information are available; (2) calculating chemical speciation with the computer code WATEQ4F (Ball and Nordstrom, 1991) to determine the saturation state of mineral phases for each ground water location; (3) grouping wells into reasonable flowpaths and mixing scenarios from different groundwater sources; (4) using the computer code NETPATH (Plummer et al., 1991) to simulate mixing and the possible chemical reactions along the flowpath, and to calculate the changes in carbon-13/carbon-12 isotopic ratios ({delta}{sup 13}C) as a result of these reactions; and (5) using carbon-14 ({sup 14}C) data to calculate velocity.

  4. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water subbasins.

  5. Estimation of submarine groundwater discharge to Osaka Bay, Japan by numerical simulation

    NASA Astrophysics Data System (ADS)

    Yasumoto, J.; Nakaya, S.; Mitamura, M.; Takahashi, M.; Onodera, S.; Taniguchi, M.

    2009-12-01

    Urbanization induces a rapid direct runoff and less rainwater recharge to shallow groundwater. In order to manage water resource in a basin scale, it is important to estimate local hydrological cycle depending on land use. Therefore, understanding the water flow, such as direct runoff and groundwater discharge is essential since these are important hydrological components of water resource management (Carl. E. R et al., 2003). Besides, coastal environment deterioration caused by nutrient discharge from the land area is a serious problem. Previous research made in the last decades has shown that direct groundwater discharge to coastal zone is a significant pathway of water and nutrient form land to ocean (Moore, 1996). For instance, groundwater discharge has often contained higher chronic inputs, which is from fertilizers and sewage. Therefore, groundwater discharge often makes the significant effect to coastal marine eutrophication (Taniguchi, 2002). This study focuses on the environmental rehabilitation of Osaka Bay, Japan, where eutrophication has been occurred recently. It is recognized that this problem is caused by an increase of the nutrient input, as fertilizers and wastewater, through direct runoff and groundwater discharge from the residential, industrial and agricultural areas in Osaka Bay catchment. However, groundwater discharge has not yet been quantified as the pathway of nutrients input in this area. In a present study, a simple but efficient approach is proposed in order to estimate groundwater discharge from the basin by water budget analysis. The groundwater recharge model was applied to calculate hydrological components, such as direct runoff, groundwater recharge and evapotranspiration in the basin. Water balance analysis is effective method to estimate the groundwater discharge from a river basin to sea. However, it is often difficult to estimate the exact SGD flux with water budget analysis in a large area. Therefore, it is necessary to develop a new model considering groundwater flow and saltwater intrusion (density effect). In the present study, the three dimensional fresh/salt water flow equation is applied in order to describe the processes of SGD to the sea using SEAWAT (Langevin et al., 2003). The developed model can be used to scale up the measured seepage meter values to a large catchment. The catchment water balance for a planned basin of Osaka Bay, which is located at west of Kyushu Island, Japan, is studied by the suggested method simultaneous analysis of both surface runoff and groundwater flow. In the modelling, the aquifer is divided into ten confined aquifers and an overlying phreatic aquifer separated by a semi permeable layer. The calculation area of the lower sub-confined aquifer is extended until the sea bottom to describe a SGD. The results shows that the annual river discharges and groundwater levels agree reasonably well with the observed values. The model is suitable for the scale-up estimation of SGD to the ocean or semi-closed inner bay from large scale basins.

  6. Hydrogeology, simulated ground-water flow, and ground-water quality at two landfills in Bristol, Vermont

    USGS Publications Warehouse

    Mack, T.J.

    1995-01-01

    A study was done to describe the hydrogeology of unconsolidated deposits, simulated ground-water flow, and ground-water quality at two landfills in Bristol, Vermont. The study area is characterized by a glacial delta greater than 200 feet thick on the west flank of the Green Mountains. An upper unconfined, coarse-grained glacial aquifer and a lower fine-grained glacial aquifer are separated throughout most of the study area by a sand, silt, and clay confining unit. A two-layer ground-water flow model was designed and calibrated to estimate ground-water-flow paths form the aquifers beneath the landfills. Large upward head gradients of 0.03 to 0.30 foot per foot are the result of ground water leaking from the underlying bedrock aquifer, which caused ground-water flow to concentrate in the upper aquifer. Most simulated ground-water-flow paths in the lower glacial aquifer beneath the landfills crossed into the upper aquifer. Simulated ground- water-flow paths in the upper aquifer, beneath the landfills, remained in the upper aquifer. Ground water characterized as landfill leachate, or influenced by landfill leachate, has a median specific conductance of 700 microseimens per centimeter at 25 degrees Celsius. Landfill leachate contained mean concentrations 1.5 to 10 times the background concentrations of common constituents and metals, including calcium, potassium, sodium, chloride, iron, magnesium, and manganese. Trace metals detected in the leachate included copper, nickel, zinc, cobalt, lead, and arsenic. Ten volatile organic compounds were found at four observation wells associated with one landfill and three volatile organic compounds were found at two observation wells associated with the record landfill. No one volatile organic compound was consistently found and detections were generally at or near detection limits.

  7. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    SciTech Connect

    Cooper, Clay A; Hershey, Ronald L; Healey, John M; Lyles, Brad F

    2013-07-01

    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

  8. Characteristics of preferential flow and groundwater discharge to Shingobee Lake, Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Kishel, Hans F.; Gerla, Philip J.

    2002-07-01

    Small-scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater-lake interaction within underlying organic-rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10-3 m day-1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater-lake interaction. These results suggest that site-specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge-dominated lakes.

  9. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the resulting simulated lake stage and water budgets to stages and water budgets from the calibrated model. Simulated lake water budgets and water level changes illustrate the importance of understanding the position of a lake within the hydrologic system (headwater or downstream), the type of lake (surface-water drainage or seepage lake), and the role of groundwater in dampening the effects of large-scale changes in weather patterns on lake levels. Areas contributing recharge to drinking-water supply wells on the Reservation were delineated using forward particle tracking from the water table to the well. Monte Carlo uncertainty analyses were used to produce maps showing the probability of groundwater capture for areas around each well nest. At the Main Pumphouse site near the Village of Lac du Flambeau, most of the area contributing recharge to the wells occurs downgradient from a large wetland between the wells and the wastewater infiltration lagoons. Nonetheless, a small potential for the wells to capture infiltrated wastewater is apparent when considering uncertainty in the model parameter values. At the West Pumphouse wells south of Flambeau Lake, most of the area contributing recharge is between the wells and Tippecanoe Lake. The extent of infiltrated wastewater from two infiltration lagoons was tracked using the groundwater flow model and Monte Carlo uncertainty analyses. Wastewater infiltrated from the lagoons flows predominantly south toward Moss Lake as it integrates with the regional groundwater flow system. The wastewater-plume-extent simulations support the area-contributing-recharge simulations, indicating that there is a possibility, albeit at low probability, that some wastewater could be captured by water-supply wells. Comparison of simulated water-table contours indicate that the lagoons may mound the water table approximately 4 ft, with diminishing levels of mounding outward from the lagoons. Four scenarios, representing potential alternatives for wastewater management, were simulated (at current discharge rates) to evaluate the potential extent of wastewater in the aquifer and discharge to surface-water bodies associated with each management scenario. Wastewater simulated to infiltrate through a hypothetical diffuser below a wetland south of the current lagoons appears to discharge to the overlying wetland and would likely discharge to Moss Lake as overland flow. Wastewater simulated to discharge to a small lake (Mindy Lake) between Moss and Fence Lakes appears to spread radically over a large area between the lakes. Wastewater simulated to discharge to lagoons south and northeast of the current lagoons also appears to spread radially, but the areas of the aquifer with the highest probability of encountering waste-water contamination would likely be between the lagoons and the nearest lake, where the wastewater would eventually discharge. Probability results for the wastewater-plume-extent scenarios are sensitive to the number of mathematical water particles used to represent infiltrating wastewater and the level of detail in the synthetic grid used for the probability analysis. Thus, probability results from wastewater-plume-extent simulations are qualitative only; however, it is expected that illustrations of relatively high or low probability will be useful as a general guide for decision making. Management problems requiring quantitative estimates of probability are best re-cast into problems evaluating the area that contributes recharge to the location of interest, which is not dependent upon the number of simulated particles or the resolution of a synthetic grid.

  10. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes

    SciTech Connect

    Murphy, E.M.; Schramke, J.A.

    1998-11-01

    Changes in geochemistry and stable isotopes along a well-established groundwater flow path were used to estimate in situ microbial respiration rates in the Middendorf aquifer in the southeastern United States. Respiration rates were determined for individual terminal electron acceptors including O{sub 2}, MnO{sub 2}, Fe{sup 3+}, and SO{sub 4}{sup 2{minus}}. The extent of biotic reactions were constrained by the fractionation of stable isotopes of carbon and sulfur. Sulfur isotopes and the presence of sulfur-oxidizing microorganisms indicated that sulfate is produced through the oxidation of reduced sulfur species in the aquifer and not by the dissolution of gypsum, as previously reported. The respiration rates varied along the flow path as the groundwater transitioned between primarily oxic to anoxic conditions. Iron-reducing microorganisms were the largest contributors to the oxidation of organic matter along the portion of the groundwater flow path investigated in this study. The transition zone between oxic and anoxic groundwater contained a wide range of terminal electron acceptors and showed the greatest diversity and numbers of culturable microorganisms and the highest respiration rates. A comparison of respiration rates measured from core samples and pumped groundwater suggests that variability in respiration rates may often reflect the measurement scales, both in the sample volume and the time-frame over which the respiration measurement is averaged. Chemical heterogeneity may create a wide range of respiration rates when the scale of the observation is below the scale of the heterogeneity.

  11. Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies

    NASA Astrophysics Data System (ADS)

    Pimentel, Elizabeth T.; Hamza, Valiya M.

    2012-08-01

    The present work deals with determination groundwater flows in the Amazon region, based on analysis of geothermal data acquired in shallow and deep wells. The method employed is based on the model of simultaneous heat transfer by conduction and advection in permeable media. Analysis of temperature data acquired in water wells indicates down flows of groundwaters with velocities in excess of 10-7 m/s at depths less than 300 m in the Amazonas basin. Bottom-hole temperature (BHT) data sets have been used in determining characteristics of fluid movements at larger depths in the basins of Acre, Solimões, Amazonas, Marajó and Barreirinhas. The results of model simulations point to down flow of groundwaters with velocities of the order of 10-8 to 10-9 m/s, at depths of up to 4000 m. No evidence has been found for up flow typical of discharge zones. The general conclusion compatible with such results is that large-scale groundwater recharge systems operate at both shallow and deep levels in all sedimentary basins of the Amazon region. However, the basement rock formations of the Amazon region are relatively impermeable and hence extensive down flow systems through the sedimentary strata are possible only in the presence of generalized lateral movement of groundwater in the basal parts of the sedimentary basins. The direction of this lateral flow, inferred from the basement topography and geological characteristics of the region, is from west to east, following roughly the course of surface drainage system of the Amazon River, with eventual discharge into the Atlantic Ocean. The estimated flow rate at the continental margin is 3287 m3/s, with velocities of the order of 218 m/year. It is possible that dynamic changes in the fluvial systems in the western parts of South American continent have been responsible for triggering alterations in the groundwater recharge systems and deep seated lateral flows in the Amazon region.

  12. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  13. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  14. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  15. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.

  16. Groundwater Flow Dynamic Simulations of a Buried Valley Aquifer Calibrated with Field and Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Calderhead, A. I.; Hinton, M. J.; Logan, C. E.; Sharpe, D.; Russel, H. A.; Oldenborger, G. A.; Pugin, A.; Rivera, A.; Castellazzi, P.; Martel, R.

    2013-12-01

    Buried valleys are a common occurrence in the North American prairie landscape. They are often characterized as high yield sources of groundwater in regions where low yield shale and tills dominate the hydrogeological setting. Firstly, 3D conceptual and geological models have been generated and used as a basis for creating a 3D finite element groundwater flow model. Field data, including piezometric readings, base flow measurements, and soil moisture probe data were collected between 2011 and 2013 and are used for calibrating the flow model. Secondly, the study aims to improve the spatial discretization of recharge estimates and include these refined values in the flow model. A temporal series of C-band Radar data and several land surface models were compared with the soil moisture probe data from the Spiritwood buried valley aquifer. The radar backscatter was used to develop moisture estimates at the regional scale. These estimates were then input into the HELP multi-parameter recharge model with the aim of assisting in estimates of a spatial discretization for groundwater recharge. Preliminary groundwater simulation results, with uniform recharge, show good agreement with piezometer readings and measured base flow readings. The temporal series of C-band radar backscatter, moisture probe data, and land surface models show corresponding variations between October, 2011 and October, 2012. The high resolution and regional extent of the radar data has a high potential to help develop a better understanding of recharge patterns in buried valley settings. Integrating a temporal series of high-resolution data into conceptual and numerical model development will refine our mapping, understanding and assessment of buried valley aquifers. Future work will include incorporating the spatially variable recharge estimates into the 3D finite element flow model. Additionally, various interpretations of the geological model will be tested to determine the extent, if any, that a geophysical dataset (airborne electromagnetic AEM or seismic) can help yield a more realistic flow pattern in buried valley aquifers.

  17. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  18. Estimation of urban-enhanced infiltration and groundwater recharge, Sierra Vista subbasin, southeast Arizona USA

    NASA Astrophysics Data System (ADS)

    Stewart, Anne M.

    This dissertation reports on the methods and results of a three-phased investigation to estimate the annual volume of ephemeral-channel-focused groundwater recharge attributable to urbanization (urban-enhanced groundwater recharge) in the Sierra Vista subwatershed of southeastern Arizona, USA. Results were used to assess a prior estimate. The first research phase focused on establishment of a study area, installation of a distributed network of runoff gages, gaging for stage, and transforming 2008 stage data into time series of volumetric discharge, using the continuous slope-area method. Stage data were collected for water years 2008 - 2011. The second research phase used 2008 distributed runoff data with NWS DOPPLER RADAR data to optimize a rainfall-runoff computational model, with the aim of identifying optimal site-specific distributed hydraulic conductivity values and model-predicted infiltration. The third research phase used the period-of-record runoff stage data to identify study-area ephemeral flow characteristics and to estimate channel-bed infiltration of flow events. Design-storm modeling was used to identify study-area predevelopment ephemeral flow characteristics, given the same storm event. The difference between infiltration volumes calculated for the two cases was attributed to urbanization. Estimated evapotranspiration was abstracted and the final result was equated with study-area-scale urban-enhanced groundwater recharge. These results were scaled up to the Sierra Vista subwatershed: the urban-enhanced contribution to groundwater recharge is estimated to range between 3270 and 3635 cubic decameters (between 2650 and 2945 acre-feet) per year for the period of study. Evapotranspirational losses were developed from estimates made elsewhere in the subwatershed. This, and other sources of uncertainty in the estimates, are discussed and quantified if possible.

  19. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    USGS Publications Warehouse

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  20. Complex groundwater flow systems as traveling agent models

    PubMed Central

    Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

  1. A Method to Evaluate Groundwater flow system under the Seabed

    NASA Astrophysics Data System (ADS)

    Kohara, N.; Marui, A.

    2011-12-01

    A rapid increase of population in the world causes growth of water demands, and this may result worldwide water shortage in future. Especially, in the coastal area, water resource development becomes important because the half of the world population is concentrated in this area. Recently, countermeasures to mitigate climate change are discussed. Coastal area is one of the promising places for disposal of high-level nuclear waste or carbon dioxide capture and storage. Lots of development will be conducted in the coastal areas, however there are a lot of uncertainties remaining to understand the hydrogeological environment in there. It has been said that salt water / fresh water interface is formed in the place where meteoric fresh groundwater and salt groundwater from the ocean meet, and there is a large amount of groundwater discharge on the seafloor of the end of this interface so far. Recently, there is a lot of research about this submarine groundwater discharge because of the protection of the coastal ecosystem. In addition, there is a report that fresh water under the seabed was discovered on the continental shelf away from a present coastline by tens of kilometers in many parts of the world, because recently offshore drilling technology has been improving. Classical theory about formulation of salt water / fresh water interface could not explain completely, and consideration of longterm geochemical process (e.g., sea level fluctuations) is needed to understand this mechanism. Fresh (or brackish) groundwater under the seabed have been found on the investigation related to a seabed resources exploration in the field of coal mining, oceanic engineering works such as submarine tunnels, the atomic research, and the collection investigations of the basic data in the earth science field. A lot of fresh water under the seabed is confirmed on the offshore side from a present coastline as for these cases, and it is suggested that the end position of the salt water / fresh water interface (position of the submarine groundwater discharge) may appear on the seafloor. Moreover, neither the salinity concentration nor the groundwater age depends on depth. It is thought that it is because that the groundwater forms the complex flow situation through the change in a long-term groundwater flow system. The technology to understand the coastal groundwater flow consists of remote sensing, geographical features analysis, surface of the earth investigation, geophysical exploration, drilling survey, and indoor examination and the measurement. Integration of each technology is needed to interpret groundwater flow system because the one is to catch the local groundwater flow in the time series and another one is to catch the long-term and regional groundwater flow in the general situation. The purpose of this study is to review the previous research of coastal groundwater flow, and to integrate an applicable evaluation approach to understand this mechanism. In this presentation, the review of the research and case study using numerical simulation are introduced.

  2. Incorporation of prior information on parameters into nonlinear regression groundwater flow models. l. Theory.

    USGS Publications Warehouse

    Cooley, R.L.

    1982-01-01

    Prior information on the parameters of a groundwater flow model can be used to improve parameter estimates obtained from nonlinear regression solution of a modeling problem. Two scales of prior information can be available: 1) prior information having known reliability (that is, bias and random error structure), and 2) prior information consisting of best available estimates of unknown reliability. It is shown that if both scales of prior information are available, then a combined regression analysis may be made. -from Author

  3. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data

    NASA Astrophysics Data System (ADS)

    Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

    2014-02-01

    Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

  4. Estimating natural background groundwater chemistry, Questa molybdenum mine, New Mexico

    USGS Publications Warehouse

    Verplanck, Phillip L.; Nordstrom, D Kirk; Plumlee, Geoffrey S.; Walker, Bruce M.

    2010-01-01

    This 2 1/2 day field trip will present an overview of a U.S. Geological Survey (USGS) project whose objective was to estimate pre-mining groundwater chemistry at the Questa molybdenum mine, New Mexico. Because of intense debate among stakeholders regarding pre-mining groundwater chemistry standards, the New Mexico Environment Department and Chevron Mining Inc. (formerly Molycorp) agreed that the USGS should determine pre-mining groundwater quality at the site. In 2001, the USGS began a 5-year, multidisciplinary investigation to estimate pre-mining groundwater chemistry utilizing a detailed assessment of a proximal natural analog site and applied an interdisciplinary approach to infer pre-mining conditions. The trip will include a surface tour of the Questa mine and key locations in the erosion scar areas and along the Red River. The trip will provide participants with a detailed understanding of geochemical processes that influence pre-mining environmental baselines in mineralized areas and estimation techniques for determining pre-mining baseline conditions.

  5. Multivariate analyses and end-member mixing to characterize karst groundwater flow

    NASA Astrophysics Data System (ADS)

    Long, A. J.; Valder, J. F.

    2011-12-01

    End-member mixing (EMM) is a simple modeling approach that is used to estimate the mixing proportions of different waters contributing to sampled sites. This approach has advantages for karst aquifers and groundwater in caves because no assumptions need to be made regarding the presence, locations, or dimensions of conduits. Principal component analysis (PCA) applied to hydrochemical data is useful for assessing hydrochemical data to be used in EMM and for determining appropriate constraints on the EMM model. The combination of these two methods has been used to a limited extent to characterize groundwater flow and has excellent potential for further development and application, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The approach we present is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than otherwise would be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and an associated karst aquifer in the Black Hills of South Dakota, USA. The EMM model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge with an additional 33% from an upgradient aquifer. Artesian springs in the vicinity of Wind Cave primarily received water from regional groundwater flow.

  6. Controls on groundwater flow in a semiarid folded and faulted intermountain basin

    NASA Astrophysics Data System (ADS)

    Ball, Lyndsay B.; Caine, Jonathan Saul; Ge, Shemin

    2014-08-01

    The major processes controlling groundwater flow in intermountain basins are poorly understood, particularly in basins underlain by folded and faulted bedrock and under regionally realistic hydrogeologic heterogeneity. To explore the role of hydrogeologic heterogeneity and poorly constrained mountain hydrologic conditions on regional groundwater flow in contracted intermountain basins, a series of 3-D numerical groundwater flow models were developed using the South Park basin, Colorado, USA as a proxy. The models were used to identify the relative importance of different recharge processes to major aquifers, to estimate typical groundwater circulation depths, and to explore hydrogeologic communication between mountain and valley hydrogeologic landscapes. Modeling results show that mountain landscapes develop topographically controlled and predominantly local-scale to intermediate-scale flow systems. Permeability heterogeneity of the fold and fault belt and decreased topographic roughness led to permeability controlled flow systems in the valley. The structural position of major aquifers in the valley fold and fault belt was found to control the relative importance of different recharge mechanisms. Alternative mountain recharge model scenarios showed that higher mountain recharge rates led to higher mountain water table elevations and increasingly prominent local flow systems, primarily resulting in increased seepage within the mountain landscape and nonlinear increases in mountain block recharge to the valley. Valley aquifers were found to be relatively insensitive to changing mountain water tables, particularly in structurally isolated aquifers inside the fold and fault belt.

  7. Control on groundwater flow in a semiarid folded and faulted intermountain basin

    USGS Publications Warehouse

    Ball, Lyndsay B.; Caine, Jonathan S.; Ge, Shemin

    2013-01-01

    The major processes controlling groundwater flow in intermountain basins are poorly understood, particularly in basins underlain by folded and faulted bedrock and under regionally realistic hydrogeologic heterogeneity. To explore the role of hydrogeologic heterogeneity and poorly constrained mountain hydrologic conditions on regional groundwater flow in contracted intermountain basins, a series of 3-D numerical groundwater flow models were developed using the South Park basin, Colorado, USA as a proxy. The models were used to identify the relative importance of different recharge processes to major aquifers, to estimate typical groundwater circulation depths, and to explore hydrogeologic communication between mountain and valley hydrogeologic landscapes. Modeling results show that mountain landscapes develop topographically controlled and predominantly local-scale to intermediate-scale flow systems. Permeability heterogeneity of the fold and fault belt and decreased topographic roughness led to permeability controlled flow systems in the valley. The structural position of major aquifers in the valley fold and fault belt was found to control the relative importance of different recharge mechanisms. Alternative mountain recharge model scenarios showed that higher mountain recharge rates led to higher mountain water table elevations and increasingly prominent local flow systems, primarily resulting in increased seepage within the mountain landscape and nonlinear increases in mountain block recharge to the valley. Valley aquifers were found to be relatively insensitive to changing mountain water tables, particularly in structurally isolated aquifers inside the fold and fault belt.

  8. Intercomparison of Groundwater Flow Monitoring Technologies at Site OU 1, Former Fort Ord, California

    SciTech Connect

    Daley, P F; Jantos, J; Pedler, W H; Mandell, W A

    2005-09-20

    This report presents an intercomparison of three groundwater flow monitoring technologies at a trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County, California. Soil and groundwater at this site became contaminated by fuels and solvents that were burned on a portion of OU 1 called the Fire Drill Area (FDA) as part of firefighter training from 1962 and 1985. Cont Contamination is believed to be restricted to the unconfined A-aquifer, where water is reached at a depth of approximately 60 to 80 feet below the ground surface; the aquifer is from 15 to 20 feet in thickness, and is bounded below by a dense clay layer, the Salinas Valley Aquitard. Soil excavation and bioremediation were initiated at the site of fire training activities in the late 1980s. Since that time a pump-and-treat operation has been operated close to the original area of contamination, and this system has been largely successful at reducing groundwater contamination in this source area. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In this report, we have augmented flow monitoring equipment permanently installed in an earlier project (Oldenburg et al., 2002) with two additional flow monitoring devices that could be deployed in existing monitoring wells, in an effort to better understand their performance in a nearly ideal, homogeneous sand aquifer, that we expected would exhibit laminar groundwater flow owing to the site's relatively simple hydrogeology. The three flow monitoring tools were the Hydrotechnics{reg_sign} In In-Situ Permeable Flow Sensor (ISPFS), the RAS Integrated Subsurface Evaluation Hydrophysical Logging tool (HPL), and the Lawrence Livermore National Laboratory Scanning Colloidal Borescope Flow Meter (SCBFM). All three devices produce groundwater flow velocity measurements, and the ISPFS and SCBFM systems also gene generate flow direction rate estimates. The ISPFS probes are permanently installed and are non-retrievable, but produce long-term records with essentially no operator intervention or maintenance. The HPL and SCBFM systems are lightweight, portable logging devices that employ recording of electrical conductivity changes in wells purged with deionized water (HPL), or imaging of colloidal particles traversing the borehole (SCBFM) as the physical basis for estimating the velocity of groundwater flow through monitoring wells. All three devices gave estimates of groundwater velocity that were in reasonable agreement. However, although the ISPFS produced groundwater azimuth data that correlated well with conventional conductivity and gradient analyses of the groundwater flow field, the SCBFM direction data were in poor agreement. Further research into the reasons for this lack of correlation would seem to be warranted, given the ease of deployment of this tool in existing conventional monitoring wells, and its good agreement with the velocity estimates of the other technologies examined.

  9. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    SciTech Connect

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity.

  10. Modeling groundwater flow by lattice Boltzmann method in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Budinski, Ljubomir; Fabian, Julius; Stipic, Matija

    2015-07-01

    In order to promote the use of the lattice Boltzmann method (LBM) for the simulation of isotropic groundwater flow in a confined aquifer with arbitrary geometry, Poisson's equation was transformed into a curvilinear coordinate system. With the metric function between the physical and the computational domain established, Poisson's equation written in Cartesian coordinates was transformed in curvilinear coordinates. Following, the appropriate equilibrium function for the D2Q9 square lattice has been defined. The resulting curvilinear formulation of the LBM for groundwater flow is capable of modeling flow in domains of complex geometry with the opportunity of local refining/coarsening of the computational mesh corresponding to the complexity of the flow pattern and the required accuracy. Since the proposed form of the LBM uses the transformed equation of flow implemented in the equilibrium function, finding a solution does not require supplementary procedures along the curvilinear boundaries, nor in the zones requiring mesh density adjustments. Thus, the basic concept of the LBM is completely maintained. The improvement of the proposed LBM over the previously published classical methods is completely verified by three examples with analytical solutions. The results demonstrate the advantages of the proposed curvilinear LBM in modeling groundwater flow in complex flow domains.

  11. Comparison of groundwater flow in Southern California coastal aquifers

    USGS Publications Warehouse

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers. Groundwater and surface-water flow are controlled, in part, by the geologic setting. The physiographic province and related tectonic fabric control the relation between the direction of geomorphic features and the flow of water. Geologic structures such as faults and folding also control the direction of flow and connectivity of groundwater flow. The layering of sediments and their structural association can also influence pathways of groundwater flow and seawater intrusion. Submarine canyons control the shortest potential flow paths that can result in seawater intrusion. The location and extent of offshore outcrops can also affect the flow of groundwater and the potential for seawater intrusion and land subsidence in coastal aquifer systems. As coastal aquifer systems are developed, the source and movement of ground-water and surface-water resources change. In particular, groundwater flow is affected by the relative contributions of different types of inflows and outflows, such as pump-age from multi-aquifer wells within basal or upper coarse-grained units, streamflow infiltration, and artificial recharge. These natural and anthropogenic inflows and outflows represent the supply and demand components of the water budgets of ground-water within coastal watersheds. They are all significantly controlled by climate variability related to major climate cycles, such as the El Niño–Southern Oscillation and the Pacific Decadal Oscillation. The combination of natural forcings and anthropogenic stresses redirects the flow of groundwater and either mitigates or exacerbates the potential adverse effects of resource development, such as declining water levels, sea-water intrusion, land subsidence, and mixing of different waters. Streamflow also has been affected by development of coastal aquifer systems and related conjunctive use. Saline water is the largest water-quality problem in Southern California coastal aquifer systems. Seawater intrusion is a significant source of saline water, but saline water is also known to come from other sources and processes. Seawater intrusion is typically restricted to the coarse-grained units at the base of fining-upward sequences of terrestrial deposits, and at the top of coarsening upward sequences of marine deposits. This results in layered and narrow intrusion fronts. Maintaining the sustainability of Southern California coastal aquifers requires joint management of surface water and groundwater (conjunctive use). This requires new data collection and analyses (including research drilling, modern geohydrologic investigations, and development of detailed computer groundwater models that simulate the supply and demand components separately), implementation of new facilities (including spreading and injection facilities for artificial recharge), and establishment of new institutions and policies that help to sustain the water resources and better manage regional development.

  12. Comparison of groundwater flow in Southern California coastal aquifers

    USGS Publications Warehouse

    Hanson, R.T.; Izbicki, J.A.; Reichard, E.G.; Edwards, B.D.; Land, M.; Martin, P.

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers. Groundwater and surface-water flow are controlled, in part, by the geologic setting. The physiographic province and related tectonic fabric control the relation between the direction of geomorphic features and the flow of water. Geologic structures such as faults and folding also control the direction of flow and connectivity of groundwater flow. The layering of sediments and their structural association can also influence pathways of groundwater flow and seawater intrusion. Submarine canyons control the shortest potential flow paths that can result in seawater intrusion. The location and extent of offshore outcrops can also affect the flow of groundwater and the potential for seawater intrusion and land subsidence in coastal aquifer systems. As coastal aquifer systems are developed, the source and movement of groundwater and surface-water resources change. In particular, groundwater flow is affected by the relative contributions of different types of inflows and outflows, such as pumpage from multi-aquifer wells within basal or upper coarse-grained units, streamflow infiltration, and artificial recharge. These natural and anthropogenic inflows and outflows represent the supply and demand components of the water budgets of groundwater within coastal watersheds. They are all significantly controlled by climate variability related to major climate cycles, such as the El Ni??o-Southern Oscillation and the Pacific Decadal Oscillation. The combination of natural forcings and anthropogenic stresses redirects the flow of groundwater and either mitigates or exacerbates the potential adverse effects of resource development, such as declining water levels, seawater intrusion, land subsidence, and mixing of different waters. Streamflow also has been affected by development of coastal aquifer systems and related conjunctive use. Saline water is the largest water-quality problem in Southern California coastal aquifer systems. Seawater intrusion is a significant source of saline water, but saline water is also known to come from other sources and processes. Seawater intrusion is typically restricted to the coarse-grained units at the base of fining-upward sequences of terrestrial deposits, and at the top of coarsening upward sequences of marine deposits. This results in layered and narrow intrusion fronts. Maintaining the sustainability of Southern California coastal aquifers requires joint management of surface water and groundwater (conjunctive use). This requires new data collection and analyses (including research drilling, modern geohydrologic investigations, and development of detailed computer groundwater models that simulate the supply and demand components separately), implementation of new facilities (including spreading and injection facilities for artificial recharge), and establishment of new institutions and policies that help to sustain the water resources and better manage regional development. ?? 2009 Geological Society of America.

  13. Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW

    USGS Publications Warehouse

    Bedekar, Vivek; Niswonger, Richard G.; Kipp, Kenneth; Panday, Sorab; Tonkin, Matthew

    2012-01-01

    Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.

  14. The impact of storativity on mixing in fluctuating groundwater flow

    NASA Astrophysics Data System (ADS)

    Pool, M.; Post, V.; Simmons, C. T.

    2013-12-01

    Mixing and dispersion in groundwater systems are dominated by spatial heterogeneity and temporal flow fluctuations. It has been found that fluctuations parallel to the main flow directions only mildly impact on solute dispersion and have little influence on mixing if the medium is homogeneous (de Dreuzy et al., 2007; Kinzelbach and Ackerer, 1986; Goode and Konikow, 1990). However, most these findings were obtained under the pseudo steady state assumption, that is zero storativity, which implies an instantaneous flow response to hydraulic perturbation. With non-zero storativity, fluctuations in the flow boundary conditions propagate through the aquifer with a finite speed, which leads to a more complex time-dependent flow field. This is particularly important for tidally dominated coastal aquifers where accurate quantification of mixing is essential for achieving ground-water sustainability. The strategic objective of this study is to identify the interplay between temporal fluctuations, storativity and mixing. We perform two and three-dimensional simulations of transient flow and solute transport under velocity-dependent local scale dispersion. Mixing is characterized by the spatial moments of concentration. The enhanced solute mixing is quantified by an apparent dispersion coefficient. We systematically analyze the dependence of this dispersion coefficient on fluctuation amplitude, period, as well as storativity. Most importantly, we find that solute dispersion increases consistently with storativity. This may have important implications for the understanding of mixing and reaction processes in unconfined groundwater systems. References: -de Dreuzy, J-R. ; Carrera, J. ; Dentz, M. ; Le Borgne, T. (2012) Asymptotic dispersion for two-dimensional highly heterogeneous permeability fields under temporally fluctuating flow, Water Resour. Res., 48, W01532 -Kinzelbach, W., and P. Ackerer (1986), Mode'isation de la propagation d'un contaminant dans un champ d'e'coulement transitoire, Hydroge'ologie, 2, 197-206. -Goode, D. J., and L. F. Konikow (1990), Apparent dispersion in transient groundwater flow, Water Resour. Res., 26(10), 2339-2351.

  15. Characterization and conceptualization of groundwater flow systems: Chapter 2

    USGS Publications Warehouse

    Plummer, L.N.; Sanford, W.E.; Glynn, P.D.

    2013-01-01

    This chapter discusses some of the fundamental concepts, data needs and approaches that aid in developing a general understanding of a groundwater system. Principles of the hydrological cycle are reviewed; the processes of recharge and discharge in aquifer systems; types of geological, hydrological and hydraulic data needed to describe the hydrogeological framework of an aquifer system; factors affecting the distribution of recharge to aquifers; and uses of groundwater chemistry, geochemical modelling, environmental tracers and age interpretations in groundwater studies. Together, these concepts and observations aid in developing a conceptualization of groundwater flow systems and provide input to the development of numerical models of a flow system. Conceptualization of the geology, hydrology, geochemistry, and hydrogeological and hydrochemical framework can be quite useful in planning, study design, guiding sampling campaigns, acquisition of new data and, ultimately, developing numerical models capable of assessing a wide variety of societal issues — for example, sustainability of groundwater resources in response to real or planned withdrawals from the system, CO2 sequestration or other waste isolation issues (such as nuclear waste disposal).

  16. Estimating Groundwater Recharge via a Deuterium-Calibrated Discrete-State Compartment Model

    NASA Astrophysics Data System (ADS)

    Hershey, R. L.; Earman, S.

    2005-12-01

    Increasing demand for water in southern Nevada is driving plans for large-scale interbasin water transfers. Knowledge of groundwater recharge in the impacted basins is needed to assess how such withdrawals may impact water quantity and quality. However, estimates of groundwater recharge in the western USA are typically not well constrained. The most common methods for estimation of basin- (or larger) scale recharge are the Maxey-Eakin method (or some variant thereof) and calibration of numeric models. For many parts of Nevada, recharge estimates using either of these methods are typically calibrated based on estimated values for interbasin groundwater flow; these interbasin flow values have large inherent uncertainties, so estimated recharge values based on these data have large uncertainties as well. To estimate recharge for a large (3.4 x 1010 m2) area in south-central Nevada, we applied a discrete-state compartment (DSC) model calibrated with ?D data. Movement of water through the model cells is controlled by a series of equations conserving mass. Because model calibration is based on measured values of ?D instead of being based entirely on estimated values, recharge fluxes derived from DSC model are independent of previously-extant estimates. The DSC model estimate of total recharge for this area of southern Nevada is 5.3 x 107 m3/yr, compared with 3.1 x 107 m3/yr based on calibration of a MODFLOW model and 4.5 x 107 m3/yr based on Maxey-Eakin-type estimates.

  17. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. Initial results show that IRENE can accurately predict surface water-groundwater flow and salinity interactions in coastal areas. Important research issues that can be investigated using IRENE include: (a) sea level rise and tidal effects on aquifer salinisation and the configuration of the saltwater wedge, (b) the effects of surface water-groundwater interaction on salinity increase of coastal wetlands and (c) the estimation of the location and magnitude of groundwater discharge to coasts. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Gunduz, O. and Aral, M.M. (2005). River networks and groundwater flow: a simultaneous solution of a coupled system. Journal of Hydrology 301 (1-4), 216-234. Liang, D., Falconer, R.A. and Lin, B. (2007). Coupling surface and subsurface flows in a depth-averaged flood wave model. Journal of Hydrology 337, 147-158. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece. Swain, E.D. and Wexler, E.J. (1996). A coupled surface water and groundwater flow model (Modbranch) for simulation of stream-aquifer interaction. United States Geological Survey, Techniques of Water Resources Investigations (Book 6, Chapter A6).

  18. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.

  19. Verification of a Conceptual Model of Groundwater flow in a Poorly Productive Metasedimentary Bedrock Aquifer

    NASA Astrophysics Data System (ADS)

    Nitsche, Janka; Flynn, Raymond

    2010-05-01

    Poorly Productive Aquifers (PPA) underlie approximately two-thirds of the landmass of Ireland yet the behaviour of groundwater in these bedrock types remains poorly understood. Existing (unverified) conceptual models represent most groundwater as travelling through the uppermost metres of the bedrock and at the base of overlying unconsolidated deposits (transition zone), with a subordinate fraction flowing through the shallower bedrock (to 24m BGS) and the deeper rock (to 76m BGS). However, the hydrogeological properties of these units remain largely uninvestigated and thus any conceptual model of groundwater flow requires verification before application to meet the requirements of EU Water Framework Directive legislation. This study aimed to investigate and refine the current conceptual model of groundwater flow within a poorly productive shallow greenschist-grade metasedimentary (Dalradian) bedrock aquifer in the Gortinlieve Catchment, Co. Donegal. The final model will act as a basis for simulating groundwater flow in the uppermost 50 metres of bedrock in the area. A programme of field-based characterisation involved outcrop measurements of fracture length, aperture, orientation and density. High resolution acoustic televiewer and caliper geophysical logs provided details of fracture frequency, orientation, and aperture at depth in six monitoring wells within the catchment, while differential temperature and differential conductivity logs permitted identification of hydraulically active fractures. Constant rate pumping tests conducted on all monitoring wells established the hydrogeological properties at different depths in the aquifer along a transect stretching from the catchment divide to the discharge zone (stream). A flow balance for the catchment provided an estimate of the groundwater contribution to stream flow. Preliminary results identified two prominent conjugate fracture sets in outcropping, which were also encountered in the boreholes thus providing potential hydraulic connections between the transition zone, shallow and deep bedrock. Results from the resistivity logs indicate that the fractured bedrock aquifer is strongly heterogeneous. Analysis of pumping test, differential temperature and differential conductivity data demonstrated several of the fracture planes to be hydraulically active and facilitating the flow of groundwater. Average values of hydraulic conductivity obtained from pumping test analysis for the transition, shallow and deep bedrock are 1.83, 0.01 and 0.01 m/d respectively, suggesting that 85% of groundwater flow occurs within the heavily weathered transition zone and that the shallow and deep bedrock transmit a significantly lower proportion of the total groundwater flow per unit thickness. Pumping test and hydraulic gradient data also demonstrate the rate of groundwater flow increases with increasing saturated thickness. Overall, flow balance results suggest that only 20-30% of groundwater flow within the catchment contributes to flow in the nearby stream and the main component forms part of the deeper regional flow system. These preliminary findings provide an important basis for refining existing conceptual models of PPA.

  20. Reconstructing the groundwater flow in the Baltic Basin during the Last glaciation

    NASA Astrophysics Data System (ADS)

    Saks, T.; Sennikovs, J.; Timuhins, A.; Kalv?ns, A.

    2012-04-01

    In last decades it has been discussed that most large ice sheets tend to reside on warm beds even in harsh clima tic conditions and subglacial melting occurs due to geothermal heat flow and deformation heat of the ice flow. However the subglacial groundwater recharge and flow conditions have been addressed in only few studies. The aim of this study is to establish the groundwater flow pattern in the Baltic Basin below the Scandinavian ice sheet during the Late Weichselian glaciation. The calculation results are compared to the known distribution of the groundwater body of the glacial origin found in Cambrian - Vendian (Cm-V) aquifer in the Northern Estonia which is believed to have originated as a result of subglacial meltwater infiltration during the reoccurring glaciations. Steady state regional groundwater flow model of the Baltic Basin was used to simulate the groundwater flow beneath the ice sheet with its geometry adjusted to reflect the subglacial topography. Ice thickness modelling data (Argus&Peltier, 2010) was used for the setup of the boundary conditions: the meltwater pressure at the ice bed was assumed equal to the overlying ice mass. The modelling results suggest two main recharge areas of the Cm-V aquifer system, and reversed groundwater flow that persisted for at least 14 thousand years. Model results show that the groundwater flow velocities in the Cm-V aquifer in the recharge area in N-Estonia beneath the ice sheet exceeded the present velocities by a factor of 10 on average. The calculated meltwater volume recharged into the Cm-V aquifer system during the Late Weichselian corresponds roughly to the estimated, however, considering the fact, that the study area has been glaciated at least 4 times this is an overestimation. The modeling results attest the hypothesis of light dO18 groundwater glacial origin in the Cm-V aquifer system, however the volumes, timing and processes involved in the meltwater intrusion are yet to be explored. This study was financed by the European Social fund Nr. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060

  1. Assessing the groundwater fortunes of aquifers in the White Volta Basin, Ghana: An application of numerical groundwater flow modeling and isotopic studies

    NASA Astrophysics Data System (ADS)

    Oteng, F. M.; Yidana, S. M.; Alo, C. A.

    2012-12-01

    Effective development and informed management of groundwater resources represent a critical opportunity for improved rural water supply in Ghana and enhanced livelihoods particularly in the northern part of the White Volta Basin, a region already prone to a myriad of water-related infirmities. If adequately developed, the resource will form a sufficient buffer against the effects of climate change/variability and foster food security and sustainable livelihoods among the largely peasant communities in the region. This research presents the results of a preliminary assessment of the hydrogeological conditions and recharge regimes of the aquifers in the Northern parts of the White Volta Basin, Ghana. Results of estimates of groundwater recharge through the conventional isotopic and mass balance techniques are presented. Details of the groundwater flow pattern and preliminary delineation of local and regional groundwater recharge areas are presented from initial simulations of the hydrogeological system with a robust groundwater flow simulation code, MODFLOW, in the Groundwater Modeling System, GMS, version 7.1. The stream flow and evapotranspiration components of the program were activated to incorporate surface flow processes, so that the resulting model represents the conditions of the entire hydrological system. The results of this study form a platform for detailed numerical assessment of the conditions of the aquifers in the area under transient conditions of fluctuating rainfall patterns in the face of climate change/variability.

  2. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  3. Bias in groundwater samples caused by wellbore flow

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1989-01-01

    Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.

  4. Groundwater availability as constrained by hydrogeology and environmental flows

    USGS Publications Warehouse

    Watson, Katelyn A.; Mayer, Alex S.; Reeves, Howard W.

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources?Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

  5. MODIS-aided statewide net groundwater-recharge estimation in Nebraska.

    PubMed

    Szilagyi, Jozsef; Jozsa, Janos

    2013-01-01

    Monthly evapotranspiration (ET) rates (2000 to 2009) across Nebraska at about 1-km resolution were obtained by linear transformations of the MODIS (MODerate resolution Imaging Spectroradiometer) daytime surface temperature values with the help of the Priestley-Taylor equation and the complementary relationship of evaporation. For positive values of the mean annual precipitation and ET differences, the mean annual net recharge was found by an additional multiplication of the power-function-transformed groundwater vulnerability DRASTIC-code values. Statewide mean annual net recharge became about 29 mm (i.e., 5% of mean annual precipitation) with the largest recharge rates (in excess of 100 mm/year) found in the eastern Sand Hills and eastern Nebraska. Areas with the largest negative net recharge rates caused by declining groundwater levels due to large-scale irrigation are found in the south-western region of the state. Error bounds of the estimated values are within 10% to 15% of the corresponding precipitation rates and the estimated net recharge rates are sensitive to errors in the precipitation and ET values. This study largely confirms earlier base-flow analysis-based statewide groundwater recharge estimates when considerations are made for differences in the recharge definitions. The current approach not only provides better spatial resolution than available earlier studies for the region but also quantifies negative net recharge rates that become especially important in numerical modeling of shallow groundwater systems. PMID:23216050

  6. Modeling Groundwater Flow using both Neumann and Dirichlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Zijl, Wouter; El-Rawy, Mustafa; Batelaan, Okke

    2013-04-01

    In groundwater flow models it is customary to use the recharge rate, obtained from measured precipitation minus run off and evapotranspiration, as the top boundary condition (a Neumann boundary condition). However, as has been emphasized by Tóth (1962; 2009), the topography of the water table offers a better boundary condition (a Dirichlet boundary condition), because it leads to the delineation of flow systems and stagnation zones. However, in practical modeling studies the recharge rates obtained when using the Dirichlet boundary condition may turn out to be unrealistically small or large. To remediate this we have developed an unconventional modeling procedure that is based on both the Neumann and the Dirichlet boundary condition on the phreatic surface. Such a model does not only calculate the heads and fluxes, but also an update of the initially perceived hydraulic conductivities, in such a way that the initially perceived conductivity model is preserved as much as possible. For given grid block conductivities, numerical groundwater models (e.g. MODFLOW) are linear in the heads. However, for given heads the numerical models are not linear in the grid block conductivities. Mohammed et al. (2009) have developed a MODFLOW-compatible numerical model that is linear in the stream functions for given grid block conductivities, while it is also linear in the grid block resistivities (inverse of conductivities) if the heads are given. Unconventional modeling is based on this bi-linearity. Assume we specify a reasonable perception of the hydraulic conductivities and determine the numerical solution with Neumann boundary conditions. The resulting fluxes are then substituted into the stream function model, together with Dirichlet boundary conditions, and the grid block resistivities can then be determined by a standard routine for solving systems of linear algebraic equations. The thus calibrated grid block conductivities do not deviate much from the initially perceived conductivity model and honor all the Dirichlet and Neumann boundary data. This so called Constrained Back Projection (CBP) has been developed by Mohammed et al. (2009) and exemplified for synthetic problems. The method is well suited to determine conductivities in ten to hundreds of zones, but solving the algebraic system for thousands to millions of grid block conductivities becomes problematic. A related idea has already been proposed in the 1980s by Wexler (Wexler et al., 1985; Yorkey and Webster, 1987; Kohn and Vogelius, 1987; Wexler, 1988; Kohn and McKenney, 1990) in the context of electric impedance tomography for geophysical and medical imaging. El-Rawy et al. (2010, 2011) has developed and validated this so-called Double Constraint Method (DCM) in the context of hydrogeology and groundwater flow, with applications to two case studies in Belgium. DCM can handle MODFLOW models with thousands to millions of grid block conductivities, but is not very suitable for zonation and is, therefore, complementary to CBP. Application of DCM under a number of different hydrogeological conditions makes the estimate of the hydraulic conductivities more accurate by using a Kalman Filter.

  7. Estimation of shallow ground-water recharge in the Great Lakes basin

    USGS Publications Warehouse

    Neff, B.P.; Piggott, A.R.; Sheets, R.A.

    2006-01-01

    This report presents the results of the first known integrated study of long-term average ground-water recharge to shallow aquifers (generally less than 100 feet deep) in the United States and Canada for the Great Lakes, upper St. Lawrence, and Ottawa River Basins. The approach used was consistent throughout the study area and allows direct comparison of recharge rates in disparate parts of the study area. Estimates of recharge are based on base-flow estimates for streams throughout the Great Lakes Basin and the assumption that base flow in a given stream is equal to the amount of shallow ground-water recharge to the surrounding watershed, minus losses to evapotranspiration. Base-flow estimates were developed throughout the study area using a single model based on an empirical relation between measured base-flow characteristics at streamflow-gaging stations and the surficial-geologic materials, which consist of bedrock, coarse-textured deposits, fine-textured deposits, till, and organic matter, in the surrounding surface-water watershed. Model calibration was performed using base-flow index (BFI) estimates for 959 stations in the U.S. and Canada using a combined 28,784 years of daily streamflow record determined using the hydrograph-separation software program PART. Results are presented for watersheds represented by 8-digit hydrologic unit code (HUC, U.S.) and tertiary (Canada) watersheds. Recharge values were lowest (1.6-4.0 inches/year) in the eastern Lower Peninsula of Michigan; southwest of Green Bay, Wisconsin; in northwestern Ohio; and immediately south of the St. Lawrence River northeast of Lake Ontario. Recharge values were highest (12-16.8 inches/year) in snow shadow areas east and southeast of each Great Lake. Further studies of deep aquifer recharge and the temporal variability of recharge would be needed to gain a more complete understanding of ground-water recharge in the Great Lakes Basin.

  8. Analysis of ground-water flow along a regional flow path of the Midwestern Basins and Arches aquifer system in Ohio

    USGS Publications Warehouse

    Hanover, R.H.

    1994-01-01

    A cross-sectional analysis of ground-water flow in central-western and northwestern Ohio was done as part of the Midwestern Basins and Arches Regional Aquifer-System Analysis project. The Midwestern Basins and Arches aquifer system is composed of carbonate bedrock of Silurian and Devonian age and overlying glacial flow analysis of the Scioto and Blanchard rivers in the study area were used to describe patrems of ground-water flow, to evaluate stream-aquifer interaction, and to quantify recharge and discharge within the ground-water-flow system along a regional ground-water-flow path. The selected regional flow path begins at a regional topographic high in Logan County, Ohio, and ends in Sandusky Bay (Lake Erie), a regional topographic low. Recharge to the ground-water system along the selected regional flow path was estimated from hydrograph separation of streamflow and averaged 3.24 inches per year. Computer model simulations indicate that 84 percent of the water entering the ground-water system flows less than 5 miles from point of recharge to point of discharge and no deeper than the upper surficial aquifers. The distance and depth that ground water travels and traveltime from point of recharge to point of discharge is controlled largely by where ground water enters the flow system. Ground water entering the flow system in the vicinity of major surface- water divides generally travels further, deeper, and longer than ground water entering the flow system elsewhere along the regional flow path. Particle tracking simulations substantiate the concept that the 80-mile-long regional flow path is within a continuous ground-water basin. Estimated traveltimes for ground-water from the regional high to Sandusky Bay range from 22,000 to 40,700 years, given a range of porosities from 8 to 22 percent for the carbonate-rock aquifer.

  9. A general methodology to simulate groundwater flow of unconfined aquifers with a reduced computational cost

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, David; Sahuquillo, Andrés; Andreu, Joaquín; Pulido-Velazquez, Manuel

    2007-05-01

    SummaryThe computational cost of groundwater flow simulation can be crucial when analyzing complex conjunctive use water resources systems that need to simulate simultaneously surface and groundwater components. A general methodology for accurate simulation of unconfined groundwater flow with low computational cost is presented. It requires linearizing the unconfined groundwater flow problem governed by the Boussinesq equation. The technique is based on a change of variable and depends on the reference level adopted. Some recommendations have been provided to set the reference level to estimate the spatially variant parameters required to define the linearized problem. Using this linearization, more accurate results can be obtained than those derived with the classical assumption of invariant transmissivity. Solving the problem with eigenvalue techniques, the solution can be defined with a semi-explicit state equation with low computational cost. Some case studies have been analyzed in order to demonstrate that the methodology can be applied to any aquifer geometry (including non-horizontal bottoms), hydrodynamic properties and boundary conditions (even different prescribed head values). The results have been compared with those obtained with other linearization methods and MODFLOW [McDonald, M.G., Harbaugh, A.W., 1988. A modular three dimensional finite difference ground water flow model. Open - File Report 83-875, US Geological Survey, Washington DC] for unconfined aquifers. A case study defined from a previously calibrated finite-difference model of the "Delta Adra" aquifer, located in southern Spain, has been also analyzed.

  10. FTWORK: A three-dimensional groundwater flow and solute transport code

    SciTech Connect

    Faust, C.R.; Sims, P.N.; Spalding, C.P.; Andersen, P.F. ); Stephenson, D.E. )

    1990-01-01

    The three-dimensional, finite-difference model, FTWORK, may be used to simulate groundwater flow and solute transport processes in fully saturated porous media. The model solves the flow and transport equations separately. Transport mechanisms considered include: advection, hydrodynamic dispersion, adsorption, and radioactive decay. This version of FTWORK also provides for parameter estimation of the steady-state flow applications. Also included in this version is a subroutine that allows linkage with a particle tracking program, GEOTRACK. 20 refs., 51 figs., 31 tabs.

  11. Analytical studies on transient groundwater flow induced by land reclamation

    NASA Astrophysics Data System (ADS)

    Hu, Litang; Jiao, Jiu Jimmy; Guo, Haipeng

    2008-11-01

    In many coastal areas, land has been reclaimed by dumping fill materials into the sea. Land reclamation may have a significant effect on groundwater regimes, especially when the reclamation is at large scale. Analytical studies on the impact of land reclamation on steady-state ground water flow conditions were conducted previously, but transient analytical solutions are not yet available. Transient analytical solutions are derived to illustrate the temporal change of groundwater systems in response to land reclamation using two hypothetical models: a hillside aquifer and an oceanic elongated island. The analytical solutions show that when time is short, the water level in the reclaimed area increases significantly after reclamation while that in the original aquifer remains almost unchanged. When time is great, the change of water level in the reclaimed site becomes small but the increase of water level propagates into the original aquifer. For the specific parameters and aquifer geometry used in the examples, it takes at least over 100 years for the whole system to approach a new equilibrium. The island example demonstrates that land reclamation on one side of the island will eventually modify the groundwater regimes over the entire island, including the water level, water divide, and submarine groundwater discharge. The degree of the modification of the groundwater system and the time required for the system to approach a new equilibrium depend mainly on the hydraulic conductivity and storativity of the fill materials and the reclamation length. It is suggested that for a large reclamation project, the response of the groundwater regime to reclamation should be studied in detail to evaluate the long-term change of the flow system and the consequent environmental and engineering impacts.

  12. Estimated ground-water discharge by evapotranspiration, Ash Meadows Area, Nye County, Nevada, 1994

    SciTech Connect

    Nichols, W.D.; Laczniak, R.J.; DeMeo, G.A.; Rapp, T.R.

    1997-05-01

    Ground water discharges from the regional ground-water flow system that underlies the eastern part of the Nevada Test Site through numerous springs and seeps in the Ash Meadows National Wildlife Refuge in southern Nevada. The total spring discharge was estimated to be about 17,000 acre-feet per year by earlier studies. Previous studies estimated that about 10,500 acre-feet of this discharge was lost to evapotranspiration. The present study was undertaken to develop a more rigorous approach to estimating ground-water discharge in the Ash Meadows area. Part of the study involves detailed field investigation of evapotranspiration. Data collection began in early 1994. The results of the first year of study provide a basis for making preliminary estimates of ground-water discharge by evapotranspiration. An estimated 13,100 acre-feet of ground water was evapotranspired from about 6,800 acres of marsh and salt-grass. Additional 3,500 acre-feet may have been transpired from the open water and from about 1,460 acres of other areas of Ash Meadows in which field studies have not yet been made.

  13. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    NASA Astrophysics Data System (ADS)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season "deficit" area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  14. Global estimates of submarine groundwater discharge using numerical modeling and geomatics

    NASA Astrophysics Data System (ADS)

    Luijendijk, E.; Gleeson, T.; Ferguson, G. A.

    2011-12-01

    Submarine groundwater discharge (SGD), the flow of fresh or saline groundwater to an ocean, may be a significant contributor to the water and chemical budgets of the world oceans. SGD consists of fresh, terrestrial groundwater driven by hydraulic gradients, the focus of this research, and re-circulated seawater driven by tidal pumping, wave set-up, convection and hydraulic gradients. We couple density-dependent analytical and numerical simulations of generic models of coastal topography and geology with geomatic data bases to resolve the rate and driving mechanisms of terrestrially-derived submarine groundwater discharge globally. Two analytical models lead to linear relationships between SGD and the key predictive parameters: hydraulic gradients, hydraulic conductivities, aquifer thickness and recharge. Average global geomatic parameters suggest global SGD ranges from 0.01% to 0.2% of global river run off which much lower than most previous estimates of global SGD. Quantifying submarine groundwater discharge is critical because SGD is a poorly constrained flux that can significantly contribute to eutrophication or water quality decline in coastal areas.

  15. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to be about 3 inches, or 12 percent of the average annual precipitation. Ground water in the outwash aquifer near the landfill is estimated to be between 15 and 43 years old. Some deeper ground waters and ground water near the discharge areas close to the shoreline are older than 43 years. Analysis of water-quality data collected for this study and review of existing data indicate that material in the landfill has had no appreciable impact on the current quality of ground water outside of the landfill. The water quality of samples from seven wells near to and downgradient from the landfill appears to be similar to the ground-water quality throughout the entire study area. The high iron and manganese concentrations found in most of the samples from wells near the landfill are probably within the range of natural concentrations for the study area. Ground-water pumping during the past 20 years has not caused any large changes in ground-water discharge to streams, ground-water levels, or seawater intrusion into the ground-water system. Ground-water discharge into Snee-oosh Creek and Munks Creek had similar magnitudes in the summers of 1976 and 1996; flows in both creeks during those summers ranged from 0.07 t 0.15 cubic feet per second. Ground-water levels changed minimally between 1976 and 1996. The average water-level change for 20 wells with more than 10 years between measurements was -0.7 feet and the two largest waterlevel declines were 6 and 9 feet. No appreciable seawater intrusion was found in the ground water in 1996, and there was no significant increase in the extent of seawater intrusion from 1976 to 1996. Median chloride concentrations of water samples collected from wells were 22 milligrams per liter in 1976 and 18 milligrams per liter in 1996.

  16. Geohydrology and Numerical Simulation of Alternative Pumping Distributions and the Effects of Drought on the Ground-Water Flow System of Tinian, Commonwealth of the Northern Mariana Islands

    NASA Astrophysics Data System (ADS)

    Gingerich, S. B.

    2002-01-01

    The purpose of this report is to describe (1) the geologic and hydrologic setting of Tinian, (2) the numerical ground-water flow model developed, (3) the results of the model simulations that assess the hydrologic effects of drought on the freshwater lens, and (4) data needs. No new data were collected for this report; only existing data were used to develop the conceptual framework of the ground-water flow system. A numerical ground-water flow model of Tinian was used to refine the conceptual framework and to estimate the effects of different withdrawal scenarios and drought on ground-water levels, the freshwater/saltwater interface, and coastal discharge.

  17. Comparison of groundwater flow model particle tracking results and isotopic data in the Leon valley, Mexico

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, G.; Cortes, A. S.; Martínez-Reyes, J.; Perez-Quezadas, J.; Grupo de Hidrologia Isotopica

    2013-05-01

    The study area is located in the Guanajuato state, north-west of Mexico City. The Leon Valley covers with groundwater its water demand estimated in about 20.6 m3/s. The constant population increase and related economic activities in the region have a steady growth in water needs. Related abstraction rate has produced an average drawdown of about 1.0 m/year in the last two decades. It suggests that present groundwater management needs to be reviewed. The groundwater management in the study area implies a possibility that abstraction will produce environmental impacts. This vital resource under stress becomes necessary to study its hydro-geologic functioning to achieve a scientific groundwater management in the valley. This investigation was based on the analysis and integration of existing information and the one generated in the field by the authors. Highlighted concepts were: i) the geologic structure of the area, ii) the hydraulic parameters and iii) the delta-deuterium and delta-oxigen-18 composition. This information was analysed integrally by means of applying a groundwater flow model (MODFLOW) and a particle-tracking model (FLOWPATH): the results were similar to flow paths and time-of travel interpretations derived from isotopic data.

  18. Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.

    2014-01-01

    A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load and the uncertainty in calculated loads both decreased with lower streamflow conditions and finer-resolution sampling in June and November, the higher loads during May could indicate seasonal variability in base flow. This is consistent with flowmeter measurements indicating that there was less inflow occurring at lower streamflow conditions during June and November.

  19. Groundwater Recharge Modeling in Azraq Basin (Jordan) Considering the Unsaturated Flow Components

    NASA Astrophysics Data System (ADS)

    Sharif, M. Al; Jazzar, T. Al

    2009-04-01

    Water resources in Azraq basin at the northeastern part of Jordan are at critical juncture, due to the continual and excessive abstraction of groundwater accompanied with small amounts of groundwater recharge by precipitation, and high rates of evaporation losses over the entire basin. Groundwater recharge from precipitation over the basin was estimated using soil water balance. It was found that only about 2% to 3 % of annual average rainfall infiltrates ground surface to reach the shallow aquifer. The three dimensional finite difference groundwater flow model MODFLOW (Processing Modflow Pro, version7) was utilized in order to simulate groundwater flow in the basin. Steady state was calibrated using hydraulic conductivity and flows. The calibrated hydraulic conductivity ranged between 0.1 m/day to 7.0 m/day, the system water balance for the steady state showed that spring discharge from the basin was about 15.0 MCM/yr, groundwater recharge by precipitation was about 9.5 MCM/yr, and the trans-boundaries inflow was 5.5 MCM/yr. Transient state was also calibrated using the specific yield ranged between 0.02 to 0.4. Water balance for the year 2002 showed that there are about 40 MCM/yr as water deficit and a maximum drawdown of about 22 m occur in the well field area. Groundwater recharge at five earth dams have been simulated starting from 1995, it was shown that water deficit that occur in 2002 will decreases by about 15 MCM/yr, drawdown has been slightly affected by these recharge dams. This was attributed to the high abstraction rate at the well field area; the second reason is that the locations of these earth dams are far from the well field area. The calibrated model was used to predict the aquifer future subjected to different scenarios, four scenarios were tested to verify the model ability to be a prediction tool. These scenarios showed that continuing with the current abstraction rate which is 57 MCM/yr until year 2025 will lead to an increase of the drawdown of about 14 m. Reducing abstraction rate by 50% of the current rate will reduce the drawdown by about 7 m, where assuming an abstraction rate of 85.5 MCM/yr have produced an increase of drawdown equals to 11 m in the year 2025. Soil Water Atmosphere Plant model (SWAP) was utilized to estimate groundwater recharge from precipitation in the well field area using generated data depending on the soil properties, the results showed that groundwater recharge ranged from 5 % to 8% from the annual average rainfall.

  20. Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer

    NASA Astrophysics Data System (ADS)

    Stetzenbach, Klaus J.; Farnham, Irene M.; Hodge, Vernon F.; Johannesson, Kevin H.

    1999-12-01

    Groundwater samples were collected from 11 springs in Ash Meadows National Wildlife Refuge in southern Nevada and seven springs from Death Valley National Park in eastern California. Concentrations of the major cations (Ca, Mg, Na and K) and 45 trace elements were determined in these groundwater samples. The resultant data were subjected to evaluation via the multivariate statistical technique principal components analysis (PCA), to investigate the chemical relationships between the Ash Meadows and Death Valley spring waters, to evaluate whether the results of the PCA support those of previous hydrogeological and isotopic studies and to determine if PCA can be used to help delineate potential groundwater flow patterns based on the chemical compositions of groundwaters. The results of the PCA indicated that groundwaters from the regional Paleozoic carbonate aquifers (all of the Ash Meadows springs and four springs from the Furnace Creek region of Death Valley) exhibited strong statistical associations, whereas other Death Valley groundwaters were chemically different. The results of the PCA support earlier studies, where potentiometric head levels, 18O and D, geological relationships and rare earth element data were used to evaluate groundwater flow, which suggest groundwater flows from Ash Meadows to the Furnace Creek springs in Death Valley. The PCA suggests that Furnace Creek groundwaters are moderately concentrated Ash Meadows groundwater, reflecting longer aquifer residence times for the Furnace Creek groundwaters. Moreover, PCA indicates that groundwater may flow from springs in the region surrounding Scotty's Castle in Death Valley National Park, to a spring discharging on the valley floor. The study indicates that PCA may provide rapid and relatively cost-effective methods to assess possible groundwater flow regimes in systems that have not been previously investigated.

  1. Multivariate analyses with end-member mixing to characterize groundwater flow: Wind Cave and associated aquifers

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Valder, Joshua F.

    2011-10-01

    SummaryPrincipal component analysis (PCA) applied to hydrochemical data has been used with end-member mixing to characterize groundwater flow to a limited extent, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The method presented herein is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and the associated karst aquifer in the Black Hills of South Dakota, USA. The end-member mixing model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge with an additional 33% from an upgradient aquifer. Artesian springs in the vicinity of Wind Cave primarily received water from regional groundwater flow.

  2. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    USGS Publications Warehouse

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  3. Estimating Natural Flows into the California's Sacramento - San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Huang, G.; Kadir, T.; Chung, F. I.

    2014-12-01

    Natural flows into the California's Sacramento - San Joaquin Delta under predevelopment vegetative conditions, if and when reconstructed, can serve as a useful guide to establish minimum stream flows, restoration targets, and a basis for assessing impacts of global warming in the Bay-Delta System. Daily simulations of natural Delta flows for the period 1922-2009 were obtained using precipitation-snowmelt-runoff models for the upper watersheds that are tributaries to the California's Central Valley, and then routing the water through the Central Valley floor area using a modified version of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) for water years 1922 through 2009. Daily stream inflows from all major upper watersheds were simulated using 23 Soil Water Assessment Tool (SWAT) models. Historical precipitation and reference evapotranspiration data were extracted from the SIMETAW2 with the 4km gridded meteorological data. The Historical natural and riparian vegetation distributions were compiled from several pre-1900 historical vegetation maps of the Central Valley. Wetlands were dynamically simulated using interconnected lakes. Flows overtopping natural levees were simulated using flow rating curves. New estimates of potential evapotranspiration from different vegetative classes under natural conditions were also used. Sensitivity simulations demonstrate that evapotranspiration estimates, native vegetation distribution, surface-groundwater interaction parameters, extinction depth for groundwater uptake, and other physical processes play a key role in the magnitude and timing of upstream flows arriving at the Delta. Findings contradict a common misconception that the magnitude of inflows to the Delta under natural vegetative conditions is greater than those under the historical agricultural and urban land use development. The developed models also enable to study the impacts of global warming by modifying meteorological and climatic conditions that comport with the various projections. The developed set of tools also provides a more systematic, reliable and scientific means for setting the Bay-Delta flow and quality standards and examining ways to improve the health and sustainability of the ecosystem.

  4. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    S. James

    2004-10-06

    This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the saturated zone (SZ) site-scale model domains, both as recharge (infiltration) at the upper boundary (water table), and as underflow at the lateral boundaries. Specifically, this work compiles information on the recharge boundary conditions supplied to the base-case and alternate SZ site-scale flow models taken from (1) distributed recharge from the 1997 (D'Agnese et al. 1997 [DIRS 100131]) or 2001 (D'Agnese et al. 2002 [DIRS 158876]) SZ regional-scale (Death Valley Regional Flow System [DVRFS]) model; (2) recharge below the area of the 1997 (Wu et al. 1997 [DIRS 156453]) or 2003 (BSC 2004 [DIRS 169861]) unsaturated zone (UZ) site-scale flow model; and (3) focused recharge along Fortymile Wash. In addition, this analysis includes extraction of the groundwater flow rates simulated by the 1997 and 2001 DVRFS models coincident with the lateral boundaries of the SZ site-scale flow models. The fluxes from the 1997 DVRFS were used to calibrate the base-case SZ site-scale flow model. The 2001 DVRFS fluxes are used in the alternate SZ site-scale flow model.

  5. Recent Developments in Karst Groundwater Flow Measurement in Southeastern Florida,USA

    NASA Astrophysics Data System (ADS)

    Krupa, S.; Brock, J.; Gefvert, C.; Shaffer, J.; Cunningham, K.; Wacker, M.

    2008-05-01

    Groundwater seepage was first characterized in the early 1800's, when Henry Darcy determined that the flow of groundwater could be estimated from the head difference and the distance between two points. Since then, hydrogeologists have been struggling with ways to continuously measure groundwater flow in situ, and more recently have sought data in near-real time. Groundwater flow within aquifers that have relatively large head differences (several meters) are porous in nature and have low hydraulic conductivities, is linear in nature, and can be generally characterized by Darcy's solution. Prior to the research presented herein, it was assumed that aquifers within Miami-Dade County could also be characterized by Darcy's solution (with Reynolds numbers less than 10 or 20). The L-31N Canal lies on the eastern flank of Everglades National Park (ENP). In addition to conveying water to Florida Bay and Biscayne Bay, the canal's levees are intended to reduce surface-water sheet flow from ENP to eastern urban areas. In an effort to reduce groundwater seepage coming from ENP, the South Florida Water Management District (SFWMD) and the United States Army Corp of Engineers (USACE) have been tasked with evaluating the hydrogeology and the groundwater/surface-water interaction on the L-31N canal. This involved process of installation includes monitoring wells, recording automated water-level measurements, characterizing water-chemistry types and ages, and installation of instruments capable of measuring horizontal groundwater velocities and directions coming from ENP. The SFWMD initiated a cooperative agreement with the United States Geological Survey (USGS) for the geological and hydrogeological investigation and concurrently contracted the installation of borehole flowmeters in eight wells (two clusters). The USGS provided detailed core and sediment analysis, geophysical logging, in situ borehole flowmeter logging, and digital optical borehole imaging. In addition, the USGS produced a hydrogeologic cross-section using the new borehole data. The USGS delineated high-frequency cycles (HFCs) within the study area. The high-frequency cycles form the fundamental building blocks of the rocks composing the Biscayne aquifer. Vertical lithofacies successions, which have stacking patterns that reoccur, fit within the high-frequency cycles. An important observation is that a predictable vertical pattern of macroporosity and permeability commonly exists within the high-frequency cycles, thus preferential flow passageways can be constrained by the lower and upper cycle boundaries. In southeastern Florida, specific HFCs can contain relatively high hydraulic conductivities and vertical head gradients within centimeters of each other. This combination of high hydraulic conductivities (estimated at 1500 to 3000 m/d) and nearly flat water table gradients combine to convey large amounts of groundwater from ENP to the eastern urban areas, with the water ultimately discharging into Biscayne Bay. Horizontal groundwater flow velocity was measured with horizontal heat-pulse flowmeters installed in eight monitoring wells located on the western levee of the L-31N canal. Results show that flow velocity in the shallow wells (5.1 m in depth) is coupled to the surface water as measured by well water levels. A groundwater rise of about 0.5 m during the wet season of September-December 2007 led to a six-fold increase in horizontal groundwater flow rates.

  6. A root zone modelling approach to estimating groundwater recharge from irrigated areas

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Skaggs, T. H.; van Genuchten, M. Th.; Candela, L.

    2009-03-01

    SummaryIn irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge. In this study we estimated irrigation return flow using a root zone modelling approach in which irrigation, evapotranspiration, and soil moisture dynamics for specific crops and irrigation regimes were simulated with the HYDRUS-1D software package. The model was calibrated using field data collected in an experimental plot. Good agreement was achieved between the HYDRUS-1D simulations and field measurements made under melon and lettuce crops. The simulations indicated that water use by the crops was below potential levels despite regular irrigation. The fraction of applied water (irrigation plus precipitation) going to recharge ranged from 22% for a summer melon crop to 68% for a fall lettuce crop. In total, we estimate that irrigation of annual fruits and vegetables produces 26 hm 3 y -1 of groundwater recharge to the top unconfined aquifer. This estimate does not include important irrigated perennial crops in the region, such as artichoke and citrus. Overall, the results suggest a greater amount of irrigation return flow in the Campo de Cartagena region than was previously estimated.

  7. SPATIAL SCALING OF SURFACE WATER INFILTRATION AND ITS IMPLICATIONS FOR ESTIMATING GROUNDWATER RECHARGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The GRAPHIC Project has identified priority research topics related to groundwater recharge, discharge, storage, and water quality. This presentation focuses on some physical aspects affecting spatial groundwater recharge estimation and uncertainty associated with spatial variability. Previous wor...

  8. ShowFlow: A practical interface for groundwater modeling

    SciTech Connect

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  9. Dolomitization by ground-water flow systems in carbonate platforms

    SciTech Connect

    Simms, M.

    1984-09-01

    Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

  10. The groundwater modeling tool for GRASS (GMTG): Open source groundwater flow modeling

    NASA Astrophysics Data System (ADS)

    Carrera-Hernández, J. J.; Gaskin, S. J.

    2006-04-01

    Geographic Information Systems (GIS) are used to store, manipulate and visualize both spatial and non-spatial data. Because of their data manipulating capabilities, GIS have been linked to different simulation models in different research areas and are commonly used for both surface and ground water modeling. Unfortunately this has been done mainly with proprietary GIS which are expensive and which do not provide access to their source code thus making them hard to customize. In order to overcome these problems, a module was created in the Open Source Geographic Resources Analysis Support System (GRASS) GIS to integrate it with the finite difference groundwater flow model MODFLOW, to take full advantage of the GIS capabilities. The results obtained with this module, when compared to those obtained with an existing MODFLOW pre and post-processor show that it can be used to develop groundwater flow models using uniform grid spacing on the horizontal plane. This module provides a tool for groundwater flow modeling to those users who cannot afford the commercially available processors and/or to those who wish to develop their models within a GIS.

  11. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  12. Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin

    USGS Publications Warehouse

    Arihood, Leslie D.

    2009-01-01

    In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or nonaquifer categories and to calculate equivalent horizontal and vertical hydraulic conductivities (K and KZ, respectively) for each of the glacial layers of the model. The K was based on an assumed value of 100 ft/d (feet per day) for aquifer materials and 1 ft/d for nonaquifer materials, whereas the equivalent KZ was based on an assumed value of 10 ft/d for aquifer materials and 0.001 ft/d for nonaquifer materials. These values were assumed for convenience to determine a relative contrast between aquifer and nonaquifer materials. The point values of K and KZ from wells that penetrate at least 50 percent of a model layer were interpolated into a grid of values. The K distribution was based on an inverse distance weighting equation that used an exponent of 2. The KZ distribution used inverse distance weighting with an exponent of 4 to represent the abrupt change in KZ that commonly occurs between aquifer and nonaquifer materials. The values of equivalent hydraulic conductivity for aquifer sediments needed to be adjusted to actual values in the study area for the ground-water flow modeling. The specific-capacity data (discharge, drawdown, and time data) from the well logs were input to a modified version of the Theis equation to calculate specific capacity based horizontal hydraulic conductivity values (KSC). The KSC values were used as a guide for adjusting the assumed value of 100 ft/d for aquifer deposits to actual values used in the model. Water levels from well logs were processed to improve reliability of water levels for comparison to simulated water levels in a model layer during model calibration. Water levels were interpolated by kriging to determine a composite water-level surface. The difference between the kriged surface and individual water levels was used to identify outlier water levels. Examination of the well-log lithology data in map form revealed that the data were not only useful for model input, but also were useful for understanding th

  13. Improved Geothermal Heat Flux Estimates for East Antarctic Subglacial Basins from Groundwater Modeling and Geophysical Observations

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Frederick, B. C.; Richter, T.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    Slower moving, deep interior ice sheet behavior is largely dependent on basal ice conditions. Basal heat (from shearing friction and geothermal input) and subglacial water pressure heavily influence the dynamics of these regions. Numerical ice sheet models require accurate estimations of geothermal heat flux for calculating realistic basal melt rates and thermal structure in the ice. Current ice sheet models are poorly constrained with low-resolution satellite- or seismic-derived geothermal heat flux estimates that neglect upper crustal contributions. Higher-resolution estimates that take into account these effects while still incorporating the lower-resolution methodologies are needed to improve geothermal heat flux estimates for next-generation ice sheet models. The main contributions to these estimates come from delineations between crystalline basement rock and sedimentary basins as well as subglacial topography, with both influencing the geothermal gradient. The geothermal gradient can be heavily altered by groundwater flow in the sedimentary basins due to higher hydraulic permeability advecting heat. We present a new approach to better estimate the geothermal heat flux in the subglacial basins and mountain ranges in a region of Wilkes Land, East Antarctica. Our approach utilizes existing potential field and ice-penetrating radar data from aerogeophysical surveys to better define the upper crustal structure, including basin and range geometry. Potential field data is used to define probable 3D basin structure and sediment properties, while ice-penetrating radar is used to define subglacial bed conditions. Numerical modeling of heat flow through the upper crust with added radiogenic crystalline basement rock heat contributions is coupled to groundwater flow through the surrounding sedimentary basins to better estimate the total resulting geothermal heat flux at the ice-bed interface. These geophysical processing methods in conjunction with geothermal modeling can provide significantly improved geothermal heat flux estimates which could better constrain crucial parameters needed for ice sheet models.

  14. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  15. Groundwater flow beneath a hypersaline pond, Cluett Key, Florida Bay, Florida

    NASA Astrophysics Data System (ADS)

    Juster, Thomas; Kramer, P. A.; Vacher, H. L.; Swart, P. K.; Stewart, M.

    1997-10-01

    Florida Bay carbonate mud islands are known to be sites of Holocene diagenesis, including dolomitization, and the hydrology is an essential component of this process. On Cluett Key, a typical mud island in western Florida Bay, groundwater salinities range to 145‰ beneath a shallow ephemeral pond which occupies 70% of the island. A sharp hydrostratigraphic boundary separates low-permeability unconsolidated carbonate mud from underlying highly permeable Pleistocene limestone. We report the results of a 2 year project aimed at determining the rates, patterns, and driving force of groundwater flow beneath the island. Water level measurements are used to demonstrate the presence of a large hydraulic head drive caused by the difference in elevations of the pond and Florida Bay, and enhanced by the higher density of groundwaters in the carbonate mud compared with groundwater in the limestone. The hydraulic head drive is essentially vertical because Florida Bay water levels are transmitted with little attenuation to the limestone underlying the island. Distributions of groundwater density and pore pressures are consistent with vertical groundwater flow. Based on an estimated vertical hydraulic conductivity of approximately 5×10 -3 m day -1, vertical interstitial velocities are on the order of 25 cm year -1 with a residence time in the carbonate mud of approximately 15 years. This velocity is very similar to that calculated independently from tritium concentrations in pore waters. Both horizontal and vertical density gradients exist in the carbonate mud. These density variations induce circulations owing to vorticity and may lead to the formation of instability plumes (reflux), but dynamical scaling suggests that these motions are much slower than those induced by the dominant hydraulic drive. Buoyancy effects may, however, be dominant on other lower islands in Florida Bay where the hydraulic head drive is much smaller than on Cluett Key. Diffusion may blur sharp gradients in salt, Ca 2+, or Mg 2+, but is not an important vehicle for wholesale movement of these species through the island. Cluett Key shares some similarities with Holocene carbonate atoll islands: the two-layer hydrostratigraphy, and transmission of tidal signals under the island. In contrast to atoll islands, however, groundwater flow on Cluett Key is governed by transmission of the mean sea level to the base of the Holocene. Basal tidal fluctuations induce little mixing in the low-permeability Holocene sediments. In addition, the groundwater on Cluett Key is dominantly oceanic, not meteoric, and is consequently denser than underlying groundwater.

  16. On the mechanism of earthquake induced groundwater flow

    NASA Astrophysics Data System (ADS)

    Dudley Ward, Nicholas F.

    2015-11-01

    The Canterbury/Christchurch earthquakes and aftershocks of 2010-2011 generated groundwater level responses throughout New Zealand. However, the greater part of damage was sustained by the city of Christchurch which is built on a layered sequence of artesian aquifers. In a previous paper we analysed the earthquake induced groundwater responses. We quantified groundwater responses by fitting a simple statistical model which differentiated between immediate earthquake induced response (spike) and post-seismic change (offset). The most notable feature of this analysis was the consistency of responses between the earthquakes: deeper wells correlate with negative offset and shallower wells correlate with positive offset. In that paper we argued that this is consistent with the upwards vertical movement of water. In this paper we focus on the physical mechanisms, and consider a model that further explains and supports this hypothesis. We postulate a groundwater flow model in which storativity and aquitard permeability are modelled as time-varying shocks. We analyse the solutions for a range of non-dimensional parameters and obtain type curves that exhibit the same behaviour as the observed responses. Finally we consider data from the 2010 Mw 7.1 Darfield (Canterbury) earthquake.

  17. Tide-induced fingering flow during submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Greskowiak, Janek

    2013-04-01

    Submarine groundwater discharge (SGD) is a relevant component of the hydrological cycle (Moore, 2010). The discharge of fresh groundwater that originated from precipitation on the land typically occurs at the near shore scale (~ 10m-100m) and the embayment scale (~ 100m - 10km) (Bratton, 2010). In the recent years a number of studies revealed that tidal forcing has an important effect on the fresh SGD pattern in the beach zone, i.e., it leads to the formation of an upper saline recirculation cell and a lower "freshwater discharge tube" (Boufadel, 2000, Robinson et al., 2007; Kuan et al., 2012). Thereby the discharge of the fresh groundwater occurs near the low-tide mark. The shape and extent of the upper saline recirculation cell is mainly defined by the tidal amplitude, beach slope, fresh groundwater discharge rate and hydraulic conductivity (Robinson et al., 2007). In spite of fact that in this case sea water overlies less denser freshwater, all previous modeling studies suggested that the saline recirculation cell and the freshwater tube are rather stable. However, new numerical investigations indicate that there maybe realistic cases where the upper saline recirculation cell becomes unstable as a result of the density contrast to the underlying freshwater tube. In these cases salt water fingers develop and move downward, thereby penetrating the freshwater tube. To the author's knowledge, the present study is the first that illustrate the possibility of density induced fingering flow during near shore SGD. A total of 240 high resolution simulations with the density dependent groundwater modelling software SEAWAT-2000 (Langevin et al., 2007) has been carried out to identify the conditions under which salt water fingering starts to occur. The simulations are based on the field-scale model setup employed in Robinson et al. (2007). The simulation results indicate that a very flat beach slope of less than 1:35, a hydraulic conductivity of 10 m/d and already a tidal range of 2 m initiates fingering flow. Flatter beach slope, higher hydraulic conductivity and increasing tidal range support this behavior. In the cases of fingering flow, freshwater is squeezed upward and pinches out within the inter-tidal zone. Once pinched out, the discharge point slowly moves along at the beach surface towards the low-tide mark. Overall, the fingering process further complicates the flow pattern and the mixing of salt and freshwater in the inter-tidal zone compared to the cases where the saline recirculation cell remains stable. This may have an important implication for the hydrogeochemical processes in this zone and thus the mass flux of reactive chemicals from the land to the ocean. Boufadel, M. C. (2000). A mechanistic study of nonlinear solute transport in a groundwater-surface water system under steady state and transient hydraulic conditions, Water Resour. Res., 36(9), 2549 2565. Bratton, J.F. (2010). The Three Scales of Submarine Groundwater Flow and Discharge across Passive Continental Margins, The Journal of Geology, 2010, 118, 565-575. Kuan, W. K., G. Jin, P. Xin, C. Robinson, B. Gibbes, and L. Li (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers, Water Resour. Res., 48, W02502, doi:10.1029/2011WR010678. Langevin, C.D., D.T. Thorne, Jr., A.M. Dausman, M.C. Sukop, and G. Weixing (2007). Seawat version 4: a computer program for simulation of multi-species solute and heat transport, Technical Report, U.S. Geological Survey Techniques and Methods Book 6, Chapter A22, 39 pp. Robinson, C., L. Li, and H. Prommer (2007). Tide-induced recirculation across the aquifer-ocean interface, Water Resour. Res., 43, W07428, doi:10.1029/2006WR005679. Moore, W.S. (2010). The Effect of Submarine Groundwater Discharge on the Ocean, Annu. Rev. Mar. Sci., 2, 59-88.

  18. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-02-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  19. An approach to improve direct runoff estimates and reduce uncertainty in the calculated groundwater component in water balances of large lakes

    NASA Astrophysics Data System (ADS)

    Wiebe, Andrew J.; Conant, Brewster; Rudolph, David L.; Korkka-Niemi, Kirsti

    2015-12-01

    Groundwater is important in the overall water budget of a lake because it affects the quantity and quality of surface water and the ecological health of the lake. The water balance equation is frequently used to estimate the net groundwater flow for small lakes but is seldom used to determine net groundwater flow components for large lakes because: (1) errors accumulate in the calculated groundwater term, and (2) there is an inability to accurately quantify the direct runoff component. In this water balance study of Lake Pyhäjärvi (155 km2) in Finland, it was hypothesized a hydrograph separation model could be used to estimate direct runoff to the lake and, when combined with a rigorous uncertainty analyses, would provide reliable net groundwater flow estimates. The PART hydrograph separation model was used to estimate annual per unit area direct runoff values for the watershed of the inflowing Yläneenjoki River (a subwatershed of the lake) which were then applied to other physically similar subwatersheds of the lake to estimate total direct runoff to the lake. The hydrograph separation method provided superior results and had lower uncertainty than the common approach of using a runoff coefficient based method. The average net groundwater flow into the lake was calculated to be +43 mm per year (+3.0% of average total inflow) for the 38 water years 1971-2008. It varied from -197 mm to 284 mm over that time, and had a magnitude greater than the uncertainty for 17 of the 38 years. The average indirect groundwater contribution to the lake (i.e., the groundwater part of the inflowing rivers) was 454 mm per year (+32% of average total inflow) and demonstrates the overall importance of groundwater. The techniques in this study are applicable to other large lakes and may allow small net groundwater flows to be reliably quantified in settings that might otherwise be unquantifiable or completely lost in large uncertainties.

  20. Striking effect of time variation in the estimation of groundwater age in the Wairarapa valley

    NASA Astrophysics Data System (ADS)

    Petrus, Karine; Toews, Michael; Daughney, Christopher; Cornaton, Fabien

    2014-05-01

    The Wairarapa Valley exhibits complex interactions between its rivers and shallow aquifers. With agriculture being an essential part of the region the risk of contamination and depletion of groundwater exists. In order to assist with water resource management in the region, we can do predictions with the help of numerical models. Among these predictions, the evaluation of groundwater age is critical for decision making. This project builds on work done by Greater Wellington Regional Council and will focus on the Wairarapa Valley. The aim of this study is to evaluate the age of the groundwater in the Wairarapa region. Investigations have already been done thanks to hydrochemistry. However radiometric age can be misleading in the sense that it does not consider the mixing process in the motion of groundwater particules. Therefore another approach can be considered .This latter is physic based by considering the age as a property that we transport through two main processes: advection at a macroscopic scale and diffusion at a microscopic scale. The determination of the distribution age by this approach has already been done for the Lake Rotorua but in the steady state case (cf Daughney). The unique contribution of the present study is to estimate the changes in groundwater age distribution through time within the region. Indeed transient simulations are needed to explicitly account for seasonally variable rainfall and pumping wells. This affects the simulated flow solution and then the simulated age solution. In order to solve numerically the transport of age distribution we have chosen to use the Time Marching Laplace Transform Galerkin technique which has been developed in a research code by Fabien Cornaton. The obtained results depict that temporal variations in groundwater age are present and have important implication for resource management

  1. Comparison of groundwater flow model results and isotopic data in the Leon valley, Mexico

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, G.

    2013-12-01

    The study area is located in the State of Guanajuato, Northwest of the city of Mexico. Leon Valley has covered with groundwater its demand of water, estimated in 20.6 cubic meters per second. The constant increase of population and economic activities in the region have a constant growth in water needs. Related extraction rate has produced an average decrease of approximately 1.0 m per year over the past two decades. This suggests that the present management of the groundwater should be checked. Management of groundwater in the study area involves the possibility of producing environmental impacts by extraction. This vital resource under stress becomes necessary studying its hydrogeological functioning to achieve scientific management of groundwater in the Valley. This research was based on the analysis and integration of existing information and the field generated by the authors. Outstanding concepts were: i) the geological structure of the area, ii) hydraulic parameters and iii) composition of deuterium-delta and delta-oxygen - 18. This information has been fully analyzed by applying a groundwater flow model (MODFLOW) and a particle tracking model (FLOWPATH): the results were similar to interpretations in terms of travel time and paths derived from isotopic data.

  2. Groundwater flow and radionuclide decay-chain transport modelling around a proposed uranium tailings pond in India

    NASA Astrophysics Data System (ADS)

    Elango, L.; Brindha, K.; Kalpana, L.; Sunny, Faby; Nair, R. N.; Murugan, R.

    2012-06-01

    Extensive hydrogeological investigations followed by three-dimensional groundwater flow and contaminant transport modelling were carried out around a proposed uranium tailings pond at Seripalli in Andhra Pradesh, India, to estimate its radiological impact. The hydrogeological parameters and measured groundwater level were used to model the groundwater flow and contaminant transport from the uranium tailings pond using a finite-element-based model. The simulated groundwater level compares reasonably with the observed groundwater level. Subsequently, the transport of long-lived radionuclides such as 238U, 234U, 230Th and 226Ra from the proposed tailings pond was modelled. The ingrowths of progenies were also considered in the modelling. It was observed that these radionuclides move very little from the tailings pond, even at the end of 10,000 y, due to their high distribution coefficients and low groundwater velocities. These concentrations were translated into committed effective dose rates at different distances in the vicinity of the uranium tailings pond. The results indicated that the highest effective dose rate to members of the public along the groundwater flow pathway is 2.5 times lower than the drinking water guideline of 0.1 mSv/y, even after a long time period of 10,000 y.

  3. From groundwater baselines to numerical groundwater flow modelling for the Milan metropolitan area

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Frattini, Paolo; Peretti, Lidia; Villa, Federica; Gorla, Maurizio

    2015-04-01

    Contamination of major aquifers in highly densely populated areas is a major concern for stakeholders involved in the use and protection of groundwater resources. Sustainable groundwater withdrawal and management, and the identification of trends in groundwater contamination require a careful hydrochemical baseline characterization. This characterization is fundamental to investigate the presence and evolutionary trend of contaminants. In fact, it allows recovering and understanding: the spatial-temporal trend of contamination; the relative age of the contamination episodes; the reasons for anomalous behavior of some compounds during migration to and in the groundwater; the associations with which some contaminants can be found; the different behaviors in phreatic and semi-confined and confined aquifers. To attain such a characterization for the Milan metropolitan area (about 2,500 km2, ca 4.000.000 inhabitants, Lombardy, Italy), we carried out three main activities. (1) Collection of complete and reliable datasets concerning the geological, hydrogeological and hydrochemical (over 60,000 chemical analysis since 2003 to 2013) characteristics of the area and of the involved aquifers. This activity was very demanding because the available data are provided by different authorities (Lombardy Region, Provinces, Lombardy Environmental Agency - ARPA Lombardia, public own companies in charge of water system managements) in raw format and with different database standard, which required a large effort of manual verification and harmonization. (2) Completion of a hydrochemical characterization of the metropolitan area aquifers by classical statistical and multivariate statistical analyses, in order to define a baseline both for some major physical chemical characteristics and for the most relevant contaminants. (3) Development of a three dimensional hydrogeological model for the metropolitan area starting from the above listed datasets and existing models. This model will allow for the groundwater flow and transport modeling at the large scale and could be successively linked to some more site-specific transport multi-reactive models focused on the modeling of some specific contaminants.

  4. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    USGS Publications Warehouse

    Tesoriero, A.J.; Liebscher, H.; Cox, S.E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from <0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.

  5. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    SciTech Connect

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model despite the transient nature of the heads, the newly acquired MV hydraulic head values were trended back to their likely values in 1999, the date of the calibration measurements. Additional statistical tests are performed using both the backward-projected MV heads and the observed heads to identify acceptable model realizations. A jackknife approach identified two possible threshold values to consider. For the analysis using the backward-trended heads, either 458 or 818 realizations (out of 1,000) are found acceptable, depending on the threshold chosen. The analysis using the observed heads found either 284 or 709 realizations acceptable. The impact of the refined set of realizations on the contaminant boundary was explored using an assumed starting mass of a single radionuclide and the acceptable realizations from the backward-trended analysis.

  6. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    NASA Astrophysics Data System (ADS)

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-10-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  7. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  8. Quantitative analysis of fault and fracture systems and their impact on groundwater flow in Irish bedrock aquifers

    NASA Astrophysics Data System (ADS)

    Moore, John Paul; Walsh, John; Manzocchi, Tom; Hunter-Williams, Natalia; Ofterdinger, Ulrich; Ball, David

    2015-04-01

    Faults and fractures are the most important store and pathway for groundwater in Ireland's bedrock aquifers either directly as conductive flow structures or indirectly as the locus for the development of dolomitised limestone and karst. Through quantitative analysis in a range of Irish bedrock types, we have developed generic conceptual models of depth dependency, lithological control and scaling systematics for the different fault and fracture systems, linked to observed groundwater behaviour. Quantitative characterisation of the main post-Devonian fracture systems in over 70 outcrop, quarry, mine and cave locations shows that their geometry and nature varies with lithological sequence and with spatial controls, such as depth and regional variations in deformation style and intensity. The nature of fracturing and faulting directly controls aperture distribution, size and geometry, which in turn influences karst conduit geometry in limestones. Determining these attributes is, therefore, key for groundwater flow parameter estimation. We briefly describe how the most transmissive structures (NNE-NNW Variscan veins and Tertiary strike-slip faults), and the most common structures (joints) can be linked to critical groundwater parameters, such as transmissivity, storage coefficient and connectivity, at both regional and local scales. We show that for some of these fracture systems, structural parameters critical to groundwater flow (including orientation, spacing and aperture) can be used to compute ranges of hydrogeological parameters (fracture porosity and permeability), which in combination with hydraulic data (groundwater levels, volumetric flow and recharge) can be used to provide constraints on permeability anisotropy and heterogeneity at different scales.

  9. Groundwater Parameters and Flow Systems Near Oak Ridge National Laboratory

    SciTech Connect

    Moore, G.K.

    1989-01-01

    Precipitation near Oak Ridge National Laboratory (ORNL) averages 132 cm/yr. About 76 cm/yr of water is consumed by evapotranspiration. The natural streamflow, which averages 56 cm/yr of water, consists of overland flow (about 21 cm/yr) from water bodies, wetlands, and impervious areas of groundwater discharge (about 35 cm/yr of water). Groundwater occurs in a stormflow zone that extends from the land surface to a depth of 0.3-2 m and in shallow and deeper aquifers that extend from the water table to the base of fresh water. in the stormflow zone, most water flows through macropores and mesopores, which have a volumetric porosity of about 0.002. In the vadose zone and below the water table, water flows through fractures that have a volumetric porosity in the range 1 x 10{sup -5} to 0.02. Water inflow occurs by precipitation and infiltration. infiltration that exceeds the soil water deficit forms a perched water table in the stormflow zone at the level where infiltration rate exceeds vertical hydraulic conductivity. Some water percolates down to the water table but the majority flows downslope to the streams. Recharge of the shallow aquifer is only about 3.2 cm/yr of water or 5.7% of streamflow. Most of the water that recharges the shallow aquifer is discharged by evapotranspiration above the water table. The remainder is discharged at springs and streams where the water table is within the stormflow zone. Digital models that permit unsaturated conditions and transient flows may be more appropriate than steady-state models of saturated flow for the ORNL area.

  10. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    Full appropriation of tributary streamflow during summer, a growing population, and agricultural needs are increasing the demand for groundwater in the Willamette Basin. Greater groundwater use could diminish streamflow and create seasonal and long-term declines in groundwater levels. The U.S. Geological Survey (USGS) and the Oregon Water Resources Department (OWRD) cooperated in a study to develop a conceptual and quantitative understanding of the groundwater-flow system of the Willamette Basin with an emphasis on the Central Willamette subbasin. This final report from the cooperative study describes numerical models of the regional and local groundwater-flow systems and evaluates the effects of pumping on groundwater and surface?water resources. The models described in this report can be used to evaluate spatial and temporal effects of pumping on groundwater, base flow, and stream capture. The regional model covers about 6,700 square miles of the 12,000-square mile Willamette and Sandy River drainage basins in northwestern Oregon—referred to as the Willamette Basin in this report. The Willamette Basin is a topographic and structural trough that lies between the Coast Range and the Cascade Range and is divided into five sedimentary subbasins underlain and separated by basalts of the Columbia River Basalt Group (Columbia River basalt) that crop out as local uplands. From north to south, these five subbasins are the Portland subbasin, the Tualatin subbasin, the Central Willamette subbasin, the Stayton subbasin, and the Southern Willamette subbasin. Recharge in the Willamette Basin is primarily from precipitation in the uplands of the Cascade Range, Coast Range, and western Cascades areas. Groundwater moves downward and laterally through sedimentary or basalt units until it discharges locally to wells, evapotranspiration, or streams. Mean annual groundwater withdrawal for water years 1995 and 1996 was about 400 cubic feet per second; irrigation withdrawals accounted for about 80 percent of that total. The upper 180 feet of productive aquifers in the Central Willamette and Southern Willamette subbasins produced about 70 percent of the total pumped volume. In this study, the USGS constructed a three-dimensional numerical finite-difference groundwater-flow model of the Willamette Basin representing the six hydrogeologic units, defined in previous investigations, as six model layers. From youngest to oldest, and [generally] uppermost to lowermost they are the: upper sedimentary unit, Willamette silt unit, middle sedimentary unit, lower sedimentary unit, Columbia River basalt unit, and basement confining unit. The high Cascade unit is not included in the groundwater-flow model because it is not present within the model boundaries. Geographic boundaries are simulated as no-flow (no water flowing in or out of the model), except where the Columbia River is simulated as a constant hydraulic head boundary. Streams are designated as head-dependent-flux boundaries, in which the flux depends on the elevation of the stream surface. Groundwater recharge from precipitation was estimated using the Precipitation-Runoff Modeling System (PRMS), a watershed model that accounts for evapotranspiration from the unsaturated zone. Evapotranspiration from the saturated zone was not considered an important component of groundwater discharge. Well pumping was simulated as specified flux and included public supply, irrigation, and industrial pumping. Hydraulic conductivity values were estimated from previous studies through aquifer slug and permeameter tests, specific capacity data, core analysis, and modeling. Upper, middle and lower sedimentary unit horizontal hydraulic conductivity values were differentiated between the Portland subbasin and the Tualatin, Central Willamette, and Southern Willamette subbasins based on preliminary model results.

  11. Relation of streams, lakes, and wetlands to groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus hydrologiques associés aux eaux de surface elles-mêmes, tels que des niveaux d'eau de surface saisonnièrement hauts et l'évaporation et la transpiration de l'eau souterraine à la périphérie des eaux de surface, sont les causes essentielles de la dynamique complexe et saisonnière des nappes associées aux eaux de surface. Ces processus ont été mis en évidence sur des sites de recherche dans des formations glaciaires, dunaires, littorales, fluviales et de karst couvert. Resumen Los cuerpos de aguas superficiales son partes integrales de los sistemas de flujo subterráneo. El agua subterránea interactúa con la superficial en prácticamente todo tipo de paisajes, desde pequeños torrentes, lagos y humedales, hasta grandes valles fluviales y costas. Aunque se suele asumir que las áreas topográficamente elevadas son zonas de recarga de aguas subterráneas, mientras las áreas topográficamente más bajas lo son de descarga, esto es cierto básicamente para los sistemas de flujo regional. Al superponer los sistemas de flujo local, asociados a los cuerpos de agua superficial, a las condiciones regionales, resultan interacciones complejas, y esto ocurre independientemente de su posición topográfica. Los procesos hidrológicos asociados con los propios cuerpos de agua superficial, como los niveles superficiales máximos estacionales y la evapotranspiración de agua subterránea en los perímetros de cuerpos superficiales, son una de las principales causas de la complejidad y de las variaciones dinámicas de las interacciones entre aguas subterráneas y superficiales. Estos procesos se han documentado en distintas zonas investigadas, incluyendo depósitos glaciares, dunas, áreas costeras, karsts y terrazas fluviales.

  12. Estimation of yield capacity of fractured rock aquifer for multi-well groundwater heat pump system

    NASA Astrophysics Data System (ADS)

    Bak, Hyeongmin; Yeo, In Wook

    2015-04-01

    Geothermal heat pump system is classified as closed loop and open loop. Closed loop uses a refrigerant as a heat source. For the reason, when using it for a long time, there is a possibility that the refrigerant pipe is corroded. Accordingly, soil and groundwater can be contaminated. Whereas the open loop system uses a eco-friendly groundwater as a heat source. Thermal circulation of standing column well (SCW) occurs in one well. In contrast, thermal circulation of multi-well groundwater heat pump system (MGHP) occurs through fractured rock aquifer between extraction and injection wells. Therefore, temperature efficiency of MGHP appears to be better than that of SCW. However, the MGHP has problems such as the overflowing in the injection well and the clogging, which restricts the wide use of MGHP. This study aims at how to to array the extraction and injection wells for stable circulating of groundwater and at evaluating the sustainable yield capacity of groundwater circulation between the two wells. The study site is located in Chuncheon, Republic of Korea. Pumping tests were conducted to estimate transmissivity of the two wells (W3, W4). In addition, the step-circulation tests were conducted to estimate the sustainable yield capacity. Transmissivity of W3 and W4 was estimated to be 5.81 x 10^-5 m^2/s and 2.57 x 10^-5 m^2/s, respectively. Preliminary groundwater circulation tests were conducted to figure out the array of the extraction and injection wells. Circulation tests were performed for two cases: first, extraction well was set at the well with higher transmissivity and injection well set at the well with lower transmissivity, and the opposite array was set for the second case. In the first case, when flow rate was set at 70.47 m^3/day, the water level of W3 fell 0.61m and that of W4 rose 1.89m. In the second case, when flow rate was set at 67.70 m^3/day, the water level of W4 fell 2.17m and that of W3 rose 0.5m. Preliminary groundwater circulation tests indicated that the well with relatively higher transmissivity is favorable to the extraction and that with lower transmissivity is favorable to the injection. The step-circulation test was performed in all four step increments between the extraction well (W4) and the injection well (W3), which helps evaluate the sustainable yield capacity of groundwater circulation between the two wells. After the four increments, the yield capacity of sustainable groundwater circulation was estimated to be 270 m^3/day without the overflowing at injection well and sustainable drawdown at the extraction well.

  13. Numerical Modeling of Regional Groundwater Flow in a Structurally Complex Intermountain Basin: South Park, Colorado

    NASA Astrophysics Data System (ADS)

    Ball, L. B.; Caine, J. S.; Ge, S.

    2012-12-01

    A steady-state, 3-D groundwater flow model of the South Park basin was developed to explore the influence of realistically complex topography and permeability structure on the patterns of basin-wide groundwater flow and to evaluate the sensitivity of the groundwater flow system to increased variability in recharge distribution and the influence of hydrogeologically distinct fault zones. South Park is a large, semi-arid intermountain basin (3300 km2) flanked by crystalline rocks and floored with faulted and folded sedimentary rocks and volcanic deposits. Model results suggest that, while the majority (>80%) of water entering the groundwater flow system is discharged through seepage faces in steep terrain or routed to mountain streams, internal exchanges of groundwater and stream flow between the mountain and valley landscapes are an important part of the dynamics of groundwater flow in the basin. The majority of topographically driven groundwater flow is focused in the upper 300 m of the model domain and would be considered local to intermediate in "Tothian" scales. Less than 1% of groundwater flow passes below 1 km in depth, and large-scale regional circulation is a limited component of the groundwater flow system. Increasingly heterogeneous recharge distributions most heavily impacted the groundwater flow system at the local scale, while basin-wide regional flow remained relatively insensitive to the increasing variability in recharge distribution. The introduction of end-member conduit and barrier types of fault zones influenced hydraulic heads and gradients within 5-10 km of the fault location where groundwater flow directions are perpendicular to the orientation of the fault. Where groundwater flow directions are oblique or subparallel to the fault, the introduction of distinct fault zones had a negligible impact on hydraulic heads or gradients.

  14. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Buszka, Paul M.

    2016-01-01

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit sampled by this study. That result indicated that nearly all groundwater sampled from well G53S entered the aquifer as recharge before 1953. Tritium was detected in a trace concentration in one sample from a second monitoring well open to the upper part of the Radnor Till Member (well G07S; 0.11 ± 0.09 tritium units), and not detected in samples collected from two monitoring wells open to a sand deposit in the lower part of the Radnor Till Member, from two samples collected from two monitoring wells open to the Organic Soil unit, and in two samples collected from a production well screened in the middle of the Mahomet aquifer (a groundwater sample and a sequential replicate sample). The lack of tritium in five of the six groundwater samples collected from the shallow permeable units beneath CLU#3 site and the two samples from the one Mahomet aquifer well indicates an absence of post-1952 recharge. Groundwater-flow paths that could contribute post-1952 recharge to the lower part of the Radnor Till Member, the Organic Soil unit, or the Mahomet aquifer at the CLU#3 are not indicated by these data.Hypothetical two-part mixtures of tritium-dead, pre-1953 recharge water and decay-corrected tritium concentrations in post-1952 recharge were computed and compared with tritium analyses in groundwater sampled from monitoring wells at the CLU#3 site to evaluate whether tritium concentrations in groundwater could be represented by mixtures involving some post-1952 recharge. Results from the hypothetical two-part mixtures indicate that groundwater from monitoring well (G53S) was predominantly composed of pre-1953 recharge and that if present, younger, post-1955 recharge, contributed less than 2.5 percent to that sample. The hypothetical two-part mixing results also indicated that very small amounts of post-1952 recharge composing less than about 2.5 percent of the sample volume could not be distinguished in groundwater samples with tritium concentrations less than about 0.15 TU.The piston-flow based age of recharge determined from the tritium concentration in the groundwater sample from monitoring well G53S yielded an estimated maximum vertical velocity from the land surface to the upper part of the Radnor Till Member of 0.85 feet per year or less. This velocity, ifassumed to apply to the remaining glacial till deposits above the Mahomet aquifer, indicates that recharge flows through the 170 feet of glacial deposits between the base of the proposed chemical waste unit and the top of the Mahomet aquifer in a minimum of 200 years or longer. Analysis of hydraulic data from the site, constrained by a tritium-age based maximum groundwater velocity estimate, computed minimum estimates of effective porosity that range from about 0.021 to 0.024 for the predominantly till deposits above the Mahomet aquifer.Estimated rates of transport of recharge from land surface to the Mahomet aquifer for the CLU#3 site computed using the Darcy velocity equation with site-specific data were about 260 years or longer. The Darcy velocity-based estimates were computed using values that were based on tritium data, estimates of vertical velocity and effective porosity and available site-specific data. Solution of the Darcy velocity equation indicated that maximum vertical groundwater velocities through the deposits above the aquifer were 0.41 or 0.61 feet per year, depending on the site-specific values of vertical hydraulic conductivity (laboratory triaxial test values) and effective porosity used for the computation. The resulting calculated minimum travel times for groundwater to flow from the top of the Berry Clay Member (at the base of the proposed chemical waste unit) to the top of the Mahomet aquifer ranged from about 260 to 370 years, depending on the velocity value used in the calculation. In comparison, plausible travel times calculated using vertical hydraulic conductivity values from a previously published regional groundwater flow model were either slightly less than or longer than those calculated using site data and ranged from 230 to 580 years.Tritium data from 1996 to 2011 USGS regional sampling of groundwater from domestic wells in the confined part of the Mahomet aquifer—which are 2.5 to about 40 miles from the Clinton site—were compared with site-specific data from a production well at the Clinton site. Tritium-based groundwater-age estimates indicated predominantly pre- 1953 recharge dates for USGS and other prior regional samples of groundwater from domestic wells in the Mahomet aquifer. These results agreed with the tritium-based, pre-1953 recharge age estimated for a groundwater sample and a sequential replicate sample from a production well in the confined part of the Mahomet aquifer beneath the Clinton site.The regional tritium-based groundwater age estimates also were compared with pesticide detections in samples from distal domestic wells in the USGS regional network that are about 2.5 to 40 miles from the Clinton site to identify whether very small amounts of post-1952 recharge have in places reached confined parts of the Mahomet aquifer at locations other than the Clinton site in an approximately 2,000 square mile area of the Mahomet aquifer. Very small amounts of post-1952 recharge were defined in this analysis as less than about 2.5 percent of the total recharge contributing to a groundwater sample, based on results from the two-part mixing analysis of tritium data from the Clinton site. Pesticide-based groundwater-age estimates based on 22 detections of pesticides (13 of these detections were estimated concentrations), including atrazine, deethylatrazine (2-Chloro-4-isopropylamino-6-amino- s-triazine), cyanazine, diazinon, metolachlor, molinate, prometon, and trifluralin in groundwater samples from 10 domestic wells 2.5 to about 40 miles distant from the Clinton site indicate that very small amounts of post-1956 to post-1992 recharge can in places reach the confined part of the Mahomet aquifer in other parts of central Illinois. The relative lack of tritium in these samples indicate that the amounts of post-1956 to post-1992 recharge contributing to the 10 domestic wells were a very small part of the overall older groundwater sampled from those wells.The flow process by which very small amounts of pesticide-bearing groundwater reached the screened intervals of the 10 domestic wells could not be distinguished between well-integrity related infiltration and natural hydrogeologic features. Potential explanations include: (1) infiltration through man-made avenues in or along the well, (2) flow of very small amounts of post-1956 to post-1992 recharge through sparsely distributed natural permeable aspects of the glacial till and diluted by mixing with older groundwater, or (3) a combination of both processes.Presuming the domestic wells sampled by the USGS in 1996–2011 in the regional study of the confined part of the Mahomet aquifer are adequately sealed and produce groundwater that is representative of aquifer conditions, the regional tritium and pesticide-based groundwater-age results indicate substantial heterogeneity in the glacial stratigraphy above the Mahomet aquifer. The pesticide-based groundwater-age estimates from the domestic wells distant from the Clinton site also indicate that parts of the Mahomet aquifer with the pesticide detections can be susceptible to contaminant sources at the land surface. The regional pesticide and tritium results from the domestic wells further indicate that a potential exists for possible contaminants from land surface to be transported through the glacial drift deposits that confine the Mahomet aquifer in other parts of central Illinois at faster rates than those computed for recharge at the Clinton site, including CLU#3. This analysis indicates the potential value of sub-microgram-per-liter level concentrations of land-use derived indicators of modern recharge to indicate the presence of very small amounts of modern, post-1952 age recharge in overall older, pre-1953 age groundwater.

  15. Groundwater Flow Model of the General Separations Area Using PORFLOW

    SciTech Connect

    FLACH, GREGORY

    2004-07-15

    The E Area PA (McDowell-Boyer et al. 2000) includes a steady-state simulation of groundwater flow in the General Separations Area as a prerequisite for saturated zone contaminant transport analyses. The groundwater flow simulations are based on the FACT code (Hamm and Aleman2000). The FACT-based GSA model was selected during preparation of the original PA to take advantage of an existing model developed for environmental restoration applications at the SRS (Flach and Harris 1997, 1999; Flach 1999). The existing GSA/FACT model was then slightly modified for PA use, as described in the PA document. FACT is a finite-element code utilizing deformed brick elements. Material properties are defined at element centers, and state variables such as hydraulic head are located at element vertices. The PORFLOW code (Analytic and Computational Research, Inc. 2000) was selected for performing saturated zone transport simulations of source zone radionuclides and their progeny. PORFLOW utilizes control volume discretization and the nodal point integration method, with all properties and state variables being defined at the center of an interior grid cell. The groundwater flow calculation includes translating the Darcy velocity field computed by FACT into a form compatible for input to PORFLOW. The FACT velocity field is defined at element vertices, whereas PORFLOW requires flux across cell faces. For the present PA, PORFLOW cell face flux is computed in a two-step process. An initial face flux is computed from FACT as an average of the normal components of Darcy velocity at the four corners. The derived flux field approximately conserves mass, but not rigorously. Thus, the flux field is subsequently perturbed to force rigorous mass conservation on a cell-by-cell basis. The undocumented process used is non-unique and can introduce significant artifacts into the final flux field.

  16. Regional heat flow variations in the northern Michigan and Lake Superior region determined using the silica heat flow estimator

    USGS Publications Warehouse

    Vugrinovich, R.

    1987-01-01

    Conventional heat flow data are sparse for northern Michigan. The groundwater silica heat flow estimator expands the database sufficiently to allow regional variations in heat flow to be examined. Heat flow shows a pattern of alternating highs and lows trending ESE across the Upper Peninsula and Lake Superior. The informal names given to these features, their characteristic heat flow and inferred causes are listed: {A table is presented} The results suggest that, for the study area, regional variations in heat flow cannot be interpreted solely in terms of regional variations of the heat generation rate of basement rocks. ?? 1987.

  17. Nested-scale discharge and groundwater level monitoring to improve predictions of flow route discharges and nitrate loads

    NASA Astrophysics Data System (ADS)

    van der Velde, Y.; Rozemeijer, J. C.; de Rooij, G. H.; van Geer, F. C.; Torfs, P. J. J. F.; de Louw, P. G. B.

    2010-10-01

    Identifying effective measures to reduce nutrient loads of headwaters in lowland catchments requires a thorough understanding of flow routes of water and nutrients. In this paper we assess the value of nested-scale discharge and groundwater level measurements for predictions of catchment-scale discharge and nitrate loads. In order to relate field-site measurements to the catchment-scale an upscaling approach is introduced that assumes that scale differences in flow route fluxes originate from differences in the relationship between groundwater storage and the spatial structure of the groundwater table. This relationship is characterized by the Groundwater Depth Distribution (GDD) curve that relates spatial variation in groundwater depths to the average groundwater depth. The GDD-curve was measured for a single field site (0.009 km2) and simple process descriptions were applied to relate the groundwater levels to flow route discharges. This parsimonious model could accurately describe observed storage, tube drain discharge, overland flow and groundwater flow simultaneously with Nash-Sutcliff coefficients exceeding 0.8. A probabilistic Monte Carlo approach was applied to upscale field-site measurements to catchment scales by inferring scale-specific GDD-curves from hydrographs of two nested catchments (0.4 and 6.5 km2). The estimated contribution of tube drain effluent (a dominant source for nitrates) decreased with increasing scale from 76-79% at the field-site to 34-61% and 25-50% for both catchment scales. These results were validated by demonstrating that a model conditioned on nested-scale measurements simulates better nitrate loads and better predictions of extreme discharges during validation periods compared to a model that was conditioned on catchment discharge only.

  18. The effect of sediment thermal conductivity on vertical groundwater flux estimates

    NASA Astrophysics Data System (ADS)

    Sebok, Eva; Müller, Sascha; Engesgaard, Peter; Duque, Carlos

    2015-04-01

    The interaction between groundwater and surface water is of great importance both from ecological and water management perspective. The exchange fluxes are often estimated based on vertical temperature profiles taken from shallow sediments assuming a homogeneous standard value of sediment thermal conductivity. Here we report on a field investigation in a stream and in a fjord, where vertical profiles of sediment thermal conductivity and temperatures were measured in order to, (i) define the vertical variability in sediment thermal conductivity, (ii) quantify the effect of heterogeneity in sediment thermal conductivity on the estimated vertical groundwater fluxes. The study was carried out at field sites located in Ringkøbing fjord and Holtum stream in Western Denmark. Both locations have soft, sandy sediments with an upper organic layer at the fjord site. First 9 and 12 vertical sediment temperature profiles up to 0.5 m depth below the sediment bed were collected in the fjord and in the stream, respectively. Later sediment cores of 0.05 m diameter were removed at the location of the temperature profiles. Sediment thermal conductivity was measured in the sediment cores at 0.1 m intervals with a Decagon KD2 Pro device. A 1D flow and heat transport model (HydroGeoSphere) was set up and vertical groundwater fluxes were estimated based on the measured vertical sediment temperature profiles by coupling the model with PEST. To determine the effect of heterogeneity in sediment thermal conductivity on estimated vertical groundwater fluxes, the model was run by assigning (i) a homogeneous thermal conductivity for all sediment layers, calculated as the average sediment thermal conductivity of the profile, (ii) measured sediment thermal conductivities to the different model layers. The field survey showed that sediment thermal conductivity over a 0.5 m profile below the sediment bed is not uniform, having the largest variability in the fjord where organic sediments were also present. Using the measured sediment thermal conductivity for the different model layers instead of a homogeneous distribution did not result in a better fit between observed and simulated sediment temperature profiles. The estimated groundwater fluxes however were greatly affected by using the measured thermal conductivities resulting in changes of ± 45% in estimated vertical fluxes.

  19. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  20. Sources and flow of north Canterbury plains groundwater, New Zealand

    NASA Astrophysics Data System (ADS)

    Taylor, C. B.; Wilson, D. D.; Brown, L. J.; Stewart, M. K.; Burden, R. J.; Brailsford, G. W.

    1989-04-01

    Geological, hydrological, isotope (tritium and 18O) and chemical (mainly nitrate and chloride concentrations) evidence is interpreted to give a mutually consistent picture of the recharge sources and flow patterns of the important groundwater resource in the deep glacial and interglacial deposits of the sector of the Canterbury Plains between the Selwyn River and Ashley River. Particular attention is paid to the confined gravel aquifers which presently provide about 300,000 m 3 daily of mainly very high-quality water for the needs of Christchurch city. The study period for tritium measurements extends over 27 years, encompassing the peak and decline of thermonuclear tritium fallout in this region. Major rivers emerging from the hill and mountain catchments to the west of the Plains are depleted in 18O relative to average low-level precipitation. Most of the groundwater is river-recharged, but some areas of significant local precipitation recharge contribution are clearly identified by 18O and chemical concentrations. The pressure distribution, tritium and chemical data reveal that the artesian ground-water underlying Christchurch ascends from deeper aquifers into the shallowest aquifer via gaps in the confining layers; much of this flow is induced by withdrawal, and the data reveal nothing about possible offshore discharge through the seaward extension of the shallowest aquifer, which is known to outcrop 40 km beyond the coast. The Christchurch aquifers are recharged by infiltration from Waimakariri River in its central Plains reaches, and the resulting flow regime is east- and southeast-directed; satisfactory water quality of the deeper Christchurch aquifers appears to be guaranteed for the future provided the river can be maintained in its present condition. Shallow groundwater, and water recharged to depth by other rivers, irrigation and local precipitation on the unconfined western areas of the Plains, are more susceptible to agricultural and other pollutants; none of this water is encountered in the deeper aquifers under Christchurch, but only in shallow aquifers and surface discharges, or else flowing to the southeast, well away from the city area.

  1. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    SciTech Connect

    Arnold, B.W.; Altman, S.J.; Robey, T.H.

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission`s GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE`s Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated.

  2. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China.

    PubMed

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater delta(2)H and delta(18)O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. (87)Sr/(86)Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems. PMID:19548025

  3. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4 percent of the total ground-water flow in the study area. Ground waters in the vicinity of Wright-Patterson Air Force Base can be classified into two compositional groups on the basis of their chemical composition: calcium magnesium bicarbonate-type and sodium chloride-type waters. Calcium magnesium bicarbonate-type waters are found in the glacial deposits and the Brassfield Limestone, whereas the sodium chloride waters are exclusively associated with the shales. Equilibrium speciation calculations indicate that ground water of the glacial drift aquifer is in equilibrium with calcite, dolomite, and chalcedony, but is undersaturated with respect to gypsum and fluorite. Waters from the shales are slightly supersaturated with respect to calcite, dolomite, and siderite but are undersaturated with respect to chalcedony. Simple-mass balance calculations treating boron as a conservative species indicate that little (< 5 percent) or no recharge from the shales to the glacial drift aquifer takes place. Data on the stable isotopes of oxygen and hydrogen indicate a meteoric origin for all ground water beneath Wright-Patterson Air Force Base, but the data were inconclusive with respect to identification of distinct isotopic differences between water collected from the glacial drift and bedrock aquifers. Tritium concentrations used to distinguish waters having a pre-and post-1953 recharge component indicate that most water entered the glacial drift aquifer after 1953. This finding indicates that recharge from shallow to deep parts (greater than 150 feet) of the aquifer takes place over time intervals of a few years or decades. However, the fact that some deep parts of the glacial aquifer did not contain measurable tritium indicates that ground-water flow from recharge zones to these parts of the aquifer takes decades or longer.

  4. Modelling of the groundwater flow in Baltic Artesian Basin

    NASA Astrophysics Data System (ADS)

    Virbulis, J.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the flow is directed from southeast to northwest, but the more shallow aquifers show strong influence by local topography. There is an intensive transient flow in Cm aquifer system and this flow is separated from upper layers by thick aquitard O-S. About 25% of the aquifers volume is under free flowing artesian conditions. Acknowledgement The present work has been funded by the European Social Fund project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" (Project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060)

  5. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology

    NASA Astrophysics Data System (ADS)

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.

    2016-02-01

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.

  6. Evaluation of ground-water flow by particle tracking, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Sheets, R.A.; Schalk, C.W.

    1994-01-01

    The U.S. Geological Survey (USGS) and Wright-Patterson Air Force Base (WPAFB) began a Basewide Monitoring Program (BMP) in 1992. The purpose of the BMP was to establish a long-term ground-water and surface- water sampling network in order to (1) characterize current ground-water and surface-water quality; (2) describe water-quality changes as water enters, flows across, and exits Base boundaries; (3) conduct statistical analyses of water quality; and (4) estimate the effect of WPAFB on regional water quality. As part of the BMP, the USGS conducted ground-water particle-tracking analyses based on a ground-water-flow model produced during a previous USGS study. This report briefly describes the previous USGS study, the inherent assumptions of particle-tracking analyses, and information on the regional ground-water-flow field as inferred from particle pathlines. Pathlines for particles placed at the Base boundary and particles placed within identified Installation Restoration Program sites are described.

  7. NONLINEAR-REGRESSION GROUNDWATER FLOW MODELING OF A DEEP REGIONAL AQUIFER SYSTEM.

    USGS Publications Warehouse

    Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.

    1986-01-01

    A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi**2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow.

  8. Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers

    USGS Publications Warehouse

    Cook, P.G.; Solomon, D.K.; Sanford, W.E.; Busenberg, E.; Plummer, L.N.; Poreda, R.J.

    1996-01-01

    The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short-term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr-. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.

  9. Groundwater Budget Analysis of Cross Formational Flow: Hueco Bolson (Texas and Chihuahua)

    NASA Astrophysics Data System (ADS)

    Hutchison, W. R.

    2005-12-01

    Groundwater from the Hueco Bolson supplies the majority of municipal water in El Paso, Texas and Ciudad Juarez, Chihuahua, the largest international border community in the world. For over 100 years, water managers and researchers have been developing an understanding of Hueco Bolson groundwater occurrence and movement, and the interaction between surface water and groundwater. Since 2001, isotopic studies of groundwater chemistry on both sides of the border have provided valuable insights into the occurrence of groundwater and its historic movement. Numerical groundwater flow models of the area have been developed and used since the 1970s. The results of the most recent model were used to develop a detailed analysis of the groundwater inflows, outflows and storage change of the entire area and subregions of the model domain from 1903 to 2002. These detailed groundwater budgets were used to quantify temporal and spatial flow changes that resulted from groundwater pumping: induced inflow of surface water, decreased natural outflows, and storage declines. In addition, the detailed groundwater budgets were used to quantify the changes in cross formational flow between the Rio Grande Alluvium and the Hueco Bolson, as well as the changes in vertical flow within the Hueco Bolson. The groundwater budget results are consistent with the results of the isotopic analyses, providing a much needed confirmation of the overall conceptual model of the numerical model. In addition, the groundwater budgets have provided information that has been useful in further interpreting the results of the isotopic analyses.

  10. Estimated ground-water availability in the Delaware River basin, 1997-2000

    USGS Publications Warehouse

    Sloto, Ronald A.; Buxton, Debra E.

    2006-01-01

    Ground-water availability using a watershed-based approach was estimated for the 147 watersheds that make up the Delaware River Basin. This study, conducted by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission (DRBC), supports the DRBC's Water Resources Plan for the Delaware River Basin. Different procedures were used to estimate ground-water availability for the region underlain by fractured rocks in the upper part of the basin and for surficial aquifers in the region underlain by unconsolidated sediments in the lower part of the basin. The methodology is similar to that used for the Delaware River Basin Commission's Ground-Water Protected Area in Pennsylvania. For all watersheds, ground-water availability was equated to average annual base flow. Ground-water availability for the 109 watersheds underlain by fractured rocks in Delaware, New Jersey, New York, and Pennsylvania was based on lithology and physiographic province. Lithology was generalized by grouping 183 geologic units into 14 categories on the basis of rock type and physiographic province. Twenty-three index streamflow-gaging stations were selected to represent the 14 categories. A base-flow-recurrence analysis was used to determine the average annual 2-, 5-, 10-, 25-, and 50-year-recurrence intervals for each index station. A GIS analysis used lithology and base flow at the index stations to determine the average annual base flow for the 109 watersheds. Average annual base flow for these watersheds ranged from 0.313 to 0.915 million gallons per day per square mile for the 2-year-recurrence interval to 0.150 to 0.505 million gallons per day per square mile for the 50-year-recurrence interval. Ground-water availability for watersheds underlain by unconsolidated surficial aquifers was based on predominant surficial geology and land use, which were determined from statistical tests to be the most significant controlling factors of base flow. Twenty-one index streamflow-gaging stations were selected to represent the 13 categories of predominant surficial geology and land use for the 38 Coastal Plain watersheds. A base-flow-recurrence analysis was used to determine the average annual 2-, 5-, 10-, 25-, and 50-year-recurrence intervals for each group of predominant surficial geology and land use. Average annual base flow for these watersheds ranged from 0.465 to 1.169 million gallons per day per square mile for the 2-year-recurrence interval to 0.178 to 0.670 million gallons per day per square mile for the 50-year-recurrence interval. Estimated 2-, 5-, 10-, 25-, and 50-year annual base-flow-recurrence interval values for each watershed in the Delaware River Basin are considered to be the quantity of ground water available for each watershed over a range of climatic conditions. The recurrence intervals are considered to be relative indicators of climatic difference; the 2-year-recurrence value represents wetter years, and the 50-year-recurrence value represents drier years. The remaining available ground water in each watershed was determined by subtracting current (1997-2000) ground-water withdrawals and consumptive domestic use and adding water recharged by agricultural irrigation and land application of treated-sewage effluent. Ground-water use ranged from 0 to 60.8 percent of available ground water for the 2-year-recurrence interval; it exceeded 25 percent in four watersheds and 50 percent in two watersheds. Ground-water use ranged from 0 to 75.9 percent of available ground water for the 5-year-recurrence interval; it exceeded 25 percent in five watersheds and 50 percent in three watersheds. Ground-water use ranged from 0 to 84.5 percent of available ground water for the 10-year-recurrence interval; it exceeded 25 percent in seven watersheds and 50 percent in four watersheds. Ground-water use ranged from 0 to 103 percent of available ground water for the 25-year-recurrence interval; it exceeded 25 percent in nine watersheds, 5

  11. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.

  12. In-situ characterization of wastewater flow and transport from at-grade line sources to shallow groundwater

    NASA Astrophysics Data System (ADS)

    Weldeyohannes, A. O.; Kachanoski, R. G.; Dyck, M. F.

    2011-12-01

    A better understanding of multidimensional unsaturated and saturated flow and transport under boundary conditions typical of on-site wastewater disposal systems is required to assess the risk to groundwater contamination. The main objective of this research is to characterize in-situ wastewater flow and transport from at-grade line sources on a shallow groundwater conditions. The research site was conducted at Wetaskiwin Rest Stop, Alberta, Canada, where ultraviolet disinfected wastewater has been disposed off to the ground via pressurized at-grade line sources since 2007. The site was characterized for wastewater plume and temporal groundwater fluctuation by using Electromagnetic induction (EM31) and (EM38); and by grid of 74 water table wells, 14 piezometers and 11 transducers. Groundwater was analyzed for selected tracers (pH, EC and Cl) and some microbiology (e.g. E. coli). From the results wastewater plume was identified; and wastewater plume center of mass and average flow direction were estimated. Along the horizontal plume center of mass, 30 monitoring wells in 10 nests and 31 temperature sensors in 5 nests were installed to get vertical resolution of the wastewater plume and to track contaminant transport over time. Results, implications and plans for future investigations will be presented. The research output will benefit future research on contaminant fate and transport and groundwater risk assessment plans. Key words: On-site wastewater treatment/disposal system, Wastewater plume, Groundwater contamination.

  13. Estimation of in situ groundwater chemistry using geochemical modeling: A test case for saline type groundwater in argillaceous rock

    NASA Astrophysics Data System (ADS)

    Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.

    Saline type groundwaters data in the Mobara area (a marine based argillaceous rock) located in the well-known “South Kanto gas field” in Japan were investigated by JNC as part of a natural analogue study. Most groundwaters in the field were extracted from deep gas wells ( e. g., 400-2000 m below the surface), and the all data reported previously were sampled at the wellhead, where physico-chemical parameters ( e. g., temperature, pH, Eh etc.) were also measured. In such cases, particular attention should be paid to whether the measured and/or analyzed results are consistent with the chemical and physical conditions in the in situ geological formation because air contamination, the temperature and pressure changes during sampling can affect the groundwater chemistry. The present study shows a test case to estimate the in situ groundwater chemistry in argillaceous rock of the Mobara area using geochemical model calculations. Results from thermodynamic interpretation of groundwater chemistry using the measured pH and Eh of groundwater sampled at wellhead ( e. g., pH = 7.86, Eh = -50 mV) indicate that the groundwaters are supersaturated with respect to calcite ( e. g., the saturation index; SI is 1.14). Calcite is known to equilibrate relatively quickly with aqueous solutions at low temperatures and this mineral is present in the Otadai formation, however. Therefore the values greater than 0 for SI of calcite may be due to errors in the pH measurement. Also the measured Eh is relatively oxidizing value which may be inconsistent with the in situ geochemical conditions ( e. g., pyrite and siderite coexist, CH 4(g) dominates in the groundwaters). Thus such Eh value may be disturbed by contact of the samples with atmospheric oxygen and other effects like degassing. Errors in the pH measurement might be caused by degassing during sampling of groundwaters. As a test case to estimate the groundwater considering such degassing effect, we first assume that the in situ groundwaters are saturated with respect to calcite. A back-titration geochemical model is then used to simulate the addition of CO 2(g). Regarding the redox conditions of groundwater, we also assume that pyrite-siderite equilibrium controls the Eh of Mobara groundwaters considering the mineralogy identified in the Otadai formation. The assumed equilibrium between pyrite and siderite implies a fixed value of PS at a given temperature and pH. A back-titration of trace levels H 2S(g) is also applied to estimate the possible effect of the in situ Eh and pH of groundwaters. The calculated result shows that pH is about 6.7 and Eh is about -190 mV, respectively. The estimated pH value for the in situ groundwater is about 1 unit lower than the measured pH value at the surface and the in situ redox potential is significantly lower than Eh value measured in surface sample. Based on a preliminary assessment of mineral-water equilibria using the mineral stability relations in the CaO-MgO-Al 2O 3-SiO 2-H 2O system, the estimated in situ groundwater composition is more consistent with the mineralogy of the Otadai formation than the measured groundwater composition. However, further consideration ( e. g., detail mineralogical investigation, reliable and consistent thermodynamic data with site mineralogy) would be needed to check the reliability of estimation technique. JNC (Japan Nuclear Cycle Development Institute) was merged in October 2005 with the Japan Atomic Energy Research Institute (JAERI) to form the Japan Atomic Energy Agency (JAEA).

  14. Estimation of Male Gene Flow: Use Caution.

    PubMed

    Hedrick, Philip W; Singh, Sujeet; Aspi, Jouni

    2015-01-01

    Because male gene flow cannot easily be estimated directly in many organisms, Hedrick et al. (2013) provided an approach to estimate male gene flow given estimates of diploid nuclear and female differentiation. This approach appears to work well when there is lower female than male gene flow. However, in a tiger data set there was less female differentiation observed as estimated by mitochondrial DNA than expected given the observed overall nuclear diploid differentiation. To analyze these data, we suggest an alternative approach which allows incorporation of sex-specific gene flow and sex-specific effective population size. We find that the pattern of differentiation observed in tigers was consistent with a lower male than female effective population size using this alternative approach. Further, this finding is consistent with observed data in tigers where the male effective population size was 33% that of the female effective population size. PMID:26464090

  15. A deuterium-calibrated groundwater flow model of a regional carbonate-alluvial system

    NASA Astrophysics Data System (ADS)

    Kirk, Stephen T.; Campana, Michael E.

    1990-11-01

    The White River Flow System (WRFS), a regional carbonate-alluvial groundwater system in southeastern Nevada, U.S.A., contains large amounts of water in storage, especially in the underlying carbonate reservoir. As the population of Nevada grows, it may become necessary to tap the resources of this and other regional carbonate systems. Because of the depth to the carbonate reservoir and, until now, lack of motivation to collect detailed hydrogeological data on it, the state of knowledge of flow in the carbonate system is poor. However, a simple mixing-cell flow model of the WRFS can be constructed and calibrated with the spatial distribution of the stable isotope deuterium. This type of model subdivides the system into carbonate and alluvial cells and routes water and deuterium through the entire cell network. It provides estimates of recharge rates, groundwater ages and volumes of water in storage. Transience in recharge rates and their deuterium signatures are unaccounted for by the model. The lack of constraints on the system mandates the calibration of three different flow scenarios, each of which differs slightly from the other. Despite these differences, some consistent quantitative results are obtained. Foremost among these are: (1) the carbonate aquifer may contain as much as 752 km 3 of water in storage; (2) recharge from the Sheep Range to Coyote Spring Valley is at least 90% greater than previously believed; (3) Lower Meadow Valley is part of the WRFS and contributes underflow to Upper Moapa Valley; (4) underflow with an average value of 0.163 m 3 s -1 flows westward out of the system along the Pahranagat Shear Zone; (5) recharge to the alluvial system is greater than that to the carbonate system; (6) groundwater mean ages range from 1600 to 34 000 years, with the oldest waters exceeding 100 000 years old. The results also demonstrate that deuterium can be used to calibrate simple flow models and provide groundwater ages. Despite the uncertainties and lack of constraints in mixing-cell models, they provide first approximations to information which, until now, has been difficult, if not impossible, to obtain. These models are especially useful for analyzing sparse-data systems, testing different flow hypotheses with minimal effort, providing ranges in parameter estimates, guiding future data collection and serving as precursors for the development of more sophisticated models.

  16. Hydrochemical and 14C constraints on groundwater recharge and interbasin flow in an arid watershed: Tule Desert, Nevada

    NASA Astrophysics Data System (ADS)

    Hagedorn, Benjamin

    2015-04-01

    Geochemical data deduced from groundwater and vein calcite were used to quantify groundwater recharge and interbasin flow rates in the Tule Desert (southeastern Nevada). 14C age gradients below the water table suggest recharge rates of 1-2 mm/yr which correspond to a sustainable yield of 5 × 10-4 km3/yr to 1 × 10-3 km3/yr. Uncertainties in the applied effective porosity value and increasing horizontal interbasin flow components at greater depths may bias these estimates low compared to those previously reported using the water budget method. The deviation of the groundwater δ18O time-series pattern for the Pleistocene-Holocene transition from that of the Devils Hole vein calcite (which is considered a proxy for local climate change) allows interbasin flow rates of northerly derived groundwater to be estimated. The constrained rates (75.0-120 m/yr) are slightly higher than those previously calculated using Darcy's Law, but translate into hydraulic conductivity values strikingly similar to those obtained from pump tests. Data further indicate that production wells located closer to the western mountainous margin will be producing mainly from locally derived mountain-system recharge whereas wells located closer to the eastern margin are more influenced by older, regionally derived carbonate groundwater.

  17. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    USGS Publications Warehouse

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green Pond Brook. Beneath the upper confining unit, ground water flows southwestward, down the valley. Between First Street and Farley Avenue, the upper confining unit pinches out near the valley walls, resulting in a major input of water to, and causing a local potentiometric high in, the underlying aquifer layers. Ground-water-flow directions southwest of the southern arsenal boundary are predominantly to the Rockaway River.

  18. Description and Evaluation of Numerical Groundwater Flow Models for the Edwards Aquifer, South-Central Texas

    USGS Publications Warehouse

    Lindgren, Richard J.; Taylor, Charles J.; Houston, Natalie A.

    2009-01-01

    A substantial number of public water system wells in south-central Texas withdraw groundwater from the karstic, highly productive Edwards aquifer. However, the use of numerical groundwater flow models to aid in the delineation of contributing areas for public water system wells in the Edwards aquifer is problematic because of the complex hydrogeologic framework and the presence of conduit-dominated flow paths in the aquifer. The U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, evaluated six published numerical groundwater flow models (all deterministic) that have been developed for the Edwards aquifer San Antonio segment or Barton Springs segment, or both. This report describes the models developed and evaluates each with respect to accessibility and ease of use, range of conditions simulated, accuracy of simulations, agreement with dye-tracer tests, and limitations of the models. These models are (1) GWSIM model of the San Antonio segment, a FORTRAN computer-model code that pre-dates the development of MODFLOW; (2) MODFLOW conduit-flow model of San Antonio and Barton Springs segments; (3) MODFLOW diffuse-flow model of San Antonio and Barton Springs segments; (4) MODFLOW Groundwater Availability Modeling [GAM] model of the Barton Springs segment; (5) MODFLOW recalibrated GAM model of the Barton Springs segment; and (6) MODFLOW-DCM (dual conductivity model) conduit model of the Barton Springs segment. The GWSIM model code is not commercially available, is limited in its application to the San Antonio segment of the Edwards aquifer, and lacks the ability of MODFLOW to easily incorporate newly developed processes and packages to better simulate hydrologic processes. MODFLOW is a widely used and tested code for numerical modeling of groundwater flow, is well documented, and is in the public domain. These attributes make MODFLOW a preferred code with regard to accessibility and ease of use. The MODFLOW conduit-flow model incorporates improvements over previous models by using (1) a user-friendly interface, (2) updated computer codes (MODFLOW-96 and MODFLOW-2000), (3) a finer grid resolution, (4) less-restrictive boundary conditions, (5) an improved discretization of hydraulic conductivity, (6) more accurate estimates of pumping stresses, (7) a long transient simulation period (54 years, 1947-2000), and (8) a refined representation of high-permeability zones or conduits. All of the models except the MODFLOW-DCM conduit model have limitations resulting from the use of Darcy's law to simulate groundwater flow in a karst aquifer system where non-Darcian, turbulent flow might actually dominate. The MODFLOW-DCM conduit model is an improvement in the ability to simulate karst-like flow conditions in conjunction with porous-media-type matrix flow. However, the MODFLOW-DCM conduit model has had limited application and testing and currently (2008) lacks commercially available pre- and post-processors. The MODFLOW conduit-flow and diffuse-flow Edwards aquifer models are limited by the lack of calibration for the northern part of the Barton Springs segment (Travis County) and their reliance on the use of the calibrated hydraulic conductivity and storativity values from the calibrated Barton Springs segment GAM model. The major limitation of the Barton Springs segment GAM and recalibrated GAM models is that they were calibrated to match measured water levels and springflows for a restrictive range of hydrologic conditions, with each model having different hydraulic conductivity and storativity values appropriate to the hydrologic conditions that were simulated. The need for two different sets of hydraulic conductivity and storativity values increases the uncertainty associated with the accuracy of either set of values, illustrates the non-uniqueness of the model solution, and probably most importantly demonstrates the limitations of using a one-layer model to represent the heterogeneous hydrostratigraph

  19. Deep thermal disturbances related to the sub-surface groundwater flow (Western Alps, France)

    NASA Astrophysics Data System (ADS)

    Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie

    2013-04-01

    In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed zone). Groundwater flowing in this zone disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed zone depends of groundwater temperature changes into the decompressed zone. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western Alps, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed zone. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed zone concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed zone, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed zone probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed zone. The medium under the decompressed zone is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees (1 to 4°K) of the decompressed zone occurring about two to four centuries BP. The latest high altitude drilling shows about two degrees cooling of the decompressed zone two centuries ago. The groundwater temperature warming can be due to a type of recharge change with a reduction of the snowmelt contribution or it can be provided by an increase of atmospheric and rainfall temperature. The observed cooling in the latest drilling can be interpreted as a groundwater flow change caused by the permafrost melting. The temperature change occurs during the end of Little Ice Age.

  20. Stream and Pseudopotential Functions in Visualizing Groundwater Flow and Transport Processes

    NASA Astrophysics Data System (ADS)

    Matanga, George B.

    1996-04-01

    Scientific visualization is increasingly being applied in many large-scale groundwater modeling efforts as an effective means of presentation and interpretation of model results. An interpolation or statistical approach is applied to develop three-dimensional spatial distributions of geologic, hydraulic, and chemical data from a model or field measurements. The distributions become the basis for evaluating spatial variation of data. The evaluation is accomplished by displaying data in the form of isosurfaces of values of data Or as contours of data on a surface or plane. This approach of analyzing data is known as data visualization. In addition to data visualization, some of the problems encountered in groundwater hydrology require visualization of groundwater flow and transport processes. Display of hydraulic and chemical data for analysis of groundwater flow and transport processes is herein referred to as process visualization. In both data and process visualization, hydraulic and chemical data are displayed as color contours or isolines on surfaces. However, in data visualization the surface on which data are displayed may be oriented in any direction, whereas in process visualization the surfaces need to be tangential or orthogonal to the direction of groundwater flow. In three-dimensional groundwater flow, stream surfaces and pseudopotential surfaces are tangential and orthogonal, respectively, to the direction of groundwater flow. Therefore stream and pseudopotential surfaces provide natural platforms on which to visualize groundwater flow and transport processes. To demonstrate application of stream and pseudopotential surfaces in process visualization, the three-dimensional groundwater flow beneath the Borden Landfill is considered.

  1. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  2. A preliminary analysis of the hydrogeological conditions and groundwater flow in some parts of a crystalline aquifer system: Afigya Sekyere South District, Ghana

    NASA Astrophysics Data System (ADS)

    Yidana, Sandow Mark; Essel, Stephen Kwaku; Addai, Millicent Obeng; Fynn, Obed Fiifi

    2015-04-01

    A steady state groundwater flow model was calibrated to simulate the complex groundwater flow pattern in some crystalline aquifer systems in north-central Ghana. The objective was to develop the general geometry of the groundwater system and also estimate spatial variations in the hydraulic conductivity field as part of efforts to thoroughly investigate the general hydrogeology and groundwater conditions of aquifers in the area. The calibrated model was used in a limited fashion to simulate some scenarios of groundwater development in the terrain. The results suggest the dominance of local groundwater flow systems resulting from local variabilities in the hydraulic conductivity field and the topography. Estimated horizontal hydraulic conductivities range between 1.04 m/d and 15.25 m/d, although most of the areas consist of hydraulic conductivities in the range of 1.04 m/d and 5.5 m/d. Groundwater flow is apparently controlled by discrete entities with limited spatial interconnectivities. Recharge rates estimated at calibration range between 4.3% and 13% of the annual rainfall in the terrain. The analysis suggests that under the current recharge rates, the system can sustain increasing groundwater abstraction rates by up to 50% with minimal drawdown in the hydraulic head for the entire terrain. However, with decreasing groundwater recharge as would be expected in the wake of climate change/variability in the area, increased groundwater abstraction by up to 50% can lead to drastic drawdowns by more than 25% if recharge reduces by up to 50% of the current levels. This study strongly recommend the protection of some of the local groundwater recharge areas identified in this study and the promotion of local recharge through the development of dugouts and other conduits to encourage recharge.

  3. Saturated and subcooled hydrothermal boiling in groundwater flow channels as a source of harmonic tremor

    NASA Astrophysics Data System (ADS)

    Leet, Robert C.

    1988-05-01

    The potential of hydrothermal boiling in groundwater flow channels for generating harmonic tremor (a relatively monochromatic ground vibration associated with volcanic activity) is examined. We use simple "organ pipe" theory of normal-mode fluid vibration and fundamental energy considerations to develop a first-order analytical model of a hydrothermal-boiling source of harmonic tremor. We use this model to estimate order-of-magnitude groundwater flow channel lengths and boiling heat transfer rates required to produce harmonic tremor with dominant frequencies in the range 0.5-5 Hz and surface wave reduced displacements of up to 100 cm2. Depending on groundwater sound speed, flow channel lengths of the order of 1-1000 m are required to produce fluid vibration eigenfrequencies in the range 0.5-5 Hz. The boiling heat transfer rate required to produce tremor with a given surface wave reduced displacement depends on the tremor frequency and on whether saturated boiling or subcooled boiling is the cause of the tremor. Saturated boiling produces groundwater vibration via steam bubble growth, whereas subcooled boiling produces groundwater vibration via steam bubble collapse. We find that subcooled hydrothermal boiling is from 102 to 104 times more efficient than saturated boiling in converting boiling "thermal" power to seismic power. For example, the boiling heat transfer rates required to produce 1-Hz tremor with reduced displacements of up to 100 cm2 via subcooled boiling are generally less than a few thousand megawatts; for saturated boiling, the required boiling heat transfer rates are several orders of magnitude larger than this. The highest values of heat flow reported in the literature for volcanic crater lakes and terrestrial and ocean floor geothermal areas are of the order of 1000 MW. Taking this value as a first-order estimate of an upper limit on possible boiling heat transfer rates in volcanic hydrothermal systems, our results suggest that saturated hydrothermal boiling is capable of generating only low-amplitude harmonic tremor, with surface wave reduced displacements no higher than a few square centimeters. However, subcooled hydrothermal boiling could potentially generate high-amplitude harmonic tremor, with reduced displacements as large as several hundred square centimeters. As a specific application of our model, we evaluate the potential of hydrothermal boiling for generating harmonic tremor at recently active Mount St. Helens and Nevado Del Ruiz volcanoes. We conclude that subcooled boiling likely could have produced the tremor episodes considered at both volcanoes. Saturated boiling also could explain the Nevado Del Ruiz tremor but probably not the more powerful Mount St. Helens tremor.

  4. Controls on Groundwater Flow in an Alpine Talus-Moraine Complex

    NASA Astrophysics Data System (ADS)

    Muir, D. L.; Hayashi, M.; Bentley, L. R.

    2009-05-01

    Since alpine watersheds are the headwaters of rivers acting as major sources of water, there is growing concern over water shortages in areas dependent on mountain runoff. Talus and moraine complexes, as well as fractured bedrock, are a dominant hydrologic response unit within the Lake O'Hara Research Basin (LORB) in Yoho National Park, British Columbia. In this alpine environment, previous studies have shown that groundwater plays an important hydrological role. Although little is known about groundwater storage in these media, they are likely a significant groundwater reservoir and an important control on groundwater flow. The goals of this study are to develop a conceptual model of the talus and moraine complex and the fractured bedrock. The approximately 0.3km2 Babylon drainage basin within the LORB was chosen as the study site as it contains a talus and moraine complex that drains into one gaugeable stream. The conceptual model of this basin has been developed using geophysical, hydrological and hydrogeological methods. Three Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) surveys were used to characterize the subsurface structure and water distribution within the talus and moraine complex. The bedrock surface is clearly defined in the GPR profiles and its elevation agrees with that in the ERI inversions. Highly resistive talus material is observable in the ERI results, and areas of low resistivity are found within the bedrock. Hydraulic conductivity estimates of the geologic media, calculated using tracer slug injection and baseflow recession analysis methods, fall within the ranges from gravel to fractured rock. Isotopic hydrograph separations indicate that groundwater is a significant contributor to stream discharge. Linear reservoir models show basin response times of up to 16 hours. The geophysical and hydrological evidence points toward two flow systems operating in the Babylon basin, those of flow through the fractured bedrock and flow through the talus and moraine complex. Understanding the hydrologic characteristics of alpine talus and moraine complexes and fractured bedrock is of great importance to increasing our knowledge of alpine hydrology. The results from this study will enable the estimation of hydrologic parameters of these geologic media and provide valuable information for the predictive modelling of mountain streams.

  5. Sensitivity Analysis for Steady State Groundwater Flow Using Adjoint Operators

    NASA Astrophysics Data System (ADS)

    Sykes, J. F.; Wilson, J. L.; Andrews, R. W.

    1985-03-01

    Adjoint sensitivity theory is currently being considered as a potential method for calculating the sensitivity of nuclear waste repository performance measures to the parameters of the system. For groundwater flow systems, performance measures of interest include piezometric heads in the vicinity of a waste site, velocities or travel time in aquifers, and mass discharge to biosphere points. The parameters include recharge-discharge rates, prescribed boundary heads or fluxes, formation thicknesses, and hydraulic conductivities. The derivative of a performance measure with respect to the system parameters is usually taken as a measure of sensitivity. To calculate sensitivities, adjoint sensitivity equations are formulated from the equations describing the primary problem. The solution of the primary problem and the adjoint sensitivity problem enables the determination of all of the required derivatives and hence related sensitivity coefficients. In this study, adjoint sensitivity theory is developed for equations of two-dimensional steady state flow in a confined aquifer. Both the primary flow equation and the adjoint sensitivity equation are solved using the Galerkin finite element method. The developed computer code is used to investigate the regional flow parameters of the Leadville Formation of the Paradox Basin in Utah. The results illustrate the sensitivity of calculated local heads to the boundary conditions. Alternatively, local velocity related performance measures are more sensitive to hydraulic conductivities.

  6. Analytical sensitivity analysis of transient groundwater flow in a bounded model domain using the adjoint method

    NASA Astrophysics Data System (ADS)

    Lu, Zhiming; Vesselinov, Velimir V.

    2015-07-01

    Sensitivity analyses are an important component of any modeling exercise. We have developed an analytical methodology based on the adjoint method to compute sensitivities of a state variable (hydraulic head) to model parameters (hydraulic conductivity and storage coefficient) for transient groundwater flow in a confined and randomly heterogeneous aquifer under ambient and pumping conditions. For a special case of two-dimensional rectangular domains, these sensitivities are represented in terms of the problem configuration (the domain size, boundary configuration, medium properties, pumping schedules and rates, and observation locations and times), and there is no need to actually solve the adjoint equations. As an example, we present analyses of the obtained solution for typical groundwater flow conditions. Analytical solutions allow us to calculate sensitivities efficiently, which can be useful for model-based analyses such as parameter estimation, data-worth evaluation, and optimal experimental design related to sampling frequency and locations of observation wells. The analytical approach is not limited to groundwater applications but can be extended to any other mathematical problem with similar governing equations and under similar conceptual conditions.

  7. Scaling of flow and transport behavior in heterogeneous groundwater systems

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on mean values. It provides motivation for continued research into upscaling methods for transport that directly address advection in heterogeneous porous media. An electronic version of this article is available online at the journal's homepage at http://www.elsevier.nl/locate/advwatres or http://www.elsevier.com/locate/advwatres (see "Special section on vizualization". The online version contains additional supporting information, graphics, and a 3D animation of simulated particle movement. Limited. All rights reserved

  8. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    USGS Publications Warehouse

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  9. Groundwater flow dynamics and arsenic source characterization in an aquifer system of West Bengal, India

    NASA Astrophysics Data System (ADS)

    Desbarats, A. J.; Koenig, C. E. M.; Pal, T.; Mukherjee, P. K.; Beckie, R. D.

    2014-06-01

    Numerical groundwater flow modeling, reverse particle tracking, and environmental tracers are used to locate the source of geogenic As affecting an aquifer in West Bengal. The aquifer is hosted by point-bar sands deposited in a meandering fluvial environment. Wells tapping the aquifer exhibit As concentrations up to 531 ?g/L. High-As groundwaters are recharged in ponds marking an abandoned river channel. The source of As is traced to the underlying fine-grained channel-fill sediments. Arsenic release within these sediments is accompanied by a concomitant release of Br and DOC indicating that these species may be decay products of natural organobromines codeposited along with As. Mass transfer of As to the dissolved phase and its flushing from source sediments are described using a simplified reactive solute transport model. Based on this model, a characteristic reaction time for mass transfer is estimated at 6.7 years. Average groundwater residence times in the source are estimated to have declined from 16.6 to 6.6 years with the advent of intensive irrigation pumping. The ratio of residence and reaction times, a Damköhler number, has declined correspondingly from 2.49 to 0.99, indicating a shift from transport to reaction rate limited As mobilization. Greater insight into the As problem in SE Asia may be achieved by shifting the focus of field investigations from aquifers to potential contamination sources in aquitards.

  10. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  11. Groundwater Flow Model for the R-Reactor Area Final Report

    SciTech Connect

    Harris, M.K.

    1997-11-01

    A detailed numerical groundwater flow model has been developed for the R-Area of the Savannah River Site in Aiken, South Carolina. The three-dimensional, finite-element groundwater modeling code Flow and Contaminant Transport (FACT) has been used for this study.

  12. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    EPA Science Inventory

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  13. Ground-water flow in the Coastal Plain aquifers of South Carolina.

    USGS Publications Warehouse

    Aucott, W.R.; Speiran, G.K.

    1985-01-01

    The Coastal Plain aquifers are recharged primarily by precipitation in their outcrop areas. Groundwater flows from these areas of recharge, through the aquifers, and discharges to upper Costal Plain rivers, overlying aquifers as upward leakage, and wells. Ground-water flow in the Floridan aquifer system and the Tertiary sand aquifer prior to development is generally perpendicular to the coast.-from Authors

  14. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    USGS Publications Warehouse

    Crusius, J.; Koopmans, D.; Bratton, J.F.; Charette, M.A.; Kroeger, K.D.; Henderson, P.; Ryckman, L.; Halloran, K.; Colman, J.A.

    2005-01-01

    Submarine groundwater discharge was quantified by a variety of methods in Salt Pond, adjacent to Nauset Marsh on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. A box model was used to estimate discharge separately to Salt Pond and to the channel by simulating the timing and magnitude of variations in the radon and salinity data in the channel. Discharge to the pond is estimated to be 2200??1100 m3 d-1, while discharge to the channel is estimated to be 300??150m3 d-1, for a total discharge of 2500??1250 m3 d-1 to the Salt Pond system. This translates to an average groundwater flow velocity of 3??1.5 cm d -1. Seepage meter flow estimates are broadly consistent with this figure, provided discharge is confined to shallow sediments (water depth <1 m). The radon data can be modeled assuming all groundwater fluxes to both the channel and to the pond are fresh, with no need to invoke a saline component. The absence of a saline component in the radon flux may be due to removal of radon from saline groundwater by recent advection of seawater or it may to due to the presence of impermeable sediments in the center of the pond that limit seawater recirculation. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 20041). Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to determine the rate of groundwater discharge seaward of Salt Pond. Data also suggest a TDN flux from groundwater to Salt Pond of ???2.6 mmol m-2 d-1, a figure comparable to fluxes observed in other eutrophic settings.

  15. Groundwater flow near the Shoal Site, Sand Springs Range, Nevada: Impact of density-driven flow

    SciTech Connect

    Chapman, J.; Mihevc, T.; McKay, A.

    1994-09-01

    The nature of flow from a highland recharge area in a mountain range in north-central Nevada to discharge areas on either side of the range is evaluated to refine a conceptual model of contaminant transport from an underground nuclear test conducted beneath the range. The test, known as the Shoal event, was conducted in 1963 in granitic rocks of the Sand Springs Range. Sparse hydraulic head measurements from the early 1960s suggest flow from the shot location to the east to Fairview Valley, while hydrochemistry supports flow to salt pans in Fourmile Flat to the west. Chemical and isotopic data collected from water samples and during well-logging arc best explained by a reflux brine system on the west side of the Sand Springs Range, rather than a typical local flow system where all flow occurs from recharge areas in the highlands to a central discharge area in a playa. Instead, dense saline water from the playa is apparently being driven toward the range by density contrasts. The data collected between the range and Fourmile Flat suggest the groundwater is a mixture of younger, fresher recharge water with older brine. Chemical contrasts between groundwater in the east and west valleys reflect the absence of re-flux water in Fairview Valley because the regional discharge area is distant and thus there is no accumulation of salts. The refluxing hydraulic system probably developed after the end of the last pluvial period and differences between the location of the groundwater divide based on hydraulic and chemical indicators could reflect movement of the divide as the groundwater system adjusts to the new reflux condition.

  16. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume. PMID:10650188

  17. Numerical error in groundwater flow and solute transport simulation

    NASA Astrophysics Data System (ADS)

    Woods, Juliette A.; Teubner, Michael D.; Simmons, Craig T.; Narayan, Kumar A.

    2003-06-01

    Models of groundwater flow and solute transport may be affected by numerical error, leading to quantitative and qualitative changes in behavior. In this paper we compare and combine three methods of assessing the extent of numerical error: grid refinement, mathematical analysis, and benchmark test problems. In particular, we assess the popular solute transport code SUTRA [Voss, 1984] as being a typical finite element code. Our numerical analysis suggests that SUTRA incorporates a numerical dispersion error and that its mass-lumped numerical scheme increases the numerical error. This is confirmed using a Gaussian test problem. A modified SUTRA code, in which the numerical dispersion is calculated and subtracted, produces better results. The much more challenging Elder problem [Elder, 1967; Voss and Souza, 1987] is then considered. Calculation of its numerical dispersion coefficients and numerical stability show that the Elder problem is prone to error. We confirm that Elder problem results are extremely sensitive to the simulation method used.

  18. Groundwater flow, quality (2007-10), and mixing in the Wind Cave National Park area, South Dakota

    USGS Publications Warehouse

    Long, Andrew J.; Ohms, Marc J.; McKaskey, Jonathan D.R.G.

    2012-01-01

    A study of groundwater flow, quality, and mixing in relation to Wind Cave National Park in western South Dakota was conducted during 2007-11 by the U.S. Geological Survey in cooperation with the National Park Service because of water-quality concerns and to determine possible sources of groundwater contamination in the Wind Cave National Park area. A large area surrounding Wind Cave National Park was included in this study because to understand groundwater in the park, a general understanding of groundwater in the surrounding southern Black Hills is necessary. Three aquifers are of particular importance for this purpose: the Minnelusa, Madison, and Precambrian aquifers. Multivariate methods applied to hydrochemical data, consisting of principal component analysis (PCA), cluster analysis, and an end-member mixing model, were applied to characterize groundwater flow and mixing. This provided a way to assess characteristics important for groundwater quality, including the differentiation of hydrogeologic domains within the study area, sources of groundwater to these domains, and groundwater mixing within these domains. Groundwater and surface-water samples collected for this study were analyzed for common ions (calcium, magnesium, sodium, bicarbonate, chloride, silica, and sulfate), arsenic, stable isotopes of oxygen and hydrogen, specific conductance, and pH. These 12 variables were used in all multivariate methods. A total of 100 samples were collected from 60 sites from 2007 to 2010 and included stream sinks, cave drip, cave water bodies, springs, and wells. In previous approaches that combined PCA with end-member mixing, extreme-value samples identified by PCA typically were assumed to represent end members. In this study, end members were not assumed to have been sampled but rather were estimated and constrained by prior hydrologic knowledge. Also, the end-member mixing model was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes. Finally, conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case The latter item also provides an estimate of the relative effect of geochemical evolution along flow paths in comparison to mixing. The end-member mixing model estimated that Wind Cave sites received 38 percent of their groundwater inflow from local surface recharge, 34 percent from the upgradient Precambrian aquifer, 26 percent from surface recharge to the west, and 2 percent from regional flow. Artesian springs primarily received water from end members assumed to represent regional groundwater flow. Groundwater samples were collected and analyzed for chlorofluorocarbons, dissolved gasses (argon, carbon dioxide, methane, nitrogen, and oxygen), and tritium at selected sites and used to estimate groundwater age. Apparent ages, or model ages, for the Madison aquifer in the study area indicate that groundwater closest to surface recharge areas is youngest, with increasing age in a downgradient direction toward deeper parts of the aquifer. Arsenic concentrations in samples collected for this study ranged from 0.28 to 37.1 micrograms per liter (μg/L) with a median value of 6.4 μg/L, and 32 percent of these exceeded 10 μg/L. The highest arsenic concentrations in and near the study area are approximately coincident with the outcrop of the Minnelusa Formation and likely originated from arsenic in shale layers in this formation. Sample concentrations of nitrate plus nitrite were less than 2 milligrams per liter for 92 percent of samples collected, which is not a concern for drinking-water quality. Water samples were collected in the park and analyzed for five trace metals (chromium, copper, lithium, vanadium, and zinc), the concentrations of which did not correlate with arsenic. Dye tracing indicated hydraulic connection between three water bodies in Wind Cave.

  19. Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Gardner, P.

    2013-12-01

    Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269 years is similar to the range of transport times (hundreds to thousands of years) in the heterogeneous synthetic aquifer domain. The slightly higher uncertainty range for the case using all of the environmental tracers simultaneously is probably due to structural errors in the model introduced by the pilot point regularization scheme. It is concluded that maximum information and uncertainty reduction for constraining a groundwater flow model is obtained using an environmental tracer whose half-life is well matched to the range of transport times through the groundwater flow system. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  1. Microsphere estimates of blood flow: Methodological considerations

    SciTech Connect

    von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L. Louisianna State Univ. Medical Center, Shreveport Universitaire Vaudois )

    1988-02-01

    The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 {times} 10{sup 6} microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period.

  2. Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China

    NASA Astrophysics Data System (ADS)

    Hu, Litang; Jiao, Jiu Jimmy

    2015-11-01

    Traditional numerical models usually use extensive observed hydraulic-head data as calibration targets. However, this calibration process is not applicable in remote areas with limited or no monitoring data. This study presents an approach to calibrate a large-scale groundwater flow model using the monthly Gravity Recovery and Climate Experiment (GRACE) satellite data, which have been available globally on a spatial grid of 1° in the geographic coordinate system since 2002. A groundwater storage anomaly isolated from the terrestrial water storage (TWS) anomaly is converted into hydraulic head at the center of the grid, which is then used as observed data to calibrate a numerical model to estimate aquifer hydraulic conductivity. The aquifer system in the remote and hyperarid Qaidam Basin, China, is used as a case study to demonstrate the applicability of this approach. A groundwater model using FEFLOW is constructed for the Qaidam Basin and the GRACE-derived groundwater storage anomaly over the period 2003-2012 is included to calibrate the model, which is done using an automatic estimation method (PEST). The calibrated model is then run to output hydraulic heads at three sites where long-term hydraulic head data are available. The reasonably good fit between the calculated and observed hydraulic heads, together with the very similar groundwater storage anomalies from the numerical model and GRACE data, demonstrate that this approach is generally applicable in regions of groundwater data scarcity.

  3. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to other active volcanic systems on Earth.

  4. Regional Groundwater Flow in Quaternary Aquifers in the Kanto Plain, central Japan

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Miyakoshi, A.; Yasuhara, M.; Sakura, Y.

    2006-12-01

    The Kanto Plain located in the Pacific side of central Japan is the largest groundwater basin in Japan. Tokyo metropolitan district is situated in this plain, and approximately 30 % of the whole population of Japan lives here. Urbanization and various human activities have affected groundwater environment in each part of the plain; e.g. land subsidence, decline of piezometric head and pollution. It is necessary to make clear the present groundwater environment and the process of environmental changes to maintain and manage groundwater environment. In this study, groundwater samples were taken in Quaternary aquifers (shallower than GL-400m) and analyzed major dissolved ions and delta-18O, D to clarify the present regional groundwater flow system. Also, long term data of piezometric head in various aquifers observed by the local administrations were collected. From the three dimensional distribution of groundwater quality and delta-18O, D, groundwater with relatively high Cl- concentration (up to about 200mg/l) and low isotopic ratios was found in the aquifer that was situated between 200m and 400m depth of the central part. This groundwater area was distributed in the direction of northwest-southeast, and boundary of it was clear. Considering the hydrogeological setting and isotopic ratios of precipitation, the groundwater was considered to have been supplied to this area by regional groundwater flow. On the other hand, the southwestern boundary was well corresponded to the location of Ayasegawa fault system that deformed Quaternary sediments approximately 100m at the depth GL-200m. In addition, piezometric head in each aquifer differed bordering on the fault. These differences strongly suggested the fault system divides the regional groundwater flow system, that is, the fault system acts as barrier to groundwater flow from southwestern part to central part of the plain. Also, this barrier was fully functioning in the period when the groundwater was pumped in large quantities.

  5. Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate

    NASA Astrophysics Data System (ADS)

    Lin, Dan; Jin, Menggui; Liang, Xing; Zhan, Hongbin

    2013-11-01

    Accurate recharge estimation is essential for effective groundwater management, especially in the North China Plain, where irrigation return flow is significant to vertical recharge but brings difficulty for recharge estimation. Three environmental tracers (F-, Cl- and SO4 2-) were used to estimate vertical recharge based on the mass balance and cumulative methods. Four boreholes were dry-drilled to 5-25 m depth beneath irrigated farmland and one was drilled to 5 m beneath non-irrigated woodland; soil samples were collected in all boreholes at set depths. The results indicated that F-, Cl- and SO4 2-were suitable tracers beneath the non-irrigated woodland, yielding recharge rates of 16.9, 18.8 and 19.4 mm/year, respectively. Recharge estimation was not straightforward when taking account of crop type, irrigation and/or fertilizer use. After comparing with previous research, conclusions were drawn: Cl- was an appropriate tracer for irrigated farmland when taking account of Cl- input from irrigation and absorption by crops; recharge rates were 65.9-126.8 mm/year. However, F- was a more suitable tracer for irrigated regions where account is made of the proportion of precipitation to irrigation return flow, provided low F- concentrations can be measured reliably.

  6. Groundwater Flow and Sand Body Interconnectedness in a Thick, Multiple-Aquifer System

    NASA Astrophysics Data System (ADS)

    Fogg, Graham E.

    1986-05-01

    Many so-called sandstone aquifers are actually multiple-aquifer systems consisting of discontinuous sand bodies distributed complexly in a matrix of lower-permeability silts and clays. The arrangement and Interconnectedness of these various lithofacies strongly influence spatial patterns of hydraulic conductivity (K) and, in turn, groundwater flow and mass transport. A promising technique of estimating such patterns of K involves careful analysis of both subsurface geologic and subsurface hydrologic data. In this study the three-dimensional distribution of K was estimated for a numerical flow model of part of the Wilcox aquifer system in Texas, using K data from core samples and pumping tests and more than 100 geophysical logs. The aquifer system, which is up to 320 m thick, consists of multiple, elongate sand bodies and silts and clays deposited in a fluvial environment and is similar to many other systems found in the Gulf Coast and other sedimentary basins. The resulting deterministic-conceptual flow model demonstrates the importance and methods of incorporating geologic information in groundwater models. Flow in the aquifer is shown to be controlled not so much by K of the sands as by their continuity and Interconnectedness. Much of the aquifer system consists of large zones in which the fluvial channel-fill sands are sparse and apparently disconnected, resulting in groundwater flow rates lower by a factor of 101 to 103 than in adjacent, well-interconnected belts of fluvial channel-fill sand belts. Modeling results also raise serious doubts regarding our ability to predict regional scale flow and mass transport in complex aquifers such as the Wilcox, using current technology. Though sand body Interconnectedness is critically important, it is also very difficult to estimate. One or two well-connected sands among a system of otherwise disconnected sands can completely alter a velocity field. This is particularly true if the sands are connected vertically and nonzero vertical hydraulic gradients exist. Because the model is three-dimensional, sensitivity of hydraulic head to heterogeneity or Interconnectedness is much less than normally observed in two-dimensional models, and therefore heads computed by the model give little to no indication of the location of well-interconnected zones. Thus such zones can easily go undetected, even in carefully calibrated models which yield reasonably accurate hydraulic heads. This is a significant point for modeling of solute transport.

  7. Identification of potential groundwater flow paths using geological and geophysical data

    SciTech Connect

    Pohlmann, K.; Andricevic, R.

    1994-09-01

    This project represents the first phase in the development of a methodology for generating three-dimensional equiprobable maps of hydraulic conductivity for the Nevada Test Site (NTS). In this study, potential groundwater flow paths were investigated for subsurface tuffs at Yucca Flat by studying how these units are connected. The virtual absence of site-specific hydraulic conductivity data dictates that as a first step a surrogate attribute (geophysical logs) be utilized. In this first phase, the connectivity patterns of densely welded ash-flow tuffs were studied because these tuffs are the most likely to form zones of high hydraulic conductivity. Densely welded tuffs were identified based on the response shown on resistivity logs and this information was transformed into binary indicator values. The spatial correlation of the indicator data was estimated through geostatistical methods. Equiprobable three-dimensional maps of the distribution of the densely-welded and nonwelded tuffs (i.e., subsurface heterogeneity) were then produced using a multiple indicator simulation formalism. The simulations demonstrate that resistivity logs are effective as soft data for indicating densely welded tuffs. The simulated welded tuffs reproduce the stratigraphic relationships of the welded tuffs observed in hydrogeologic cross sections, while incorporating the heterogeneity and anisotropy that is expected in this subsurface setting. Three-dimensional connectivity of the densely welded tuffs suggests potential groundwater flow paths with lengths easily over 1 km. The next phase of this investigation should incorporate other geophysical logs (e.g., gamma-gamma logs) and then calibrate the resulting soft data maps with available hard hydraulic conductivity data. The soft data maps can then augment the hard data to produce the final maps of the spatial distribution of hydraulic conductivity that can be used as input for numerical solution of groundwater flow and transport.

  8. Modeling Steady-State Groundwater Flow Using Microcomputer Spreadsheets.

    ERIC Educational Resources Information Center

    Ousey, John Russell, Jr.

    1986-01-01

    Describes how microcomputer spreadsheets are easily adapted for use in groundwater modeling. Presents spreadsheet set-ups and the results of five groundwater models. Suggests that this approach can provide a basis for demonstrations, laboratory exercises, and student projects. (ML)

  9. Simulation of the shallow groundwater-flow system near the Hayward Airport, Sawyer County, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Juckem, Paul F.; Dunning, Charles P.

    2010-01-01

    There are concerns that removal and trimming of vegetation during expansion of the Hayward Airport in Sawyer County, Wisconsin, could appreciably change the character of a nearby cold-water stream and its adjacent environs. In cooperation with the Wisconsin Department of Transportation, a two-dimensional, steady-state groundwater-flow model of the shallow groundwater-flow system near the Hayward Airport was refined from a regional model of the area. The parameter-estimation code PEST was used to obtain a best fit of the model to additional field data collected in February 2007 as part of this study. The additional data were collected during an extended period of low runoff and consisted of water levels and streamflows near the Hayward Airport. Refinements to the regional model included one additional hydraulic-conductivity zone for the airport area, and three additional parameters for streambed resistance in a northern tributary to the Namekagon River and in the main stem of the Namekagon River. In the refined Hayward Airport area model, the calibrated hydraulic conductivity was 11.2 feet per day, which is within the 58.2 to 7.9 feet per day range reported for the regional glacial and sandstone aquifer, and is consistent with a silty soil texture for the area. The calibrated refined model had a best fit of 8.6 days for the streambed resistance of the Namekagon River and between 0.6 and 1.6 days for the northern tributary stream. The previously reported regional groundwater-recharge rate of 10.1 inches per year was adjusted during calibration of the refined model in order to match streamflows measured during the period of extended low runoff; this resulted in an optimal groundwater-recharge rate of 7.1 inches per year during this period. The refined model was then used to simulate the capture zone of the northern tributary to the Namekagon River.

  10. A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas

    USGS Publications Warehouse

    Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew P.; Houston, Natalie A.; Payne, Jason D.; Musgrove, MaryLynn

    2013-01-01

    The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths. Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.

  11. Use of self-potential (SP) method to understand the regional groundwater flow system

    NASA Astrophysics Data System (ADS)

    Satou, S.; Shimada, J.; Goto, T.

    2005-12-01

    The self-potential method (SP method) is one of the geophysical explorations technique originally used to explore the mineral deposit for mining purposes. Recently, this technique has been applied to understand the geothermal fluid flow in and around the volcanic area. As there exists various factors to affect the surface SP measurement, it is rather difficult to find out the major cause of self-potential generation because their complexity of the generation mechanism. In this application, the behavior of groundwater flow is thought to be as a kind of noise. However, in case of non geothermal area, groundwater flow flux should create substantial self potential at the area which is less complex than geothermal area. The self-potential created by the groundwater flow is mainly caused by the streaming potential represented by the electrokinetic factors such as groundwater potential and the ground resistivity (Ishido and Mizutani,1981). As there exist little SP study to understand groundwater flow system, we have conducted the field SP measurement and its numerical model consideration in the clear groundwater flow existing area. A basin scale groundwater flow region including the mountainous ridge to the coastal area within one river-water catchment basin, which is geologically composed by the volcanic lava and tuff-breccia bedrock, was selected to apply the SP method_DThe study area is Shiranui town, Kumamoto, Kyusyu, Japan. In this area, following multi-hydrological studies have been conducted to understand the groundwater flow regime of the area: groundwater flow system study with observation boreholes and eivironmental isotopes, hydrometric observation for river discharge and precipitation for the regional water budget, micro-meteorological observation at different vegetation and altitude for the evapotranspiration measurement, submarine groundwater discharge investigation, geological borehole drilling, and 3D groundwater flow simulation, etc. The SP measurement results clearly show the regional groundwater flow characteristics revealed by the groundwater potential and environmental isotope study. Also the observed SP pattern could be reasonably explained by the result of preliminary self-potential numeric modeling with the potential data by the groundwater flow simulation for a simple mountain slope.

  12. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Hristopulos, Dionissios

    2015-04-01

    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs random fields. IΕΕΕ Transactions on Information Theory, 53:4667-4467. Varouchakis, E.A. and Hristopulos, D.T. 2013. Improvement of groundwater level prediction in sparsely gauged basins using physical laws and local geographic features as auxiliary variables. Advances in Water Resources, 52:34-49. Research supported by the project SPARTA 1591: "Development of Space-Time Random Fields based on Local Interaction Models and Applications in the Processing of Spatiotemporal Datasets". "SPARTA" is implemented under the "ARISTEIA" Action of the operational programme Education and Lifelong Learning and is co-funded by the European Social Fund (ESF) and National Resources.

  13. Data Analysis and Simulation of In-Situ Permeable Flow Sensors for Measuring Groundwater Velocity

    NASA Astrophysics Data System (ADS)

    Freifeld, B. M.; Su, G. W.; Jordan, P. D.; Oldenburg, C. M.; Daley, P. F.

    2004-12-01

    We have monitored data from three Hydrotechnics in-situ permeable flow sensors (ISPFSs) installed in a shallow aquifer at the former Fort Ord Army Base near Monterey, California. The in-situ permeable flow sensor operates by constant heating of a nearly one-meter-long, 5 cm diameter cylindrical probe which contains 30 thermistors in direct contact with the formation that has fully collapsed around the instrument during installation. The temperature evolution at each thermistor can be inverted to obtain an estimate of the groundwater flow velocity vector (i.e., horizontal and vertical components, and azimuth). The unconfined aquifer we monitored is in unconsolidated dune sand bounded below by a clay aquitard. The magnitudes of the vertical velocities were expected to be much less than the horizontal velocities at this site because of the underlying clay layer. However, standard data analysis of the ISPFS data suggested a strong and unexpected component of downward flow. We have carried out numerical simulations with TOUGH2 of three-dimensional non-isothermal flow around the instrument to investigate temperature profiles along the instrument that might give rise to spurious indications of downward flow. We studied the effects of different combinations of permeability and thermal conductivity around the instrument. A decrease in the thermal conductivity or permeability of the formation near the bottom of the sensor can perturb the temperature profiles along the instrument in such a manner that the temperature shift could be interpreted as downward flow. The TOUGH2 simulations demonstrate that estimates of downward velocities from the flow sensors should be interpreted with caution and compared with estimates from other methods if possible. This work was supported by U.C. Santa Cruz through the U.S. Army Construction Engineering Reseach Laboratories, and by the U.S. Department of Energy under contract No. DE-AC03-76SF00098.

  14. Streambed Temperatures and Heat Budget Estimates in Groundwater-fed Streams

    NASA Astrophysics Data System (ADS)

    Middleton, M.; Allen, D. M.; Whitfield, P. H.

    2013-12-01

    A streambed temperature monitoring network was installed in a groundwater-fed stream in the Lower Fraser Valley of British Columbia. A network of fifteen temperature loggers was installed in a short reach (<40 m) of Fishtrap Creek to characterize the spatial and temporal variability in streambed temperatures and identify potential mechanisms for localized cooling based on heat exchanges during the summer low flow period. This reach has uniform channel form and water depth, and consistent bed material. Streambed temperature data were collected hourly for the period of July 2008 through October 2012, spanning five summer low flow periods. Nearby climate, stream discharge, and groundwater monitoring stations provided the data to estimate the heat budget components. Over the five summer low flow periods, the network of dataloggers recorded a mean streambed temperature of 13.8oC, with a range of 10.2oC to 20.0oC across the streambed. In order to assess controls on streambed temperature at individual datalogger locations, the incoming heat from sources acting across the entire reach had to be removed from the observed temperature signals. The incoming heat was calculated for the air-water interface to estimate the energy flux into the reach using a heat balance. Incoming solar radiation dominates the heat balance, and evaporative heat fluxes were noticeable as small amplitude variations at a daily scale. Precipitation occurrence, or absence, was not an important component of the heat balance during the summer low flow period. Since incoming solar radiation dominates both air and water temperatures, air temperature (Ta) can be used as a proxy for streambed temperature (Ts). The actual lag time between the air and streambed temperature for this site was 30 hours; however, for the calculation of stream temperature at a daily time step, a lag of 24 hours was used. The relationship between daily streambed temperature and daily air temperature, at a lag of one day, was determined empirically for the site as Ts(t) = 5.59 + 0.48 *Ta(t-1day), where T is in degrees C. Almost 90 percent of the variance in streambed temperature can be explained by this lagged air temperature signal. Since this reach is physically uniform, the observed variability in streambed temperatures that are not explained by water temperature can be attributed to variations in groundwater flux.

  15. Model Refinement and Simulation of Groundwater Flow in Clinton, Eaton, and Ingham Counties, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.

    2010-01-01

    A groundwater-flow model that was constructed in 1996 of the Saginaw aquifer was refined to better represent the regional hydrologic system in the Tri-County region, which consists of Clinton, Eaton, and Ingham Counties, Michigan. With increasing demand for groundwater, the need to manage withdrawals from the Saginaw aquifer has become more important, and the 1996 model could not adequately address issues of water quality and quantity. An updated model was needed to better address potential effects of drought, locally high water demands, reduction of recharge by impervious surfaces, and issues affecting water quality, such as contaminant sources, on water resources and the selection of pumping rates and locations. The refinement of the groundwater-flow model allows simulations to address these issues of water quantity and quality and provides communities with a tool that will enable them to better plan for expansion and protection of their groundwater-supply systems. Model refinement included representation of the system under steady-state and transient conditions, adjustments to the estimated regional groundwater-recharge rates to account for both temporal and spatial differences, adjustments to the representation and hydraulic characteristics of the glacial deposits and Saginaw Formation, and updates to groundwater-withdrawal rates to reflect changes from the early 1900s to 2005. Simulations included steady-state conditions (in which stresses remained constant and changes in storage were not included) and transient conditions (in which stresses changed in annual and monthly time scales and changes in storage within the system were included). These simulations included investigation of the potential effects of reduced recharge due to impervious areas or to low-rainfall/drought conditions, delineation of contributing areas with recent pumping rates, and optimization of pumping subject to various quantity and quality constraints. Simulation results indicate potential declines in water levels in both the upper glacial aquifer and the upper sandstone bedrock aquifer under steady-state and transient conditions when recharge was reduced by 20 and 50 percent in urban areas. Transient simulations were done to investigate reduced recharge due to low rainfall and increased pumping to meet anticipated future demand with 24 months (2 years) of modified recharge or modified recharge and pumping rates. During these two simulation years, monthly recharge rates were reduced by about 30 percent, and monthly withdrawal rates for Lansing area production wells were increased by 15 percent. The reduction in the amount of water available to recharge the groundwater system affects the upper model layers representing the glacial aquifers more than the deeper bedrock layers. However, with a reduction in recharge and an increase in withdrawals from the bedrock aquifer, water levels in the bedrock layers are affected more than those in the glacial layers. Differences in water levels between simulations with reduced recharge and reduced recharge with increased pumping are greatest in the Lansing area and least away from pumping centers, as expected. Additionally, the increases in pumping rates had minimal effect on most simulated streamflows. Additional simulations included updating the estimated 10-year wellhead-contributing areas for selected Lansing-area wells under 2006-7 pumping conditions. Optimization of groundwater withdrawals with a water-resource management model was done to determine withdrawal rates while minimizing operational costs and to determine withdrawal locations to achieve additional capacity while meeting specified head constraints. In these optimization scenarios, the desired groundwater withdrawals are achieved by simulating managed wells (where pumping rates can be optimized) and unmanaged wells (where pumping rates are not optimized) and by using various combinations of existing and proposed well locations.

  16. Multiple, distinct groundwater flow systems of a single moraine-talus feature in an alpine watershed

    NASA Astrophysics Data System (ADS)

    Roy, James W.; Hayashi, Masaki

    2009-06-01

    SummaryRecent studies suggest that talus slopes and moraines likely play an important role in groundwater flow and storage in alpine watersheds, though the subsurface processes of these unconsolidated sediment features are not fully understood. To gain insight into these groundwater systems, we investigated the spatial variability in groundwater properties and hydrological trends of a large spring and several nearby (?200 m) springs, discharging from a single moraine-talus feature in an alpine watershed in the Canadian Rockies. A key question was whether groundwater flow in these features is reasonably homogeneous. Hydrograph analyses revealed at least two different groundwater responses to precipitation and melt inputs: a rapid and likely localized response and a slower response indicating a subsurface connection to a nearby lake. There was also a large spread in groundwater composition across the large spring and between springs, including a consistent linear trend in major ion chemistry over a 20-m section of the large spring. The spatial and temporal trends in groundwater chemistry data suggests there are three groundwater components associated with this sediment feature, and that their relative contributions vary temporally, though the component associated with the lake appears dominant. The study findings suggest that unconsolidated sediment features can possess multiple, and possibly disconnected, groundwater flow paths exhibiting unique hydrological and geochemical characteristics, and cannot necessarily be treated as a single, homogeneous groundwater component when modeling the hydrology of alpine watersheds.

  17. EVALUATING UNCERTAINTIES IN GROUND-WATER RECHARGE ESTIMATES THROUGH ADVANCED MONITORING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Risk, as estimated by many multimedia environmental models, is highly sensitive to infiltration and ground-water recharge. This field study used high-frequency monitoring of vadose-zone water content and piezometric levels to build confidence in modeling of infiltration and ground-water recharge. ...

  18. Hydrogeology and Ground-Water Flow in the Opequon Creek Watershed area, Virginia and West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.

    2009-01-01

    Due to increasing population and economic development in the northern Shenandoah Valley of Virginia and West Virginia, water availability has become a primary concern for water-resource managers in the region. To address these issues, the U.S. Geological Survey (USGS), in cooperation with the West Virginia Department of Health and Human Services and the West Virginia Department of Environmental Protection, developed a numerical steady-state simulation of ground-water flow for the 1,013-square-kilometer Opequon Creek watershed area. The model was based on data aggregated for several recently completed and ongoing USGS hydrogeologic investigations conducted in Jefferson, Berkeley, and Morgan Counties in West Virginia and Clarke, Frederick, and Warren Counties in Virginia. A previous detailed hydrogeologic assessment of the watershed area of Hopewell Run (tributary to the Opequon Creek), which includes the USGS Leetown Science Center in Jefferson County, West Virginia, provided key understanding of ground-water flow processes in the aquifer. The ground-water flow model developed for the Opequon Creek watershed area is a steady-state, three-layer representation of ground-water flow in the region. The primary objective of the simulation was to develop water budgets for average and drought hydrologic conditions. The simulation results can provide water managers with preliminary estimates on which water-resource decisions may be based. Results of the ground-water flow simulation of the Opequon Creek watershed area indicate that hydrogeologic concepts developed for the Hopewell Run watershed area can be extrapolated to the larger watershed model. Sensitivity analyses conducted as part of the current modeling effort and geographic information system analyses of spring location and yield reveal that thrust and cross-strike faults and low-permeability bedding, which provide structural and lithologic controls, respectively, on ground-water flow, must be incorporated into the model to develop a realistic simulation of ground-water flow in the larger Opequon Creek watershed area. In the model, recharge for average hydrologic conditions was 689 m3/d/km2 (cubic meters per day per square kilometer) over the entire Opequon Creek watershed area. Mean and median measured base flows at the streamflow-gaging station on the Opequon Creek near Martinsburg, West Virginia, were 604,384 and 349,907 m3/d (cubic meters per day), respectively. The simulated base flow of 432,834 m3/d fell between the mean and median measured stream base flows for the station. Simulated base-flow yields for subwatersheds during average conditions ranged from 0 to 2,643 m3/d/km2, and the median for the entire Opequon Creek watershed area was 557 m3/d/km2. A drought was simulated by reducing model recharge by 40 percent, a rate that approximates the recharge during the prolonged 16-month drought that affected the region from November 1998 to February 2000. Mean and median measured streamflows for the Opequon Creek watershed area at the Martinsburg, West Virginia, streamflow-gaging station during the 1999 drought were 341,098 and 216,551 m3/d, respectively. The simulated drought base flow at the station of 252,356 m3/d is within the range of flows measured during the 1999 drought. Recharge was 413 m3/d/km2 over the entire watershed during the simulated drought, and was 388 m3/d/km2 at the gaging station. Simulated base-flow yields for drought conditions ranged from 0 to 1,865 m3/d/km2 and averaged 327 m3/d/km2 over the entire Opequon Creek watershed. Water budgets developed from the simulation results indicate a substantial component of direct ground-water discharge to the Potomac River. This phenomenon had long been suspected but had not been quantified. During average conditions, approximately 564,176 m3/d of base flow discharges to the Potomac River. An additional 124,379 m3/d of ground water is also estimated to discharge directly to the Potomac River and rep

  19. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    SciTech Connect

    Chilakapati, A.

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  20. Estimating residents' willingness to pay for groundwater protection in the Vietnamese Mekong Delta

    NASA Astrophysics Data System (ADS)

    Vo, Danh Thanh; Huynh, Khai Viet

    2014-11-01

    Groundwater in the Vietnamese Mekong Delta is facing the pollution and it needs to be protected. Searching literature reviews on economic valuation techniques, the contingent valuation method (CVM) has been popularly applied to estimate the economic value of water protection. This approach is based on a hypothetical scenario in which respondents are requested through questionnaires to reveal their maximum willingness to pay (WTP) for the water protection project. The study used the approach of CVM to analyze the households' motivations and their WTP for the program of groundwater protection in the Mekong Delta. The study performed that the residents in the delta were willing to pay approximately 141,730 VND (US6.74) per household a year. Groundwater could be an inferior good with the negative income effect found in the demanding for clean groundwater. Respondent's gender and groundwater-related health risk consideration were factors sensitively affecting the probability of demanding for groundwater protection.

  1. Groundwater balance estimation and sustainability in the Sand?kl? Basin (Afyonkarahisar/Turkey)

    NASA Astrophysics Data System (ADS)

    Aksever, Fatma; Davraz, Ay?en; Karaguzel, Remzi

    2015-06-01

    The Sand?kl? (Afyonkarahisar) Basin is located in the southwest of Turkey and is a semi-closed basin. Groundwater is widely used for drinking, domestic and irrigation purposes in the basin. The mismanagement of groundwater resources in the basin causes negative effects including depletion of the aquifer storage and groundwater level decline. To assure sustainability of the basin, determination of groundwater budget is necessary. In this study, the water-table fluctuation (WTF) and the meteorological water budget (MWB) methods were used to estimate groundwater budget in the Sand?kl? basin (Turkey). Conceptual hydrogeological model of the basin was used for understanding the relation between budget parameters. The groundwater potential of the basin calculated with MWB method as 42.10 × 106 m3/year. In addition, it is also calculated with simplified WTF method as 38.48 × 106 m3/year.

  2. Comparison of a karst groundwater model with and without discrete conduit flow

    USGS Publications Warehouse

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-01-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  3. Comparison of a karst groundwater model with and without discrete conduit flow

    NASA Astrophysics Data System (ADS)

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-11-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  4. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    PubMed

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. PMID:25227154

  5. Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model

    USGS Publications Warehouse

    Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.

    1996-01-01

    An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.

  6. A novel approach for direct estimation of fresh groundwater discharge to an estuary

    USGS Publications Warehouse

    Ganju, Neil K.

    2011-01-01

    Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater-fed tidal creek over a spring-neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross-sectionally averaged salinity. These measurements were used in a time-dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time-series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well-defined cross-sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment. Copyright. Published in 2011 by the American Geophysical Union.

  7. Groundwater Flow in the Arthur Marble Aquifer, New Zealand

    NASA Astrophysics Data System (ADS)

    Stewart, M. K.

    2008-05-01

    Arthur Marble underlies the Takaka Valley and outcrops in Karst Uplands to east and west of the valley in the South Island of New Zealand. It is the principal groundwater aquifer in the region and host to the remarkable Waikoropupu Springs near the coast. With average flow of 13,300 L/s, the karstic springs have many interesting features including unusual size and clarity. This work uses rainfall and river level, natural tracer and chemical measurements to determine the recharge sources and nature of the flow system in the Arthur Marble Aquifer (AMA). Total recharge to the AMA of 19,750 L/s comes from three sources (Karst Uplands stream seepage, Takaka River seepage and Takaka Valley rainfall infiltration). Since 13,300 L/s is discharged at the springs, the remainder must escape via offshore springs (6,450 L/s). The oxygen-18 mass balance allows the contribution of each source to each spring to be determined; most of the flow to the Main Spring of the Waikoropupu Springs comes from the Karst Uplands. The offshore springs are mostly fed from the Takaka River. The chemical concentrations of the Main Spring show input of 0.5% of sea water on average, but varying with flow. This variation with flow shows that two water components (sea-water-bearing and non-sea-water-bearing) contribute to the spring's discharge. Tritium measurements spanning 40 years, and CFC-11 measurements, give a mean residence time of 8 years for the Main Spring water using the preferred two-component model. Our conceptual flow model, based on the flow, oxygen-18, chloride and tritium measurements, reveals that two different flow systems with different recharge sources are needed to explain the flow within the AMA. One system contains deeply penetrating old water with mean age 10.2 years and water volume 3 cubic kilometers, recharged from the Karst Uplands. The other, at shallow levels below the valley floor, has much younger water, with mean age 1.2 years and water volume 0.4 cubic kilometers, recharged from the Takaka River and Takaka Valley rainfall. The two flow systems contribute in different average proportions to the Main Spring (74% deep system, 26% shallow system), Fish Creek Springs (25% deep, 75% shallow) and offshore springs (15% deep, 85% shallow). The very different behaviours of the two systems, despite their residing in the same aquifer, are attributed to the likely presence of a diorite intrusion below the surface of the lower Takaka Valley. This intrusion diverts the deep system towards the Waikoropupu Springs and allows much of the shallow system to pass over the intrusion and escape via the offshore springs.

  8. Estimating Urban-Induced Groundwater Recharge Through Coupled Hydrologic Modeling in Ballona Creek Watershed, Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Reyes, B.; Hogue, T. S.

    2012-12-01

    The current research focuses on the modeling and prediction of urban-induced groundwater recharge in highly developed, semi-arid regions. The groundwater component of the hydrologic cycle goes through significant changes during urbanization and has historically been understudied. The changes brought on by urbanization not only include physical alterations (increased surface imperviousness, channelized flow, increased sub-surface infrastructure etc.) but also changes to the water cycle due to human interactions (increased use of imported water, variable landscape irrigation, industrial water use, etc.). We undertake our initial analysis in Ballona Creek watershed, which contains highly urbanized and diverse portions of the cities of Santa Monica and Los Angeles, California along with more natural land surfaces in the northern portions of the watershed in the Santa Monica Mountains. The primary focus of this research is the development of a fully distributed and coupled surface-groundwater model of the Ballona Creek watershed. We use the three-dimensional finite-difference surface and groundwater flow model, ParFlow, fully-coupled to a land surface model, CLM, at a 30-meter by 30-meter resolution forced by observed meteorological data from 2000 to 2010. Previous work in Ballona includes a detailed historical water budget analysis from the early 1900s to the present. This extensive in situ data set will be used to estimate model parameters as well as provide upper and lower boundaries for groundwater recharge values across the system. Preliminary results focus on annual and seasonal (wet/dry periods) surface and groundwater fluxes, including the influence of natural spring flow and dry weather runoff in the watershed. Los Angeles and the surrounding metropolitan area rely on some of the most extensive and oldest centralized water redistribution projects in the United States where water is transported hundreds of kilometers to support agricultural and urban activities in the Los Angeles area. Increasingly, local governments and water districts are committed to increased reliance on local water sources within the southern California coastal areas including local groundwater, rainwater capture, conservation measures, and recycled water sources. Our ultimate goal is to use the validated model to evaluate the influence of altered landscapes and future climate in developing sustainable groundwater supplies across the southern California region.

  9. Multiregional estimation of gross internal migration flows.

    PubMed

    Foot, D K; Milne, W J

    1989-01-01

    "A multiregional model of gross internal migration flows is presented in this article. The interdependence of economic factors across all regions is recognized by imposing a non-stochastic adding-up constraint that requires total inmigration to equal total outmigration in each time period. An iterated system estimation technique is used to obtain asymptotically consistent and efficient parameter estimates. The model is estimated for gross migration flows among the Canadian provinces over the period 1962-86 and then is used to examine the likelihood of a wash-out effect in net migration models. The results indicate that previous approaches that use net migration equations may not always be empirically justified." PMID:12315789

  10. Helium isotopes and 36Cl in saline groundwater from the Osaka Basin, Southwest Japan: Concurrent change in isotopic ratio during groundwater flow

    NASA Astrophysics Data System (ADS)

    Morikawa, N.; Kazahaya, K.; Takahashi, M.; Tosaki, Y.; Ohwada, M.; Takahashi, H. A.; Yasuhara, M.; Masuda, H.

    2010-12-01

    Isotopic composition and concentration of solute and dissolved gases in groundwater a useful indicator for identifying groundwater flow path and estimating groundwater age. Helium and chlorine isotopes are of special importance for a very old groundwater. Helium-4 concentrations in groundwaters often increase with water residence time because of the accumulation of radiogenic He. Combining radiogenic He concentration with 3He/4He ratio, He isotopes has a potential to elucidate both origin and age of groundwater. Chlorine-36 is a radioactive nuclide, which decays with a half-life of 301,000 years and is thus applicable to dating very old groundwater. Another possible application of this isotope is a method using subsurface produced 36Cl to investigate the origin and evolution of saline water. Morikawa et al. (2008) investigated the helium isotopes in deep groundwater from the Osaka Basin in which unusual saline water containing upper mantle-like helium welled out. The Osaka basin is a tectonic subsidence basin, which consists of 500-2,000m thick Late Pliocene to Pleistocene sediments. The granitic basement rocks have been broken into two major blocks by the thrust fault trending north to south. Observed 3He/4He variation in deep groundwater was clearly related with the distribution of active faults and geological structure. Highest value which was identical to the upper mantle one was found out near the two major tectonic lines, Median Tectonic Line and Arima-Takatsuki Tectonic Line, which are located on the north border and near the south border of the Osaka Basin, respectively. The 3He/4He ratios decrease with increasing distance from these tectonic lines. The lowest 3He/4He ratio was observed for the groundwater in the middle-east part of the basin. It has been proposed a model that observed spatial distribution of 3He/4He ratio reflects the movement of fluids through the fault and following dissolution of radiogenic 4He during groundwater flow (Morikawa et al., 2008). The amount of accumulated 4He corresponds to the age for hundreds of thousands of years. In this study, we investigated the distribution of 36Cl/Cl ratio to examine this model. Most of the observed 36Cl/Cl ratios were less than 1 x 10-14. Especially low ratios (<2x10-15) were observed for the samples from the vicinity of the tectonic lines, whereas relatively high 36Cl/Cl ratio was observed in the middle-east part of the basin. Considering that a secular equilibrium value of the aquifer would be around 10-14, increasing 36Cl/Cl ratio toward the middle part of the basin indicates the direction of deep groundwater flow. It is consistent with a tendency inferred from 3He/4He results.

  11. Satellite-based estimates of groundwater depletion in India.

    PubMed

    Rodell, Matthew; Velicogna, Isabella; Famiglietti, James S

    2009-08-20

    Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. Indirect evidence suggests that this is the case in northwest India, but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites and simulated soil-water variations from a data-integrating hydrological modelling system to show that groundwater is being depleted at a mean rate of 4.0 +/- 1.0 cm yr(-1) equivalent height of water (17.7 +/- 4.5 km(3) yr(-1)) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km(3) of water, which is double the capacity of India's largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses. PMID:19675570

  12. A closed-form solution for a confined flow into a tunnel during progressive drilling in a multi-layer groundwater flow system

    NASA Astrophysics Data System (ADS)

    Yang, Shaw-Yang; Yeh, Hund-Der

    2007-04-01

    A mathematical model is developed to describe the groundwater inflow into a tunnel in a multi-layer aquifer system. Based on the model, the closed-form solution is derived to estimate the groundwater flow rate entering the multi-layer tunnel during progressive drilling. The solution has an integrand not only consisting of the product and square of the Bessel functions but also having a singularity at the origin. A unified numerical approach is proposed to evaluate the solution with accuracy to five decimal places. This approach includes a singularity removal scheme, the Gaussian quadrature, and the Shanks method. For a multi-layer formation, the results obtained from the solution based on the equivalent hydraulic conductivity and the newly derived solution differ significantly. This solution is capable of estimating the maximum flow rate inside the horizontal tunnel, and thus can be used as a tool for designing the drainage tunnel system in a multi-layer formation.

  13. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface flow from adjacent regions; irrigation and septic field seepage; and leakage through the Rio Grande, canal, and Cochiti Reservoir beds. Ground water is discharged from the basin by withdrawal; evapotranspiration; subsurface flow; and flow to the Rio Grande, canals, and drains. The transient, three-dimensional numerical model of ground-water flow to which nonlinear-regression methods were applied simulates flow in the Albuquerque Basin from 1900 to March 1995. Six different basin subsurface configurations are considered in the model. These configurations are designed to test the effects of (1) varying the simulated basin thickness, (2) including a hypothesized hydrogeologic unit with large hydraulic conductivity in the western part of the basin (the west basin high-K zone), and (3) substantially lowering the simulated hydraulic conductivity of a fault in the western part of the basin (the low-K fault zone). The model with each of the subsurface configurations was calibrated using a nonlinear least- squares regression technique. The calibration data set includes 802 hydraulic-head measurements that provide broad spatial and temporal coverage of basin conditions, and one measurement of net flow from the Rio Grande and drains to the ground-water system in the Albuquerque area. Data are weighted on the basis of estimates of the standard deviations of measurement errors. The 10 to 12 parameters to which the calibration data as a whole are generally most sensitive were estimated by nonlinear regression, whereas the remaining model parameter values were specified. Results of model calibration indicate that the optimal parameter estimates as a whole are most reasonable in calibrations of the model with with configurations 3 (which contains 1,600-ft-thick basin deposits and the west basin high-K zone), 4 (which contains 5,000-ft-thick basin de

  14. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico

    NASA Astrophysics Data System (ADS)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

    2002-09-01

    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet aquifère. La zone karstifiée a été modélisée en posant l'hypothèse qu'il fonctionne hydrauliquement comme un milieu poreux granulaire. Au cours de la calibration, les hypothèses suivantes ont été testées: (1) les phénomènes karstiques jouent un rôle important dans le système aquifère, (2) un anneau ou une ceinture de dépressions dans la région est la manifestation d'une zone à forte transmissivité qui permet l'écoulement en conduits de l'eau souterraine en direction du Golfe du Mexique, et (3) la situation géologique dans la partie sud du Yucatan détermine les écoulements souterrains. Le modèle montre que la faille de la Sierrita de Ticul, dans la partie sud-ouest de la région étudiée, joue le rôle de barrière et que les valeurs de la piézométrie décroissent en direction du nord-est. La modélisation montre également que la dynamique du système aquifère à l'échelle régionale n'a pas été modifiée malgré le grand nombre de puits de pompage, parce que le volume pompé est faible en comparaison du volume de recharge; en outre, le réseau karstique très bien développé dans cette région possède une très forte conductivité hydraulique. Resumen. El modelo conceptual actual del acuífero cárstico no confinado de la Península de Yucatán (México) es el de un lentejón de agua dulce flotando sobre agua salada, más densa, la cual penetra más de 40 kilómetros tierra adentro. Debido a la alta conductividad hidráulica del acuífero, existe un gradiente hidráulico muy bajo cuyo rango está entre 7 y 10 milímetros por kilómetro en la porción norte de la península. Se utilizó el código AQUIFER para investigar el sistema de flujo de las aguas subterráneas a escala regional en el acuífero. La zona carstificada se modeló suponiendo que actúa hidráulicamente como un medio poroso granular. Como parte de la calibración, se probaron las siguientes hipótesis: (1) las características cársticas desempeñan un papel importante en el sistema de flujo de agua subterránea (2) un anillo o cinturón de sumideros en el área es una manifestación de una zona de alta transmisividad que conduce las aguas subterráneas hacia el Golfo de México y (3) las propiedades geológicas de la porción sur de Yucatán influyen en el sistema de flujo de agua subterránea. El modelo demostró que la falla de la Sierrita de Ticul, situada en el sudoeste de la zona de estudio, actúa como una barrera al flujo, y que los niveles piezométricos disminuyen hacia el nordeste. La modelación también mostró que la dinámica del sistema de flujo regional no ha sido alterada a pesar de la gran cantidad de captaciones, ya que el volumen extraído es pequeño en comparación con la recarga al acuífero además, el sistema cárstico de la región, bien desarrollado, posee una conductividad hidráulica muy elevada.

  15. Effects of Turbulent Ground-Water Flow on Hydraulic Heads and Parameter Sensitivities in Preferential Groundwater Flow Layers within the Biscayne Aquifer in Southeastern Florida

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.

    2009-12-01

    The effect of turbulent groundwater flow on hydraulic heads and parameter sensitivities was examined for the Biscayne aquifer in southern Florida using the Conduit Flow Process (CFP) for MODFLOW-2005. Turbulent flow was spatially extensive in preferential groundwater flow layers with mean void diameters equal to about 3.5 centimeters, groundwater temperature equal to about 25 degrees Celsius, and critical Reynolds numbers less than about 400. Turbulence either increased or decreased simulated heads from laminar elevations. Specifically, head differences from laminar elevations ranged from about -18 to +27 centimeters, and were explained by the magnitude of net flow to the finite-difference model cell. Turbulence also influenced the sensitivities of model parameters. Specifically, the composite-scaled sensitivities of horizontal hydraulic conductivities decrease by as much as 70% when turbulence was removed. Resultant hydraulic head and sensitivity differences due to turbulent groundwater flow highlight potential errors in models which assume laminar flow in an equivalent porous-media having uniformly distributed void spaces.

  16. Simulating the effect of climate extremes on groundwater flow through a lakebed.

    PubMed

    Virdi, Makhan L; Lee, Terrie M; Swancar, Amy; Niswonger, Richard G

    2013-03-01

    Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area. PMID:22891702

  17. A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems

    USGS Publications Warehouse

    Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P.

    2012-01-01

    Groundwater is a vital water resource in the arid to semi-arid southwestern United States. Accurate accounting of inflows to and outflows from the groundwater system is necessary to effectively manage this shared resource, including the important outflow component of groundwater discharge by vegetation. A simple method for estimating basin-scale groundwater discharge by vegetation is presented that uses remote sensing data from satellites, geographic information systems (GIS) land cover and stream location information, and a regression equation developed within the Southern Arizona study area relating the Enhanced Vegetation Index from the MODIS sensors on the Terra satellite to measured evapotranspiration. Results computed for 16-day composited satellite passes over the study area during the 2000 through 2007 time period demonstrate a sinusoidal pattern of annual groundwater discharge by vegetation with median values ranging from around 0.3 mm per day in the cooler winter months to around 1.5 mm per day during summer. Maximum estimated annual volume of groundwater discharge by vegetation was between 1.4 and 1.9 billion m3 per year with an annual average of 1.6 billion m3. A simplified accounting of the contribution of precipitation to vegetation greenness was developed whereby monthly precipitation data were subtracted from computed vegetation discharge values, resulting in estimates of minimum groundwater discharge by vegetation. Basin-scale estimates of minimum and maximum groundwater discharge by vegetation produced by this simple method are useful bounding values for groundwater budgets and groundwater flow models, and the method may be applicable to other areas with similar vegetation types.

  18. New dating method: Groundwater residence time estimated from the 4He accumulation rate calibrated by using cosmogenic and subsurface-produced 36Cl

    NASA Astrophysics Data System (ADS)

    Mahara, Y.; Ohta, T.; Kubota, T.; Miyakawa, K.; Hasegawa, T.; Habermehl, M. A.; Fifield, L. K.

    2012-04-01

    Groundwater contains dissolved He, and its concentration increases with the residence time of the groundwater. Thus, if the 4He accumulation rate is constant, the dissolved 4He concentration in ground-water is equivalent to the residence time. Since accumulation mechanisms are not easily separated in the field, we estimate the total He accumulation rate during the half-life of 36Cl (3.01 × 105 years). We estimated the 4He accumulation rate, calibrated using both cosmogenic and subsurface-produced 36Cl, in the Great Artesian Basin (GAB), Australia, and the subsurface-produced 36Cl increase at the Äspö Hard Rock Laboratory, Sweden. 4He accumulation rates range from (1.9±0.3) × 10-11 to (15±6) × 10-11 ccSTP·cm-3·y-1 in GAB and (1.8 ±0.7) × 10-8 ccSTP·cm-3·y-1 at Äspö. We confirmed a ground-water flow with a residence time of 0.7-1.06 Ma in GAB and stagnant groundwater with the long residence time of 4.5 Ma at Äspö. Therefore, the groundwater residence time can be deduced from the dissolved 4He concentration and the 4He accumulation rate calibrated by 36Cl, provided that 4He accumulation, groundwater flow, and other geo-environmental conditions have remained unchanged for the required amount of geological time.

  19. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    SciTech Connect

    Dander, D.C.

    1998-10-15

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  20. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Maier, Uli; Fleckenstein, Jan H.

    2014-05-01

    At the interface between stream water, groundwater, and the hyporheic zone (HZ), important biogeochemical processes that play a crucial role in fluvial ecology occur. Solutes that infiltrate into the HZ can react with each other and possibly also with upwelling solutes from the groundwater. In this study, we systematically evaluate how variations of gaining and losing conditions, stream discharge, and pool-riffle morphology affect aerobic respiration (AR) and denitrification (DN) in the HZ. For this purpose, a computational fluid dynamics model of stream water flow is coupled to a reactive transport model. Scenarios of variations of the solute concentration in the upwelling groundwater were conducted. Our results show that solute influx, residence time, and the size of reactive zones strongly depend on presence, magnitude, and direction of ambient groundwater flow. High magnitudes of ambient groundwater flow lower AR efficiency by up to 4 times and DN by up to 3 orders of magnitude, compared to neutral conditions. The influence of stream discharge and morphology on the efficiency of AR and DN are minor, in comparison to that of ambient groundwater flow. Different scenarios of O2 and NO3 concentrations in the upwelling groundwater reveal that DN efficiency of the HZ is highest under low upwelling magnitudes accompanied with low concentrations of O2 and NO3. Our results demonstrate how ambient groundwater flow influences solute transport, AR, and DN in the HZ. Neglecting groundwater flow in stream-groundwater interactions would lead to a significant overestimation of the efficiency of biogeochemical reactions in fluvial systems.

  1. Applications of remote sensing, GIS, and groundwater flow modeling in evaluating groundwater resources: Two case studies; East Nile Delta, Egypt and Gold Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Abdelaziz Ali Ismael, Abdulaziz Mohamed

    Quaternary aquifer, East Nile Delta, Egypt. Due to the progressive increase in the development of desert land in Egypt, the demand for efficient water resources management and accurate land cover change information is increasing. In this study, we introduce a methodology to map and monitor land cover change patterns related to agricultural development and urban expansion in the desert fringes of the Eastern Nile Delta region. Using a hybrid classification approach, we employ multitemporal Landsat TM/ETM+ images from 1984, 1990, and 2003 to produce three land cover/land use maps. Post-classification comparison of these maps was used to obtain "from-to" statistics and change detection maps. The change detection results show that agricultural development increased 14% through the study period. Land reclamation during 1990-2003 exceeded that during 1984-1990 by a factor of two, reflecting a systematic national plan for desert reclamation that went into effect. We find that the increase in urbanization (by ˜21,300 hectares) during 1990-2003 was predominantly due to encroachment into traditionally cultivated land at the fringes of urban centers. Our results accurately quantify the land cover changes and delineate their spatial patterns, demonstrating the utility of Landsat data in analyzing landscape dynamics over time. Such information is critical for making efficient and sustainable policies for resource management. A three dimensional GIS-based groundwater flow model was developed to delineate a safe future framework for groundwater development in the Quaternary aquifer north Ismaelia Canal, East Nile Delta where a progressive rise in head associated with agricultural development is reported. The calibrated transient model was used to predict the future head distribution after 20 years assuming the same landuse. Results of this run showed that the groundwater head continued to increase with maximum increase up to 2.0 m in the unconfined part of the aquifer which jeopardizes a considerable area of the agricultural land with soil salinity and water logging. Therefore, three strategies, each with three scenarios, extending between 2004 and 2024 were designed to involve different pumping stress and infiltration rates from irrigation return to control the rising water level and estimate the production potential of the aquifer during drought. Gold Valley, Death Valley, California, USA. This study evaluates the hydrogeology of Gold Valley as a typical example of intermountain basins of Death Valley area and develops a GIS-based model that reasonably estimates the precipitation infiltration rates from altitude and slope data of the catchment area. Water balance calculations of the hydrological parameters in Gold Valley, provided by Inyo County, California, indicated that the majority of recharge takes place at high altitude (>1100 m) during winter with a negligible effect of evaporation on the stable isotopic composition of groundwater. Furthermore, water balance calculations in Gold Valley were utilized in identifying the coefficients of a GIS-based model that subsequently was refined to the best fit with the calculations of the water budget. A resistivity survey conducted in Gold Valley showed that groundwater is collected in upstream compartmentalized reservoirs and suggests that groundwater flow mostly takes place through the fracture zone of the bedrock. This pattern explains the relationship between precipitational infiltration in the Gold Valley catchment area and the attachment spring flow in Willow Creek. The estimated water budget in Gold Valley and the geoelectric profiles provided from this study can be investigated into the Death Valley Regional Groundwater Flow model (DVRGWF). In addition, the GIS-based model can be efficiently applied in other intermountain basins in Death Valley or other areas of arid environment of the Western U.S. to estimate the local precipitational infiltration. Accurate estimates of flux, well defined flow systems, and locations of recharge/discharge in mountain ranges provide essential parameters that can enhance the performance of the DVRGWF model and consequently its prediction capability. (Abstract shortened by UMI.)

  2. Evaluation of uncertainties due to hydrogeological modeling and groundwater flow analysis: Steady flow, transient flow, and thermal studies

    SciTech Connect

    Doughty, Christine; Karasaki, Kenzi

    2002-12-11

    Starting with regional geographic, geologic, surface and subsurface hydrologic, and geophysical data for the Tono area in Gifu, Japan, we develop an effective continuum model to simulate subsurface flow and transport in a 4 km by 6 km by 3 km thick fractured granite rock mass overlain by sedimentary layers. Individual fractures are not modeled explicitly. Rather, continuum permeability and porosity distributions are assigned stochastically, based on well-test data and fracture density measurements. Lithologic layering and one major fault, the Tsukiyoshi Fault, are assigned deterministically. We conduct three different studies: (1) the so-called base case, in which the model simulates the steady-state groundwater flow through the site, and then stream trace analysis is used to calculate travel times to the model boundary from specified release points; (2) simulations of transient flow during long term pump tests (LTPT) using the base-case model; and (3) thermal studies in which coupled heat flow and fluid flow are modeled, to examine the effects of the geothermal gradient on groundwater flow. The base-case study indicates that the choice of open or closed lateral boundaries has a strong influence on the regional groundwater flow patterns produced by the models, but no field data exist that can be used to determine which boundary conditions are more realistic. The LTPT study cannot be used to distinguish between the alternative boundary conditions, because the pumping rate is too small to produce an analyzable pressure response at the model boundaries. In contrast, the thermal study shows that the temperature distributions produced by the open and closed models differ greatly. Comparison with borehole temperature data may be used to eliminate the closed model from further consideration.

  3. Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Ofterdinger, Ulrich

    2016-04-01

    Despite fractured hard rock aquifers underlying over 65% of Ireland, knowledge of key processes controlling groundwater recharge in these bedrock systems is inadequately constrained. In this study, we examined 19 groundwater-level hydrographs from two Irish hillslope sites underlain by hard rock aquifers. Water-level time-series in clustered monitoring wells completed at the subsoil, soil/bedrock interface, shallow and deep bedrocks were continuously monitored hourly over two hydrological years. Correlation methods were applied to investigate groundwater-level response to rainfall, as well as its seasonal variations. The results reveal that the direct groundwater recharge to the shallow and deep bedrocks on hillslope is very limited. Water-level variations within these geological units are likely dominated by slow flow rock matrix storage. The rapid responses to rainfall (⩽2 h) with little seasonal variations were observed to the monitoring wells installed at the subsoil and soil/bedrock interface, as well as those in the shallow or deep bedrocks at the base of the hillslope. This suggests that the direct recharge takes place within these units. An automated time-series procedure using the water-table fluctuation method was developed to estimate groundwater recharge from the water-level and rainfall data. Results show the annual recharge rates of 42-197 mm/yr in the subsoil and soil/bedrock interface, which represent 4-19% of the annual rainfall. Statistical analysis of the relationship between the rainfall intensity and water-table rise reveal that the low rainfall intensity group (⩽1 mm/h) has greater impact on the groundwater recharge rate than other groups (>1 mm/h). This study shows that the combination of the time-series analysis and the water-table fluctuation method could be an useful approach to investigate groundwater recharge in fractured hard rock aquifers in Ireland.

  4. Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2009-01-01

    Convolution modeling is useful for investigating the temporal distribution of groundwater age based on environmental tracers. The framework of a quasi-transient convolution model that is applicable to two-domain flow in karst aquifers is presented. The model was designed to provide an acceptable level of statistical confidence in parameter estimates when only chlorofluorocarbon (CFC) and tritium (3H) data are available. We show how inverse modeling and uncertainty assessment can be used to constrain model parameterization to a level warranted by available data while allowing major aspects of the flow system to be examined. As an example, the model was applied to water from a pumped well open to the Madison aquifer in central USA with input functions of CFC-11, CFC-12, CFC-113, and 3H, and was calibrated to several samples collected during a 16-year period. A bimodal age distribution was modeled to represent quick and slow flow less than 50 years old. The effects of pumping and hydraulic head on the relative volumetric fractions of these domains were found to be influential factors for transient flow. Quick flow and slow flow were estimated to be distributed mainly within the age ranges of 0-2 and 26-41 years, respectively. The fraction of long-term flow (>50 years) was estimated but was not dateable. The different tracers had different degrees of influence on parameter estimation and uncertainty assessments, where 3H was the most critical, and CFC-113 was least influential.

  5. Characterization of Groundwater Flow Processes in the Cedar Creek Watershed and the Cedarburg Bog in Southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Graham, J. P.; Han, W. S.; Feinstein, D.; Hart, D. J.

    2014-12-01

    The purpose of this study is to characterize the geology and groundwater flow of the bog as well as the surrounding area, notably the Cedar Creek Watershed, a HUC (Hydrologic Unit Code) 12 watershed. The watershed is approximately 330 km2, and borders the sub-continental divide separating the Mississippi River Basin from the Great Lakes Basin. The Cedar Creek watershed is composed of mostly agricultural and urban land with a significant stress of groundwater withdrawal for both irrigation and residential use. This watershed has importance due to the contribution to both the Milwaukee River and Lake Michigan, and is integral in the study of regional groundwater flow of Southeastern Wisconsin. Furthermore, the Cedarburg Bog, located in the northeast corner of the Cedar Creek Watershed preserves diverse ecology and is recognized by the U.S. Department of Interior as a National Landmark. Groundwater is the primary driver for the diverse and unique ecology that is contained within the bog. Within the Cedar Creek Watershed, well data and glacial geology maps (Mickelson and Syverson, 1997) were integrated to develop a 3-dimensional subsurface map and watershed-scale groundwater flow model using the LAK3 and the SFR2 package to simulate surface water-aquifer interactions. The model includes 10 zones of the glacial sediments and the weathered and consolidated Silurian Dolomite bedrock. The hydraulic conductivity and storage parameters were calibrated with 203 head targets using universal parameter estimation code (PEST). Then, a series of future climate scenarios, developed by the Wisconsin Initiative on Climate Change Impact, were implemented to the USGS Soil-Water-Balance Code (SWB) to identify variations in recharge. The simulated recharge scenarios were adopted to predict the response of groundwater resources in the watershed and the Cedarburg Bog. Preliminary results produced from the MODFLOW model indicate the bog is acting as a recharge zone under current recharge conditions, approximately 12.7cm/year, with regional groundwater flow from the groundwater divide to Lake Michigan and a mean residual on calibration targets of 4.32mKnowledge acquired from this investigation can be used to better inform local agencies of potential threats, as well as predict future changes within this groundwater system.

  6. Estimating global groundwater withdrawal and depletion using an integrated hydrological model, GRACE, and in situ observations

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Koirala, S.; Hanasaki, N.; Yeh, P. J.; Kanae, S.; Oki, T.

    2012-12-01

    In the past several decades extensive use of groundwater, particularly for irrigation, has led to rapid groundwater depletion in many regions. This has not only affected the terrestrial water cycle but also resulted in global sea level rise because a large portion of unsustainably pumped groundwater eventually ends up in the ocean. Therefore, monitoring groundwater resources and their use has become increasingly important. While in situ observations are invaluable for assessing and monitoring groundwater availability, global models and satellite-based observations provide further insights into groundwater dynamics in regions where observations are scarce. In this study, we highlight the major hotspots of global groundwater depletion and the consequent sea level change by using an integrated modeling framework. The model was developed by incorporating a dynamic groundwater scheme and a pumping scheme into a global land surface model (MATSIRO: Minimal Advanced Treatments of Surface Interaction and Runoff) which also accounts for the effects of major human activities (e.g., reservoir operation, irrigation, and water withdrawal) on the terrestrial water cycle. All components of the model are fully coupled and the model tracks the flow of water taking into account the withdrawals of water for agricultural, domestic, and industrial uses from various sources such as river networks, medium-sized reservoirs, and groundwater reservoir. Using model results, GRACE measurement, and ground-based observations by the United States Geological Survey, we demonstrate that groundwater has been declining in many regions with a particular focus on the major aquifers in the United States. In the region overlying the High Plains aquifer, which is extensively irrigated mainly by using groundwater, the simulated groundwater withdrawal of ~23 km3/yr agrees well with the observational record of ~24 km3/yr for circa 2000. Moreover, corresponding closely with the USGS water level observations, model results suggest that groundwater levels averaged over the entire aquifer declined by ~1.2 m from 2002 to 2007. Results also indicate that groundwater depletion is substantial in many other regions such as northwest India and eastern Pakistan as well which has contributed significantly to global sea level rise. These results highlight the importance of using an integrated global model that explicitly simulates both surface water and groundwater processes while accounting for major human impacts in order to realistically simulate groundwater withdrawal and depletion. The model is also applicable for the future projection of groundwater resources under climate change.

  7. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.

    PubMed

    Herrera, Christian; Custodio, Emilio

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist. PMID:25108255

  8. Ground-water levels in water year 1987 and estimated ground-water pumpage in water years 1986-87, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1990-01-01

    Groundwater levels were measured at 58 wells during water year 1987 and a summary of estimated pumpage is given for water years 1986 and 1987 in Carson Valley, Douglas County, Nevada. The data were collected to provide a record of groundwater changes over the long-term and pumpage estimates that can be incorporated into an existing groundwater model. The estimated total pumpage in water year 1986 was 10,200 acre-ft and in water year 1987 was 13,400 acre-ft. Groundwater levels exhibited seasonal fluctuations but remained relatively stable over the reporting period throughout most of the valley. (USGS)

  9. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-02-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  10. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  11. Ground-water levels in water years 1984-86 and estimated ground-water pumpage in water years 1984-85, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1987-01-01

    Tabulations of groundwater level measurements made during the water years 1984-86 and summaries of estimated pumpage for water years 1984 and 1985 in Carson valley, Douglas County, Nevada, are included in this report. The data are being collected to provide a record of long-term groundwater changes and pumpage estimates that can be incorporated in a groundwater model change at a later date. (USGS)

  12. Groundwater resources of the Wood River Valley, Idaho--A groundwater-flow model for resource management

    USGS Publications Warehouse

    Bartolino, James; Vincent, Sean

    2013-01-01

    The U.S. Geological Survey (USGS), in collaboration with the Idaho Department of Water Resources (IDWR), will use the current understanding of the Wood River Valley aquifer system to construct a MODFLOW numerical groundwater-flow model to simulate potential anthropogenic and climatic effects on groundwater and surface-water resources. This model will serve as a tool for water rights administration and water-resource management and planning. The study will be conducted over a 3-year period from late 2012 until model and report completion in 2015.

  13. Parameter estimation techniques and uncertainty in ground water flow model predictions

    SciTech Connect

    Zimmerman, D.A. ); Davis, P.A. )

    1990-01-01

    Quantification of uncertainty in predictions of nuclear waste repository performance is a requirement of Nuclear Regulatory Commission regulations governing the licensing of proposed geologic repositories for high-level radioactive waste disposal. One of the major uncertainties in these predictions is in estimating the ground-water travel time of radionuclides migrating from the repository to the accessible environment. The cause of much of this uncertainty has been attributed to a lack of knowledge about the hydrogeologic properties that control the movement of radionuclides through the aquifers. A major reason for this lack of knowledge is the paucity of data that is typically available for characterizing complex ground-water flow systems. Because of this, considerable effort has been put into developing parameter estimation techniques that infer property values in regions where no measurements exist. Currently, no single technique has been shown to be superior or even consistently conservative with respect to predictions of ground-water travel time. This work was undertaken to compare a number of parameter estimation techniques and to evaluate how differences in the parameter estimates and the estimation errors are reflected in the behavior of the flow model predictions. That is, we wished to determine to what degree uncertainties in flow model predictions may be affected simply by the choice of parameter estimation technique used. 3 refs., 2 figs.

  14. Groundwater Flow with Freeze-Thaw in Dynamic Permafrost Systems: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Voss, C. I.; McKenzie, J. M.; Walvoord, M. A.

    2009-12-01

    Rapid warming of continuous and discontinuous permafrost regions is changing cold regions hydrology, but the effect of these changes on groundwater hydrology is complex and difficult to observe and quantify. Subsurface freezing and thawing involves complex feedbacks between the coupled subsurface ice and groundwater flow systems. Numerical groundwater simulation allows elucidation of some of these processes. Two approaches are presented. In the first approach, a new coupled groundwater-energy-transport model, SUTRA-ICE, based on SUTRA, a U.S. Geological Survey (USGS) model for coupled groundwater flow and heat transport, simulates freezing and melting of groundwater. It includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model was verified by correctly simulating an analytical solution for ice formation in a porous medium with a mixed ice-water zone. Two- and three-dimensional hillslope benchmark problems, developed for model inter-comparison, also demonstrate the potential for freezing and thawing to dramatically alter the groundwater flow regime. An example using SUTRA-ICE demonstrates how ‘winter’ freezing effectively isolates the regional groundwater system from surface recharge, causing seasonal horizontal flow reversals. A second approach, using the USGS MODFLOW groundwater simulator, demonstrates the influence of permafrost distribution on regional hydrology in the Yukon Flats Basin of Alaska. This approach employs time-varying low permeability zones to represent frozen regions. Simulating various stages of permafrost expansion and thaw shows that the existence of permafrost exerts a significant control on regional recharge and discharge patterns. The results underpin expectations of significant impacts on groundwater flow systems of potential future climate warming and permafrost thaw.

  15. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  16. Evolution of 3-D geologic framework modeling and its application to groundwater flow studies

    USGS Publications Warehouse

    Blome, Charles D.; Smith, David V.

    2012-01-01

    In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.

  17. AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA

    EPA Science Inventory

    The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

  18. Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China

    NASA Astrophysics Data System (ADS)

    Cheng, Dong-hui; Li, Ying; Chen, Xunhong; Wang, Wen-ke; Hou, Guang-cai; Wang, Cun-liang

    2013-05-01

    Groundwater evapotranspiration (ETg) is a significant component of water balance analysis in desert areas. Estimation of ETg using diurnal water table fluctuations, i.e. the White method, is considered simple and straightforward, but it was seldom applied in desert areas. In this study, long-term and high-resolution groundwater level data were used to estimate ETg rate at two sites covered by typical desert plants Salix psammophila and Artemisia ordosica, respectively, in the Mu Us Desert in northern China. The specific yield (Sy) was derived from a drainage experiment in laboratory. The results showed that the water demand of S. psammophila could result in a weak but identifiable diurnal fluctuation of water table that was 2.35 m below the land surface, reasonable estimates of ETg could be derived from the White method, and the level of the ETg corresponded with the plant growth stages. However, the water table data from the area covered by A. ordosica did not show diurnal fluctuation during the growing season. The White method is good for the desert areas where groundwater use by other processes is negligible, and evapotranspiration is the main process for groundwater consumption. In addition, the information about diurnal water table fluctuations is useful for identification of groundwater-dependence of vegetation. A. ordosica is groundwater-independent, whereas S. psammophila is groundwater-dependent.

  19. Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation.

    PubMed

    Ranville, James F; Hendry, M Jim; Reszat, Thorsten N; Xie, Qianli; Honeyman, Bruce D

    2007-05-14

    The long-term mobility of actinides in groundwaters is important for siting nuclear waste facilities and managing waste-rock piles at uranium mines. Dissolved organic carbon (DOC) may influence the mobility of uranium, but few field-based studies have been undertaken to examine this in typical groundwaters. In addition, few techniques are available to isolate DOC and directly quantify the metals complexed to it. Determination of U-organic matter association constants from analysis of field-collected samples compliments laboratory measurements, and these constants are needed for accurate transport calculations. The partitioning of U to DOC in a clay-rich aquitard was investigated in 10 groundwater samples collected between 2 and 30 m depths at one test site. A positive correlation was observed between the DOC (4-132 mg/L) and U concentrations (20-603 microg/L). The association of U and DOC was examined directly using on-line coupling of Asymmetrical Flow Field-Flow Fractionation (AsFlFFF) with UV absorbance (UVA) and inductively coupled plasma-mass spectrometer (ICP-MS) detectors. This method has the advantages of utilizing very small sample volumes (20-50 microL) as well as giving molecular weight information on U-organic matter complexes. AsFlFFF-UVA results showed that 47-98% of the DOC (4-136 mg C/L) was recovered in the AsFlFFF analysis, of which 25-64% occurred in the resolvable peak. This peak corresponded to a weight-average molecular weight of about 900-1400 Daltons (Da). In all cases, AsFlFFF-ICP-MS suggested thatgroundwaters, these data suggested that facilitated transport of U by DOC may be limited in its importance in many groundwater systems. PMID:17196707

  20. Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. Barclay; Cunningham, Kevin J.; Kuniansky, Eve L.; Dixon, Joann

    2008-03-01

    A conduit flow process (CFP) for the Modular Finite Difference Ground-Water Flow model, MODFLOW-2005, has been created by the U.S. Geological Survey. An application of the CFP on a carbonate aquifer in southern Florida is described; this application examines (1) the potential for turbulent groundwater flow and (2) the effects of turbulent flow on hydraulic heads and parameter sensitivities. Turbulent flow components were spatially extensive in preferential groundwater flow layers, with horizontal hydraulic conductivities of about 5,000,000 m d-1, mean void diameters equal to about 3.5 cm, groundwater temperature equal to about 25°C, and critical Reynolds numbers less than or equal to 400. Turbulence either increased or decreased simulated heads from their laminar elevations. Specifically, head differences from laminar elevations ranged from about -18 to +27 cm and were explained by the magnitude of net flow to the finite difference model cell. Turbulence also affected the sensitivities of model parameters. Specifically, the composite-scaled sensitivities of horizontal hydraulic conductivities decreased by as much as 70% when turbulence was essentially removed. These hydraulic head and sensitivity differences due to turbulent groundwater flow highlight potential errors in models based on the equivalent porous media assumption, which assumes laminar flow in uniformly distributed void spaces.

  1. Rapid intrusion of magma into wet rock: groundwater flow due to pore pressure increases.

    USGS Publications Warehouse

    Delaney, P.T.

    1982-01-01

    Analytical and numerical solutions are developed to simulate the pressurization, expansion, and flow of groundwater contained within saturated, intact host rocks subject to sudden heating from the planar surface of an igneous intrusion. For most rocks, water diffuses more rapidly than heat, assuring that groundwater is not heated along a constant-volume pressure path and that thermal expansion and pressurization adjacent to the intrusion drives a flow that extends well beyond the heated region. -from Author

  2. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Geologic, hydrologic, and water-quality data were collected at the Julietta and Tibbs-Banta landfills in Marion County. Both landfills were closed in the mid 1970's, and sewage sludge mixed with dirt was spread on the landfills in the mid 1980 's as part of a revegetation project. The landfills are constructed in unconsolidated glacial sediments that consist of sand, gravel, silt, and clay. The maximum thickness of the sediments it 180 ft at Julietta and 100 ft at Tibbs-Banta. Both landfills are underlain by sand and gravel aquifers and are adjacent to gaining streams. Groundwater flows toward and into the streams at each study area. Two sand and gravel aquifers were mapped at Julietta and four were mapped at Tibbs-Banta. The aquifers are separated in places by discontinuous clay layers. Groundwater-flow models, calibrated to simulate steady-state low-flow conditions, indicate that about 19,000 gal of water/day flow through the refuse at Julietta and about 42,000 gal/day flow through the refuse at Tibbs-Banta. Concentrations of dissolved inorganic substances in groundwater samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect of the leachate on deep aquifers is minimal because of the predominance of horizontal groundwater flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Bromide, dissolved solids, and ammonia were useful in delineating the plume of leachate at both landfills. (USGS)

  3. How sampling integration scale affects estimates of coupled groundwater and nitrogen fluxes into an agricultural stream

    NASA Astrophysics Data System (ADS)

    Gilmore, T. E.; Solder, J.; Solomon, K.; Genereux, D. P.; Kimball, B. A.; Burnette, M.; Becker, S.

    2013-12-01

    Coupled fluxes of groundwater and non-point source contaminants from aquifers to streams may be estimated using streambed point (SP) measurements, seepage meter (SM) measurements, or a reach mass-balance approach (RMB), each with different spatial support scales and pros/cons. We have applied all three measurement schemes concurrently in the same stream to assess how sampling integration scale affects estimates of (1) coupled groundwater and dissolved nitrogen fluxes through a streambed and (2) the total amount of denitrification that has occurred along groundwater flowpaths. Our study site was a 2700m reach in West Bear Creek (WBC), a channelized and overall gaining stream in the agricultural Coastal Plain of North Carolina. In a July 2012 sampling campaign, groundwater fluxes through the WBC streambed were similar for the SP and RMB approaches (35 cm/day and 33 cm/day, respectively), despite very different measurement scales and different reach sizes (RMB groundwater flux is based on a 200m stream reach containing the smaller 58m SP reach). However, the RMB approach gave a lower calculated streambed nitrate flux (136 mmol m-2 d-1, versus 231 mmol m-2 d-1 for SP) for the 58m reach. The lower nitrate flux by the RMB approach is linked to a lower mean groundwater nitrate concentration estimated by RMB (361 ?M, vs. 808 ?M for SP). Unlike the SP approach, the RMB approach samples groundwater that has had significant interaction with the stream channel and thus, apparently, nitrate loss from uptake and/or denitrification. The SM approach used novel flexible streambed 'blankets' and gave lower fluxes: 10 cm/day for groundwater (due perhaps to incomplete sampling of streambed variability in this flux or other methodological issues) and 53 mmol m-2 d-1 for nitrate; it also gave an intermediate estimate of nitrate concentration in the groundwater discharge to the stream (527 ?M), likely a reflection of the intermediate amount of channel interaction (collected after passing through the hyporheic zone, but before subsequent channel interaction) for the groundwater sampled by this approach. Noble gas concentrations (Xe, Ar, Ne, Kr) are being used to model the amount of N2 derived from denitrification (N2-den) in the groundwater feeding the stream. Preliminary results from a subset of SP samples (n=9) suggest significant amounts of N2-den because measured groundwater N2 concentration is up to 75% higher than modeled N2 concentration. The three approaches offer different strengths and weaknesses appropriate for answering different questions, and in concert may provide a fuller picture of N fluxes from groundwater to surface water in areas of non-point N pollution.

  4. Using MODFLOW drains to simulate groundwater flow in a karst environment

    SciTech Connect

    Quinn, J.; Tomasko, D.; Glennon, M.A.; Miller, S.F.; McGinnis, L.D.

    1998-07-01

    Modeling groundwater flow in a karst environment is both numerically challenging and highly uncertain because of potentially complex flowpaths and a lack of site-specific information. This study presents the results of MODFLOW numerical modeling in which drain cells in a finite-difference model are used as analogs for preferential flowpaths or conduits in karst environments. In this study, conduits in mixed-flow systems are simulated by assigning connected pathways of drain cells from the locations of tracer releases, sinkholes, or other karst features to outlet springs along inferred flowpaths. These paths are determined by the locations of losing stream segments, ephemeral stream beds, geophysical surveys, fracture lineaments, or other surficial characteristics, combined with the results of dye traces. The elevations of the drains at the discharge ends of the inferred flowpaths are estimated from field data and are adjusted when necessary during model calibration. To simulate flow in a free-flowing conduit, a high conductance is assigned to each drain to eliminate the need for drain-specific information that would be very difficult to obtain. Calculations were performed for a site near Hohenfels, Germany. The potentiometric surface produced by the simulations agreed well with field data. The head contours in the vicinity of the karst features behaved in a manner consistent with a flow system having both diffuse and conduit components, and the sum of the volumetric flow out of the drain cells agreed closely with spring discharges and stream flows. Because of the success of this approach, it is recommended for regional studies in which little site-specific information (e.g., location, number, size, and conductivity of fractures and conduits) is available, and general flow characteristics are desired.

  5. Rapid exchange effects on isotope ratios in groundwater systems: 2. Flow investigation using Sr isotope ratios

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas M.; Depaolo, Donald J.

    1997-01-01

    Sr isotope ratios were measured in groundwater, whole rock digestions, and cation exchange extracts from a clay-rich groundwater system at Ernest O. Lawrence Berkeley National Laboratory and were used to constrain flow velocities and search for preferential flow paths. In the Orinda formation siltstone, 87Sr/86Sr increases strongly over tens of meters along presumed flow paths, indicating slow groundwater flow. Dissolved Sr is close to isotopic equilibrium with the exchangeable Sr in the clays, and the observed 87Sr/86Sr increase is interpreted as a cation exchange front moving slowly through the unit combined with dissolution of minerals with relatively high 87Sr/86Sr ratios. The data are inverted using a one-dimensional transport-dissolution-exchange model; the results indicate long-term average flow velocities of less than 0.2 m/yr which are consistent with 14C measurements. The data suggest a lack of strong preferential flow paths through this unit.

  6. Sructural Control Of Groundwater Flow In The Sinai Peninsula: Integrated Studies

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Sultan, M.; Farag, A. Z. A.

    2014-12-01

    The crystalline complex and overlying sedimentary sequences in southern and central Sinai are highly dissected by numerous faults, shear systems, and dikes, hereafter referred to as discontinuities. Understanding the distribution of these discontinuities, their cross cutting relations, and the hydraulic gradient gives clues as to the distribution of water resources in the area. In the study area, extensional tectonics has been active as early as the Precambrian era as evidenced by the widely distributed dikes, bimodal volcanics, and dip-slip faults and shear zones of varying ages. These extensional tectonics and associated structural elements enhance the porosity and permeability of Sinai's basement and overlying sedimentary sequences. To investigate the impact of the discontinuities on groundwater flow, the following steps were conducted: 1) the spatial and temporal precipitation events over the basement complex were identified from TRMM data; 2) observations extracted from temporal change in backscattering coefficient in radar (Envisat ASAR radar scenes) were used to identify water-bearing discontinuities; 3) the discontinuities were delineated using false color images that were generated from ASTER, SIR C and band ratio images, 4) field observations, Very Low Frequency (VLF), magnetic investigations, and stable isotopic analyses for groundwater samples were then applied to refine satellite-based observations and selections, test the validity of our satellite-based methodologies for locating sub-vertical discontinuities, and decipher their role as conduits or barriers for groundwater flow. Findings include: (1) sub-vertical faults and shear zones and highly weathered chilled margins of sub-vertical mafic dykes are water-bearing and are conducive for groundwater flow; felsic dykes are massive (do not promote groundwater flow), (2) groundwater flow generally follows the topographic relief, but locally the flow is controlled by the discontinuities, (3) discontinuities that are sub-parallel to groundwater flow direction act as preferred pathways for groundwater flow, whereas those that intersect groundwater flow directions at high angles act as barriers, raise groundwater level in the upstream, and locally they redirect groundwater flow to align with their trends.

  7. Hydrogeology and simulation of groundwater flow in the Arbuckle-Simpson aquifer, south-central Oklahoma

    USGS Publications Warehouse

    Christenson, Scott; Osborn, Noel I.; Neel, Christopher R.; Faith, Jason R.; Blome, Charles D.; Puckette, James; Pantea, Michael P.

    2011-01-01

    Groundwater in the aquifer moves from areas of high head (altitude) to areas of low head along streams and springs. The potentiometric surface in the eastern Arbuckle-Simpson aquifer generally slopes from a topographic high from northwest to the southeast, indicating that regional groundwater flow is predominantly toward the southeast. Freshwater is known to extend beyond the aquifer outcrop near the City of Sulphur, Oklahoma, and Chickasaw National Recreation Area, where groundwater flows west from the outcrop of the eastern Arbuckle-Simpson aquifer and becomes confin

  8. Ground-water conditions in Las Vegas Valley, Clark County, Nevada; Part II, Hydrogeology and simulation of ground-water flow

    USGS Publications Warehouse

    Morgan, D.S.; Dettinger, M.D.

    1994-01-01

    Groundwater withdrawals in Las Vegas Valley, Nevada, primarily for municipal supplies, totaled more than 2.5 million acre-ft between 1912 and 1981, with a peak annual withdrawal rate of 88,000 acre-ft in 1968. Effects of heavy pumping are evident over large areas of the valley but are more pronounced near the major well fields. Secondary recharge from lawn irrigation and other sources is estimated to have totaled more than 340,000 acre-ft during 1972-81. Resulting rises in water-level in shallow, unconfined aquifers in the central and southeastern parts of the valley have caused: widespread water-logging of soils; increased groundwater discharge to Las Vegas Wash and its tributaries; and potential for degradation of water quality in deeper aquifers by accentuating downward vertical hydraulic potential in areas where shallow groundwater has high concentrations of dissolved solids and nitrate. A 3-dimensional groundwater flow model of the valley-fill aquifer system was constructed for use in evaluating possible groundwater management alternatives aimed at alleviating problems related to overdraft and water-logging while maximizing use of the groundwater resources. Natural recharge to the valley-fill aquifers is about 33,000 acre-ft/yr; in 1979, an estimated 44,000 acre-ft of secondary recharge infiltrated to the near-surface and developed-zone aquifers. Peak water use for lawn irrigation during summer results in rates of secondary recharge that may increase threefold from winter rates. Simulated rates of seepage to washes in the valley increased correspondingly from an average of 850 acre-ft/mo in winter to about 1,300 acre-ft/mo in the summer. Groundwater withdrawals by pumping totaled 620,000 acre-ft during 1972-81, and model results indicate that about 190,000 acre-ft of that total was derived from storage. Use of the model as a predictive tool was demonstrated by simulating the effects of using most municipal wells only during the peak-demand season of June 1 through September 20. Results of the 9-year simulation indicated that: (1) long-term rates of water-level decline near the municipal well field would be less than rates for 1972-81, but the magnitude of seasonal fluctuations would increase, and (2) total volume of water released from storage as a result of subsidence would be only 42,000 acre-feet per year, or about half the volume during 1972-81.

  9. Conceptual evaluation of regional ground-water flow in the carbonate-rock province of the Great Basin, Nevada, Utah, and adjacent states

    USGS Publications Warehouse

    Prudic, D.E.; Harrill, J.R.; Burbey, T.J.

    1993-01-01

    The regional groundwater flow system in the carbonate rocks of Nevada and Utah is conceptualized as shallow systems superimposed on deeper systems, which transmit water primarily through carbonate rocks. A computer model was used to simulate the two systems. The regional model includes simplifying assumptions that are probably valid for parts of the province; however, the validity of each assumption is unknown for the province as a whole. Therefore, simulation results do not perfectly replicate actual groundwater flow; instead they provide a conceptual evaluation of regional groundwater flow. The model was calibrated by adjusting transmissivity and vertical leakance until simulated water levels and simulated discharge generally agreed with known water levels, mapped areas of discharge, and estimates of discharge. Simulated flow is about 1.5 million acre-ft/yr. Most groundwater flow is simulated in the upper model layer where about 45 shallow flow regions were identified. In the lower layer, 17 deep-flow subregions were identified and grouped into 5 large regions on the basis of water-flow patterns. Simulated flow in this layer is about 28 percent of the total inflow and about half is discharged as springflow. Interbasin flow to several large springs is through thick, continuous, permeable carbonate rocks; elsewhere deep consolidated rocks are not highly transmissive, suggesting that carbonate rocks are not highly permeable everywhere or are not present everywhere. (USGS)

  10. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.

  11. Ramification of Channel Networks Incised by Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Yi, R. S.; Seybold, H. F.; Petroff, A. P.; Devauchelle, O.; Rothman, D.

    2011-12-01

    The geometry of channel networks has been a source of fascination since at least Leonardo da Vinci's time. Yet a comprehensive understanding of ramification---the mechanism of branching by which a stream network acquires its geometric complexity---remains elusive. To investigate the mechanisms of ramification and network growth, we consider channel growth driven by groundwater flow as a model system, analogous to a medical scientist's laboratory rat. We test our theoretical predictions through analysis of a particularly compelling example found on the Florida Panhandle north of Bristol. As our ultimate goal is to understand ramification and growth dynamics of the entire network, we build a computational model based on the following growth hypothesis: Channels grow in the direction that captures the maximum water flux. When there are two such directions, tips bifurcate. The direction of growth can be determined from the expansion of the ground water field around each tip, where each coefficient in this expansion has a physical interpretation. The first coefficient in the expansion determines the ground water discharge, leading to a straight growth of the channel. The second term describes the asymmetry in the water field leading to a bending of the stream in the direction of maximal water flux. The ratio between the first and the third coefficient determines a critical distance rc over which the tip feels inhomogeneities in the ground water table. This initiates then the splitting of the tip. In order to test our growth hypothesis and to determine rc, we grow the Florida network backward. At each time step we calculate the solution of the ground water field and determine the appropriate expansion coefficients around each tip. Comparing this simulation result to the predicted values provides us with a stringent measure for rc and the significance of our growth hypothesis.

  12. Ground-water flow in the Gulf Coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.

    2001-01-01

    The Gulf Coast regional aquifer systems constitute one of the largest, most complicated, and most interdependent aquifer systems in the United States. Ground-water flow in a 230,000-square-mile area of the south-central United States was modeled for the effect of withdrawing freshwater at the rate of nearly 10 billion gallons per day in 1985 from regional aquifers in the Mississippi Embayment, the Texas coastal uplands, and the coastal lowlands aquifer systems. The 1985 rate of pumping was three times the average rate of recharge to the aquifers before development. The report also estimates the effects of even greater withdrawal rates in the aquifer systems. About two-thirds of the water in the aquifers is saline to brine, which complicates the modeling. Land subsidence due to water withdrawal also was modeled.

  13. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  14. Estimating the Regional Flux of Nitrate and Agricultural Herbicide Compounds from Groundwater to Headwater Streams of the Northern Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Ator, S.; Denver, J. M.

    2011-12-01

    Agriculture is common in the Northern Atlantic Coastal Plain (NACP, including New Jersey through North Carolina), and groundwater discharge provides nitrogen (primarily in the form of nitrate) and herbicide compounds from agricultural sources along with the majority of flow to NACP streams. Poor water quality has contributed to ecological degradation of tidal streams and estuaries along much of the adjacent mid-Atlantic coast. Although statistical models have provided estimates of total instream nutrient flux in the Coastal Plain, the regional flux of nitrogen and herbicides during base flow is less well understood. We estimated the regional flux of nitrate and selected commonly used herbicide compounds from groundwater to non-tidal headwater streams of the NACP on the basis of late-winter or spring base-flow samples from 174 such streams. Sampled streams were selected using an unequal-probability random approach, and flux estimates are based on resulting population estimates rather than empirical models, which are commonly used for such estimates. Base-flow flux in the estimated 8,834 NACP non-tidal headwater streams are an estimated 21,200 kilograms per day of nitrate (as N) and 5.83, 0.565, and 20.7 kilograms per day of alachlor, atrazine, and metolachlor (including selected degradates), respectively. Base-flow flux of alachlor and metolachlor is dominated by degradates; flux of parent compounds is less than 3 percent of the total flux of parent plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications generally varies predictably with regional variations in hydrogeology. Abundant nonpoint (primarily agricultural) sources and hydrogeologic conditions, for example, contribute to particularly large base-flow flux from the Delmarva Peninsula to Chesapeake Bay. In the Delmarva Peninsula part of the Chesapeake Watershed, more than 10 percent of total nonpoint nitrogen applications is transported through groundwater to stream base flow, and base-flow nitrate flux represents 70 percent of total nitrogen flux in streams.

  15. Linking Climate, Hydrology and Groundwater in High-Resolution Transient Groundwater Flow Models: a Case Study For a Climate Change Impacts Assessment in Grand Forks, BC

    NASA Astrophysics Data System (ADS)

    Scibek, J.; Allen, D. M.; Whitfield, P.; Wei, M.

    2004-05-01

    A case study of an unconfined aquifer in the Grand Forks valley in south-central BC was used to develop methodology for linking climate models, hydrologic models, and groundwater models to investigate future impacts of climate change on groundwater resources. A three dimensional groundwater flow model of variable spatial resolution (constrained by borehole spacing) was implemented in MODFLOW, and calibrated to observation well data. Multiple scenarios of the hydraulic conductivity fields were used in a sensitivity analysis. A new methodology was developed for generating spatially-distributed and temporally-varying recharge zonation for the surficial aquifer, using GIS linked to the one-dimensional HELP (USEPA) hydrologic model that estimates aquifer recharge. The recharge model accounts for soil distribution, vadose zone depth and hydraulic conductivity, extent of impermeable areas, surficial geology, and vadose zone thickness. Production well pumping and irrigation return flow during the summer season were included in recharge computations. Although recharge was computed as monthly averages per climate scenario, it is driven by physically-based daily weather inputs generated by a stochastic weather generator and calibrated to local observed climate. Four year long climate scenarios were run, each representing one typical year in the present and future (2020s, 2050s, and 2080s), by perturbing the historical weather according to the downscaled CGCM1 general circulation model results (Environment Canada). CGCM1 model outputs were calibrated for local conditions during the downscaling procedure. These include absolute and relative changes in precipitation; including indirect measures of precipitation intensity, dry and wet spell lengths, temperature, and solar radiation for the evapotranspiration model. CGCM1 downscaling was also used to predict basin-scale runoff for the Kettle River upstream of Grand Forks. This river exerts strong control on the groundwater levels in the aquifer and physically-based discharge predictions were used in the transient groundwater flow model. Modeled discharge hydrographs were converted to river stage hydrographs at each of 123 river segments, and interpolated between known river channel cross-sections. Stage-discharge curves were estimated using the BRANCH model and calibrated to observed historical data. River channels were represented in three-dimensions using a high grid density (14 to 25 m) in MODFLOW, which were mapped onto river segments. River stage schedules along the 26 km long meandering channel were imported at varying, but high, temporal resolution (1 to 5 days) for every cell location independently. Head differences were computed at each time step for historical and future, mapped in GIS and linked to the MODFLOW model. Temporal changes in mass balance components show relations between pumping, storage, recharge, and flow. Within an annual cycle and between climate scenarios the results show different spatial and temporal distributions in groundwater conditions. Groundwater levels near the river floodplain are predicted to be lower earlier in the year under future climate scenarios, but away from rivers, groundwater levels increase slightly due to the predicted increase in recharge.

  16. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    USGS Publications Warehouse

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  17. Groundwater flow for contaminant transport analyses in regions exhibiting discontinuous zones of permafrost

    SciTech Connect

    Sullivan, J.M. Jr.; Currier, P.M.; Iskandar, A.K.

    1996-12-31

    The protection of cold-regions soils from contaminants is of paramount importance for the safe operation of numerous military installations. Understanding groundwater contaminant transport in soils that experience seasonal frost penetration, rapid runoff/snowmelt conditions, or zones of discontinuous permafrost requires an additional level of modeling techniques to include cold-regions issues. The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) conducted detailed, three-dimensional groundwater-flow analyses for contaminated sites on Fort Wainwright, Alaska. The study used the Department of Defense Groundwater Modeling System. This graphical interface is operational and targeted directly at the groundwater modeling community. It facilitated the handling of the required numerical data, which was extensive. A three-dimensional subsurface model was created that incorporated the traditional stratigraphy and the zones of discontinuous permafrost. Boundary conditions were based on the Chena River stage data and experimental groundwater level data measured around the perimeter of the domain. The simulated flow field was influenced significantly by the permafrost distribution. Groundwater flow pathways weaved around the highly impermeable permafrost zones creating a complex transient flow field that could not be predicted without the knowledge and three-dimensional model of the permafrost distribution. A coupled approach, using analytical, experimental, and numerical investigations, provided the best strategy for predicting this subsurface flow system. We propose that this methodology provides the greatest promise of describing the contaminant fate and transport in these complex regions.

  18. Multi-scale experimental programs for estimating groundwater recharge in hydrologically changing basins

    NASA Astrophysics Data System (ADS)

    McIntyre, Neil; Larsen, Josh; Reading, Lucy; Bulovic, Nevenka; Jarihani, Abdollah; Finch, Warren

    2015-04-01

    Groundwater recharge estimates are required to evaluate sustainable groundwater abstractions and to support groundwater impacts assessments associated with minerals and energy extraction. Increasingly, recharge estimates are also needed for regional and global scale water cycle modelling. This is especially the case in the great arid and semi-arid basins of the world due to increased water scarcity and dependence of ecosystems and livelihoods on their water supplies, and the considerable potential influence of groundwater on the hydrological cycle. Groundwater resources in the semi-arid Surat Basin of south-east Queensland, Australia, support extensive groundwater-dependent ecosystems and have historically been utilised for regional agriculture and urban water-use. Large volumes of water are currently being produced and will continue to do so as a part of coal seam gas extraction. There is considerable uncertainty about the impacts of gas extraction on water resources and the hydrological cycle, and much of this uncertainty stems from our limited knowledge about recharge processes and how to upscale them. Particular questions are about the role of storm events in controlling annual recharge, the relative contributions of local 'recharge zones' versus diffuse recharge and the translation of (relatively easily quantified) shallow drainage estimates to groundwater recharge. A multi-scale recharge research program is addressing these questions, using multiple approaches in estimating groundwater recharge, including plot and catchment scale monitoring, use of remote sensed data and simulation models. Results during the first year of the program have resulted in development of process hypotheses and experimental designs at three field sites representing key gaps in knowledge. The presentation will overview the process of designing the experimental program; how the results from these sites will be integrated with existing knowledge; and how results will be used to advance our knowledge of the changing hydrological cycle in the Surat Basin.

  19. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    PubMed

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications. PMID:25565034

  20. ADAPTATION OF THE CARTER-TRACY WATER INFLUX CALCULATION TO GROUNDWATER FLOW SIMULTATION.

    USGS Publications Warehouse

    Kipp, Kenneth L.

    1986-01-01

    The Carter-Tracy calculation for water influx is adapted to groundwater flow simulation with additional clarifying explanation not present in the original papers. The Van Everdingen and Hurst aquifer-influence functions for radial flow from an outer aquifer region are employed. This technique, based on convolution of unit-step response functions, offers a simple but approximate method for embedding an inner region of groundwater flow simulation within a much larger aquifer region where flow can be treated in an approximate fashion. The use of aquifer-influence functions in groundwater flow modeling reduces the size of the computational grid with a corresponding reduction in computer storage and execution time. The Carter-Tracy approximation to the convolution integral enables the aquifer influence function calculation to be made with an additional storage requirement of only two times the number of boundary nodes more than that required for the inner region simulation.

  1. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain

    NASA Astrophysics Data System (ADS)

    Xing, Lina; Guo, Huaming; Zhan, Yanhong

    2013-07-01

    The North China Plain is one of the biggest plains in China, where municipal, agricultural and industrial water supplies are highly dependent on groundwater resources. It is crucial to investigate water chemistry and hydrogeochemical processes related to hydrogeologic settings for sustainable utilization of groundwater resources. Two hydrochemical profiles proximately along the groundwater flow paths were selected for hydrogeochemical study. Major components and 2H and 18O isotopes were analyzed in groundwater samples from the profiles. The study area was divided into three zones, including strong runoff-alluvial/pluvial fans in the piedmont area (Zone I), slow runoff-alluvial/lacustrine plain in the central area (Zone II), and discharge-alluvial/marine plain in the coastal area (Zone III). Major components of groundwater samples showed obvious zonation patterns from Zone I to Zone III. Total dissolved solid (TDS) concentrations gradually increased, and the hydrochemical type changed from HCO3-SO4-Ca-Mg and HCO3-Cl-Ca-Mg types to HCO3-SO4-Na-Ca, SO4-Cl-Na-Ca and SO4-Cl-Na types from Zone I to Zone III. Abrupt increases in concentrations of Na+, Cl- and SO42- in deep groundwater were observed around the depression cones, which indicated that overexploitation resulted in water quality deterioration. Calcite and dolomite precipitation occurred in Zone I of deep groundwater systems and shallow groundwater systems. Cation exchange was believed to take place along the entire flow paths. Gypsum tended to dissolve in groundwater systems. The depletion in D and 18O isotopes in deep groundwater was related to the recharge from precipitation in paleo-climate conditions in glacial or interglacial periods, indicating that renewal groundwater was very limited. Efficient strategies must be taken to preserve the valued water resources for sustainable development.

  2. Modeling regional groundwater flow in a peat bog complex in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Durejka, Stefan; Knorr, KLaus-Holger; Blodau, Christian; Frei, Sven

    2013-04-01

    Peatlands are important ecohydrological systems and contribute significantly to the global carbon cycle. They function as carbon sinks through CO2-sequestration but also emit methane depending i.a. on the prevailing hydrological structures. Knowledge of their hydrology including exchange between the groundwater and surface water domain is thus necessary to understand wetland environments and to determine their vulnerability to climate changes. The impact of proposed wetter conditions on wetland hydrological homeostastis in northern bogs is uncertain to this date. Elevated water tables due to changing hydrological flow patterns may affect the characteristics of wetlands as a carbon reservoir. Modeling approaches allow quantifying and qualifying of these flow patterns on a longer time scale. Luther Bog is located in Southern Ontario. The ombotrophic bog to poor fen is partially bordered by Luther Lake which inundates the area since its creation in 1952. In this study the interaction between the wetland and the adjacent lake is modeled using the fully-integrated HydroGeoSphere model. A transient three-dimensional groundwater mode is set up for a small catchment with the lake level implemented as a constant-head boundary condition. Hydraulic properties of the peat were estimated executing bail tests on multilevel piezometers at different sites within the wetland. The first hypothesis is that the wet conditions in the runoff network keep the water table in the wetland high over a specific transition zone. The Second is that there may be a reversal of flow directions over the hydrological year, due to varying boundary conditions, e.g. evapotranspiration and precipitation. First results indicate that exchange rates may be very slow. This is supported by manual measurements of little hydraulic gradients and little topographic gradients. The results also show a seasonal effect in flow directions in both, the groundwater and the surface water domain. The model will be tested upon its sensitivity to variations in the anisotropy of hydraulic conductivities as this is difficult to determine in the field using known approaches, e.g. bail tests. A transport simulation will be conducted to determine the exact amount of exchange water and the extent of the exchange zone.

  3. Development of a Subsurface Flow Path Observational Site to Connect Agricultural Land Management with Groundwater-Surface Water Interactions

    NASA Astrophysics Data System (ADS)

    Butler, C.; Fisher, J.; Pai, H.; Villamizar Amaya, S.; Harmon, T. C.

    2008-12-01

    The San Joaquin Valley, California is one of the most productive agricultural areas in the world. The application of fertilizer and manure to the land over decades has led to extensive nitrate contamination in Valley aquifer. Groundwater-surface water exchanges in the region have can result in significant nitrate fluxes into Valley rivers. This work examines groundwater-surface water interactions at a USGS NAWQA site on the Merced River, near Livingston, CA. Hydrologic infrastructure at the site includes deep observation wells leading to shallow riparian wells and sampling points. The infrastructure is being instrumented as an agricultural flow path sensor network linking agricultural management practices to chemical transport and fate along a flow path through the vadose zone, groundwater and surface water. This work examines the movement of nitrate rich water into the Merced River through the hyporheic zone, and the denitrification rates associated with this transfer. Small inexpensive loggers self-logging thermistors are used to map temperature gradients in the streambed which are used estimate spatially distributed groundwater losses and gains within a roughly 300 m reach of the Merced River. In addition, samples collected from drive points installed at multiple depths in the riverbed are used to characterize the nitrate gradient across two transects within the same reach.

  4. Analysis of the Shallow Groundwater Flow System at Fire Island National Seashore, Suffolk County, New York

    USGS Publications Warehouse

    Schubert, Christopher E.

    2010-01-01

    Fire Island National Seashore (FIIS) occupies 42 kilometers of the barrier island for which it is named that lies off the southern shore of Suffolk County, N.Y. Freshwater in the highly permeable, sandy aquifer underlying Fire Island is bounded laterally by marine surface waters and at depth by saline groundwater. Interspersed throughout FIIS are 17 pre-existing residential communities that in summer months greatly increase in population through the arrival of summer residents and vacationers; in addition, the National Park Service (NPS) has established several facilities on the island to accommodate visitors to FIIS. The 2.2 million