These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Estimation of Groundwater Flow Parameters Using Least Squares  

E-print Network

Estimation of Groundwater Flow Parameters Using Least Squares K.R. Bailey \\Lambda , B state flow parameters in a groundwater model. We test the approach on numerically generated data algorithm is implemented in parallel using PVM. 1 Introduction The successful modeling of groundwater flow

2

3PE: A Tool for Estimating Groundwater Flow Vectors  

EPA Science Inventory

Evaluation of hydraulic gradients and the associated groundwater flow rates and directions is a fundamental aspect of hydrogeologic characterization. Many methods, ranging in complexity from simple three-point solution techniques to complex numerical models of groundwater flow, ...

3

Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling  

E-print Network

Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport, Pennsylvania Abstract. This paper combines radiocarbon age and hydraulic data to estimate recharge. In this paper, we use 14 C dating of groundwater from the saturated zone and a linked numerical flow

Polly, David

4

Estimates of Tracer-Based Piston-Flow Ages of Groundwater From Selected Sites: National Water-Quality Assessment  

E-print Network

Estimates of Tracer-Based Piston-Flow Ages of Groundwater From Selected Sites: National Water;Estimates of Tracer-Based Piston-Flow Ages of Groundwater from Selected Sites: National Water.N., Busenberg, Eurybiades, Widman, P.K., Casile, G.C., and Wayland, J.E., 2010, Estimates of tracer-based piston

5

Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin  

Microsoft Academic Search

Groundwater recharge and discharge (base flow) estimates from two methods were compared in the Upper Mississippi River basin (USGS hydrologic cataloging unit 07). The Upper Mississippi basin drains 491,700km2 in Illinois, Iowa, Missouri, Minnesota, and Wisconsin and outlets in the Mississippi River north of Cairo, Illinois. The first method uses the water balance components from the soil and water assessment

J. G. Arnold; R. S. Muttiah; R. Srinivasan; P. M. Allen

2000-01-01

6

Water-balance and groundwater-flow estimation for an arid environment: San Diego region, California  

NASA Astrophysics Data System (ADS)

The coastal-plain aquifer that underlies the San Diego City metropolitan area in southern California is a groundwater resource. The understanding of the region-wide water balance and the recharge of water from the high elevation mountains to the east needs to be improved to quantify the subsurface inflows to the coastal plain in order to develop the groundwater as a long term resource. This study is intended to enhance the conceptual understanding of the water balance and related recharge processes in this arid environment by developing a regional model of the San Diego region and all watersheds adjacent or draining to the coastal plain, including the Tijuana River basin. This model was used to quantify the various components of the water balance, including semi-quantitative estimates of subsurface groundwater flow to the coastal plain. Other approaches relying on independent data were used to test or constrain the scoping estimates of recharge and runoff, including a reconnaissance-level groundwater model of the San Diego River basin, one of three main rivers draining to the coastal plain. Estimates of subsurface flow delivered to the coastal plain from the river basins ranged from 12.3 to 28.8 million m3 yr-1 from the San Diego River basin for the calibration period (1982-2009) to 48.8 million m3 yr-1 from all major river basins for the entire coastal plain for the long-term period 1940-2009. This range of scoping estimates represents the impact of climatic variability and realistically bounds the likely groundwater availability, while falling well within the variable estimates of regional recharge. However, the scarcity of physical and hydrologic data in this region hinders the exercise to narrow the range and reduce the uncertainty.

Flint, L. E.; Flint, A. L.; Stolp, B. J.; Danskin, W. R.

2012-03-01

7

Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh  

Microsoft Academic Search

Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin\\u000a aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin\\u000a consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence\\u000a does not support existence of regional confining units. Considered at

Holly A. Michael; Clifford I. Voss

2009-01-01

8

Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh  

USGS Publications Warehouse

Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

Michael, H.A.; Voss, C.I.

2009-01-01

9

Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh  

NASA Astrophysics Data System (ADS)

Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system.

Michael, Holly A.; Voss, Clifford I.

2009-09-01

10

Linking soil moisture balance and source-responsive preferential flow models for estimating groundwater recharge  

NASA Astrophysics Data System (ADS)

Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a fieldsite in Shropshire, UK. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. However, recharge does not occur until near-positive pressures are achieved at the top of the glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Thus, although the wetting process in the topsoil is highly complex, a soil moisture balance model (SMBM) is shown to be skilful in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table suggests that Stokes type film flow rather than Richards type capillarity dominated flow is occurring and this conjecture is tested using a range of numerical models. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well, when linked to a SMBM as the source of recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils. If the conceptual and numerical models can be shown to be transferable to other ploughed soils, it promises to be a very useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation. Nimmo, J. R. (2010). Theory for Source-Responsive and Free-Surface Film Modeling of Unsaturated Flow. Vadose Zone Journal, 9, 295-306.

Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

2012-04-01

11

Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98  

USGS Publications Warehouse

Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

2003-01-01

12

Estimated Ground-water Withdrawals From the Death Valley Regional Flow System, Nevada and California, 1913-98  

SciTech Connect

Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional,three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

M.T. Moreo; K.J. Halford; R.J. LaCamera; and R.J. Laczniak

2003-09-30

13

Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California  

USGS Publications Warehouse

The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

2001-01-01

14

Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California  

SciTech Connect

The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model, were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

W.R. Belcher; P.E. Elliott; A.L. Geldon

2001-12-31

15

Groundwater Flow Model  

NSDL National Science Digital Library

Students will work in groups to make observations, identify aquifers, describe aquifer properties and measure hydraulic head in a physical groundwater flow model. The information collected will be used to answer questions pertaining to the groundwater flow system. The activity serves to consolidate the key concepts covered in lecture materials. These concepts include the water cycle, hydraulic head, types of aquifers, hydraulic conductivity, permeability, Darcy's Law, hydraulic gradient, porosity and groundwater contamination.

Alex Manda

16

Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment  

USGS Publications Warehouse

Groundwater consumption by phreatophytes is a difficult-to-measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated-unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified. Copyright 2005 by the American Geophysical Union.

Loheide, S.P., II; Butler, J.J., Jr.; Gorelick, S.M.

2005-01-01

17

Death Valley regional groundwater flow model calibration using optimal parameter estimation methods and geoscientific information systems  

USGS Publications Warehouse

A three-layer Death Valley regional groundwater flow model was constructed to evaluate potential regional groundwater flow paths in the vicinity of Yucca Mountain, Nevada. Geoscientific information systems were used to characterize the complex surface and subsurface hydrogeological conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. The high contrasts and abrupt contacts of the different hydrogeological units in the subsurface make zonation the logical choice for representing the hydraulic conductivity distribution. Hydraulic head and spring flow data were used to test different conceptual models by using nonlinear regression to determine parameter values that currently provide the best match between the measured and simulated heads and flows.

D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

1996-01-01

18

Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California  

USGS Publications Warehouse

The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.

Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

2001-01-01

19

Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California  

SciTech Connect

The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate f or each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989 and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/California Valley area) than those previously reported.

R.J. Laczniak; J. LaRue Smith; P.E. Elliott; G.A. DeMeo; M.A. Chatigny; G.J. Roemer

2001-12-31

20

Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment  

NASA Astrophysics Data System (ADS)

Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993): Recharge and salination processes in the carbonate aquifers in Israel. Environmental Geology (1993) 21: 152-159. Lerner, D. N., A. S. Issar, I. Simmers (1990): Groundwater recharge: a guide to understanding and estimating natural recharge. International contributions to hydrogeology: Vol. 8. Marei, A., S. Khayat, S. Weise, S. Ghannam., M. Sbaih, S. Geyer (2010): Estimating groundwater recharge using chloride mass-balance method in the West Bank. Hydrol. Sc 01/2010; 55(5): 780-792.

Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

2013-04-01

21

Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A  

Microsoft Academic Search

Sophocleous, M.A., 1984. Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A.J. Hydrol., 69: 197--222. The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City

MARIOS A. SOPHOCLEOUS

1984-01-01

22

Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005  

USGS Publications Warehouse

The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model area in Michigan and Indiana. Overall water use for the selected areas in Wisconsin, Michigan, Indiana, and Illinois was less during early time intervals than during more recent intervals, with large increases beginning around the 1960s. Total estimated groundwater withdrawals for model input range from 18.01 million gallons per day (Mgal/d) for interval 1 (1864-1900) to 1,280.25 Mgal/d for interval 12 (2001-5). Withdrawals for the public-supply category make up the majority of the withdrawals in each of the four states. In Wisconsin and Michigan, the second largest withdrawals are for the irrigation category; in Indiana and Illinois, industrial withdrawals account for the second largest withdrawal amounts. The smallest withdrawals are for miscellaneous uses in Wisconsin and irrigation uses in Indiana and Illinois. Estimated groundwater withdrawals in the Southern Lower Peninsula of Michigan, Northeastern Illinois, and the farfield model area are generally larger than in the other model subregions. Withdrawals in Michigan and Indiana are predominantly from the Quaternary aquifer system, whereas withdrawals in Illinois are predominantly from the Cambrian-Ordovician aquifer systems. Withdrawals in Wisconsin are about equal from the Quaternary and Cambrian-Ordovician aquifer systems. Estimated groundwater withdrawals in Michigan and Indiana are predominantly from the unconfined unconsolidated aquifer type. Withdrawals in Illinois are largely from the deep confined bedrock aquifer type, although they decreased considerably in more recent time intervals. Wisconsin withdrawals are about equal from unconfined unconsolidated and deep confined bedrock aquifer types. Groundwater-withdrawal estimates in Wisconsin were compiled for the 47 easternmost counties within the boundary of the Lake Michigan Basin model, of which 32 counties, though not entirely contained, are at least partly within the Lake Michigan Basin. Overall, 6,457 withdrawal locations were estima

Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

2010-01-01

23

Estimating Vertical Groundwater Velocities Using Groundwater Thermal Gradients  

NASA Astrophysics Data System (ADS)

An understanding of vertical groundwater flow through unconsolidated deposits is a component for predicting fate and transport of contaminants in the saturated zone. Groundwater movement through heterogeneous glacial deposits common to northern Indiana (USA) provided a test setting for determining if measured vertical groundwater thermal gradients could aid in calculating vertical groundwater velocity estimates. Field procedure was conducted by collecting stratified groundwater temperatures from a series of cased monitoring wells previously advanced through glacial till and outwash sedimentary sequences. Groundwater thermal gradients (temperature-depth profiles) were plotted and matched using automated computer modeling software (Microsoft Excel Solver) with published type curves to derive a dimensionless parameter for estimating vertical groundwater velocities. Data results matched predictions, to include an increase in vertical groundwater velocities during the seasonally wetter Spring; and, higher calculated vertical groundwater velocities for the finer-grained till aquitards when compared to aquifers comprised of coarser-grained outwash deposits. This study shows promise and has gathered interest both in the scientific community and environmental consulting practice for estimating vertical migration rates of contaminants (specifically those affected by advection) within the saturated zone. Government agencies or consultants, for instance, could also potentially apply this estimation technique to measure and map localized recharge rates for developing more accurate wellhead protection zones.

Arriaga, M. A.; Leap, D. I.; Petruccione, J. L.

2007-05-01

24

Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania  

USGS Publications Warehouse

Ground water in Triassic-age sedimentary fractured-rock aquifers in the area of Lansdale, Pa., is used as drinking water and for industrial supply. In 1979, ground water in the Lansdale area was found to be contaminated with trichloroethylene, tetrachloroethylene, and other man-made organic compounds, and in 1989, the area was placed on the U.S. Environmental Protection Agency's (USEPA) National Priority List as the North Penn Area 6 site. To assist the USEPA in the hydrogeological assessment of the site, the U.S. Geological Survey began a study in 1995 to describe the ground-water system and to determine the effects of changes in the well pumping patterns on the direction of ground-water flow in the Lansdale area. This determination is based on hydrologic and geophysical data collected from 1995-98 and on results of the simulation of the regional ground-water-flow system by use of a numerical model.Correlation of natural-gamma logs indicate that the sedimentary rock beds strike generally northeast and dip at angles less than 30 degrees to the northwest. The ground-water system is confined or semi-confined, even at shallow depths; depth to bedrock commonly is less than 20 feet (6 meters); and depth to water commonly is about 15 to 60 feet (5 to 18 meters) below land surface. Single-well, aquifer-interval-isolation (packer) tests indicate that vertical permeability of the sedimentary rocks is low. Multiple-well aquifer tests indicate that the system is heterogeneous and that flow appears primarily in discrete zones parallel to bedding. Preferred horizontal flow along strike was not observed in the aquifer tests for wells open to the pumped interval. Water levels in wells that are open to the pumped interval, as projected along the dipping stratigraphy, are drawn down more than water levels in wells that do not intersect the pumped interval. A regional potentiometric map based on measured water levels indicates that ground water flows from Lansdale towards discharge areas in three drainages, the Wissahickon, Towamencin, and Neshaminy Creeks.Ground-water flow was simulated for different pumping patterns representing past and current conditions. The three-dimensional numerical flow model (MODFLOW) was automatically calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. Model calibration indicates that estimated recharge is 8.2 inches (208 millimeters) and the regional anisotropy ratio for the sedimentary-rock aquifer is about 11 to 1, with permeability greatest along strike. The regional anisotropy is caused by up- and down-dip termination of high-permeability bed-oriented features, which were not explicitly simulated in the regional-scale model. The calibrated flow model was used to compare flow directions and capture zones in Lansdale for conditions corresponding to relatively high pumping rates in 1994 and to lower pumping rates in 1997. Comparison of the 1994 and 1997 simulations indicates that wells pumped at the lower 1997 rates captured less ground water from known sites of contamination than wells pumped at the 1994 rates. Ground-water flow rates away from Lansdale increased as pumpage decreased in 1997.A preliminary evaluation of the relation between ground-water chemistry and conditions favorable for the degradation of chlorinated solvents was based on measurements of dissolved-oxygen concentration and other chemical constituents in water samples from 92 wells. About 18 percent of the samples contained less than or equal to 5 milligrams per liter dissolved oxygen, a concentration that indicates reducing conditions favorable for degradation of chlorinated solvents.

Senior, Lisa A.; Goode, Daniel J.

1999-01-01

25

Death valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems  

Microsoft Academic Search

A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this

Frank A. D'Agnese; Claudia C. Faunt; Mary C. Hill; A. Keith Turner

1999-01-01

26

Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada  

USGS Publications Warehouse

Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth through ninth highest pumpage. Geothermal production accounted for most pumpage in the Carson Desert (HA 101). Reinjection of ground water pumped for geothermal energy production accounted for about 64 percent (93,310 acre-feet) of the total artificial recharge. The only artificial recharge by water systems was in Las Vegas Valley, where 29,790 acre-feet of water from the Colorado River was injected into the aquifer system. Artificial recharge by mining totaled 22,870 acre-feet. Net ground-water flow was estimated only for the 143 HAs with available estimates of both natural recharge and interbasin flow. Of the 143 estimates, 58 have negative net ground-water flow, indicating that ground-water storage could be depleted if pumpage continues at the same rate. The State has designated HAs where permitted ground-water rights approach or exceed the estimated average annual recharge. Ten HAs were identified that are not designated and have a net ground-water flow between -1,000 to -35,000 acre-feet. Due to uncertainties in recharge, the water budgets for these HAs may need refining to determine if ground-water storage is being depleted.

Lopes, Thomas J.; Evetts, David M.

2004-01-01

27

Estimating groundwater recharge  

USGS Publications Warehouse

Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

Stonestrom, David A.

2011-01-01

28

Monitoring probe for groundwater flow  

DOEpatents

A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

Looney, B.B.; Ballard, S.

1994-08-23

29

Monitoring probe for groundwater flow  

DOEpatents

A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

Looney, Brian B. (Aiken, SC); Ballard, Sanford (Albuquerque, NM)

1994-01-01

30

Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.  

PubMed

The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(?1) west and to 179 mm a(?1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58–66 × 10(6) m(3) a(?1) (western wadis: 7–15 × 10(6) m(3) a(?1); eastern wadis: 51 × 10(6) m(3) a(?1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(?1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole. PMID:24767316

Siebert, Christian; Rödiger, Tino; Mallast, Ulf; Gräbe, Agnes; Guttman, Joseph; Laronne, Jonathan B; Storz-Peretz, Yael; Greenman, Anat; Salameh, Elias; Al-Raggad, Marwan; Vachtman, Dina; Ben Zvi, Arie; Ionescu, Danny; Brenner, Asher; Merz, Ralf; Geyer, Stefan

2014-07-01

31

Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California  

USGS Publications Warehouse

Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the Joshua Tree ground-water subbasin and 5 in the Copper Mountain ground-water subbasin) between 1980 and 2002 and analyzing the samples for major ions, nutrients, and selected trace elements. Selected samples also were analyzed for oxygen-18, deuterium, tritium, and carbon-14. The water-quality data indicated that dissolved solids and nitrate concentrations were below regulatory limits for potable water; however, fluoride concentrations in the lower aquifer exceeded regulatory limits. Arsenic concentrations and chromium concentrations were generally below regulatory limits; however, arsenic concentrations measured in water from wells perforated in the lower aquifer exceeded regulatory limits. The carbon-14 activities ranged from 2 to 72 percent modern carbon and are consistent with uncorrected ground-water ages (time since recharge) of about 32,300 to 2,700 years before present. The oxygen-18 and deuterium composition of water sampled from the upper aquifer is similar to the volume-weighted composition of present-day winter precipitation indicating that winter precipitation was the predominant source of ground-water recharge. Field studies, conducted during water years 2001 through 2003 to determine the distribution and quantity of recharge, included installation of instrumented boreholes in selected washes and at a nearby control site. Core material and cuttings from the boreholes were analyzed for physical, chemical, and hydraulic properties. Instruments installed in the boreholes were monitored to measure changes in matric potential and temperature. Borehole data were supplemented with temperature data collected from access tubes installed at additional sites along study washes. Streambed hydraulic properties and the response of instruments to infiltration were measured using infiltrometers. Physical and geochemical data collected away from the stream channels show that direct infiltration of precipitation to depths below the root zone and subsequent gro

Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

2005-01-01

32

Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA  

USGS Publications Warehouse

The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.

1996-01-01

33

ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)  

EPA Science Inventory

The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

34

Death valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems  

USGS Publications Warehouse

A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing high contrasts and abrupt contacts. This characteristic, combined with the large scale of the model, make zonation the logical choice for representing the hydraulic-conductivity distribution. Different conceptual models were evaluated using sensitivity analysis and were tested by using nonlinear regression to determine parameter values that are optimal, in that they provide the best match between the measured and simulated heads and flows. The different conceptual models were judged based both on the fit achieved to measured heads and spring flows, and the plausibility of the optimal parameter values. One of the conceptual models considered appears to represent the system most realistically. Any apparent model error is probably caused by the coarse vertical and horizontal discretization.A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing high contrasts and abrupt contacts. This characteristic, combined with the large scale of the model, make zonation the logical choice for representing the hydraulic-conductivity distribution. Different conceptual models were evaluated using sensitivity analysis and were tested by using nonlinear regression to determine parameter values that are optimal, in that they provide the best match between the measured and simulated heads and flows. The different conceptual models were judged based both on the fit achieved to measured heads and spring flows, and the plausibility of the optimal parameter values. One of the conceptual models considered appears to represent the system most realistically. Any apparent model error is probably caused by the coarse vertical and horizontal discretization.

D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

1999-01-01

35

Groundwater flow dynamic investigation without drilling boreholes  

NASA Astrophysics Data System (ADS)

The flow net map is a basic tool for groundwater flow dynamics investigation. In areas where there are no boreholes or piezometers are not available, constructing flow net map may be difficult. This work proposes a simple methodology to construct flow net map without drilling boreholes. The flow net map constructed using the proposed approach represents an expected flow net map, which can draw conceptual flow model of the site. The major benefit from constructing the expected flow net map is it gives guidance for locating new boreholes for site investigation, carrying out investigation of the groundwater flow directions and estimating recharge/discharge from the site boundary. An illustrative example for the proposed approach was presented to show how the data required to construct the expected flow net map can be collected. The constructed, expected flow net map using the proposed methodology was compared with actual flow net map constructed from measured water levels. Both maps give consistent hydrological information about the site. The suggested approach represents a simple and cheap way to carry out investigation of groundwater flow dynamics in areas where there are no boreholes are available.

Moustafa, Mahmoud

2015-02-01

36

Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005  

USGS Publications Warehouse

This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston-flow model is based on the potentially limiting assumptions that tracer transport is advective and that no mixing occurs. Additional uncertainties can arise from tracer degradation, sorption, contamination, or fractionation; terrigenic (natural) sources of tracers; spatially variable atmospheric tracer concentrations; and incomplete understanding of mechanisms of recharge or of the conditions under which atmospheric tracers were partitioned to recharge. The effects of some of these uncertainties are considered herein. For example, degradation, contamination, or fractionation often can be identified or inferred. However, detailed analysis of the effects of such uncertainties on the tracer-based piston-flow ages is constrained by sparse data and an absence of complementary lines of evidence, such as detailed solute transport simulations. Thus, the tracer-based piston-flow ages compiled in this report represent only an initial interpretation of the tracer data.

Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

2011-01-01

37

Estimating local ground-water flow conditions in a granitoid: Preliminary assessments in the Waldoboro Pluton Complex, Maine  

SciTech Connect

Periodic dry wells are reported by some homeowners in Knox and Lincoln Counties, Maine. These wells pump from the migmatitic Bucksport Fm. which is intermixed with the granitoids of the Waldoboro Pluton complex. Previous remote sensing and geologic mapping delineated marked northeast-trending structures in the WPC which were initially suspected as influencing ground-water flow for sustainable well yields. A sample area, Pemaquid Pond, in the WPC was studied in more detail including preliminary hydraulic testing of homeowner wells and ground-water flow modeling. Wells with sustainable and greater yields appear to be associated instead with zones of northwest-trending structures in granitoids not intermixed with the Bucksport Fm. Dry wells appear to be more prevalent among northeast-trending structures in areas where the migmatitic metamorphic rocks outcrop. Hydraulic studies, including pumping, slug, pressure, and borehole dilution testing, resulted in a wide range of calculated hydraulic conductivities. Dual-porosity flow modeling and geostatistical parameterization of the flow conditions suggest that the anisotropic hydraulic conductivity is near E-9 m/d.

Sidle, W.C. [Dept. of Energy, Cincinnati, OH (United States). Technical Support Div.; Lee, P.Y. [Groundwater Research Co., Oxford, OH (United States)

1995-03-01

38

Groundwater Flow in the Ganges Delta  

E-print Network

Groundwater Flow in the Ganges Delta Basu et al. (1) reported that 2 1011 m3 /year of groundwater groundwater than in Ganges-Brahmaputra river water. The flow could also have impli- cations for the origin and fate of other groundwater constituents in the Ganges delta that could be flushed by such rapid regional

Entekhabi, Dara

39

An inverse modeling approach to estimate groundwater flow and transport model parameters at a research site at Vandenberg AFB, CA  

NASA Astrophysics Data System (ADS)

A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.

Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.

2009-12-01

40

Modeling groundwater flow on MPPs  

SciTech Connect

The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code`s scalability.

Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.

1993-10-01

41

Geothermal properties and groundwater flow estimated with a three-dimensional geological model in a late Pleistocene terrace area, central Japan  

NASA Astrophysics Data System (ADS)

1. Introduction The ground source heat pump (GSHP) is a highly efficient and renewable energy technology for space heating and cooling, with benefits that include energy conservation and reductions in greenhouse gas emissions. One result of the huge Tohoku-oki earthquake and tsunami and the subsequent nuclear disasters is that GSHPs are receiving more attention from the media and they are being introduced by some local governments. Heat generated by underground GSHP installation, however, can pollute the geothermal environment or change groundwater flow patterns . In this study, we estimated possible effects from the use of GSHPs in the Tokyo area with a three-dimensional (3D) geological model. 2. Geological model The Tokyo Metropolitan Area is surrounded by the Late Pleistocene terraces called the Musashino uplands. The terrace surfaces are densely populated residential areas. One of these surfaces, the Shimosueyohi surface, formed along the Tama River during the last deglacial period. The CRE-NUCHS-1 core (Funabiki et al., 2011) was obtained from this surface, and the lithology, heat transfer coefficients, and chemical characteristics of the sediments were analyzed. In this study, we used borehole log data from a 5 km2 area surrounding the CRE-NUCHS-1 core site to create a 3D geological model. In this area, the Pleistocene Kazusa Group is overlain by terrace gravels and a volcanic ash layer called the Kanto Loam. The terrace gravels occur mainly beneath the Kanda, Kitazawa, and Karasuyama rivers , which flow parallel to the Tama River, whereas away from the rivers , the Kanto Loam directly overlies the Kazusa Group sediments. 3. Geothermal disturbance and groundwater flow Using the geological model, we calculated the heat transfer coefficients and groundwater flow velocities in the sediments. Within the thick terrace gravels, which are at relatively shallow depth (8-20 m), heat transfer coefficients were high and groundwater flow was relatively fast. The amount of disturbance of the geothermal environment and groundwater flow caused by the use of GSHPs, therefore, would depend on the thickness of these gravels. Reference Funabiki, A., Nagoya, K., Kaneki, A., Uemura, K., Kurihara, M., Obara, H., Goto, A., Chiba, T., Naya, T., Ueki, T., and Takemura, T. (2011) Sedimentary facies and physical properties of the sediment core CRE-NUCHS-1 in Setagaya district, Tokyo, central Japan. Abstracts, The 118th Annual Meeting of theGeological Society of Japan. Acknowledgement This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST).

Funabiki, A.; Takemura, T.; Hamamoto, S.; Komatsu, T.

2012-12-01

42

Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States  

USGS Publications Warehouse

This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.

Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.

2005-01-01

43

Estimates of consumptive use and ground-water return flow and the effect of rising and sustained high river stage on the method of estimation in Cibola Valley, Arizona and California, 1983 and 1984  

USGS Publications Warehouse

In Cibola Valley, Arizona, water is pumped from the Colorado River to irrigate crops and to maintain wildlife habitat. Unused water percolates to the water table and, as groundwater, moves downgradient into areas of phreatophytes, into a drainage ditch, out of the flood plain, and back to the river. In 1983 and 1984, groundwater return flow was negligible because in most of Cibola Valley the river lost water to the aquifer. Evapotranspiration was used as an approximation for consumptive use by vegetation. Evapotranspiration was calculated as the sum of the products of the area of vegetation types and water-use rate by vegetation type. Evapotranspiration was estimated to be 70,100 acre-ft in 1983 and 62,600 acre-ft in 1984. These estimates may be in error because of the effect of sustained inundation on the rate of water use by phreatophytes. The effects cannot be quantified and therefore adjustments to rates calculated for dry-surface conditions could not be made. The method of estimating consumptive use of water by vegetation and groundwater return flow is affected by changing conditions during years of rising and sustained high river stage caused by flood-control releases at Parker Dam. Most of the bank storage that will return to the river when the high river stage subsides did not originate as irrigation water. High river stage caused some areas to be flooded directly or raised groundwater levels above the land surface. No crops could be grown in flooded fields. The decreased depth to water and inundation with fresh water resulted in new phreatophyte growth in some areas. In some areas that were flooded, many phreatophytes died. Changes in the inundated and flooded areas throughout the years made it difficult to estimate the evaporation losses from the increased water surface. (USGS)

Owen-Joyce, Sandra J.

1990-01-01

44

GROUNDWATER FLOW MODELS C. P. Kumar  

E-print Network

studies in India have been mainly (i) groundwater recharge, (ii) dynamic behaviour of the water tableGROUNDWATER FLOW MODELS C. P. Kumar Scientist `E1' National Institute of Hydrology Roorkee ­ 247667 (Uttaranchal) 1.0 INTRODUCTION The use of groundwater models is prevalent in the field of environmental science

Kumar, C.P.

45

Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes  

NASA Astrophysics Data System (ADS)

In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.

2013-05-01

46

Geomorphic aspects of groundwater flow  

NASA Astrophysics Data System (ADS)

The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation résultante fait apparaître des rognons, des pentes qui s'évasent, des roches en équilibre, des inselbergs et des plaines de corrosion d'extension régionale. La migration des sels dissous des eaux souterraines crée des croûtes de compositions variées, qui constituent des paysages particuliers. (3) Les processus d'érosion des sols et des roches par les eaux souterraines comprennent les phénomènes suivants: la chenalisation, l'érosion par suintement, le sapement, qui tous sont des agents notables du recul des versants et d'érosion régressive vers l'amont. Les seuils et les limites sont importants dans de nombreuses actions chimiques et mécaniques des eaux souterraines. Une approche morphométrique quantitative des formes et des processus liés aux eaux souterraines est donnée en exemple à partir d'études choisies dans les terrains carbonatés et détritiques d'origine aussi bien ancienne que récente. Resumen Las aguas subterráneas tienen una importancia fundamental en la evolución de los paisajes geomorfológicos. En este artículo se consideran tres grandes categorías de procesos ligados al agua subterránea y sus correspondientes paisajes resultantes: (1) La disolución crea distintas geometrías kársticas, fundamentalmente en rocas carbonatadas, como respuesta a las condiciones de recarga, condicionantes geológicos, litologías y al propio flujo de agua subterránea. La velocidad de denudación y formación de cavernas se puede estimar a partir de los parámetros cinéticos e hidráulicos. (2) La erosión producida por las aguas subterráneas genera regolitas de alteración residual en los frentes de erosión, con los subsiguientes afloramientos de rocas inalteradas, inselbergs, rocas oscilantes o llanuras de corrosión de carácter regional. La recolocación de las sales disueltas crea costras superficiales de diferente composición. (3) La erosión de rocas y suelos por procesos ligados al agua subterránea, como filtración y arrastre de finos da lugar a un movimiento de retroceso de taludes y barrancos. La existencia de umbrales y lím

LaFleur, Robert G.

47

Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model  

USGS Publications Warehouse

A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

: Belcher, Wayne R., (Edited By); Sweetkind, Donald S.

2010-01-01

48

Groundwater flow in layered aquifer systems  

NSDL National Science Digital Library

Four groundwater modeling programs are available from this site. Trial versions of the software are downloadable for free. The programs are MicroFEM, for multiple-aquifer steady-state and transient groundwater flow modeling; MLU for drawdown calculations and inverse modeling of transient well flow in layered aquifer systems; SchlumBG for the automatic interpretation of geo-electrical measurements; and FlowNet for modeling of two-dimensional steady-state flow in a heterogeneous, anisotropic aquifer.

C.J. Hemker

49

Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model  

USGS Publications Warehouse

A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

: Belcher, Wayne R., (Edited By)

2004-01-01

50

Estimating the Submarine Groundwater Discharge Flux of Rare Earth Elements to the Indian River Lagoon, Fl, USA, Using the 1-D Vertical - Flow Equation  

NASA Astrophysics Data System (ADS)

Understanding the sources and sinks of trace elements like the rare earth elements (REE) in the oceans has important implications for quantifying their global geochemical cycles, their application as paleoceanographic tracers, and in discerning the geochemical reactions that mobilize, sequester, and fractionate REEs in the environment. This understanding is critical for neodymium (Nd) because radiogenic Nd isotopes are commonly used in paleoceanographic studies over glacial-interglacial to million year time scales. The submarine groundwater discharge (SGD) flux of each REE for the Indian River Lagoon, Fl, USA, was calculated using a modified form of the 1-dimensional vertical-flow equation that accounts for diffusion, advection, and non-local mass transfer processes. The SGD REE flux is comprised of two sources: a near shore, heavy REE (HREE) enriched advective source chiefly composed of terrestrial SGD, and a light REE (LREE) and middle REE (MREE) enriched source that originates from reductive dissolution of Fe (III) oxides/hydroxides in the subterranean estuary. This SGD flux mixture of REE sources is subsequently transported by groundwater seepage and bioirrigation to the overlying lagoon water column. The total SGD flux of REEs reveals that the subterranean estuary of the Indian River Lagoon is a source for LREE and MREEs, and a sink for the HREEs, to the local coastal ocean. The calculated SGD flux of Nd presented in this study is estimated at 7.69×1.02 mmol/day, which is roughly equivalent to the effective local river flux to the Indian River Lagoon. Although our re-evaluated SGD flux of Nd to the Indian River Lagoon is lower than estimates in our previous work, it nonetheless represents a substantial input to the coastal ocean.

Chevis, D. A.; Johannesson, K. H.; Burdige, D.; Cable, J. E.; Martin, J. B.

2013-12-01

51

Estimation of groundwater recharge and discharge across northern Australia  

Microsoft Academic Search

Groundwater recharge is one of the more difficult components of the hydrological cycle to estimate but one that is becoming increasingly important as Australia turns to groundwater resources for future economic development. Also of concern is groundwater discharge. The extraction of groundwater by pumping inevitably reduces groundwater discharge to rivers where the two are connected. Knowledge of both groundwater recharge

Russell S. Crosbie; James L. McCallum; Glenn A. Harrington

2009-01-01

52

Using Groundwater Temperatures and Heat Flow Patterns to Assess Groundwater Flow in Snake Valley, Nevada and Utah, USA  

NASA Astrophysics Data System (ADS)

The Southern Nevada Water Authority’s (SNWA) proposal to develop groundwater resources in Snake Valley and adjacent basins in eastern Nevada has focused attention on understanding the links between basin-fill and carbonate aquifer systems, groundwater flow paths, and the movement of groundwater between basins. The SNWA development plans are contentious in part because (1) there are few perennial streams that flow into the basins and these surface-water resources are fully appropriated; (2) groundwater resources that sustain streams, springs, wetlands, and the local agricultural economy are also limited; and (3) because Snake Valley straddles the Utah-Nevada state line. We report groundwater temperatures and estimates of heat flow used to constrain estimates of groundwater flow into and through Snake Valley. Thermal logs have been collected from 24 monitoring wells in the Utah part of the valley. Natural, undisturbed geothermal gradients within the Basin and Range are generally 30 °C/km, which correspond to heat flow values of approximately 90 mW/m2. Geothermal gradients in the southern portion of Snake Valley are lower than typical Basin and Range geothermal gradients, with the majority ranging between 10 and 20 °C/km, corresponding to heat flow values of 30 to 60 mW/m2. In the northern portion of the basin, however, geothermal gradients are generally higher than typical Basin and Range geothermal gradients, with thermal logs of two wells indicating gradients of 39 °C/km and 51 °C/km, which correspond to heat flow values of approximately 117 and 153 mW/m2, respectively. These observations suggest heat is being redistributed by groundwater flow to discharge points in northern Snake Valley. This interpretation is also supported by spring temperatures in northern Snake Valley and at Fish Springs National Wildlife Refuge to the northeast that are higher than ambient (12 °C) surface temperature. These thermal data are being used together with water levels and discharge observations in a three-dimensional, coupled groundwater flow/thermal transport model to evaluate groundwater flow within Snake Valley and adjacent basins. Advantages of using a coupled flow/thermal model approach include the incorporation of spatial variations in thermal gradients and heat flow observations as additional constraints to assess model performance beyond typical groundwater flow models, which generally only test water levels and discharge observations.

Masbruch, M. D.; Chapman, D. S.

2009-12-01

53

Influence of perched groundwater on base flow  

USGS Publications Warehouse

Analysis with a three-dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine-sediment unit and the hydraulic conductivity of the fine-sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000-m stream reach. Generally, the rate of perched-groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine-sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine-sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched-groundwater discharge nearly 75%. Copyright 2008 by the American Geophysical Union.

Niswonger, R.G.; Fogg, G.E.

2008-01-01

54

Use of Chemical and Isotopic Tracers for Estimating Ground-Water Recharge, Flow Paths, and Residence Times in the Middle San Pedro Basin, Southeast Arizona  

Microsoft Academic Search

Ground water is often the primary source of water for rapidly growing populations in the semi-arid southwestern United States. In addition, ground-water discharge to streams sustains wildlife in riparian areas. Improved understanding of the sources of ground water, recharge areas, flow paths, and water quality of basin aquifer systems is needed to assess water availability and develop effective water management

C. B. Adkins; J. McIntosh; C. Eastoe; J. Dickinson

2008-01-01

55

Conceptual groundwater flow models identified in triassic basins, eastern united states  

NASA Astrophysics Data System (ADS)

Identification of a conceptual groundwater flow model is an important step in planning appropriate groundwater investigations for the accurate delineation of contaminated sites. Development of a conceptual groundwater flow model early in the process of defining groundwater impacts can save resources and minimize the potential for erroneous interpretations resulting in potentially flawed remedial designs. This study presents typical groundwater flow models identified in several Triassic Basins that occur as half-graben along the eastern seaboard of the United States. Groundwater flow in the Triassic sedimentary rocks has local and regional components. Shallow groundwater discharges locally to nearby streams. Deeper, regional groundwater flow is toward points of regional groundwater discharge, generally higher order stream courses. The hydrogeologic regime within the basins is characterized by fractured, bedded sedimentary sequences with groundwater occuring under both unconfined, water table and confined conditions. Inherent controls on groundwater flow are a combination of the interaction of factors that include topography, stratal geometry and lithology, the distribution and intensity of fractures, presence of diabase intrusions, basalt flows, and weathering processes of the bedrock materials. The main groups of conceptual groundwater flow models identified in the Triassic Basins include: (i) structural control flow models (i.e., bedding strike, bedding dip, basalt cooling fractures, major joint sets and faults), (ii) lithologic control flow models (i.e., top of rock weathered zone, basalt flow top weathering, diabase dikes, lopolith containment), and, (iii) topographic control, and (iv) combinations of above. The identification of these distinct groundwater flow conceptual models is possible based on numerous investigations focused on environmental issues conducted in Connecticut, New Jersey, Pennsylvania, Virginia, and North Carolina. The typical conceptual groundwater flow models that are developed as a function of geologic setting can be used as a guide in developing site hydrogeologic models, to plan groundwater investigations and interpret the results, and estimate the potential spread of contaminant impacts to groundwater.

Venkatakrishnan, R.; Gheorghiu, F.

2003-04-01

56

Regionally compartmented groundwater flow on Mars Keith P. Harrison1  

E-print Network

Regionally compartmented groundwater flow on Mars Keith P. Harrison1 and Robert E. Grimm1 Received] Groundwater flow on Mars likely contributed to the formation of several types of morphologic and mineralogic of groundwater flow required for their formation. For groundwater simulation purposes, a global Martian aquifer

Harrison, Keith

57

Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada  

SciTech Connect

The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

Savard, C.S.

1998-10-01

58

Post processing of zone budgets to generate improved groundwater influx estimates associated with longwall mining.  

PubMed

Impacts of underground longwall mining on groundwater systems are commonly assessed using numerical groundwater flow models that are capable of forecasting changes to strata pore pressures and rates of groundwater seepage over the mine life. Groundwater ingress to a mining operation is typically estimated using zone budgets to isolate relevant parts of a model that represent specific mining areas, and to aggregate flows at nominated times within specific model stress periods. These rates can be easily misinterpreted if simplistic averaging of daily flow budgets is adopted. Such misinterpretation has significant implications for design of underground dewatering systems for a new mine site or it may lead to model calibration errors where measured mine water seepage rates are used as a primary calibration constraint. Improved estimates of groundwater ingress can be made by generating a cumulative flow history from zone budget data, then differentiating the cumulative flow history using a low order polynomial convolved through the data set. PMID:23895016

Mackie, C D

2014-01-01

59

Estimating exposure to groundwater contaminants in karst areas  

NASA Astrophysics Data System (ADS)

Large multidisciplinary projects investigate health effects and environmental impacts of contamination. Such multidisciplinary projects challenge groundwater hydrologist because they demand estimations of human or environmental exposure to groundwater contaminants. But especially in karst regions, groundwater quality is subject to rapid changes resulting from highly dynamic flow systems with rapid groundwater recharge and contaminant transport in karst conduits. There is a strong need for tools that allow the quantification of the risk of contaminant exposure via the karst groundwater and its temporal variation depending on rainfall events and overall hydrological conditions. A fact that makes the assessment of contaminant exposure even more difficult is that many contaminants behave differently in the subsurface than the groundwater, because they do not dissolve and exist as a separate phase. Important examples are particulate contaminants, such as bacteria, and non-aqueous phase liquids (NAPLs), such as many organic compounds. Both are ubiquitous in the environment and have large potential for health impacts. It is known from bacterial contamination of karst springs that such contamination is strongly related to flow conditions. Bacteria, which are present at the land surface, in the soil, rock matrix or the conduit system, are immobile during base flow conditions. During storm events however, they become mobilized and are rapidly transported through the conduit flow system from sources to areas of potential exposure. As a result, bacteria concentrations that most times are low at a spring can show a high peak during storm flow. Conceptual models exist that suggest that the transport of NAPLs in karst aquifers is, just like bacterial contamination, related to flow conditions. Light NAPLs that reach the saturated zone float and accumulate on the water table; and dense NAPLs sink downward in the aquifer until they are trapped in pores, fractures and conduits where they remain stationary under base flow conditions. During storm flows, however, they can be dragged downstream or flushed as suspensions and emulsions. As a result, storm flow can send previously immobilized NAPLs to exposure zones in toxic pulses. An approach is presented to estimate the risk of contaminant exposure by bacteria and NAPLs via the groundwater under variable hydrological conditions (Butscher et al. 2011). The approach uses an indicator that is expressed as the Dynamic Vulnerability Index (DVI). This index is defined as the ratio of conduit to matrix flow contributions to spring discharge, and is calculated based on a numerical model simulating karst groundwater flow. The approach is illustrated at a test site in Switzerland, where calculated DVI was compared to the occurrence of fecal indicators during five storm flow events. Key words: karst hydrogeology; groundwater contamination; fecal indicators; NAPLs; numerical modeling References: Butscher, C. Auckenthaler, A., Scheidler, S., Huggenberger, P. (2011). Validation of a Numerical Indicator of Microbial Contamination for Karst Springs. Ground Water 49 (1), 66-76.

Butscher, C.

2012-12-01

60

Estimates of tracer-based piston-flow ages of groundwater from selected sites: National Water-Quality Assessment Program, 2006-2010  

USGS Publications Warehouse

Piston-flow age dates were interpreted from measured concentrations of environmental tracers from 812 National Water-Quality Assessment (NAWQA) Program groundwater sites from 27 Study Units across the United States. The tracers of interest include chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis were collected from 2006 to 2010 from groundwater wells in NAWQA studies, including: * Land-Use Studies (LUS, shallow wells, usually monitoring wells, located in recharge areas under dominant land-use settings), * Major-Aquifer Studies (MAS, wells, usually domestic supply wells, located in principal aquifers and representing the shallow drinking water supply), * Flow System Studies (FSS, networks of clustered wells located along a flowpath extending from a recharge zone to a discharge zone, preferably a shallow stream) associated with Land-Use Studies, and * Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) also associated with Land-Use Studies. Tracer data were evaluated using documented methods and are presented as aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), and tracer-based piston-flow ages. Selected ancillary data, such as redox data, well-construction data, and major dissolved-gas (N2, O2, Ar, CH4, and CO2) data, also are presented. Recharge temperature was inferred using climate data (approximated by mean annual air temperature plus 1°C [MAAT +1°C]) as well as major dissolved-gas data (N2-Ar-based) where available. The N2-Ar-based temperatures showed significantly more variation than the climate-based data, as well as the effects of denitrification and degassing resulting from reducing conditions. The N2-Ar-based temperatures were colder than the climate-based temperatures in networks where recharge was limited to the winter months when evapotranspiration was reduced. The tracer-based piston-flow ages compiled in this report are provided as a consistent means of reporting the tracer data. The tracer-based piston-flow ages may provide an initial interpretation of age in cases in which mixing is minimal and may aid in developing a basic conceptualization of groundwater age in an aquifer. These interpretations are based on the assumption that tracer transport is by advection only and that no mixing occurs. In addition, it is assumed that other uncertainties are minimized, including tracer degradation, sorption, contamination, or fractionation, and that terrigenic (natural) sources of tracers, and spatially variable atmospheric tracer concentrations are constrained.

Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.; Runkle, Donna L.

2012-01-01

61

Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin  

USGS Publications Warehouse

The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

2014-01-01

62

Groundwater Flow and Arsenic Biogeochemistry in Bangladesh  

NASA Astrophysics Data System (ADS)

Although groundwater in Bangladesh is severely contaminated by arsenic, little is known about the complex transient patterns of groundwater flow that flush solutes from aquifers and carry solutes into the subsurface. Hydrologic modeling results for our field site in the Munshiganj district indicate that groundwater flow is vigorous, flushing the aquifer over time-scales of decades and also introducing solute loads into the aquifer with recharge from rice fields, ponds and rivers. The combined hydrologic and biogeochemical results from our field site imply that the biogeochemistry of the aquifer system may not be in steady-state, and that the net effect of competing processes could either increase or decrease arsenic concentrations over the next decades. Modeling results suggest that irrigation has greatly changed the location, timing and chemical content of recharge to the aquifer, drawing large fluxes of anoxic water into the aquifer during the dry season that may mobilize arsenic from oxides in near-surface sediments.

Harvey, C. F.

2004-12-01

63

Comparison of Estimated Areas Contributing Recharge to Selected Springs in North-Central Florida by Using Multiple Ground-Water Flow Models  

USGS Publications Warehouse

Areas contributing recharge to springs are defined in this report as the land-surface area wherein water entering the ground-water system at the water table eventually discharges to a spring. These areas were delineated for Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs in north-central Florida using four regional ground-water flow models and particle tracking. As expected, different models predicted different areas contributing recharge. In general, the differences were due to different hydrologic stresses, subsurface permeability properties, and boundary conditions that were used to calibrate each model, all of which are considered to be equally feasible because each model matched its respective calibration data reasonably well. To evaluate the agreement of the models and to summarize results, areas contributing recharge to springs from each model were combined into composite areas. During 1993-98, the composite areas contributing recharge to Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs were about 130, 730, 110, and 120 square miles, respectively. The composite areas for all springs remained about the same when using projected 2020 ground-water withdrawals.

Shoemaker, W. Barclay; O'Reilly, Andrew M.; Sepulveda, Nicasio; Williams, Stanley A.; Motz, Louis H.; Sun, Qing

2004-01-01

64

Nonlinear groundwater flow during a slug test in fractured rock  

NASA Astrophysics Data System (ADS)

A series of slug tests with various initial head displacements was carried out to investigate the influence of nonlinear groundwater flow on a slug test in fractured rock. To identify the nonlinear flow regime during a slug test, a representative Reynolds number (Re) was calculated using the slug test results and the fractures identified from geophysical logging and core logs. The Forchheimer equation and cubic law were used to determine the critical Re where nonlinear flow arose in the test zone. Our results showed that nonlinear flow arose when the initial displacement was over 1.0 m. Then, the degree of nonlinearity increased and the estimated hydraulic conductivity from the test results decreased with increasing initial displacement. The study also suggested that the Forchheimer and cubic law can be used to estimate the hydraulic conductivity in a linear flow regime using data from the slug tests in a nonlinear flow regime.

Ji, Sung-Hoon; Koh, Yong-Kwon

2015-01-01

65

Intuitive visualization of transient groundwater flow  

NASA Astrophysics Data System (ADS)

Understanding and interpreting flow problems is an existing challenge in scientific visualization. In particular, the graphical presentation of transient flow data can be a significant problem. This contribution introduces an intuitive method to animate transient 3D groundwater flow on planar and curved 2D surfaces in a very illustrative way. The main aim of this approach is to support the presentation of simulation results in front of audiences for whom groundwater modeling is outside their area of expertise, that is, non-experts. Particularly, data sets with a highly irregular mesh or point distribution can be visualized descriptively. The flow field is easily rendered in a comprehensible way using animated pathlets with a novel, time-dependent seeding strategy which is described in more detail in this contribution. A hydrological example is used to present the capabilities and especially the intuitive character of our visualization method.

Seidel, T.; König, C.; Schäfer, M.; Ostermann, I.; Biedert, T.; Hietel, D.

2014-06-01

66

Hydrodynamic modelling for groundwater flow through permeable reactive barriers  

Microsoft Academic Search

Hydrodynamic modelling for analysis of groundwater flow through permeable reactive barriers (PRBs) is addressed in this paper. Permeable reactive barriers constitute an emerging technology for in situ remediation of groundwater contamination and have many advantages over the traditional ex situ treatment methods. The transport domains during groundwater flow through PRBs often may involve free-flow or non-porous sections. To model the

Diganta Bhusan Das

2002-01-01

67

Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio  

USGS Publications Warehouse

The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect. Although the part of the lower Great Miami River Buried Valley Aquifer System where the Hamilton North Well Field is located is semiconfined, unconfined, or locally confined and not directly connected to the Great Miami River, the discontinuity of the clay/till layers beneath the river indicates that other, deeper parts of the aquifer system may be directly connected to the Great Miami River.

Sheets, Rodney A.; Bossenbroek, Karen E.

2005-01-01

68

Estimating Flow in Streams  

NSDL National Science Digital Library

Presented by West Virginia University, this site addresses flow rates in streams and how to accurately estimate these rates. The site contains thorough diagrams along with solid explanatory text. Overall, the presentation is strong and easily comprehended.

Porter, Dana O.

69

Multiphase groundwater flow near cooling plutons  

USGS Publications Warehouse

We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

Hayba, D.O.; Ingebritsen, S.E.

1997-01-01

70

Effects of intraborehole flow on groundwater age distribution  

USGS Publications Warehouse

Environmental tracers are used to estimate groundwater ages and travel times, but the strongly heterogeneous nature of many subsurface environments can cause mixing between waters of highly disparate ages, adding additional complexity to the age-estimation process. Mixing may be exacerbated by the presence of wells because long open intervals or long screens with openings at multiple depths can transport water and solutes rapidly over a large vertical distance. The effect of intraborehole flow on groundwater age was examined numerically using direct age transport simulation coupled with the Multi-Node Well Package of MODFLOW. Ages in a homogeneous, anisotropic aquifer reached a predevelopment steady state possessing strong depth dependence. A nonpumping multi-node well was then introduced in one of three locations within the system. In all three cases, vertical transport along the well resulted in substantial changes in age distributions within the system. After a pumping well was added near the nonpumping multi-node well, ages were further perturbed by a flow reversal in the nonpumping multi-node well. Results indicated that intraborehole flow can substantially alter groundwater ages, but the effects are highly dependent on local or regional flow conditions and may change with time. ?? Springer-Verlag 2007.

Zinn, B.A.; Konikow, L.F.

2007-01-01

71

Perturbation of ground surface temperature reconstructions by groundwater flow?  

E-print Network

on areas of groundwater recharge. Temperature profiles in these areas exhibit temperature gradientsPerturbation of ground surface temperature reconstructions by groundwater flow? Grant Ferguson,1 of information on past climates. Most analyses neglect groundwater flow (GWF) and assume purely conductive heat

Beltrami, Hugo

72

Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 2. Quantitative hydrologic assessment  

USGS Publications Warehouse

Groundwater flow modeling was used to quantitatively assess the hydrologic processes affecting ground water and solute movement to drain laterals. Modeling results were used to calculate the depth distribution of groundwater flowing into drain laterals at 1.8 m (drain lateral 1) and 2.7 m (drain lateral 2) below land surface. The simulations indicated that under nonirrigated conditions about 89% of the flow in drain lateral 2 was from groundwater originating from depths greater than 6 m below land surface. The deep groundwater has higher selenium concentrations than shallow groundwater. Simulation of irrigated conditions indicates that as recharge (deep percolation) increases, the proportional contribution of deep groundwater to drain lateral flow decreases. Groundwater flow paths and travel times estimated from the simulation results indicate that groundwater containing high concentrations of selenium (greater than 780 ?g L?1) probably will continue to enter drain lateral 2 for decades.

Fio, John L.; Deverel, S.J.

1991-01-01

73

Considerations for use of the RORA program to estimate ground-water recharge from streamflow records  

USGS Publications Warehouse

The RORA program can be used to estimate ground-water recharge in a basin from analysis of a streamflow record. The program can be appropriate for use if the ground-water flow system is characterized by diffuse areal recharge to the water table and discharge to a stream. The use of the program requires an estimate of a recession index, which is the time required for ground-water discharge to recede by one log cycle after recession becomes linear or near-linear on the semilog hydrograph. Although considerable uncertainty is inherent in the recession index, the results of the RORA program may not be sensitive to this variable. Testing shows that the program can yield consistent estimates under conditions that include leakage to or from deeper aquifers and ground-water evapotranspiration. These tests indicate that RORA estimates the net recharge, which is recharge to the water table minus leakage to a deeper aquifer, or recharge minus ground-water evapotranspiration. Before the program begins making calculations it designates days that fit a requirement of antecedent recession, and these days are used in calculations. The program user might increase the antecedent-recession requirement above its default value to reduce the influence of errors that are caused by direct-surface runoff, but other errors can result from the reduction in the number of peaks detected. To obtain an understanding of flow systems, results from the RORA program might be used in conjunction with other methods such as analysis of ground-water levels, estimates of ground-water discharge from other forms of hydrograph separation, and low-flow variables. Relations among variables may be complex for a variety of reasons; for example, there may not be a unique relation between ground-water level and ground-water discharge, ground-water recharge and discharge are not synchronous, and low-flow variables can be related to other factors such as the recession index.

Rutledge, A.T.

2000-01-01

74

Pajarito Plateau Groundwater Flow and Transport Modeling Process-Level and Systems Models of Groundwater Flow and  

E-print Network

Pajarito Plateau Groundwater Flow and Transport Modeling 1 Process-Level and Systems Models of Groundwater Flow and Transport Beneath the Pajarito Plateau: Migration of High Explosives from Technical Area Groundwater Modeling Project Systems Model Vadose Zone Model Regional Aquifer Model #12;Pajarito Plateau

Lu, Zhiming

75

Patterns in groundwater chemistry resulting from groundwater flow  

NASA Astrophysics Data System (ADS)

Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la qualité de l'eau vers une absence de fluctuations, de polluées vers non polluées, d'acides vers basiques, d'oxygénées vers anoxiques et méthanogènes, depuis des échanges de base inexistants vers des échanges significatifs, de l'eau douce vers l'eau saumâtre. Ceci est montré pour une nappe d'eau douce dans une dune côtière des Pays-Bas. Dans "l'hydrosome", on montre que la disparition du carbonate de calcium par lessivage à plus de 15m et celle de cations adsorbés d'origine marine (Na+, K+ et Mg2+) à plus de 2500m vers l'aval-gradient correspond à environ 5000 ans d'écoulement, depuis que la barrière de la plage avec les dunes s'est mise en place. Les zones d'alimentation ponctuelle dans les dunes sont mises en évidence par l'eau souterraine montrant une plus faible évolution prograde de sa qualité que l'eau souterraine de la dune alentour. L'eau du Rhin utilisée pour la réalimentation artificielle dans les dunes a fourni des types hydrochimiques distincts, qui marquent l'écoulement, le mélange et les âges de l'eau souterraine. Resumen El flujo subterráneo tiene una gran importancia sobre la hidroquímica de un sistema ya que reduce la mezcla por difusión, transporta las huellas químicas y biológicas de las acciones antrópicas en la zona de recarga y drena el sistema acuífero. Las tendencias globales vienen regidas por las diferencias en el flujo de agua meteórica que atraviesa el subsuelo. En un hidrosoma individual (cuerpo de agua de un origen específico), se suele desarrollar la siguiente línea de evolución (secuencia de facies) en la dirección del flujo: de gran a nula fluctuación en la calidad del agua, de agua contaminada a no contaminada, de ácida a básica, de óxica a anóxica-metanogénica, de nulo a importante cambio de base y de agua dulce a salobre. Esto puede verse, por ejemplo, en las aguas dulces presentes en las dunas costeras de Holanda. En este hidrosoma, el lixiviado de carbonato cálcico, hasta 15m, y de cationes de adsorción marina (Na+, K+ and Mg2+), hasta 2500m en la dirección

Stuyfzand, Pieter J.

76

Regional groundwater flow in hard rocks.  

PubMed

The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW-SE trending ductile shear zones and NNE-SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. PMID:25460951

Pacheco, Fernando A L

2015-02-15

77

Guidelines for Evaluating Ground-Water Flow Models  

USGS Publications Warehouse

Ground-water flow modeling is an important tool frequently used in studies of ground-water systems. Reviewers and users of these studies have a need to evaluate the accuracy or reasonableness of the ground-water flow model. This report provides some guidelines and discussion on how to evaluate complex ground-water flow models used in the investigation of ground-water systems. A consistent thread throughout these guidelines is that the objectives of the study must be specified to allow the adequacy of the model to be evaluated.

Reilly, Thomas E.; Harbaugh, Arlen W.

2004-01-01

78

Assessment of factors influencing groundwater-level change using groundwater flow simulation, considering vertical infiltration from rice-planted and crop-rotated paddy fields in Japan  

NASA Astrophysics Data System (ADS)

Assessing factors that influence groundwater levels such as land use and pumping strategy, is essential to adequately manage groundwater resources. A transient numerical model for groundwater flow with infiltration was developed for the Tedori River alluvial fan (140 km2), Japan. The main water input into the groundwater body in this area is irrigation water, which is significantly influenced by land use, namely paddy and upland fields. The proposed model consists of two models, a one-dimensional (1-D) unsaturated-zone water flow model (HYDRUS-1D) for estimating groundwater recharge and a 3-D groundwater flow model (MODFLOW). Numerical simulation of groundwater flow from October 1975 to November 2009 was performed to validate the model. Simulation revealed seasonal groundwater level fluctuations, affected by paddy irrigation management. However, computational accuracy was limited by the spatiotemporal data resolution of the groundwater use. Both annual groundwater levels and recharge during the irrigation periods from 1975 to 2009 showed long-term decreasing trends. With the decline in rice-planted paddy field area, groundwater recharge cumulatively decreased to 61 % of the peak in 1977. A paddy-upland crop-rotation system could decrease groundwater recharge to 73-98 % relative to no crop rotation.

Iwasaki, Yumi; Nakamura, Kimihito; Horino, Haruhiko; Kawashima, Shigeto

2014-12-01

79

A conceptual framework of groundwater flow in some crystalline aquifers in Southeastern Ghana  

NASA Astrophysics Data System (ADS)

A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10 -5 m/d to 7.14 × 10 -4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m 3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast-southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.

Yidana, Sandow Mark; Ganyaglo, Samuel; Banoeng-Yakubo, Bruce; Akabzaa, Thomas

2011-02-01

80

Groundwater app to determine flow direction and gradient.  

PubMed

A computational program, called the groundwater flow calculator, was created to quickly and easily determine the hydraulic gradient and direction of groundwater flow. The groundwater flow calculator automates the hand-drawn process by Ralph Heath in the U.S. Geological Survey (USGS) Water Supply Paper 2220. In addition, a mobile app was developed to allow this procedure to run on a smart phone for use in the field. PMID:24898497

Morrison, Derek; Munster, Clyde

2015-03-01

81

A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations  

NASA Astrophysics Data System (ADS)

Over the last few decades, automatic sensors that record groundwater levels at high-frequency intervals have become widely used in groundwater monitoring practice. These sensors provide large amounts of data regarding diurnal groundwater fluctuations, which can be treated as stochastic periodic time series. In this study, a simple relationship between the average standard deviation of diurnal groundwater level fluctuations and the daily evapotranspiration over relatively short periods (days or weeks) was developed for estimating groundwater consumption by phreatophytes in arid/semiarid areas. Our approach allows estimating groundwater evapotranspiration (ETg) using stable statistical characteristics of diurnal groundwater fluctuations, and it is useful for analyzing large amounts of data obtained from digital groundwater level monitoring sensors. A comparison of the ETg results from a synthetic set of groundwater level fluctuations with predefined values shows that this technique behaves consistently and is robust. A numerical analysis of one-dimensional saturated-unsaturated water flow to a root system using Richards' equation indicates that this method provides a reliable estimate of ETg when the basic assumptions of the White method are met. The method was also applied to two phreatophyte-dominated riparian sites in New Mexico to demonstrate its usefulness, which provides better results than the commonly used White method.

Wang, Ping; Pozdniakov, Sergey P.

2014-03-01

82

Theory of the generalized chloride mass balance method for recharge estimation in groundwater basins characterised by point and diffuse recharge  

NASA Astrophysics Data System (ADS)

Application of the conventional chloride mass balance (CMB) method to point recharge dominant groundwater basins can substantially under-estimate long-term average annual recharge by not accounting for the effects of localized surface water inputs. This is because the conventional CMB method ignores the duality of infiltration and recharge found in karstic systems, where point recharge can be a contributing factor. When point recharge is present in groundwater basins, recharge estimation is unsuccessful using the conventional CMB method with, either unsaturated zone chloride or groundwater chloride. In this paper we describe a generalized CMB that can be applied to groundwater basins with point recharge. Results from this generalized CMB are shown to be comparable with long-term recharge estimates obtained using the watertable fluctuation method, groundwater flow modelling and Darcy flow calculations. The generalized CMB method provides an alternative, reliable long-term recharge estimation method for groundwater basins characterised by both point and diffuse recharge.

Somaratne, N.; Smettem, K. R. J.

2014-01-01

83

An improved time series approach for estimating groundwater recharge from groundwater level fluctuations  

Microsoft Academic Search

An analytical solution to a linearized Boussinesq equation is extended to develop an expression for groundwater drainage using estimations of aquifer parameters. This is then used to develop an improved water table fluctuation (WTF) technique for estimating groundwater recharge. The resulting method extends the standard WTF technique by making it applicable, as long as aquifer properties for the area are

M. O. Cuthbert

2010-01-01

84

A root zone modelling approach to estimating groundwater recharge from irrigated areas  

Microsoft Academic Search

summary In irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge. In this study we estimated irrigation return flow using a root zone modelling approach in

Jacinto M. Jiménez-Martínez; Todd H. Skaggs

2009-01-01

85

Estimated Water Flows in 2005: United States  

SciTech Connect

Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

Smith, C A; Belles, R D; Simon, A J

2011-03-16

86

Relation of streams, lakes, and wetlands to groundwater flow systems  

Microsoft Academic Search

Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all\\u000a landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although\\u000a it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater\\u000a discharge areas, this is true primarily for

Thomas C. Winter

1999-01-01

87

Application of chlorofluorocarbons (CFCs) to estimate the groundwater age at a headwater wetland in Ichikawa City, Chiba Prefecture, Japan  

NASA Astrophysics Data System (ADS)

To delineate the groundwater flow system in a basin, the groundwater age was estimated by analyzing chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) in a typical headwater wetland in Ichikawa, Japan. Feasibility of groundwater dating by CFCs was assessed comprehensively based on the concentrations of NO3 -, SO4 2-, Fe2+ and dissolved CH4 in the groundwater, because the CFCs would be degraded under the reduction condition available in a wetland. It was found that the CFC-11 apparent age was much older than that estimated by other CFC species. It showed that CFC-12 and CFC-113 were suitable tracers for groundwater dating because of their stability in the wetland environment. Furthermore, the mixture of groundwater with different age was discussed by CFC-12 and CFC-113 based on the binary mixing model and piston-flow model. As a result, the apparent age of groundwater in the study area is in the range of 38-48 years.

Han, Zhiwei; Tang, Changyuan; Piao, Jingqiu; Li, Xing; Cao, Yingjie; Matsumaru, Touma; Zhang, Chipeng

2014-09-01

88

Assessment of interbasin groundwater flows between catchments using a semi-distributed water balance model  

NASA Astrophysics Data System (ADS)

In hydrological modeling it is often assumed that the aquifers boundaries are formed by the geographical demarcation of the catchment. However, this assumption is rarely met, given the existence of groundwater flows going beyond the catchment limits. The assessment of interbasin groundwater flows is crucial when managing water resources in areas where baseflows are mainly formed by groundwater, especially when catchments are managed separately. Aiming at estimating the volume and direction of the main groundwater flows, this work presents a new methodological approach for hydrological modeling. This approach employs a semi-distributed water balance model created with lumped models. This model is formulated in such a way that a part of the groundwater discharge of a specific catchment can become baseflows in other catchments, which helps characterize interbasin groundwater flows. This methodology is applied in the headwater of the Segura River Basin (southeast of Spain), where groundwater plays an important role in surface hydrology. The catchments are modeled with a high goodness of fit, and the main interbasin groundwater flows between them is evaluated, proving its importance in the characterization of hydrological modeling.

Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

2014-11-01

89

A correction on coastal heads for groundwater flow models.  

PubMed

We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((??+?1)/?)hs ?-?B/2?, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and ? is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+?/?. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models. PMID:24571623

Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Luo, Jian

2015-01-01

90

Effects of linking a soil-water-balance model with a groundwater-flow model  

USGS Publications Warehouse

A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

2013-01-01

91

Hydraulics Analysis for Groundwater Flow Through Permeable Reactive Barriers  

Microsoft Academic Search

Groundwater flow modelling is an important tool in simulating and predicting hydraulic behaviour of groundwater transporting\\u000a in the domain consisted of groundwater flow zone (aquifer) and permeable reactive barriers (PRBs). The aquifer regime is modelled\\u000a using the Darcy equation, whereas PRBs are simulated by the Brinkman equation. By combining the above equations, the present\\u000a paper is devoted to analyse the

Shejiang Liu; Xingang Li; Hongxing Wang

92

Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry  

NASA Astrophysics Data System (ADS)

In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br -:Cl - ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca-HCO 3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20-30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.

Kagabu, Makoto; Shimada, Jun; Delinom, Robert; Tsujimura, Maki; Taniguchi, Makoto

2011-01-01

93

Thermally Induced Groundwater Flow Resulting from an Underground Nuclear Test  

SciTech Connect

The authors examine the transient residual thermal signal resulting from an underground nuclear test (buried below the water table) and its potential to affect local groundwater flow and radionuclide migration in a saturated, fractured, volcanic aquifer system. Thermal profiles measured in a drillback hole between 154 days and 6.5 years after the test have been used to calibrate a non-isothermal model of fluid flow. In this process, they have estimated the magnitude and relative changes in permeability, porosity and fracture density between different portions of the disturbed and undisturbed geologic medium surrounding the test location. The relative impacts of buoyancy forces (arising from the thermal residual of the test and the background geothermal gradient) and horizontal pressure gradients on the post-test flow system are better understood. A transient particle/streamline model of contaminant transport is used to visualize streamlines and streaklines of the flow field and to examine the migration of non-reactive radionuclides. Sensitivity analyses are performed to understand the effects of local and sub-regional geologic features, and the effects of fractured zones on the movement of groundwater and thermal energy. Conclusions regarding the overall effect of the thermal regime on the residence times and fluxes of radionuclides out of the system are drawn, and implications for more complicated, reactive contaminant transport are discussed.

Maxwell, R.M.; Tompson, A.F.B.; Rambo, J.T.; Carle, S.F.; Pawloski, G.A.

2000-12-16

94

Heat transfer from a solar pond through saturated groundwater flow  

SciTech Connect

Heat losses from a salt gradient solar pond through saturated groundwater flow was studied by developing a finite difference computer model. The first part of the model calculates the rate of the seepage from the solar pond and measures the velocity components for the nodes of the hydraulic flownet created by the seepage flow. The second part of the model solves the time dependent two dimensional energy equation to predict the time dependent temperature distribution under a solar pond and estimates the amount of the at loss by conduction and the mass flow. The model can be applied to unlined solar pond where the heat loss is by conduction as well as convection (mass flow). It also may be applied to a lined solar pond where the heat loss by convection is neglected. Sensitivity analysis for the model was done by studying the rate of the heat loss, applying (1) different solar pond lower zone temperatures, (2) different hydraulic conductivities, (3) different groundwater velocities, and (4) different sizes of the solar pond.

Dadkhah, A.

1985-01-01

95

Effect of Fractures on Groundwater Flow Patterns  

NSDL National Science Digital Library

The goal of this exercise is to have students gain an understanding of how fractures affect groundwater flow patterns. In order for them to complete the activity, they need some background on characteristic fracture patterns in different rock types. This background could be provided in a variety of ways depending on geographic location and outcrop availability. If outcrops of crystalline and sedimentary sequences are available, you could take students in the field and have them observe (and perhaps sketch) the differing fracture patterns. If geology (and or weather) preclude this option, the students could observe fracture patterns from slides of outcrops (see slides in accompanying PowerPoint Presentation). The classroom portion of the exercise uses a simple 2D numerical model (TopoDrive, available from USGS) to simulate flow in three aquifers: 1) homogeneous isotropic, 2) fractured crystalline, and 3) fractured sedimentary sequences. The task is to observe how the fracture patterns alter the flow patterns as compared to the homogeneous, isotropic simulation. The activity gives students practice in integrating geologic data into numerical models, describing flow patterns, and using computer technology. The activity also integrates knowledge from structural geology with hydrogeology.

Maureen Muldoon

96

Hydrodynamic modelling for groundwater flow through permeable reactive barriers  

NASA Astrophysics Data System (ADS)

Hydrodynamic modelling for analysis of groundwater flow through permeable reactive barriers (PRBs) is addressed in this paper. Permeable reactive barriers constitute an emerging technology for in situ remediation of groundwater contamination and have many advantages over the traditional ex situ treatment methods. The transport domains during groundwater flow through PRBs often may involve free-flow or non-porous sections. To model the fluid mobility efficiently in such situations, the free and porous flow zones (PRBs) must be studied in conjunction with each other. The present paper is devoted to the analysis of groundwater flow through combined free flow domains and PRBs. The free-flow regime is modelled using the Navier-Stokes equations whereas the permeable barriers are simulated by either the Darcy or the Brinkman equation. In order to couple the governing equations of motions, well-posed mathematical formulations of matching boundary conditions are prescribed at the interface between the free-groundwater-flow zones and the permeable barriers. Combination of the Navier-Stokes equations with the Brinkman equation is more straightforward owing to their analogous forms. However, the Navier-Stokes and Darcy equations are incompatible mathematically and cannot be linked directly. The problem is resolved in this paper by invoking validated hydrodynamical expressions for describing the flow behaviour at the interfaces between free-flow and porous zones. Three schemes for the analyses of fluid flow in combined domains are applied to the case of groundwater flow through permeable reactive barriers and different model results are compared.

Das, Diganta Bhusan

2002-12-01

97

Using 14C and 3H to understand groundwater flow and recharge in an aquifer window  

NASA Astrophysics Data System (ADS)

Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, ?13C, ?18O, ?2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower ?18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

2014-12-01

98

Rapid, cost-effective estimation of groundwater age based on hydrochemistry  

NASA Astrophysics Data System (ADS)

In order to manage and protect groundwater resources, the complex and diverse recharge, mixing and flow processes occurring in groundwater systems need to be better understood. Groundwater age information can give valuable information on groundwater flow, recharge sources, and aquifer volumes. However current groundwater dating techniques, for example tracers such as tritium or CFCs, or hydrological models, have limitations and method specific application ranges and uncertainties. Due to this, ambiguous age interpretation is a problem. New technique(s) are essential to overcome limitations and complement existing methods. The aim of this study is to advance the use of hydrochemistry for groundwater dating. To date, hydrochemistry has only been applied sparsely to support groundwater age determination, despite its wide availability from national groundwater monitoring programs. This is due to the lack of any established distinct relationships between hydrochemistry and groundwater age. Establishing these is complex, since hydrochemistry is influenced by complex interrelationships of aquifer specific processes. Therefore underlying processes, such as mineral weathering and redox reactions, and diverse reactions, such as quartz dissolution, are not directly interpretable from hydrochemistry data. Additionally reaction kinetics (of e.g. quartz dissolution) are often aquifer specific, and field data are sparse; furthermore data gained in laboratory environments are difficult to relate back to field situations as comparative studies have found lab and field measurements can differ by orders of magnitude. We wish to establish relationships between hydrochemistry and groundwater age, to allow hydrochemical data to better inform groundwater dating through two separate approaches. Firstly relationships between groundwater age (determined by state of the art dating techniques) and single hydrochemistry parameters, such as silica concentration, can be established in a given aquifer. This relation can then be used in the same or similar aquifer to infer groundwater age from given hydrochemistry. Secondly specific reaction rates of underlying reactions, such as quartz dissolution, can be determined and used to determine specific and ';generic' reaction rates for field environments. We postulate this may in future lead to groundwater dating directly from specific hydrochemistry data in any given aquifer by using ';generic' kinetics. To illustrate these two approaches, regularly measured hydrochemistry data and estimates of groundwater age inferred from tritium, SF6 and CFC-12 within the Lower Hutt Groundwater Zone, a gravel aquifer in Wellington, New Zealand, are used. Correlations of hydrochemistry parameters and groundwater age are presented. Hierarchical Cluster and Factor Analysis are used to investigate major processes which caused the given hydrochemistry. Inverse modelling is used to identify specific underlying reactions, such as weathering of quartz. Reaction kinetics are investigated and results presented.

Beyer, M.; Morgenstern, U.; Jackson, B. M.; Daughney, C.

2013-12-01

99

Groundwater dating for understanding nitrogen in groundwater systems - Time lag, fate, and detailed flow path ways  

NASA Astrophysics Data System (ADS)

Nitrate contamination of groundwater is a problem world-wide. Nitrate from land use activities can leach out of the root zone of the crop into the deeper part of the unsaturated zone and ultimately contaminate the underlying groundwater resources. Nitrate travels with the groundwater and then discharges into surface water causing eutrophication of surface water bodies. To understand the source, fate, and future nitrogen loads to ground and surface water bodies, detailed knowledge of the groundwater flow dynamics is essential. Groundwater sampled at monitoring wells or discharges may not yet be in equilibrium with current land use intensity due to the time lag between leaching out of the root zone and arrival at the sampling location. Anoxic groundwater zones can act as nitrate sinks through microbial denitrification. However, the effect of denitrification on overall nitrate fluxes depends on the fraction of the groundwater flowing through such zones. We will show results from volcanic aquifers in the central North Island of New Zealand where age tracers clearly indicate that the groundwater discharges into large sensitive lakes like Lake Taupo and Lake Rotorua are not yet fully realising current land use intensity. The majority of the water discharging into these lakes is decades and up to over hundred years old. Therefore, increases in dairy farming over the last decades are not yet reflected in these old water discharges, but over time these increased nitrate inputs will eventually work their way through the large groundwater systems and increasing N loads to the lakes are to be expected. Anoxic zones are present in some of these aquifers, indicating some denitrification potential, however, age tracer results from nested piezo wells show young groundwater in oxic zones indicating active flow in these zones, while anoxic zones tend to have older water indicating poorer hydraulic conductivity in these zones. Consequently, to evaluate the effect of denitrification on nitrate fluxes it is insufficient to consider only the spatial distribution of oxic and anoxic zones; the flow through these zones needs to be quantified. If the majority of groundwater passes through the oxic zones rather the anoxic zones, insignificant N attenuation must be expected. Our results indicate about an order of magnitude lower vertical flow velocity and flux through anoxic zones compared to oxic zones. The age distribution of the groundwater allows identification of groundwater flow path ways, which in the Lake Taupo catchment is characterised by high piston flow, indicating groundwater flow between widely connected impermeable layers, probably paleosol layers. Groundwater dating has become an important tool for management of nitrate contamination.

Morgenstern, Uwe; Hadfield, John; Stenger, Roland

2014-05-01

100

Groundwater-flow and land-subsidence model of Antelope Valley, California  

USGS Publications Warehouse

The groundwater-flow model of the basin was discretized horizontally into a grid of 130 rows and 118 columns of square cells 1 kilometer (0.621 mile) on a side, and vertically into four layers representing the upper (two layers), middle (one layer), and lower (one layer) aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915–95, by using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley groundwater basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of groundwater-flow and land-subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during

Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

2014-01-01

101

Groundwater balance estimation in karst by using simple conceptual rainfall-runoff model  

NASA Astrophysics Data System (ADS)

The objective of this work is the study of Opa?ac karst spring which geographically lies in Dalmatia (Croatia). Numerous studies have been carried out in karst aiming the investigation of groundwater regime. The karst spring hydrograph can reflect the groundwater regime and consequently the analysis is based on them. A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components including the influences of time invariant catchment boundaries and intercatchment flows. The proposed parameter estimation procedure merges the soil-moisture balance and the groundwater balance approaches to obtain the complete groundwater budget. The effective rainfall is calculated by using mathematical model based on soil-moisture balance equations i.e. Palmer's fluid mass balance method. The parameters of model of effective rainfall are determined by using simple conceptual rainfall-runoff model consisting of two linear reservoirs representing the fast and slow flow component of the recession. The weight coefficient between the fast and slow component is determined by using BFI (Base Flow Index) analysis of hydrograph. Recession coefficient of the slow flow component and the weight coefficient are determined from hydrograph analysis. Available data from nearby meteorological station includes on daily basis daily average discharge, the amount of precipitation, the average temperature and the humidity from 1995-2010. The average catchment area is also estimated with the average yearly runoff deficit using Turc's method and compared with the values obtained from the application of the rainfall-runoff model. Nash-Sutcliffe model efficiency coefficient for simulated hydrograph is applied to assess the predictive power of model. Calculated groundwater balance shows that the Opa?ac Spring aquifer contains a significant storage capacity. The application of series of linear reservoirs is a classical and common technique, but the proposed simple approach enables the estimation of the components of groundwater balance in karst areas.

Željkovi?, Ivana; Kadi?, Ana; Deni?-Juki?, Vesna

2014-05-01

102

Groundwater  

NSDL National Science Digital Library

Groundwater plays a central role in the environment and many communities around the world depend on it. This radio broadcast explores the importance of groundwater in our lives. Most freshwater resources are stored naturally as groundwater, a substantial portion of the public water supply is taken from this source, and in drier regions, many communities are totally dependent upon it. Although totally hidden from view, groundwater plays a central role in the environment, maintaining wetlands and river flows through prolonged dry periods. However, to many people who rely upon it, groundwater remains a subject of mystery. How does groundwater occur and where can it be found? How is it used and how do people care for it? Is the way that people behave on the land posing a huge risk to its natural pristine quality and how can science and technology help in the way we treat, use, and preserve groundwater? The broadcast is 30 minutes in length.

103

Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks  

E-print Network

Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks is influenced by topography, but in fractured and dipping sedimentary rocks, it is also influenced by structure sedimentary rocks: Insights from numerical models, Water Resour. Res., 43, W01409, doi:10.1029/2006WR004864. 1

Toran, Laura

104

Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone  

NASA Astrophysics Data System (ADS)

Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. Initial results show that IRENE can accurately predict surface water-groundwater flow and salinity interactions in coastal areas. Important research issues that can be investigated using IRENE include: (a) sea level rise and tidal effects on aquifer salinisation and the configuration of the saltwater wedge, (b) the effects of surface water-groundwater interaction on salinity increase of coastal wetlands and (c) the estimation of the location and magnitude of groundwater discharge to coasts. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Gunduz, O. and Aral, M.M. (2005). River networks and groundwater flow: a simultaneous solution of a co

Spanoudaki, Katerina; Kampanis, Nikolaos A.

2014-05-01

105

MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process  

USGS Publications Warehouse

MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

2000-01-01

106

Regional Groundwater Flow in the Louisville Aquifer.  

PubMed

The unconfined alluvial aquifer at Louisville, Kentucky, is an important source of water for domestic and industrial uses. It has been the object of several modeling studies in the past, particularly via the application of classical analytical solutions, and numerical solutions (finite differences and finite elements). A new modeling procedure of the Louisville aquifer is presented based on a modification of Adomian's Decomposition Method (ADM) to handle irregularly shaped boundaries. The new approach offers the simplicity, stability, and spatial continuity of analytical solutions, in addition to the ability to handle irregular boundaries typical of numerical solutions. It reduces to the application of a simple set of algebraic equations to various segments of the aquifer. The calculated head contours appear in reasonably agreement with those of previous studies, as well as with those from measured head values from the U.S. Geological Survey field measurement program. A statistical comparison of the error standard deviation is within the same range as that reported in previous studies that used complex numerical solutions. The present methodology could be easily implemented in other aquifers when preliminary results are needed, or when scarce hydrogeologic information is available. Advantages include a simple approach for preliminary groundwater modeling; an analytic description of hydraulic heads, gradients, fluxes, and flow rates; state variables are described continuously over the spatial domain; complications from stability and numerical roundoff are minimized; there is no need for a numerical grid or the handling of large sparse matrices; there is no need to use specialized groundwater software, because all calculations may be done with standard mathematics or spreadsheet programs. Nonlinearity, the effect of higher order terms, and transient simulations could be included if desired. PMID:25070643

Tiaif, Syafrin; Serrano, Sergio E

2014-07-28

107

Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California  

USGS Publications Warehouse

Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

Leighton, David A.; Phillips, Steven P.

2003-01-01

108

Analytical studies on transient groundwater flow induced by land reclamation  

E-print Network

Analytical studies on transient groundwater flow induced by land reclamation Litang Hu,1 Jiu Jimmy materials into the sea. Land reclamation may have a significant effect on groundwater regimes, especially when the reclamation is at large scale. Analytical studies on the impact of land reclamation on steady

Jiao, Jiu Jimmy

109

The penetration depth in modelling natural groundwater flow  

Microsoft Academic Search

In this paper, we present a method that may lead to a better quantitative insight into the relation between the size (horizontal dimensions) of a natural groundwater flow modelling area and the schematization required for a numerical model. The method is based on a decomposition of the spatial variability of the groundwater table into a Fourier series. Each sinusoidal Fourier

N. H. M. Stolwijk; W. Zijl; R. Boekelman

1996-01-01

110

Groundwater  

NSDL National Science Digital Library

The resource describes groundwater. It includes a diagram of mountains, ocean, streams and lakes with red arrows indicating the flow of groundwater into the soil and into the ocean. Accompanying text describes ground water, the water table, porosity, saturation, runoff and flooding.

111

Comparison of wetland evapotranspiration estimates using diurnal groundwater fluctuations and measurements of a groundwater lysimeter  

NASA Astrophysics Data System (ADS)

Sound water management in wetlands requires knowledge of on-going processes and estimates of the water balance components. Specifically evapotranspiration is of crucial importance, as it is often the main water extracting quantity. To avoid elaborate and expensive equipment, which is often required for estimating actual values, potential evapotranspiration is frequently used, which can be easily derived from standard meteorological measurements. However, the potential values may under- or overestimate actual evapotranspiration significantly. A cheap and easy-to-use method for estimating actual values in shallow groundwater environments relies on diurnal groundwater fluctuation. Basically the 24 hours groundwater level decline, considering in some way the prevalent groundwater recovery, is multiplied by the readily available specific yield. Various varieties of this approach have been employed for that purpose, above all differing in their assumptions on groundwater recovery, i.e. lateral or vertical in- or outflow. The objective of our study is therefore to compare these different methods. For this purpose we use data of a weighable groundwater lysimeter situated at a ditch drained grassland site in the Spreewald wetland in Northeastern Germany. The groundwater level in the lysimeter was adjusted to a reference gauge and simulated the conditions of the surrounding area. Hence the lysimeter reflected near natural conditions and provided measurements of all water balance components with high temporal resolution (up to 10 minute intervals). Suitable days, i.e. with a pronounced diurnal fluctuation, of the vegetation periods 2011 and 2012 are chosen and used to prove common assumptions about groundwater recharge, e.g. if the values remain constant during the day or if diurnal variations resulting from gradient changes exist. Finally, based on the lysimeter measurements, the evapotranspiration estimates gained from different approaches that employ diurnal groundwater fluctuation are evaluated.

Fahle, Marcus; Dietrich, Ottfried; Lischeid, Gunnar

2013-04-01

112

Application of the discontinuous spectral Galerkin method to groundwater flow  

E-print Network

Application of the discontinuous spectral Galerkin method to groundwater flow Sergio Fagherazzi a that the discontinuous spectral Galerkin approximation is more efficient than the standard finite-element method (in streamlines; Discontinuous Galerkin; Spectral methods; Discontinuous transmissivity 1. Introduction Numerical

Fagherazzi, Sergio

113

GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal Wetland Hydrology, and Deep Well Injection  

E-print Network

GROUNDWATER FLOW AND TRANSPORT MODELING Application to Submarine Groundwater Discharge, Coastal, but is also lost to surface water drainage and potential submarine groundwater discharge. There are also to deal with issues such as submarine groundwater discharge and coastal wetland hydrology. SEAWAT also has

Sukop, Mike

114

Permafrost thaw in a nested groundwater-flow system  

NASA Astrophysics Data System (ADS)

Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding.

McKenzie, Jeffrey M.; Voss, Clifford I.

2013-02-01

115

Permafrost thaw in a nested groundwater-flow system  

USGS Publications Warehouse

Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

McKenzie, Jeffery M.; Voss, Clifford I.

2013-01-01

116

Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 1. Geochemical assessment  

USGS Publications Warehouse

A study was undertaken to quantitatively evaluate the hydrologic processes affecting the chemical and isotopic composition of drain lateral water in a drained agricultural field in the western San Joaquin Valley, California. The results elucidate the process of mixing of deep and shallow groundwater (below and within 6 m from land surface) entering the drain laterals. The deep groundwater was subject to evapoconcentration prior to drainage system installation and has been displaced downward (to depths greater than 6 m) in the groundwater system. The proportions of deep and shallow groundwater entering the drain laterals was calculated from the end-member oxygen 18 compositions determined in groundwater samples. The percentage of total drain lateral flow which is deep groundwater flow is about 30% for the shallow drain lateral (1.8 m below land surface) (drain lateral 1)) and 60% for the deep drain lateral (2.7 m below land surface (drain lateral 2)). During irrigation, the percentages of deep groundwater flow decrease to 0 and 30% for the shallow and deep drain laterals, respectively. Selenium concentrations in drain lateral waters decrease during irrigation but selenium loads increase. Total estimated annual loads were 1.1 and 5.4 kg of selenium for drain laterals 1 and 2, respectively. Substantial percentages of the annual load occurred during 8 days of irrigation, 23 and 9% for drain laterals 1 and 2, respectively.

Deverel, S.J.; Fio, John L.

1991-01-01

117

The old and the new: the use of classical regional groundwater flow models to address problems of the future (Invited)  

NASA Astrophysics Data System (ADS)

Achieving the sustainable use of groundwater resources is guided by knowledge of not only how much is volumetrically available but also of its age or turnover time. This information can be achieved using a variety of approaches, e.g., recharge studies, groundwater age dating, and sophisticated physics-based models. Here we highlight some recent insight based on analysis of regional groundwater flow models following the classic Toth scenarios and other related simple cases of basin flows. Analytical and numerical modeling results highlight controls of key but quantifiable parameters such as basin length and depth, water table gradient, surface permeability, and permeability and porosity-depth functions on groundwater age and residence time distribution. Further, we use these results to guide the possible estimation of the availability of ';young' groundwater, i.e., that whose age is less than 50 years. Despite of or rather because of their relative simplicity, the regional flow models allow for rapid assessment of groundwater resources.

Cardenas, M.; Befus, K. M.; Gleeson, T. P.; Hesse, M. A.; Jiang, X.; Luijendijk, E.; Toundykov, D.; Zlotnik, V. A.

2013-12-01

118

The old and the new: the use of classical regional groundwater flow models to address problems of the future (Invited)  

NASA Astrophysics Data System (ADS)

Achieving the sustainable use of groundwater resources is guided by knowledge of not only how much is volumetrically available but also of its age or turnover time. This information can be achieved using a variety of approaches, e.g., recharge studies, groundwater age dating, and sophisticated physics-based models. Here we highlight some recent insight based on analysis of regional groundwater flow models following the classic Toth scenarios and other related simple cases of basin flows. Analytical and numerical modeling results highlight controls of key but quantifiable parameters such as basin length and depth, water table gradient, surface permeability, and permeability and porosity-depth functions on groundwater age and residence time distribution. Further, we use these results to guide the possible estimation of the availability of ';young' groundwater, i.e., that whose age is less than 50 years. Despite of or rather because of their relative simplicity, the regional flow models allow for rapid assessment of groundwater resources.

Cardenas, M.; Befus, K. M.; Gleeson, T. P.; Hesse, M. A.; Jiang, X.; Luijendijk, E.; Toundykov, D.; Zlotnik, V. A.

2011-12-01

119

Combining flux estimation techniques to improve characterization of groundwater-surface-water interaction in the Zenne River, Belgium  

NASA Astrophysics Data System (ADS)

The management of urban rivers which drain contaminated groundwater is suffering from high uncertainties regarding reliable quantification of groundwater fluxes. Independent techniques are combined for estimating these fluxes towards the Zenne River, Belgium. Measured hydraulic gradients, temperature gradients in conjunction with a 1D-heat and fluid transport model, direct flux measurement with the finite volume point dilution method (FVPDM), and a numerical groundwater flow model are applied, to estimate vertical and horizontal groundwater fluxes and groundwater-surface-water interaction. Hydraulic gradient analysis, the temperature-based method, and the groundwater flow model yielded average vertical fluxes of -61, -45 and -40 mm/d, respectively. The negative sign indicates upward flow to the river. Changes in exchange fluxes are sensitive to precipitation but the river remained gaining during the examined period. The FVPDM, compared to the groundwater flow model, results in two very high estimates of the horizontal Darcy fluxes (2,600 and 500 mm/d), depending on the depth of application. The obtained results allow an evaluation of the temporal and spatial variability of estimated fluxes, thereby helping to curtail possible consequences of pollution of the Zenne River as final receptor, and contribute to the setup of a suitable remediation plan for the contaminated study site.

Dujardin, J.; Anibas, C.; Bronders, J.; Jamin, P.; Hamonts, K.; Dejonghe, W.; Brouyère, S.; Batelaan, O.

2014-07-01

120

Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003  

SciTech Connect

Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

Michael T. Moreo; and Leigh Justet

2008-07-02

121

PUMa - modelling the groundwater flow in Baltic Sedimentary Basin  

NASA Astrophysics Data System (ADS)

In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

Kalvane, G.; Marnica, A.; Bethers, U.

2012-04-01

122

Influence of vertical flows in wells on groundwater sampling.  

PubMed

Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken. PMID:24999176

McMillan, Lindsay A; Rivett, Michael O; Tellam, John H; Dumble, Peter; Sharp, Helen

2014-11-15

123

Influence of vertical flows in wells on groundwater sampling  

NASA Astrophysics Data System (ADS)

Pumped groundwater sampling evaluations often assume that horizontal head gradients predominate and the sample comprises an average of water quality variation over the well screen interval weighted towards contributing zones of higher hydraulic conductivity (a permeability-weighted sample). However, the pumping rate used during sampling may not always be sufficient to overcome vertical flows in wells driven by ambient vertical head gradients. Such flows are reported in wells with screens between 3 and 10 m in length where lower pumping rates are more likely to be used during sampling. Here, numerical flow and particle transport modeling is used to provide insight into the origin of samples under ambient vertical head gradients and under a range of pumping rates. When vertical gradients are present, sample provenance is sensitive to pump intake position, pumping rate and pumping duration. The sample may not be drawn from the whole screen interval even with extended pumping times. Sample bias is present even when the ambient vertical flow in the wellbore is less than the pumping rate. Knowledge of the maximum ambient vertical flow in the well does, however, allow estimation of the pumping rate that will yield a permeability-weighted sample. This rate may be much greater than that recommended for low-flow sampling. In practice at monitored sites, the sampling bias introduced by ambient vertical flows in wells may often be unrecognized or underestimated when drawing conclusions from sampling results. It follows that care should be taken in the interpretation of sampling data if supporting flow investigations have not been undertaken.

McMillan, Lindsay A.; Rivett, Michael O.; Tellam, John H.; Dumble, Peter; Sharp, Helen

2014-11-01

124

Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California  

SciTech Connect

Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

Davisson, M.L.; Criss, R.E.

1995-01-01

125

Quantitative dye-tracing of karst ground-water flow  

USGS Publications Warehouse

Analysis of the results of repeat quantitative dye traces between a sinkhole and a spring used for public water supply were used to describe predictive relations between discharge, mean travel time, apparent ground-water flow velocity and solute transport characteristics. Normalized peak concentration, mean travel time, and standard deviation of travel times were used to produce a dimensionless, composite type curve that was used to produce a dimensionless, composite type curve that was used to simulate solute transport characteristics for selected discharges. Using this curve and previously developed statistical relations, a water manager can estimate the arrival time, peak concentration, and persistence of a soluble contaminant at a supply spring or well based on discharge and the quantity of spilled contaminant.

Smoot, James; Mull, Donald; Liebermann, Timothy

1989-01-01

126

Estimation of evapotranspiration using diurnal groundwater level fluctuations: Comparison of different approaches with groundwater lysimeter data  

NASA Astrophysics Data System (ADS)

In wetlands or riparian areas, water withdrawal by plants with access to groundwater or the capillary fringe often causes diurnal groundwater fluctuations. Various approaches use the characteristics of these fluctuations for estimation of daily groundwater evapotranspiration rates. The objective of this paper was to review the available methods, compare them with measured evapotranspiration and assess their recharge assumptions. For this purpose, we employed data of 85 rain-free days of a weighable groundwater lysimeter situated at a grassland site in the Spreewald wetland in north-east Germany. Measurements of hourly recharge and daily evapotranspiration rates were used to assess the different approaches. Our results showed that a maximum of 50% of the day to day variance of the daily evapotranspiration rates could be explained by the approaches based on groundwater fluctuations. Simple and more complex methods performed similarly. For some of the approaches, there were indications that erroneous assumptions compensated each other (e.g., when overestimated recharge counteracted underestimated storage change). We found that the usage of longer time spans resulted in improved estimates of the daily recharge rates and that the estimates were further enhanced by including two night averages. When derived from fitting estimates of recharge or evapotranspiration with according measurements the specific yield, needed to convert changes in water level to water volumes, differed considerably among the methods (from 0.022 to 0.064). Thus, the specific yield can be seen as "correction factor" that compensates for inadequate process descriptions.

Fahle, Marcus; Dietrich, Ottfried

2014-01-01

127

Estimation of submarine groundwater discharge to Osaka Bay, Japan by numerical simulation  

NASA Astrophysics Data System (ADS)

Urbanization induces a rapid direct runoff and less rainwater recharge to shallow groundwater. In order to manage water resource in a basin scale, it is important to estimate local hydrological cycle depending on land use. Therefore, understanding the water flow, such as direct runoff and groundwater discharge is essential since these are important hydrological components of water resource management (Carl. E. R et al., 2003). Besides, coastal environment deterioration caused by nutrient discharge from the land area is a serious problem. Previous research made in the last decades has shown that direct groundwater discharge to coastal zone is a significant pathway of water and nutrient form land to ocean (Moore, 1996). For instance, groundwater discharge has often contained higher chronic inputs, which is from fertilizers and sewage. Therefore, groundwater discharge often makes the significant effect to coastal marine eutrophication (Taniguchi, 2002). This study focuses on the environmental rehabilitation of Osaka Bay, Japan, where eutrophication has been occurred recently. It is recognized that this problem is caused by an increase of the nutrient input, as fertilizers and wastewater, through direct runoff and groundwater discharge from the residential, industrial and agricultural areas in Osaka Bay catchment. However, groundwater discharge has not yet been quantified as the pathway of nutrients input in this area. In a present study, a simple but efficient approach is proposed in order to estimate groundwater discharge from the basin by water budget analysis. The groundwater recharge model was applied to calculate hydrological components, such as direct runoff, groundwater recharge and evapotranspiration in the basin. Water balance analysis is effective method to estimate the groundwater discharge from a river basin to sea. However, it is often difficult to estimate the exact SGD flux with water budget analysis in a large area. Therefore, it is necessary to develop a new model considering groundwater flow and saltwater intrusion (density effect). In the present study, the three dimensional fresh/salt water flow equation is applied in order to describe the processes of SGD to the sea using SEAWAT (Langevin et al., 2003). The developed model can be used to scale up the measured seepage meter values to a large catchment. The catchment water balance for a planned basin of Osaka Bay, which is located at west of Kyushu Island, Japan, is studied by the suggested method simultaneous analysis of both surface runoff and groundwater flow. In the modelling, the aquifer is divided into ten confined aquifers and an overlying phreatic aquifer separated by a semi permeable layer. The calculation area of the lower sub-confined aquifer is extended until the sea bottom to describe a SGD. The results shows that the annual river discharges and groundwater levels agree reasonably well with the observed values. The model is suitable for the scale-up estimation of SGD to the ocean or semi-closed inner bay from large scale basins.

Yasumoto, J.; Nakaya, S.; Mitamura, M.; Takahashi, M.; Onodera, S.; Taniguchi, M.

2009-12-01

128

Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method  

SciTech Connect

Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

Cooper, Clay A [DRI] [DRI; Hershey, Ronald L [DRI] [DRI; Healey, John M [DRI] [DRI; Lyles, Brad F [DRI] [DRI

2013-07-01

129

Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model  

SciTech Connect

The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

B. Arnold; T. Corbet

2001-12-18

130

Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies  

NASA Astrophysics Data System (ADS)

The present work deals with determination groundwater flows in the Amazon region, based on analysis of geothermal data acquired in shallow and deep wells. The method employed is based on the model of simultaneous heat transfer by conduction and advection in permeable media. Analysis of temperature data acquired in water wells indicates down flows of groundwaters with velocities in excess of 10-7 m/s at depths less than 300 m in the Amazonas basin. Bottom-hole temperature (BHT) data sets have been used in determining characteristics of fluid movements at larger depths in the basins of Acre, Solimões, Amazonas, Marajó and Barreirinhas. The results of model simulations point to down flow of groundwaters with velocities of the order of 10-8 to 10-9 m/s, at depths of up to 4000 m. No evidence has been found for up flow typical of discharge zones. The general conclusion compatible with such results is that large-scale groundwater recharge systems operate at both shallow and deep levels in all sedimentary basins of the Amazon region. However, the basement rock formations of the Amazon region are relatively impermeable and hence extensive down flow systems through the sedimentary strata are possible only in the presence of generalized lateral movement of groundwater in the basal parts of the sedimentary basins. The direction of this lateral flow, inferred from the basement topography and geological characteristics of the region, is from west to east, following roughly the course of surface drainage system of the Amazon River, with eventual discharge into the Atlantic Ocean. The estimated flow rate at the continental margin is 3287 m3/s, with velocities of the order of 218 m/year. It is possible that dynamic changes in the fluvial systems in the western parts of South American continent have been responsible for triggering alterations in the groundwater recharge systems and deep seated lateral flows in the Amazon region.

Pimentel, Elizabeth T.; Hamza, Valiya M.

2012-08-01

131

A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California  

USGS Publications Warehouse

This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

2006-01-01

132

A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California  

SciTech Connect

This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

2006-05-16

133

Estimates of vertical hydraulic conductivity and regional ground-water flow rates in rocks of Jurassic and Cretaceous age, San Juan Basin, New Mexico and Colorado  

USGS Publications Warehouse

The San Juan structural basin northwestern New Mexico was modeled in three dimensions using a finite-difference, steady-state model. The modeled space was divided into seven layers of square prisms that were 6 miles on a side in the horizontal directions. In the vertical direction, the layers of prisms ranged in thickness from 300 to 1,500 feet. The model included the geologic section between the base of the Entrada Sandstone and the top of Mesaverde Group. Principal aquifers in this section are mostly confined and include the Entrada Sandstone, the Westwater Canyon Member of the Morrison Formation , and the Gallup Sandstone. Values for vertical hydraulic conductivities from 10 to the minus 12th power to 10 to the minus 11th power feet per second for the confining layers gave a good simulation of head differences between layers, but a sensitivity analysis indicated that these values could be between 10 and 100 times greater. The model-derived steady-state flow was about 30 cubic feet per second. About one-half of the flow was in the San Juan River drainage basin about one-third in the Rio Grande drainage basin, and one-sixth in the Puerco River drainage basin. (USGS)

Frenzel, P.F.; Lyford, F.P.

1982-01-01

134

Estimation of urban-enhanced infiltration and groundwater recharge, Sierra Vista subbasin, southeast Arizona USA  

NASA Astrophysics Data System (ADS)

This dissertation reports on the methods and results of a three-phased investigation to estimate the annual volume of ephemeral-channel-focused groundwater recharge attributable to urbanization (urban-enhanced groundwater recharge) in the Sierra Vista subwatershed of southeastern Arizona, USA. Results were used to assess a prior estimate. The first research phase focused on establishment of a study area, installation of a distributed network of runoff gages, gaging for stage, and transforming 2008 stage data into time series of volumetric discharge, using the continuous slope-area method. Stage data were collected for water years 2008 - 2011. The second research phase used 2008 distributed runoff data with NWS DOPPLER RADAR data to optimize a rainfall-runoff computational model, with the aim of identifying optimal site-specific distributed hydraulic conductivity values and model-predicted infiltration. The third research phase used the period-of-record runoff stage data to identify study-area ephemeral flow characteristics and to estimate channel-bed infiltration of flow events. Design-storm modeling was used to identify study-area predevelopment ephemeral flow characteristics, given the same storm event. The difference between infiltration volumes calculated for the two cases was attributed to urbanization. Estimated evapotranspiration was abstracted and the final result was equated with study-area-scale urban-enhanced groundwater recharge. These results were scaled up to the Sierra Vista subwatershed: the urban-enhanced contribution to groundwater recharge is estimated to range between 3270 and 3635 cubic decameters (between 2650 and 2945 acre-feet) per year for the period of study. Evapotranspirational losses were developed from estimates made elsewhere in the subwatershed. This, and other sources of uncertainty in the estimates, are discussed and quantified if possible.

Stewart, Anne M.

135

Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data  

NASA Astrophysics Data System (ADS)

Seepage flux from ephemeral streams can be an important component of the water balance in arid and semiarid regions. An emerging technique for quantifying this flux involves the measurement and simulation of a flood wave as it moves along an initially dry channel. This study investigates the usefulness of including surface water and groundwater data to improve model calibration when using this technique. We trialed this approach using a controlled flow event along a 1387 m reach of artificial stream channel. Observations were then simulated using a numerical model that combines the diffusion-wave approximation of the Saint-Vénant equations for streamflow routing, with Philip's infiltration equation and the groundwater flow equation. Model estimates of seepage flux for the upstream segments of the study reach, where streambed hydraulic conductivities were approximately 101 m d-1, were on the order of 10-4 m3 d-1 m-2. In the downstream segments, streambed hydraulic conductivities were generally much lower but highly variable (˜10-3 to 10-7 m d-1). A Latin Hypercube Monte Carlo sensitivity analysis showed that the flood front timing, surface water stage, groundwater heads, and the predicted streamflow seepage were most influenced by specific yield. Furthermore, inclusion of groundwater data resulted in a higher estimate of total seepage estimates than if the flood front timing were used alone.

Noorduijn, Saskia L.; Shanafield, Margaret; Trigg, Mark A.; Harrington, Glenn A.; Cook, Peter G.; Peeters, L.

2014-02-01

136

The importance of groundwater flow in thawing permafrost systems  

NASA Astrophysics Data System (ADS)

Arctic hydrology systems are undergoing rapid changes due to climate change, such as increases in arctic river discharge and carbon export, and the disappearance of arctic lakes. As permafrost (ranging from several meters to hundreds of meters in thickness) thaws from above, a deeper seasonal active zone (the shallow subsurface layer that freezes and thaws annually) develops, and more through-going thawed zones (i.e. taliks) develop that connect the supra- and sub-permafrost zones. These unfrozen pathways can allow a dramatic increase of interaction between groundwater and surface water. Despite this potential for increasing groundwater movement in warming arctic environments, predictive models of permafrost thaw and distribution generally consider only the conduction of heat through the subsurface, and do not incorporate advective heat transport (movement of heat due to flow). To understand these systems and potential feedbacks, the SUTRA numerical groundwater model, which couples groundwater flow and heat transport, was modified to include freezing processes. When temperatures are below freezing, the model simulates variable saturation, permeability, and thermal properties as a function of ice saturation, and includes the latent heat of formation of ice. We simulated groundwater flow and permafrost thawing across a four-kilometer-long hillslope cross section, with sinusoidal hills and valleys, which has an initially continuous permafrost layer. The mean air-temperature increases by 0.5 oC per 100 years for 1600 years, and temperature is constant thereafter. This long-term warming trend is superimposed on a seasonal ±10 oC temperature variation that drives the yearly freeze/thaw cycle in the shallow subsurface. Simulation results compare changes in permafrost distribution over a few thousand years of climate change due to (1) purely conductive heat transport (equivalent to essentially no groundwater flow) and (2) advective-conductive heat transport (equivalent to regions with significant groundwater flow). The results indicate that where groundwater flows, the advective transport of heat enhances the rate at which permafrost thaws, increasing transmissivity and the movement of warmer recharge water and deep water, further increasing the rate at which the edges of the permafrost warm and thaw, in a positive feedback. Where groundwater flows, it is a significant control on the rate of thaw and pattern of residual permafrost in the landscape.

McKenzie, J. M.; Voss, C. I.

2011-12-01

137

An improved time series approach for estimating groundwater recharge from groundwater level fluctuations  

NASA Astrophysics Data System (ADS)

An analytical solution to a linearized Boussinesq equation is extended to develop an expression for groundwater drainage using estimations of aquifer parameters. This is then used to develop an improved water table fluctuation (WTF) technique for estimating groundwater recharge. The resulting method extends the standard WTF technique by making it applicable, as long as aquifer properties for the area are relatively well known, in areas with smoothly varying water tables and is not reliant on precipitation data. The method is validated against numerical simulations and a case study from a catchment where recharge is "known" a priori using other means. The approach may also be inverted to provide initial estimates of aquifer parameters in areas where recharge can be reliably estimated by other methods.

Cuthbert, M. O.

2010-09-01

138

Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)  

SciTech Connect

In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

1996-09-01

139

Control on groundwater flow in a semiarid folded and faulted intermountain basin  

USGS Publications Warehouse

The major processes controlling groundwater flow in intermountain basins are poorly understood, particularly in basins underlain by folded and faulted bedrock and under regionally realistic hydrogeologic heterogeneity. To explore the role of hydrogeologic heterogeneity and poorly constrained mountain hydrologic conditions on regional groundwater flow in contracted intermountain basins, a series of 3-D numerical groundwater flow models were developed using the South Park basin, Colorado, USA as a proxy. The models were used to identify the relative importance of different recharge processes to major aquifers, to estimate typical groundwater circulation depths, and to explore hydrogeologic communication between mountain and valley hydrogeologic landscapes. Modeling results show that mountain landscapes develop topographically controlled and predominantly local-scale to intermediate-scale flow systems. Permeability heterogeneity of the fold and fault belt and decreased topographic roughness led to permeability controlled flow systems in the valley. The structural position of major aquifers in the valley fold and fault belt was found to control the relative importance of different recharge mechanisms. Alternative mountain recharge model scenarios showed that higher mountain recharge rates led to higher mountain water table elevations and increasingly prominent local flow systems, primarily resulting in increased seepage within the mountain landscape and nonlinear increases in mountain block recharge to the valley. Valley aquifers were found to be relatively insensitive to changing mountain water tables, particularly in structurally isolated aquifers inside the fold and fault belt.

Ball, Lyndsay B.; Caine, Jonathan S.; Ge, Shemin

2013-01-01

140

Controls on groundwater flow in a semiarid folded and faulted intermountain basin  

NASA Astrophysics Data System (ADS)

The major processes controlling groundwater flow in intermountain basins are poorly understood, particularly in basins underlain by folded and faulted bedrock and under regionally realistic hydrogeologic heterogeneity. To explore the role of hydrogeologic heterogeneity and poorly constrained mountain hydrologic conditions on regional groundwater flow in contracted intermountain basins, a series of 3-D numerical groundwater flow models were developed using the South Park basin, Colorado, USA as a proxy. The models were used to identify the relative importance of different recharge processes to major aquifers, to estimate typical groundwater circulation depths, and to explore hydrogeologic communication between mountain and valley hydrogeologic landscapes. Modeling results show that mountain landscapes develop topographically controlled and predominantly local-scale to intermediate-scale flow systems. Permeability heterogeneity of the fold and fault belt and decreased topographic roughness led to permeability controlled flow systems in the valley. The structural position of major aquifers in the valley fold and fault belt was found to control the relative importance of different recharge mechanisms. Alternative mountain recharge model scenarios showed that higher mountain recharge rates led to higher mountain water table elevations and increasingly prominent local flow systems, primarily resulting in increased seepage within the mountain landscape and nonlinear increases in mountain block recharge to the valley. Valley aquifers were found to be relatively insensitive to changing mountain water tables, particularly in structurally isolated aquifers inside the fold and fault belt.

Ball, Lyndsay B.; Caine, Jonathan Saul; Ge, Shemin

2014-08-01

141

Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA  

NASA Astrophysics Data System (ADS)

SummaryRegional ground-water recharge estimates for Minnesota were compared to estimates made on the basis of four local- and basin-scale methods. Three local-scale methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three approaches, and age dating of ground water) yielded point estimates of recharge that represent spatial scales from about 1 to about 1000 m 2. A fourth method (RORA, a basin-scale analysis of streamflow records using a recession-curve-displacement technique) yielded recharge estimates at a scale of 10-1000s of km 2. The RORA basin-scale recharge estimates were regionalized to estimate recharge for the entire State of Minnesota on the basis of a regional regression recharge (RRR) model that also incorporated soil and climate data. Recharge rates estimated by the RRR model compared favorably to the local and basin-scale recharge estimates. RRR estimates at study locations were about 41% less on average than the unsaturated-zone water-balance estimates, ranged from 44% greater to 12% less than estimates that were based on the three WTF approaches, were about 4% less than the age dating of ground-water estimates, and were about 5% greater than the RORA estimates. Of the methods used in this study, the WTF method is the simplest and easiest to apply. Recharge estimates made on the basis of the UZWB method were inconsistent with the results from the other methods. Recharge estimates using the RRR model could be a good source of input for regional ground-water flow models; RRR model results currently are being applied for this purpose in USGS studies elsewhere.

Delin, Geoffrey N.; Healy, Richard W.; Lorenz, David L.; Nimmo, John R.

2007-02-01

142

Complex groundwater flow systems as traveling agent models  

PubMed Central

Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

2014-01-01

143

Complex groundwater flow systems as traveling agent models.  

PubMed

Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

López Corona, Oliver; Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

2014-01-01

144

A Method to Evaluate Groundwater flow system under the Seabed  

NASA Astrophysics Data System (ADS)

A rapid increase of population in the world causes growth of water demands, and this may result worldwide water shortage in future. Especially, in the coastal area, water resource development becomes important because the half of the world population is concentrated in this area. Recently, countermeasures to mitigate climate change are discussed. Coastal area is one of the promising places for disposal of high-level nuclear waste or carbon dioxide capture and storage. Lots of development will be conducted in the coastal areas, however there are a lot of uncertainties remaining to understand the hydrogeological environment in there. It has been said that salt water / fresh water interface is formed in the place where meteoric fresh groundwater and salt groundwater from the ocean meet, and there is a large amount of groundwater discharge on the seafloor of the end of this interface so far. Recently, there is a lot of research about this submarine groundwater discharge because of the protection of the coastal ecosystem. In addition, there is a report that fresh water under the seabed was discovered on the continental shelf away from a present coastline by tens of kilometers in many parts of the world, because recently offshore drilling technology has been improving. Classical theory about formulation of salt water / fresh water interface could not explain completely, and consideration of longterm geochemical process (e.g., sea level fluctuations) is needed to understand this mechanism. Fresh (or brackish) groundwater under the seabed have been found on the investigation related to a seabed resources exploration in the field of coal mining, oceanic engineering works such as submarine tunnels, the atomic research, and the collection investigations of the basic data in the earth science field. A lot of fresh water under the seabed is confirmed on the offshore side from a present coastline as for these cases, and it is suggested that the end position of the salt water / fresh water interface (position of the submarine groundwater discharge) may appear on the seafloor. Moreover, neither the salinity concentration nor the groundwater age depends on depth. It is thought that it is because that the groundwater forms the complex flow situation through the change in a long-term groundwater flow system. The technology to understand the coastal groundwater flow consists of remote sensing, geographical features analysis, surface of the earth investigation, geophysical exploration, drilling survey, and indoor examination and the measurement. Integration of each technology is needed to interpret groundwater flow system because the one is to catch the local groundwater flow in the time series and another one is to catch the long-term and regional groundwater flow in the general situation. The purpose of this study is to review the previous research of coastal groundwater flow, and to integrate an applicable evaluation approach to understand this mechanism. In this presentation, the review of the research and case study using numerical simulation are introduced.

Kohara, N.; Marui, A.

2011-12-01

145

Automatic Time Stepping with Global Error Control for Groundwater Flow Models  

SciTech Connect

An automatic time stepping with global error control is proposed for the time integration of the diffusion equation to simulate groundwater flow in confined aquifers. The scheme is based on an a posteriori error estimate for the discontinuous Galerkin (dG) finite element methods. A stability factor is involved in the error estimate and it is used to adapt the time step and control the global temporal error for the backward difference method. The stability factor can be estimated by solving a dual problem. The stability factor is not sensitive to the accuracy of the dual solution and the overhead computational cost can be minimized by solving the dual problem using large time steps. Numerical experiments are conducted to show the application and the performance of the automatic time stepping scheme. Implementation of the scheme can lead to improvement in accuracy and efficiency for groundwater flow models.

Tang, Guoping [ORNL

2008-09-01

146

Assessing the groundwater fortunes of aquifers in the White Volta Basin, Ghana: An application of numerical groundwater flow modeling and isotopic studies  

NASA Astrophysics Data System (ADS)

Effective development and informed management of groundwater resources represent a critical opportunity for improved rural water supply in Ghana and enhanced livelihoods particularly in the northern part of the White Volta Basin, a region already prone to a myriad of water-related infirmities. If adequately developed, the resource will form a sufficient buffer against the effects of climate change/variability and foster food security and sustainable livelihoods among the largely peasant communities in the region. This research presents the results of a preliminary assessment of the hydrogeological conditions and recharge regimes of the aquifers in the Northern parts of the White Volta Basin, Ghana. Results of estimates of groundwater recharge through the conventional isotopic and mass balance techniques are presented. Details of the groundwater flow pattern and preliminary delineation of local and regional groundwater recharge areas are presented from initial simulations of the hydrogeological system with a robust groundwater flow simulation code, MODFLOW, in the Groundwater Modeling System, GMS, version 7.1. The stream flow and evapotranspiration components of the program were activated to incorporate surface flow processes, so that the resulting model represents the conditions of the entire hydrological system. The results of this study form a platform for detailed numerical assessment of the conditions of the aquifers in the area under transient conditions of fluctuating rainfall patterns in the face of climate change/variability.

Oteng, F. M.; Yidana, S. M.; Alo, C. A.

2012-12-01

147

Groundwater flow and implications for groundwater contamination north of Prewitt, New Mexico, U.S.A.  

NASA Astrophysics Data System (ADS)

In the southern San Juan Basin, New Mexico, strata of Permian and younger age dip gently toward the center of the basin. Most previous investigators believed that recharge to these strata occurred by precipitation on the outcrops and groundwater flowed downdip to the north and northeast. Recent water-level measurements in an undeveloped part of the basin near Prewitt, New Mexico, show that groundwater at shallow depths in alluvium and bedrock flows southward, opposite to the dip direction, and toward a major ephemeral drainage in a strike valley. North of this area, groundwater in deep bedrock aquifers does appear to flow northward. This information suggests that there are two groundwater circulation patterns; a shallow one controlled by topography and a deeper one controlled by geologic structure. Significant amounts of recharge to sandstone aquifers by infiltration through outcrops is unlikely due to the near-vertical exposures on cliffs, the gentle dip of the strata, and small annual precipitation. Numerical model results suggest that recharge to bedrock aquifers may be from downward leakage via aquitards over large areas and leakage from narrow alluvial aquifers in the subcrop area. The recharge mechanism is controlled by the hydraulic conductivity of the strata. As the flow path is controlled by hydraulic conductivity contrasts, geologic structure, and topography, contamination movement from surface impoundments is likely to be difficult to predict without a thorough hydrogeological site investigation.

Stephens, Daniel B.

1983-03-01

148

Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality  

NASA Astrophysics Data System (ADS)

Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.

Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

2009-05-01

149

Groundwater Table Estimation Using MODFLOW and Artificial Neural Networks  

Microsoft Academic Search

The use of numerical models to simulate groundwater flow has been addressed in many research studies during the past decade.\\u000a The main drawback with these models is their enormous and generally difficult or costly data requirements. On the other hand,\\u000a artificial neural networks (ANNs) are offering a simple but precise solution to many simulation problems. In this chapter,\\u000a the applicability

K. Mohammadi

150

Identification of groundwater flow paths in complex aquifer systems  

NASA Astrophysics Data System (ADS)

A methodology was developed and applied to the Tindouf (southwestern Algeria) and the Annaba-Bouteldja aquifers (northeastern Algeria) in order to understand better the hydrogeology of the complex aquifers despite the scarcity of the available data. Graphical representation of deuterium versus oxygen-18 and principal components analysis (PCA) are statistical techniques used to combine various disciplinary data in order to identify chemical and isotopic groups, which are in turn used to define groundwater flow paths. The results of this study agree with the generally accepted hydrogeological conceptual model of the aquifers. In addition, we obtained new results using the PCA method: (1) a description of the complex flow system by grouping various qualitative and quantitative parameters; (2) the definition and characterization of the main groundwater flow paths from their sources to the discharge zones. These flow paths are defined by their water categories, which are represented by salinity and origin of groundwater. This approach is useful for analysing aquifers despite the lack of important database and may also be helpful for studying other complex groundwater basins.

Lamouroux, Christian; Hani, Azzedine

2006-09-01

151

Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW  

USGS Publications Warehouse

Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.

Bedekar, Vivek; Niswonger, Richard G.; Kipp, Kenneth; Panday, Sorab; Tonkin, Matthew

2012-01-01

152

DEFINITION OF GROUNDWATER FLOW IN THE WATER TABLE AQUIFER OF THE  

E-print Network

#12;DEFINITION OF GROUNDWATER FLOW IN THE WATER TABLE AQUIFER OF THE SOUTHERN ANACOSTIA RIVER BASIN. 147 DEFINITION OF GROUNDWATER FLOW IN THE WATER TABLE AQUIFER OF THE SOUTHERN ANACOSTIA RIVER BASIN ............................................................................................ 26 APPENDIX #12;DEFINITION OF GROUNDWATER FLOW IN THE WATER TABLE AQUIFER OF THE SOUTHERN ANACOSTIA

District of Columbia, University of the

153

Evolution of shallow groundwater flow systems in areas of degrading V. F. Bense,1  

E-print Network

scenarios as progressive lowering of the permafrost table establishes a growing shallow groundwater flowEvolution of shallow groundwater flow systems in areas of degrading permafrost V. F. Bense,1 G as observed in many (sub-) Arctic Rivers has been attributed to a reactivation of groundwater flow systems

Bense, Victor

154

Arsenic and Antimony in Groundwater Flow Systems: A Comparative Study  

Microsoft Academic Search

Arsenic (As) and antimony (Sb) concentrations and speciation were determined along flow paths in three groundwater flow systems,\\u000a the Carrizo Sand aquifer in southeastern Texas, the Upper Floridan aquifer in south-central Florida, and the Aquia aquifer\\u000a of coastal Maryland, and subsequently compared and contrasted. Previously reported hydrogeochemical parameters for all three\\u000a aquifer were used to demonstrate how changes in oxidation–reduction

Stephanie S. Willis; Shama E. Haque; Karen H. Johannesson

155

Apparent dispersion in transient groundwater flow  

Microsoft Academic Search

This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial moments are evaluated from numerical

Daniel J. Goode; Leonard F. Konikow

1990-01-01

156

Estimation of shallow ground-water recharge in the Great Lakes basin  

USGS Publications Warehouse

This report presents the results of the first known integrated study of long-term average ground-water recharge to shallow aquifers (generally less than 100 feet deep) in the United States and Canada for the Great Lakes, upper St. Lawrence, and Ottawa River Basins. The approach used was consistent throughout the study area and allows direct comparison of recharge rates in disparate parts of the study area. Estimates of recharge are based on base-flow estimates for streams throughout the Great Lakes Basin and the assumption that base flow in a given stream is equal to the amount of shallow ground-water recharge to the surrounding watershed, minus losses to evapotranspiration. Base-flow estimates were developed throughout the study area using a single model based on an empirical relation between measured base-flow characteristics at streamflow-gaging stations and the surficial-geologic materials, which consist of bedrock, coarse-textured deposits, fine-textured deposits, till, and organic matter, in the surrounding surface-water watershed. Model calibration was performed using base-flow index (BFI) estimates for 959 stations in the U.S. and Canada using a combined 28,784 years of daily streamflow record determined using the hydrograph-separation software program PART. Results are presented for watersheds represented by 8-digit hydrologic unit code (HUC, U.S.) and tertiary (Canada) watersheds. Recharge values were lowest (1.6-4.0 inches/year) in the eastern Lower Peninsula of Michigan; southwest of Green Bay, Wisconsin; in northwestern Ohio; and immediately south of the St. Lawrence River northeast of Lake Ontario. Recharge values were highest (12-16.8 inches/year) in snow shadow areas east and southeast of each Great Lake. Further studies of deep aquifer recharge and the temporal variability of recharge would be needed to gain a more complete understanding of ground-water recharge in the Great Lakes Basin.

Neff, B.P.; Piggott, A.R.; Sheets, R.A.

2006-01-01

157

Validation Analysis of the Shoal Groundwater Flow and Transport Model  

SciTech Connect

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

A. Hassan; J. Chapman

2008-11-01

158

Bias in groundwater samples caused by wellbore flow  

USGS Publications Warehouse

Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.

Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

1989-01-01

159

Groundwater Flow Demonstration Model Activities for Grades 6-12  

NSDL National Science Digital Library

This set of activities is designed to use a demonstration model available through the Uath County Cooperative Extension Services or from Project WET. They demonstrate such concepts as aquifers, groundwater flow, water table, the relationship between groundwater and surface water, recharge, and others. A glossary and standards correlations to the Utah Core Curriculum for Science are included. The physical model can be obtained through the Utah County Cooperative Extension Service, the Utah Water Resources Education Program, or for sale from Project WET (Water Education for Teachers).

Kitt Farrell-Poe

160

A method to estimate groundwater depletion from confining layers  

USGS Publications Warehouse

Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

Konikow, L.F.; Neuzil, C.E.

2007-01-01

161

Estimated ground-water discharge by evapotranspiration, Ash Meadows Area, Nye County, Nevada, 1994  

SciTech Connect

Ground water discharges from the regional ground-water flow system that underlies the eastern part of the Nevada Test Site through numerous springs and seeps in the Ash Meadows National Wildlife Refuge in southern Nevada. The total spring discharge was estimated to be about 17,000 acre-feet per year by earlier studies. Previous studies estimated that about 10,500 acre-feet of this discharge was lost to evapotranspiration. The present study was undertaken to develop a more rigorous approach to estimating ground-water discharge in the Ash Meadows area. Part of the study involves detailed field investigation of evapotranspiration. Data collection began in early 1994. The results of the first year of study provide a basis for making preliminary estimates of ground-water discharge by evapotranspiration. An estimated 13,100 acre-feet of ground water was evapotranspired from about 6,800 acres of marsh and salt-grass. Additional 3,500 acre-feet may have been transpired from the open water and from about 1,460 acres of other areas of Ash Meadows in which field studies have not yet been made.

Nichols, W.D.; Laczniak, R.J.; DeMeo, G.A.; Rapp, T.R.

1997-05-01

162

Groundwater availability as constrained by hydrogeology and environmental flows.  

PubMed

Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources?Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications. PMID:23582026

Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

2014-01-01

163

Global estimates of submarine groundwater discharge using numerical modeling and geomatics  

NASA Astrophysics Data System (ADS)

Submarine groundwater discharge (SGD), the flow of fresh or saline groundwater to an ocean, may be a significant contributor to the water and chemical budgets of the world oceans. SGD consists of fresh, terrestrial groundwater driven by hydraulic gradients, the focus of this research, and re-circulated seawater driven by tidal pumping, wave set-up, convection and hydraulic gradients. We couple density-dependent analytical and numerical simulations of generic models of coastal topography and geology with geomatic data bases to resolve the rate and driving mechanisms of terrestrially-derived submarine groundwater discharge globally. Two analytical models lead to linear relationships between SGD and the key predictive parameters: hydraulic gradients, hydraulic conductivities, aquifer thickness and recharge. Average global geomatic parameters suggest global SGD ranges from 0.01% to 0.2% of global river run off which much lower than most previous estimates of global SGD. Quantifying submarine groundwater discharge is critical because SGD is a poorly constrained flux that can significantly contribute to eutrophication or water quality decline in coastal areas.

Luijendijk, E.; Gleeson, T.; Ferguson, G. A.

2011-12-01

164

The transition of flow patterns through critical stagnation points in two-dimensional groundwater flow  

Technology Transfer Automated Retrieval System (TEKTRAN)

A flow pattern is characterized by aquifer features and the number, type, and distribution of stagnation points (locations where the discharge is zero). This article identifies a condition for transition of flow patterns in two-dimensional groundwater flow obeying Darcy's law by examining changes in...

165

Comparison of groundwater flow model particle tracking results and isotopic data in the Leon valley, Mexico  

NASA Astrophysics Data System (ADS)

The study area is located in the Guanajuato state, north-west of Mexico City. The Leon Valley covers with groundwater its water demand estimated in about 20.6 m3/s. The constant population increase and related economic activities in the region have a steady growth in water needs. Related abstraction rate has produced an average drawdown of about 1.0 m/year in the last two decades. It suggests that present groundwater management needs to be reviewed. The groundwater management in the study area implies a possibility that abstraction will produce environmental impacts. This vital resource under stress becomes necessary to study its hydro-geologic functioning to achieve a scientific groundwater management in the valley. This investigation was based on the analysis and integration of existing information and the one generated in the field by the authors. Highlighted concepts were: i) the geologic structure of the area, ii) the hydraulic parameters and iii) the delta-deuterium and delta-oxigen-18 composition. This information was analysed integrally by means of applying a groundwater flow model (MODFLOW) and a particle-tracking model (FLOWPATH): the results were similar to flow paths and time-of travel interpretations derived from isotopic data.

Hernandez-Garcia, G.; Cortes, A. S.; Martínez-Reyes, J.; Perez-Quezadas, J.; Grupo de Hidrologia Isotopica

2013-05-01

166

Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia  

USGS Publications Warehouse

A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

2013-01-01

167

2007 Estimated International Energy Flows  

SciTech Connect

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10

168

Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania  

USGS Publications Warehouse

A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load and the uncertainty in calculated loads both decreased with lower streamflow conditions and finer-resolution sampling in June and November, the higher loads during May could indicate seasonal variability in base flow. This is consistent with flowmeter measurements indicating that there was less inflow occurring at lower streamflow conditions during June and November.

Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.

2014-01-01

169

Groundwater Flow System in Paraná Basin: Similarities with the Deep Groundwater Flow Systems of the Amazon Region  

NASA Astrophysics Data System (ADS)

The focus of the present work is in analysis of bottom-hole temperature data for oil wells in the Parana sedimentary basin, with the purpose of determining subsurface flows of groundwater through the deep strata. Analysis of the available data set have allowed identification of non-linear features in the subsurface temperature fields, indicative of the presence of vertical groundwater movements at a large number of sites in this basin. The results obtained have also contributed to improvements in the current understanding of up flow and down flow systems and in outlining the recharge and discharge systems, operating at depths extending up to a few thousand meters. Vertical velocities of subsurface fluid flows, calculated from model fits to observational data, are found to fall in the range of 10-9 to 10-10 m/s. However, unlike the basins in the Amazon region, where only recharge type movements have been identified, the Paraná basin is found to be characterized by the presence of both recharge and discharge zones. The available data set has allowed identification of three zones of up flows and two zones of down flows. The area extents of down flow zones are found to be quite large. The down flow zones are located relatively close to the central parts of the basin. These are also the zones identified as recharge areas of the main aquifers (Furnas, Aquidauana and Guarani) in the interior of the basin. Since the pattern of hydraulic gradient in this basin is directed from the eastern parts towards its west central parts the down flow zones cannot be considered as associated with the up flow zones indicated in the eastern parts of the basin. The large area extent of such downward groundwater movements is indicative of the presence of distributed recharge type flow systems operating in the subsurface layers of the Paraná basin.

Pimentel, E. T.; Hamza, V.

2013-05-01

170

Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry  

Microsoft Academic Search

In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar

Makoto Kagabu; Jun Shimada; Robert Delinom; Maki Tsujimura; Makoto Taniguchi

2011-01-01

171

Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments  

NASA Astrophysics Data System (ADS)

The distribution of groundwater fluxes in aquifers is strongly influenced by topography, and organized between hillslope and regional scales. The objective of this study is to provide new insights regarding the compartmentalization of aquifers at the regional scale and the partitioning of recharge between shallow/local and deep/regional groundwater transfers. A finite-difference flow model was implemented, and the flow structure was analyzed as a function of recharge (from 20 to 500 mm/yr), at the regional-scale (1400 km2), in three dimensions, and accounting for variable groundwater discharge zones; aspects which are usually not considered simultaneously in previous studies. The model allows visualizing 3-D circulations, as those provided by Tothian models in 2-D, and shows local and regional transfers, with 3-D effects. The probability density function of transit times clearly shows two different parts, interpreted using a two-compartment model, and related to regional groundwater transfers and local groundwater transfers. The role of recharge on the size and nature of the flow regimes, including groundwater pathways, transit time distributions, and volumes associated to the two compartments, have been investigated. Results show that topography control on the water table and groundwater compartmentalization varies with the recharge rate applied. When recharge decreases, the absolute value of flow associated to the regional compartment decreases, whereas its relative value increases. The volume associated to the regional compartment is calculated from the exponential part of the two-compartment model, and is nearly insensitive to the total recharge fluctuations.

Goderniaux, Pascal; Davy, Philippe; Bresciani, Etienne; Dreuzy, Jean-Raynald; Borgne, Tanguy

2013-04-01

172

Regional scale impact of tidal forcing on groundwater flow in unconfined coastal aquifers  

NASA Astrophysics Data System (ADS)

This paper considers the impact of tidal forcing on regional groundwater flow in an unconfined coastal aquifer. Numerical models are used to quantify this impact for a wide range of hydrogeological conditions. Both a shallow and a deep aquifer are investigated with regard to three dimensionless parameter groups that determine the groundwater flow to a large extent. Analytical expressions are presented that allow for a quick estimate of the regional scale effect of tidal forcing under the same conditions as used in the numerical models. Quantitatively, the results in this paper are complementary to previous studies by taking into account variable density groundwater flow, dispersive salt transport and a seepage face in the intertidal area. Qualitatively, the results are in line with previous investigations. The time-averaged hydraulic head at the high tide mark increases upon a decrease of each of the three considered dimensionless parameter groups: R (including the ratio of the hydraulic conductivity and the precipitation excess), ? (the slope of the intertidal area) and AL (the ratio of the width of the fresh water lens and the tidal amplitude). The relative change of the location and the hydraulic head of the groundwater divide, which together characterize regional groundwater flow, increase as ? and AL decrease, but decrease as R decreases. The difference between the analytical solutions and numerical results is small. Therefore, the presented analytical solutions can be used to estimate the bias that is introduced in a numerical model if tidal forcing is neglected. The results should be used with caution in case of significant wave forcing, as this was not considered.

Pauw, P. S.; Oude Essink, G. H. P.; Leijnse, A.; Vandenbohede, A.; Groen, J.; van der Zee, S. E. A. T. M.

2014-09-01

173

Improving Radium-based Estimates of Submarine Groundwater Discharge  

NASA Astrophysics Data System (ADS)

Groundwater discharge is vital for the exchange of solutes between salt marshes and estuaries, and radium isotopes are frequently used as tracers of groundwater flow paths and discharge in coastal systems. Considerable spatial and temporal variability in porewater radium activity has hindered the accuracy of this tracer. In porewater, radium activity is a complex function of production by parent isotopes in and grain size of the aquifer material, individual decay rates, porewater salinity, temperature, redox- and pH-dependent adsorption and desorption, sediment Fe- and Mn-oxide/hydroxide coatings, and groundwater transport (advection and dispersion). In order to resolve the primary factors controlling porewater radium activity in an intertidal salt marsh, where high salinity and reducing conditions prevail, and sediment oxide coatings vary from winter to summer, a field and modeling study was conducted at a salt marsh island within North Inlet Salt Marsh, Georgetown, South Carolina. This site was previously developed as part of a larger study to understand the links between salt marsh groundwater dynamics and acute marsh dieback. Porewater and surface water samples were collected from November 2009 - February 2011. Shallow sediment samples were collected in winter and summer 2010, and deeper sediments were split from cores collected during site development. Measurements of water temperature, salinity, mV, and pH were taken in the field, and radium isotopes were measured via delayed-coincidence counter or gamma spectrometry. Surface-bound sediment radium activity was determined by desorption experiments. Iron and manganese oxide coatings on surface sediments were isolated through a sequential leaching process, and the leachate analyzed via ICP-AES. Finally, a 3-D groundwater flow model was developed using SUTRA, a U.S.G.S. numerical model, which was modified to account for changes in total stress resulting from tidal loading of the marsh surface and for complex boundary conditions. Model calibration was performed using observed hydraulic data collected during the salt marsh dieback study, and initial model results suggest slow (0.1 cm/day), downward flow through the marsh mud and lateral flow in the confined, sand aquifer at depth with greater flow rates (2 cm/day) near the channel edges. Preliminary porewater radium activities were 0.4, 8.1, 3.0, and 6.6 dpm/L for 223Ra, 224Ra, 226Ra and 228Ra, respectively, with dilution resulting in lower surface water activities by an order of magnitude. Mean bulk radium activities in the surface sediments were 0.9 and 1.0 dpm/g and for the deeper sediments were 1.4 and 1.6 dpm/g for 226Ra and 228Ra, respectively. Paired t-tests between winter and summer surface sediment samples indicated no significant difference in bulk radium activity (P>>0.1). Statistical tests indicate significant seasonal differences in porewater salinity, temperature, and pH (P?0.001), but no significant seasonal differences in porewater radium activity (P>0.05). These preliminary results suggest groundwater transport and generation rates within the aquifer are the primary factors controlling porewater radium activity. Final radium results will be discussed in terms of the groundwater flow model.

Hughes, A. L.; Wilson, A. M.

2011-12-01

174

Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska  

USGS Publications Warehouse

Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

1992-01-01

175

Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model  

SciTech Connect

This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the saturated zone (SZ) site-scale model domains, both as recharge (infiltration) at the upper boundary (water table), and as underflow at the lateral boundaries. Specifically, this work compiles information on the recharge boundary conditions supplied to the base-case and alternate SZ site-scale flow models taken from (1) distributed recharge from the 1997 (D'Agnese et al. 1997 [DIRS 100131]) or 2001 (D'Agnese et al. 2002 [DIRS 158876]) SZ regional-scale (Death Valley Regional Flow System [DVRFS]) model; (2) recharge below the area of the 1997 (Wu et al. 1997 [DIRS 156453]) or 2003 (BSC 2004 [DIRS 169861]) unsaturated zone (UZ) site-scale flow model; and (3) focused recharge along Fortymile Wash. In addition, this analysis includes extraction of the groundwater flow rates simulated by the 1997 and 2001 DVRFS models coincident with the lateral boundaries of the SZ site-scale flow models. The fluxes from the 1997 DVRFS were used to calibrate the base-case SZ site-scale flow model. The 2001 DVRFS fluxes are used in the alternate SZ site-scale flow model.

S. James

2004-10-06

176

Groundwater flow to a horizontal or slanted well in an unconfined aquifer  

E-print Network

Groundwater flow to a horizontal or slanted well in an unconfined aquifer Hongbin Zhan Department for evaluation of the drawdown near horizontal and slanted wells with finite length screens in unconfined: Groundwater transport; KEYWORDS: horizontal well, slanted well, groundwater flow, unconfined aquifer

Zhan, Hongbin

177

Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations  

E-print Network

correlation between riparian zone groundwater levels and runoff for the headwaters, whereas the water tablesScale effects on headwater catchment runoff timing, flow sources, and groundwater on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations, Water Resour. Res

McDonnell, Jeffrey J.

178

MODELLING GROUNDWATER FLOW ON THE REGIONAL SCALE IN THE UPPER DANUBE CATCHMENT (GERMANY)  

E-print Network

by very deep regional groundwater tables? Solutions to these questions and first results are presentedMODELLING GROUNDWATER FLOW ON THE REGIONAL SCALE IN THE UPPER DANUBE CATCHMENT (GERMANY) Roland.barthel@iws.uni-stuttgart.de Abstract. A groundwater flow model for the Upper Danube catchment (A=77,000km2 at gauge Passau, Germany

Cirpka, Olaf Arie

179

Groundwater flow along and across structural folding: an example from the Judean Desert, Israel  

E-print Network

Groundwater flow along and across structural folding: an example from the Judean Desert, Israel; accepted 1 February 2005 Abstract The considerable influence of the geological structure on groundwater flow regime is exhibited in the thick carbonate aquifer beneath the Judean Desert, Israel. Groundwater

Gvirtzman, Haim

180

The groundwater modeling tool for GRASS (GMTG): Open source groundwater flow modeling  

NASA Astrophysics Data System (ADS)

Geographic Information Systems (GIS) are used to store, manipulate and visualize both spatial and non-spatial data. Because of their data manipulating capabilities, GIS have been linked to different simulation models in different research areas and are commonly used for both surface and ground water modeling. Unfortunately this has been done mainly with proprietary GIS which are expensive and which do not provide access to their source code thus making them hard to customize. In order to overcome these problems, a module was created in the Open Source Geographic Resources Analysis Support System (GRASS) GIS to integrate it with the finite difference groundwater flow model MODFLOW, to take full advantage of the GIS capabilities. The results obtained with this module, when compared to those obtained with an existing MODFLOW pre and post-processor show that it can be used to develop groundwater flow models using uniform grid spacing on the horizontal plane. This module provides a tool for groundwater flow modeling to those users who cannot afford the commercially available processors and/or to those who wish to develop their models within a GIS.

Carrera-Hernández, J. J.; Gaskin, S. J.

2006-04-01

181

MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW  

USGS Publications Warehouse

MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

Halford, Keith J.

2006-01-01

182

Using Visual MODFLOW to Simulate Groundwater Flow and Transport  

NSDL National Science Digital Library

Students are trained to use the Visual MODFLOW computer program (Waterloo Hydrogeologic, Inc.) and they learn first-hand how to apply the Dupuit Approximation to groundwater flow and transport problems in unconfined aquifers. The students apply the Dupuit Approximation (Fetter, 2001) to a case study developed from Anderson and Woessner (1992) in which they are given system dimensions, aquifer properties, and well water levels. Learning objectives include (1) prediction of groundwater flow and transport and (2) model calibration (e.g., getting the model output to match well water level data). Students also learn how to solve the equations using a computer spreadsheet program, further expanding their ability to understand and work with the equations.

Tim Callahan

183

Flow partitioning in regional groundwater flow systems as a function of recharge and topography  

NASA Astrophysics Data System (ADS)

The distribution of groundwater fluxes in aquifers is strongly influenced by topography, and organized between hillslope and regional scales. In this study, we use a finite-difference flow model to quantify the partitioning of recharge and compartmentalization of aquifers between shallow/local and deep/regional groundwater transfers. The flow structure is analyzed for a regional aquifers, as a function of recharge (from 20 to 500 mm/yr), in 3-dimensions, and accounting for variable groundwater discharge zones. The Probability Density Function of transit times shows two different parts, interpreted using a two-compartment model, related to regional and local groundwater flows. The role of recharge on the size and nature of the flow regimes, including groundwater pathways, transit time distributions, and volumes associated to the two compartments is investigated. Results show that topography control on the water table and groundwater compartmentalization varies with the recharge rate applied. The volume associated to the regional compartment is calculated from the exponential part of the two-compartment model, and is nearly insensitive to the total recharge fluctuations. The model also allows visualizing 3D circulations, as those provided by Tothian models in 2D, and shows local and regional transfers, with 3D effects. Results are presented for a specific basin (1400 km2) in Brittany (France). Preliminary results using different kinds of topography are presented and compared.

Goderniaux, P.; Davy, P.; Bresciani, E.; De Dreuzy, J.; Le Borgne, T.

2013-12-01

184

Dolomitization by ground-water flow systems in carbonate platforms  

SciTech Connect

Dolomite occurs throughout the subsurface of modern carbonate platforms such as the Bahamas. Groundwater flow systems must be responsible for delivery of reactants needed for dolomitization. Reflux, freshwater lens flows, and thermal convection are large-scale flow systems that may be widespread in active platforms. The author has evaluated some aspects of the dynamics and characteristics of these processes with ground-water flow theory and by scaled sandbox experiments. Reflux is not restricted to hypersaline brines, but can occur with bankwaters of only slightly elevated salinity such as those found on the Bahama Banks today (42%). The lack of evaporites in a stratigraphic section, therefore, does not rule out the possibility that reflux may have operated. Flows associated with freshwater lenses include flow in the lens, in the mixing zone, and in the seawater beneath and offshore of the lens. Upward transfer of seawater through the platform margins occurs when surrounding cold ocean water migrates into the platform and is heated. This type of thermal convection (Kohout convection) has been studied by Francis Kohout in south Florida. The ranges of mass flux of magnesium in these processes are all comparable and are all sufficient to account for young dolomites beneath modern platforms. Each process yields dolomitized zones of characteristic shape and location and perhaps may be distinguishable in ancient rocks. The concepts presented here may have application to exploration for dolomite reservoirs in the Gulf Coast and elsewhere.

Simms, M.

1984-09-01

185

Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada  

SciTech Connect

This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

2003-01-08

186

Comparison of groundwater flow model results and isotopic data in the Leon valley, Mexico  

NASA Astrophysics Data System (ADS)

The study area is located in the State of Guanajuato, Northwest of the city of Mexico. Leon Valley has covered with groundwater its demand of water, estimated in 20.6 cubic meters per second. The constant increase of population and economic activities in the region have a constant growth in water needs. Related extraction rate has produced an average decrease of approximately 1.0 m per year over the past two decades. This suggests that the present management of the groundwater should be checked. Management of groundwater in the study area involves the possibility of producing environmental impacts by extraction. This vital resource under stress becomes necessary studying its hydrogeological functioning to achieve scientific management of groundwater in the Valley. This research was based on the analysis and integration of existing information and the field generated by the authors. Outstanding concepts were: i) the geological structure of the area, ii) hydraulic parameters and iii) composition of deuterium-delta and delta-oxygen - 18. This information has been fully analyzed by applying a groundwater flow model (MODFLOW) and a particle tracking model (FLOWPATH): the results were similar to interpretations in terms of travel time and paths derived from isotopic data.

Hernandez-Garcia, G.

2013-12-01

187

Striking effect of time variation in the estimation of groundwater age in the Wairarapa valley  

NASA Astrophysics Data System (ADS)

The Wairarapa Valley exhibits complex interactions between its rivers and shallow aquifers. With agriculture being an essential part of the region the risk of contamination and depletion of groundwater exists. In order to assist with water resource management in the region, we can do predictions with the help of numerical models. Among these predictions, the evaluation of groundwater age is critical for decision making. This project builds on work done by Greater Wellington Regional Council and will focus on the Wairarapa Valley. The aim of this study is to evaluate the age of the groundwater in the Wairarapa region. Investigations have already been done thanks to hydrochemistry. However radiometric age can be misleading in the sense that it does not consider the mixing process in the motion of groundwater particules. Therefore another approach can be considered .This latter is physic based by considering the age as a property that we transport through two main processes: advection at a macroscopic scale and diffusion at a microscopic scale. The determination of the distribution age by this approach has already been done for the Lake Rotorua but in the steady state case (cf Daughney). The unique contribution of the present study is to estimate the changes in groundwater age distribution through time within the region. Indeed transient simulations are needed to explicitly account for seasonally variable rainfall and pumping wells. This affects the simulated flow solution and then the simulated age solution. In order to solve numerically the transport of age distribution we have chosen to use the Time Marching Laplace Transform Galerkin technique which has been developed in a research code by Fabien Cornaton. The obtained results depict that temporal variations in groundwater age are present and have important implication for resource management

Petrus, Karine; Toews, Michael; Daughney, Christopher; Cornaton, Fabien

2014-05-01

188

Effects of multiscale anisotropy on basin and hyporheic groundwater flow.  

PubMed

Various subsurface flow systems exhibit a combination of small-scale to large-scale anisotropy in hydraulic conductivity (K). The large-scale anisotropy results from systematic trends (e.g., exponential decrease or increase) of K with depth. We present a general two-dimensional solution for calculation of topography-driven groundwater flow considering both small- and large-scale anisotropy in K. This solution can be applied to diverse systems with arbitrary head distribution and geometry of the water table boundary, such as basin or hyporheic flow. In a special case, this solution reduces to the well-known Tóth model of uniform isotropic basin. We introduce an integral measure of flushing intensity that quantifies flushing at different depths. Using this solution, we simulate heads and streamlines and provide analyses of flow structure in the flow domain, relevant to basin analyses or hyporheic flow. It is shown that interactions between small-scale anisotropy and large-scale anisotropy strongly control the flow structure. In the classic Tóth flow model, the flushing intensity curves exhibit quasi-exponential decrease with depth. The new measure is capable of capturing subtle changes in the flow structure. Our study shows that both small- and large-scale anisotropy characteristics have substantial effects that need to be integrated into analysis of topography-driven flow. PMID:21087251

Zlotnik, Vitaly A; Cardenas, M Bayani; Toundykov, Daniel

2011-01-01

189

Tide-induced fingering flow during submarine groundwater discharge  

NASA Astrophysics Data System (ADS)

Submarine groundwater discharge (SGD) is a relevant component of the hydrological cycle (Moore, 2010). The discharge of fresh groundwater that originated from precipitation on the land typically occurs at the near shore scale (~ 10m-100m) and the embayment scale (~ 100m - 10km) (Bratton, 2010). In the recent years a number of studies revealed that tidal forcing has an important effect on the fresh SGD pattern in the beach zone, i.e., it leads to the formation of an upper saline recirculation cell and a lower "freshwater discharge tube" (Boufadel, 2000, Robinson et al., 2007; Kuan et al., 2012). Thereby the discharge of the fresh groundwater occurs near the low-tide mark. The shape and extent of the upper saline recirculation cell is mainly defined by the tidal amplitude, beach slope, fresh groundwater discharge rate and hydraulic conductivity (Robinson et al., 2007). In spite of fact that in this case sea water overlies less denser freshwater, all previous modeling studies suggested that the saline recirculation cell and the freshwater tube are rather stable. However, new numerical investigations indicate that there maybe realistic cases where the upper saline recirculation cell becomes unstable as a result of the density contrast to the underlying freshwater tube. In these cases salt water fingers develop and move downward, thereby penetrating the freshwater tube. To the author's knowledge, the present study is the first that illustrate the possibility of density induced fingering flow during near shore SGD. A total of 240 high resolution simulations with the density dependent groundwater modelling software SEAWAT-2000 (Langevin et al., 2007) has been carried out to identify the conditions under which salt water fingering starts to occur. The simulations are based on the field-scale model setup employed in Robinson et al. (2007). The simulation results indicate that a very flat beach slope of less than 1:35, a hydraulic conductivity of 10 m/d and already a tidal range of 2 m initiates fingering flow. Flatter beach slope, higher hydraulic conductivity and increasing tidal range support this behavior. In the cases of fingering flow, freshwater is squeezed upward and pinches out within the inter-tidal zone. Once pinched out, the discharge point slowly moves along at the beach surface towards the low-tide mark. Overall, the fingering process further complicates the flow pattern and the mixing of salt and freshwater in the inter-tidal zone compared to the cases where the saline recirculation cell remains stable. This may have an important implication for the hydrogeochemical processes in this zone and thus the mass flux of reactive chemicals from the land to the ocean. Boufadel, M. C. (2000). A mechanistic study of nonlinear solute transport in a groundwater-surface water system under steady state and transient hydraulic conditions, Water Resour. Res., 36(9), 2549 2565. Bratton, J.F. (2010). The Three Scales of Submarine Groundwater Flow and Discharge across Passive Continental Margins, The Journal of Geology, 2010, 118, 565-575. Kuan, W. K., G. Jin, P. Xin, C. Robinson, B. Gibbes, and L. Li (2012). Tidal influence on seawater intrusion in unconfined coastal aquifers, Water Resour. Res., 48, W02502, doi:10.1029/2011WR010678. Langevin, C.D., D.T. Thorne, Jr., A.M. Dausman, M.C. Sukop, and G. Weixing (2007). Seawat version 4: a computer program for simulation of multi-species solute and heat transport, Technical Report, U.S. Geological Survey Techniques and Methods Book 6, Chapter A22, 39 pp. Robinson, C., L. Li, and H. Prommer (2007). Tide-induced recirculation across the aquifer-ocean interface, Water Resour. Res., 43, W07428, doi:10.1029/2006WR005679. Moore, W.S. (2010). The Effect of Submarine Groundwater Discharge on the Ocean, Annu. Rev. Mar. Sci., 2, 59-88.

Greskowiak, Janek

2013-04-01

190

Hidden channels of groundwater flow in Tóthian drainage basins  

NASA Astrophysics Data System (ADS)

The classic work of Tóth in 1963 on 2D, steady state, isotropic, basinal, flow modelling is revisited with a stagnation point and critical streamline analysis. It is found that narrow channels of groundwater flow may exist which have previously been undiscovered. Although these channels do not change the overall concept of dividing basinal flow into regional, intermediate and local flow zones, they do show that small portions of recharge areas in regional zones connect with predominantly intermediate discharge zones and also intermediate recharges connect with predominantly local discharge zones. Depending on basin depth and surface potential parameters, the size and capacity of these channels is determined by the existence of paired stagnation points relative to the basin vertical centreline and the degree of asymmetry of stream functions. These channels are likely to occur in other basinal models and will affect the assessment of discharge water temperature, age and chemical composition.

Robinson, Neville I.; Love, Andrew J.

2013-12-01

191

A method of estimating spatio-temporally distributed groundwater recharge using integrated surface-subsurface modelling  

Microsoft Academic Search

In general, there have been various methods of estimating groundwater recharge such as baseflow separation approaches, water budget analyses based on lumped conceptual models, and the water table fluctuation method (WTF) by using data from groundwater monitoring wells. However, groundwater recharge rates show spatial-temporal variability due to climatic conditions, land use, and hydrogeological heterogeneity, so these methods have various limitations

Il Moon Chung; Nam Won Kim; Jeongwoo Lee; Marios Sophocleous

2010-01-01

192

Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge  

Microsoft Academic Search

Using water-table monitoring data from the National Groundwater Monitoring Network in Korea, groundwater hydrographs were classified into five typical groups. Then, to estimate groundwater recharge, a modified water-table fluctuation (WTF) method was developed from the relation between the cumulative WTF and corresponding precipitation records. Applying this method to different types of hydrographs, the spatial variability of recharge in river basins

Sang-Ki Moon; Nam C Woo; Kwang S Lee

2004-01-01

193

Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes  

Microsoft Academic Search

We have measured the concentrations of nutrients and radium isotopes (223Ra, 224Ra, and 226Ra) in surface seawater and coastal groundwater in Yeoja Bay (in the southern sea of Korea) to estimate submarine groundwater discharge (SGD) and associated nutrient fluxes. In general, the radium and nutrient concentrations in brackish groundwater were an order of magnitude higher than those in ambient bay

Dong-Woon Hwang; Guebuem Kim; Yong-Woo Lee; Han-Soeb Yang

2005-01-01

194

MODIS-Aided Statewide Net Groundwater-Recharge Estimation in Nebraska  

E-print Network

MODIS-Aided Statewide Net Groundwater-Recharge Estimation in Nebraska by Jozsef Szilagyi1-function-transformed groundwater vulnerability DRASTIC-code values. Statewide mean annual net recharge became about 29 mm (i.e., 5 by declining groundwater levels due to large-scale irrigation are found in the south-western region

Szilagyi, Jozsef

195

Numerical modeling of groundwater flow in the coastal aquifer system of Taranto (southern Italy)  

NASA Astrophysics Data System (ADS)

The Mediterranean region is characterized by a strong development of coastal areas with a high concentration of water-demanding human activities, resulting in weakly controlled withdrawals of groundwater which accentuate the saltwater intrusion phenomenon. The worsening of groundwater quality is a huge problem especially for those regions, like Salento (southern Italy), where a karst aquifer system represents the most important water resource because of the deficiency of a well developed superficial water supply. In this frame, the first 2D numerical model describing the groundwater flow in the karst aquifer of Salento peninsula was developed by Giudici et al. [1] at the regional scale and then improved by De Filippis et al. [2]. In particular, the estimate of the saturated thickness of the deep aquifer highlighted that the Taranto area is particularly sensitive to the phenomenon of seawater intrusion, both for the specific hydrostratigraphic configuration and for the presence of highly water-demanding industrial activities. These remarks motivate a research project which is part of the research program RITMARE (The Italian Research for the Sea), within which a subprogram is specifically dedicated to the problem of the protection and preservation of groundwater quality in Italian coastal aquifers and in particular, among the others, in the Taranto area. In this context, the CINFAI operative unit aims at providing a contribution to the characterization of groundwater in the study area. The specific objectives are: a. the reconstruction of the groundwater dynamic (i.e., the preliminary identification of a conceptual model for the aquifer system and the subsequent modeling of groundwater flow in a multilayered system which is very complex from the hydrostratigraphical point of view); b. the characterization of groundwater outflows through submarine and subaerial springs and the water exchanges with the shallow coastal water bodies (e.g. Mar Piccolo) and the off-shore sea; c. the modeling of seawater intrusion in the coastal aquifer system. The first objective is achieved through the analysis of hydrostratigraphic reconstructions obtained from different data sets: well logs, published geological field maps, studies for the characterization of contaminated sites. The hydrostratigraphic setup is merged with maps of land use, hydraulic head maps, data on water extraction and source discharge, in order to identify the conceptual model. For the numerical simulations, the computer code YAGMod, which was originally developed to perform 3D groundwater flow simulation with a simplified treatment of unsaturated/saturated conditions and the effects of strong aquifer exploitation (i.e., high well pumping rates), is extended to the case of a variable density flow. The results will be compared with those obtained with other modeling software (e.g., Tough2). [1] Giudici M., Margiotta S., Mazzone F., Negri S., Vassena C., 2012. Modelling Hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy), Environmental Earth Sciences. doi: 10.1007/s12665-012-1631-1 [2] De Filippis G., Giudici M., Margiotta S., Mazzone F., Negri S., Vassena C., 2013. Numerical modeling of the groundwater flow in the fractured and karst aquifer of the Salento peninsula (Southern Italy), Acque Sotterranee, 2:17-28. doi: 10.7343/AS-016-013-0040

De Filippis, Giovanna; Giudici, Mauro; Negri, Sergio; Margiotta, Stefano; Cattaneo, Laura; Vassena, Chiara

2014-05-01

196

Calibration of groundwater flow models for modeling and teaching  

NASA Astrophysics Data System (ADS)

The transport of contaminants in groundwater is a primary environmental concern today because of potential exposure to hazardous chemicals. A significant task for the geoenvironmental engineer is to make effective use of groundwater models in characterizing contaminated sites for making appropriate decisions. A continuing problem in geoenvironmental site investigations is to systematically link the data obtained in such investigations with the groundwater models. This dissertation presents work in creating this link between data acquisition (investigations) and data analysis (models) in groundwater studies. This link is composed of two tasks. First, two groundwater flow models were calibrated with a newly proposed approach called the First-Order Second-Moment Bayesian Method. This method is based on the Bayesian decision framework by which model parameters can be calibrated with measured data, including censored data, and other sources of information. Second, two computer programs, ModSite and SimSite, were developed to help teach students the steps in the process from data acquisition to data analysis. Many students are ill prepared to adequately complete this process. These programs will help meet these learning needs by creating a problem-based experience for users dealing with (a) site investigation, (b) contaminant transport and (c) transport modeling. ModSite assists in the development and calibration of site models, which can then be used in SimSite. SimSite assists in the investigation of contaminated sites and the acquisition of data, which can then be used to calibrate models with ModSite. Throughout this cycle, users are given extensive help to aid in learning about the processes of contaminant transport, transport modeling, and investigating contaminated sites. User testing has shown that the two programs are successful in meeting their learning objectives.

McBrayer, Mickey Charles

197

Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)  

SciTech Connect

Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission`s GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE`s Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated.

Arnold, B.W.; Altman, S.J. [Sandia National Labs., Albuquerque, NM (United States); Robey, T.H. [Spectra Research Institute, Albuquerque, NM (United States)] [and others

1995-08-01

198

Evaluation of groundwater flow patterns around a dual-screened groundwater circulation well.  

PubMed

Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective flow of this circulation cell are difficult to measure or predict. The objective of this study is to develop a robust protocol for assessing GCW performance. To accomplish this, groundwater flow patterns surrounding a GCW are assessed using a suite of tools and data, including: hydraulic head, in situ flow velocity, measured hydraulic conductivity data from core samples, chemical tracer tests, contaminant distribution data, and numerical flow and transport models. The hydraulic head data show patterns that are consistent with pumping on a dual-screened well, however, many of the observed changes are smaller than expected. In situ thermal perturbation flow sensors successfully measured horizontal flow, but vertical flow could not be determined with sufficient accuracy to be useful in mapping flow patterns. Two types of chemical tracer tests were utilized at the site and showed that much of the flow occurs within a few meters of the GCW. Flow patterns were also assessed based on changes in contaminant (trichloroethylene, TCE) concentrations over time. The TCE data clearly showed treated water moving away from the GCW at shallow and intermediate depths, but the circulation of that water back to the well, except very close to the well, was less clear. Detailed vertical and horizontal hydraulic conductivities were measured on 0.3 m-long sections from a continuous core from the GCW installation borehole. The measured vertical and horizontal hydraulic conductivity data were used to construct numerical flow and transport models, the results of which were compared to the head, velocity and concentration data. Taken together, the field data and modeling present a fairly consistent picture of flow and transport around the GCW. However, the time and expense associated with conducting all of those tests would be prohibitive for most sites. As a consequence, a sequential protocol for GCW characterization is presented here in which the number of tools used can be adjusted to meet the needs of individual sites. While not perfect, we believe that this approach represents the most efficient means for evaluating GCW performance. PMID:17428573

Johnson, Richard L; Simon, Michelle A

2007-08-15

199

Nitrate Discharge to Coastal Waters in Response to Variable-Density Groundwater Flow  

NASA Astrophysics Data System (ADS)

Flow dynamics and velocities within coastal aquifers can be complicated by the influence of the saltwater wedge. As a proxy for a number of contaminant types, the variable-density SEAWAT code was used to evaluate the groundwater flow and nutrient fluxes from a coastal aquifer to the sea in response to variable density flow caused by the presence of seawater at the coast. A regional scale coupled variable-density groundwater flow and transport model was developed to characterize and enhance the understanding of complex groundwater flow dynamics, contaminant transport processes, and contaminant flux from the coastal aquifers of southern Baldwin County to coastal surface waters and to the Gulf of Mexico. Simulation results indicate that groundwater flow dynamics and contaminant transport are additionally influenced by density variations that can occur from the incursion of saltwater from the Gulf of Mexico. Residual nitrate concentrations in the saturated zone were estimated to range between 30 and 160 mg/L for the contamination source zones. Simulation results indicate that nitrate concentrations as high as 5 mg/L extend to the deeper Gulf Shores Aquifer. Furthermore, the model indicates that nitrate sources at this depth were released approximately 100 years ago. Vertical and horizontal nitrate transport is attenuated as a result of dilution by dispersion. Simulated nitrate transport trends and concentrations closely resemble the observed ones. Vertical gradients and mixing appear to be significant in this system. The SEAWAT model results reveal the importance of the Intracoastal Waterway in acting as a groundwater and contaminant sink for the Beach Sand and Gulf Shores Aquifers. The model predicts that the Beach Sand and Gulf Shores Aquifers will be impacted by severe saltwater intrusion, whereas the deeper 350 and 500-foot Aquifers will experience no saltwater intrusion for the entire 1,000 year simulation period. Consequently, nitrate discharge to the Gulf of Mexico originates from the lower part of the aquifer system through submarine groundwater discharge. Besides its importance at a regional level, this study represents a basis for decision-making processes in water resources management of other similar coastal aquifer systems of the United States and around the world.

Murgulet, D.; Tick, G. R.

2010-12-01

200

Numerical Modeling of Regional Groundwater Flow in a Structurally Complex Intermountain Basin: South Park, Colorado  

NASA Astrophysics Data System (ADS)

A steady-state, 3-D groundwater flow model of the South Park basin was developed to explore the influence of realistically complex topography and permeability structure on the patterns of basin-wide groundwater flow and to evaluate the sensitivity of the groundwater flow system to increased variability in recharge distribution and the influence of hydrogeologically distinct fault zones. South Park is a large, semi-arid intermountain basin (3300 km2) flanked by crystalline rocks and floored with faulted and folded sedimentary rocks and volcanic deposits. Model results suggest that, while the majority (>80%) of water entering the groundwater flow system is discharged through seepage faces in steep terrain or routed to mountain streams, internal exchanges of groundwater and stream flow between the mountain and valley landscapes are an important part of the dynamics of groundwater flow in the basin. The majority of topographically driven groundwater flow is focused in the upper 300 m of the model domain and would be considered local to intermediate in "Tothian" scales. Less than 1% of groundwater flow passes below 1 km in depth, and large-scale regional circulation is a limited component of the groundwater flow system. Increasingly heterogeneous recharge distributions most heavily impacted the groundwater flow system at the local scale, while basin-wide regional flow remained relatively insensitive to the increasing variability in recharge distribution. The introduction of end-member conduit and barrier types of fault zones influenced hydraulic heads and gradients within 5-10 km of the fault location where groundwater flow directions are perpendicular to the orientation of the fault. Where groundwater flow directions are oblique or subparallel to the fault, the introduction of distinct fault zones had a negligible impact on hydraulic heads or gradients.

Ball, L. B.; Caine, J. S.; Ge, S.

2012-12-01

201

Estimates of riparian evapotranspiration using diurnal monitoring of groundwater regime in desert environments  

NASA Astrophysics Data System (ADS)

Shallow groundwater is mainly discharged by phreatophytes in many riparian ecosystems of arid and semiarid environment, while estimation of groundwater evapotranspiration in these regions still remains a challenge for regional water resources assessment. In this study, a simple relationship between the average standard deviation of diurnal groundwater level fluctuations and the daily evapotranspiration over relatively short periods (days or weeks) was developed for estimating groundwater consumption by phreatophytes in arid/semi-arid areas. Our approach allows estimating groundwater evapotranspiration using stable statistical characteristics of diurnal groundwater fluctuation, and it is useful for analyzing large amounts of data obtained from digital groundwater level monitoring sensors. The developed methodology was applied to two phreatophyte-dominated riparian areas (Populus euphratica and Tamarix ramosissima) in a typical Gobi desert region of northwest China to demonstrate the usefulness of the technique.

Wang, P.; Pozdniakov, S. P.; Grinevsky, S.; Yu, J.

2013-12-01

202

Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin  

USGS Publications Warehouse

In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or nonaquifer categories and to calculate equivalent horizontal and vertical hydraulic conductivities (K and KZ, respectively) for each of the glacial layers of the model. The K was based on an assumed value of 100 ft/d (feet per day) for aquifer materials and 1 ft/d for nonaquifer materials, whereas the equivalent KZ was based on an assumed value of 10 ft/d for aquifer materials and 0.001 ft/d for nonaquifer materials. These values were assumed for convenience to determine a relative contrast between aquifer and nonaquifer materials. The point values of K and KZ from wells that penetrate at least 50 percent of a model layer were interpolated into a grid of values. The K distribution was based on an inverse distance weighting equation that used an exponent of 2. The KZ distribution used inverse distance weighting with an exponent of 4 to represent the abrupt change in KZ that commonly occurs between aquifer and nonaquifer materials. The values of equivalent hydraulic conductivity for aquifer sediments needed to be adjusted to actual values in the study area for the ground-water flow modeling. The specific-capacity data (discharge, drawdown, and time data) from the well logs were input to a modified version of the Theis equation to calculate specific capacity based horizontal hydraulic conductivity values (KSC). The KSC values were used as a guide for adjusting the assumed value of 100 ft/d for aquifer deposits to actual values used in the model. Water levels from well logs were processed to improve reliability of water levels for comparison to simulated water levels in a model layer during model calibration. Water levels were interpolated by kriging to determine a composite water-level surface. The difference between the kriged surface and individual water levels was used to identify outlier water levels. Examination of the well-log lithology data in map form revealed that the data were not only useful for model input, but also were useful for understanding th

Arihood, Leslie D.

2009-01-01

203

Estimating pumping time and ground-water withdrawals using energy- consumption data  

USGS Publications Warehouse

Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

Hurr, R.T.; Litke, D.W.

1989-01-01

204

Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada  

SciTech Connect

Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. Micrometeorological data were collected for a minimum of 1 year at each site during 1994 through 1997. Evapotranspiration ranged from 0.6 foot per year in a sparse, dry saltgrass environment to 8.6 feet per year over open water. Mean annual ET from the Ash Meadows area is estimated at 21,000 acre-feet. The estimates given for mean annual ground-water discharge range from 18,000 to 21,000 acre-feet. The range presented is only slightly higher than previous estimates of ground-water discharge from the Ash Meadows area based primarily on springflow measurements.

Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J.L.; Nylund, W.E.

1999-09-30

205

Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida  

USGS Publications Warehouse

Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

Grubbs, J.W.

1995-01-01

206

Estimating evapotranspiration in different rain-fed peatlands from groundwater level changes  

NASA Astrophysics Data System (ADS)

Biogeochemical processes in peatlands are strongly controlled by the hydrological conditions of these environments. One of the key parameters controlling the water balance is the evapotranspiration, which can be calculated e.g. by the FAO crop reference evapotranspiration or the Penman-Monteith equation as a function of atmospheric conditions and plant specific parameters. These parameters are well investigated for agricultural crops and forests but poorly for most peatland vegetation types. Direct measurement of the evapotranspiration is possible with weighing lysimeters or the eddy-covariance technique, but expensive and time consuming. In many peatlands and riparian areas groundwater table changes are characterized by diurnal fluctuations (daytime decline, night-time recovery) caused by the evapotranspiration and groundwater recharge. White introduced 1932 a method to calculate the evapotranspiration from these diurnal fluctuations. In contrast to traditional evapotranspiration models only a small number of variables need to be measured (groundwater level changes, possibly precipitation) or calculated (specific yield). Over the last decades, several studies and modifications of the White method have been published. Several authors showed the applicability of the method for riparian areas and fens, but this relies on the assumption of a constant recharge over the whole day. As there is no groundwater inflow at rain-fed peatlands, recovery during night-time can only result from redistribution in the soil profile or from lateral flow processes within the peatland. Thus, approaches to calculate evapotranspiration from diurnal groundwater fluctuations used to date need to be adapted. Based on 50 hydrographs measured in 6 rain-fed peatlands in Germany characterized by different soil properties, land use and vegetation, we systematically analyzed diurnal patterns of the groundwater levels. These patterns were spatially and temporally very variable. At some sites, the groundwater level continuously declined during rain-free periods with different slopes during the night and the day, resulting in a step-like shape of the hydrograph. Other sites showed a continuous decline at daytime followed by weakly increasing or constant groundwater levels at night. Based on this analysis, we developed a modification of the White-method for estimating the evapotranspiration of rain-fed peatlands. The approach will be validated with eddy-covariance data from one site.

Dettmann, Ullrich; Maurer, Eike; Bechtold, Michel; Brümmer, Christian; Tiemeyer, Bärbel

2014-05-01

207

Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada  

SciTech Connect

Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al.

Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

1995-12-31

208

Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada  

SciTech Connect

Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty (infiltration, fracture-matrix connectivity, fracture frequency, and matrix air entry pressure or van Genuchten {alpha}); and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM)). Results of comparisons of the ECM and DK model are also presented in Ho et al.

Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A. [Sandia National Labs., Albuquerque, NM (United States)

1996-12-01

209

Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China.  

PubMed

Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater delta(2)H and delta(18)O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. (87)Sr/(86)Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems. PMID:19548025

Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J; Han, Ying; Song, Xianfang

2009-08-01

210

Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio  

USGS Publications Warehouse

Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4 percent of the total ground-water flow in the study area. Ground waters in the vicinity of Wright-Patterson Air Force Base can be classified into two compositional groups on the basis of their chemical composition: calcium magnesium bicarbonate-type and sodium chloride-type waters. Calcium magnesium bicarbonate-type waters are found in the glacial deposits and the Brassfield Limestone, whereas the sodium chloride waters are exclusively associated with the shales. Equilibrium speciation calculations indicate that ground water of the glacial drift aquifer is in equilibrium with calcite, dolomite, and chalcedony, but is undersaturated with respect to gypsum and fluorite. Waters from the shales are slightly supersaturated with respect to calcite, dolomite, and siderite but are undersaturated with respect to chalcedony. Simple-mass balance calculations treating boron as a conservative species indicate that little (< 5 percent) or no recharge from the shales to the glacial drift aquifer takes place. Data on the stable isotopes of oxygen and hydrogen indicate a meteoric origin for all ground water beneath Wright-Patterson Air Force Base, but the data were inconclusive with respect to identification of distinct isotopic differences between water collected from the glacial drift and bedrock aquifers. Tritium concentrations used to distinguish waters having a pre-and post-1953 recharge component indicate that most water entered the glacial drift aquifer after 1953. This finding indicates that recharge from shallow to deep parts (greater than 150 feet) of the aquifer takes place over time intervals of a few years or decades. However, the fact that some deep parts of the glacial aquifer did not contain measurable tritium indicates that ground-water flow from recharge zones to these parts of the aquifer takes decades or longer.

Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

1993-01-01

211

Report Title A Guide for Using the Transient Ground-Water Flow  

E-print Network

Report Title A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Lincoln Co Nye CoEsmeralda Co Am argosa Desert Pahrump Valley Death Yucca Mtn Pahute Mesa Valley Devils for Using the Transient Ground- Water Flow Model of the Death Valley Regional Ground-Water Flow System

212

Evaluation of ground-water flow by particle tracking, Wright-Patterson Air Force Base, Ohio  

USGS Publications Warehouse

The U.S. Geological Survey (USGS) and Wright-Patterson Air Force Base (WPAFB) began a Basewide Monitoring Program (BMP) in 1992. The purpose of the BMP was to establish a long-term ground-water and surface- water sampling network in order to (1) characterize current ground-water and surface-water quality; (2) describe water-quality changes as water enters, flows across, and exits Base boundaries; (3) conduct statistical analyses of water quality; and (4) estimate the effect of WPAFB on regional water quality. As part of the BMP, the USGS conducted ground-water particle-tracking analyses based on a ground-water-flow model produced during a previous USGS study. This report briefly describes the previous USGS study, the inherent assumptions of particle-tracking analyses, and information on the regional ground-water-flow field as inferred from particle pathlines. Pathlines for particles placed at the Base boundary and particles placed within identified Installation Restoration Program sites are described.

Cunningham, W.L.; Sheets, R.A.; Schalk, C.W.

1994-01-01

213

Intercomparison of Groundwater Flow Monitoring Technologies at Site OU 1, Former Fort Ord, California  

Microsoft Academic Search

This report presents an intercomparison of three groundwater flow monitoring technologies at a trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County, California. Soil and groundwater at this site became contaminated by fuels and solvents that were

P F Daley; J Jantos; W H Pedler; W A Mandell

2005-01-01

214

Ground-Water Flow Analysis in the Slope Above Shum Wan Road, Hong Kong  

E-print Network

Ground-Water Flow Analysis in the Slope Above Shum Wan Road, Hong Kong S. NANDY J. J. JIAO, MODFLOW, for the slope at the Shum Wan Road area. From the ground-water model, it was found that the ground-water level reached three meters below the ground surface during failure. The model is sensitive

Jiao, Jiu Jimmy

215

Analytical solutions of tidal groundwater flow in coastal two-aquifer system  

E-print Network

Analytical solutions of tidal groundwater flow in coastal two-aquifer system Hailong Li a,b,*, Jiu analytical solution to describe tidal groundwater level fluctuations in a coastal subsurface system of groundwater, in: H. Rouse (Ed.), Engineering Hydraulics, Wiley, New York, 1950, pp. 321­386], Jiao and Tang

Jiao, Jiu Jimmy

216

Impacts of glacially recharged groundwater flow systems on talik evolution  

NASA Astrophysics Data System (ADS)

Most currently permafrost-covered landscapes underwent fundamental shifts in the hydrogeological and the thermal regime as a result of deglaciation after the Last Glacial Maximum (LGM). The transient effects of heat and fluid flow associated with retreating ice sheets are important to consider for the present-day hydrogeology of these regions. In this paper, we use numerical models to evaluate the evolution of taliks underneath proglacial lakes during deglaciation. In our models, the hydrological and thermal boundary conditions at the lake site are constraint by the hydrogeological impacts of ice sheet dynamics since the LGM. During the LGM, the ground surface was insulated from air temperatures, and as a result, there was no permafrost underneath the wet-based ice. Subsequently, ice sheet retreat led to an exposure of a proglacial area to subzero air temperatures and the formation of permafrost. Where proglacial lakes form, discharge of deeper groundwater becomes focused. In this scenario, subpermafrost groundwater flow is driven by a combination of direct subglacial recharge and elevated hydraulic heads preserved in that part of the aquifer. Advective heat flow can delay or prevent through taliks from freezing as function of aquifer properties. The presence and evolution of through taliks in thick permafrost can create complex and transient hydrogeological phenomena.

Scheidegger, J. M.; Bense, V. F.

2014-04-01

217

Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii  

USGS Publications Warehouse

Prior to the early 1990's, ground-water in the Kona area, which is in the western part of the island of Hawaii, was withdrawn from wells located within about 3 mi from the coast where water levels were less than 10 feet above sea level. In 1990, exploratory drilling in the uplands east of the existing coastal wells first revealed the presence of high water levels (greater than 40 feet above sea level) in the Kona area. Measured water levels from 16 wells indicate that high water levels exist in a zone parallel to and inland of the Kona coast, between Kalaoa and Honaunau. Available hydrologic and geophysical evidence is generally consistent with the concept that the high ground-water levels are associated with a buried dike complex. A two-dimensional (areal), steady-state, freshwater-saltwater, sharp-interface ground-water flow model was developed for the Kona area of the island of Hawaii, to enhance the understanding of (1) the distribution of aquifer hydraulic properties, (2) the conceptual framework of the ground-water flow system, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-difference code SHARP. To estimate the hydraulic characteristics, average recharge, withdrawals, and water-level conditions for the period 1991-93 were simulated. The following horizontal hydraulic-conductivity values were estimated: (1) 7,500 feet per day for the dike-free volcanic rocks of Hualalai and Mauna Loa, (2) 0.1 feet per day for the buried dike complex of Hualalai, (3) 10 feet per day for the northern marginal dike zone (north of Kalaoa), and (4) 0.5 feet per day for the southern marginal dike zone between Palani Junction and Holualoa. The coastal leakance was estimated to be 0.05 feet per day per foot. Measured water levels indicate that ground water generally flows from inland areas to the coast. Model results are in general agreement with the limited set of measured water levels in the Kona area. Model results indicate, however, that water levels do not strictly increase in an inland direction and that a ground-water divide exists within the buried dike complex. Data are not available, however, to verify model results in the area near and inland of the model-calculated ground-water divide. Three simulations to determine the effects of proposed withdrawals from the high water-level area on coastal discharge and water levels, relative to model-calculated, steady-state coastal discharge and water levels for 1997 withdrawal rates, show that the effects are widespread. During 1997, the total withdrawal of ground water from the high water-level area between Palani Junction and Holualoa was about 1 million gallons per day. Model results indicate that it may not be possible to withdraw 25.6 million gallons per day of freshwater from this area between Palani Junction and Holualoa, but that it may be possible to withdraw between 5 to 8 million gallons per day from the same area. For a proposed withdrawal rate of 5.0 million gallons per day uniformly distributed to 12 sites between Palani Junction and Holualoa, the model-calculated drawdown of 0.01 foot or more extends about 9 miles north-northwest and about 7 miles south of the proposed well sites. In all scenarios, freshwater coastal discharge is reduced by an amount equal to the additional freshwater withdrawal. Additional data needed to improve the understanding of the ground-water flow system in the Kona area include: (1) a wider spatial distribution and longer temporal distribution of water levels, (2) improved information about the subsurface geology, (3) independent estimates of hydraulic conductivity, (4) improved recharge estimates, and (5) information about the vertical distribution of salinity in ground water.

Oki, Delwyn S.

1999-01-01

218

Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment  

NASA Astrophysics Data System (ADS)

Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.

Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

2013-12-01

219

System and boundary conceptualization in ground-water flow simulation  

USGS Publications Warehouse

Ground-water models attempt to represent an actual ground-water system with a mathematical counterpart. The conceptualization of how and where water originates in the ground-water-flow system and how and where it leaves the system is critical to the development of an accurate model. The mathematical representation of these boundaries in the model is important because many hydrologic boundary conditions can be mathematically represented in more than one way. The determination of which mathematical representation of a boundary condition is best usually is dependent upon the objectives of the study. This report focuses on the specific aspect of describing different ways to simulate, in a numerical model, the physical features that act as hydrologic boundaries in an actual ground-water system. The ramifications, benefits, and limitations of each approach are enumerated, and descriptions of the representation of boundaries in models for Long Island, New York, and the Middle Rio Grande Basin, New Mexico, illustrate the application of some of the methods.

Reilly, T.E.

2001-01-01

220

Estimation of in situ groundwater chemistry using geochemical modeling: A test case for saline type groundwater in argillaceous rock  

NASA Astrophysics Data System (ADS)

Saline type groundwaters data in the Mobara area (a marine based argillaceous rock) located in the well-known “South Kanto gas field” in Japan were investigated by JNC as part of a natural analogue study. Most groundwaters in the field were extracted from deep gas wells ( e. g., 400-2000 m below the surface), and the all data reported previously were sampled at the wellhead, where physico-chemical parameters ( e. g., temperature, pH, Eh etc.) were also measured. In such cases, particular attention should be paid to whether the measured and/or analyzed results are consistent with the chemical and physical conditions in the in situ geological formation because air contamination, the temperature and pressure changes during sampling can affect the groundwater chemistry. The present study shows a test case to estimate the in situ groundwater chemistry in argillaceous rock of the Mobara area using geochemical model calculations. Results from thermodynamic interpretation of groundwater chemistry using the measured pH and Eh of groundwater sampled at wellhead ( e. g., pH = 7.86, Eh = -50 mV) indicate that the groundwaters are supersaturated with respect to calcite ( e. g., the saturation index; SI is 1.14). Calcite is known to equilibrate relatively quickly with aqueous solutions at low temperatures and this mineral is present in the Otadai formation, however. Therefore the values greater than 0 for SI of calcite may be due to errors in the pH measurement. Also the measured Eh is relatively oxidizing value which may be inconsistent with the in situ geochemical conditions ( e. g., pyrite and siderite coexist, CH 4(g) dominates in the groundwaters). Thus such Eh value may be disturbed by contact of the samples with atmospheric oxygen and other effects like degassing. Errors in the pH measurement might be caused by degassing during sampling of groundwaters. As a test case to estimate the groundwater considering such degassing effect, we first assume that the in situ groundwaters are saturated with respect to calcite. A back-titration geochemical model is then used to simulate the addition of CO 2(g). Regarding the redox conditions of groundwater, we also assume that pyrite-siderite equilibrium controls the Eh of Mobara groundwaters considering the mineralogy identified in the Otadai formation. The assumed equilibrium between pyrite and siderite implies a fixed value of PS at a given temperature and pH. A back-titration of trace levels H 2S(g) is also applied to estimate the possible effect of the in situ Eh and pH of groundwaters. The calculated result shows that pH is about 6.7 and Eh is about -190 mV, respectively. The estimated pH value for the in situ groundwater is about 1 unit lower than the measured pH value at the surface and the in situ redox potential is significantly lower than Eh value measured in surface sample. Based on a preliminary assessment of mineral-water equilibria using the mineral stability relations in the CaO-MgO-Al 2O 3-SiO 2-H 2O system, the estimated in situ groundwater composition is more consistent with the mineralogy of the Otadai formation than the measured groundwater composition. However, further consideration ( e. g., detail mineralogical investigation, reliable and consistent thermodynamic data with site mineralogy) would be needed to check the reliability of estimation technique. JNC (Japan Nuclear Cycle Development Institute) was merged in October 2005 with the Japan Atomic Energy Research Institute (JAERI) to form the Japan Atomic Energy Agency (JAEA).

Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.

221

Modelling of the groundwater flow in Baltic Artesian Basin  

NASA Astrophysics Data System (ADS)

Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the flow is directed from southeast to northwest, but the more shallow aquifers show strong influence by local topography. There is an intensive transient flow in Cm aquifer system and this flow is separated from upper layers by thick aquitard O-S. About 25% of the aquifers volume is under free flowing artesian conditions. Acknowledgement The present work has been funded by the European Social Fund project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" (Project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060)

Virbulis, J.; Sennikovs, J.; Bethers, U.

2012-04-01

222

Groundwater.  

ERIC Educational Resources Information Center

Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

Braids, Olin C.; Gillies, Nola P.

1978-01-01

223

Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping  

Microsoft Academic Search

A hydrogeomechanical numerical model is presented to evaluate three-dimensional groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. This multidimensional numerical model is developed on the basis of the fully coupled poroelastic governing equations for saturated-unsaturated groundwater flow in deforming true anisotropic geologic media and the Galerkin finite element method. A series of true anisotropic

Jun-Mo Kim

2005-01-01

224

Groundwater Recharge Modeling in Azraq Basin (Jordan) Considering the Unsaturated Flow Components  

Microsoft Academic Search

Water resources in Azraq basin at the northeastern part of Jordan are at critical juncture, due to the continual and excessive abstraction of groundwater accompanied with small amounts of groundwater recharge by precipitation, and high rates of evaporation losses over the entire basin. Groundwater recharge from precipitation over the basin was estimated using soil water balance. It was found that

M. Al Sharif; T. Al Jazzar

2009-01-01

225

Groundwater recharge estimation using time series models and hybrid water fluctuation method  

NASA Astrophysics Data System (ADS)

Predicting groundwater level fluctuations and estimating groundwater recharge are necessary for an effective management of groundwater resources. Applications of the water table fluctuation (WTF) method to groundwater recharge estimation are limited when time series data of groundwater level is discontinuous or abnormal. In the present study, we designed a method to correct abnormal data using time series models for groundwater recharge estimation. An artificial neural network and a support vector machine were employed for time series model development and the hybrid water table fluctuation method (h-WTF) considering transient fillable porosity was utilized for groundwater recharge estimation. A comparison study was conducted between three different techniques for groundwater recharge estimation: the classic WTF, h-WTF with observed data (h-WTF1), and h-WTF with corrected data (h-WTF2), using daily rainfall and groundwater level data of 5 groundwater monitoring stations in South Korea. Correlation coefficient values of observed and predicted groundwater level were as high as more than 0.8 for all the 5 stations. The result of the comparison study shows that the estimated ratio of recharge to rainfall ranges from 14.9 to 38.3% for WTF, 12.8 to 31.2% for h-WTF1, and 21.8 to 50.0% for h-WTF2 method. The estimated recharge ratios of h-WTF1 are smaller than h-WTF2 by 9.8 to 41.3%. The reason is thought to be that the effect of exogenous factors to groundwater recharge except rainfall was filtered out through the time series model in h-WTF2 method.

Yoon, H.; Park, E.; Ha, K.; Kim, G.

2013-12-01

226

Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin  

NASA Astrophysics Data System (ADS)

Piezometer nests were installed at study sites in each of five north-south-trending end moraines of the late Pleistocene Oak Creek Formation in southeastern Wisconsin. The formation is composed primarily of a fine-grained glacial diamicton (till) and laterally continuous and discontinuous, coarse-grained lake and meltwater stream sediment. It overlies the Silurian dolomite aquifer, which is a source of drinking water to rural areas. The average vertical linear velocity and age of ground water in the Oak Creek Formation were estimated by three methods: Darcy's Law, environmental isotopes including 3H, ?2H, ?18O, and 14C (dissolved inorganic carbon), and solute transport modeling of 18O. The F-1 and Metro sites in the Tinley moraine showed excellent agreement among the three estimates of vertical velocity and showed the lowest velocity values (0.3-0.5 cm year -1 downward), which suggests that diffusion controls vertical mass transport at these sites. Although the extrapolated maximum age of ground water is 35 000 years, ground water below 75 m at these sites is probably not older than 15 000 years, which is the maximum age of the formation. Estimates of velocity showed less agreement at study sites in the Lake Border moraine system to the east and ranged from about 0.2 to 20.7 cm year -1; maximum groundwater age could range from 213 to 6000 years. Higher and more variable velocities, perhaps owing to thinner and more heterogeneous sediment in these areas, suggest that diffusion may not dominate vertical mass transport. Heterogeneity and fractures may also promote the development of groundwater flow systems dominated by lateral flow. Because of the uncertainty about the nature of groundwater flow, velocity, and age in the formation east of the Tinley moraine, future waste-disposal activity in southeastern Wisconsin should be confined to the thickest parts of the Tinley moraine near the present F-1 and Metro sites.

Simpkins, W. W.; Bradbury, K. R.

1992-03-01

227

A new analytical method for groundwater recharge and discharge estimation  

NASA Astrophysics Data System (ADS)

SummaryA new analytical method was proposed for groundwater recharge and discharge estimation in an unconfined aquifer. The method is based on an analytical solution to the Boussinesq equation linearized in terms of h2, where h is the water table elevation, with a time-dependent source term. The solution derived was validated with numerical simulation and was shown to be a better approximation than an existing solution to the Boussinesq equation linearized in terms of h. By calibrating against the observed water levels in a monitoring well during a period of 100 days, we shown that the method proposed in this study can be used to estimate daily recharge (R) and evapotranspiration (ET) as well as the lateral drainage. It was shown that the total R was reasonably estimated with a water-table fluctuation (WTF) method if the water table measurements away from a fixed-head boundary were used, but the total ET was overestimated and the total net recharge was underestimated because of the lack of consideration of lateral drainage and aquifer storage in the WTF method.

Liang, Xiuyu; Zhang, You-Kuan

2012-07-01

228

Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain  

NASA Astrophysics Data System (ADS)

As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

2014-05-01

229

Simulation of recharge for the Death Valley regional groundwater flow system using an integrated hydrologic model  

NASA Astrophysics Data System (ADS)

A proof-of-concept study was conducted using the integrated hydrologic model, GSFLOW, to simulate spatially and temporally distributed recharge for the Death Valley regional groundwater flow system (DVRFS). GSFLOW is an integrated groundwater - surface water flow model that combines two modeling applications: the Precipitation-Runoff-Modeling-System (PRMS) and MODFLOW. Previous methods used to estimate recharge for the DVRFS include empirical models based on precipitation, applications of the chloride mass-balance method, and applications of a precipitation-runoff model, INFIL, which used a daily time step to simulate recharge as net infiltration through the root zone. The GSFLOW model offers several potential advantages compared to the previous methods including (1) the ability to simulate complex flow through a thick unsaturated zone (UZ), allowing for the dampening and time delay of recharge relative to the infiltration signal at the top of the UZ and also allowing for the redistribution of flow within the UZ, as enabled by the MODFLOW-NWT and UZF capabilities, (2) the simulation of rejected recharge in response to the dynamics of groundwater discharge and low permeability zones in the UZ, (3) a more explicit representation of streamflow and recharge processes in the mostly ephemeral stream channels that characterize the DVRFS, and (4) the ability to simulate complex flow paths for runoff occurring as both overland flow and shallow subsurface flow (interflow) in the soil zone using a network of cascades connecting hydrologic response units (HRUs). Simulations were done using a daily time step for water years 1980-2010. Preliminary estimates of recharge using GSFLOW indicate that the distribution of recharge is highly variable both spatially and temporally due to variability in precipitation, snowmelt, evapotranspiration, runoff, and the permeability of bedrock and alluvium underlying the root zone. Results averaged over the areas of subbasins were similar to results obtained from previous studies. However, estimates of recharge on the local scale of the HRUs indicate significant (greater than 100 percent) differences at some locations compared to results obtained using INFIL due to differences in (1) the geometry and scale of HRUs, (2) the layout of the cascading flow network and the location of stream channels, (3) the representation of the physical characteristics of the root zone, and (4) model processes controlling the simulation of evapotranspiration and the movement of water through the root zone.

Hevesi, J. A.; Regan, R. S.; Hill, M. C.; Heywood, C.; Kohn, M. S.

2012-12-01

230

Regional heat flow variations in the northern Michigan and Lake Superior region determined using the silica heat flow estimator  

USGS Publications Warehouse

Conventional heat flow data are sparse for northern Michigan. The groundwater silica heat flow estimator expands the database sufficiently to allow regional variations in heat flow to be examined. Heat flow shows a pattern of alternating highs and lows trending ESE across the Upper Peninsula and Lake Superior. The informal names given to these features, their characteristic heat flow and inferred causes are listed: {A table is presented} The results suggest that, for the study area, regional variations in heat flow cannot be interpreted solely in terms of regional variations of the heat generation rate of basement rocks. ?? 1987.

Vugrinovich, R.

1987-01-01

231

Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

2001-11-09

232

Numerical Groundwater Flow Modeling of the Arsenic Contaminated Gotra Aquifer, West Bengal, India  

NASA Astrophysics Data System (ADS)

We present results of a groundwater flow study in a 7 square kilometer region centered on our field site in the village of Gotra, West Bengal, India, where naturally occurring arsenic contaminates shallow groundwater (mostly < 40 m below surface) at levels that exceed World Health Organization limits. Field investigations since 2004 include sediment coring, geochemical surveys of domestic wells and dedicated piezometers, and monitoring of piezometric levels with dataloggers in several wells over a period of three years. The village itself is situated upon the natural levee of a sinuous abandoned channel, which terminates a classical fluvio-deltaic depositional sequence originating from the north east. The formerly prograding meander bend deposited point bar sands that now comprise the 25-30m-thick shallow aquifer, while incising a deeper sand unit as well as a floodplain sequence to the south west. Hand-pumped domestic tubewells are restricted to the point bar sands, whereas the majority of irrigation wells are screened within the deeper aquifer. Both steady-state and transient simulations were used to estimate aquifer recharge and boundary fluxes, as well as to distinguish groundwater flow paths and average residence times under the influence of irrigation and seasonal stresses. The hydrogeology of the deeper aquifer, as well as the thickness and continuity of the low permeable paleosol separating shallow and deep flow systems are major uncertainties that are explored through model sensitivity testing. Recharge to the shallow flow system is estimated at ~170mm/yr, predominantly by monsoon precipitation. Groundwater in the arsenic affected area generally flows downward through the fine-grained channel-fill deposits, then horizontally through the point bar sands perpendicular to the trend of the abandoned channel. This flowpath coincides with observed geochemical gradients from surveys of domestic well quality conducted in previous years, and supports a model of arsenic release from the low permeability unit. Average residence times in the point bar sands and channel-fill deposits are estimated at 50 and 310 years, respectively, and are highly sensitive to variations in recharge, shallow aquifer conductivity, and hydraulic conductivity of seepage layers that line surface water bottoms.

Koenig, C. E.; Desbarats, A. J.; Beckie, R. D.; Pal, T.; Mukherjee, P. K.

2009-12-01

233

Controls on Groundwater Flow in an Alpine Talus-Moraine Complex  

NASA Astrophysics Data System (ADS)

Since alpine watersheds are the headwaters of rivers acting as major sources of water, there is growing concern over water shortages in areas dependent on mountain runoff. Talus and moraine complexes, as well as fractured bedrock, are a dominant hydrologic response unit within the Lake O'Hara Research Basin (LORB) in Yoho National Park, British Columbia. In this alpine environment, previous studies have shown that groundwater plays an important hydrological role. Although little is known about groundwater storage in these media, they are likely a significant groundwater reservoir and an important control on groundwater flow. The goals of this study are to develop a conceptual model of the talus and moraine complex and the fractured bedrock. The approximately 0.3km2 Babylon drainage basin within the LORB was chosen as the study site as it contains a talus and moraine complex that drains into one gaugeable stream. The conceptual model of this basin has been developed using geophysical, hydrological and hydrogeological methods. Three Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) surveys were used to characterize the subsurface structure and water distribution within the talus and moraine complex. The bedrock surface is clearly defined in the GPR profiles and its elevation agrees with that in the ERI inversions. Highly resistive talus material is observable in the ERI results, and areas of low resistivity are found within the bedrock. Hydraulic conductivity estimates of the geologic media, calculated using tracer slug injection and baseflow recession analysis methods, fall within the ranges from gravel to fractured rock. Isotopic hydrograph separations indicate that groundwater is a significant contributor to stream discharge. Linear reservoir models show basin response times of up to 16 hours. The geophysical and hydrological evidence points toward two flow systems operating in the Babylon basin, those of flow through the fractured bedrock and flow through the talus and moraine complex. Understanding the hydrologic characteristics of alpine talus and moraine complexes and fractured bedrock is of great importance to increasing our knowledge of alpine hydrology. The results from this study will enable the estimation of hydrologic parameters of these geologic media and provide valuable information for the predictive modelling of mountain streams.

Muir, D. L.; Hayashi, M.; Bentley, L. R.

2009-05-01

234

Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model  

NASA Astrophysics Data System (ADS)

There is a growing need for improved access to reliable water in Africa as population and food production increases. Currently approximately 300 million people do not have access to a secure source of safe drinking water. To meet these current and future demands, groundwater will need to be increasingly abstracted; groundwater is more reliable than surface water sources due to its relatively long response time to meteorological stresses and therefore is likely to be a more secure water resource in a more variable climate. Recent studies also quantified the volumes of groundwater potentially available which suggest that, if exploited, groundwater could help to meet the demand for fresh water. However, there is still considerable uncertainty as to how these resources may respond in the future due to changes in groundwater recharge and abstraction. Understanding and quantifying groundwater recharge is vital as it forms a primary indicator of the sustainability of underlying groundwater resources. Computational hydrological models provide a means to do this, but the complexity of recharge processes in Africa mean that these simulations are often highly uncertain. This study aims to evaluate our confidence in simulating groundwater recharge over Africa based on a sensitivity analysis using a distributed hydrological model developed by the British Geological Survey, ZOODRM. The model includes land surface, canopy, river, soil and groundwater components. Each component is able to exchange water and as such, forms a distributed water balance of Africa. The components have been parameterised using available spatial datasets of African vegetation, land-use, soil and hydrogeology while the remaining parameters have been estimated by calibrating the model to available river flow data. Continental-scale gridded precipitation and potential evapotranspiration datasets, based on remotely sensed and ground observations, have been used to force the model. Following calibration, the sensitivity analysis has been undertaken in two stages. For the first stage, individual parameters are perturbed from each component of the model. For the second stage, different methods for calculating groundwater recharge are introduced. Both stages aim to investigate which aspects of the model most impact on groundwater recharge and consequently how confidently we can simulate the complex recharge processes that occur in Africa using large scale hydrological models. Preliminary results from the analysis indicate the parameters that control runoff generation from the land surface and the choice of groundwater recharge calculation method both have a significant impact on groundwater recharge simulations.

Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

2014-05-01

235

Groundwater flow dynamics and arsenic source characterization in an aquifer system of West Bengal, India  

NASA Astrophysics Data System (ADS)

Numerical groundwater flow modeling, reverse particle tracking, and environmental tracers are used to locate the source of geogenic As affecting an aquifer in West Bengal. The aquifer is hosted by point-bar sands deposited in a meandering fluvial environment. Wells tapping the aquifer exhibit As concentrations up to 531 ?g/L. High-As groundwaters are recharged in ponds marking an abandoned river channel. The source of As is traced to the underlying fine-grained channel-fill sediments. Arsenic release within these sediments is accompanied by a concomitant release of Br and DOC indicating that these species may be decay products of natural organobromines codeposited along with As. Mass transfer of As to the dissolved phase and its flushing from source sediments are described using a simplified reactive solute transport model. Based on this model, a characteristic reaction time for mass transfer is estimated at 6.7 years. Average groundwater residence times in the source are estimated to have declined from 16.6 to 6.6 years with the advent of intensive irrigation pumping. The ratio of residence and reaction times, a Damköhler number, has declined correspondingly from 2.49 to 0.99, indicating a shift from transport to reaction rate limited As mobilization. Greater insight into the As problem in SE Asia may be achieved by shifting the focus of field investigations from aquifers to potential contamination sources in aquitards.

Desbarats, A. J.; Koenig, C. E. M.; Pal, T.; Mukherjee, P. K.; Beckie, R. D.

2014-06-01

236

Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge  

NASA Astrophysics Data System (ADS)

Using water-table monitoring data from the National Groundwater Monitoring Network in Korea, groundwater hydrographs were classified into five typical groups. Then, to estimate groundwater recharge, a modified water-table fluctuation (WTF) method was developed from the relation between the cumulative WTF and corresponding precipitation records. Applying this method to different types of hydrographs, the spatial variability of recharge in river basins was evaluated. Each estimated recharge can be considered the maximum value, and therefore, could be used as a cut-off guideline (an upper limit) for groundwater development in river basins.

Moon, Sang-Ki; Woo, Nam C.; Lee, Kwang S.

2004-06-01

237

Application of the Lanczos algorithm to the simulation of groundwater flow in dual-porosity media  

Microsoft Academic Search

Groundwater flow in fractured porous media can be realistically described using a dual-porosity approach. A popular numerical approach for simulation of groundwater flow in dual-porosity media is the use of spatial discretization procedures based upon the finite element techniques. The computational effort for this technique strongly depends on both the number of unknowns and the number of time steps required

K. Zhang; A. D. Woodbury; W. S. Dunbar

2000-01-01

238

ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING  

EPA Science Inventory

Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

239

Experimental study of turbulent unconfined groundwater flow in a single fracture  

E-print Network

Experimental study of turbulent unconfined groundwater flow in a single fracture Jiazhong Qiana groundwater flow in a single fracture under the conditions of different surface roughness and apertures. We found that the gradient of the Reynolds number versus the average velocity in a single fracture

Zhan, Hongbin

240

A conceptual hydrogeologic model for the hydrogeologic framework, geochemistry, and groundwater-flow system of the Edwards-Trinity and related aquifers in the Pecos County region, Texas  

USGS Publications Warehouse

The Edwards-Trinity aquifer is a vital groundwater resource for agricultural, industrial, and municipal uses in the Trans-Pecos region of west Texas. A conceptual model of the hydrogeologic framework, geochemistry, and groundwater-flow system in the 4,700 square-mile study area was developed by the U.S. Geological Survey (USGS) in cooperation with the Middle Pecos Groundwater Conservation District, Pecos County, City of Fort Stockton, Brewster County, and Pecos County Water Control and Improvement District No. 1. The model was developed to gain a better understanding of the groundwater system and to establish a scientific foundation for resource-management decisions. Data and information were collected or obtained from various sources to develop the model. Lithologic information obtained from well reports and geophysical data were used to describe the hydrostratigraphy and structural features of the groundwater system, and aquifer-test data were used to estimate aquifer hydraulic properties. Groundwater-quality data were used to evaluate groundwater-flow paths, water and rock interaction, aquifer interaction, and the mixing of water from different sources. Groundwater-level data also were used to evaluate aquifer interaction as well as to develop a potentiometric-surface map, delineate regional groundwater divides, and describe regional groundwater-flow paths. Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.

Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew P.; Houston, Natalie A.; Payne, Jason D.; Musgrove, MaryLynn

2013-01-01

241

Groundwater flow and hydrochemistry in mountain areas affected by DSGSDs  

NASA Astrophysics Data System (ADS)

Large slope instabilities such as DSGSD and rockslides locally affect the groundwater flow at the slope scale. These phenomena present morphostructures (scarps, counterscarps and trenches) parallel to the slope direction that control the surface water runoff, directing it transversal to the slope dip and favouring its percolation within the slope through the more conductive materials aligned with the trench . This also affects the slope hydrochemistry, locally controlling the solute transport and circulation. The upper Valtellina (Central European Alps, Northern Italy) is characterize by a high density of DSGSD phenomena, with 29 DSGSDs within an area of about 900 km2 (Crosta et al, 2013). The study area ranges from 1150 to 3500 m in altitude, and shows a clear glacial imprint, which significantly influenced the geomorphology and water distribution in the study area. In order to characterize the groundwater flow and the hydrochemistry of the area, we collected historical data analysis (4070 samples from springs, wells, lakes, rivers and public fountains), and we performed four seasonal campaigns, from summer 2012 to spring 2013, to complete a hydrologic year. During these campaigns, we measured the spring discharge, and we collected samples for chemical (anions and cations) and isotopic (tritium, deuterium and O18) analyses in more almost 40 selected spring located throughout the study area. These springs were selected because representative of main spring clusters, with a particular attention to problems related to the presence of Arsenic in high concentration. In this study, we analyze the effect of DSGSD phenomena on the aquifers of upper Valtellina through the quantitative analysis of hydro-chemical and isotopic data. We show how these phenomena affect the ground water flow also in relation to the presence of geological structures that are associated and locally reactivated by DSGSDs.

Crosta, Giovanni B.; Frattini, Paolo; Pena Reyes, Fredy; Riva, Federico

2014-05-01

242

Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers  

NASA Astrophysics Data System (ADS)

Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269 years is similar to the range of transport times (hundreds to thousands of years) in the heterogeneous synthetic aquifer domain. The slightly higher uncertainty range for the case using all of the environmental tracers simultaneously is probably due to structural errors in the model introduced by the pilot point regularization scheme. It is concluded that maximum information and uncertainty reduction for constraining a groundwater flow model is obtained using an environmental tracer whose half-life is well matched to the range of transport times through the groundwater flow system. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Arnold, B. W.; Gardner, P.

2013-12-01

243

Estimated International Energy Flows 2007  

NSDL National Science Digital Library

This Energy Flow Charts website is a set of energy Sankey diagrams or flow charts for 136 countries constructed from data maintained by the International Energy Agency (IEA) and reflects the energy use patterns for 2007.

Clara Smith

244

A simple daily soil–water balance model for estimating the spatial and temporal distribution of groundwater recharge in temperate humid areas  

Microsoft Academic Search

Quantifying the spatial and temporal distribution of natural groundwater recharge is usually a prerequisite for effective\\u000a groundwater modeling and management. As flow models become increasingly utilized for management decisions, there is an increased\\u000a need for simple, practical methods to delineate recharge zones and quantify recharge rates. Existing models for estimating\\u000a recharge distributions are data intensive, require extensive parameterization, and take

W. R. Dripps; K. R. Bradbury

2007-01-01

245

Regional scale groundwater flow systems and age distribution in basins with depth-decaying hydraulic conductivity  

NASA Astrophysics Data System (ADS)

The theory of regional groundwater flow is critical for understanding many geologic processes. It is known that heterogeneity and anisotropy in hydraulic conductivity caused by varying lithology and faults affect the pattern of nested flow systems in complex basin. In addition, depth-decaying hydraulic conductivity, a widely observed phenomenon in the earth’s crust, cannot be neglected in studies related to regional groundwater flow. As hydraulic conductivity decays with depth, the regional flow system becomes weaker and the local flow systems penetrate deeper. Moreover, the co-existence of depth-decaying trend and anisotropy of hydraulic conductivity can lead to more complex patterns of nested flow system. Closely related to groundwater flow is groundwater age, the amount of time groundwater has been in subsurface since recharge The distribution of groundwater age is sensitive to the depth-decaying hydraulic conductivity and porosity. Depth-decaying hydraulic conductivity mostly leads to aging while depth-decaying porosity leads to rejuvenation of groundwater. Acting together, these factors cause aging in deeper parts and rejuvenation near the discharge zones in the unit basin. In the complex basin with nested flow systems, the geometry and size of rejuvenated zones are very sensitive to the decay of hydraulic conductivity and porosity. The theoretical framework is applied to the Ordos basin in northern China to examine the influence of varying lithology, permeability contrast caused by faults, depth-decaying hydraulic conductivity, and anisotropy on regional groundwater flow. Using a 2D west-east cross section of approximately 240 km, the groundwater flow field and distribution of groundwater age are modeled using COMSOL Multiphysics, a finite element program. Model results suggest that local, intermediate and regional flow systems are well developed. Since increasing anisotropic ratio would lead the stagnation points which divides the intermediate flow system, local flow system and regional flow system to move towards the basin surface and increasing decay exponent would lead the stagnation points to move towards the basin bottom, the uncertainties of position of stagnation points due to anisotropic ratio and decay exponent, which would cause a possible area for a specific stagnation point, is discussed. Moreover, the modeled groundwater age is well correlated with isotopic age from Carbon-14 dating in two double-packered wells that enable groundwater sampling from isolated depth intervals between packers. For the borehole around the divide of the regional flow system, the age of groundwater is several hundred years in the shallow part, but reaches approximately 19 million years in the deep part near the stagnant zone below the divide.

Jiang, X.; Wan, L.; Wang, X.; Ge, S.; Cao, G.; Hu, F.

2010-12-01

246

STATISTICAL MODELS FOR TOURISM FLOWS ESTIMATION  

E-print Network

STATISTICAL MODELS FOR TOURISM FLOWS ESTIMATION Roberto Fontana and Giovanni Pistone Dipartimento an informed decision making process for resource allocation. The accurate and timely knowledge of both a methodology to complete the database of the official statistical data on tourism flows with an estimate

Ceragioli, Francesca

247

Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada  

SciTech Connect

The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the underground testing areas on a regional scale. The groundwater flow model was used in conjunction with a particle-tracking code to define the pathlines followed by groundwater particles originating from 415 points associated with 253 nuclear test locations. Three of the most rapid pathlines were selected for transport simulations. These pathlines are associated with three nuclear test locations, each representing one of the three largest testing areas. These testing locations are: BOURBON on Yucca Flat, HOUSTON on Central Pahute Mesa, and TYBO on Western Pahute Mesa. One-dimensional stochastic tritium transport simulations were performed for the three pathlines using the Monte Carlo method with Latin hypercube sampling. For the BOURBON and TYBO pathlines, sources of tritium from other tests located along the same pathline were included in the simulations. Sensitivity analyses were also performed on the transport model to evaluate the uncertainties associated with the geologic model, the rates of groundwater flow, the tritium source, and the transport parameters. Tritium concentration predictions were found to be mostly sensitive to the regional geology in controlling the horizontal and vertical position of transport pathways. The simulated concentrations are also sensitive to matrix diffusion, an important mechanism governing the migration of tritium in fractured carbonate and volcanic rocks. Source term concentration uncertainty is most important near the test locations and decreases in importance as the travel distance increases. The uncertainty on groundwater flow rates is as important as that on matrix diffusion at downgradient locations. The risk assessment was performed to provide conservative and bounding estimates of the potential risks to human health and the environment from tritium in groundwater. Risk models were designed by coupling scenario-specific tritium intake with tritium dose models and cancer and genetic risk estimates using the Monte Carlo method. Estimated radiation doses received by individuals from chronic exposure to tritium, and the corre

None

1997-10-01

248

Identification of potential groundwater flow paths using geological and geophysical data  

SciTech Connect

This project represents the first phase in the development of a methodology for generating three-dimensional equiprobable maps of hydraulic conductivity for the Nevada Test Site (NTS). In this study, potential groundwater flow paths were investigated for subsurface tuffs at Yucca Flat by studying how these units are connected. The virtual absence of site-specific hydraulic conductivity data dictates that as a first step a surrogate attribute (geophysical logs) be utilized. In this first phase, the connectivity patterns of densely welded ash-flow tuffs were studied because these tuffs are the most likely to form zones of high hydraulic conductivity. Densely welded tuffs were identified based on the response shown on resistivity logs and this information was transformed into binary indicator values. The spatial correlation of the indicator data was estimated through geostatistical methods. Equiprobable three-dimensional maps of the distribution of the densely-welded and nonwelded tuffs (i.e., subsurface heterogeneity) were then produced using a multiple indicator simulation formalism. The simulations demonstrate that resistivity logs are effective as soft data for indicating densely welded tuffs. The simulated welded tuffs reproduce the stratigraphic relationships of the welded tuffs observed in hydrogeologic cross sections, while incorporating the heterogeneity and anisotropy that is expected in this subsurface setting. Three-dimensional connectivity of the densely welded tuffs suggests potential groundwater flow paths with lengths easily over 1 km. The next phase of this investigation should incorporate other geophysical logs (e.g., gamma-gamma logs) and then calibrate the resulting soft data maps with available hard hydraulic conductivity data. The soft data maps can then augment the hard data to produce the final maps of the spatial distribution of hydraulic conductivity that can be used as input for numerical solution of groundwater flow and transport.

Pohlmann, K.; Andricevic, R.

1994-09-01

249

Estimating groundwater recharge beneath irrigated farmland using environmental tracers fluoride, chloride and sulfate  

NASA Astrophysics Data System (ADS)

Accurate recharge estimation is essential for effective groundwater management, especially in the North China Plain, where irrigation return flow is significant to vertical recharge but brings difficulty for recharge estimation. Three environmental tracers (F-, Cl- and SO4 2-) were used to estimate vertical recharge based on the mass balance and cumulative methods. Four boreholes were dry-drilled to 5-25 m depth beneath irrigated farmland and one was drilled to 5 m beneath non-irrigated woodland; soil samples were collected in all boreholes at set depths. The results indicated that F-, Cl- and SO4 2-were suitable tracers beneath the non-irrigated woodland, yielding recharge rates of 16.9, 18.8 and 19.4 mm/year, respectively. Recharge estimation was not straightforward when taking account of crop type, irrigation and/or fertilizer use. After comparing with previous research, conclusions were drawn: Cl- was an appropriate tracer for irrigated farmland when taking account of Cl- input from irrigation and absorption by crops; recharge rates were 65.9-126.8 mm/year. However, F- was a more suitable tracer for irrigated regions where account is made of the proportion of precipitation to irrigation return flow, provided low F- concentrations can be measured reliably.

Lin, Dan; Jin, Menggui; Liang, Xing; Zhan, Hongbin

2013-11-01

250

Estimation of groundwater recharge from water storage structures in a semi-arid climate of India  

Microsoft Academic Search

Groundwater recharge from water storage structures under semi-arid conditions of western India has been estimated by employing water table fluctuation (WTF) and chloride mass balance (CMB) methods. Groundwater recharge was estimated as 7.3% and 9.7% of the annual rainfall by WTF method for the years 2003 and 2004, respectively while the two years average recharge was estimated as 7.5% using

V. N. Sharda; R. S. Kurothe; D. R. Sena; V. C. Pande; S. P. Tiwari

2006-01-01

251

A numerical approach for groundwater flow in unsaturated porous media  

NASA Astrophysics Data System (ADS)

In this article, a computational tool to simulate groundwater flow in variably saturated non-deformable fractured porous media is presented, which includes a conceptual model to obtain analytical expressions of water retention and hydraulic conductivity curves for fractured hard rocks and a numerical algorithm to solve the Richards equation. To calculate effective saturation and relative hydraulic conductivity curves we adopt the Brooks-Corey model assuming fractal laws for both aperture and number of fractures. A standard Galerkin formulation was employed to solve the Richards' equation together with a Crank-Nicholson scheme with Richardson extrapolation for the time discretization.The main contribution of this paper is to group an analytical model of the authors with a robust numerical algorithm designed to solve adequately the highly non-linear Richards' equation generating a tool for porous media engineering.

Quintana, F.; Guarracino, L.; Saliba, R.

2006-07-01

252

Numerical Simulation on the Continuous Operation of an Aquifer Thermal Energy Storage System Under Regional Groundwater Flow  

Microsoft Academic Search

A three-dimensional numerical model for groundwater flow and heat transport is used to analyze an aquifer thermal energy storage system operating under a continuous flow regime. This study emphasizes the influence of regional groundwater flow on the performance of the system under various operation scenarios. The pressure gradient across the system, which determines the direction and velocity of regional groundwater

K. S. Lee

2011-01-01

253

Assessing the Impact of Climate Change on Groundwater Resources Using Groundwater Flow Models  

Microsoft Academic Search

\\u000a Climate change is a potential stressor of groundwater resources and its effects on the availability of groundwater need to\\u000a be understood and determined. The impacts of climate change on groundwater systems are conceptually known, however in the\\u000a context of climate change impact assessment there has been little research conducted on groundwater compared to surface water\\u000a resources. One of the tools

Alper Elçi

254

Integrated surface–groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model  

Microsoft Academic Search

Interactions between surface and groundwater are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that

Stefan J. Kollet; Reed M. Maxwell

2006-01-01

255

Streambed Temperatures and Heat Budget Estimates in Groundwater-fed Streams  

NASA Astrophysics Data System (ADS)

A streambed temperature monitoring network was installed in a groundwater-fed stream in the Lower Fraser Valley of British Columbia. A network of fifteen temperature loggers was installed in a short reach (<40 m) of Fishtrap Creek to characterize the spatial and temporal variability in streambed temperatures and identify potential mechanisms for localized cooling based on heat exchanges during the summer low flow period. This reach has uniform channel form and water depth, and consistent bed material. Streambed temperature data were collected hourly for the period of July 2008 through October 2012, spanning five summer low flow periods. Nearby climate, stream discharge, and groundwater monitoring stations provided the data to estimate the heat budget components. Over the five summer low flow periods, the network of dataloggers recorded a mean streambed temperature of 13.8oC, with a range of 10.2oC to 20.0oC across the streambed. In order to assess controls on streambed temperature at individual datalogger locations, the incoming heat from sources acting across the entire reach had to be removed from the observed temperature signals. The incoming heat was calculated for the air-water interface to estimate the energy flux into the reach using a heat balance. Incoming solar radiation dominates the heat balance, and evaporative heat fluxes were noticeable as small amplitude variations at a daily scale. Precipitation occurrence, or absence, was not an important component of the heat balance during the summer low flow period. Since incoming solar radiation dominates both air and water temperatures, air temperature (Ta) can be used as a proxy for streambed temperature (Ts). The actual lag time between the air and streambed temperature for this site was 30 hours; however, for the calculation of stream temperature at a daily time step, a lag of 24 hours was used. The relationship between daily streambed temperature and daily air temperature, at a lag of one day, was determined empirically for the site as Ts(t) = 5.59 + 0.48 *Ta(t-1day), where T is in degrees C. Almost 90 percent of the variance in streambed temperature can be explained by this lagged air temperature signal. Since this reach is physically uniform, the observed variability in streambed temperatures that are not explained by water temperature can be attributed to variations in groundwater flux.

Middleton, M.; Allen, D. M.; Whitfield, P. H.

2013-12-01

256

Estimation of groundwater recharge to chalk and sandstone aquifers using simple soil models  

Microsoft Academic Search

On the assumption that the water draining below the root zone is potentially available for groundwater recharge, two current UK methods for estimating annual groundwater recharge have been compared with a new soil model using data from four sites under permanent grass in the UK: two sites representative of the Chalk aquifer at Bridgest Farm (Hampshire) and Fleam Dyke (Cambridgeshire),

R. Ragab; J. Finch; R. Harding

1997-01-01

257

EVALUATING UNCERTAINTIES IN GROUND-WATER RECHARGE ESTIMATES THROUGH ADVANCED MONITORING  

Technology Transfer Automated Retrieval System (TEKTRAN)

Risk, as estimated by many multimedia environmental models, is highly sensitive to infiltration and ground-water recharge. This field study used high-frequency monitoring of vadose-zone water content and piezometric levels to build confidence in modeling of infiltration and ground-water recharge. ...

258

Modeling Steady-State Groundwater Flow Using Microcomputer Spreadsheets.  

ERIC Educational Resources Information Center

Describes how microcomputer spreadsheets are easily adapted for use in groundwater modeling. Presents spreadsheet set-ups and the results of five groundwater models. Suggests that this approach can provide a basis for demonstrations, laboratory exercises, and student projects. (ML)

Ousey, John Russell, Jr.

1986-01-01

259

RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants  

SciTech Connect

This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

Chilakapati, A.

1995-07-01

260

A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models  

Microsoft Academic Search

The complexity of available hydrological models continues to increase, with fully integrated surface water–groundwater flow and transport models now available. Nevertheless, an accurate quantification of streamflow generation mechanisms within these models is not yet possible. For example, such models do not report the groundwater component of streamflow at a particular point along the stream. Instead, the groundwater component of streamflow

D. Partington; P. Brunner; C. T. Simmons; R. Therrien; A. D. Werner; G. C. Dandy; H. R. Maier

2011-01-01

261

A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems  

USGS Publications Warehouse

Groundwater is a vital water resource in the arid to semi-arid southwestern United States. Accurate accounting of inflows to and outflows from the groundwater system is necessary to effectively manage this shared resource, including the important outflow component of groundwater discharge by vegetation. A simple method for estimating basin-scale groundwater discharge by vegetation is presented that uses remote sensing data from satellites, geographic information systems (GIS) land cover and stream location information, and a regression equation developed within the Southern Arizona study area relating the Enhanced Vegetation Index from the MODIS sensors on the Terra satellite to measured evapotranspiration. Results computed for 16-day composited satellite passes over the study area during the 2000 through 2007 time period demonstrate a sinusoidal pattern of annual groundwater discharge by vegetation with median values ranging from around 0.3 mm per day in the cooler winter months to around 1.5 mm per day during summer. Maximum estimated annual volume of groundwater discharge by vegetation was between 1.4 and 1.9 billion m3 per year with an annual average of 1.6 billion m3. A simplified accounting of the contribution of precipitation to vegetation greenness was developed whereby monthly precipitation data were subtracted from computed vegetation discharge values, resulting in estimates of minimum groundwater discharge by vegetation. Basin-scale estimates of minimum and maximum groundwater discharge by vegetation produced by this simple method are useful bounding values for groundwater budgets and groundwater flow models, and the method may be applicable to other areas with similar vegetation types.

Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P.

2012-01-01

262

Estimating residents' willingness to pay for groundwater protection in the Vietnamese Mekong Delta  

NASA Astrophysics Data System (ADS)

Groundwater in the Vietnamese Mekong Delta is facing the pollution and it needs to be protected. Searching literature reviews on economic valuation techniques, the contingent valuation method (CVM) has been popularly applied to estimate the economic value of water protection. This approach is based on a hypothetical scenario in which respondents are requested through questionnaires to reveal their maximum willingness to pay (WTP) for the water protection project. The study used the approach of CVM to analyze the households' motivations and their WTP for the program of groundwater protection in the Mekong Delta. The study performed that the residents in the delta were willing to pay approximately 141,730 VND (US6.74) per household a year. Groundwater could be an inferior good with the negative income effect found in the demanding for clean groundwater. Respondent's gender and groundwater-related health risk consideration were factors sensitively affecting the probability of demanding for groundwater protection.

Vo, Danh Thanh; Huynh, Khai Viet

2014-11-01

263

Estimating Urban-Induced Groundwater Recharge Through Coupled Hydrologic Modeling in Ballona Creek Watershed, Los Angeles, CA  

NASA Astrophysics Data System (ADS)

The current research focuses on the modeling and prediction of urban-induced groundwater recharge in highly developed, semi-arid regions. The groundwater component of the hydrologic cycle goes through significant changes during urbanization and has historically been understudied. The changes brought on by urbanization not only include physical alterations (increased surface imperviousness, channelized flow, increased sub-surface infrastructure etc.) but also changes to the water cycle due to human interactions (increased use of imported water, variable landscape irrigation, industrial water use, etc.). We undertake our initial analysis in Ballona Creek watershed, which contains highly urbanized and diverse portions of the cities of Santa Monica and Los Angeles, California along with more natural land surfaces in the northern portions of the watershed in the Santa Monica Mountains. The primary focus of this research is the development of a fully distributed and coupled surface-groundwater model of the Ballona Creek watershed. We use the three-dimensional finite-difference surface and groundwater flow model, ParFlow, fully-coupled to a land surface model, CLM, at a 30-meter by 30-meter resolution forced by observed meteorological data from 2000 to 2010. Previous work in Ballona includes a detailed historical water budget analysis from the early 1900s to the present. This extensive in situ data set will be used to estimate model parameters as well as provide upper and lower boundaries for groundwater recharge values across the system. Preliminary results focus on annual and seasonal (wet/dry periods) surface and groundwater fluxes, including the influence of natural spring flow and dry weather runoff in the watershed. Los Angeles and the surrounding metropolitan area rely on some of the most extensive and oldest centralized water redistribution projects in the United States where water is transported hundreds of kilometers to support agricultural and urban activities in the Los Angeles area. Increasingly, local governments and water districts are committed to increased reliance on local water sources within the southern California coastal areas including local groundwater, rainwater capture, conservation measures, and recycled water sources. Our ultimate goal is to use the validated model to evaluate the influence of altered landscapes and future climate in developing sustainable groundwater supplies across the southern California region.

Reyes, B.; Hogue, T. S.

2012-12-01

264

Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.  

PubMed

The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. PMID:25227154

Emad Dehkordi, S; Schincariol, Robert A; Olofsson, Bo

2014-09-16

265

Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system.  

PubMed

For karstified aquifer systems, numerical models of groundwater flow are difficult to setup and parameterize. However, a system understanding useful for groundwater management may be obtained without applying overly complicated models. In this study, we demonstrate for a karstified carbonate aquifer in south-western Germany that a combination of methods with moderate data requirements can be used to infer flowpaths and transit times of groundwater to production wells. PMID:25178951

Pavlovskiy, Igor; Selle, Benny

2015-04-01

266

Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model  

USGS Publications Warehouse

An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.

Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.

1996-01-01

267

A novel approach for direct estimation of fresh groundwater discharge to an estuary  

USGS Publications Warehouse

Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater-fed tidal creek over a spring-neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross-sectionally averaged salinity. These measurements were used in a time-dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time-series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well-defined cross-sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment. Copyright. Published in 2011 by the American Geophysical Union.

Ganju, Neil K.

2011-01-01

268

Comparison of a karst groundwater model with and without discrete conduit flow  

USGS Publications Warehouse

Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

2013-01-01

269

Distinguishing groundwater flow paths in different fractured-rock aquifers using groundwater chemistry: Dandenong Ranges, southeast Australia  

Microsoft Academic Search

Major ion geochemistry is used to qualitatively interpret groundwater residence times within an aquifer, and the extent of mixing between aquifers with distinctive mineralogy. In conjunction with hydraulic heads and stable isotope geochemistry, flow paths and inter-aquifer exchange are defined in a fractured-rock aquifer system in the Dandenong Ranges, southeast Australia. Stable isotopes indicate modern seasonal recharge throughout the system.

S. O. Tweed; T. R. Weaver; I. Cartwright

2005-01-01

270

Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.  

PubMed

The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist. PMID:25108255

Herrera, Christian; Custodio, Emilio

2014-10-15

271

Groundwater flow along and across structural folding: an example from the Judean Desert, Israel  

NASA Astrophysics Data System (ADS)

The considerable influence of the geological structure on groundwater flow regime is exhibited in the thick carbonate aquifer beneath the Judean Desert, Israel. Groundwater flow is diverted from the general steep hydraulic gradient, creating a subsurface 'river-like' meandering flow pattern. The structure of the extensive-folded anticlinorium forces groundwater flow through synclinal axes in the upper aquifer and in places it overflows from one to an adjacent syncline. Groundwater outflows are at Tsukim, Kane, Samar and En-Gedi springs near the Dead Sea shore and by sub-surface flow across the Graben faults towards the Dead Sea. In this study all available data are integrated and processed, first ever, to form a complete representation of the three-dimensional hydrostratigraphy and hydrogeology. Using numerical modeling (MODFLOW), we analyzed quantitatively the flow regime, leakage rates between upper and lower sub-aquifers and between adjacent sub-basins, the groundwater mass balance, and aquifer hydraulic properties. This study has practical implications regarding recent groundwater management, future possibilities of groundwater development for the benefit of both Israelis and Palestinians residing in the area, and conservation of nature reserves located along the Dead Sea.

Laronne Ben-Itzhak, Leehee; Gvirtzman, Haim

2005-10-01

272

The use of spectral analysis-based exact solutions to characterize topography-controlled groundwater flow  

NASA Astrophysics Data System (ADS)

Spectral analysis enhances the ability to analyze groundwater flow at a steady state by separating the top boundary condition into its periodic forms. Specifically, spectral analysis enables comparisons of the impact of individual spatial scales on the total flow field. New exact spectral solutions are presented for analyzing 3D groundwater flow with an arbitrarily shaped top boundary. These solutions account for depth-decaying, anisotropic and layered permeability while utilizing groundwater flux or the phreatic surface as a top boundary condition. Under certain conditions, groundwater flow is controlled by topography. In areas where the groundwater flow is controlled by the topography, the unknown water table is often approximated by the topography. This approximation induces a systematic error. Here, the optimal resolution of digital elevation models (DEMs) is assessed for use as a top boundary in groundwater flow models. According to the analysis, the water-table undulation is smoother than the topography; therefore, there is an upper limit to the resolution of DEMs that should be used to represent the groundwater surface. The ability to represent DEMs of various spectral solutions was compared and the results indicate that the fit is strongly dependent on the number of harmonics in the spectral solution.

Marklund, Lars; Wörman, Anders

2011-12-01

273

Mathematical Modeling for Simulating Groundwater flow in small part of Niger Delta, Nigeria: A Case Study  

NASA Astrophysics Data System (ADS)

The study focused on the assessment of groundwater flow from over exploitation of water table in the northern part of Niger Delta in Nigeria. Due to semi arid climate and water shortage, the effect of abstraction with respect to recharge is not well assessed and the aquifer storativity and groundwater flow pattern is not known. The local litho-stratigraphy of the area comprises of lateritic on the top soil and gravely medium to coarse sand to the subsequent layers. An area of 2053 square km has been modeled with a grid of 20 rows by 30 columns and twenty layers. Permeability distribution varies from 2.16 to 328.32 m/day. Precipitation is only source for natural recharge to the aquifer, and drawdown from the wells is only the abstraction from the aquifer. Groundwater flow modeling is studied to simulate the three dimensional groundwater flow direction. A steady state, three dimensional groundwater flows is analyzed using the U.S. Geological Survey groundwater flow model, MODFLOW that uses block-centered finite difference scheme for saturated zone. The model computations have converged after 50 iterations. Results from the modeling shows that abstraction is much more than groundwater recharge. Flow pattern of groundwater is towards the southeast potion of the study area. This places plays predominant role in recharge. Discharge area lies in the north east of the study area. The direction of the groundwater is governed by the mid topographic elevations causing the flow towards the east and west side of the study area

Roy, S.; Ophori, D.

2010-12-01

274

Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution  

USGS Publications Warehouse

Convolution modeling is useful for investigating the temporal distribution of groundwater age based on environmental tracers. The framework of a quasi-transient convolution model that is applicable to two-domain flow in karst aquifers is presented. The model was designed to provide an acceptable level of statistical confidence in parameter estimates when only chlorofluorocarbon (CFC) and tritium (3H) data are available. We show how inverse modeling and uncertainty assessment can be used to constrain model parameterization to a level warranted by available data while allowing major aspects of the flow system to be examined. As an example, the model was applied to water from a pumped well open to the Madison aquifer in central USA with input functions of CFC-11, CFC-12, CFC-113, and 3H, and was calibrated to several samples collected during a 16-year period. A bimodal age distribution was modeled to represent quick and slow flow less than 50 years old. The effects of pumping and hydraulic head on the relative volumetric fractions of these domains were found to be influential factors for transient flow. Quick flow and slow flow were estimated to be distributed mainly within the age ranges of 0-2 and 26-41 years, respectively. The fraction of long-term flow (>50 years) was estimated but was not dateable. The different tracers had different degrees of influence on parameter estimation and uncertainty assessments, where 3H was the most critical, and CFC-113 was least influential.

Long, A.J.; Putnam, L.D.

2009-01-01

275

Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico  

SciTech Connect

Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

Dander, D.C.

1998-10-15

276

Preliminary assessment of the impacts of deep foundations and land reclamation on groundwater flow  

E-print Network

Preliminary assessment of the impacts of deep foundations and land reclamation on groundwater flow are increasing. Land reclamation from the sea and high-rise buildings are common approaches to satis- fying in a groundwater system due to land reclamation and con- struction of building foundations in a coastal area

Jiao, Jiu Jimmy

277

Analytical solutions of tidal groundwater flow in coastal two-aquifer system  

Microsoft Academic Search

This paper presents a complete analytical solution to describe tidal groundwater level fluctuations in a coastal subsurface system. The system consists of two aquifers and a leaky layer between them. Previous solutions of Jacob [Flow of groundwater, in: H. Rouse (Ed.), Engineering Hydraulics, Wiley, New York, 1950, pp. 321–386], Jiao and Tang [Water Resour. Res. 35 (3) (1999) 747], Li

Hailong Li; Jiu Jimmy Jiao

2002-01-01

278

PHAST Version 2--A Program for Simulating Groundwater Flow, Solute Transport, and  

E-print Network

PHAST Version 2--A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions Chapter 35 of Section A, Groundwater, of Book 6, Modeling Techniques 100 0 CHLORIDE, IN MILLIGRAMS PER LITER CALCIUM, IN MILLIGRAMS PER LITER ARSENIC, IN MICROGRAMS PER LITER pH 8.0 7.0 9.0 20 0 40

279

Geologic Influences on Groundwater Flow to Inter-Dune Wetlands, Southeastern Virginia  

E-print Network

Geologic Influences on Groundwater Flow to Inter-Dune Wetlands, Southeastern Virginia Matthew stem from changes in the patterns of groundwater recharge and discharge across the island. These soils. The asymmetric shape of the water table could be due to differences in either vegetation cover or permeability

Darby, Dennis

280

Geochemical Characterization of Ground-water Flow in the Santa Fe Group Aquifer System, Middle  

E-print Network

Geochemical Characterization of Ground-water Flow in the Santa Fe Group Aquifer System, Middle Rio valley are visible across the middle part of the image. #12;Geochemical characterization of ground-water For corrected tables B2 and B4, please use the Appendix Excel file available from the index Web page at http

281

Driving Regional Scale Groundwater Flow in the Deep Michigan Basin: Glacial Loading vs. Variable Density Flow  

NASA Astrophysics Data System (ADS)

Recent hydrodynamic studies of the Michigan Basin detail mildly excessive fluid pressures and anomalous flow in deeper formations within the basin. Depending on the conceptual model applied, modeled or inferred flow directions in the deep Michigan Basin may be as much as 180o different than flow directions suggested by topographic driving forces alone. Observed anomalously high fluid pressures and anomalous flow directions at depth are attributed to two possible causes, by different workers: (1) Pleistocene glacial loading, inducing high pressures in a fashion similar to rapid sedimentation, and (2) sinking of high density brines from Silurian halite/anhydrite units into deeper formations below, driving flow of lower density groundwater at depth. We developed and applied a simplified numerical model of the Michigan basin to evaluate regional-scale hydrodynamics and to address glacial loading versus brine sinking as causes of apparent anomalous pressures and flow. Results of basin flow simulations suggest that glacial loading is likely responsible for observed regional-scale excessive fluid pressures. However, variable density flow simulations also suggest that local-scale anomalous flow directions may be induced by brine sinking. >http://www.ees.nmt.edu/Hydro/faculty/McPherson/ michiganbasin.html

McPherson, B. J.; Saylor, B. Z.

2001-12-01

282

Estimating global groundwater withdrawal and depletion using an integrated hydrological model, GRACE, and in situ observations  

NASA Astrophysics Data System (ADS)

In the past several decades extensive use of groundwater, particularly for irrigation, has led to rapid groundwater depletion in many regions. This has not only affected the terrestrial water cycle but also resulted in global sea level rise because a large portion of unsustainably pumped groundwater eventually ends up in the ocean. Therefore, monitoring groundwater resources and their use has become increasingly important. While in situ observations are invaluable for assessing and monitoring groundwater availability, global models and satellite-based observations provide further insights into groundwater dynamics in regions where observations are scarce. In this study, we highlight the major hotspots of global groundwater depletion and the consequent sea level change by using an integrated modeling framework. The model was developed by incorporating a dynamic groundwater scheme and a pumping scheme into a global land surface model (MATSIRO: Minimal Advanced Treatments of Surface Interaction and Runoff) which also accounts for the effects of major human activities (e.g., reservoir operation, irrigation, and water withdrawal) on the terrestrial water cycle. All components of the model are fully coupled and the model tracks the flow of water taking into account the withdrawals of water for agricultural, domestic, and industrial uses from various sources such as river networks, medium-sized reservoirs, and groundwater reservoir. Using model results, GRACE measurement, and ground-based observations by the United States Geological Survey, we demonstrate that groundwater has been declining in many regions with a particular focus on the major aquifers in the United States. In the region overlying the High Plains aquifer, which is extensively irrigated mainly by using groundwater, the simulated groundwater withdrawal of ~23 km3/yr agrees well with the observational record of ~24 km3/yr for circa 2000. Moreover, corresponding closely with the USGS water level observations, model results suggest that groundwater levels averaged over the entire aquifer declined by ~1.2 m from 2002 to 2007. Results also indicate that groundwater depletion is substantial in many other regions such as northwest India and eastern Pakistan as well which has contributed significantly to global sea level rise. These results highlight the importance of using an integrated global model that explicitly simulates both surface water and groundwater processes while accounting for major human impacts in order to realistically simulate groundwater withdrawal and depletion. The model is also applicable for the future projection of groundwater resources under climate change.

Pokhrel, Y. N.; Koirala, S.; Hanasaki, N.; Yeh, P. J.; Kanae, S.; Oki, T.

2012-12-01

283

Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee  

USGS Publications Warehouse

The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

Haugh, C.J.; Mahoney, E.N.

1994-01-01

284

Steady-State Groundwater Flow Model for Great Neck, Long Island, New York  

NASA Astrophysics Data System (ADS)

This paper describes a comprehensive groundwater flow model for the Great Neck section of Long Island, New York. The hydrogeology of this section of Long Island is dominated by a buried erosional valley consisting of sediments comparable to the North Shore Confining Unit. This formation cross-cuts, thus is in direct hydraulic connection with the Upper Glacial, North Shore Confining Unit, Raritan Clay, and Lloyd aquifers. The Magothy aquifer is present only in remote southern sections of the model area. In addition, various lenses of coarser material from the overlying Upper Glacial aquifer are dispersed throughout the area. Data collection consisted of gathering various parameter values from existing USGS reports. Hydraulic conductivity, porosity, estimated recharge values, evapotranspiration, well locations, and water level data have all been gathered from the USGS Office located in Coram, New York. Appropriate modeling protocol was followed throughout the modeling process. The computer code utilized for solving this numerical model is Visual MODFLOW as manufactured by Waterloo Hydrogeologic. Calibration and a complete sensitivity analysis were conducted. Modeled results indicate that the groundwater flow direction is consistent with what is viewed onsite. In addition, the model is consistent in returning favorable parameter results to historical data.

Chowdhury, S. H.; Klinger, D.; Sallemi, B. M.

2001-12-01

285

Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)  

NASA Astrophysics Data System (ADS)

Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

2015-02-01

286

Spatial Variability of Ground-Water Recharge Estimates in the Glassboro Area, New Jersey  

Microsoft Academic Search

The spatial variability of ground-water recharge estimates in the Glassboro area, NJ, was evaluated using geostatistical methods as a preliminarily assessment of aquifer vulnerability. Recharge was estimated using Darcy's law, based on parameters obtained from pedotransfer functions applied to measured soil texture values. The recharge estimates correspond to sediments overlying the Kirkwood-Cohansey aquifer, which comprises highly permeable unconsolidated sands and

B. T. Nolan; A. L. Baehr

2001-01-01

287

Groundwater Flow in the Arthur Marble Aquifer, New Zealand  

NASA Astrophysics Data System (ADS)

Arthur Marble underlies the Takaka Valley and outcrops in Karst Uplands to east and west of the valley in the South Island of New Zealand. It is the principal groundwater aquifer in the region and host to the remarkable Waikoropupu Springs near the coast. With average flow of 13,300 L/s, the karstic springs have many interesting features including unusual size and clarity. This work uses rainfall and river level, natural tracer and chemical measurements to determine the recharge sources and nature of the flow system in the Arthur Marble Aquifer (AMA). Total recharge to the AMA of 19,750 L/s comes from three sources (Karst Uplands stream seepage, Takaka River seepage and Takaka Valley rainfall infiltration). Since 13,300 L/s is discharged at the springs, the remainder must escape via offshore springs (6,450 L/s). The oxygen-18 mass balance allows the contribution of each source to each spring to be determined; most of the flow to the Main Spring of the Waikoropupu Springs comes from the Karst Uplands. The offshore springs are mostly fed from the Takaka River. The chemical concentrations of the Main Spring show input of 0.5% of sea water on average, but varying with flow. This variation with flow shows that two water components (sea-water-bearing and non-sea-water-bearing) contribute to the spring's discharge. Tritium measurements spanning 40 years, and CFC-11 measurements, give a mean residence time of 8 years for the Main Spring water using the preferred two-component model. Our conceptual flow model, based on the flow, oxygen-18, chloride and tritium measurements, reveals that two different flow systems with different recharge sources are needed to explain the flow within the AMA. One system contains deeply penetrating old water with mean age 10.2 years and water volume 3 cubic kilometers, recharged from the Karst Uplands. The other, at shallow levels below the valley floor, has much younger water, with mean age 1.2 years and water volume 0.4 cubic kilometers, recharged from the Takaka River and Takaka Valley rainfall. The two flow systems contribute in different average proportions to the Main Spring (74% deep system, 26% shallow system), Fish Creek Springs (25% deep, 75% shallow) and offshore springs (15% deep, 85% shallow). The very different behaviours of the two systems, despite their residing in the same aquifer, are attributed to the likely presence of a diorite intrusion below the surface of the lower Takaka Valley. This intrusion diverts the deep system towards the Waikoropupu Springs and allows much of the shallow system to pass over the intrusion and escape via the offshore springs.

Stewart, M. K.

2008-05-01

288

Nonlinear Matrix Diffusion for Optic Flow Estimation  

E-print Network

of Lucas and Kanade and its spatio-temporal variant of Big¨un et al.. Our experiments show-known optic flow method of Lucas and Kanade [6] or its spatio-temporal counterpart by Big¨un et al. [2] use method for the ST. In Section 3 first the optic flow estimation method of Lucas and Kanade is briefly

289

Simulation of the ground-water flow system at Naval Submarine Base Bangor and vicinity, Kitsap County, Washington  

USGS Publications Warehouse

An evaluation of the interaction between ground-water flow on Naval Submarine Base Bangor and the regional-flow system shows that for selected alternatives of future ground-water pumping on and near the base, the risk is low that significant concentrations of on-base ground-water contamination will reach off-base public-supply wells and hypothetical wells southwest of the base. The risk is low even if worst-case conditions are considered ? no containment and remediation of on-base contamination. The evaluation also shows that future saltwater encroachment of aquifers below sea level may be possible, but this determination has considerable uncertainty associated with it. The potential effects on the ground-water flow system resulting from four hypothetical ground-water pumping alternatives were considered, including no change in 1995 pumping rates, doubling the rates, and 2020 rates estimated from population projections with two different pumping distributions. All but a continuation of 1995 pumping rates demonstrate the possibility of future saltwater encroachment in the Sea-level aquifer on Naval Submarine Base Bangor. The amount of time it would take for encroachment to occur is unknown. For all pumping alternatives, future saltwater encroachment in the Sea-level aquifer also may be possible along Puget Sound east and southeast of the base. Future saltwater encroachment in the Deep aquifer also may be possible throughout large parts of the study area. Projections of saltwater encroachment are least certain outside the boundaries of Naval Submarine Base Bangor. The potential effects of the ground-water pumping alternatives were evaluated by simulating the ground-water flow system with a three-dimensional uniform-density ground-water flow model. The model was calibrated by trial-and-error by minimizing differences between simulated and measured or estimated variables. These included water levels from prior to January 17, 1977 (termed 'predevelopment'), water-level drawdowns since predevelopment until April 15, 1995, ground-water discharge to streams in water year 1995, and residence times of ground water in different parts of the flow system that were estimated in a separate but related study. Large amounts of ground water were pumped from 1977 through 1980 from the Sea-level aquifer on Naval Submarine Base Bangor to enable the construction of an off-shore drydock. Records of the flow-system responses to the applied stresses were used to help calibrate the model. Errors in the calibrated model were significant. The poor agreement between simulated and measured values could be improved by making many local changes to hydraulic parameters but these changes were not supported by other data. Model errors may have resulted in errors in the simulated effects of ground-water pumping alternatives.

Heeswijk, Marijke van; Smith, Daniel T.

2002-01-01

290

Estimation of lacustrine groundwater discharge using heat as a tracer and vertical hydraulic gradients - a comparison  

NASA Astrophysics Data System (ADS)

Lacustrine groundwater discharge (LGD) can play a major role in water and nutrient balances of lakes. Unfortunately, studies often neglect this input path due to methodological difficulties in the determination. In a previous study we described a method which allows the estimation of LGD and groundwater recharge using hydraulic head data and groundwater net balances based on meteorological data. The aim of this study is to compare these results with discharge rates estimated by inverse modelling of heat transport using temperature profiles measured in lake bed sediments. We were able to show a correlation between the fluxes obtained with the different methods, although the time scales of the methods differ substantially. As a consequence, we conclude that the use of hydraulic head data and meteorologically-based groundwater net balances to estimate LGD is limited to time scales similar to the calibration period.

Rudnick, S.; Lewandowski, J.; Nützmann, G.

2015-03-01

291

Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico  

NASA Astrophysics Data System (ADS)

The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet aquifère. La zone karstifiée a été modélisée en posant l'hypothèse qu'il fonctionne hydrauliquement comme un milieu poreux granulaire. Au cours de la calibration, les hypothèses suivantes ont été testées: (1) les phénomènes karstiques jouent un rôle important dans le système aquifère, (2) un anneau ou une ceinture de dépressions dans la région est la manifestation d'une zone à forte transmissivité qui permet l'écoulement en conduits de l'eau souterraine en direction du Golfe du Mexique, et (3) la situation géologique dans la partie sud du Yucatan détermine les écoulements souterrains. Le modèle montre que la faille de la Sierrita de Ticul, dans la partie sud-ouest de la région étudiée, joue le rôle de barrière et que les valeurs de la piézométrie décroissent en direction du nord-est. La modélisation montre également que la dynamique du système aquifère à l'échelle régionale n'a pas été modifiée malgré le grand nombre de puits de pompage, parce que le volume pompé est faible en comparaison du volume de recharge; en outre, le réseau karstique très bien développé dans cette région possède une très forte conductivité hydraulique. Resumen. El modelo conceptual actual del acuífero cárstico no confinado de la Península de Yucatán (México) es el de un lentejón de agua dulce flotando sobre agua salada, más densa, la cual penetra más de 40 kilómetros tierra adentro. Debido a la alta conductividad hidráulica del acuífero, existe un gradiente hidráulico muy bajo cuyo rango está entre 7 y 10 milímetros por kilómetro en la porción norte de la península. Se utilizó el código AQUIFER para investigar el sistema de flujo de las aguas subterráneas a escala regional en el acuífero. La zona carstificada se modeló suponiendo que actúa hidráulicamente como un medio poroso granular. Como parte de la calibración, se probaron las siguientes hipótesis: (1) las características cársticas desempeñan un papel importante en el sistema de flujo de agua subterránea (2) un anillo o cinturón de sumideros en el área e

González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

2002-09-01

292

Estimation of Spatially and Temporally Varied Groundwater Recharge from Precipitation Using a Systematic and Integrated Approach  

NASA Astrophysics Data System (ADS)

Quantitative determination of spatially and temporally varied groundwater recharge from precipitation is a complex issue involving many control factors, and investigators face great challenges for quantifying the relationship between groundwater recharge and its control factors. In fact, its quantification is a complex process in which unstructured decisions are generally involved. The Analytic Hierarchy Process (AHP) is a systematic method for a powerful and flexible decision making to determine priorities and make the best decision when both qualitative and quantitative aspects of a decision need to be accounted for. Moreover, through a process of reducing complex decisions to a series of one-on-one comparisons, then synthesizing the results, the rationale can clearly be understood for making the best decision. In this study, a systematic and integrated approach for estimation of spatially and temporally varied groundwater recharge from precipitation is proposed, in which the remote sensing, GIS, AHP, and modeling techniques are coupled. A case study is presented for demonstration of its application. Based on field survey and information analyses, the pertinent factors for groundwater recharge are assessed and the dominating factors are identified. An analytical model is then established for estimation of the spatially and temporally varied groundwater recharge from precipitation in which the contribution potentials to groundwater recharge and relative weights of those dominating factors are taken into account. The contribution potentials can be assessed by adopting fuzzy membership functions and integrating expert opinions. The weight for each of the dominating factors can systematically be determined through coupling of the RS, GIS, and AHP techniques. To reduce model uncertainty, this model should be further calibrated systematically and validated using even limited groundwater field data such as observed groundwater heads and groundwater discharges into streams. Then a refined coupling model can be achieved for estimation of groundwater recharge for the whole area of interest. It is demonstrated that the presented approach is practicable and effective.

Wang, M.

2006-05-01

293

Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis  

USGS Publications Warehouse

Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions. ?? Springer-Verlag 2009.

Michael, H.A.; Voss, C.I.

2009-01-01

294

Freshwater flow into a coastal embayment: Groundwater and surface water inputs  

SciTech Connect

Freshwater discharge to a shallow coastal embayment was measured with two upland hydrologic and three embayment physical methods for 2 yr. Parallel measurements from the five methods ranged from 3,900 ({plus_minus}630) to 9,400 ({plus_minus}3,400) m{sup 3} d{sup {minus}1}, and four of the methods showed close agreement and averaged 4,800 ({plus_minus}670) m{sup 3} d{sup {minus}1}. The most precise estimate of discharge was from a chloride balance, while the best understanding of the rate and pattern of groundwater flow was from a Darcian streamtube approach. Groundwater dominated the freshwater budget, accounting for >95% of the total annual input, and was partitioned almost equally between direct seepage to embayment waters and seepage to a stream with final discharge via surface flow. Freshwater inputs decreased rapidly toward the mouth of the estuary and >80% entered into the upper half. The lack of fixed watershed boundaries resulted in large errors in both the location and area of the topographically defined watershed when compared to a watershed defined by water-table mapping. Seasonal variations were found in both the boundaries of the watershed (8%) and in groundwater discharge (6-fold) in response to changing water-table gradients due to recharge. Hydrologic alterations of the upland through the import of water and the increased recharge from impermeable surfaces led to an apparent increase in the total freshwater discharge to the embayment of nearly 50% over {open_quotes}natural{close_quotes}levels. 48 refs., 9 figs., 7 tabs.

Millham, N.P. [Boston Univ., MA (United States); Howes, B.L. [Woods Hole Oceanographic Inst., MA (United States)

1994-12-01

295

Identification of a nonlinear groundwater flow at a slug test in fractured rock and its influence on the test  

NASA Astrophysics Data System (ADS)

Many laboratory and numerical studies reported that a groundwater flow through a fracture at sufficiently high Reynolds numbers does not obey the cubic law which assumes a linear relation between the hydraulic gradient and the flux. Most of them observed that the transitions from a linear to nonlinear flow arose at the Reynolds numbers greater than 10. A slug test is one of the common hydraulic tests, and used for estimation of the hydraulic properties of an aquifer by analyzing the recovery after a sudden change in hydraulic pressure. In this study, we conducted a series of slug tests with various initial head displacements at an experimental borehole at KAERI's (Korea Atomic Energy Research Institute) underground research tunnel whose host rock is Jurassic granite. The Reynolds number at a fracture during slug tests was calculated using the geophysical logging data and slug test results, and the nonlinear flow regime at slug tests was identified. From changes in the Reynolds number during the tests and estimates of the hydraulic properties from the tests, the influence of a nonlinear flow on a slug test was discussed. Our results indicate that the nonlinearity of groundwater flow at a slug test became more severe and the estimated hydraulic conductivity decreased as the initial head displacement increased.

Ji, S.; Koh, Y.

2013-12-01

296

Ground-water conditions in Las Vegas Valley, Clark County, Nevada; Part II, Hydrogeology and simulation of ground-water flow  

USGS Publications Warehouse

Groundwater withdrawals in Las Vegas Valley, Nevada, primarily for municipal supplies, totaled more than 2.5 million acre-ft between 1912 and 1981, with a peak annual withdrawal rate of 88,000 acre-ft in 1968. Effects of heavy pumping are evident over large areas of the valley but are more pronounced near the major well fields. Secondary recharge from lawn irrigation and other sources is estimated to have totaled more than 340,000 acre-ft during 1972-81. Resulting rises in water-level in shallow, unconfined aquifers in the central and southeastern parts of the valley have caused: widespread water-logging of soils; increased groundwater discharge to Las Vegas Wash and its tributaries; and potential for degradation of water quality in deeper aquifers by accentuating downward vertical hydraulic potential in areas where shallow groundwater has high concentrations of dissolved solids and nitrate. A 3-dimensional groundwater flow model of the valley-fill aquifer system was constructed for use in evaluating possible groundwater management alternatives aimed at alleviating problems related to overdraft and water-logging while maximizing use of the groundwater resources. Natural recharge to the valley-fill aquifers is about 33,000 acre-ft/yr; in 1979, an estimated 44,000 acre-ft of secondary recharge infiltrated to the near-surface and developed-zone aquifers. Peak water use for lawn irrigation during summer results in rates of secondary recharge that may increase threefold from winter rates. Simulated rates of seepage to washes in the valley increased correspondingly from an average of 850 acre-ft/mo in winter to about 1,300 acre-ft/mo in the summer. Groundwater withdrawals by pumping totaled 620,000 acre-ft during 1972-81, and model results indicate that about 190,000 acre-ft of that total was derived from storage. Use of the model as a predictive tool was demonstrated by simulating the effects of using most municipal wells only during the peak-demand season of June 1 through September 20. Results of the 9-year simulation indicated that: (1) long-term rates of water-level decline near the municipal well field would be less than rates for 1972-81, but the magnitude of seasonal fluctuations would increase, and (2) total volume of water released from storage as a result of subsidence would be only 42,000 acre-feet per year, or about half the volume during 1972-81.

Morgan, D.S.; Dettinger, M.D.

1994-01-01

297

AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA  

EPA Science Inventory

The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

298

Conceptual evaluation of regional ground-water flow in the carbonate-rock province of the Great Basin, Nevada, Utah, and adjacent states  

USGS Publications Warehouse

The regional groundwater flow system in the carbonate rocks of Nevada and Utah is conceptualized as shallow systems superimposed on deeper systems, which transmit water primarily through carbonate rocks. A computer model was used to simulate the two systems. The regional model includes simplifying assumptions that are probably valid for parts of the province; however, the validity of each assumption is unknown for the province as a whole. Therefore, simulation results do not perfectly replicate actual groundwater flow; instead they provide a conceptual evaluation of regional groundwater flow. The model was calibrated by adjusting transmissivity and vertical leakance until simulated water levels and simulated discharge generally agreed with known water levels, mapped areas of discharge, and estimates of discharge. Simulated flow is about 1.5 million acre-ft/yr. Most groundwater flow is simulated in the upper model layer where about 45 shallow flow regions were identified. In the lower layer, 17 deep-flow subregions were identified and grouped into 5 large regions on the basis of water-flow patterns. Simulated flow in this layer is about 28 percent of the total inflow and about half is discharged as springflow. Interbasin flow to several large springs is through thick, continuous, permeable carbonate rocks; elsewhere deep consolidated rocks are not highly transmissive, suggesting that carbonate rocks are not highly permeable everywhere or are not present everywhere. (USGS)

Prudic, D.E.; Harrill, J.R.; Burbey, T.J.

1993-01-01

299

Estimation of groundwater evaportranspiration using diurnal water table fluctuations in the Mu Us Desert, northern China  

NASA Astrophysics Data System (ADS)

Groundwater evapotranspiration (ETg) is a significant component of water balance analysis in desert areas. Estimation of ETg using diurnal water table fluctuations, i.e. the White method, is considered simple and straightforward, but it was seldom applied in desert areas. In this study, long-term and high-resolution groundwater level data were used to estimate ETg rate at two sites covered by typical desert plants Salix psammophila and Artemisia ordosica, respectively, in the Mu Us Desert in northern China. The specific yield (Sy) was derived from a drainage experiment in laboratory. The results showed that the water demand of S. psammophila could result in a weak but identifiable diurnal fluctuation of water table that was 2.35 m below the land surface, reasonable estimates of ETg could be derived from the White method, and the level of the ETg corresponded with the plant growth stages. However, the water table data from the area covered by A. ordosica did not show diurnal fluctuation during the growing season. The White method is good for the desert areas where groundwater use by other processes is negligible, and evapotranspiration is the main process for groundwater consumption. In addition, the information about diurnal water table fluctuations is useful for identification of groundwater-dependence of vegetation. A. ordosica is groundwater-independent, whereas S. psammophila is groundwater-dependent.

Cheng, Dong-hui; Li, Ying; Chen, Xunhong; Wang, Wen-ke; Hou, Guang-cai; Wang, Cun-liang

2013-05-01

300

Integrated Surface-groundwater Flow Modeling: a Free-surface Overland Flow Boundary Condition in a Parallel Groundwater Flow Model  

SciTech Connect

Interactions between surface and ground water are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variable saturated subsurface flow code ParFlow. In ParFlow, the overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is efficiently exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the uncertainty in overland flow predictions due to subsurface heterogeneity and demonstrate the usefulness of our approach. Both the overland flow component and the coupled model are evaluated in a parallel scaling study and show to be efficient.

Kollet, S J; Maxwell, R M

2005-04-08

301

Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge  

NASA Astrophysics Data System (ADS)

Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

2013-03-01

302

Large-scale use of heat as a natural tracer of groundwater flow: Application to a Variscan terrane in Belgium  

NASA Astrophysics Data System (ADS)

Heat flow shifts between 20 and 60 mW/m² in the upper ˜2 km of the crust and 60 to 150 mW/m² at greater depth have been observed in the Soumagne, Havelange and Grand-Halleux deep wells, all located close to the Variscan thrust front in Belgium. A potential explanation for these anomalies might be provided by the existence of pervasive flow in the upper part of the crust, based on the concept of concave tectonics, and the flow through karstic pathways or major thrust faults. On the other hand, the paleoclimate is also known to disturb temperatures in the subsurface. To test the hypothesis that these processes are the cause of the observed anomalies, and to quantify the contributions of the different processes and flow paths, we performed large-scale 2-D coupled hydrothermal modelling of the current fluid and heat flow distribution. In order to account for the paleoclimate effect, we performed transient modelling, making use of paleotemperature data as boundary conditions. The results confirm that groundwater flow is the dominant cause of the observed heat flow shifts in the upper ˜2 km of the Variscan terrane. The estimated groundwater flow, both pervasive and along major conduits, is rivalled by the paleoclimatic influence only in the Grand-Halleux well. The currently observed cooling of the upper ~2 km, requires less than 0.5 Myr and is controlled by the present geomorphology.

Rogiers, Bart; Huysmans, Marijke; Vandenberghe, Noël; Verkeyn, Mieke

2014-05-01

303

Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers  

USGS Publications Warehouse

A conduit flow process (CFP) for the Modular Finite Difference Ground-Water Flow model, MODFLOW-2005, has been created by the U.S. Geological Survey. An application of the CFP on a carbonate aquifer in southern Florida is described; this application examines (1) the potential for turbulent groundwater flow and (2) the effects of turbulent flow on hydraulic heads and parameter sensitivities. Turbulent flow components were spatially extensive in preferential groundwater flow layers, with horizontal hydraulic conductivities of about 5,000,000 m d-1, mean void diameters equal to about 3.5 cm, groundwater temperature equal to about 25??C, and critical Reynolds numbers less than or equal to 400. Turbulence either increased or decreased simulated heads from their laminar elevations. Specifically, head differences from laminar elevations ranged from about -18 to +27 cm and were explained by the magnitude of net flow to the finite difference model cell. Turbulence also affected the sensitivities of model parameters. Specifically, the composite-scaled sensitivities of horizontal hydraulic conductivities decreased by as much as 70% when turbulence was essentially removed. These hydraulic head and sensitivity differences due to turbulent groundwater flow highlight potential errors in models based on the equivalent porous media assumption, which assumes laminar flow in uniformly distributed void spaces. Copyright 2008 by the American Geophysical Union.

Shoemaker, W.B.; Cunningham, K.J.; Kuniansky, E.L.; Dixon, J.

2008-01-01

304

A modular three-dimensional finite-difference ground-water flow model  

Microsoft Academic Search

A computer program for simulating ground-water flow in three dimensions is presented. This report includes detailed explanations of physical and mathematical concepts on which the model is developed. Ground-water flow within the aquifer is simulated by using a block-centered finite-difference approach. The program is written in Fortran 77 and has a modular structure, which permits the addition of new packages

M. G. McDonald; A. W. Harbaugh

1988-01-01

305

How sampling integration scale affects estimates of coupled groundwater and nitrogen fluxes into an agricultural stream  

NASA Astrophysics Data System (ADS)

Coupled fluxes of groundwater and non-point source contaminants from aquifers to streams may be estimated using streambed point (SP) measurements, seepage meter (SM) measurements, or a reach mass-balance approach (RMB), each with different spatial support scales and pros/cons. We have applied all three measurement schemes concurrently in the same stream to assess how sampling integration scale affects estimates of (1) coupled groundwater and dissolved nitrogen fluxes through a streambed and (2) the total amount of denitrification that has occurred along groundwater flowpaths. Our study site was a 2700m reach in West Bear Creek (WBC), a channelized and overall gaining stream in the agricultural Coastal Plain of North Carolina. In a July 2012 sampling campaign, groundwater fluxes through the WBC streambed were similar for the SP and RMB approaches (35 cm/day and 33 cm/day, respectively), despite very different measurement scales and different reach sizes (RMB groundwater flux is based on a 200m stream reach containing the smaller 58m SP reach). However, the RMB approach gave a lower calculated streambed nitrate flux (136 mmol m-2 d-1, versus 231 mmol m-2 d-1 for SP) for the 58m reach. The lower nitrate flux by the RMB approach is linked to a lower mean groundwater nitrate concentration estimated by RMB (361 ?M, vs. 808 ?M for SP). Unlike the SP approach, the RMB approach samples groundwater that has had significant interaction with the stream channel and thus, apparently, nitrate loss from uptake and/or denitrification. The SM approach used novel flexible streambed 'blankets' and gave lower fluxes: 10 cm/day for groundwater (due perhaps to incomplete sampling of streambed variability in this flux or other methodological issues) and 53 mmol m-2 d-1 for nitrate; it also gave an intermediate estimate of nitrate concentration in the groundwater discharge to the stream (527 ?M), likely a reflection of the intermediate amount of channel interaction (collected after passing through the hyporheic zone, but before subsequent channel interaction) for the groundwater sampled by this approach. Noble gas concentrations (Xe, Ar, Ne, Kr) are being used to model the amount of N2 derived from denitrification (N2-den) in the groundwater feeding the stream. Preliminary results from a subset of SP samples (n=9) suggest significant amounts of N2-den because measured groundwater N2 concentration is up to 75% higher than modeled N2 concentration. The three approaches offer different strengths and weaknesses appropriate for answering different questions, and in concert may provide a fuller picture of N fluxes from groundwater to surface water in areas of non-point N pollution.

Gilmore, T. E.; Solder, J.; Solomon, K.; Genereux, D. P.; Kimball, B. A.; Burnette, M.; Becker, S.

2013-12-01

306

MEAN VOLUME FLOW ESTIMATION IN PULSATILE FLOW CONDITIONS  

PubMed Central

To verify a previously reported three-dimensional (3D) ultrasound method for the measurement of time-average volumetric blood flow, experiments were performed under pulsatile flow conditions, including in vivo investigations, and results were compared with accepted, but invasive, “gold standard” techniques. Results showed that volume averaging results in the correct time-average volume flow without the need for cardiac gating. Unlike other currently employed methods, this method is independent of Doppler angle, flow profile and vessel geometry. A GE Logiq 9 ultrasound system (GE Medical Systems, Milwaukee, WI, USA) and a four-dimensional (4D) 10L and 4D 16L probe were used to acquire 3D Doppler measurements in the femoral and carotid arteries of four canines. Two invasive blood flow meters were used (electromagnetic for one canine and ultrasonic for three canines) as the gold standard techniques. Transcutaneous color flow measurements were taken to obtain 3D volume data sets encompassing the vessel. Constant depth planes were used to integrate color flow pixels encompassing the entire vessel cross-section. Power Doppler data were used to correct for partial volume effects. An artificial stenosis was induced to vary the ambient volume flow. Unrestricted, bidirectional flow was measured as high as 400 mL min?1. Several flow restrictions were imposed that decreased the measured volumetric flow rate to as low as 30 mL min?1. All flow rate estimates (n = 38) were plotted against results obtained via the gold standards. A general line fit resulted in y = 0.926 × ? 0.87 (r2 = 0.95), which corresponds to a 0.6% flow offset relative to the average flow rate of 142 mL min?1, as well as a 7.4% error in the linearity of our estimate. A secondary curve fit was performed that required the slope to be 1 and the intercept to be 0, which yielded an r2-value of 0.93. The percent-error distribution was computed and fitted to a Gaussian function, which yielded ? = ?7.04% and ? = 9.52%. Theoretical studies were conducted to estimate the expected error in our volume flow measurements as a function of number of samples (N) used for averaging pulsatile waveforms. Experiments showed the same 1?N dependence as theory. Direct comparisons of volume flow rate estimates using volumetric color Doppler and independent standards showed that our method has good accuracy under in vivo pulsatile blood flow conditions. PMID:19819615

Richards, Michael S.; Kripfgans, Oliver D.; Rubin, Jonathan M.; Hall, Anne L.; Fowlkes, J. Brian

2009-01-01

307

Estimating the Regional Flux of Nitrate and Agricultural Herbicide Compounds from Groundwater to Headwater Streams of the Northern Atlantic Coastal Plain, USA  

NASA Astrophysics Data System (ADS)

Agriculture is common in the Northern Atlantic Coastal Plain (NACP, including New Jersey through North Carolina), and groundwater discharge provides nitrogen (primarily in the form of nitrate) and herbicide compounds from agricultural sources along with the majority of flow to NACP streams. Poor water quality has contributed to ecological degradation of tidal streams and estuaries along much of the adjacent mid-Atlantic coast. Although statistical models have provided estimates of total instream nutrient flux in the Coastal Plain, the regional flux of nitrogen and herbicides during base flow is less well understood. We estimated the regional flux of nitrate and selected commonly used herbicide compounds from groundwater to non-tidal headwater streams of the NACP on the basis of late-winter or spring base-flow samples from 174 such streams. Sampled streams were selected using an unequal-probability random approach, and flux estimates are based on resulting population estimates rather than empirical models, which are commonly used for such estimates. Base-flow flux in the estimated 8,834 NACP non-tidal headwater streams are an estimated 21,200 kilograms per day of nitrate (as N) and 5.83, 0.565, and 20.7 kilograms per day of alachlor, atrazine, and metolachlor (including selected degradates), respectively. Base-flow flux of alachlor and metolachlor is dominated by degradates; flux of parent compounds is less than 3 percent of the total flux of parent plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications generally varies predictably with regional variations in hydrogeology. Abundant nonpoint (primarily agricultural) sources and hydrogeologic conditions, for example, contribute to particularly large base-flow flux from the Delmarva Peninsula to Chesapeake Bay. In the Delmarva Peninsula part of the Chesapeake Watershed, more than 10 percent of total nonpoint nitrogen applications is transported through groundwater to stream base flow, and base-flow nitrate flux represents 70 percent of total nitrogen flux in streams.

Ator, S.; Denver, J. M.

2011-12-01

308

Simulation of groundwater flow and environmental effects resulting from pumping  

Microsoft Academic Search

In coastal lowland plains, increased water demand on a limited water resource has resulted in declining groundwater levels, land subsidence and saltwater encroachment. In southwestern Kyushu, Japan, a sinking of the land surface due to over pumping of groundwater has long been recognized as a problem in the Shiroishi lowland plain. In this paper, an integrated model was established for

Nguyen Cao Don; Hiroyuki Araki; Hiroyuki Yamanishi; Kenichi Koga

2005-01-01

309

Comparison of groundwater recharge estimation methods for the semi-arid Nyamandhlovu area, Zimbabwe  

NASA Astrophysics Data System (ADS)

The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19-62 mm/year); water-table fluctuation method (2-50 mm/year); Darcian flownet computations (16-28 mm/year); 14C age dating (22-25 mm/year); and groundwater modeling (11-26 mm/year). The flownet computational and modeling methods provided better estimates for aerial recharge than the other methods. Based on groundwater modeling, a final estimate for recharge (from precipitation) on the order of 15-20 mm/year is believed to be realistic, assuming that part of the recharge water transpires from the water table by deep-rooted vegetation. This recharge estimate (2.7-3.6% of the annual precipitation of 555 mm/year) compares well with the results of other researchers. The advantages/disadvantages of each recharge method in terms of ease of application, accuracy, and costs are discussed. The groundwater model was also used to quantify the total recharge of the Nyamandhlovu aquifer system (20 × 106-25 × 106 m3/year). Groundwater abstractions exceeding 17 × 106 m3/year could cause ecological damage, affecting, for instance, the deep-rooted vegetation in the area.

Sibanda, Tenant; Nonner, Johannes C.; Uhlenbrook, Stefan

2009-09-01

310

Hydrogeophysical estimation of groundwater tracer concentrations from field-scale electrical resistivity tomography  

NASA Astrophysics Data System (ADS)

This research has established a systematic procedure to accurately track the migration of a groundwater solute tracer using cross-well electrical resistivity tomography (ERT). There are three contributions in this dissertation. First, based on original experimental data collected for this project at the Massachusetts Military Reservation, it is shown that the migration of a saline tracer was readily detected in 3D using ERT, and that the mass, center of mass, and spatial variance of the imaged tracer plume were estimated from modified moment analysis of the electrical resistivity tomograms. Conversion of the inverted electrical resistivities to solute concentrations via Archie's law resulted in significant underestimation of tracer mass and greater apparent dispersion than that suggested by reasonable advection-dispersion simulations. However, the center of mass estimated from ERT inversions was accurately tracked when compared to 3D transport simulation. The second contribution presented in this dissertation is to reveal how the spatially variable resolution of ERT affects electrical resistivity estimates and local solute concentrations. Underestimated tracer mass from ERT and overestimated tracer plume dispersion is shown to be an effect of two properties of ERT surveys: (1) reduced measurement sensitivity to electrical resistivity values with distance from the electrodes and, (2) spatial smoothing (regularization) resulting from tomographic inversion. Analyses suggest that no single petrophysical relation, such as Archie's law, exists between concentration and electrical resistivity. The "correct" petrophysical model must vary both in space and time. Finding this non-stationary petrophysical model is the third contribution of this research. A method is demonstrated that employs numerical simulation of both solute transport and electrical flow to create local non-stationary linear relations between resistivities and tracer concentrations. These relations are used to convert field electrical resistivity tomograms into estimated concentrations. In both synthetic and field data, tracer mass and concentration estimates obtained using this non-stationary estimation approach were superior to those obtained using direct application of Archie's law applied to 3D tomograms from ERT. Through dynamic geophysical imaging of a groundwater tracer combined with quantification of the spatially variable resolution of ERT, a more accurate description of tracer behavior was achieved than previously possible.

Singha, Kamini

311

Microsphere estimates of blood flow: Methodological considerations  

SciTech Connect

The microsphere technique is a standard method for measuring blood flow in experimental animals. Sporadic reports have appeared outlining the limitations of this method. In this study the authors have systematically assessed the effect of blood withdrawals for reference sampling, microsphere numbers, and anesthesia on blood flow estimates using radioactive microspheres in dogs. Experiments were performed on 18 conscious and 12 anesthetized dogs. Four blood flow estimates were performed over 120 min using 1 {times} 10{sup 6} microspheres each time. The effects of excessive numbers of microspheres pentobarbital sodium anesthesia, and replacement of volume loss for reference samples with dextran 70 were assessed. In both conscious and anesthetized dogs a progressive decrease in gastric mucosal blood flow and cardiac output was observed over 120 min. This was also observed in the pancreas in conscious dogs. The major factor responsible for these changes was the volume loss due to the reference sample withdrawals. Replacement of the withdrawn blood with dextran 70 led to stable blood flows to all organs. The injection of excessive numbers of microspheres did not modify hemodynamics to a greater extent than did the injection of 4 million microspheres. Anesthesia exerted no influence on blood flow other than raising coronary flow. The authors conclude that although blood flow to the gastric mucosa and the pancreas is sensitive to the minor hemodynamic changes associated with the microsphere technique, replacement of volume loss for reference samples ensures stable blood flow to all organs over a 120-min period.

von Ritter, C.; Hinder, R.A.; Womack, W.; Bauerfeind, P.; Fimmel, C.J.; Kvietys, P.R.; Granger, D.N.; Blum, A.L. (Univ. of the Witwatersrand, Johannesburg (South Africa) Louisianna State Univ. Medical Center, Shreveport (USA) Universitaire Vaudois (Switzerland))

1988-02-01

312

Intercomparison of submarine groundwater discharge estimates from a sandy  

E-print Network

Recent studies suggest that chemical loading from submarine groundwater dis- charge (SGD) may rival other major sources such as rivers in many coastal areas. SGD can occur as terrestrially-derived, typically terrestrial and recirculated seawater SGD can be sig- nificant sources of chemical loading to coastal waters

313

Using 14C and 3H to understand groundwater flow and recharge in an aquifer window  

NASA Astrophysics Data System (ADS)

Knowledge of groundwater residence times and recharge locations are vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge and recharge from the Gellibrand River. To determine recharge patterns and groundwater flowpaths, environmental isotopes (3H, 14C, ?13C, ?18O, ?2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. Despite the water table fluctuating by 0.9-3.7 m annually producing estimated recharge rates of 90 and 372 mm yr-1, residence times of shallow (11-29 m) groundwater determined by 14C ages are between 100 and 10 000 years. 3H activities are negligible in most of the groundwater and groundwater electrical conductivity in individual areas remains constant over the period of study. Although diffuse local recharge is evident, the depth to which it penetrates is limited to the upper 10 m of the aquifer. Rather, groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High, and acts as a regional discharge zone where upward head gradients are maintained annually, limiting local recharge. Additionally, the Gellibrand River does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10 000 years BP to the present day are interpreted to indicate an increase in recharge rates on the Barongarook High.

Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

2014-06-01

314

Groundwater exploitation and hydraulic parameter estimation for a Quaternary aquifer in Dar-es-Salaam Tanzania  

NASA Astrophysics Data System (ADS)

The fact that groundwater exploitation has largely increased since 1997 in the Dar-es-Salaam aquifer, calls for a directed attention towards possible problems of aquifer overexploitation that may arise in the near future. Hydraulic parameters are important for developing local and regional water plans as well as developing numerical groundwater flow models to predict the future availability of the water resource. The determination of aquifer parameters through pumping tests has become a standard step in the evaluation of groundwater resource potential. The pumping tests in the study area were conducted in August 2004 and August 2005, where 39 boreholes were tested out of 400 visited. In the study area there are over 1300 recorded boreholes drilled by Drilling and Dam Construction Agency (DDCA) by the year 2005. Total groundwater exploitation in the study area was estimated at 8.59 × 10 6 m 3/year, based on yield data collected during the 2004-2005 field campaigns. The pumping tests included single-well tests and tests with measurements on the pumping well and at least one observation well. The tests were conducted for 6 h and 30 min. The pump was shut down after 6 h of pumping and the remaining 30 min were used for recovery measurements. The pumping test analysis methods used include: Neuman type curve matching and Walton type curve matching, checked by specific well capacity assessment and Thiem-Dupuit/Thiem's method. The curve-matching results from the aquifer tests show the following parameters: an average transmissivity and hydraulic conductivity of 34 m 2/d and 1.58 m/d, respectively for the unconfined aquifer; the semi-confined aquifer has an average value of 63 m 2/d and 2.14 m/d for transmissivity and hydraulic conductivity, respectively. For the case of the storativity, the unconfined aquifer has an average elastic early-time storativity of 0.01, while the lower aquifer has an average storativity of 3 × 10 -4. Specific well capacity method and Thiem-Dupuit/Thiem's method confirm results for transmissivity and hydraulic conductivity of the semi-confined aquifer, while values for the unconfined aquifer are somewhat larger (by a factor of 2-3). The hydraulic parameters calculated appear to reasonably agree with the geological formation of the aquifers, as deduced from borehole descriptions.

Mjemah, Ibrahimu Chikira; Van Camp, Marc; Walraevens, Kristine

2009-10-01

315

Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge  

USGS Publications Warehouse

Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

2012-01-01

316

Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge  

NASA Astrophysics Data System (ADS)

Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

2012-07-01

317

A full-Bayesian approach to the inverse problem for steady-state groundwater flow and heat transport  

NASA Astrophysics Data System (ADS)

The full (hierarchal) Bayesian approach proposed by Woodbury & Ulrych and Jiang et al. is extended to the inverse problem for 2-D steady-state groundwater flow and heat transport. A stochastic conceptual framework for the heat flow and groundwater flow is adopted. A perturbation of both the groundwater flow and the advection-conduction heat transport equations leads to a linear formulation between heads, temperature and logarithm transmissivity [denoted as ln (T)]. A Bayesian updating procedure similar to that of Woodbury & Ulrych can then be performed. This new algorithm is examined against a generic example through simulations. The prior mean, variance and integral scales of ln (T) (hyperparameters) are treated as random variables and their pdfs are determined from maximum entropy considerations. It is also assumed that the statistical properties of the noise in the hydraulic head and temperature measurements are also uncertain. Uncertainties in all pertinent hyperparameters are removed by marginalization. It is found that the use of temperature measurements is showed to further improve the ln (T) estimates for the test case in comparison to the updated ln (T) field conditioned on ln (T) and head data; the addition of temperature data without hydraulic head data to the update also aids refinement of the ln (T) field compared to simply interpolating ln (T) data alone these results suggest that temperature measurements are a promising data source for site characterization for heterogeneous aquifer, which can be accomplished through the full-Bayesian methodology.

Jiang, Yefang; Woodbury, Allan D.

2006-12-01

318

Quantitative estimation of groundwater recharge ratio along the riparian of the Yellow River.  

PubMed

Quantitative estimation of groundwater recharge is crucial for limited water resources management. A combination of isotopic and chemical indicators has been used to evaluate the relationship between surface water, groundwater, and rainfall around the riparian of the Yellow River in the North China Plain (NCP). The ion molar ratio of sodium to chloride in surface- and groundwater is 0.6 and 0.9, respectively, indicating cation exchange of Ca(2+) and/or Mg(2+) for Na(+) in groundwater. The ?D and ?(18)O values in rainfall varied from -64.4 to -33.4‰ and from -8.39 to -4.49‰. The groundwater samples have ?D values in the range of -68.7 to -58.0‰ and ?(18)O from -9.29 to -6.85‰. The ?(18)O and ?D in surface water varied from -8.51 to -7.23‰ and from -64.42 to -53.73‰. The average values of both ?D and ?(18)O from surface water are 3.92‰ and 0.57‰, respectively, higher compared to groundwater. Isotopic composition indicated that the groundwater in the riparian area of the Yellow River was influenced by heavy rainfall events and seepage of surface water. The mass balance was applied for the first time to estimate the amount of recharge, which is probably 6% and 94% of the rainfall and surface water, respectively. PMID:24334892

Yan, Zhang; Fadong, Li; Jing, Li; Qiang, Liu; Guangshuai, Zhao

2013-01-01

319

Ground-water flow in the Gulf Coast aquifer systems, south-central United States  

USGS Publications Warehouse

The Gulf Coast regional aquifer systems constitute one of the largest, most complicated, and most interdependent aquifer systems in the United States. Ground-water flow in a 230,000-square-mile area of the south-central United States was modeled for the effect of withdrawing freshwater at the rate of nearly 10 billion gallons per day in 1985 from regional aquifers in the Mississippi Embayment, the Texas coastal uplands, and the coastal lowlands aquifer systems. The 1985 rate of pumping was three times the average rate of recharge to the aquifers before development. The report also estimates the effects of even greater withdrawal rates in the aquifer systems. About two-thirds of the water in the aquifers is saline to brine, which complicates the modeling. Land subsidence due to water withdrawal also was modeled.

Williamson, A.K.; Grubb, H.F.

2001-01-01

320

Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation  

NASA Astrophysics Data System (ADS)

The long-term mobility of actinides in groundwaters is important for siting nuclear waste facilities and managing waste-rock piles at uranium mines. Dissolved organic carbon (DOC) may influence the mobility of uranium, but few field-based studies have been undertaken to examine this in typical groundwaters. In addition, few techniques are available to isolate DOC and directly quantify the metals complexed to it. Determination of U-organic matter association constants from analysis of field-collected samples compliments laboratory measurements, and these constants are needed for accurate transport calculations. The partitioning of U to DOC in a clay-rich aquitard was investigated in 10 groundwater samples collected between 2 and 30 m depths at one test site. A positive correlation was observed between the DOC (4-132 mg/L) and U concentrations (20-603 ?g/L). The association of U and DOC was examined directly using on-line coupling of Asymmetrical Flow Field-Flow Fractionation (AsFlFFF) with UV absorbance (UVA) and inductively coupled plasma-mass spectrometer (ICP-MS) detectors. This method has the advantages of utilizing very small sample volumes (20-50 ?L) as well as giving molecular weight information on U-organic matter complexes. AsFlFFF-UVA results showed that 47-98% of the DOC (4-136 mg C/L) was recovered in the AsFlFFF analysis, of which 25-64% occurred in the resolvable peak. This peak corresponded to a weight-average molecular weight of about 900-1400 Daltons (Da). In all cases, AsFlFFF-ICP-MS suggested that ? 2% of the U, likely present as U(VI), was complexed with the DOC. This result was in good agreement with the U speciation modeling performed on the sample taken from the 2.3 m depth, which predicted approximately 3% DOC-complexed U. This good agreement suggests that the AsFlFFF-ICP-MS method may be very useful for determining U-organic matter association in small volume samples. Because the pH (7.0-8.1) and carbonate concentrations of these waters are typical of many groundwaters, these data suggested that facilitated transport of U by DOC may be limited in its importance in many groundwater systems.

Ranville, James F.; Hendry, M. Jim; Reszat, Thorsten N.; Xie, Qianli; Honeyman, Bruce D.

2007-05-01

321

Quantifying uranium complexation by groundwater dissolved organic carbon using asymmetrical flow field-flow fractionation.  

PubMed

The long-term mobility of actinides in groundwaters is important for siting nuclear waste facilities and managing waste-rock piles at uranium mines. Dissolved organic carbon (DOC) may influence the mobility of uranium, but few field-based studies have been undertaken to examine this in typical groundwaters. In addition, few techniques are available to isolate DOC and directly quantify the metals complexed to it. Determination of U-organic matter association constants from analysis of field-collected samples compliments laboratory measurements, and these constants are needed for accurate transport calculations. The partitioning of U to DOC in a clay-rich aquitard was investigated in 10 groundwater samples collected between 2 and 30 m depths at one test site. A positive correlation was observed between the DOC (4-132 mg/L) and U concentrations (20-603 microg/L). The association of U and DOC was examined directly using on-line coupling of Asymmetrical Flow Field-Flow Fractionation (AsFlFFF) with UV absorbance (UVA) and inductively coupled plasma-mass spectrometer (ICP-MS) detectors. This method has the advantages of utilizing very small sample volumes (20-50 microL) as well as giving molecular weight information on U-organic matter complexes. AsFlFFF-UVA results showed that 47-98% of the DOC (4-136 mg C/L) was recovered in the AsFlFFF analysis, of which 25-64% occurred in the resolvable peak. This peak corresponded to a weight-average molecular weight of about 900-1400 Daltons (Da). In all cases, AsFlFFF-ICP-MS suggested thatgroundwaters, these data suggested that facilitated transport of U by DOC may be limited in its importance in many groundwater systems. PMID:17196707

Ranville, James F; Hendry, M Jim; Reszat, Thorsten N; Xie, Qianli; Honeyman, Bruce D

2007-05-14

322

Geohydrology of the Central Oahu, Hawaii, Ground-Water Flow System and Numerical Simulation of the Effects of Additional Pumping  

USGS Publications Warehouse

A two-dimensional, finite-difference, ground-water flow model was developed for the central Oahu flow system, which is the largest and most productive ground-water flow system on the island. The model is based on the computer code SHARP which simulates both freshwater and saltwater flow. The ground-water model was developed using average pumping and recharge conditions during the 1950's, which was considered to be a steady-state period. For 1950's conditions, model results indicate that 62 percent (90.1 million gallons per day) of the discharge from the Schofield ground-water area flows southward and the remaining 38 percent (55.2 million gallons per day) of the discharge from Schofield flows northward. Although the contribution of recharge from infiltration of rainfall and irrigation water directly on top of the southern and northern Schofield ground-water dams was included in the model, the distribution of natural discharge from the Schofield ground-water area was estimated exclusive of the recharge on top of the dams. The model was used to investigate the long-term effects of pumping under future land-use conditions. Future recharge was conservatively estimated by assuming no recharge associated with agricultural activities. Future pumpage used in the model was based on the 1995-allocated rates. Model results indicate that the long-term effect of pumping at the 1995-allocated rates will be a reduction of water levels from present (1995) conditions in all ground-water areas of the central Oahu flow system. In the Schofield ground-water area, model results indicate that water levels could decline about 30 feet from the 1995 water-level altitude of about 275 feet. In the remaining ground-water areas of the central Oahu flow system, water levels may decline from less than 1 foot to as much as 12 feet relative to 1995 water levels. Model results indicate that the bottoms of several existing deep wells in northern and southern Oahu extend below the model-calculated freshwater-saltwater interface location for the future recharge and pumping conditions. Model results indicate that an additional 10 million gallons per day (beyond the 1995-allocated rates) of freshwater can potentially be developed from northern Oahu. Various distributions of pumping can be used to obtain the additional 10 million gallons per day of water. The quality of the water pumped will be dependent on site-specific factors and cannot be predicted on the basis of model results. If the additional 10 million gallons per day pumpage is restricted to the Kawailoa and Waialua areas, model results indicate that a regional drawdown (relative to the water-level distribution associated with the 1995-allocated pumping rates) of less than 0.6 foot can be maintained in these two areas. The additional pumping, however, would cause salinity increases in water pumped by existing deep wells. In addition, increases in salinity may occur at other wells in areas where the model indicates no significant problem with upconing.

Oki, Delwyn S.

1998-01-01

323

Use of tritium and helium to define groundwater flow conditions in Everglades National Park  

NASA Astrophysics Data System (ADS)

The concentrations of tritium (3H) and helium isotopes (3He and 4He) were used as tracers of groundwater flow in the surficial aquifer system (SAS) beneath Everglades National Park (ENP), south Florida. From ages determined by 3H/3He dating techniques, groundwater within the upper 28 m originated within the last 30 years. Below 28 m, waters originated prior to 30 years before present with evidence of mixing at the interface. Interannual variation of the 3H/3He ages within the upper 28 m was significant throughout the 3 year investigation, corresponding with varying hydrologic conditions. In the region of Taylor Slough Bridge, younger groundwater was consistently detected below older groundwater in the Biscayne Aquifer, suggesting preferential flow to the lower part of the aquifer. An increase in 4He with depth in the SAS indicated that radiogenic 4He produced in the underlying Hawthorn Group migrates into the SAS by diffusion. Higher ?4He values in brackish groundwaters compared to fresh waters from similar depths suggested a possible enhanced vertical transport of 4He in the seawater mixing zone. Groundwater salinity measurements indicated the presence of a wide (6-28 km) seawater mixing zone. Comparison of groundwater levels with surface water levels in this zone indicated the potential for brackish groundwater discharge to the overlying Everglades surface water.

Price, René M.; Top, Zafer; Happell, James D.; Swart, Peter K.

2003-09-01

324

Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida  

USGS Publications Warehouse

A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average ET over the 1995 to 2006 period was 34.47 inches per year, compared to the calculated average ET rate of 36.39 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.58 inches per year, compared with the calculated average of 3.39 inches per year from the model-independent water-budget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 920 million gallons per day, which i

Sepulveda, Nicasio; Tiedeman, Claire R.; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

2012-01-01

325

Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida  

USGS Publications Warehouse

A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The east-central Florida transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration, runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into evapotranspiration, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams per liter in the Floridan aquifer system. Potential flow across the interface represented by this chloride concentration is simulated by the General Head Boundary Package. During 1995 through 2006, there were no major groundwater withdrawals near the freshwater and saline-water interface, making the general head boundary a suitable feature to estimate flow through the interface. The east-central Florida transient model was calibrated using the inverse parameter estimation code, PEST. Steady-state models for 1999 and 2003 were developed to estimate hydraulic conductivity (K) using average annual heads and spring flows as observations. The spatial variation of K was represented using zones of constant values in some layers, and pilot points in other layers. Estimated K values were within one order of magnitude of aquifer performance test data. A simulation of the final two years (2005-2006) of the 12-year model, with the K estimates from the steady-state calibration, was used to guide the estimation of specific yield and specific storage values. The final model yielded head and spring-flow residuals that met the calibration criteria for the 12-year transient simulation. The overall mean residual for heads, defining residual as simulated minus measured value, was -0.04 foot. The overall root-mean square residual for heads was less than 3.6 feet for each year in the 1995 to 2006 simulation period. The overall mean residual for spring flows was -0.3 cubic foot per second. The spatial distribution of head residuals was generally random, with some minor indications of bias. Simulated average evapotranspiration (ET) over the 1995 to 2006 period was 34.5 inches per year, compared to the calculated average ET rate of 36.6 inches per year from the model-independent water-budget analysis. Simulated average net recharge to the surficial aquifer system was 3.6 inches per year, compared with the calculated average of 3.2 inches per year from the model-independent waterbudget analysis. Groundwater withdrawals from the Floridan aquifer system averaged about 800 milli

Sepulveda, Nicasio; Tiedeman, Claire R.; O'Reilly, Andrew M.; Davis, Jeffery B.; Burger, Patrick

2012-01-01

326

ADAPTATION OF THE CARTER-TRACY WATER INFLUX CALCULATION TO GROUNDWATER FLOW SIMULTATION.  

USGS Publications Warehouse

The Carter-Tracy calculation for water influx is adapted to groundwater flow simulation with additional clarifying explanation not present in the original papers. The Van Everdingen and Hurst aquifer-influence functions for radial flow from an outer aquifer region are employed. This technique, based on convolution of unit-step response functions, offers a simple but approximate method for embedding an inner region of groundwater flow simulation within a much larger aquifer region where flow can be treated in an approximate fashion. The use of aquifer-influence functions in groundwater flow modeling reduces the size of the computational grid with a corresponding reduction in computer storage and execution time. The Carter-Tracy approximation to the convolution integral enables the aquifer influence function calculation to be made with an additional storage requirement of only two times the number of boundary nodes more than that required for the inner region simulation.

Kipp, Kenneth L.

1986-01-01

327

Submarine Groundwater Discharge to a High-Energy Surf Zone at Stinson Beach, California, Estimated Using Radium  

E-print Network

Submarine Groundwater Discharge to a High-Energy Surf Zone at Stinson Beach, California, Estimated-driven, and seasonal variability of submarine groundwater discharge (SGD) at Stinson Beach, CA, using natural radium groundwater discharge rates of 6 to 8 L min-1 m-1 in July 2006 and 38 to 43 L min-1 m-1 in March 2007. SGD

Paytan, Adina

328

Analysis of the Shallow Groundwater Flow System at Fire Island National Seashore, Suffolk County, New York  

USGS Publications Warehouse

Fire Island National Seashore (FIIS) occupies 42 kilometers of the barrier island for which it is named that lies off the southern shore of Suffolk County, N.Y. Freshwater in the highly permeable, sandy aquifer underlying Fire Island is bounded laterally by marine surface waters and at depth by saline groundwater. Interspersed throughout FIIS are 17 pre-existing residential communities that in summer months greatly increase in population through the arrival of summer residents and vacationers; in addition, the National Park Service (NPS) has established several facilities on the island to accommodate visitors to FIIS. The 2.2 million people estimated by the NPS to visit Fire Island annually impact groundwater quality through the release of waste-derived contaminants, such as nutrients, pathogens, and organic compounds, into the environment. Waste-contaminated groundwater can move through the aquifer and threaten the ecological health of the adjacent back-barrier estuaries to which much of the groundwater ultimately discharges. In 2004, the U.S. Geological Survey (USGS), in cooperation with the NPS, began a 3-year investigation to (1) collect groundwater levels and water-quality (nutrient) samples, (2) develop a three-dimensional model of the shallow (water-table) aquifer system and adjacent marine surface waters, and (3) calculate nitrogen loads in simulated groundwater discharges from the aquifer to back-barrier estuaries and the ocean. The hydrogeology of the shallow aquifer system was characterized from the results of exploratory drilling, geophysical surveying, water-level monitoring, and water-quality sampling. The investigation focused on four areas-the communities of Kismet and Robbins Rest, the NPS Visitor Center at Watch Hill, and the undeveloped Otis Pike Fire Island High Dune Wilderness. Thirty-five observation wells were installed within FIIS to characterize subsurface hydrogeology and establish a water-table monitoring network in the four study areas. A variable-density model of the shallow aquifer system and adjacent marine surface waters was developed to simulate groundwater flow patterns and rates. Nitrogen loads from the shallow aquifer system were calculated from representative total nitrogen (TN) concentrations and simulated groundwater discharges to back-barrier estuaries and the ocean. The model simulates groundwater directions, velocities, and discharge rates under 2005 mean annual conditions. Groundwater budgets were developed for recharge areas of similar land use that contribute freshwater to back-barrier estuaries, the ocean, and subsea-discharge zones. Total freshwater discharge from the shallow aquifer system is about 43,500 cubic meters per day (m3/d) (79.8 percent) to back-barrier estuaries and about 10,200 m3/d (18.7 percent) to the ocean; about 836 m3/d (1.5 percent) may exit the system as subsea underflow. The total contribution of fresh groundwater to shoreline discharge zones amounts to about 53,700 m3/d (98.5 percent). The median age of freshwater discharged to back-barrier estuaries and the ocean was 3.4 years, and the 95th-percentile age was 20 years. The TN concentrations and loads under 2005 mean annual conditions for areas that contribute fresh groundwater to back-barrier estuaries and the ocean were calculated for the principal land uses on Fire Island. The overall TN load from the shallow aquifer system to shoreline discharge zones is about 16,200 kilograms per year (kg/yr) (82.2 percent) to back-barrier estuaries and about 3,500 kg/yr (17.8 percent) to the ocean. The overall TN load to marine surface waters amounts to about 19,700 kg/yr-roughly 6 percent of the annual TN load from shallow groundwater entering the South Shore Estuary Reserve (SSER) from the Suffolk County mainland, which is about 345,000 kg/yr. In contrast to the TN load from shallow groundwater for the SSER watershed, which annually yields about 353 kilograms per square kilometer (kg/km2), the overall TN loa

Schubert, Christopher E.

2010-01-01

329

Modeling regional groundwater flow in a peat bog complex in Ontario, Canada  

NASA Astrophysics Data System (ADS)

Peatlands are important ecohydrological systems and contribute significantly to the global carbon cycle. They function as carbon sinks through CO2-sequestration but also emit methane depending i.a. on the prevailing hydrological structures. Knowledge of their hydrology including exchange between the groundwater and surface water domain is thus necessary to understand wetland environments and to determine their vulnerability to climate changes. The impact of proposed wetter conditions on wetland hydrological homeostastis in northern bogs is uncertain to this date. Elevated water tables due to changing hydrological flow patterns may affect the characteristics of wetlands as a carbon reservoir. Modeling approaches allow quantifying and qualifying of these flow patterns on a longer time scale. Luther Bog is located in Southern Ontario. The ombotrophic bog to poor fen is partially bordered by Luther Lake which inundates the area since its creation in 1952. In this study the interaction between the wetland and the adjacent lake is modeled using the fully-integrated HydroGeoSphere model. A transient three-dimensional groundwater mode is set up for a small catchment with the lake level implemented as a constant-head boundary condition. Hydraulic properties of the peat were estimated executing bail tests on multilevel piezometers at different sites within the wetland. The first hypothesis is that the wet conditions in the runoff network keep the water table in the wetland high over a specific transition zone. The Second is that there may be a reversal of flow directions over the hydrological year, due to varying boundary conditions, e.g. evapotranspiration and precipitation. First results indicate that exchange rates may be very slow. This is supported by manual measurements of little hydraulic gradients and little topographic gradients. The results also show a seasonal effect in flow directions in both, the groundwater and the surface water domain. The model will be tested upon its sensitivity to variations in the anisotropy of hydraulic conductivities as this is difficult to determine in the field using known approaches, e.g. bail tests. A transport simulation will be conducted to determine the exact amount of exchange water and the extent of the exchange zone.

Durejka, Stefan; Knorr, KLaus-Holger; Blodau, Christian; Frei, Sven

2013-04-01

330

Estimation of annual Groundwater Evapotranspiration from Phreatophyte Vegetation in the Great Basin using Remotely Sensed Vegetation Indices and Ground Based Flux Tower measurements  

NASA Astrophysics Data System (ADS)

Escalating concerns about the future of water resource management in arid regions of the American Southwest have sparked numerous hydrologic studies looking into available water resources for in-basin and inter-basin transfers. Groundwater is the primary water supply source for much of the state of Nevada and the Great Basin, thus accurate estimates of the regional scale groundwater recharge and discharge components are critical for regional groundwater budgets. Groundwater discharge from phreatophyte vegetation by evapotranspiration (ET) is the dominant component of groundwater discharge in many hydrologically closed valleys of the Great Basin, and can be measured directly from eddy-covariance (EC) and Bowen-ratio (BR) flux tower systems. The purpose of this project was to develop a predictive equation based on relationship between annual ET and meteorological data from EC and BR sites in phreatophyte vegetation with remote sensing data. Annual total ET (ET a) measured from forty site/year combinations of flux tower data from Carson Valley, Walker River Basin, Oasis Valley, Snake Valley, Spring Valley, White River Valley, and the lower Colorado River Flow system were correlated with the Enhanced Vegetation Index (EVI) from Landsat Thematic Mapper (TM) satellite. EVI was extracted from source areas at corresponding locations from 15 mid-summer Landsat TM scenes. ETa was transformed into ET* by subtracting annual precipitation and normalizing by annual reference ET (ETo) (ET*=(ETa-precipitation)/(ETo-precipitation)). ET* correlated well with EVI (r2=0.97), and because it takes basin specific climate measurements into account, it is transferable to many shallow groundwater discharge areas in the Great Basin. This relationship was used to provide a first order estimate of the mean annual groundwater ET (ETg) from four phreatophyte groundwater discharge areas in Nevada using only a mid-summer Landsat EVI image, annual ETo and precipitation data. This simple approach provided estimates of mean annual ETg volumes which compare well with estimates from previous studies from these phreatophyte areas.

Beamer, Jordan P.

331

Groundwater-recharge estimation in the Ordos Plateau, China: comparison of methods  

NASA Astrophysics Data System (ADS)

Groundwater recharge is a key factor in water-balance studies, especially in (semi-)arid areas. In this study, multiple methods were used to estimate groundwater recharge in the Ordos Plateau (China), including reference to water-table fluctuation, Darcy's law and the water budget. The mean annual recharge rates found were: water-table-fluctuation method (46-109 mm/yr); saturated-zone Darcian method (17-54 mm/yr); and water-budget method (21-109 mm/yr). Generally, groundwater-recharge rates are higher in the eastern part of the plateau where the land surface is covered by permeable sand that is favorable for infiltration. Along with results from previous studies using the empirical method, the chloride-mass-balance method, the unsaturated-zone Darcian method and the hydrograph-separation method, groundwater recharge rates were compared. There is no one method that would consistently produce the largest or smallest estimate of annual recharge for all groundwater systems. The largest recharge estimates were usually determined using the unsaturated-zone Darcian method and the smallest estimates were usually determined using the chloride-mass-balance method. Comparison of multiple methods is found to be valuable for determining the range of plausible recharge rates and for highlighting the uncertainty of the estimates.

Yin, Lihe; Hu, Guangcheng; Huang, Jinting; Wen, Dongguang; Dong, Jiaqiu; Wang, Xiaoyong; Li, Hongbo

2011-12-01

332

Parallel Discontinuous Galerkin based Geostatistical Inversion of Steady-State Flow and Transport Processes in Groundwater  

NASA Astrophysics Data System (ADS)

The hydraulic conductivity field of a groundwater aquifer is unknown and difficult to measure. We can only estimate it through direct or indirect measurement data of dependent quantities such as the hydraulic head or the concentration of a tracer. Comparing the discrepancy between real-world with simulated measurement data leads to the solution of an underdetermined inverse problem. Considering the unknown as a random process, multivariate statistical models can be used to describe the spatial correlation of the conductivity field. Furthermore, the Bayesian approach can be taken for the regularization of the inverse problem. The forward problems to be solved within the inversion procedure consist of the stationary elliptic groundwater equation and the formally elliptic, but nearly hyperbolic advection-dominated transport equation for very small transversal dispersivities. Both equations are coupled via the Darcy flux. The solution of the transport equation, especially in a heterogeneous flow field, may exhibit sharp fronts causing major numerical difficulties in two respects: firstly, numerical over- and undershoots at internal layers and, secondly, the arising linear system may become more difficult to solve when working with higher resulutions. Based on the discontinuous Galerkin method (DG), we present a robust numerical discretization of the coupled equations that can cope with high Péclet numbers, resolve the sharp fronts well and still keep the numerical oscillations at a level that is acceptable for the inversion scheme. In addition, we have implemented a method to solve the arising linear system efficiently.

Ngo, Adrian; Bastian, Peter; Cirpka, Olaf A.; Ippisch, Olaf

2014-05-01

333

Batch and flow through column studies: Generating site specific soil and groundwater cleanup criteria  

SciTech Connect

The existing regulatory standards for soil and groundwater often apply to all aquifers and are derived from health based maximum contaminant levels established by the USEPA. Establishing uniform cleanup goals for metals is hindered by variations in land use, proximity of potential human and ecological receptors, aquifer characteristics, and the interactive nature of metals. Site specific alternate cleanup standards allowing for natural attenuation can be developed. Batch and column studies can be used to demonstrate the ability of metal concentrations to be retained by a soil and to simulate migration from a source, through the soil column, to the groundwater table. Batch and column studies were performed for copper and nickel on three horizons of the acidic Saint John Sand/Cohansey Aquifer of the Coastal Plain of New Jersey. Equilibrium distribution coefficients (Kd) defining the sorption of copper and nickel to the aquifer solids were determined using a one-dimensional dispersion mathematical model. Isotherms characterize sorption equilibrium as non-linear partitioning. Leaching studies, performed immediately following sorption equilibrium and at three months following sorption equilibrium, indicate that more than half of copper sorption is reversible and most nickel sorption is reversible. More metal is retained when the soil is stored at sorption equilibrium for 3 months prior to leaching. Although batch studies provide a quick estimation of sorption capacity, flow through column experiments provide a more accurate and realistic simulation of metal retention in soil/water systems.

Foster, R.W.; Uchrin, C.G. [Rutgers Univ., New Brunswick, NJ (United States)

1994-12-31

334

Regional modeling of groundwater flow and arsenic transport in the Bengal Basin: challenges of scale and complexity (Invited)  

NASA Astrophysics Data System (ADS)

Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large scale adds another element of complexity. Minimization of numerical oscillation and mass balance errors required experimentation with solvers and discretization. In the face of relatively few data in a very large-scale model, sensitivity analyses were essential. The scale of the system limits evaluation of localized behavior, but results clearly identified the primary controls on the system and effects of various pumping scenarios and sorptive properties. It was shown that limiting deep pumping to domestic supply may result in sustainable arsenic-safe water for 90% of the arsenic-affected region over a 1000 year timescale, and that sorption of arsenic onto deep, oxidized Pleistocene sediments may increase the breakthrough time in unsustainable zones by more than an order of magnitude. Thus, both hydraulic and chemical defenses indicate the potential for sustainable, managed use of deep, safe groundwater resources in the Bengal Basin.

Michael, H. A.; Voss, C. I.

2009-12-01

335

Investigating groundwater flow between Edwards and Trinity aquifers in central Texas.  

PubMed

Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter-flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite-rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross-formational flow between the aquifers. Inter-flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change. PMID:24033308

Wong, C I; Kromann, J S; Hunt, B B; Smith, B A; Banner, J L

2014-01-01

336

Patterns and age distribution of ground-water flow to streams  

USGS Publications Warehouse

Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.

Modica, E.; Reilly, T.E.; Pollock, D.W.

1997-01-01

337

Documentation of a deep percolation model for estimating ground-water recharge  

USGS Publications Warehouse

A deep percolation model, which operates on a daily basis, was developed to estimate long-term average groundwater recharge from precipitation. It has been designed primarily to simulate recharge in large areas with variable weather, soils, and land uses, but it can also be used at any scale. The physical and mathematical concepts of the deep percolation model, its subroutines and data requirements, and input data sequence and formats are documented. The physical processes simulated are soil moisture accumulation, evaporation from bare soil, plant transpiration, surface water runoff, snow accumulation and melt, and accumulation and evaporation of intercepted precipitation. The minimum data sets for the operation of the model are daily values of precipitation and maximum and minimum air temperature, soil thickness and available water capacity, soil texture, and land use. Long-term average annual precipitation, actual daily stream discharge, monthly estimates of base flow, Soil Conservation Service surface runoff curve numbers, land surface altitude-slope-aspect, and temperature lapse rates are optional. The program is written in the FORTRAN 77 language with no enhancements and should run on most computer systems without modifications. Documentation has been prepared so that program modifications may be made for inclusions of additional physical processes or deletion of ones not considered important. (Author 's abstract)

Bauer, H.H.; Vaccaro, J.J.

1987-01-01

338

Groundwater flows in weathered crystalline rocks: Impact of piezometric variations and depth-dependent fracture connectivity  

NASA Astrophysics Data System (ADS)

Groundwater in shallow weathered and fractured crystalline rock aquifers is often the only perennial water resource, especially in semi-arid region such as Southern India. Understanding groundwater flows in such a context is of prime importance for sustainable aquifer management. Here, we describe a detailed study of fracture properties and relate the hydraulic connectivity of fractures to groundwater flows at local and watershed scales. Investigations were carried out at a dedicated Experimental Hydrogeological Park in Andhra Pradesh (Southern India) where a large network of observation boreholes has been set up. Twenty-height boreholes have been drilled in a small area of about 18,000 m2 in which borehole loggings and hydraulic tests were carried out to locate the main flowing fractured zones and investigate fractures connectivity. Several hydraulic tests (nineteen slug tests and three pumping tests) performed under two water level conditions revealed contrasting behavior. Under high water level conditions, the interface including the bottom of the saprolite and the first flowing fractured zone in the upper part of the granite controls groundwater flows at the watershed-scale. Under low water level conditions, the aquifer is characterized by lateral compartmentalization due to a decrease in the number of flowing fractures with depth. Depending on the water level conditions, the aquifer shifts from a watershed flow system to independent local flow systems. A conceptual groundwater flow model, which includes depth-dependent fracture connectivity, is proposed to illustrate this contrasting hydrological behavior. Implications for watershed hydrology, groundwater chemistry and aquifer vulnerability are also discussed.

Guihéneuf, N.; Boisson, A.; Bour, O.; Dewandel, B.; Perrin, J.; Dausse, A.; Viossanges, M.; Chandra, S.; Ahmed, S.; Maréchal, J. C.

2014-04-01

339

Numerical simulation of ground-water flow in La Crosse County, Wisconsin, and into nearby pools of the Mississippi River  

USGS Publications Warehouse

This report describes a two-dimensional regional screening model and two associated three-dimensional ground-water flow models that were developed to simulate the ground-water flow systems in La Crosse County, Wisconsin, and Pool 8 of the Mississippi River. Although the geographic extents of the three-dimensional models were slightly different, both were derived from the same geologic interpretation and regional screening model, and their calibrations were performed concurrently. The objectives of the La Crosse County (LCC) model were to assess the effects of recent (1990s) and potential future ground-water withdrawals and to provide a tool suitable to evaluate the effects of proposed water-management programs. The Pool 8 model objectives were to quantify the magnitude and distribution of ground-water flow into the Pool. The Wisconsin Geological and Natural History Survey and the U.S. Geological Survey developed the models cooperatively. The report describes: 1) the conceptual hydrogeologic model; 2) the methods used in simulating flow; 3) model calibration and sensitivity analysis; and 4) model results, such as simulation of predevelopment conditions and location and magnitude of ground-water discharge into Pool 8 of the Mississippi. Three aquifer units underlie the model area: 1) a shallow unconsolidated sand and gravel aquifer; 2) an upper bedrock aquifer, composed of Cambrian and Ordovician sandstone and dolomite; and 3) a lower bedrock aquifer composed of Cambrian sandstone of the Eau Claire Formation and the Mount Simon Formation. A shale layer that is part of the Eau Claire Formation forms a confining unit separating the upper and lower bedrock aquifers. This confining unit is absent in the Black River and parts of the La Crosse and Mississippi River valleys. Precambrian crystalline basement rock forms the lower base of the ground-water flow system. The U.S. Geological Survey ground-water flow model code, MODFLOW, was used to develop the La Crosse County (LCC) and Pool 8 ground-water flow models. Boundary conditions for the MODFLOW model were extracted from an analytic element screening model of the regional flow system surrounding La Crosse County. Model input was obtained from previously published and unpublished geologic and hydrologic data. Pumpages from municipal and high-capacity wells were also simulated. Model calibration included a comparison of modeled and field-measured water levels and field-measured base flows to simulated stream flows. At calibration, most measured water levels compared favorably to model-calculated water levels. Simulated streamflows at two targets were within 3 percent of estimated measured base flows. Mass balance results from the LCC and Pool 8 models indicated that 63 to 74 percent of ground water was from recharge and 19 to 26 percent was from surface-water sources. Ground-water flow out of the model was to rivers and streams (85 to 87 percent) and pumping wells (11 and 13 percent). The model demonstrates the effects of development on ground water in the study area. The maximum simulated water-level decline in the city of La Crosse metropolitan area is 9.3 feet. Simulated stream losses are similar to the amount of ground water pumped by wells. This indicates that ground water withdrawn by La Crosse County wells is water that under predevelopment conditions discharged to streams and lakes. The models provide estimates of the locations and amount of ground-water flow into Pool 8 and the southern portion of Pool 7 of the Mississippi River. Ground-water discharges into all areas of the pools, except along the eastern shore in the vicinity of the city of La Crosse and immediately downgradient from lock and dam 7 and 8. Ground-water flow into the pools is generally greatest around the perimeter with decreasing amounts away from the perimeter. An area of relatively high ground-water discharge extends out towards the center of Pool 7 from the upper reaches of the pool and may

Hunt, Randall J.; Saad, David A.; Chapel, Dawn M.

2003-01-01

340

Climate change and groundwater ecohydrology: Simulating subsurface flow and discharge zones in Covey Hill, Quebec, Canada  

NASA Astrophysics Data System (ADS)

Nearly 2 billion people use groundwater and in Canada it is the potable water supply for about 30% of the population. Groundwater is also used in industrial and agricultural applications, and contributes to important hydrological habitats for various species. Limited research has been conducted to determine the potential impacts of climate change on groundwater. Local studies are crucial to better understand how, for example, increased duration and frequency of storms or drought periods may affect groundwater dependent ecosystems in order to anticipate and mitigate the impacts. Thus, the aim of this research is to explore the effects of climate change on a groundwater-surface water interacting system that supports a fragile ecosystem. This research is used to inform ecological conservation measures. The research site is the 17500 ha Covey Hill Natural Laboratory, which is located on the Quebec, Canada and New York State, USA border in the Chateauguay River watershed. At various locations within the Natural Laboratory there is conti