Science.gov

Sample records for estimate unperturbed temperatures

  1. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements

    PubMed Central

    Kim, Kwang S.; Max, Ludo

    2014-01-01

    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated. PMID:25426056

  2. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    NASA Astrophysics Data System (ADS)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical

  3. The unperturbed state of dendrimers

    NASA Astrophysics Data System (ADS)

    Ganazzoli, Fabio; La Ferla, Roberto

    2000-11-01

    We report a theoretical study of the unperturbed state of dendrimers, which is realized when the second virial coefficient becomes equal to zero. This condition is achieved through a vanishing of the intermolecular free energy, which is obtained by mutual compensation of the two- and three-body interactions between two molecules. This procedure, which permits us to determine the Θ temperature of dendrimers as a function of their generation, is coupled to the problem of the intramolecular conformation, determined by minimization of the intramolecular free energy. The latter accounts for the two- and three-body interactions within the molecule, and for the configurational entropy. We find that the Θ temperature is a decreasing function of the dendrimer generation g, the decrease becoming relatively fast at large g, but is almost independent of the number of segments (one or two in our case) between adjacent branch points. At the Θ temperature, the residual three-body interactions within the molecule not compensated by the two-body attractions induce a significant swelling over the random-walk conformation for g>2.

  4. Temperatures of Thermal and Slightly Thermal Springs on Mount Hood, Oregon, Apparently Unperturbed by the Magnitude-4.5 Earthquake on June 29, 2002

    NASA Astrophysics Data System (ADS)

    Nathenson, M.; Mariner, R. H.

    2002-12-01

    On the basis of water chemistry, three distinct hydrothermal systems have been identified on Mount Hood. Swim Warm Springs has a series of vents with temperatures ranging from 9° to 25°C with temperatures determined by mixing of thermal and nonthermal water. The hottest feature was 25.6° to 26.2°C in 1976-78, 25°C in 1997, and 24.7°C in 2001. The hot-water component is interpreted to have a source water that boiled from 187°C, re-equilibrated at 96°C, and then mixed with nonthermal water to produce the range of compositions found in various springs. The Meadows Spring is a slightly thermal spring with measured temperatures of 4.8°, 6.1°, 6.6°C in 1997, 1999, and 2001 related to mixing of thermal and nonthermal water. The hot-water component is interpreted to have a source water that boiled from 223°C, re-equilibrated at 94°C, and then mixed with nonthermal water to produce the range of compositions found in the spring over several years. Both systems contain water from precipitation at high elevation. The summit fumaroles have gas-geothermometer temperatures generally over 300°C, indicating that they are not the steam discharge from the Swim and Meadows hydrothermal systems. Field measurements in July-August, 2002, after the magnitude-4.5 earthquake of June 29, 2002, showed that the highest-temperature vent at Swim Warm Springs was 25.7°C, similar to values found in other years. Measurements on a hot afternoon and a cool morning yielded temperatures of 25.7° and 25.2°C, indicating that this low-flow feature is subject to some solar heating. The Meadows Spring was 6.3°C, consistent with its previous behavior of mixing. The lower temperature indicates that there is a variability associated with unknown hydrologic factors rather than confirming an apparent trend of continuously increasing temperatures for the 1997-2001 period. The Crater Rock fumarole was 89°C, similar to previous measurements. Post-earthquake measurements of spring temperatures

  5. Maximal combustion temperature estimation

    NASA Astrophysics Data System (ADS)

    Golodova, E.; Shchepakina, E.

    2006-12-01

    This work is concerned with the phenomenon of delayed loss of stability and the estimation of the maximal temperature of safe combustion. Using the qualitative theory of singular perturbations and canard techniques we determine the maximal temperature on the trajectories located in the transition region between the slow combustion regime and the explosive one. This approach is used to estimate the maximal temperature of safe combustion in multi-phase combustion models.

  6. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (ESTSC)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  7. Reservoir Temperature Estimator

    SciTech Connect

    Palmer, Carl D.

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of the weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.

  8. Magnetic nanoparticle temperature estimation

    SciTech Connect

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  9. Temperature estimation with ultrasound

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew

    Hepatocelluar carcinoma is the fastest growing type of cancer in the United States. In addition, the survival rate after one year is approximately zero without treatment. In many instances, patients with hepatocelluar carcinoma may not be suitable candidates for the primary treatment options, i.e. surgical resection or liver transplantation. This has led to the development of minimally invasive therapies focused on destroying hepatocelluar by thermal or chemical methods. The focus of this dissertation is on the development of ultrasound-based image-guided monitoring options for minimally invasive therapies such as radiofrequency ablation. Ultrasound-based temperature imaging relies on relating the gradient of locally estimated tissue displacements to a temperature change. First, a realistic Finite Element Analysis/ultrasound simulation of ablation was developed. This allowed evaluation of the ability of ultrasound-based temperature estimation algorithms to track temperatures for three different ablation scenarios in the liver. It was found that 2-Dimensional block matching and a 6 second time step was able to accurately track the temperature over a 12 minute ablation procedure. Next, a tissue-mimicking phantom was constructed to determine the accuracy of the temperature estimation method by comparing estimated temperatures to that measured using invasive fiber-optic temperature probes. The 2-Dimensional block matching was able to track the temperature accurately over the entire 8 minute heating procedure in the tissue-mimicking phantom. Finally, two separate in-vivo experiments were performed. The first experiment examined the ability of our algorithm to track frame-to-frame displacements when external motion due to respiration and the cardiac cycle were considered. It was determined that a frame rate between 13 frames per second and 33 frames per second was sufficient to track frame-to-frame displacements between respiratory cycles. The second experiment examined

  10. Regulation of Unperturbed DNA Replication by Ubiquitylation

    PubMed Central

    Priego Moreno, Sara; Gambus, Agnieszka

    2015-01-01

    Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks. PMID:26121093

  11. Temperature estimators in computer simulation

    NASA Astrophysics Data System (ADS)

    Jara, César; González-Cataldo, Felipe; Davis, Sergio; Gutiérrez, Gonzalo

    2016-05-01

    Temperature is a key physical quantity that is used to describe equilibrium between two bodies in thermal contact. In computer simulations, the temperature is usually estimated by means of the equipartition theorem, as an average over the kinetic energy. However, recent studies have shown that the temperature can be estimated using only the particles positions, which has been called configurational temperature. Through classical molecular dynamics simulations of 108-argon-atoms system, we compare the performance of four different temperature estimators: the usual kinetic temperature and three configurational temperatures, Our results show that the different estimators converge to the same value, but their fluctuations are different.

  12. Evaluating feedback time delay during perturbed and unperturbed balance in handstand.

    PubMed

    Blenkinsop, Glen M; Pain, Matthew T G; Hiley, Michael J

    2016-08-01

    Feedback delays in balance are often assessed using muscle activity onset latencies in response to discrete perturbations. The purpose of the study was to calculate EMG latencies in perturbed handstand, and determine if delays are different to unperturbed handstand. Twelve national level gymnasts completed 12 perturbed and 10 unperturbed (five eyes open and five closed) handstands. Forearm EMG latencies during perturbed handstands were assessed against delay estimates calculated via: cross correlations of wrist torque and COM displacement, a proportional and derivative model of wrist torque and COM displacement and velocity (PD model), and a PD model incorporating a passive stiffness component (PS-PD model). Delays from the PD model (161±14ms) and PS-PD model (188±14ms) were in agreement with EMG latencies (165±14ms). Cross correlations of COM displacement and wrist torque provided unrealistically low estimates (5±9ms). Delays were significantly lower during perturbed (188±14ms) compared to unperturbed handstand (eyes open: 207±12ms; eyes closed: 220±19ms). Significant differences in delays and model parameters between perturbed and unperturbed handstand support the view that balance measures in perturbed testing should not be generalised to unperturbed balance. PMID:27155963

  13. Unperturbed Schelling Segregation in Two or Three Dimensions

    NASA Astrophysics Data System (ADS)

    Barmpalias, George; Elwes, Richard; Lewis-Pye, Andrew

    2016-07-01

    Schelling's models of segregation, first described in 1969 (Am Econ Rev 59:488-493, 1969) are among the best known models of self-organising behaviour. Their original purpose was to identify mechanisms of urban racial segregation. But his models form part of a family which arises in statistical mechanics, neural networks, social science, and beyond, where populations of agents interact on networks. Despite extensive study, unperturbed Schelling models have largely resisted rigorous analysis, prior results generally focusing on variants in which noise is introduced into the dynamics, the resulting system being amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory (Young in Individual strategy and social structure: an evolutionary theory of institutions, Princeton University Press, Princeton, 1998). A series of recent papers (Brandt et al. in: Proceedings of the 44th annual ACM symposium on theory of computing (STOC 2012), 2012); Barmpalias et al. in: 55th annual IEEE symposium on foundations of computer science, Philadelphia, 2014, J Stat Phys 158:806-852, 2015), has seen the first rigorous analyses of 1-dimensional unperturbed Schelling models, in an asymptotic framework largely unknown in statistical mechanics. Here we provide the first such analysis of 2- and 3-dimensional unperturbed models, establishing most of the phase diagram, and answering a challenge from Brandt et al. in: Proceedings of the 44th annual ACM symposium on theory of computing (STOC 2012), 2012).

  14. Estimation Method of Body Temperature from Upper Arm Temperature

    NASA Astrophysics Data System (ADS)

    Suzuki, Arata; Ryu, Kazuteru; Kanai, Nobuyuki

    This paper proposes a method for estimation of a body temperature by using a relation between the upper arm temperature and the atmospheric temperature. Conventional method has measured by armpit or oral, because the body temperature from the body surface is influenced by the atmospheric temperature. However, there is a correlation between the body surface temperature and the atmospheric temperature. By using this correlation, the body temperature can estimated from the body surface temperature. Proposed method enables to measure body temperature by the temperature sensor that is embedded in the blood pressure monitor cuff. Therefore, simultaneous measurement of blood pressure and body temperature can be realized. The effectiveness of the proposed method is verified through the actual body temperature experiment. The proposed method might contribute to reduce the medical staff's workloads in the home medical care, and more.

  15. Stream Temperature Estimation From Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  16. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  17. External auditory canal temperature as an estimate of core temperature.

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.

    1972-01-01

    Measurement of rectal (T sub re), auditory canal (T sub ac), positioned 8 to 10 mm from the tympanic membrane, and mean skin temperature (mean T sub sk) in five men during various exercise regimens at an ambient temperature (T sub a) of 25 C (phase one) and in two men during rest and exercise at 5, 15, 25, and 35 C T sub a (phase two). The purpose was to determine if T sub ac can be used as an accurate estimate of core temperature. Previous observations that T sub ac was highly correlated with T sub re but T sub ac was consistently lower than T sub re are confirmed; the mean difference varied from 0.4 C at rest to 1.1 C at the end of exercise. It is concluded that auditory canal temperature cannot be utilized as an estimate of core temperature, but T sub ac may be used to estimate mean body temperature where very accurate measurements are not required.

  18. Remote Temperature Estimation in Intravascular Photoacoustic Imaging

    PubMed Central

    Sethuraman, Shriram; Aglyamov, Salavat R.; Smalling, Richard W.; Emelianov, Stanislav Y.

    2008-01-01

    Intravascular photoacoustic (IVPA) imaging is based on the detection of laser-induced acoustic waves generated within the arterial tissue under pulsed laser irradiation. Generally, laser radiant energy levels are kept low (20 mJ/cm2) during photoacoustic imaging to conform to general standards for safe use of lasers on biological tissues. However, safety standards in intravascular photoacoustic imaging are not yet fully established. Consequently, monitoring spatio-temporal temperature changes associated with laser-tissue interaction is important to address thermal safety of IVPA imaging. In this study we utilize the IVUS based strain measurements to estimate the laser induced temperature increase. Temporal changes in temperature were estimated in a phantom modeling a vessel with an inclusion. A cross-correlation based time delay estimator was used to assess temperature induced strains produced by different laser radiant energies. The IVUS based remote measurements revealed temperature increases of 0.7±0.3°C, 2.9±0.2 °C and 5.0±0.2 °C, for the laser radiant energies of 30 mJ/cm2, 60 mJ/cm2 and 85 mJ/cm2 respectively. The technique was then used in imaging of ex vivo samples of a normal rabbit aorta. For arterial tissues, a temperature elevation of 1.1°C was observed for a laser fluence of 60 mJ/cm2 and lesser than 1°C for lower energy levels normally associated with IVPA imaging. Therefore, the developed ultrasound technique can be used to monitor temperature during IVPA imaging. Furthermore, the analysis based on the Arrhenius thermal damage model indicates no thermal injury in the arterial tissue; suggesting the safety of IVPA imaging PMID:17935861

  19. Laser weld penetration estimation using temperature measurements

    SciTech Connect

    Lankalapalli, K.N.; Tu, J.F.; Leong, K.H.; Gartner, M.

    1997-10-01

    Penetration depth is an important factor critical to the quality of a laser weld. This paper examines the feasibility of using temperature measurements on the bottom surface of the work-piece to estimate weld penetration. A three-dimensional analytical model relating penetration depth, weld bead width and welding speed to temperature distribution at the bottom surface of the workpiece is developed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. Experimental results from bead-on-plate welds on low carbon steel plates of varying thickness at different levels of laser power and speeds validate the model and show that the temperature on the bottom surface is a sensitive indicator of penetration depth. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

  20. Low-Temperature Hydrothermal Resource Potential Estimate

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  1. Estimating pre-industrial global temperature

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; Ortega, Pablo; Suckling, Emma; Schurer, Andrew; Hegerl, Gabi; Jones, Phil; Joshi, Manoj; Osborn, Tim; Mignot, Juliette; Thorne, Peter; van Oldenborgh, Geert Jan

    2016-04-01

    The United Nations Framework Convention on Climate Change (UNFCCC) process has recently agreed to try and limit global temperature rise to `well below 2°C above pre-industrial levels'. But what period is `pre-industrial'? Remarkably, perhaps, this is not defined within the UNFCCC or its many agreements and protocols. Neither was the term used in the IPCC's fifth assessment report (AR5) when discussing when particular temperature levels might be reached, due to the lack of a robust definition. Here, we discuss the important factors to consider when defining a period to call pre-industrial, based on estimates of historical radiative forcings and the availability of climate observations. There is no perfect period to choose, but we suggest that 1720-1800 is the optimal choice. We also attempt to estimate the change in global temperatures since this pre-industrial period using a range of approaches based on observations, radiative forcings, global climate model simulations and proxy evidence. We discuss how such an assessment might be improved in future and conclude that 2015 was likely the first year in which global temperatures were more than 1°C above pre-industrial levels.

  2. Multi-model ensemble analysis of Pacific and Atlantic SST variability in unperturbed climate simulations

    NASA Astrophysics Data System (ADS)

    Zanchettin, D.; Bothe, O.; Rubino, A.; Jungclaus, J. H.

    2016-08-01

    We assess internally-generated climate variability expressed by a multi-model ensemble of unperturbed climate simulations. We focus on basin-scale annual-average sea surface temperatures (SSTs) from twenty multicentennial pre-industrial control simulations contributing to the fifth phase of the Coupled Model Intercomparison Project. Ensemble spatial patterns of regional modes of variability and ensemble (cross-)wavelet-based phase-frequency diagrams of corresponding paired indices summarize the ensemble characteristics of inter-basin and regional-to-global SST interactions on a broad range of timescales. Results reveal that tropical and North Pacific SSTs are a source of simulated interannual global SST variability. The North Atlantic-average SST fluctuates in rough co-phase with the global-average SST on multidecadal timescales, which makes it difficult to discern the Atlantic Multidecadal Variability (AMV) signal from the global signal. The two leading modes of tropical and North Pacific SST variability converge towards co-phase in the multi-model ensemble, indicating that the Pacific Decadal Oscillation (PDO) results from a combination of tropical and extra-tropical processes. No robust inter- or multi-decadal inter-basin SST interaction arises from our ensemble analysis between the Pacific and Atlantic oceans, though specific phase-locked fluctuations occur between Pacific and Atlantic modes of SST variability in individual simulations and/or periods within individual simulations. The multidecadal modulation of PDO by the AMV identified in observations appears to be a recurrent but not typical feature of ensemble-simulated internal variability. Understanding the mechanism(s) and circumstances favoring such inter-basin SST phasing and related uncertainties in their simulated representation could help constraining uncertainty in decadal climate predictions.

  3. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  4. Estimation of Thermal Sensation Based on Wrist Skin Temperatures

    PubMed Central

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-01-01

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one’s thermal environment. PMID:27023538

  5. Estimating Circumnuclear Disk temperatures using ALMA data

    NASA Astrophysics Data System (ADS)

    Gima, Kevin; Mills, Elisabeth A.; Rosero, Viviana A.; Liu, Hauyu Baobab; Harada, Nanase; Requena Torres, Miguel A.; Morris, Mark; Riquelme, Denise; Zhao, Jun-Hui; Moser, Lydia; Martin, Sergio; Ho, Paul T. P.; Ginsburg, Adam; Wardle, M.; Guesten, Rolf

    2016-01-01

    The Circumnuclear Disk(CND) is a gas disk with an inner radius of approximately 1.5-2 pc surrounding Sagittarius A*, the supermassive black hole at the center of our galaxy. Observations of the CND were made using the ALMA telescope in bands 3 and 6 with a spatial resolution of 1-3 km/s. Two noteworthy clumps of molecular gas were detected. These clumps possess high abundances of CH3CCH but no CH3CN was detected. Via the population diagram method we derived CH3CCH column densities and temperatures for both sources. We then discuss the physical and chemical nature of the gas clumps. Future work will constrain temperature values across the entire CND. Along with HC3N observations, this work will yield refined values of the gas density and mass of the CND. This is essential for finding its future impact on star formation and black hole accretion.

  6. Estimation of hydraulic conductivity in an alluvial system using temperatures

    USGS Publications Warehouse

    Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J.

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from < 0.2??C in two wells to ???8??C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers.

  7. Theoretical estimation of surface Debye temperature of nano structured material

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Bijan Kumar; Sarkar, A.

    2016-05-01

    The estimation of Debye temperature (TD) exploiting phonon is very important. In this work an attempt has been made to estimate TD for solids in a simple phenomenological approach. The ultimate goal is to estimate TD for nano structured material. The objective of this present work is to extend Debye model for nano-structured material and hence to extract the contribution to surface specific heat and surface Debye temperature. An empirical relation between TD and surface Debye temperature (TDS) is proposed. Lindemann melting criterion is also extended towards nano structure. The overall results obtained are compared and found to be in good agreement.

  8. Estimating monthly temperature using point based interpolation techniques

    NASA Astrophysics Data System (ADS)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  9. Estimating temperature exposure of burnt bone - A methodological review.

    PubMed

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez; Taylor, Gillian

    2015-05-01

    Forensic anthropologists are frequently confronted with the need to interpret burnt bone. Regardless of the context, one of the key factors for the correct interpretation of the remains and a reconstruction of the incidents leading to incineration is the estimation of the maximum exposure temperature. The recent years have seen an influx in experimental research focusing on temperature estimation, spanning from colour assessment, mechanical strength measurements, histology and structural observations, biochemical changes and crystallinity studies, vastly advancing the understanding of heat induced changes in bone, thus facilitating a more accurate interpretation. This paper draws together and evaluates all currently available methodologies for temperature estimation. PMID:25934370

  10. US Low-Temperature EGS Resource Potential Estimate

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Shapefile of shallow, low-temperature EGS resources for the United States, and accompanying paper (submitted to GRC 2016) describing the methodology and analysis. These data are part of a very rough estimate created for use in the U.S. Department of Energy Geothermal Technology Office's Vision Study. They are not a robust estimate of low-temperature EGS resources in the U.S, and should be used accordingly.

  11. FIELD INFORMATION-BASED SYSTEM FOR ESTIMATING FISH TEMPERATURE REQUIREMENTS

    EPA Science Inventory

    In 1979, Biesinger et al. described a technique for spatial and temporal matching of records of stream temperatures and fish sampling events to obtain estimates of yearly temperature regimes for freshwater fishes of the United States. his article describes the state of this Fish ...

  12. A retractable electron emitter for the creation of unperturbed pure electron plasmas

    NASA Astrophysics Data System (ADS)

    Berkery, John W.; Pedersen, Thomas Sunn; Sampedro, Luis

    2007-01-01

    A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.

  13. Estimation of hydraulic conductivity in an alluvial system using temperatures.

    PubMed

    Su, Grace W; Jasperse, James; Seymour, Donald; Constantz, Jim

    2004-01-01

    Well water temperatures are often collected simultaneously with water levels; however, temperature data are generally considered only as a water quality parameter and are not utilized as an environmental tracer. In this paper, water levels and seasonal temperatures are used to estimate hydraulic conductivities in a stream-aquifer system. To demonstrate this method, temperatures and water levels are analyzed from six observation wells along an example study site, the Russian River in Sonoma County, California. The range in seasonal ground water temperatures in these wells varied from <0.2 degrees C in two wells to approximately 8 degrees C in the other four wells from June to October 2000. The temperature probes in the six wells are located at depths between 3.5 and 7.1 m relative to the river channel. Hydraulic conductivities are estimated by matching simulated ground water temperatures to the observed ground water temperatures. An anisotropy of 5 (horizontal to vertical hydraulic conductivity) generally gives the best fit to the observed temperatures. Estimated conductivities vary over an order of magnitude in the six locations analyzed. In some locations, a change in the observed temperature profile occurred during the study, most likely due to deposition of fine-grained sediment and organic matter plugging the streambed. A reasonable fit to this change in the temperature profile is obtained by decreasing the hydraulic conductivity in the simulations. This study demonstrates that seasonal ground water temperatures monitored in observation wells provide an effective means of estimating hydraulic conductivities in alluvial aquifers. PMID:15584302

  14. Estimation of base temperatures for nine weed species.

    PubMed

    Steinmaus, S J; Prather, T S; Holt, J S

    2000-02-01

    Experiments were conducted to test several methods for estimating low temperature thresholds for seed germination. Temperature responses of nine weeds common in annual agroecosystems were assessed in temperature gradient experiments. Species included summer annuals (Amaranthus albus, A. palmeri, Digitaria sanguinalis, Echinochloa crus-galli, Portulaca oleracea, and Setaria glauca), winter annuals (Hirschfeldia incana and Sonchus oleraceus), and Conyza canadensis, which is classified as a summer or winter annual. The temperature below which development ceases (Tbase) was estimated as the x-intercept of four conventional germination rate indices regressed on temperature, by repeated probit analysis, and by a mathematical approach. An overall Tbase estimate for each species was the average across indices weighted by the reciprocal of the variance associated with the estimate. Germination rates increased linearly with temperature between 15 degrees C and 30 degrees C for all species. Consistent estimates of Tbase were obtained for most species using several indices. The most statistically robust and biologically relevant method was the reciprocal time to median germination, which can also be used to estimate other biologically meaningful parameters. The mean Tbase for summer annuals (13.8 degrees C) was higher than that for winter annuals (8.3 degrees C). The two germination response characteristics, Tbase and slope (rate), influence a species' germination behaviour in the field since the germination inhibiting effects of a high Tbase may be offset by the germination promoting effects of a rapid germination response to temperature. Estimates of Tbase may be incorporated into predictive thermal time models to assist weed control practitioners in making management decisions. PMID:10938833

  15. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  16. Estimation of Sea Surface Temperature (SST) Using Marine Seismic Data

    NASA Astrophysics Data System (ADS)

    Sinha, Satish Kumar; Dewangan, Pawan; Sain, Kalachand

    2016-04-01

    Not much attention is given to direct wave arrivals in marine seismic data that are acquired for petroleum exploration and prospecting. These direct arrivals are usually muted out in routine seismic data processing. In the present study, we process these direct arrivals to accurately estimate soundspeed in near-surface seawater and invert for sea surface temperature. The established empirical equation describing the relationships among temperature, salinity, pressure and soundspeed is used for the inversion. We also discuss processing techniques, such as first-break picking and cross-correlation for the estimation of soundspeed, that are well known among petroleum-industry geophysicists. The accuracy of the methods is directly linked to the data quality and signal processing. The novelty in our approach is in the data conditioning, which consists essentially of spectral balancing based on a wavelet transform that compensates for spherical spreading and increases the signal-to-noise ( S/ N) ratio. The 2D seismic data used in this paper are from the offshore Krishna-Godavari Basin east of India. We observe a significantly higher soundspeed of 1545 m/s for near-surface water than the commonly used value of ~1500 m/s. The estimated temperature (from velocity) is about 30 °C. Interestingly, the estimated temperature matches well with the temperature recorded in the CTD profile acquired in the study area during the month of May, the month corresponding to the acquisition of seismic data. Furthermore, the estimated temperatures during different times of data acquisition correlate well with the expected diurnal variation in temperature.

  17. Temperature of the magnetic nanoparticle microenvironment: estimation from relaxation times

    NASA Astrophysics Data System (ADS)

    Perreard, I. M.; Reeves, D. B.; Zhang, X.; Kuehlert, E.; Forauer, E. R.; Weaver, J. B.

    2014-03-01

    Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium.

  18. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  19. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    PubMed

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times. PMID:27448871

  20. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    NASA Astrophysics Data System (ADS)

    Iezzi, F.; Todisco, M. T.

    2015-11-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  1. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which

  2. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  3. Estimating urban temperature bias using polar-orbiting satellite data

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory L.; Davis, Jerry M.; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.; Tarpley, J. Dan; Bloomfield, Peter

    1994-01-01

    Urban temperature bias, defined to be the difference between a shelter temperature reading of unknown but suspected urban influence and some appropriate rural reference temperature, is estimated through the use of polar-orbiting satellite data. Predicted rural temperatures, based on a method developed using sounding data, are shown to be of reasonable accuracy in many cases for urban bias assessments using minimum temperature data from selected urban regions in the United States in July 1989. Assessments of predicted urban bias were based on comparisons with observed bias, as well as independent measures of urban heat island influence, such as population statistics and urban-rural differences in a vegetation index. This technique provides a means of determining urban bias in regions where few if any rural reference stations are available, or where inhomogeneities exist in land surface characteristics or rural station locations.

  4. Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion.

    PubMed

    Marigold, Daniel S; Bethune, Allison J; Patla, Aftab E

    2003-04-01

    Understanding reactive recovery responses to slipping is fundamental in falls research and prevention. The primary purpose of this study was to investigate the role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip. Ten healthy, young adults participated in this experiment in which an unexpected slip was induced by a set of steel free-wheeling rollers. Surface electromyography (EMG) data were collected from the unperturbed limb (i.e., the swing limb) rectus femoris, biceps femoris, tibialis anterior, and the medial head of gastrocnemius, and bilateral gluteus medius, erector spinae, and deltoids. Kinematic data were also collected by an optical imaging system to monitor limb trajectories. The first slip response was significantly different from the subsequent recovery responses to the unexpected slips, with an identifiable reactive recovery response and no proactive changes in EMG patterns. The muscles of the unperturbed limb, upper body, and arms were recruited at the same latency as those previously found for the perturbed limb. The arm elevation strategies assisted in shifting the center of mass forward after it was posteriorly displaced with the slip, while the unperturbed limb musculature demonstrated an extensor strategy supporting the observed lowering of the limb to briefly touch the ground to widen the base of support and to increase stability. Evidently a dynamic multilimb coordinated strategy is employed by the CNS to control and coordinate the upper and lower limbs in reactive recovery responses to unexpected slips during locomotion. PMID:12611998

  5. Estimation of high temperature metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  6. Estimating cumulative effects of clearcutting on stream temperatures

    USGS Publications Warehouse

    Bartholow, J.M.

    2000-01-01

    The Stream Segment Temperature Model was used to estimate cumulative effects of large-scale timber harvest on stream temperature. Literature values were used to create parameters for the model for two hypothetical situations, one forested and the other extensively clearcut. Results compared favorably with field studies of extensive forest canopy removal. The model provided insight into the cumulative effects of clearcutting. Change in stream shading was, as expected, the most influential factor governing increases in maximum daily water temperature, accounting for 40% of the total increase. Altered stream width was found to be more influential than changes to air temperature. Although the net effect from clearcutting was a 4oC warming, increased wind and reduced humidity tended to cool the stream. Temperature increases due to clearcutting persisted 10 km downstream into an unimpacted forest segment of the hypothetical stream, but those increases were moderated by cooler equilibrium conditions downstream. The model revealed that it is a complex set of factors, not single factors such as shade or air temperature, that governs stream temperature dynamics.

  7. Use of VNIR Camera System to Estimate Lava Temperature

    NASA Astrophysics Data System (ADS)

    Vaughan, R.; Keszthelyi, L. P.

    2012-12-01

    We present initial results from using a visible and near infrared (VNIR) camera as an optical pyrometer at Kilauea Volcano, Hawai`i. The basic concept of pyrometry simply converts the color of incandescent material into a temperature and has been used on Kilauea since the earliest days of regular volcano monitoring. However, these temperatures have always been lower than expected, raising the concern that the emissivity of lava at these wavelengths was not close to a blackbody. We carefully calibrated a system that uses 3 digital cameras with wavelengths similar to the green, red, and near-infrared channels of the Landsat Enhanced Thematic Mapper plus (ETM+) and Advanced Spaceborne Thermal Emissions and Reflection Radiometer (ASTER) VNIR instruments by imaging a high-temperature blackbody. Following techniques used to estimate lava temperatures on Jupiter's moon, Io, we obtained relationships between band ratios and blackbody temperatures. The green/red ratio provides good temperature estimates for any reasonable temperature above 1000 °C, while the red/NIR is useful from about 700-1200 °C. We also observed the glow from the lava lake in Halema`uma`u as reflected and scattered from the steam plume above it. We found that the temperatures inferred from the glow are much too high (~1400 °C) from the red/NIR ratios and much too low (<700 °C) from the green/red ratios. One possible explanation is that there are variations in the emissivity of molten lava at these wavelengths. However, we also know that there are wavelength dependent scattering properties of the plume cloud that are consistent with errors in these temperature estimates. Future work examining incandescent lava without the interference of a plume will be needed to better evaluate the emissivity of lava in this wavelength range. However, we have sufficient data to demonstrate the great utility of VNIR data acquired at night for determining if a volcano is actively erupting mafic lava. We propose that

  8. Do multiple temperature measurements improve temperature-based death time estimation? The information degradation inequality.

    PubMed

    Hubig, M; Muggenthaler, H; Schenkl, S; Mall, G

    2016-09-01

    The accuracy of the input parameter values limits the accuracy of the output values in forensic temperature-based death time estimation (TDE) like in many scientific methods. A standard strategy to overcome this problem is to perform multiple measurements of the input parameter values, but such approaches are subject to noise accumulation and stochastic dependencies. A quantitative mathematical analysis of advantages as well as disadvantages of multiple measurements approaches (MMAs) was performed. The results are A general stochastic model of MMA. The information degradation inequality quantifying gains and losses of MMAs. Example calculations of the information degradation inequality for the following two MMAs relevant to TDE: o Multiple successive rectal temperature measurements o Multiple synchronous body layer temperature measurements Neither multiple successive rectal temperature measurements nor multiple synchronous body layer temperature measurements seem to significantly improve death time estimation. MMAs are superior to the single measurement approach only in the very early body cooling phase. PMID:26872468

  9. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  10. Using optimal estimation method for upper atmospheric Lidar temperature retrieval

    NASA Astrophysics Data System (ADS)

    Zou, Rongshi; Pan, Weilin; Qiao, Shuai

    2016-07-01

    Conventional ground based Rayleigh lidar temperature retrieval use integrate technique, which has limitations that necessitate abandoning temperatures retrieved at the greatest heights due to the assumption of a seeding value required to initialize the integration at the highest altitude. Here we suggests the use of a method that can incorporate information from various sources to improve the quality of the retrieval result. This approach inverts lidar equation via optimal estimation method(OEM) based on Bayesian theory together with Gaussian statistical model. It presents many advantages over the conventional ones: 1) the possibility of incorporating information from multiple heterogeneous sources; 2) provides diagnostic information about retrieval qualities; 3) ability of determining vertical resolution and maximum height to which the retrieval is mostly independent of the a priori profile. This paper compares one-hour temperature profiles retrieved using conventional and optimal estimation methods at Golmud, Qinghai province, China. Results show that OEM results show a better agreement with SABER profile compared with conventional one, in some region it is much lower than SABER profile, which is a very different results compared with previous studies, further studies are needed to explain this phenomenon. The success of applying OEM on temperature retrieval is a validation for using as retrieval framework in large synthetic observation systems including various active remote sensing instruments by incorporating all available measurement information into the model and analyze groups of measurements simultaneously to improve the results.

  11. Air Temperature Estimation over the Third Pole Using MODIS LST

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, F.; Ye, M.; Che, T.

    2015-12-01

    The Third Pole is centered on the Tibetan Plateau (TP), which is the highest large plateau around the world with extremely complex terrain and climate conditions, resulting in very scarce meteorological stations especially in the vast west region. For these unobserved areas, the remotely sensed land surface temperature (LST) can greatly contribute to air temperature estimation. In our research we utilized the MODIS LST production from both TERRA and AQUA to estimate daily mean air temperature over the TP using multiple statistical models. Other variables used in the models include longitudes, latitudes, Julian day, solar zenith, NDVI and elevation. To select a relatively optimal model, we chose six popular and representative statistical models as candidate models including the multiple linear regression (MLR), the partial least squares regression (PLS), back propagate neural network (BPNN), support vector regression (SVR), random forests (RF) and Cubist regression (CR). The performances of the six models were compared for each possible combination of LSTs at four satellite pass times and two quality situations. Eventually a ranking table consisting of optimal models for each LST combination and quality situation was built up based on the validation results. By this means, the final production is generated providing daily mean air temperature with the least cloud blockage and acceptable accuracy. The average RMSEs of cross validation are mostly around 2℃. Stratified validations were also performed to test the expansibility to unobserved and high-altitude areas of the final models selected.

  12. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  13. Contribution of Each Leg to the Control of Unperturbed Bipedal Stance in Lower Limb Amputees: New Insights Using Entropy

    PubMed Central

    Hlavackova, Petra; Franco, Céline; Diot, Bruno; Vuillerme, Nicolas

    2011-01-01

    The present study was designed to assess the relative contribution of each leg to unperturbed bipedal posture in lower limb amputees. To achieve this goal, eight unilateral traumatic trans-femoral amputees (TFA) were asked to stand as still as possible on a plantar pressure data acquisition system with their eyes closed. Four dependent variables were computed to describe the subject's postural behavior: (1) body weight distribution, (2) amplitude, (3) velocity and (4) regularity of centre of foot pressure (CoP) trajectories under the amputated (A) leg and the non-amputated (NA) leg. Results showed a larger body weight distribution applied to the NA leg than to the A leg and a more regular CoP profiles (lower sample entropy values) with greater amplitude and velocity under the NA leg than under the A leg. Taken together, these findings suggest that the NA leg and the A leg do not equally contribute to the control of unperturbed bipedal posture in TFA. The observation that TFA do actively control unperturbed bipedal posture with their NA leg could be viewed as an adaptive process to the loss of the lower leg afferents and efferents because of the unilateral lower-limb amputation. From a methodological point of view, these results demonstrate the suitability of computing bilateral CoP trajectories regularity for the assessment of lateralized postural control under pathological conditions. PMID:21603630

  14. Spatial Statistical Estimation for Massive Sea Surface Temperature Data

    NASA Astrophysics Data System (ADS)

    Marchetti, Y.; Vazquez, J.; Nguyen, H.; Braverman, A. J.

    2015-12-01

    We combine several large remotely sensed sea surface temperature (SST) datasets to create a single high-resolution SST dataset that has no missing data and provides an uncertainty associated with each value. This high resolution dataset will optimize estimates of SST in critical parts of the world's oceans, such as coastal upwelling regions. We use Spatial Statistical Data Fusion (SSDF), a statistical methodology for predicting global spatial fields by exploiting spatial correlations in the data. The main advantages of SSDF over spatial smoothing methodologies include the provision of probabilistic uncertainties, the ability to incorporate multiple datasets with varying footprints, measurement errors and biases, and estimation at any desired resolution. In order to accommodate massive input and output datasets, we introduce two modifications of the existing SSDF algorithm. First, we compute statistical model parameters based on coarse resolution aggregated data. Second, we use an adaptive spatial grid that allows us to perform estimation in a specified region of interest, but incorporate spatial dependence between locations in that region and all locations globally. Finally, we demonstrate with a case study involving estimations on the full globe at coarse resolution grid (30 km) and a high resolution (1 km) inset for the Gulf Stream region.

  15. Estimation of Electron Temperature on Glass Spherical Tokamak (GLAST)

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Sadiq, M.; Shah, S. I. W.; GLAST Team

    2015-03-01

    Glass Spherical Tokamak (GLAST) is a small spherical tokamak indigenously developed in Pakistan with an insulating vacuum vessel. A commercially available 2.45 GHz magnetron is used as pre-ionization source for plasma current startup. Different diagnostic systems like Rogowski coils, magnetic probes, flux loops, Langmuir probe, fast imaging and emission spectroscopy are installed on the device. The plasma temperature inside of GLAST, at the time of maxima of plasma current, is estimated by taking into account the Spitzer resistivity calculations with some experimentally determined plasma parameters. The plasma resistance is calculated by using Ohm's law with plasma current and loop voltage as experimentally determined inputs. The plasma resistivity is then determined by using length and area of the plasma column. Finally, the average plasma electron temperature is predicted to be 12.65eV for taking neon (Ne) as a working gas.

  16. Skin Temperature Over the Carotid Artery, an Accurate Non-invasive Estimation of Near Core Temperature

    PubMed Central

    Imani, Farsad; Karimi Rouzbahani, Hamid Reza; Goudarzi, Mehrdad; Tarrahi, Mohammad Javad; Ebrahim Soltani, Alireza

    2016-01-01

    Background: During anesthesia, continuous body temperature monitoring is essential, especially in children. Anesthesia can increase the risk of loss of body temperature by three to four times. Hypothermia in children results in increased morbidity and mortality. Since the measurement points of the core body temperature are not easily accessible, near core sites, like rectum, are used. Objectives: The purpose of this study was to measure skin temperature over the carotid artery and compare it with the rectum temperature, in order to propose a model for accurate estimation of near core body temperature. Patients and Methods: Totally, 124 patients within the age range of 2 - 6 years, undergoing elective surgery, were selected. Temperature of rectum and skin over the carotid artery was measured. Then, the patients were randomly divided into two groups (each including 62 subjects), namely modeling (MG) and validation groups (VG). First, in the modeling group, the average temperature of the rectum and skin over the carotid artery were measured separately. The appropriate model was determined, according to the significance of the model’s coefficients. The obtained model was used to predict the rectum temperature in the second group (VG group). Correlation of the predicted values with the real values (the measured rectum temperature) in the second group was investigated. Also, the difference in the average values of these two groups was examined in terms of significance. Results: In the modeling group, the average rectum and carotid temperatures were 36.47 ± 0.54°C and 35.45 ± 0.62°C, respectively. The final model was obtained, as follows: Carotid temperature × 0.561 + 16.583 = Rectum temperature. The predicted value was calculated based on the regression model and then compared with the measured rectum value, which showed no significant difference (P = 0.361). Conclusions: The present study was the first research, in which rectum temperature was compared with that

  17. Estimating Air Temperature over the Tibetan Plateau Using MODIS Data

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Ma, Yaoming; Li, Maoshan; Hu, Zeyong

    2016-04-01

    Time series of MODIS land surface temperature (LST) data and normalized difference vegetation index (NDVI) data, combined with digital elevation model (DEM) and meterological data for 2001-2012, were used to estimate and map the spatial distribution of monthly mean air temperature over the Tibatan Plateau (TP). Time series and regression analysis of monthly mean land surface temperature (Ts) and air temperature (Ta) were both conducted by ordinary liner regression (OLR) and geographical weighted regression (GWR) methods. Analysis showed that GWR method had much better result (Adjusted R2 > 0.79, root mean square error (RMSE) is between 0.51° C and 1.12° C) for estimating Ta than OLR method. The GWR model, with MODIS LST, NDVI and altitude as independent variables, was used to estimate Ta over the Tibetan Plateau. All GWR models in each month were tested by F-test with significant level of α=0.01 and the regression coefficients were all tested by T-test with significant level of α=0.01. This illustrated that Ts, NDVI and altitude play an important role on estimating Ta over the Tibetan Plateau. Finally, the major conclusions are as follows: (1) GWR method has higher accuracy for estimating Ta than OLR (Adjusted R2=0.40˜0.78, RMSE=1.60˜4.38° C), and the Ta control precision can be up to 1.12° C. (2) Over the Northern TP, the range of Ta variation in January is -29.28 ˜ -5.0° C, and that in July is -0.53 ˜ 14.0° C. Ta in summer half year (from May to October) is between -15.92 ˜ 14.0° C. From October on, 0° C isothermal level is gradually declining from the altitude of 4˜5 kilometers, and hits the bottom with altitude of 3200 meters in December, and Ta is all under 0° C in January. 10° C isothermal level gradually starts rising from the altitude of 3200 meters from May, and reaches the highest level with altitude of 4˜5 kilometers in July. In addition, Ta in south slope of the Tanggula Mountains is obviously higher than that in the north slope. Ta

  18. Spectral Approach to Optimal Estimation of the Global Average Temperature.

    NASA Astrophysics Data System (ADS)

    Shen, Samuel S. P.; North, Gerald R.; Kim, Kwang-Y.

    1994-12-01

    Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data and a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 × 4, 6 × 4, 9 × 7, and 20 × 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study's sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset.

  19. Spectral approach to optimal estimation of the global average temperature

    SciTech Connect

    Shen, S.S.P.; North, G.R.; Kim, K.Y.

    1994-12-01

    Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 X 4, 5 X 4, 9 X 7, and 20 X 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study`s sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset. 27 refs., 5 figs., 4 tabs.

  20. Improving the estimation of historical marine surface temperature changes

    NASA Astrophysics Data System (ADS)

    Carella, Giulia; Kent, Elizabeth C.; Berry, David I.

    2015-04-01

    Global Surface Temperature (GST) is one of the main indicators of climate change and Sea Surface Temperature (SST) forms its marine component. Historical SST observations extend back more than 150 years and are used for monitoring climate change and variability over the oceans, for validation of climate models and to provide boundary conditions for atmospheric models. SST observations from ships form our longest instrumental record of surface marine temperature change, but over the years different methods of measuring SST have been used, each of which potentially has different biases. Changes in technology and observational practice can be rapid and undocumented: generally, it is assumed that almost all SST data collected before the 1940s were derived from bucket samples although the measurement practice is almost never known in detail. Especially prior to the 1940s where buckets measurements prevailed, SST biases are expected to be large, namely comparable to the climatic increase in the GST over the past two centuries. Currently, SST datasets use bias models representing only large-scale effects, based on 5˚ area average monthly climatological environmental conditions or on large-scale variations in air-sea temperature difference, which is also uncertain. There are major differences between the bias adjustment fields used to date, which limits our confidence in global and regional estimates of historical SST as well as in long term trends, which are expected to be controlled by uncertainty in systematic biases. The main barrier to finer-scale adjustments of SST is that information about measurement methods and ambient environmental conditions is usually insufficient. As a result, many reports cannot be confidently assigned to a particular vessel and hence, cautiously, to the same measurement methodology. Here we present a new approach to the quantification of SST biases that can be applied on a ship-by-ship basis. These ship dependent adjustments are expected to

  1. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  2. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters

  3. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the

  4. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    NASA Astrophysics Data System (ADS)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  5. Estimation of the gelatinization temperature of noodles from water sorption curves under temperature-programmed heating conditions.

    PubMed

    Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji

    2012-01-01

    A novel method in which the water sorption curve is observed under linearly temperature-raising conditions was proposed to estimate the gelatinization temperature of starch-containing foods, it was applied in an estimation of the gelatinization temperatures of dried noodles. The gelatinization temperatures of two kinds of spaghetti, dried at high and low temperature, were 52.3 and 53.1 °C, and those of udon, kishimen, juwari-soba, hachiwari-soba, so-called common soba, Malony(®), and kuzukiri were 57.0, 57.8, 61.1, 59.6, 57.4, 48.4, and 49.1 °C. The gelatinization temperatures estimated by the method were between the onset and peak temperatures obtained by differential scanning calorimetric measurement. PMID:23132576

  6. Tetraorganylammonium superoxide compounds: close to unperturbed superoxide ions in the solid state.

    PubMed

    Dietzel, Pascal D C; Kremer, Reinhard K; Jansen, Martin

    2004-04-14

    Trimethylphenylammonium superoxide (1) and tetrabutylammonium superoxide (2) were prepared by ion-exchange reaction in liquid ammonia. Both compounds were structurally characterized by single-crystal X-ray diffraction. The crystal structure of 2 contains solvent ammonia molecules that are hydrogen bonded to the superoxide ion and therefore may influence the bonding properties of the superoxide ion. The crystal structure of 1 does not contain any solvent molecules. Therefore, it represents the best known approximation to the virtually isolated superoxide ion in the solid state to date. The O-O bond length is 1.332(2) A in 1 and 1.312(2) A in 2. Magnetization measurements show that the susceptibilities of both compounds follow an ideal Curie law down to 2 K reflecting an absence of intermolecular exchange effects between the superoxide ions. The effective magnetic moments of both compounds are larger than the spin-only value due to contributions of the orbital momentum in the superoxide ion. The values of the magnetic moment comply well with the g factors obtained from electron paramagnetic resonance spectra. The g tensors themselves reflect the anisotropic environment of the superoxide ions. The Pi(g) energy levels which are degenerate in the free superoxide ion split up in crystal fields of lower than tetragonal symmetry. The energy splitting is estimated from the diagonal elements of the g tensor of 1. PMID:15070387

  7. New estimates for Io eruption temperatures: Implications for the interior

    USGS Publications Warehouse

    Keszthelyi, L.; Jaeger, W.; Milazzo, M.; Radebaugh, J.; Davies, A.G.; Mitchell, K.L.

    2007-01-01

    The initial interpretation of Galileo data from Jupiter's moon, Io, suggested eruption temperatures ≥1600°C. Tidal heating models have difficulties explaining Io's prodigious heat flow if the mantle is >1300°C, although we suggest that temperatures up to ~1450°C may be possible. In general, Io eruption temperatures have been overestimated because the incorrect thermal model has been applied. Much of the thermal emission from high-temperature hot spots comes from lava fountains but lava flow models were utilized. We apply a new lava fountain model to the highest reported eruption temperature, the SSI observation of the 1997 eruption at Pillan. This resets the lower temperature limit for the eruption from ~1600 to ~1340°C . Additionally, viscous heating of the magma may have increased eruption temperature by ~50-100°C as a result of the strong compressive stresses in the ionian lithosphere. While further work is needed, it appears that the discrepancy between observations and interior models is largely resolved.

  8. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  9. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  10. An algorithm for the estimation of water temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    A method for water temperature estimation on the basis of thermal data is presented and tested against NASA's Thermal IR Multispectral Scanner. Using realistic bounds on emissivities, temperature bounds are calculated and refined to estimate a tighter bound on the emissivity of the source. The method is useful only when a realistic set of bounds can be obtained for the emissivities of the data.

  11. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  12. The impact of threat of shock on the framing effect and temporal discounting: executive functions unperturbed by acute stress?

    PubMed Central

    Robinson, Oliver J.; Bond, Rebecca L.; Roiser, Jonathan P.

    2015-01-01

    Anxiety and stress-related disorders constitute a large global health burden, but are still poorly understood. Prior work has demonstrated clear impacts of stress upon basic cognitive function: biasing attention toward unexpected and potentially threatening information and instantiating a negative affective bias. However, the impact that these changes have on higher-order, executive, decision-making processes is unclear. In this study, we examined the impact of a translational within-subjects stress induction (threat of unpredictable shock) on two well-established executive decision-making biases: the framing effect (N = 83), and temporal discounting (N = 36). In both studies, we demonstrate (a) clear subjective effects of stress, and (b) clear executive decision-making biases but (c) no impact of stress on these decision-making biases. Indeed, Bayes factor analyses confirmed substantial preference for decision-making models that did not include stress. We posit that while stress may induce subjective mood change and alter low-level perceptual and action processes (Robinson et al., 2013c), some higher-level executive processes remain unperturbed by these impacts. As such, although stress can induce a transient affective biases and altered mood, these need not result in poor financial decision-making. PMID:26441705

  13. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    SciTech Connect

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  14. Estimated temperatures of organic materials in the TMI-2 reactor building during hydrogen burn

    SciTech Connect

    Schutz, H.W.; Nagata, P.K.

    1982-12-01

    Maximum surface temperatures attained by certain materials during the hydrogen burn associated with the March 1979 accident at TMI-2 are estimated, using photographs and material samples from the reactor building. Thermal degradation, melting, and charring noted in the photographs, and the chemical and thermal analyses of polymeric and organic materials indicated an increase in temperature with elevation in the reactor building. The maximum material surface temperatures estimated ranged from 360 to 500/sup 0/F (455 to 533/sup 0/K). Analyses were performed to estimate the damage to electrical cables and insulation. Based on temperatures reached and approximate duration, greater than 90% of cable insulation life remains.

  15. Estimation Uncertainty in the Determinatin of the Master Curve Reference Temperature

    SciTech Connect

    TL Sham; DR Eno

    2006-11-15

    The Master Curve Reference Temperature, T{sub 0}, characterizes the fracture performance of structural steels in the ductile-to-brittle transition region. For a given material, this reference temperature is estimated via fracture toughness testing. A methodology is presented to compute the standard error of an estimated T{sub 0} value from a finite sample of toughness data, in a unified manner for both constant temperature and multiple temperature test methods. Using the asymptotic properties of maximum likelihood estimators, closed-form expressions for the standard error of the estimate of T{sub 0} are presented for both test methods. This methodology includes statistically rigorous treatment of censored data, which represents an advance over the current ASTM E1921 methodology. Through Monte Carlo simulations of realistic constant temperature and multiple temperature test plans, the recommended likelihood-based procedure is shown to provide better statistical performance than the methods in the ASTM E1920 standards.

  16. A time series model for influent temperature estimation: application to dynamic temperature modelling of an aerated lagoon.

    PubMed

    Escalas-Cañellas, Antoni; Abrego-Góngora, Carlos J; Barajas-López, María Guadalupe; Houweling, Dwight; Comeau, Yves

    2008-05-01

    Thirty-nine linear regression and time series models were built and calibrated for influent temperature (Ti) estimation at the primary aerated facultative lagoon in a municipal wastewater treatment plant. The models were based on mean daily ambient air temperature (Ta) and/or daily rainfall (P), and-optionally-wastewater temperature autoregression. The best fits were achieved with some time series models involving Ta and P, and Ti autoregression. The best-fit model was able to estimate influent temperature with a root-mean-square-error of 0.5 degrees C, and an R2 of 0.925, for the calibration period of 10.5 months. In addition, a dynamic lagoon-temperature (Tw) model from the literature was modified in its terms of solar radiation and aeration latent heat, and applied to the primary lagoon. The model was fed with the estimated influent temperature, and five model parameters were identified by calibration against 10.5-month Tw data. Dynamic lagoon-temperature estimation results were comparable to or better than other results of long-term simulations found in the literature. Sensitivity analyses were run on both models. Further validation with independent sets of data is needed for verification of the predictive capability of the models. PMID:18342909

  17. Validation of temperature methods for the estimation of pre-appearance interval in carrion insects.

    PubMed

    Matuszewski, Szymon; Mądra-Bielewicz, Anna

    2016-03-01

    The pre-appearance interval (PAI) is an interval preceding appearance of an insect taxon on a cadaver. It decreases with an increase in temperature in several forensically-relevant insects. Therefore, forensic entomologists developed temperature methods for the estimation of PAI. In the current study these methods were tested in the case of adult and larval Necrodes littoralis (Coleoptera: Silphidae), adult and larval Creophilus maxillosus (Coleoptera: Staphylinidae), adult Necrobia rufipes (Coleoptera: Cleridae), adult Saprinus semistriatus (Coleoptera: Histeridae) and adult Stearibia nigriceps (Diptera: Piophilidae). Moreover, factors affecting accuracy of estimation and techniques for the approximation and correction of predictor temperature were studied using results of a multi-year pig carcass study. It was demonstrated that temperature methods outperform conventional methods. The accuracy of estimation was strongly related to the quality of the temperature model for PAI and the quality of temperature data used for the estimation. Models for larval stage performed better than models for adult stage. Mean temperature for the average seasonal PAI was a good initial approximation of predictor temperature. Moreover, iterative estimation of PAI was found to effectively correct predictor temperature, although some pitfalls were identified in this respect. Implications for the estimation of PAI are discussed. PMID:26820285

  18. Estimation of Missing Daily Temperatures: Can a Weather Categorization Improve Its Accuracy?.

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Nemeová, Ivana

    1995-07-01

    A method of estimating missing daily temperatures is proposed. The procedure is based on a weather classification consisting of two steps: principal component analysis and cluster analysis. At each time of observation @0700, 1400, and 2100 local time) the weather is characterized by temperature, relative humidity, wind speed, and cloudiness. The coefficients of regression equations, enabling the missing temperatures to be determined from the known temperatures at nearby stations, are computed within each weather class. The influence of various parameters @input variables, number of weather classes, number of principal components, their rotation, type of regression equation) on the accuracy of estimated temperatures is discussed. The method yields better results than ordinary regression methods that do not utilize a weather classification. An examination of statistical properties of the estimated temperatures confirms the applicability of the completed temperature series in climate studies.

  19. Estimation of mesopause temperatures at low latitudes using the Kunming meteor radar

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Xue, Xianghui; Chen, Jinsong; Dou, Xiankang; Chen, Tingdi; Li, Na

    2016-03-01

    In this study, mesopause temperatures over a low-latitude station were derived by applying the temperature gradient model technique to data from a meteor radar installation located in Kunming (25.6°N, 103.8°E), China. The estimated temperatures are in good agreement with Sounding of the Atmosphere by Broadband Emission Radiometry (SABER) temperatures and exhibit clear seasonal and interannual variations with dominant spectral peaks at annual, semiannual, quasi 90 day, and terannual oscillations. However, the amplitudes of the temperature fluctuations and the dominant spectral peaks are larger than those from SABER. An improved method that accounts for the temperature sensitivity of the slope estimated from the meteor radar data was developed to calibrate the larger fluctuations obtained using the temperature gradient model technique. The resulting calibrated temperatures are more consistent with SABER observations, and the accuracy of the derived temperatures is significantly improved.

  20. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wilby, R. L.

    2013-12-01

    Development agencies often face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in data sparse regions with few meteorological stations, complex topography and extreme weather events. At the same time, these regions are also often highly vulnerable to climate risks. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the Highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet-days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of growing season rainfall totals. We conclude that local terrain and remotely sensed variables can be used to infer annual mean temperature and precipitation across the most populous, south-west area of Yemen. Important features of the daily and seasonal weather can also be simulated at the site scale, but more rigorous validation is ultimately constrained by lack of data. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  1. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Yu, D.

    2013-06-01

    Agencies face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in regions with few meteorological stations, complex topography and extreme weather events. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the Highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet-days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of growing season rainfall totals. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  2. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Yu, D.

    2013-10-01

    Humanitarian and development agencies face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in regions with few meteorological stations, complex topography and extreme weather events. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of the growing season's rainfall totals. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  3. Gasket performance of SWG in ROTT and short term estimation at elevated temperature

    SciTech Connect

    Asahina, M.; Nishida, T.; Yamanaka, Y.

    1996-12-01

    This paper deals with the sealability at room temperature and the durability at elevated temperature of SWG (spiral wound gasket). The fillers in the gasket specimens are chosen as newly developed non-asbestos, asbestos and flexible graphite. The effects of inner and outer rings inserted in the gasket specimens on the new PVRC gaskets constants are examined by using the ROTT test procedure (room temperature tightness test). The durability of SWG at elevated temperature is estimated by using the weight loss of filler and the stress-deflection curve of SWG obtained after aging at elevated temperatures. As a result, the sealability and the durability of newly developed non-asbestos SWG is the same as asbestos SWG, and the durability of flexible graphite SWG at elevated temperatures in this method conform to the boundary temperature in field and it is shown that this method is available to estimate the durability of gaskets at elevated temperatures.

  4. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  5. Temperature and precipitation estimates through the last glacial cycle from Clear Lake, California, pollen data

    USGS Publications Warehouse

    Adam, D.P.; James, West G.

    1983-01-01

    Modern pollen surface samples from six lake and marsh sites in the northern California Coast Ranges establish a linear relation between elevation and the oak/(oak + pine) pollen ratio. Modern temperature and precipitation lapse rates were used to convert variations in the pollen ratio into temperature and precipitation changes. Pollen data from two cores from Clear Lake, Lake County, California, spanning the past 40,000 and 130,000 years were used to estimate temperature and precipitation changes through the last full glacial cycle. The maximum glacial cooling is estimated to be 7?? to 8??C; the last full interglacial period was about 1.5??C warmer than the Holocene, and a mid-Holocene interval was warmer than the present. The estimated precipitation changes are probably less reliable than the estimated temperature changes.

  6. Estimation Accuracy of air Temperature and Water Vapor Amount Above Vegetation Canopy Using MODIS Satellite Data

    NASA Astrophysics Data System (ADS)

    Tomosada, M.

    2005-12-01

    Estimation accuracy of the air temperature and water vapor amount above vegetation canopy using MODIS satellite data is indicated at AGU fall meeting. The air temperature and water vapor amount which are satisfied the multilayer energy budget model from the ground surface to the atmosphere are estimated. Energy budget models are described the fluxes of sensible heat and latent heat exchange for the ground surface and the vegetated surface. Used MODIS satellite data is the vegetated surface albedo which is calculated from visible and near infrared band data, the vegetated surface temperature, NDVI (Normalized Difference Vegetation Index), LAI (Leaf Area Index). Estimation accuracy of air temperature and water vapor amount above vegetation canopy is evaluated comparing with the value which is measured on a flux research tower in Tomakomai northern forest of Japan. Meteorological parameters such as temperature, wind speed, water vapor amount, global solar radiation are measured on a flux tower from the ground to atmosphere. Well, MODIS satellite observes at day and night, and it snows in Tomakomai in winter. Therefore, estimation accuracy is evaluated dividing on at daytime, night, snowfall day, and not snowfall day. There is the investigation of the undeveloped region such as dense forest and sea in one of feature of satellite observation. Since there is almost no meteorological observatory at the undeveloped region so far, it is hard to get the meteorological parameters. Besides, it is the one of the subject of satellite observation to get the amount of physical parameter. Although the amount of physical parameter such as surface temperature and concentration of chlorophyll-a are estimated by satellite, air temperature and amount of water vapor above vegetation canopy have not been estimated by satellite. Therefore, the estimation of air temperature and water vapor amount above vegetation canopy using satellite data is significant. Further, a highly accurate

  7. A method for temperature estimation in high-temperature geothermal reservoirs by using synthetic fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Giovanni; Orlando, Andrea; Chiarantini, Laura; Borrini, Daniele; Weisenberger, Tobias B.

    2016-04-01

    Super-hot geothermal systems in magmatic areas are a possible target for the future geothermal exploration either for the direct exploitation of fluids or as a potential reservoirs of Enhanced Geothermal Systems. Reservoir temperature measurements are crucial for the assessment of the geothermal resources, however temperature determination in the high-temperature (>380°C) zone of super-hot geothermal systems is difficult or impossible by using either mechanical temperature and pressure gauges (Kuster device) and electronic devices. In the framework of Integrated Methods for Advanced Geothermal Exploration (IMAGE) project, we developed a method to measure high reservoir temperature by the production of synthetic fluid inclusions within an apparatus that will be placed in the high-temperature zone of geothermal wells. First experiments were carried out by placing a gold capsule containing pre-fractured quartz and an aqueous solution (10 wt.% NaCl + 0.4 wt.% NaOH) in an externally heated pressure vessel. Experimental pressure-temperature conditions (i.e. 80-300 bars and 280-400°C) were set close to the liquid/vapour curve of pure H2O or along the H2O critical isochore. The experiments showed that synthetic fluid inclusions form within a relatively short time (even in 48 hours) and that temperatures calculated from homogenization temperatures and isochores of newly formed inclusions are close to experimental temperatures. A second set of laboratory experiments were carried out by using a stainless steel micro-rector in which a gold capsule (containing the pre-fractured quartz and the aqueous solution) was inserted together with an amount of distilled water corresponding to the critical density of water. These experiments were conducted by leaving the new micro-reactor within a furnace at 400°C and were aimed to reproduce the temperature existing in super-hot geothermal wells. Synthetic fluid inclusions formed during the experiments had trapping temperature

  8. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Astrophysics Data System (ADS)

    Chesters, D.

    1984-05-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  9. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  10. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  11. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  12. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    PubMed

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  13. Similar negative impacts of temperature on global wheat yield estimated by three independent methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation approaches. Here we show that grid-based simulations, point-based simulations, and statistical regressions produce similar estimates of temperature ...

  14. Estimating soil moisture on a spatial and temporal scale beginning with temperature signals collected via Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Williamson, L.; Hatch, C. E.; Tyler, S. W.; Van De Giesen, N.; Steele-Dunne, S. C.; Selker, J. S.; Sayde, C.

    2011-12-01

    Distributed Temperature Sensing (DTS) allows for the nearly continuous measurement of temperature over both a spatial and temporal scale by use of standard fiber optic cables. Theoretically, measurement of temperature progression throughout a soil column can lead to estimates of bulk soil thermal properties. From these thermal properties, soil moisture estimates can then be achieved. In Yerington, Nevada, three fiber optic cables in a vertical profile have been plowed into the shallow subsurface. Passive temperature measurements were made every meter along the cable, and from these measurements thermal properties of the soil have been estimated. Soil samples co-located with the fiber optic cables were used in the lab to derive a relationship between water content and thermal conductivity, as well as to determine the bulk soil heat capacity. By combining these measurements, efforts have been made to accurately predict soil moisture on the spatial and temporal scales. Preliminary data shows the thermal response of the soil to change in accordance with both wetting and drying periods. The use of distributed temperature sensing allows for the assessment of soil moisture and soil thermal properties on scales otherwise very difficult to achieve with current techniques.

  15. Estimation of percolation flux from borehole temperature data at Yucca Mountain, Nevada.

    PubMed

    Bodvarsson, G S; Kwicklis, E; Shan, C; Wu, Y S

    2003-01-01

    Temperature data from the unsaturated zone (UZ) at Yucca Mountain are analyzed to estimate percolation-flux rates and overall heat flux. A multilayer, one-dimensional analytical solution is presented for determining percolation flux from temperature data. Case studies have shown that the analytical solution agrees very well with results from the numerical code, TOUGH2. The results of the analysis yield percolation fluxes in the range from 0 to 20 mm/year for most of the deep boreholes. This range is in good agreement with the results of infiltration studies at Yucca Mountain. Percolation flux for the shallower boreholes, however, cannot be accurately determined from temperature data alone because large gas flow in the shallow system alters the temperature profiles. Percolation-flux estimates for boreholes located near or intersecting major faults are significantly higher than those for other boreholes. These estimates may be affected by gas flow in the faults. PMID:12714282

  16. Impact of borehole depths on reconstructed estimates of ground surface temperature histories and energy storage

    NASA Astrophysics Data System (ADS)

    Beltrami, Hugo; Matharoo, Gurpreet S.; Smerdon, Jason E.

    2015-05-01

    Estimates of ground surface temperature changes and continental energy storage from geothermal data have become well-accepted indicators of climatic changes. These estimates are independent contributions to the ensemble of paleoclimatic reconstructions and have been used for the validation of general circulation models, and as a component of the energy budget accounting of the global climate system. Recent global and hemispheric analyses of geothermal data were based on data available in the borehole paleoclimatology database, which contains subsurface temperature profiles from a minimum depth of 200 m to about 600 m. Because of the nature of heat conduction, different depth ranges contain the record of past and persistent changes in the energy balance between the lower atmosphere and the ground for different time periods. Here we examine the dependency of estimated ground surface temperature histories and the magnitude of the subsurface heat content on the depth of borehole temperature profiles. Our results show that uncertainties in the estimates of the long-term surface temperature are in the range of ±0.5K. We conclude that previous estimates of ground surface temperature change remain valid for the period since industrialization, but longer-term estimates are subject to considerable uncertainties. The subsurface heat content shows a larger range of variability arising from differences in depth of the borehole temperature profiles, as well as from differences in the time of data acquisition, spanning four decades. These results indicate that estimates of subsurface heat should be carried out with caution to decrease cumulative errors in any spatial analysis.

  17. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  18. Estimating transient climate response using consistent temperature reconstruction methods in models and observations

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Cowtan, K.; Hawkins, E.; Stolpe, M.

    2015-12-01

    Observational temperature records such as HadCRUT4 typically have incomplete geographical coverage and blend air temperature over land with sea surface temperatures over ocean, in contrast to model output which is commonly reported as global air temperature. This complicates estimation of properties such as the transient climate response (TCR). Observation-based estimates of TCR have been made using energy-budget constraints applied to time series of historical radiative forcing and surface temperature changes, while model TCR is formally derived from simulations where CO2 increases at 1% per year. We perform a like-with-like comparison using three published energy-budget methods to derive modelled TCR from historical CMIP5 temperature series sampled in a manner consistent with HadCRUT4. Observation-based TCR estimates agree to within 0.12 K of the multi-model mean in each case and for 2 of the 3 energy-budget methods the observation-based TCR is higher than the multi-model mean. For one energy-budget method, using the HadCRUT4 blending method leads to a TCR underestimate of 0.3±0.1 K, relative to that estimated using global near-surface air temperatures.

  19. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  20. ESTIMATING SUBPIXEL SURFACE TEMPERATURES AND ENERGY FLUXES FROM THE VEGETATION INDEX-RADIOMETRIC TEMPERATURE RELATIONSHIP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Routine (i.e., daily to weekly) monitoring of surface energy fluxes, particularly evapotranspiration (ET), using satellite observations of radiometric surface temperature has not been feasible at high pixel resolution because of the low frequency in satellite coverage over the region of interest (i...

  1. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    PubMed

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  2. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  3. Estimation of time since death by vitreous humor hypoxanthine, potassium, and ambient temperature.

    PubMed

    Rognum, T O; Holmen, S; Musse, M A; Dahlberg, P S; Stray-Pedersen, A; Saugstad, O D; Opdal, S H

    2016-05-01

    Measurement of vitreous humor potassium (K(+)) has since the 1960s been recognized as an adjunct for estimation of time since death. In 1991 we introduced hypoxanthine (Hx) as a new marker. Furthermore we demonstrated that time since death estimation was more accurate when ambient temperature was included in the calculations, both for K(+) and for Hx. In this paper we present a refined method. The subjects consist of 132 cases with known time of death and ambient temperature. One sample from each subject was used in the calculations. Vitreous humor Hx levels were available in all subjects, while K(+) was measured in 106 of the subjects, due to insufficient volume of vitreous humor. Linear regression analysis was applied to model the correlation between vitreous humor Hx and K(+), taking the interactions with temperature into consideration. The diagrams published in 1991, which also included ambient temperature, estimated median time since death with range between the 10th and 90th percentile, whereas the linear regression analysis presented in this paper estimates mean time since death with a corresponding 95% interval of confidence. We conclude that time since death may be estimated with relatively high precision applying vitreous humor Hx and K(+) concentrations combined with ambient temperature. PMID:26994446

  4. Estimation of snow temperature and mean crystal radius from remote multispectral passive microwave measurements

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1978-01-01

    Variation in crystal size and physical temperature of snowfield observations from space give large variations in the microwave brightness temperature. Since the brightness temperature is a function of wavelength, the microwave brightness temperature can be used to extract the snow temperature and mean crystal radius profiles. The Scanning Multichannel Microwave Radiometer (SMMR), to be launched on board the Nimbus-G and Seasat-A spacecraft, will make observations in wavelengths of 0.8, 1.4, 1.7, 2.8, and 4.6 cm. A statistical retrieval method was developed to determine the snowfield temperature profile and mean crystal size by using the scanning multifrequency microwave radiometer on board a spacecraft. The estimated errors for retrieval are approximately 1.5 K for temperature and 0.001 for crystal radius in the presence of 1 K rms noise for each SMMR channel.

  5. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  6. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Zimmerman, J. A.; Oswald, J.; Belytschko, T.

    2011-01-01

    In this work we apply a material-frame, kernel-based estimator of continuum fields to atomic data in order to estimate the J-integral for the analysis of an atomically sharp crack at finite temperatures. Instead of the potential energy appropriate for zero temperature calculations, we employ the quasi-harmonic free energy as an estimator of the Helmholtz free energy required by the Eshelby stress in isothermal conditions. We employ the simplest of the quasi-harmonic models, the local harmonic model of LeSar and co-workers, and verify that it is adequate for correction of the zero temperature J-integral expression for various deformation states for our Lennard-Jones test material. We show that this method has the properties of: consistency among the energy, stress and deformation fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation with linear elastic fracture mechanics theory.

  7. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  8. Accuracy comparison of spatial interpolation methods for estimation of air temperatures in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Shim, K.; Jung, M.; Kim, S.

    2013-12-01

    Because of complex terrain, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields are influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was conducted to compare accuracy of a spatial interpolation method to estimate air temperature in Korean Peninsula with the rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Kriging and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 456 automatic weather station (AWS) locations in South Korea were used to generate the gridded air temperature surface. Result of cross validation showed that using Exponential theoretical model produced a lower root mean square error (RMSE) than using Gaussian theoretical model in case of Kriging and Cokriging and Spline produced the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation. In conclusion, Spline showed the best accuracy among the methods, but further experiments which reflect topography effects such as temperature lapse rate are necessary to improve the prediction.

  9. Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions?

    NASA Astrophysics Data System (ADS)

    Feulner, Georg

    2011-08-01

    Estimates for the total solar irradiance (TSI) during the 17th-century Maunder Minimum published in the last few years have pointed towards a TSI difference of 0.2-0.7 W m-2 as compared to the 2008/2009 solar minimum. Two recent studies, however, give anomalies which differ from this emerging consensus. The first study indicates an even smaller TSI difference, placing the Maunder Minimum TSI on the same level as the 2008/2009 minimum. The second study on the other hand suggests a very large TSI difference of 5.8 W m-2. Here I use coupled climate simulations to assess the implications of these two estimates on Northern-hemisphere surface air temperatures over the past millennium. Using a solar forcing corresponding to the estimate of the first study, simulated Northern-hemisphere temperatures over the past millennium are consistent with reconstructed surface air temperatures. The large TSI differences between times of high and low solar activity as suggested by the second study, however, yield temperatures during all past grand solar minima that are too low, an excessive variance in Northern-hemisphere temperature on timescales of 50-100 years as compared to reconstructions, and temperatures during the first half of the 20th century which are too low and inconsistent with the instrumental temperature record. In summary this suggests a more moderate TSI difference of less than 1 W m-2 and possibly as low as 0-0.3 W m-2.

  10. Real-time estimation of battery internal temperature based on a simplified thermoelectric model

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Kang; Deng, Jing

    2016-01-01

    Li-ion batteries have been widely used in the EVs, and the battery thermal management is a key but challenging part of the battery management system. For EV batteries, only the battery surface temperature can be measured in real-time. However, it is the battery internal temperature that directly affects the battery performance, and large temperature difference may exist between surface and internal temperatures, especially in high power demand applications. In this paper, an online battery internal temperature estimation method is proposed based on a novel simplified thermoelectric model. The battery thermal behaviour is first described by a simplified thermal model, and battery electrical behaviour by an electric model. Then, these two models are interrelated to capture the interactions between battery thermal and electrical behaviours, thus offer a comprehensive description of the battery behaviour that is useful for battery management. Finally, based on the developed model, the battery internal temperature is estimated using an extended Kalman filter. The experimental results confirm the efficacy of the proposed method, and it can be used for online internal temperature estimation which is a key indicator for better real-time battery thermal management.

  11. Estimate of subsurface formation temperature in the Tarim basin, northwest China

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2015-04-01

    Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.

  12. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    NASA Astrophysics Data System (ADS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2014-09-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  13. Estimation of boundary heat flux using experimental temperature data in turbulent forced convection flow

    NASA Astrophysics Data System (ADS)

    Parwani, Ajit K.; Talukdar, Prabal; Subbarao, P. M. V.

    2015-03-01

    Heat flux at the boundary of a duct is estimated using the inverse technique based on conjugate gradient method (CGM) with an adjoint equation. A two-dimensional inverse forced convection hydrodynamically fully developed turbulent flow is considered. The simulations are performed with temperature data measured in the experimental test performed on a wind tunnel. The results show that the present numerical model with CGM is robust and accurate enough to estimate the strength and position of boundary heat flux.

  14. A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors.

    PubMed

    Dezhdar, Tara; Moshourab, Rabih A; Fründ, Ingo; Lewin, Gary R; Schmuker, Michael

    2015-01-01

    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor's temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails. PMID:26638830

  15. A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors

    NASA Astrophysics Data System (ADS)

    Dezhdar, Tara; Moshourab, Rabih A.; Fründ, Ingo; Lewin, Gary R.; Schmuker, Michael

    2015-12-01

    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails.

  16. A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors

    PubMed Central

    Dezhdar, Tara; Moshourab, Rabih A.; Fründ, Ingo; Lewin, Gary R.; Schmuker, Michael

    2015-01-01

    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails. PMID:26638830

  17. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    NASA Astrophysics Data System (ADS)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  18. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    NASA Astrophysics Data System (ADS)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-01

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  19. Ambient-temperature regression analysis for estimating retrofit savings in commercial buildings

    SciTech Connect

    Kissock, J.K.; Reddy, T.A.; Claridge, D.E.

    1998-08-01

    This paper describes a procedure for estimating weather-adjusted retrofit savings in commercial buildings using ambient-temperature regression models. The selection of ambient temperature as the sole independent regression variable is discussed. An approximate method for determining the uncertainty of savings and a method for identifying the data time scale which minimizes the uncertainty of savings ar developed. The appropriate users of both linear and change-point models for estimating savings based on expected heating and cooling relationships for common HVAC systems are described. A case study example illustrates the procedure.

  20. Estimation of firing temperature of some archaeological pottery shreds excavated recently in Tamilnadu, India

    NASA Astrophysics Data System (ADS)

    Velraj, G.; Janaki, K.; Musthafa, A. Mohamed; Palanivel, R.

    2009-05-01

    An attempt has been made in the present work to estimate the firing temperature of the archaeological pottery shreds excavated from the three archaeological sites namely Maligaimedu, Thiruverkadu and Palur in the state of Tamilnadu in INDIA. The lower limit of firing temperature of the Archaeological pottery shreds were estimated by refiring the samples to different temperatures and recording the corresponding FT-IR spectrum. The firing methods and conditions of firing were inferred from the characteristic absorption positions and the bands observed due to the presence of magnetite and hematite in the samples. In addition, the Scanning Electron Microscopic analysis were carried out to study the internal morphology, vitrification factor and the upper limit of the firing temperature of the potteries fired at the time of manufacture.

  1. Estimates of Temperatures in Saturn's Upper Atmosphere from Cassini Radio Occultation Observations

    NASA Astrophysics Data System (ADS)

    Moore, L.

    2015-10-01

    The effective or slab thickness (? of an ionosphere is defined as the ratio between local total electron content (TEC) and peak electron density (N MAX). In a photochemical ionosphere this parameter is approximately four times the scale height (H=kT/mg) of the ionized neutral gas. We use the 59 radio occultations of Saturn's ionosphere obtained by Cassini's RSS instrument in order to estimate thermospheric temperatures, and we compare these estimates with temperatures derived from solar and stellar occultations. The globally averaged slab thickness in Saturn's ionosphere is roughly 1500 km. Given certain assumptions, such slab thicknesses translate into average temperatures of 400-600K, with a slight increase at higher latitudes . In addition, slab thickness values below 1000 km are found only at low latitudes, within 20o of Saturn's equator, perhaps indicative of relatively cooler equatorial temperatures.

  2. Estimation of firing temperature of some archaeological pottery shreds excavated recently in Tamilnadu, India.

    PubMed

    Velraj, G; Janaki, K; Musthafa, A Mohamed; Palanivel, R

    2009-05-01

    An attempt has been made in the present work to estimate the firing temperature of the archaeological pottery shreds excavated from the three archaeological sites namely Maligaimedu, Thiruverkadu and Palur in the state of Tamilnadu in INDIA. The lower limit of firing temperature of the Archaeological pottery shreds were estimated by refiring the samples to different temperatures and recording the corresponding FT-IR spectrum. The firing methods and conditions of firing were inferred from the characteristic absorption positions and the bands observed due to the presence of magnetite and hematite in the samples. In addition, the Scanning Electron Microscopic analysis were carried out to study the internal morphology, vitrification factor and the upper limit of the firing temperature of the potteries fired at the time of manufacture. PMID:19117795

  3. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  4. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    PubMed

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-01-01

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032

  5. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks

    PubMed Central

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén

    2012-01-01

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032

  6. Analytical solution and computer program (FAST) to estimate fluid fluxes from subsurface temperature profiles

    NASA Astrophysics Data System (ADS)

    Kurylyk, Barret L.; Irvine, Dylan J.

    2016-02-01

    This study details the derivation and application of a new analytical solution to the one-dimensional, transient conduction-advection equation that is applied to trace vertical subsurface fluid fluxes. The solution employs a flexible initial condition that allows for nonlinear temperature-depth profiles, providing a key improvement over most previous solutions. The boundary condition is composed of any number of superimposed step changes in surface temperature, and thus it accommodates intermittent warming and cooling periods due to long-term changes in climate or land cover. The solution is verified using an established numerical model of coupled groundwater flow and heat transport. A new computer program FAST (Flexible Analytical Solution using Temperature) is also presented to facilitate the inversion of this analytical solution to estimate vertical groundwater flow. The program requires surface temperature history (which can be estimated from historic climate data), subsurface thermal properties, a present-day temperature-depth profile, and reasonable initial conditions. FAST is written in the Python computing language and can be run using a free graphical user interface. Herein, we demonstrate the utility of the analytical solution and FAST using measured subsurface temperature and climate data from the Sendia Plain, Japan. Results from these illustrative examples highlight the influence of the chosen initial and boundary conditions on estimated vertical flow rates.

  7. Streambed Temperatures and Heat Budget Estimates in Groundwater-fed Streams

    NASA Astrophysics Data System (ADS)

    Middleton, M.; Allen, D. M.; Whitfield, P. H.

    2013-12-01

    A streambed temperature monitoring network was installed in a groundwater-fed stream in the Lower Fraser Valley of British Columbia. A network of fifteen temperature loggers was installed in a short reach (<40 m) of Fishtrap Creek to characterize the spatial and temporal variability in streambed temperatures and identify potential mechanisms for localized cooling based on heat exchanges during the summer low flow period. This reach has uniform channel form and water depth, and consistent bed material. Streambed temperature data were collected hourly for the period of July 2008 through October 2012, spanning five summer low flow periods. Nearby climate, stream discharge, and groundwater monitoring stations provided the data to estimate the heat budget components. Over the five summer low flow periods, the network of dataloggers recorded a mean streambed temperature of 13.8oC, with a range of 10.2oC to 20.0oC across the streambed. In order to assess controls on streambed temperature at individual datalogger locations, the incoming heat from sources acting across the entire reach had to be removed from the observed temperature signals. The incoming heat was calculated for the air-water interface to estimate the energy flux into the reach using a heat balance. Incoming solar radiation dominates the heat balance, and evaporative heat fluxes were noticeable as small amplitude variations at a daily scale. Precipitation occurrence, or absence, was not an important component of the heat balance during the summer low flow period. Since incoming solar radiation dominates both air and water temperatures, air temperature (Ta) can be used as a proxy for streambed temperature (Ts). The actual lag time between the air and streambed temperature for this site was 30 hours; however, for the calculation of stream temperature at a daily time step, a lag of 24 hours was used. The relationship between daily streambed temperature and daily air temperature, at a lag of one day, was

  8. Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka

    NASA Astrophysics Data System (ADS)

    Grauel, Anna-Lena; Hodell, David A.; Bernasconi, Stefano M.

    2016-03-01

    Determining the magnitude of tropical temperature change during the last glacial period is a fundamental problem in paleoclimate research. Large discrepancies exist in estimates of tropical cooling inferred from marine and terrestrial archives. Here we present a reconstruction of temperature for the last 42 ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. We compared three independent methods of glacial temperature reconstruction: pollen-based temperature estimates, tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, and clumped isotope thermometry. Pollen provides a near-continuous record of temperature change for most of the glacial period but the occurrence of a no-analog pollen assemblage during cold, dry stadials renders temperature estimates unreliable for these intervals. In contrast, the gypsum hydration and clumped isotope methods are limited mainly to the stadial periods when gypsum and biogenic carbonate co-occur. The combination of palynological and geochemical methods leads to a continuous record of tropical temperature change in lowland Central America over the last 42 ka. Furthermore, the gypsum hydration water method and clumped isotope thermometry provide independent estimates of not only temperature, but also the δ18O of lake water that is dependent on the hydrologic balance between evaporation and precipitation over the lake surface and its catchment. The results show that average glacial temperature was cooler in lowland Central America by 5-10 °C relative to the Holocene. The coldest and driest times occurred during North Atlantic stadial events, particularly Heinrich stadials (HSs), when temperature decreased by up to 6 to 10 °C relative to today. This magnitude of cooling is much greater than estimates derived from Caribbean marine records and model simulations. The extreme dry and cold conditions during HSs in the lowland Central America were associated

  9. A technique for optimal temperature estimation for modeling sunrise/sunset thermal snap disturbance torque

    NASA Technical Reports Server (NTRS)

    Zimbelman, D. F.; Dennehy, C. J.; Welch, R. V.; Born, G. H.

    1990-01-01

    A predictive temperature estimation technique which can be used to drive a model of the Sunrise/Sunset thermal 'snap' disturbance torque experienced by low Earth orbiting spacecraft is described. The twice per orbit impulsive disturbance torque is attributed to vehicle passage in and out of the Earth's shadow cone (umbra), during which large flexible appendages undergo rapidly changing thermal conditions. Flexible members, in particular solar arrays, experience rapid cooling during umbra entrance (Sunset) and rapid heating during exit (Sunrise). The thermal 'snap' phenomena has been observed during normal on-orbit operations of both the LANDSAT-4 satellite and the Communications Technology Satellite (CTS). Thermal 'snap' has also been predicted to be a dominant source of error for the TOPEX satellite. The fundamental equations used to model the Sunrise/Sunset thermal 'snap' disturbance torque for a typical solar array like structure will be described. For this derivation the array is assumed to be a thin, cantilevered beam. The time varying thermal gradient is shown to be the driving force behind predicting the thermal 'snap' disturbance torque and therefore motivates the need for accurate estimates of temperature. The development of a technique to optimally estimate appendage surface temperature is highlighted. The objective analysis method used is structured on the Gauss-Markov Theorem and provides an optimal temperature estimate at a prescribed location given data from a distributed thermal sensor network. The optimally estimated surface temperatures could then be used to compute the thermal gradient across the body. The estimation technique is demonstrated using a typical satellite solar array.

  10. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  11. Estimation of temperature elevation generated by ultrasonic irradiation in biological tissues using the thermal wave method

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Zhou; Zhu, Yi; Zhang, Fei; Gong, Xiu-Fen

    2013-02-01

    In most previous models, simulation of the temperature generation in tissue is based on the Pennes bio-heat transfer equation, which implies an instantaneous thermal energy deposition in the medium. Due to the long thermal relaxation time τ (20 s-30 s) in biological tissues, the actual temperature elevation during clinical treatments could be different from the value predicted by the Pennes bioheat equation. The thermal wave model of bio-heat transfer (TWMBT) defines a thermal relaxation time to describe the tissue heating from ultrasound exposure. In this paper, COMSOL Multiphysics 3.5a, a finite element method software package, is used to simulate the temperature response in tissues based on Pennes and TWMBT equations. We further discuss different factors in the bio-heat transfer model on the influence of the temperature rising and it is found that the temperature response in tissue under ultrasound exposure is a rising process with a declining rate. The thermal relaxation time inhibits the temperature elevation at the beginning of ultrasonic heating. Besides, thermal relaxation in TWMBT leads to lower temperature estimation than that based on Pennes equation during the same period of time. The blood flow carrying heat dominates most to the decline of temperature rising rate and the influence increases with temperature rising. On the contrary, heat diffusion, which can be described by thermal conductivity, has little effect on the temperature rising.

  12. Upper ocean flow statistics estimated from superresolved sea-surface temperature images

    NASA Astrophysics Data System (ADS)

    Keating, Shane R.; Smith, K. Shafer

    2015-02-01

    Ocean turbulence on scales of 10-50 km plays a key role in biogeochemical processes, frontal dynamics, and tracer transport in the upper ocean, but our understanding of these scales is limited because they are too small to be resolved using extant satellite altimetry products. By contrast, microwave imagery of the sea-surface temperature field does resolve these scales and can be used to estimate the upper ocean flow field due to the strong correlation between the surface density field and the interior potential vorticity. However, because the surface density (or temperature) is a smoothed version of the geostrophic stream function, the resulting velocity field estimates are limited to scales of 100-300 km in the first few hundred meters of the water column. A method is proposed for generating superresolved sea-surface temperature images using direct low-resolution (microwave) temperature observations in combination with an empirical parameterization for the unresolved scales modeled on statistical information from high-resolution (infrared) imagery. Because the method relies only on the statistics of the small-scale field, it is insensitive to data outages due to cloud cover that affect infrared observations. The method enhances the effective resolution of the temperature images by exploiting the effect of spatial aliasing and generates an optimal estimate of the small-scale temperature field using standard Bayesian inference. The technique is tested in quasigeostrophic simulations driven by realistic climatological shear and stratification profiles for three contrasting regions at high, middle, and low latitudes. The resulting superresolved sea-surface temperature images are then used to estimate the three-dimensional velocity field in the upper ocean on scales of 10-50 km.

  13. [IR spectral-analysis-based range estimation for an object with small temperature difference from background].

    PubMed

    Fu, Xiao-Ning; Wang, Jie; Yang, Lin

    2013-01-01

    It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K. PMID:23586223

  14. Estimation of the biphasic property in a female's menstrual cycle from cutaneous temperature measured during sleep.

    PubMed

    Chen, Wenxi; Kitazawa, Masumi; Togawa, Tatsuo

    2009-09-01

    This paper proposes a method to estimate a woman's menstrual cycle based on the hidden Markov model (HMM). A tiny device was developed that attaches around the abdominal region to measure cutaneous temperature at 10-min intervals during sleep. The measured temperature data were encoded as a two-dimensional image (QR code, i.e., quick response code) and displayed in the LCD window of the device. A mobile phone captured the QR code image, decoded the information and transmitted the data to a database server. The collected data were analyzed by three steps to estimate the biphasic temperature property in a menstrual cycle. The key step was an HMM-based step between preprocessing and postprocessing. A discrete Markov model, with two hidden phases, was assumed to represent higher- and lower-temperature phases during a menstrual cycle. The proposed method was verified by the data collected from 30 female participants, aged from 14 to 46, over six consecutive months. By comparing the estimated results with individual records from the participants, 71.6% of 190 menstrual cycles were correctly estimated. The sensitivity and positive predictability were 91.8 and 96.6%, respectively. This objective evaluation provides a promising approach for managing premenstrual syndrome and birth control. PMID:19551509

  15. Two-source model estimates of evapotranspiration using component and composite surface temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two source energy balance model (TSM) can estimate evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSM uses soil (TS) and canopy (TC) surface temperatures to solve the energy budgets of these layers separately...

  16. Enhancing model-based land surface temperature estimates using multi-platform microwave remote sensing products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an important role in land surface processes, and it is a key input to physically-based retrieval algorithms of important hydrological states and fluxes, such as soil moisture and evaporation. This study presents a framework to use independent estimates of land surface ...

  17. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation. PMID:24514183

  18. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two-source energy balance model (TSEB) can estimate evaporation (E), transpiration (T), and evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSEB requires soil (TS) and canopy (TC) surface temperatures to solv...

  19. Estimation of dew point temperature using neuro-fuzzy and neural network techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Kim, Sungwon; Shiri, Jalal

    2013-11-01

    This study investigates the ability of two different artificial neural network (ANN) models, generalized regression neural networks model (GRNNM) and Kohonen self-organizing feature maps neural networks model (KSOFM), and two different adaptive neural fuzzy inference system (ANFIS) models, ANFIS model with sub-clustering identification (ANFIS-SC) and ANFIS model with grid partitioning identification (ANFIS-GP), for estimating daily dew point temperature. The climatic data that consisted of 8 years of daily records of air temperature, sunshine hours, wind speed, saturation vapor pressure, relative humidity, and dew point temperature from three weather stations, Daego, Pohang, and Ulsan, in South Korea were used in the study. The estimates of ANN and ANFIS models were compared according to the three different statistics, root mean square errors, mean absolute errors, and determination coefficient. Comparison results revealed that the ANFIS-SC, ANFIS-GP, and GRNNM models showed almost the same accuracy and they performed better than the KSOFM model. Results also indicated that the sunshine hours, wind speed, and saturation vapor pressure have little effect on dew point temperature. It was found that the dew point temperature could be successfully estimated by using T mean and R H variables.

  20. The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation

    SciTech Connect

    Hamann, Jan; Wong, Yvonne Y Y E-mail: ywong@mppmu.mpg.de

    2008-03-15

    We estimate the effect of the experimental uncertainty in the measurement of the temperature of the cosmic microwave background (CMB) on the extraction of cosmological parameters from future CMB surveys. We find that even for an ideal experiment limited only by cosmic variance up to l=2500 for both the temperature and polarization measurements, the projected cosmological parameter errors are remarkably robust against the uncertainty of 1 mK in the firas CMB temperature monopole measurement. The maximum degradation in sensitivity is 20%, for the baryon density estimate, relative to the case in which the monopole is known infinitely well. While this degradation is acceptable, we note that reducing the uncertainty in the current temperature measurement by a factor of five will bring it down to {approx}1%. We also estimate the effect of the uncertainty in the dipole temperature measurement. Assuming the overall calibration of the data to be dominated by the dipole error of 0.2% from firas, the sensitivity degradation is insignificant and does not exceed 10% in any parameter direction.

  1. Estimation of heat load in waste tanks using average vapor space temperatures

    SciTech Connect

    Crowe, R.D.; Kummerer, M.; Postma, A.K.

    1993-12-01

    This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

  2. Estimation of in-situ thermal conductivities from temperature gradient measurements

    SciTech Connect

    Hoang, V.T.

    1980-12-01

    A mathematical model has been developed to study the effect of variable thermal conductivity of the formations, and the wellbore characteristics, on the fluid temperature behavior inside the wellbore during injection or production and after shut-in. During the injection or production period the wellbore fluid temperature is controlled mainly by the fluid flow rate and the heat lost from the fluid to the formation. During the shut-in period, the fluid temperature is strongly affected by differences in the formation thermal conductivities. Based on the results of the present analysis, two methods for estimating in-situ thermal conductivity were derived. First, the line source concept is extended to estimate values of the formation thermal conductivities utilizing the fluid temperature record during the transient period of injection or production and shut-in. The second method is applied when a well is under thermal equilibrium conditions. Values of the formation thermal conductivities can also be estimated by using a continuous temperature gradient log and by measuring the thermal conductivity of the formation at a few selected wellbore locations.

  3. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily Kara

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  4. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  5. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  6. Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1982-01-01

    Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.

  7. The use of polar-orbiting satellite sounding data to estimate rural maximum and minimum temperatures

    SciTech Connect

    Johnson, G.L. ); Davis, J.M.; Bloomfield, P. ); Karl, T.R.; McNab, A.L. ); Tarpley, J.D. )

    1993-05-01

    Atmospheric sounding products from NOAA's polar-orbiting satellites were used to derive and test predictive equations of rural shelter-level maximum and minimum temperatures. Sounding data from both winter and summer months were combined with surface data from over 5,300 cooperative weather stations in the continental United States to develop multiple linear regression equations. Separate equations were developed for both maximum and minimum temperature, using the three types of sounding retrievals (clear, partly cloudy, and cloudy). Clear retrieval models outperformed others, and maximum temperatures were more accurately predicted than minimums. Average standard deviations of observed rural shelter temperatures within sounding search areas were of similar magnitude to root-mean-square errors from satellite estimates for most clear and partly cloudy cases, but were significantly less for cloudy retrieval cases. Model validation for surrogate polar and tropical climatic regions showed success in application of the four clear retrieval models (maximum and minimum temperature, for both winter and summer). This indicates the potential adaptability of these models to estimates of rural shelter temperature in areas outside of the United States. 26 refs., 10 figs., 8 tabs.

  8. Estimating resting metabolic rate by biologging core and subcutaneous temperature in a mammal.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Hetem, Robyn S; Fuller, Andrea; Mitchell, Duncan; Rouanet, Jean-Louis

    2015-05-01

    Tri-axial accelerometry has been used to continuously and remotely assess field metabolic rates in free-living endotherms. However, in cold environments, the use of accelerometry may underestimate resting metabolic rate because cold-induced stimulation of metabolic rate causes no measurable acceleration. To overcome this problem, we investigated if logging the difference between core and subcutaneous temperatures (ΔTc-s) could reveal the metabolic costs associated with cold exposure. Using implanted temperature data loggers, we recorded core and subcutaneous temperatures continuously in eight captive rabbits (Oryctolagus cuniculus) and concurrently measured their resting metabolic rate by indirect calorimetry, at ambient temperatures ranging from -7 to +25°C. ΔTc-s showed no circadian fluctuations in warm (+23°C) or cold (+5°C) environments implying that the ΔTc-s was not affected by an endogenous circadian rhythm in our laboratory conditions. ΔTc-s correlated well with resting metabolic rate (R(2)=0.77) across all ambient temperatures except above the upper limit of the thermoneutral zone (+25°C). Determining ΔTc-s could therefore provide a complementary approach for better estimating resting metabolic rate of animals within and below their thermoneutral zone. Combining data from accelerometers with such measures of body temperature could improve estimates of the overall field metabolic rate of free-living endotherms. PMID:25636902

  9. The use of polar-orbiting satellite sounding data to estimate rural maximum and minimum temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory L.; Davis, Jerry M.; Karl, Thomas R.; Mcnab, Alan L.; Tarpley, J. D.; Bloomfield, Peter

    1993-01-01

    Atmospheric sounding products from NOAA's polar-orbiting satellites were used to derive and test predictive equations of rural shelter-level maximum and minimum temperatures. Sounding data from both winter and summer months were combined with surface data from over 5300 cooperative weather stations in the continental United States to develop multiple linear regression equations. Separate equations were developed for both maximum and minimum temperature, using the three types of sounding retrievals (clear, partly cloudy, and cloudy). Clear retrieval models outperformed others, and maximum temperatures were more accurately predicted than minimums. Average standard deviations of observed rural shelter temperatures within sounding search areas were of similar magnitude to root-mean-square errors from satellite estimates for most clear and partly cloudy cases, but were significantly less for cloudy retrieval cases. Model validation for surrogate polar and tropical climatic regions showed success in application of the four clear retrieval models (maximum and minimum temperature, for both winter and summer). This indicates the potential adaptability of these models to estimates of rural shelter temperature in areas outside of the United States.

  10. Handy method to estimate uncertainty of temperature measurement by infrared thermography

    NASA Astrophysics Data System (ADS)

    Muniz, Pablo Rodrigues; de Araújo Kalid, Ricardo; Cani, Shirley P. N.; da Silva Magalhães, Robson

    2014-07-01

    Temperature measurement by infrared thermography is a technique that is widely used in predictive maintenance to detect faults. The uncertainty involved in measuring temperature by thermography is not only due to the imager, but also due to the measurements and estimates made by the user: emissivity of the inspected object, distance, temperature, and relative humidity of the propagation medium, temperature of objects located in the ambient, and the imager itself. This measurement uncertainty should be available for the thermographer to be able to make a more accurate diagnosis. The methods available in the literature to estimate the uncertainty of measured temperature usually require information nonaccessible to the regular thermographer. This paper proposes a method for calculating the uncertainty of temperature that requires only data available to the thermographer. This method is useful under usual conditions in predictive maintenance-short distance (7.5 to 14 μm) thermal imagers, no fog or rain, among others. It provides results similar to methods that use models that are not available or reserved by the manufacturers of imagers. The results indicate that not all sources of uncertainty are relevant in measurement uncertainty. However, the total uncertainty can be so high that it may lead to misdiagnosis.

  11. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    temperature estimation using meteorological parameters. References: [1] Skoplaki, E. et al., 2008: A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Materials & Solar Cells 92, 1393-1402 [2] Skoplaki, E. et al., 2008: Operating temperature of photovoltaic modules: A survey of pertinent correlations, Renewable Energy 34, 23-29 [3] Koehl, M. et al., 2011: Modeling of the nominal operating cell temperature based on outdoor weathering, Solar Energy Materials & Solar Cells 95, 1638-1646 [4] Mattei, M. et al., 2005: Calculation of the polycrystalline PV module temperature using a simple method of energy balance, Renewable Energy 31, 553-567 [5] Kurtz, S. et al.: Evaluation of high-temperature exposure of rack-mounted photovoltaic modules

  12. Retrieval of Temperature From a Multiple Channel Rayleigh-Scatter Lidar Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Haefele, A.

    2014-12-01

    The measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperature have several shortcoming which can be overcome using an optimal estimation method (OEM). OEMs are applied to the retrieval of temperature from Rayleigh-scatter lidar measurements using both single and multiple channel measurements. Forward models are presented that completely characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The method allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. This demonstrated success of lidar temperature retrievals using an OEM opens new possibilities in atmospheric science for measurement integration between active and passive remote sensing instruments. We are currently working on extending our method to simultaneously retrieve water vapour and temperature using Raman-scatter lidar measurements.

  13. Model-based estimation of adiabatic flame temperature during coal gasification

    NASA Astrophysics Data System (ADS)

    Sarigul, Ihsan Mert

    Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential

  14. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. PMID:26346020

  15. Temperature-based approaches for estimating monthly reference evapotranspiration based on MODIS data over North China

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Zhu, Jiaojun

    2015-08-01

    Reference evapotranspiration (ETo) maps play an important role in distributed hydrological modeling and are particularly useful for regional agricultural and water resource management. In the Three-North Shelter Forest Program, water requirements (i.e., ETo) of different land use types are important preconditions for afforestation program management. The Food and Agriculture Organization Penman-Monteith (FAO-PM) method is the most common method for estimating ETo, but it requires many different types of meteorological data, and few stations with adequate meteorological resources exist in the Three-North regions. In addition, the spatial distribution of ordinary meteorological stations is limited. This study employed two temperature-based ETo methods, Hargreaves and Thornthwaite. The monthly mean, maximum, and minimum air temperatures were estimated using moderate resolution imaging spectroradiometer (MODIS) data. The original coefficients of Hargreaves and mean temperatures of Thornthwaite were modified for regional calibration (with the FAO-PM method as the standard). In the comparison between the original/adjusted Hargreaves and the original/adjusted Thornthwaite methods, the adjusted Hargreaves method was appropriate for estimating ETo in the Three-North regions. The average mean bias error (MBE) was -0.21 mm, the relatively root mean square error (RRMSE) was 13.44 %, the correlation coefficient ( R 2) was 0.85, and the slope ( b) was 1.00 for the monthly ETo. While the MBE was 2.32 mm, the RRMSE was 7.07 %, the R 2 was 0.90, and the b was 1.00 for the annual ETo. Therefore, it is possible to estimate monthly and annual ETo values for other parts of the country or the world using adjusted Hargreaves with the estimated air temperature data instead of using the FAO-PM with observed data.

  16. Temperature-based estimation of global solar radiation using soft computing methodologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  17. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew J.; Varghese, Tomy

    2010-08-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution.

  18. Temperature-based estimation of global solar radiation using soft computing methodologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2015-05-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures (T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max-T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  19. Comparison of ET estimations by the three-temperature model, SEBAL model and eddy covariance observations

    NASA Astrophysics Data System (ADS)

    Zhou, Xinyao; Bi, Shaojie; Yang, Yonghui; Tian, Fei; Ren, Dandan

    2014-11-01

    The three-temperature (3T) model is a simple model which estimates plant transpiration from only temperature data. In-situ field experimental results have shown that 3T is a reliable evapotranspiration (ET) estimation model. Despite encouraging results from recent efforts extending the 3T model to remote sensing applications, literature shows limited comparisons of the 3T model with other remote sensing driven ET models. This research used ET obtained from eddy covariance to evaluate the 3T model and in turn compared the model-simulated ET with that of the more traditional SEBAL (Surface Energy Balance Algorithm for Land) model. A field experiment was conducted in the cotton fields of Taklamakan desert oasis in Xinjiang, Northwest China. Radiation and surface temperature were obtained from hyperspectral and thermal infrared images for clear days in 2013. The images covered the time period of 0900-1800 h at four different phenological stages of cotton. Meteorological data were automatically recorded in a station located at the center of the cotton field. Results showed that the 3T model accurately captured daily and seasonal variations in ET. As low dry soil surface temperatures induced significant errors in the 3T model, it was unsuitable for estimating ET in the early morning and late afternoon periods. The model-simulated ET was relatively more accurate for squaring, bolling and boll-opening stages than for seedling stage of cotton during when ET was generally low. Wind speed was apparently not a limiting factor of ET in the 3T model. This was attributed to the fact that surface temperature, a vital input of the model, indirectly accounted for the effect of wind speed on ET. Although the 3T model slightly overestimated ET compared with SEBAL and eddy covariance, it was generally reliable for estimating daytime ET during 0900-1600 h.

  20. Estimating Soil Thermal Properties from Land Surface Temperature Measurements Using Ant Colony Optimization Approach

    NASA Astrophysics Data System (ADS)

    Zamani, K.; Madadgar, S.; Bateni, S.

    2012-12-01

    Soil thermal conductivity and volumetric heat capacity are crucial parameters in land surface hydrology and hydro-climatology. There are several techniques (e.g., heat-source probe, borehole relaxation, and heat-dissipation sensors) for in situ measurement of soil thermal properties. These methods are generally expensive and labor-intensive. In a departure with these in situ approaches, regression-based techniques have been developed to estimate soil thermal properties. They require several input variables such as soil texture, water content, organic content, etc, which are typically unavailable. To overcome the aforementioned drawbacks of these methods, a new approach is developed to estimate soil thermal properties from the sequences of land surface temperature (LST) measurements. Herein, LST measurements are the only required input to estimate soil thermal properties. An objective function describing the misfit between simulated LST from the heat diffusion equation and the corresponding observations is minimized using Ant Colony Optimization (ACO) technique in order to find the optimum values for soil thermal properties. The performance of model is initially tested on a single-layer (homogeneous) soil setup and then a generalized scheme of the multi-layer soil column is explored with two, five and ten of equal thickness sub-layers to account for inhomogeneity in the soil slab. The developed model is applied to the First International Satellite Land Surface Climatology (ISLSCP) Field Experiment in summer of 1987 and 1988. The retrieved soil thermal properties from ACO are used to solve the heat diffusion equation and estimate soil temperature within the soil slab. The soil temperature estimates show relatively good agreement with observations, suggesting that the proposed technique can reliably estimate soil thermal properties.

  1. Fast cosmic microwave background power spectrum estimation of temperature and polarization with Gabor transforms

    NASA Astrophysics Data System (ADS)

    Hansen, Frode K.; Górski, Krzysztof M.

    2003-08-01

    We extend the analysis of Gabor transforms on a cosmic microwave background temperature map to polarization. We study the temperature and polarization power spectra on the cut sky, the so-called pseudo-power spectra. The transformation kernels relating the full-sky polarization power spectra and the polarization pseudo-power spectra are found to be similar to the kernel for the temperature power spectrum. This fact is used to construct a fast power spectrum estimation algorithm using the pseudo-power spectrum of temperature and polarization as data vectors in a maximum-likelihood approach. Using the pseudo-power spectra as input to the likelihood analysis solves the problem of having to invert huge matrices, which makes the standard likelihood approach infeasible.

  2. Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries

    NASA Astrophysics Data System (ADS)

    Dai, Haifeng; Zhu, Letao; Zhu, Jiangong; Wei, Xuezhe; Sun, Zechang

    2015-10-01

    The accurate monitoring of battery cell temperature is indispensible to the design of battery thermal management system. To obtain the internal temperature of a battery cell online, an adaptive temperature estimation method based on Kalman filtering and an equivalent time-variant electrical network thermal (EENT) model is proposed. The EENT model uses electrical components to simulate the battery thermodynamics, and the model parameters are obtained with a least square algorithm. With a discrete state-space description of the EENT model, a Kalman filtering (KF) based internal temperature estimator is developed. Moreover, considering the possible time-varying external heat exchange coefficient, a joint Kalman filtering (JKF) based estimator is designed to simultaneously estimate the internal temperature and the external thermal resistance. Several experiments using the hard-cased LiFePO4 cells with embedded temperature sensors have been conducted to validate the proposed method. Validation results show that, the EENT model expresses the battery thermodynamics well, the KF based temperature estimator tracks the real central temperature accurately even with a poor initialization, and the JKF based estimator can simultaneously estimate both central temperature and external thermal resistance precisely. The maximum estimation errors of the KF- and JKF-based estimators are less than 1.8 °C and 1 °C respectively.

  3. HMM-based estimation of menstrual cycle from skin temperature during sleep.

    PubMed

    Chen, Wenxi; Kitazawa, Masumi; Togawa, Tatsuo

    2008-01-01

    An HMM-based method is proposed to estimate biphasic property in female menstrual cycle. A tiny device is developed to measure skin temperature change during sleep. Data are collected from 30 female participants for 6 months. Raw data are preprocessed to remove obvious outliers and clamped between 34 and 42 degree Celsius. A two hidden states HMM-based algorithm was applied to estimate the biphasic property in menstrual cycle. The results showed that the number of correctly detected menstrual cycle is 159 among 173 in 30 participants during 6 months. Overall sensitivity reaches 92.0%. PMID:19162990

  4. Radiometric Approach for Estimating Relative Changes in Intra-Glacier Average Temperature

    NASA Astrophysics Data System (ADS)

    Jezek, K. C.; Johnson, J.; Aksoy, M.

    2012-12-01

    NASA's IceBridge Project uses a suite of airborne instruments to characterize most of the important variables necessary to understand current ice sheet behavior and to predict future changes in ice sheet volume. Derived geophysical quantities include: ice sheet surface elevation; ice sheet thickness; surface accumulation rate; internal layer stratigraphy; ocean bathymetry; basal geology. At present, internal ice sheet temperature is absent from the parameters list, yet temperature is a primary factor in determining the ease at which ice deforms internally and also the rate at which the ice flows across the base. In this paper, we present calculations to show that radiometry may provide clues to relative and perhaps absolute variations in ice sheet internal temperatures. We assume the Debye dielectric dispersion model driven by temperatures estimated using the Robin model to compute radio frequency loss through the ice. We discretely layer the ice sheet to compute local emission, estimate interference effects and also take into account reflectivity at the surface and the base of the ice sheet. At this stage, we ignore scattering in the firn and we also ignore higher frequency dielectric dispersions along with direct current resistivities. We find some sensitivity between the depth-integrated brightness temperature and average internal temperature depending on the ice thickness and surface accumulation rate. Further, we observe that changing from a frozen to a water based ice sheet alters the measured brightness temperature again to a degree depending on the modeled ice sheet configuration. We go on to present SMOS satellite data acquired over Lake Vostok, Antarctica. The SMOS data suggest a relationship between relatively cool brightness temperatures and the location of the lake. We conclude with comments concerning the practicality and advantage of adding radiometry to the IceBridge instrument suite.

  5. Assessment of model land skin temperature and surface-atmosphere coupling using remotely sensed estimates

    NASA Astrophysics Data System (ADS)

    Trigo, Isabel; Boussetta, Souhail; Balsamo, Gianpaolo; Viterbo, Pedro; Beljaars, Anton; Sandu, Irina

    2016-04-01

    The coupling between land surface and the atmosphere is a key feature in Earth System Modelling for exploiting the predictability of slowly evolving geophysical variables (e.g., soil moisture or vegetation state), and for correctly representing rapid variations within the diurnal cycle, particularly relevant in data assimilation applications. Land Surface Temperature (LST) routinely estimated from Meteosat Second Generation (MSG) by the LandSAF is used to assess the European Centre for Medium-range Weather Forecasts (ECMWF) skin temperature. LST can be interpreted as a radiative temperature of the model surface, which is close to the ECMWF modelled skin temperature. It is shown that the model tends to slightly overestimate skin temperature during night-time and underestimate daytime values. Such underestimation of daily amplitudes is particularly pronounced in (semi-)arid regions, suggesting a misrepresentation of surface energy fluxes in those areas. The LST estimated from MSG is used to evaluate the impact of changes in some of the ECMWF model surface parameters. The introduction of more realistic model vegetation is shown to have a positive, but limited impact on skin temperature: long integration leads to an equilibrium state where changes in the latent heat flux and soil moisture availability compensate each other. Revised surface roughness lengths for heat and momentum, however, lead to overall positive impact on daytime skin temperature, mostly due to a reduction of sensible heat flux. This is particularly relevant in non-vegetated areas, unaffected by model vegetation. The reduction of skin conductivity, a parameter which controls the heat transfer to ground by diffusion, is shown to further improve the model skin temperature. A revision of the vertical soil discretization is also expected to improve the match to the LST, particularly over sparsely vegetated areas. The impact of a finer discretization (10-layer soil) is currently ongoing; preliminary

  6. Using NOAA-AVHRR estimates of land surface temperature for regional agrometeorogical modelling

    NASA Astrophysics Data System (ADS)

    de Wit, A. J. W.; Boogaard, H. L.; van Diepen, C. A.

    2004-09-01

    Agrometeorological crop simulation models are used increasingly in spatial applications like regional crop monitoring and yield forecasting. The spatial application of these models involves gathering spatially representative values of meteorological input variables (temperature, radiation and precipitation). This is usually accomplished by interpolating meteorological variables measured at point locations. This paper explores the use of advanced very high resolution radiometer (AVHRR)-derived surface temperature as a replacement for interpolated maximum air temperature in a spatial crop monitoring and yield forecasting system. A 2-year set of daily National Oceanic And Atmospheric Administration (NOAA)-AVHRR images over western Europe was used to derive estimates of daily surface temperature aggregated over 50 km × 50 km gridcells, a land cover database was used to select only pixels that were classified as 'arable land'. On days that did not yield data due to cloud cover, the monthly average surface temperature was substituted. The AVHRR-derived surface temperature is usually higher than the maximum air temperature measured at a weather station. To account for this difference, an empirical model was used that relates surface temperature to maximum air temperature. The model parameters were obtained using calibration with the maximum air temperature measured at five weather stations. Next, it was applied to the entire AVHRR data set in order to convert AVHRR surface temperature into a simulated maximum air temperature. Finally, a case study was carried out by using the WOrld FOod Studies (WOFOST) crop model to simulate growth of winter-wheat and sunflower for Spain using both the simulated maximum air temperature and the interpolated maximum air temperature from weather stations. Our results demonstrate that the spatial patterns of the yearly temperature sums over Spain are similar for both sources of temperature. Therefore, it can be concluded that the AVHRR

  7. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters. PMID:15490835

  8. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    PubMed

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues. PMID:26954265

  9. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Majumdar, T. J.; Bhattacharya, Amit K.

    2009-05-01

    Land surface temperature (LST) is an important factor in global change studies, heat balance and as control for climate change. A comparative study of LST over parts of the Singhbhum Shear Zone in India was undertaken using various emissivity and temperature retrieval algorithms applied on visible and near infrared (VNIR), and thermal infrared (TIR) bands of high resolution Landsat-7 ETM+ imagery. LST results obtained from satellite data of October 26, 2001 and November 2, 2001 through various algorithms were validated with ground measurements collected during satellite overpass. In addition, LST products of MODIS and ASTER were compared with Landsat-7 ETM+ and ground truth data to explore the possibility of using multi-sensor approach in LST monitoring. An image-based dark object subtraction (DOS3) algorithm, which is yet to be tested for LST retrieval, was applied on VNIR bands to obtain atmospheric corrected surface reflectance images. Normalized difference vegetation index (NDVI) was estimated from VNIR reflectance image. Various surface emissivity retrieval algorithms based on NDVI and vegetation proportion were applied to ascertain emissivities of the various land cover categories in the study area in the spectral range of 10.4-12.5 μm. A minimum emissivity value of about 0.95 was observed over the reflective rock body with a maximum of about 0.99 over dense forest. A strong correlation was established between Landsat ETM+ reflectance band 3 and emissivity. Single channel based algorithms were adopted for surface radiance and brightness temperature. Finally, emissivity correction was applied on 'brightness temperature' to obtain LST. Estimated LST values obtained from various algorithms were compared with field ground measurements for different land cover categories. LST values obtained after using Valor's emissivity and single channel equations were best correlated with ground truth temperature. Minimum LST is observed over dense forest as about 26 °C and

  10. Soil temperature synchronisation improves estimation of daily variation of ecosystem respiration in Sphagnum peatlands

    NASA Astrophysics Data System (ADS)

    D'Angelo, Benoît; Gogo, Sébastien; Le Moing, Franck; Jégou, Fabrice; Guimbaud, Christophe; Laggoun, Fatima

    2015-04-01

    Ecosystem respiration (ER) is a key process in the global C cycle and thus, plays an important role in the climate regulation. Peatlands contain a third of the world soil C in spite of their relatively low global area (3% of land area). Although these ecosystems represent potentially a significant source of C under global change, they are still not taken into account accordingly in global climatic models. Therefore, ER variations have to be accounted for, especially by estimating its dependence to temperature.s The relationship between ER and temperature often relies only on one soil temperature depth and the latter is generally taken in the first 10 centimetres. Previous studies showed that the temperature dependence of ER depends on the depth at which the temperature is recorded. The depth selection for temperature measurement is thus a predominant issue. A way to deal with this is to analyse the time-delay between ER and temperature. The aim of this work is to assess whether using synchronised data in models leads to a better ER daily variation estimation than using non-synchronised data. ER measurements were undertaken in 2013 in 4 Sphagnum peatlands across France: La Guette (N 47°19'44', E 2°17'04', 154m) in July, Landemarais (N 48°26'30', E -1°10'54', 145m) in August, Frasne (N 46°49'35', E 6°10'20', 836m) in September, and Bernadouze (N 42°48'09', E 1°25'24', 1500m) in October. A closed method chamber was used to measure ER hourly during 72 hours in each of the 4 replicates installed in each site. Average ER ranged from 1.75 μmol m-2 s-1 to 6.13 μmol m-2 s-1. A weather station was used to record meteorological data and soil temperature profiles (5, 10, 20 and 30 cm). Synchronised data were determined for each depth by selecting the time-delay leading to the best correlation between ER and soil temperature. The data were used to simulate ER according to commonly used equations: linear, exponential with Q10, Arrhenius, Lloyd and Taylor. Models

  11. Preliminary Estimation of the Realistic Optimum Temperature for Vegetation Growth in China

    NASA Astrophysics Data System (ADS)

    Cui, Yaoping

    2013-07-01

    The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.

  12. Going subsurface: Reconciling proxy and model estimates of early Eocene marine temperatures

    NASA Astrophysics Data System (ADS)

    Ho, Sze Ling; Laepple, Thomas

    2015-04-01

    The early Eocene (50-55 million years ago) is a time interval characterized by elevated surface temperatures and atmospheric CO2, and a flatter than-present latitudinal surface temperature gradient. The multi-proxy derived flat temperature gradient has been a challenging feature to reproduce in model simulations, especially the subtropical warmth inferred from the archaeal lipid-based palaeothermometry, namely TEX86H, for both poles. Although widely applied on marine and lacustrine sediments, archaeal lipid paleothermometry is not without uncertainties, especially in the water depth origin of the lipids. Here we take an alternative approach to constrain this uncertainty, by comparing the temperature variability inferred from multiple proxies over a broad range of time-scales (millennial to multi-million years). Our analysis shows that the widely used TEX86H overestimates the amplitude of past temperature changes and suggests that the archaeal temperature signals originate from greater depths. A recalibration of the TEX86H thermometry, using the independent estimates of past temperature variability as a constraint, strongly improves the model-proxy comparison of Eocene warming at water depths corresponding to the calibration. This finding implies that the subtropical Eocene warmth inferred from TEX86H for both poles, which is not reproducible in climate models, are likely an artefact due to the fundamental bias in the applied calibration. This study emphasizes that learning from model-data comparisons needs an in-depth understanding of the proxy as well as the model uncertainty.

  13. Developing High-Resolution Inundation Estimates through a Downscaling of Brightness Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Fisher, C. K.; Wood, E. F.

    2014-12-01

    There is currently a large demand for high-resolution estimates of inundation extent and flooding for applications in water management, risk assessment and hydrologic modeling. In many regions of the world it is possible to examine the extent of past inundation from visible and infrared imagery provided by sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS); however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. As a result of this, there is a need for alternative methodologies that make use of other remotely sensed data sources to inform high-resolution estimates of inundation. One such data source is the AMSR-E/Aqua 37 GHz vertically and horizontally polarized brightness temperature measurements, which have been used in previous studies to estimate the extent of inundated areas and which can make observations in vegetated or cloudy regions. The objective of this work was to develop a decision tree classifier based downscaling methodology by which inundation extent can be obtained at a high resolution, based on microwave brightness temperature measurements and high resolution topographic information. Using a random forest classifier that combined the AMSR-E 37GHz brightness temperatures (~12km mean spatial resolution) and a number of high-resolution topographic indices derived from the National Elevation Dataset for the United States (30m spatial resolution), a high-resolution estimate of inundation was created. A case study of this work is presented for the severe flooding that occurred in Iowa during the summer of 2008. Training and validation data for the random forest classifier were derived from an ensemble of previously existing estimates of inundation from sources such as MODIS imagery, as well as simulated inundation extents generated from a hydrologic routing model. Results of this work suggest that the decision tree based downscaling has skill in producing high-resolution estimates

  14. A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    2002-01-01

    A water-quality standard for temperature is critical for the protection of threatened and endangered salmonids, which need cold, clean water to sustain life. The Idaho Department of Environmental Quality has established temperature standards to protect salmonids, yet little is known about the normal range of temperatures of most Idaho streams. A single temperature standard for all streams does not take into account the natural temperature variation of streams or the existence of naturally warm waters. To address these issues and to help the Idaho Department of Environmental Quality revise the existing State temperature standards for aquatic life, temperature data from more than 200 streams and rivers in the salmon and Clearwater River Basins were collected. From these data, a statistical model was developed for estimating stream temperatures on the basis of subbasin and site characteristics and climatic factors. Stream temperatures were monitored hourly for approximately 58 days during July, August, and September 2000 at relatively undisturbed sites in subbasins in the Salmon and Clearwater River Basins in central Idaho. The monitored subbasins vary widely in size, elevation, drainage area, vegetation cover, and other characteristics. The resulting data were analyzed for statistical correlations with subbasin and site characteristics to establish the most important factors affecting stream temperature. Maximum daily average stream temperatures were strongly correlated with elevation and total upstream drainage area; weaker correlations were noted with stream depth and width and aver-age subbasin slope. Stream temperatures also were correlated with certain types of vegetation cover, but these variables were not significant in the final model. The model takes into account seasonal temperature fluctuations, site elevation, total drainage area, average subbasin slope, and the deviation of daily average air temperature from a 30-year normal daily average air temperature

  15. Using Microwave Observations to Estimate Land Surface Temperature during Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Holmes, T. R.; Crow, W. T.; Hain, C.; Anderson, M. C.

    2014-12-01

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and passive microwave observations (MW). TIR is the most commonly used approach and the method of choice to provide standard LST products for various satellite missions. MW-based LST retrievals on the other hand are not as widely adopted for land applications; currently their principle use is in soil moisture retrieval algorithms. MW and TIR technologies present two highly complementary and independent means of measuring LST. MW observations have a high tolerance to clouds but a low spatial resolution, and TIR has a high spatial resolution with temporal sampling restricted to clear skies. The nature of the temperature at the very surface layer of the land makes it difficult to combine temperature estimates between different methods. The skin temperature is characterized by a strong diurnal cycle that is dependant in timing and amplitude on the exact sensing depth and thermal properties of the vegetation. This paper builds on recent progress in characterizing the main structural components of the DTC that explain differences in TIR and MW estimates of LST. Spatial patterns in DTC timing (phase lag with solar noon) and DTC amplitude have been calculated for TIR, MW and compared to weather prediction estimates. Based on these comparisons MW LST can be matched to the TIR record. This paper will compare in situ measurements of LST with satellite estimates from (downscaled) TIR and (reconciled) MW products. By contrasting the validation results of clear sky days with those of cloudy days the expected tolerance to clouds of the MW observations will be tested. The goal of this study is to determine the weather conditions in which MW can supplement the TIR LST record.

  16. Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC

    NASA Astrophysics Data System (ADS)

    Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi

    Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.

  17. Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes

    NASA Astrophysics Data System (ADS)

    Kobashi, Takuro; Grossman, Ethan L.; Yancey, Thomas E.; Dockery, David T., III

    2001-11-01

    Oxygen isotope data from planktonic foraminifera for the warm Eocene epoch suggest that tropical sea-surface temperatures (SSTs) may have been cooler than at present. Such data have stimulated various explanations involving, e.g., major changes in ocean heat transport. However, the planktonic data disagree with terrestrial climate proxies, which suggest significantly warmer low-latitude temperatures. We examined this discrepancy by analyzing seasonal oxygen isotope variations in shallow-marine mollusks from the Mississippi Embayment. Results indicate that mean annual SSTs decreased from 26 27 °C in the early Eocene to 22 23 °C in the Oligocene, agreeing well with temperatures inferred from terrestrial climate proxies. These cooling trends, with more significant winter cooling (5 °C) than summer cooling (3 °C), are consistent with the predicted consequences of decreasing atmospheric CO2 concentration through the Paleogene, suggesting that atmospheric CO2 change was a major controlling factor for Paleogene climate change. That winter SST estimates from the mollusks agree well with the foraminiferal SST estimates suggests that planktonic foraminiferal growth in low latitudes occurred mainly during the cooler winter months throughout the Eocene. We hypothesize that the unusual hydrography of Eocene oceans shifted foraminiferal productivity primarily to winter, biasing foraminiferal SST estimates of mean annual SSTs.

  18. Estimation of real contact area during sliding friction from interface temperature

    NASA Astrophysics Data System (ADS)

    Chey, Sung Keun; Tian, Pengyi; Tian, Yu

    2016-06-01

    Frictional heat is one of the most important topics in tribological research. The real contact area of the frictional pair plays a significant role in accurately estimating the interface temperature, which is closely related to the frictional heat. However, conventional methods for measuring the contact area, such as constriction resistance measurements, are not suitable for dynamic frictional motion because of the electrical and thermal interferences at the contact region. In this study, a novel method is presented for estimating the real contact area during sliding friction. First, the average interface temperature was experimentally measured by the dynamic thermocouple method. Then assuming that the total frictional heat power is constant, the measured temperature was used as a constraint to determine the contact area in a finite element model, giving an estimation for the real contact area. The calculation results show that the real contact area increases with increasing normal load as predicted by contact theories, and decreases with increasing sliding speed, which could be attributable to the contact dynamics of asperities at the interface. Additionally, the limits of the proposed method is discussed.

  19. Estimation of the radius of a star based on its effective temperature and surface gravity

    NASA Astrophysics Data System (ADS)

    Sichevskij, S. G.

    2016-06-01

    Amethod for determining the radius of a star using its effective temperature and surface gravity is proposed. The method assumes that the relationship between the radius, effective temperature, and surface gravity can be approximated using models for the internal structure and evolution of the star. The method is illustrated using the Geneva-Toulouse evolutionary computations for two metal abundances—solar and one-tenth of solar. Analysis of the systematic errors shows that the accuracy of the method is better than 10% over most part of the Hertzsprung-Russell diagram, and is about 5% for main-sequence stars. The maximum relative systematic error due to the simplifications underlying the method is about 15%. A test using eclipsing binaries confirms the viability of the proposed method for estimating stellar radii. In the region of the main sequence, systematic deviations do not exceed 2%, and the relative standard deviation is ≤4.7%. It is expected that th maximum relative error over the rest of the Hertzsprung-Russell diagram will likewise be close to the systematic error, about 15-20%. The method is applied to estimate the radii of model stellar atmospheres. Such estimates can be used to synthesize the color index and luminosity of a star. The method can be used whenever accuracies of about 10% in the estimated stellar radius and luminosity are acceptable.

  20. Artificial neural network based microwave precipitation estimation using scattering index and polarization corrected temperature

    NASA Astrophysics Data System (ADS)

    Mahesh, C.; Prakash, Satya; Sathiyamoorthy, V.; Gairola, R. M.

    2011-11-01

    An Artificial Neural Network (ANN) based technique is proposed for estimating precipitation over Indian land and oceanic regions [30° S - 40° N and 30° E - 120° E] using Scattering Index (SI) and Polarization Corrected Temperature (PCT) derived from Special Sensor Microwave Imager (SSM/I) measurements. This rainfall retrieval algorithm is designed to estimate rainfall using a combination of SSM/I and Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements. For training the ANN, SI and PCT (which signify rain signatures in a better way) calculated from SSM/I brightness temperature are considered as inputs and Precipitation Radar (PR) rain rate as output. SI is computed using 19.35 GHz, 22.235 GHz and 85.5 GHz Vertical channels and PCT is computed using 85.5 GHz Vertical and Horizontal channels. Once the training is completed, the independent data sets (which were not included in the training) were used to test the performance of the network. Instantaneous precipitation estimates with independent test data sets are validated with PR surface rain rate measurements. The results are compared with precipitation estimated using power law based (i) global algorithm and (ii) regional algorithm. Overall results show that ANN based present algorithm shows better agreement with PR rain rate. This study is aimed at developing a more accurate operational rainfall retrieval algorithm for Indo-French Megha-Tropiques Microwave Analysis and Detection of Rain and Atmospheric Structures (MADRAS) radiometer.

  1. Estimation of temperature impact on gamma-induced degradation parameters of N-channel MOS transistor

    NASA Astrophysics Data System (ADS)

    Jafari, H.; Feghhi, S. A. H.

    2015-03-01

    The physical parameters of MOS transistors can be impressed by ionizing radiation and that leads to circuit degradation and failure. These effects require analyzing the basic mechanism that results in the buildup of induced defect in radiation environments. The reliable estimation also needs to consider external factors, particularly temperature fluctuations. I-V characteristic of the device was obtained using a temperature-dependent adapted form of charge-sheet model under heating cycle during irradiation with several ionizing dose levels at different gate biases. In this work, the analytical calculation for estimating the irradiation temperature impact on gamma-induced degradation parameters of N-channel MOS transistors at different gate biases was investigated. The experimental measurement was done in order to verify and parameterize the analytical model calculations. The results indicated that inserting irradiation temperature in the calculations caused a significant variation in radiation-induced MOS transistor parameters such as threshold voltage shift and off-state leakage current. According to the results, these variations were about 10.1% and 23.4% for voltage shifts and leakage currents respectively during investigated heating cycle for total dose of 20 krad at 9 V gate bias.

  2. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2016-06-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  3. The use of streambed temperatures to estimate transmission losses on an experimental channel.

    SciTech Connect

    Ramon C. Naranjo; Michael H. Young; Richard Niswonger; Julianne J. Miller; Richard H. French

    2001-10-18

    Quantifying channel transmission losses in arid environments is important for a variety of reasons, from engineering design of flood control structures to evaluating recharge. To quantify the losses in an alluvial channel, an experiment was performed on a 2-km reach of an alluvial fan located on the Nevada Test Site. The channel was subjected to three separate flow events. Transmission losses were estimated using standard discharge monitoring and subsurface temperature modeling approach. Four stations were equipped to continuously monitor stage, temperature, and water content. Streambed temperatures measured at 0, 30, 50 and 100 cm depths were used to calibrate VS2DH, a two-dimensional, variably saturated flow model. Average losses based on the difference in flow between each station indicate that 21 percent, 27 percent, and 53 percent of the flow was reduced downgradient of the source. Results from the temperature monitoring identified locations with large thermal gradients, suggesting a conduction-dominated heat transfer on streambed sediments where caliche-cemented surfaces were present. Transmission losses at the lowermost segment corresponded to the smallest thermal gradient, suggesting an advection-dominated heat transfer. Losses predicted by VS2DH are within an order of magnitude of the estimated losses based on discharge measurements. The differences in losses are a result of the spatial extent to which the modeling results are applied and lateral subsurface flow.

  4. Estimations of temperature deviations in chromatographic columns using isenthalpic plots. I. Theory for isocratic systems.

    PubMed

    Tarafder, Abhijit; Iraneta, Pamela; Guiochon, Georges; Kaczmarski, Krzysztof; Poe, Donald P

    2014-10-31

    We propose to use constant enthalpy or isenthalpic diagrams as a tool to estimate the extent of the temperature variations caused by the mobile phase pressure drop along a chromatographic column, e.g. of its cooling in supercritical fluid and its heating in ultra-performance liquid chromatography. Temperature strongly affects chromatographic phenomena. Any of its variations inside the column, whether intended or not, can lead to significant changes in separation performance. Although instruments use column ovens in order to keep constant the column temperature, operating conditions leading to a high pressure drop may cause significant variations of the column temperature, both in the axial and the radial directions, from the set value. Different ways of measuring these temperature variations are available but they are too inconvenient to be employed in many practical situations. In contrast, the thermodynamic plot-based method that we describe here can easily be used with only a ruler and a pencil. They should be helpful in developing methods or in analyzing results in analytical laboratories. Although the most effective application area for this approach should be SFC (supercritical fluid chromatography), it can be applied to any chromatographic conditions in which temperature variations take place along the column due to the pressure drop, e.g. in ultra-high pressure liquid chromatography (UHPLC). The method proposed here is applicable to isocractic conditions only. PMID:25267710

  5. Estimating temperature and current using a pair of transceivers in a harbor environment.

    PubMed

    Huang, Chen-Fen; Taniguchi, Naokazu; Chen, Yen-Hsiang; Liu, Jin-Yuan

    2016-07-01

    Obtaining the horizontal variation of temperature and current fields of a water column usually requires travel-time measurements of acoustic signals traveling along different paths between several horizontally distributed transceivers. This study explores the possibility of using a pair of transceivers deployed in a highly-reverberant harbor environment to extract spatial information of the water. Multipath acoustic propagation of two main arrival groups, i.e., direct arrivals and arrivals reflecting off the harbor side, was observed in the pulse responses measured in the harbor environment during the flood tide. Compared with the direct point measurements of temperature and current, the path-averaged measurements show a similar temporal variation during the experiment, demonstrating the possibility of estimating the spatial variation of the currents and temperatures using the multipath acoustic propagation. PMID:27475203

  6. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is

  7. Understanding TEX86H Temperature Estimates in the Eastern Equatorial Pacific over the Last Deglacial

    NASA Astrophysics Data System (ADS)

    Randle, N. J.; Schmidt, M. W.; Bianchi, T. S.; Hertzberg, J. E.; Shields, M. R.

    2014-12-01

    An index based on the relative abundance of glycerol dialkyl glycerol tetraethers (TEX86) has been gaining support for use as a sea surface temperature proxy. It has had limited application in the Eastern Equatorial Pacific (EEP) and, prior to this study, has not been applied to a high-resolution record within this region. Here, we utilize the TEX86H temperature index to calculate a North-South temperature gradient in the EEP over the last ~25 kyr using two sediment cores, MV1014-02-17JC (located within the equatorial upwelling zone on the Carnegie Ridge) and MV1014-01-08JC (located North of the seasonal upwelling region on the Cocos Ridge). During the Late Holocene, the Cocos Ridge exhibited warmer TEX86H temperatures as compared to the Carnegie Ridge. The TEX86H calculated temperatures are within analytical error of both modern annual sea surface temperatures at each site and Mg/Ca-based SST estimates derived from Globigerinoides ruber. From 5.6 kyr to 8.5 kyr there is an abrupt ~3°C decrease in the TEX86H temperatures at the Cocos Ridge, marking a breakdown in the N-S temperature gradient. Then, similar TEX86H temperatures are calculated through the Early Holocene and into the deglacial as both sites cool into the Last Glacial Maximum (LGM). Interestingly, the temperature gradient switches during the LGM, with the Carnegie Ridge yielding temperatures 1-2°C warmer than the Cocos Ridge. This gradient reversal, in contrast, is not seen in the limited Mg/Ca temperatures measured during the LGM in the same core intervals. Instead, the calculated TEX86H temperatures from both sites are cooler than calculated Mg/Ca-SSTs from the near-surface dwelling planktonic foraminifera G. ruber. Additional foraminiferal Mg/Ca and stable isotope analyses will also be presented in an effort to better constrain deglacial changes in upper water column hydrography at both sites.

  8. Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K.

    PubMed

    Underwood, R; de Podesta, M; Sutton, G; Stanger, L; Rusby, R; Harris, P; Morantz, P; Machin, G

    2016-03-28

    Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported. PMID:26903104

  9. Ensemble Kalman Filter Assimilation of Temperature Data to Estimate Permeability in Geothermal Reservoirs

    NASA Astrophysics Data System (ADS)

    Vogt, C.; Widera, A.

    2012-04-01

    Reliable information on heterogeneous permeability fields of geothermal reservoirs is of particular interest, even after production started. This information permits the prediction of temperature and pressure variation with time, the optimization of the production rate of the geothermal installation in terms of profit or sustainability, and the detection of optimal locations for additional injection or production wells. Therefore, we study the capability of the data assimilation technique Ensemble Kalman Filter (EnKF) to estimate heterogeneous permeability fields using sparse temperature data from five geothermal wells inside a synthetic reservoir. To simulate the transient temperature variation inside the geothermal system, we use the finite volume software SHEMAT-Suite for solving coupled transient equations for groundwater flow and heat transport in a porous rock matrix. The EnKF is essentially a sequential assimilation procedure which compares observations to predictions by SHEMAT-Suite and adjusts system variables (in this case: permeability, temperature, and hydraulic head) of the numerical simulator according to the error statistics assuming a Gaussian error distribution. For the EnKF, the error statistics are obtained from the mean and variance of a number of realisations. This way, estimated permeability converts in the direction of true permeability assimilation step by assimilation step. We demonstrate that the basic features of the permeability field are reproduced by the EnKF, even when assimilating data from just five wells. In addition, we are able to quantify uncertainty of the permeability estimation. The fit using temperature data is comparable with the fit using tracer concentration data (Vogt et al., 2010). However, different time scales (months respectively years) apply for the two different data types. Optimal fits are obtained when taking into account hydraulic head data in combination with temperature data. We also present the effect of

  10. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    PubMed

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions. PMID:26030088

  11. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2014-01-01

    Formation of highly reactive species such as OH, H, HO2 and H2O2 due to transient collapse of cavitation bubbles is the primary mechanism of sonochemical reaction. The crucial parameters influencing the formation of radicals are the temperature and pressure achieved in the bubble during the strong collapse. Experimental determinations estimated a temperature of about 5000 K and pressure of several hundreds of MPa within the collapsing bubble. In this theoretical investigation, computer simulations of chemical reactions occurring in an O2-bubble oscillating in water irradiated by an ultrasonic wave have been performed for diverse combinations of various parameters such as ultrasound frequency (20-1000 kHz), acoustic amplitude (up to 0.3 MPa), static pressure (0.03-0.3 MPa) and liquid temperature (283-333 K). The aim of this series of computations is to correlate the production of OH radicals to the temperature and pressure achieved in the bubble during the strong collapse. The employed model combines the dynamic of bubble collapse in acoustical field with the chemical kinetics of single bubble. The results of the numerical simulations revealed that the main oxidant created in an O2 bubble is OH radical. The computer simulations clearly showed the existence of an optimum bubble temperature of about 5200±200 K and pressure of about 250±20 MPa. The predicted value of the bubble temperature for the production of OH radicals is in excellent agreement with that furnished by the experiments. The existence of an optimum bubble temperature and pressure in collapsing bubbles results from the competitions between the reactions of production and those of consumption of OH radicals at high temperatures. PMID:23769748

  12. Retrieval of Temperature and Water Vapour from Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2016-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  13. Retrieval of Temperature and Water Vapour From Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2015-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  14. Estimating land surface heat flux using radiometric surface temperature without the need for an extra resistance

    NASA Astrophysics Data System (ADS)

    Su, H.; Yang, Y.; Liu, S.

    2015-12-01

    Remotely-sensed land surface temperature (LST) is a key variable in energy balance and is widely used for estimating regional heat flux. However, the inequality between LST and aerodynamic surface temperature (Taero) poses a great challenge for regional heat flux estimation in one -source energy balance models. In this study, a one-source model for land (OSML) was proposed to estimate regional surface heat flux without a need for an empirical extra resistance. The proposed OSML employs both a conceptual VFC/LST trapezoid model and the electrical analogue formula of sensible heat flux (H) to estimate the radiometric-convective resistance (rae) by using a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX), using a remotely-sensed data set at a regional scale. Validated against tower observations, the root mean square deviation (RMSD) of H and latent heat flux (LE) from OSML was 47 W/m2 and 51 W/m2, which is comparable to other published studies. OSML and SEBS (Surface Energy Balance System) compared under the same available energy indicated that LE estimated by OSML is comparable to that derived from the SEBS model. In conducting further inter-comparisons of rae, the aerodynamic resistance derived from SEBS (ra_SEBS), and aerodynamic resistance (ra) derived from Brutsaert et al. (2005) in corn and soybean fields, we found that rae and ra_SEBS are comparable. Most importantly, our study indicates that the OSML method is applicable without having to acquire wind speed or to specify aerodynamic surface characteristics and that it is applicable to heterogeneous areas.

  15. New estimates of tropical temperature and precipitation changes during the last 42ka

    NASA Astrophysics Data System (ADS)

    Grauel, A.; Hodell, D. A.; Bernasconi, S. M.; Correa-Metrio, A.

    2013-12-01

    The amount of cooling in the tropics during the last Ice Age has been a longstanding problem with large discrepancies between terrestrial and marine estimates. Here we present a reconstruction of temperature and precipitation changes over the last 42ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. Previous studies of sediment cores from Lake Petén Itzá showed that alternating layers of clay- and gypsum-rich sediment reflect times of wetter and dryer conditions, respectively. The most arid conditions coincide with stadials, especially those associated with Heinrich events (HEs) when pollen assemblages are dominated by xeric-tolerant taxa. In contrast, interstadials and the last glacial maximum (LGM) are characterized by clay deposition and pollen indicative of temperate pine-oak forest, indicating more humid conditions in the lowland Neotropics. We compared three independent methods to reconstruct glacial temperatures: tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, clumped isotope thermometry, and pollen-based temperature estimates using the Modern Analog Technique (MAT). The temperatures derived by the three methods generally agree during interstadials and some stadials (e.g., HE2 and 3), but diverge during other stadial events (e.g., HE1 and 4). For example, gypsum hydration and clumped isotope methods indicate a severe cooling of 6 to 10°C during HE1 and 4, whereas the pollen MAT suggests more moderate cooling of 3 to 6 °C. The reason for this divergence is likely that no modern analogs exist for the pollen assemblage during these cold, arid stadials when the MAT is not applicable. Although the temperature decrease is similar (6-10°C) for HE1 and 4, deuterium excess is distinctly different (-19 and -14, respectively), perhaps indicating a change in source and/or seasonality of precipitation. The δ18O and δD of the lake water indicate HE1 was the most arid

  16. Estimation of effective temperatures in a quantum annealer: Towards deep learning applications

    NASA Astrophysics Data System (ADS)

    Realpe-Gómez, John; Benedetti, Marcello; Perdomo-Ortiz, Alejandro

    Sampling is at the core of deep learning and more general machine learning applications; an increase in its efficiency would have a significant impact across several domains. Recently, quantum annealers have been proposed as a potential candidate to speed up these tasks, but several limitations still bar them from being used effectively. One of the main limitations, and the focus of this work, is that using the device's experimentally accessible temperature as a reference for sampling purposes leads to very poor correlation with the Boltzmann distribution it is programmed to sample from. Based on quantum dynamical arguments, one can expect that if the device indeed happens to be sampling from a Boltzmann-like distribution, it will correspond to one with an instance-dependent effective temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling processes. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the quantum-assisted training of Boltzmann machines, which can serve as a building block for deep learning architectures. This work was supported by NASA Ames Research Center.

  17. Estimation of maximum air temperature using COMS data in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Ryu, Jae-Hyun; Han, Kyung-Soo; Cho, Jae-Il; Lee, Chang-Suk; Kim, In-Hwan; Pi, Kyoung-Jin; Ha, Jung-Mok; Park, Eun-Bin

    2013-10-01

    Air temperature (Ta) plays important role for the circulation of energy and water between the surface and atmosphere. Ta was accurately measured from ground observation stations. However, the number of ground observation stations is limited, and Ta is influenced from temporal and spatial change. In this study, Ta was estimated using satellite data from April 2011 to March 2012 in the Northeast Asia where consist of the various ecosystem. States of surface and atmosphere were considered through Normalized Difference Water Index (NDWI) and the differences of brightness temperature values of 11μm (TBB1) and 12μm (TBB2). Dataset was divided into nine cases that had seasonal characteristics according surface states (NDWI) and atmosphere states (TBB1-TBB2). Ta was acquired from 174 ground observation stations, and multiple regression equation of each case was consisted of LST, NDVI, TBB1-TBB2. The weighting region was set to be within 8.33% of total density from boundary area of cases in order to reduce the errors that can occur due to the small value. The weighting was applied as distance from the nearest four points. The spatial representativeness of estimated Ta was determined as 9 by 9 window size. R-squared of estimated Ta from satellite was 0.94, RMSE was 2.98 K, Bias was 0.56 K.

  18. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Law, C. S.; Hutchins, D. A.; Abraham, E. R.; Croot, P. L.; Ellwood, M.; Frew, R. D.; Hadfield, M.; Hall, J.; Handy, S.; Hare, C.; Higgins, J.; Hill, P.; Hunter, K. A.; Leblanc, K.; Maldonado, M. T.; McKay, R. M.; Mioni, C.; Oliver, M.; Pickmere, S.; Pinkerton, M.; Safi, K.; Sander, S.; Sanudo-Wilhelmy, S. A.; Smith, M.; Strzepek, R.; Tovar-Sanchez, A.; Wilhelm, S. W.

    2005-12-01

    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ˜50-fold (i.e., 7- to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24).

  19. An estimate of the impact of transient luminous events on the atmospheric temperature

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Berg, P.; Arnold, N. F.; Christiansen, B.; Thejll, P.

    2008-09-01

    We present an order of magnitude estimate of the impact of sprites and other transient luminous events (TLEs) on the atmospheric temperature via ozone changes. To address the effects of expected TLE-ozone changes of at most a few percent, we first study the linearity of the radiatively driven response of a stratosphere-mesosphere model and of a general circulation model (GCM) to a range of uniform climatological ozone perturbations. The study is limited to Northern Hemisphere winter conditions, when planetary wave activity is high and the non linear stratosphere-troposphere coupling can be strong. Throughout most of the middle atmosphere of both models, the radiatively driven temperature response to uniform 5% to 20% ozone perturbations shows a close-to linear relationship with the magnitude of the perturbation. A mid-latitude stratopause ozone perturbation is then imposed as an idealised experiment that mimics local temperature gradients introduced by the latitudinal dependence of TLEs. An unrealistically high 20% magnitude is adopted for the regional ozone perturbation to obtain statistical significance in the model response. The local linearity of the radiatively driven response is used to infer a first order estimate of TLE-induced temperature changes of the order of 0.015 K under typical conditions, and less than a peak temperature change of 0.3 K at 60 70 km height in coincidence of extraordinarily active TLE-producing thunderstorms before horizontal mixing quickly occurs. In the latter case, dedicated mesoscale modelling is needed to study the relevance of regional non linear processes which are expected to impact these radiatively driven responses.

  20. Plasma Temperature Estimates from EUV Spectroscopy of an Aluminum Rod pulsed with MA Current

    NASA Astrophysics Data System (ADS)

    Fuelling, Stephan; Awe, Tom J.; Bauer, Bruno S.; Lindemuth, Irvin R.; Siemon, Richard E.; Yates, Kevin C.

    2010-11-01

    Plasma formation on the surface of aluminum rods driven by Zebra, a 1 MA, 100 ns rise time driver, resulting in a magnetic field between 1.5 - 4 MG has been studied. Plasma forms when the surface magnetic field reaches about 2.2 MG. This threshold is important for applications in magneto inertial fusion and magnetic insulated transmission lines of pulsed power systems. In particular, we want to understand the behavior of the inner liner surface in liner compression experiments of a field-reversed-configuration plasma performed at Shiva Star, AFRL, Albuquerque, New Mexico. Extreme ultraviolet (EUV) emission spectra from the aluminum surface were compared to PrismSPECT modeled spectra to determine the plasma temperature. In addition, EUV photodiodes with directly deposited filters were used to measure radiated power. For 1 mm diameter aluminum rods the temperature was estimated as >=15 eV which is in agreement with temperature estimates from measurements in the visible and with radiation-MHD modeling.

  1. Estimation of the temperature dependent interaction between uncharged point defects in Si

    SciTech Connect

    Kamiyama, Eiji; Vanhellemont, Jan; Sueoka, Koji

    2015-01-15

    A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V{sub 2} is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects.

  2. Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.

  3. Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Bassam, A.; Santoyo, E.; Andaverde, J.; Hernández, J. A.; Espinoza-Ojeda, O. M.

    2010-09-01

    An artificial neural network (ANN) approach was used to develop a new predictive model for the calculation of static formation temperature (SFT) in geothermal wells. A three-layer ANN architecture was successfully trained using a geothermal borehole database, which contains "statistically normalised" SFT estimates. These estimates were inferred from seven analytical methods commonly used in geothermal industry. Bottom-hole temperature (BHT) measurements and shut-in times were used as main input variables for the ANN training. Transient temperature gradients were used as secondary variables. The Levenberg-Marquardt (LM) learning algorithm, the hyperbolic tangent sigmoid transfer function and the linear transfer function were used for the ANN optimisation. The best training data set was obtained with an ANN architecture composed by five neurons in the hidden layer, which made possible to predict the SFT with a satisfactory efficiency ( R2>0.95). A suitable accuracy of the ANN model was achieved with a percentage error less than ±5%. The SFTs predicted by the ANN model were statistically analyzed and compared with "true" SFTs measured in synthetic experiments and actual BHT logs collected in geothermal boreholes during long shut-in times. These data sets were processed both to validate the new ANN model and to avoid bias. The SFT estimates inferred from the ANN validation process were in good agreement ( R2>0.95) with the "true" SFT data reported for synthetic and field experiments. The results suggest that the new ANN model could be used as a practical tool for the reliable prediction of SFT in geothermal wells using BHT and shut-in time as input data only.

  4. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index

    NASA Astrophysics Data System (ADS)

    Holzman, M. E.; Rivas, R.; Piccolo, M. C.

    2014-05-01

    Soil moisture availability affects rainfed crop yield. Therefore, the development of methods for pre-harvest yield prediction is essential for the food security. A study was carried out to estimate regional crop yield using the Temperature Vegetation Dryness Index (TVDI). Triangular scatters from land surface temperature (LST) and enhanced vegetation index (EVI) space from MODIS (Moderate Resolution Imaging Spectroradiometer) were utilized to obtain TVDI and to estimate soil moisture availability. Then soybean and wheat crops yield was estimated on four agro-climatic zones of Argentine Pampas. TVDI showed a strong correlation with soil moisture measurements, with R2 values ranged from 0.61 to 0.83 and also it was in agreement with spatial pattern of soil moisture. Moreover, results showed that TVDI data can be used effectively to predict crop yield on the Argentine Pampas. Depending on the agro-climatic zone, R2 values ranged from 0.68 to 0.79 for soybean crop and 0.76 to 0.81 for wheat. The RMSE values were 366 and 380 kg ha-1 for soybean and they varied between 300 and 550 kg ha-1 in the case of wheat crop. When expressed as percentages of actual yield, the RMSE values ranged from 12% to 13% for soybean and 14% to 22% for wheat. The bias values indicated that the obtained models underestimated soybean and wheat yield. Accurate crop grain yield forecast using the developed regression models was achieved one to three months before harvest. In many cases the results were better than others obtained using only a vegetation index, showing the aptitude of surface temperature and vegetation index combination to reflect the crop water condition. Finally, the analysis of a wide range of soil moisture availability allowed us to develop a generalized model of crop yield and dryness index relationship which could be applicable in other regions and crops at regional scale.

  5. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  6. Advances in Three-temperature Model, a New Approach to Estimate Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Qiu, G. Y.; Li, C.

    2012-12-01

    Aim of this study was to introduce the progress of three-temperature (3T) model, a new approach to estimate ET. The 3T model includes Eqs. (1) to (3) (Fig.1). Since reference parameters, i.e., Tsd, Tcp, Rn,sd, Rn,cp, Gsd, are unavailable at regional scale, Eqs. (4) to (7) (Fig. 1) were proposed to remotely estimate them. Eqs. (1) to (7) formed 3T-R model. Eqs. (4) and (5) were simplified as Eqs. (8) and (9) (Fig. 1), and the new algorithms formed 3T-S model. The 3T model has been tested in northern China. Validation of the model at 30 m and 1 km scales using ET deduced from Bowen ratio system is shown here. It is concluded that ET retrieved from the 3T model is close to observation, with MAEs ranging from 0.23 to 0.36 mm/d and MAPEs ranging from 8.47% to 14.71% at 30 m scale, whereas MAEs and MAPEs varied from 0.24 to 0.58 mm/d and 17.10% to 24.63% at 1 km scale, respectively. Algorithms for three-temperature (3T) model Comparison of ET between estimated and observed. (Note: ET3T-R and ET3T-S represent ET estimated by the 3T-R model and the 3T-S model, respectively; ETβ is deduced by Bowen ratio system; MAE and MAPE are mean absolute error and mean absolute percent error, respectively. Figs. a, b and c show comparison in Taibus Banner, northern China, and (d) in Shiyanghe River catchment, northwest China. In (a) and (b), ET was retrieved from ETM+ and TM at 30 m scale, respectively. In (c) and (d), ET was retrieved from MODIS L1B data and MODIS products at 1 km scale, respectively.)

  7. Estimations of electron densities and temperatures in He-3 dominated plasmas. [in nuclear pumped lasers

    NASA Technical Reports Server (NTRS)

    Depaola, B. D.; Marcum, S. D.; Wrench, H. K.; Whitten, B. L.; Wells, W. E.

    1979-01-01

    It is very useful to have a method of estimation for electron temperature and electron densities in nuclear pumped plasmas because measurements of such quantities are very difficult. This paper describes a method, based on rate equation analysis of the ionized species in the plasma and the electron energy balance. In addition to the ionized species, certain neutral species must also be calculated. Examples are given for pure helium and a mixture of helium and argon. In the HeAr case, He(+), He2(+), He/2 3S/, Ar(+), Ar2(+), and excited Ar are evaluated.

  8. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  9. Estimating water temperatures in small streams in western Oregon using neural network models

    USGS Publications Warehouse

    Risley, John C.; Roehl, Edwin A., Jr.; Conrads, Paul A.

    2003-01-01

    Artificial neural network models were developed to estimate water temperatures in small streams using data collected at 148 sites throughout western Oregon from June to September 1999. The sites were located on 1st-, 2nd-, or 3rd-order streams having undisturbed or minimally disturbed conditions. Data collected at each site for model development included continuous hourly water temperature and description of riparian habitat. Additional data pertaining to the landscape characteristics of the basins upstream of the sites were assembled using geographic information system (GIS) techniques. Hourly meteorological time series data collected at 25 locations within the study region also were assembled. Clustering analysis was used to partition 142 sites into 3 groups. Separate models were developed for each group. The riparian habitat, basin characteristic, and meteorological time series data were independent variables and water temperature time series were dependent variables to the models, respectively. Approximately one-third of the data vectors were used for model training, and the remaining two-thirds were used for model testing. Critical input variables included riparian shade, site elevation, and percentage of forested area of the basin. Coefficient of determination and root mean square error for the models ranged from 0.88 to 0.99 and 0.05 to 0.59 oC, respectively. The models also were tested and validated using temperature time series, habitat, and basin landscape data from 6 sites that were separate from the 142 sites that were used to develop the models. The models are capable of estimating water temperatures at locations along 1st-, 2nd-, and 3rd-order streams in western Oregon. The model user must assemble riparian habitat and basin landscape characteristics data for a site of interest. These data, in addition to meteorological data, are model inputs. Output from the models include simulated hourly water temperatures for the June to September period

  10. Estimation and Attribution of the Temperature Variances in Height Range 60~140 km

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The SABER/TIMED temperatures collected during 2002 2006 are used to estimate for height range 60 120 km the variances of temperature (Temp-VARs) that are contributed from nonstationary perturbations. The estimation results disclose that the height range 60 140 km can be separated into two regions that are characterized by significant differences of the attributions of the Temp-VARs. In the region below 100 km height, the Temp-VARs generally increase with height, the corresponding standard deviations of temperature (Temp-SDEVs) ranges from 4 K at 60 km and 18 K at 100 km. The regions exhibiting intense Temp-VARs appear at the equator and the extra-tropics of both hemispheres. Moreover, these non-stationary temperature disturbances can be accounted primarily by the tidal variances that are derived independently by using the same data-set, in particular by the migrating diurnal, semidiurnal, and terdiurnal tide. It is also found that the region above 100 km is characterized by surprisingly large Temp-VARs with the corresponding Temp-SDEVs greater than 30 K. In a height-latitude cross-section, a stagnant maximum of Temp-SDEVs embraced by the 30-K contour remains over the course of a year at the Equator in a narrow height range 110 125 km. At the same height in Southern hemisphere, the same kind maxima appears at latitudes from the extra-tropics to polar region except during the June solstice. In contrast, the maxima appearing in Northern hemisphere high latitudes exhibits intra-seasonal variations, there such maximum are seen during the course of a year. Further investigation results confirm that the large Temp-VARs have no relevance to the tidal variances, implying the control from other processes, e.g., non-stationary planetary waves. The details will be introduced in the presentation.

  11. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  12. Spatial scales of temperature and salinity variability estimated from Argo observations

    NASA Astrophysics Data System (ADS)

    Ninove, F.; Le Traon, P.-Y.; Remy, E.; Guinehut, S.

    2016-01-01

    Argo observations from 2005 to 2013 are used to characterize spatial scales of temperature and salinity variations from the surface down to 1300 m. Simulations are first performed to analyze the sensitivity of results to Argo sampling; they show that several years of Argo observations are required to estimate spatial scales of ocean variability over 20° × 20° boxes. Spatial scales are then computed over several large-scale areas. Zonal and meridional spatial scales (Lx and Ly which are zero crossing of covariance functions) vary as expected with latitudes. Scales are of about 100 km at high latitudes and more of 700 km in the Indian and Pacific equatorial-tropical regions. Zonal and meridional scales are similar except in tropical-equatorial regions where zonal scales are much larger (by a factor of 2 to 3) than meridional scales. Spatial scales are the largest close to the surface and have a general tendency for temperature to increase in deeper layers. There are significant differences between temperature and salinity scales, in particular, in the deep ocean. Results are consistent with previous studies based on sparse in situ observations or satellite altimetry. They provide, however, for the first time a global description of temperature and salinity scales of variability and a characterization of their variations according to depths.

  13. Mantle potential temperature estimates of basalt from the surface of Venus

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. Gregory

    2016-10-01

    The crater density and distribution of Venus indicates the average surface age is younger (≤1 Ga) than most terrestrial planets and satellites in the Solar System. The type and rate (i.e. equilibrium, catastrophic or differential) of volcanism associated with the stagnant lid tectonic system of Venus is a first order problem that has yet to be resolved but is directly related to the thermal conditions of the mantle. The calculated primary melt composition of basalt at the Venera 14 landing site is high-Mg basalt to picrite with a mantle potential temperature estimate similar to terrestrial ambient mantle (1370 ± 70 °C). The calculated accumulated fractional melting curves indicate the olivine compositions from the melt have Mg# of 89-91. The results show that the thermal regime required to generate the primary melt composition of the Venera 14 basalt was not anomalously high (i.e. mantle-plume system) but rather consistent with a lithospheric tensional rift system. The juxtaposition of high thermal regime structures (e.g. Beta Regio) and 'ambient' mantle potential temperature estimates of the Venera 14 basalt suggests that the relatively young surface of Venus is the result of volcanism from a combination of thermal systems that resurfaced the planet at variable rates.

  14. Shallow subsurface temperatures and some estimates of heat flow from the Colorado Plateau of northeastern Arizona

    SciTech Connect

    Sass, J.H.; Stone, C.; Bills, D.J.

    1982-01-01

    Temperature data to depths of a few hundred meters were obtained from 29 wells in northeastern Arizona; 12 in the region surrounding the San Francisco Volcanic Field, 8 in the Black Mesa area, and 9 in the south-central Colorado Plateau which includes the White Mountains. Although there was evidence for local hydrologic disturbances in many temperature profiles, most wells provided an estimate of the conductive thermal gradient at the site. A few thermal conductivities were measured and were combined with published regional averages for the north-central part of the Colorado Plateau to produce crude estimates of regional heat flux. None of the wells was accessible below the regional aquifers. To these depths, heat flow in the area of the San Francisco Volcanic Field appears to be controlled primarily by regional lateral water movement having a significant downward vertical component of velocity. The mean heat flow of 27 +- 5 mWm/sup -2/ is only a third to a quarter of what we would expect in this tectonic setting. The heat that is being carried laterally and downward probably is being discharged at low enthalpy and low elevation in springs and streams of the Colorado Plateau and Mogollon Rim. In the vicinity of Black Mesa, heat-flow averages about 60 mWm/sup -2/, characteristics of the coal interior of the Colorado Plateau. North of the White Mountain Volcanic Field, the average heat flow is about 95 mWm/sup -2/.

  15. Predicting cement distribution in geothermal sandstone reservoirs based on estimates of precipitation temperatures

    NASA Astrophysics Data System (ADS)

    Olivarius, Mette; Weibel, Rikke; Whitehouse, Martin; Kristensen, Lars; Hjuler, Morten L.; Mathiesen, Anders; Boyce, Adrian J.; Nielsen, Lars H.

    2016-04-01

    Exploitation of geothermal sandstone reservoirs is challenged by pore-cementing minerals since they reduce the fluid flow through the sandstones. Geothermal exploration aims at finding sandstone bodies located at depths that are adequate for sufficiently warm water to be extracted, but without being too cemented for warm water production. The amount of cement is highly variable in the Danish geothermal reservoirs which mainly comprise the Bunter Sandstone, Skagerrak and Gassum formations. The present study involves bulk and in situ stable isotope analyses of calcite, dolomite, ankerite, siderite and quartz in order to estimate at what depth they were formed and enable prediction of where they can be found. The δ18O values measured in the carbonate minerals and quartz overgrowths are related to depth since they are a result of the temperatures of the pore fluid. Thus the values indicate the precipitation temperatures and they fit the relative diagenetic timing identified by petrographical observations. The sandstones deposited during arid climatic conditions contain calcite and dolomite cement that formed during early diagenesis. These carbonate minerals precipitated as a response to different processes, and precipitation of macro-quartz took over at deeper burial. Siderite was the first carbonate mineral that formed in the sandstones that were deposited in a humid climate. Calcite began precipitating at increased burial depth and ankerite formed during deep burial and replaced some of the other phases. Ankerite and quartz formed in the same temperature interval so constrains on the isotopic composition of the pore fluid can be achieved. Differences in δ13C values exist between the sandstones that were deposited in arid versus humid environments, which suggest that different kinds of processes were active. The estimated precipitation temperatures of the different cement types are used to predict which of them are present in geothermal sandstone reservoirs in

  16. Estimation and Attribution of the Temperature Variances in the Stratosphere using Satellite Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The SABER/TIMED temperatures collected during 2002 to 2006 are used to estimate the variances of temperature (Temp-VARs) that are contributed from non-stationary perturbations in the stratospheric portion (20 60 km height range), and the attributions of the Temp-VARs are analyzed. The current estimation results disclose that the temperature variances induced by tidal components, in particular the migrating diurnal and semi-diurnal tide, can account for significant amount of the Temp-VARs. The Temp-VARs are estimated for every 60-day period when the major hemispheres are the same for each sounding day, i.e., the soundings can reach 87 degree latitude for the same hemisphere all the days. In each of the one-year course among the years from 2002 to 2006, there are six such kind 60-day periods that are repeatedly centered on DOY 46, DOY 109, DOY 169, DOY 231, DOY 293 and DOY 352. Following the season of the northern hemisphere, they are referred to as late-winter, spring, mid-summer, late-summer, autumn, and mid-winter, respectively. During one year course, significant Temp-VARs are only seen in the extra-tropical latitudes for both hemispheres, which attain 8 K in term of the standard deviations of temperature (T-SDEVs). Across the two tropics and the equator, a quiescent slab is located at 20 km height where the T-SDEVs reach a minimum, less than 1.5 K. Above the slab, the T-SDEVs increases monotonically and slowly with height, but less than 4 K for most of the seasons. In the mid-summer, the slab extends to the mid-latitudes of the mid-summer hemisphere, then, large T-SDEVs greater than 4 K can only be seen in the extratropics of the opposite hemisphere. Tidal signals are extracted independently from each of the 60-day data by using the conventional procedures. The migrating diurnal and semidiurnal tides are considered of most important, which can account for significant amount of the T-VARs. It is surprisingly found that during the spring time, the contribution

  17. Accurate estimation of sea surface temperatures using dissolution-corrected calibrations for Mg/Ca paleothermometry

    NASA Astrophysics Data System (ADS)

    Rosenthal, Yair; Lohmann, George P.

    2002-09-01

    Paired δ18O and Mg/Ca measurements on the same foraminiferal shells offer the ability to independently estimate sea surface temperature (SST) changes and assess their temporal relationship to the growth and decay of continental ice sheets. The accuracy of this method is confounded, however, by the absence of a quantitative method to correct Mg/Ca records for alteration by dissolution. Here we describe dissolution-corrected calibrations for Mg/Ca-paleothermometry in which the preexponent constant is a function of size-normalized shell weight: (1) for G. ruber (212-300 μm) (Mg/Ca)ruber = (0.025 wt + 0.11) e0.095T and (b) for G. sacculifer (355-425 μm) (Mg/Ca)sacc = (0.0032 wt + 0.181) e0.095T. The new calibrations improve the accuracy of SST estimates and are globally applicable. With this correction, eastern equatorial Atlantic SST during the Last Glacial Maximum is estimated to be 2.9° ± 0.4°C colder than today.

  18. A Method to Estimate the Optimum Temperature for the Cryo-Shattering Separation Using a Charpy Impact Tester

    NASA Astrophysics Data System (ADS)

    Hagura, Yoshio; Watanabe, Hisahiko

    A cryo-shattering separation is a recently developed separation method which is applied to collect low-fat meat from fatty fish. This separation method needs to be operated at the optimum temperature for the cryo-shattering. Determining on optimum temperature needs much works and costs. In this study,an easy method to estimate the optimum temperature for cryo-shattering was proposed using a Charpy impact tester. Four kinds of characteristic temperatures observed through impact tests were used to construct a fracture-temperature-map. By use of the map,the optimum temperature for cryo-shattering was obtained without shattering/sieving experiments.

  19. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Precision estimation in temperature and refractivity profiles retrieved by GPS radio occultations

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Torre, A.; Llamedo, P.; Hierro, R.

    2014-07-01

    The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six-satellite Global Positioning System (GPS) radio occultation (RO) mission that started in April 2006. The close proximity of these satellites during some months after launch provided a unique opportunity to evaluate the precision of GPS RO temperature and refractivity profile retrievals in the neutral atmosphere from nearly collocated and simultaneous observations. In order to work with nearly homogeneous sets, data are divided into five groups according to latitude bands during 20 days of July. For all latitude bands and variables, the best precision values (about 0.1%) are found somewhere between 8 and 25 km height. In general, we find that precision degrades significantly with height above 30 km and its performance becomes there worse than 1%. Temperature precision assessment has been generally excluded in previous studies. Refractivity has here, in general, a precision similar to dry temperature but worse than wet temperature in the lower atmosphere and above 30 km. However, it has been shown that the better performance of wet temperature is an artificial effect produced by the use of the same background information in nearly collocated wet retrievals. Performance in refractivity around 1% is found in the Northern Hemisphere at the lowest heights and significantly worse in the southern polar zone above 30 km. There is no strong dependence of the estimated precision in terms of height on day and night, on latitude, on season, or on the homogeneity degree of each group of profiles. This reinforces the usual claim that GPS RO precision is independent of the atmospheric conditions. The roughly 0.1% precision in the 8-25 km height interval should suffice to distinguish between day and night average values, but no significant differences are found through a Student t test for both populations at all heights in each latitude band. It was then shown that the present spatial

  1. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures

    NASA Astrophysics Data System (ADS)

    Colaizzi, Paul D.; Kustas, William P.; Anderson, Martha C.; Agam, Nurit; Tolk, Judy A.; Evett, Steven R.; Howell, Terry A.; Gowda, Prasanna H.; O'Shaughnessy, Susan A.

    2012-12-01

    The two source energy balance model (TSEB) can estimate evaporation (E), transpiration (T), and evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSEB requires soil (TS) and canopy (TC) surface temperatures to solve the energy budgets of these layers separately. Operationally, usually only composite surface temperature (TR) measurements are available at a single view angle. For surfaces with nonrandom spatial distribution of vegetation such as row crops, TR often includes both soil and vegetation, which may have vastly different temperatures. Therefore, TS and TC must be derived from a single TR measurement using simple linear mixing, where an initial estimate of TC is calculated, and the temperature - resistance network is solved iteratively until energy balance closure is reached. Two versions of the TSEB were evaluated, where a single TR measurement was used (TSEB-TR) and separate measurements of TS and TC were used (TSEB-TC-TS). All surface temperatures (TS, TC, and TR) were measured by stationary infrared thermometers that viewed an irrigated cotton (Gossypium hirsutum L.) crop. The TSEB-TR version used a Penman-Monteith approximation for TC, rather than the Priestley-Taylor-based formulation used in the original TSEB version, because this has been found to result in more accurate partitioning of E and T under conditions of strong advection. Calculations of E, T, and ET by both model versions were compared with measurements using microlysimeters, sap flow gauges, and large monolythic weighing lysimeters, respectively. The TSEB-TR version resulted in similar overall agreement with the TSEB-TC-TS version for calculated and measured E (RMSE = 0.7 mm d-1) and better overall agreement for T (RMSE = 0.9 vs. 1.9 mm d-1), and ET (RMSE = 0.6 vs. 1.1 mm d-1). The TSEB-TC-TS version calculated daily ET up to 1.6 mm d-1 (15%) less early in the season and up to 2.0 mm d-1 (44%) greater

  2. Effects of measurement resolution on the analysis of temperature time series for stream-aquifer flux estimation

    NASA Astrophysics Data System (ADS)

    Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.

    2011-12-01

    From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical fluxes has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of measurement and parameter uncertainty on the estimates of vertical fluxes. To date, the effects of temperature measurement discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical fluxes has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature measurement resolution on estimates of vertical fluxes using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical fluxes. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature measurements, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature measurements are used to infer vertical fluxes. The errors associated with measurement resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their measurement needs.

  3. Estimation of Temperature Conductivity Coefficient Impact upon Fatigue Damage of Material

    NASA Astrophysics Data System (ADS)

    Bibik, V.; Galeeva, A.

    2015-09-01

    In the paper we consider the peculiarities of adhesive wear of cutting tools. Simulation of heat flows in the cutting zone showed that, as thermal conduction and heat conductivity of tool material grow, the heat flows from the front and back surfaces to tool holder will increase and so, the temperature of the contact areas of the tool will lower. When estimating the adhesive wear rate of cemented-carbide tool under the cutting rates corresponding to the cutting temperature of up to 900 °C, it is necessary to take the fatigue character of adhesive wear into consideration. The process of accumulation and development of fatigue damage is associated with micro- and macroplastic flowing of material, which is determined by the processes of initiation, motion, generation, and elimination of line defects - dislocations. Density of dislocations grows with increase of the loading cycles amount and increase of load amplitude. Growth of dislocations density leads to loosening of material, formation of micro- and macrocracks. The heat capacity of material grows as the loosening continues. In the given paper the authors prove theoretically that temperature conductivity coefficient which is associated with heat capacity of material, decreases as fatigue wear grows.

  4. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  5. Estimated errors in a global gravity wave climatology from GPS radio occultation temperature profiles

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Llamedo, P.; Alexander, P.; Schmidt, T.; Wickert, J.

    2010-07-01

    In a previous paper by Schmidt et al. (2008), from CHAllenging Minisatellite Payload (CHAMP) Global Positioning System (GPS) radio occultation data, a comparison was made between a Gaussian filter applied to the "complete" temperature profile and to its "separate" tropospheric and stratospheric height intervals, for gravity wave analyses. It was found that the separate filtering method considerably reduces a wave activity artificial enhancement near the tropopause, presumably due to the isolation process of the wave component. We now propose a simple approach to estimate the uncertainty in the calculation of the mean specific wave potential energy content, due exclusively to the filtering process of vertical temperature profiles, independently of the experimental origin of the data. The approach is developed through a statistical simulation, built up from the superposition of synthetic wave perturbations. These are adjusted by a recent gravity wave (GW) climatology and temperature profiles from reanalyses. A systematic overestimation of the mean specific wave potential energy content is detected and its variability with latitude, altitude, season and averaging height interval is highlighted.

  6. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    NASA Astrophysics Data System (ADS)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  7. Soil moisture deficit estimation using satellite multi-angle brightness temperature

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei; Dai, Qiang

    2016-08-01

    Accurate soil moisture information is critically important for hydrological modelling. Although remote sensing soil moisture measurement has become an important data source, it cannot be used directly in hydrological modelling. A novel study based on nonlinear techniques (a local linear regression (LLR) and two feedforward artificial neural networks (ANNs)) is carried out to estimate soil moisture deficit (SMD), using the Soil Moisture and Ocean Salinity (SMOS) multi-angle brightness temperatures (Tbs) with both horizontal (H) and vertical (V) polarisations. The gamma test is used for the first time to determine the optimum number of Tbs required to construct a reliable smooth model for SMD estimation, and the relationship between model input and output is achieved through error variance estimation. The simulated SMD time series in the study area is from the Xinanjiang hydrological model. The results have shown that LLR model is better at capturing the interrelations between SMD and Tbs than ANNs, with outstanding statistical performances obtained during both training (NSE = 0.88, r = 0.94, RMSE = 0.008 m) and testing phases (NSE = 0.85, r = 0.93, RMSE = 0.009 m). Nevertheless, both ANN training algorithms (radial BFGS and conjugate gradient) have performed well in estimating the SMD data and showed excellent performances compared with those derived directly from the SMOS soil moisture products. This study has also demonstrated the informative capability of the gamma test in the input data selection for model development. These results provide interesting perspectives for data-assimilation in flood-forecasting.

  8. Estimation of Daily Reference Evapotranspiration using Temperature Based Models and Remotely Sensed Data over Indian River Basin

    NASA Astrophysics Data System (ADS)

    R, Shwetha H.; D, Nagesh Kumar

    2015-04-01

    Reference evapotranspiration (ETo) is the most significant component of the hydrological budget. Accurate quantification of ETo is vital for proper water management, efficient agricultural activities, irrigation planning and irrigation scheduling. FAO Penman Montieth (FAO-PM) is the widely accepted and used method for the ETo estimation under all climatic conditions, but needs numerous inputs which are difficult to acquire in developing countries. In such conditions, temperature based models such as Hargreaves-Samani (HS) equation and Penman Montieth temperature (PMT) can be used, where only maximum and minimum temperatures are required. Spatial interpolation of meteorological parameters to calculate spatial variation of ETo results in inaccurate estimations at lowly densed weather stations. Hence, there is a necessity of simple and easy method to estimate spatial distribution of ETo. In this regard, remotely sensed data provides viable alternative approach to obtain continuous spatio-temporal ETo. In this study, we used temperature based ETo models with remotely sensed LST data to estimate spatio-temporal variation of ETo. Day and night LST (MYD11A1) data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS sensor of Aqua satellite. Firstly, day and night land surface temperatures (LST) with HS and PMT methods were applied to estimate ETo. Secondly, maximum and minimum air temperatures were estimated from day and night LST respectively using simple linear regression and these air temperature data were used to estimate ETo. Estimated results were validated with the ETo calculated using meteorological data obtained from Automatic Weather Stations (AWS) by applying standard FAO-PM. The preliminary results revealed that, HS method with LST overestimated ETo in the study region. Statistical analysis showed PMT method with both LST and air temperatures performed better than the HS method. These two temperature based methods are often used for

  9. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  10. Star formation in unperturbed LIRGs

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, I.; Olguín, L.; Ambrocio-Cruz, P.; Verley, S.; Rosado, M.; Verdes-Montenegro, L.; Repetto, P.; Vázquez, C.; Aguilera, V.

    2011-10-01

    Luminous infrared galaxies (LIRGs) are galaxies with L_{FIR} > 10^11 L_{sun} (Sanders & Mirabel 1996). For a star-forming galaxy to emit at a LIRG level, it must have a very high star formation rate (SFR). In the local Universe, the star formation (SF) is primarily triggered by interactions. However, at intermediate redshift, a large fraction of LIRGs are disk galaxies with little sign of recent merger activity (Zheng et al. 2004). The question arises whether the intermediate redshift LIRGs are ``triggered'' or experiencing ``normal'', if elevated, SF. Understanding these SF processes is important since this type of systems may have contributed to 20% or more of the cosmic star-formation rate in the early Universe (Blain & Phillips 2002).

  11. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    NASA Astrophysics Data System (ADS)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  12. The reliability of emplacement temperature estimates using palaeomagnetic methods: a case study from Santorini, Greece

    NASA Astrophysics Data System (ADS)

    Bardot, Leon; McClelland, Elizabeth

    2000-10-01

    The mode of origin of volcaniclastic deposits can be difficult to determine from field constraints, and the palaeomagnetic technique of emplacement temperature (Te) determination provides a powerful discriminatory test for primary volcanic origin. This technique requires that the low-blocking-temperature (Tb) component of remanence in the direction of the Earth's field in inherited lithic clasts is of thermal origin and was acquired during transport and cooling in a hot pyroclastic flow; otherwise, the Te determination may be inaccurate. If the low-Tb component is not of thermal origin it may be a viscous remanent magnetization (VRM) or a chemical remanent magnetization (CRM). The acquisition of a VRM depends on the duration of exposure to an applied magnetic field, and thus the laboratory unblocking temperature (Tub) of a VRM of a certain age imposes a minimum Te that can be determined for that deposit. Palaeointensity experiments were carried out to assess the magnetic origin (pTRM, CRM, or a combination of both) of the low-Tb component in a number of samples from pyroclastic deposits from Santorini, Greece. Seven of the 24 samples used in these experiments passed the stringent tests for reliable palaointensity determination. These values demonstrated, for six of the samples, that the low-Tb component was of thermal origin and therefore that the estimate of Te was valid. In the other 17 samples, valuable information was gained about the characteristics of the magnetic alteration that occurred during the palaeointensity experiments, allowing assessment of the reliability of Te estimates in these cases. These cases showed that if a CRM is present it has a direction parallel to the applied field, and not parallel to the direction of the parent grain. They also show that, even if a CRM is present, it does not necessarily affect the estimate of Te. Two samples used in these experiments displayed curvature between their two components of magnetization. Data from this

  13. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2015-05-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties along the entire causal chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty in the economic data appears to have a relatively small impact on uncertainty at the national level in comparison to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production-based emissions since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top

  14. Parameter Measurement and Estimation at Variable Scales: Example of Soil Temperature in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.

    2015-12-01

    The issue of matching measurement scale to application scale is long standing and frequently revisited with advances in instrumentation and computing power. In the past we have emphasized the importance of understanding the dominant processes and amount and nature of parameter variability when addressing these issues. Landscape-scale distribution of carbon and carbon fluxes is a primary focus of the Reynolds Creek Critical Zone Observatory (RC CZO). Soil temperature (Ts) is a critical parameter of generally unknown variability. Estimates of Ts are often based on air temperature (Ta), but it is understood that other factors control Ts, especially in complex terrain, where solar radiation may be a major driver. Data were collected at the Reynolds Creek Experimental Watershed (RCEW), which is 240 km2 in extent and covers a 1000 m elevation range. We used spatially extensive Ts data to evaluate correlations with Ta (915 m elevation gradient) on aspect neutral sites with similar vegetative cover. Effects of complex terrain were evaluated using a combination of fixed point measurements, fiber optic distributed temperature sensing and periodic, spatially distributed point measurements. We found that Ts over the elevation gradient followed Ta closely. However, within small subwatersheds with uniform Ta, Ts may be extremely variable, with a standard deviation of 8° C. This was strongly related to topographically associated land surface units (LSU's) and highly seasonal. Within LSU variability was generally low while there were seasonally significant differences between LSU's. The mean annual soil temperature difference between LSU's was greater than that associated with the 915 m elevation gradient. The seasonality of Ts variability was not directly related to solar radiation effects but rather to variations in cover. Scaling Ts requires high resolution accounting of topography in this environment. Spatial patterns of soil carbon at the RCEW are consistent with this.

  15. Frictional Temperature of Chelungpu Seismic Faulting Estimated from the Taiwan Chelungpu-fault Drilling Project (TCDP)

    NASA Astrophysics Data System (ADS)

    Song, S.; Kuo, L.; Chou, Y.

    2012-12-01

    Two holes, named Hole-A and Hole-B with the depths of 2,003 m and 1,350 m, respectively, were raised by the Taiwan Chelungpu-fault Drilling Project (TCDP) which recovered continuous fresh core samples across the rupture zone of the 1999 Chi-Chi earthquake (Mw7.6). To investigate the coseismic frictional temperature in seismogenic fault zones, we examine the characteristics of core materials including clay, carbonate and magnetic minerals and carbonaceous materials with optical, SEM, TEM and TXM for mineral identifications, and chemical analyses by ICP-MS for geochemical modeling in the Chelungpu-fault zones. The primary slip zone (PSZ), characterized by the isotropic layer in black gouge of those two holes can be recognized at the depth around 1,111 m and 1,136 m with ~20 mm and ~3 mm in thickness, respectively. For the Hole-A, the frictional temperature was calculated from the clay mineral assemblages of FZ1111, which show evidence of melting, and the temperature in a ~2 cm band within the black gouge zone is estimated to be from 900 °C to 1100 °C by comparing the SEM images of in situ natural samples with those of heated materials, and the finding of no recrystallization of kaolinite-amorphous aluminosilicates-spinel in the fault samples. For the Hole-B, the frictional temperature in the FZ1136 was calculated as 400 °C to 900 °C, based on the magnetic mineral variations, de-carbonation of calcite, clay mineral assemblages, and geochemical modeling on trace element variations.

  16. Using Annual Data to Estimate the Public Health Impact of Extreme Temperatures.

    PubMed

    Goggins, William B; Yang, Chunyuh; Hokama, Tomiko; Law, Lewis S K; Chan, Emily Y Y

    2015-07-01

    Short-term associations between both hot and cold ambient temperatures and higher mortality have been found worldwide. Few studies have examined these associations on longer time scales. Age-standardized mortality rates (ASMRs) were calculated for 1976-2012 for Hong Kong SAR, People's Republic of China, defining "annual" time periods in 2 ways: from May through April of the following year and from November through October. Annual frequency and severity of extreme temperatures were summarized by using a degree-days approach with extreme heat expressed as annual degree-days >29.3°C and cold as annual degree-days <27.5°C. For example, a day with a mean temperature of 25.0°C contributes 2.5 cold degree-days to the annual total. Generalized additive models were used to estimate the association between annual hot and cold degree-days and the ASMR, with adjustment for long-term trends. Increases of 10 hot or 200 cold degree-days in an annual period, the approximate interquartile ranges for these variables, were significantly (all P's ≤ 0.011) associated with 1.9% or 3.1% increases, respectively, in the annual ASMR for the May-April analyses and with 2.2% or 2.8% increases, respectively, in the November-October analyses. Associations were stronger for noncancer and elderly mortality. Mortality increases associated with extreme temperature are not simply due to short-term forward displacement of deaths that would have occurred anyway within a few weeks. PMID:26009315

  17. Responding to bioterror concerns by increasing milk pasteurization temperature would increase estimated annual deaths from listeriosis.

    PubMed

    Stasiewicz, Matthew J; Martin, Nicole; Laue, Shelley; Gröhn, Yrjo T; Boor, Kathryn J; Wiedmann, Martin

    2014-05-01

    In a 2005 analysis of a potential bioterror attack on the food supply involving a botulinum toxin release into the milk supply, the authors recommended adopting a toxin inactivation step during milk processing. In response, some dairy processors increased the times and temperatures of pasteurization well above the legal minimum for high temperature, short time pasteurization (72 °C for 15 s), with unknown implications for public health. The present study was conducted to determine whether an increase in high temperature, short time pasteurization temperature would affect the growth of Listeria monocytogenes, a potentially lethal foodborne pathogen normally eliminated with proper pasteurization but of concern when milk is contaminated postpasteurization. L. monocytogenes growth during refrigerated storage was higher in milk pasteurized at 82 °C than in milk pasteurized at 72 °C. Specifically, the time lag before exponential growth was decreased and the maximum population density was increased. The public health impact of this change in pasteurization was evaluated using a quantitative microbial risk assessment of deaths from listeriosis attributable to consumption of pasteurized fluid milk that was contaminated postprocessing. Conservative estimates of the effect of pasteurizing all fluid milk at 82 °C rather than 72 °C are that annual listeriosis deaths from consumption of this milk would increase from 18 to 670, a 38-fold increase (8.7- to 96-fold increase, 5th and 95th percentiles). These results exemplify a situation in which response to a rare bioterror threat may have the unintended consequence of putting the public at increased risk of a known, yet severe harm and illustrate the need for a paradigm shift toward multioutcome risk benefit analyses when proposing changes to established food safety practices. PMID:24780323

  18. Time-Resolved Laser-Induced Fluorescence Measurements of Ion Velocity Distribution in the Plume of a 6 kW Hall Thruster with Unperturbed Discharge Oscillations

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2014-10-01

    We present laser-induced fluorescence (LIF) measurements of the time-resolved ion velocity distribution in the plume of a 6 kW laboratory Hall thruster. To our knowledge, these are the first measurements of time-resolved ion velocity distribution on completely unperturbed Hall thruster operating conditions. To date, time-resolved LIF measurements have been made on Hall thrusters with oscillations driven or perturbed to be amenable to averaging techniques that assume a periodic oscillation. Natural Hall thruster breathing and spoke oscillations, however, are not periodic due to chaotic variations in amplitude and frequency. Although the system averages over many periods of nonperiodic oscillation, it recovers the time-resolved signal in part by assuming that a constant transfer function exists relating discharge current and LIF signal and averaging over the transfer function itself (http://dx.doi.org/10.1063/1.4856635). The assumption of a constant transfer function has been validated for a Hall thruster and the technique is now applied to a Hall thruster for the first time.

  19. Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperatures using a particle batch smoother

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Giesen, Nick van de

    2016-05-01

    This study investigates the potential of estimating the soil moisture profile and the soil thermal and hydraulic properties by assimilating soil temperature at shallow depths using a particle batch smoother (PBS) using synthetic tests. Soil hydraulic properties influence the redistribution of soil moisture within the soil profile. Soil moisture, in turn, influences the soil thermal properties and surface energy balance through evaporation, and hence the soil heat transfer. Synthetic experiments were used to test the hypothesis that assimilating soil temperature observations could lead to improved estimates of soil hydraulic properties. We also compared different data assimilation strategies to investigate the added value of jointly estimating soil thermal and hydraulic properties in soil moisture profile estimation. Results show that both soil thermal and hydraulic properties can be estimated using shallow soil temperatures. Jointly updating soil hydraulic properties and soil states yields robust and accurate soil moisture estimates. Further improvement is observed when soil thermal properties were also estimated together with the soil hydraulic properties and soil states. Finally, we show that the inclusion of a tuning factor to prevent rapid fluctuations of parameter estimation, yields improved soil moisture, temperature, and thermal and hydraulic properties.

  20. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  1. POWER ASYMMETRY IN WMAP AND PLANCK TEMPERATURE SKY MAPS AS MEASURED BY A LOCAL VARIANCE ESTIMATOR

    SciTech Connect

    Akrami, Y.; Fantaye, Y.; Eriksen, H. K.; Hansen, F. K.; Shafieloo, A.; Banday, A. J.; Górski, K. M. E-mail: y.t.fantaye@astro.uio.no

    2014-04-01

    We revisit the question of hemispherical power asymmetry in the WMAP and Planck temperature sky maps by measuring the local variance over the sky and on disks of various sizes. For the 2013 Planck sky map we find that none of the 1000 available isotropic Planck ''Full Focal Plane'' simulations have a larger variance asymmetry than that estimated from the data, suggesting the presence of an anisotropic signature formally significant at least at the 3.3σ level. For the WMAP 9 year data we find that 5 out of 1000 simulations have a larger asymmetry. The preferred direction for the asymmetry from the Planck data is (l, b) = (212°, –13°), in good agreement with previous reports of the same hemispherical power asymmetry.

  2. Estimating the Sensitivity of Regional Dust Sources to Sea Surface Temperature Anomaly Patterns

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.

    2014-12-01

    Mineral aerosols are an increasingly important component of the climate system that affect the radiative budget, nutrient cycles, and human environments. Dust emissions are largely controlled by regional climate factors such as atmospheric stability, precipitation, soil moisture, and vegetation. Regional climates, particularly within the tropics, are affected by teleconnections excited by sea surface temperatures. We therefore explore the impact of sea surface temperature (SST) anomaly patterns on local climates in major dust source regions (including southern Africa, the Arabian Desert, the Lake Eyre basin, and three others in North Africa) to help understand variability in the global dust cycle. We investigate the sensitivity of regional climate variables impacting mineral aerosol emissions to global SST anomaly patterns by estimating the global teleconnection operator (GTO), which relates regional climate responses to SST anomaly patterns. We estimate the GTO using the NCAR Community Atmosphere Model version 5.0 (CAM5.0) forced by an ensemble of randomly perturbed climatological SST fields. Variability in dust emissions are connected to SST anomaly patterns in the tropical oceans, particularly in the Indian and western Pacific Oceans. Teleconnections excited by remote SST anomalies typically modify dust emissions via near-surface circulation changes that impact friction velocity. However, the impact of SST-driven changes on threshold friction velocity can be on the same order of magnitude as those of friction velocity, suggesting the impact of SST anomalies on surface conditions are also significant. We reconstruct historical climates using the GTO and compare the results to a non-linear model and observations to assess the GTO capabilities and to identify ocean basins with the strongest influence on major dust source regions. Recognizing SST anomaly patterns as a component of internal variability in regional dust emissions helps characterize the impact of human

  3. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles. PMID:24258878

  4. Estimating Temperature-Mortality Exposure-Response Relationships and Optimum Ambient Temperature at the Multi-City Level of China

    PubMed Central

    Zeng, Qiang; Li, Guoxing; Cui, Yushan; Jiang, Guohong; Pan, Xiaochuan

    2016-01-01

    Few studies have explored temperature–mortality relationships in China, especially at the multi-large city level. This study was based on the data of seven typical, large Chinese cities to examine temperature-mortality relationships and optimum temperature of China. A generalized additive model (GAM) was applied to analyze the acute-effect of temperature on non-accidental mortality, and meta-analysis was used to merge data. Furthermore, the lagged effects of temperature up to 40 days on mortality and optimum temperature were analyzed using the distributed lag non-linear model (DLNM). We found that for all non-accidental mortality, high temperature could significantly increase the excess risk (ER) of death by 0.33% (95% confidence interval: 0.11%, 0.56%) with the temperature increase of 1 °C. Similar but non-significant ER of death was observed when temperature decreased. The lagged effect of temperature showed that the relative risk of non-accidental mortality was lowest at 21 °C. Our research suggests that high temperatures are more likely to cause an acute increase in mortality. There was a lagged effect of temperature on mortality, with an optimum temperature of 21 °C. Our results could provide a theoretical basis for climate-related public health policy. PMID:26950139

  5. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  6. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  7. Last interglacial sea-surface temperature estimates from the California margin; improvements to the modern analog technique

    USGS Publications Warehouse

    Dowsett, Harry J.; Poore, Richard Z.

    1999-01-01

    Total faunal analyses of planktic foraminifer assemblages are used to derive sea surface temperature estimates for the last interglacial from Ocean Drilling Program Sites 1018 and 1020 off northern and central California. Foraminifer assemblage data were transformed to sea-surface temperature (SST) estimates by using the modern analog technique (MAT). In order to improve our ability to estimate SST in this area, the coretop calibration data base used in the MAT was augmented by 13 new age-validated coretop assemblages from the U.S. Pacific Margin.

  8. Estimating the Ocean Flow Field From Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2000-01-01

    The primary focus of this project was on the estimation of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. This effort is directly related to an attempt to describe the mechanisms which give rise to observed SST and its variability on seasonal and inter-annual timescales, its relation to ocean-atmosphere interaction, and the dynamical coupling between the ocean mixed layer and the deep interior ocean. This is one of the fundamental climate related questions being pursued currently under the CLIVAR Program. Because of the strong turbulent mixing associated with atmospheric fluxes of momentum, heat and freshwater through the sea surface, the ocean forms a shallow surface boundary layer, the mixed layer which is largely homogeneous in its constituents. The relation between the temperature of the remotely sensed "skin" and the bulk of the mixed layer is largely understood (Reynolds and Smith 1994; Emery et al., 1995). However, because the surface mixed layer is effectively decoupled from the underlying ocean dynamics, an interpretation of satellite SST observations in isolation and in direct use for dynamical studies is very difficult. As a result, the impact of SST data on the understanding of ocean variability.

  9. Estimation of land surface temperature over the Tibetan Plateau using AVHRR and MODIS data

    NASA Astrophysics Data System (ADS)

    Zhong, Lei; Ma, Yaoming; Su, Zhongbo; Salama, Mhd. Suhyb

    2010-09-01

    Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP). In this paper, two split window algorithms (SWAs), one for the NOAA’s Advanced Very High Resolution Radiometer (AVHRR), and the other for the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied to retrieve land surface temperature (LST) over the TP simultaneously. AVHRR and MODIS data from 17 January, 14 April, 23 July, and 16 October 2003 were selected as the cases for winter, spring, summer, and autumn, respectively. Firstly, two key parameters (emissivity and water vapor content) were calculated at the pixel scale. Then, the derived LST was compared with in situ measurements from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the TP (CAMP/Tibet) area. They were in good accordance with each other, with an average percentage error (PE) of 10.5% for AVHRR data and 8.3% for MODIS data, meaning the adopted SWAs were applicable in the TP area. The derived LST also showed a wide range and a clear seasonal difference. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy.

  10. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.