Science.gov

Sample records for estimated systematic error

  1. Systematic Error Modeling and Bias Estimation

    PubMed Central

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  2. Systematic Error Modeling and Bias Estimation.

    PubMed

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  3. Statistical errors in Monte Carlo estimates of systematic errors

    NASA Astrophysics Data System (ADS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  4. Systematic Error Estimation for Chemical Reaction Energies.

    PubMed

    Simm, Gregor N; Reiher, Markus

    2016-06-14

    For a theoretical understanding of the reactivity of complex chemical systems, accurate relative energies between intermediates and transition states are required. Despite its popularity, density functional theory (DFT) often fails to provide sufficiently accurate data, especially for molecules containing transition metals. Due to the huge number of intermediates that need to be studied for all but the simplest chemical processes, DFT is, to date, the only method that is computationally feasible. Here, we present a Bayesian framework for DFT that allows for error estimation of calculated properties. Since the optimal choice of parameters in present-day density functionals is strongly system dependent, we advocate for a system-focused reparameterization. While, at first sight, this approach conflicts with the first-principles character of DFT that should make it, in principle, system independent, we deliberately introduce system dependence to be able to assign a stochastically meaningful error to the system-dependent parametrization, which makes it nonarbitrary. By reparameterizing a functional that was derived on a sound physical basis to a chemical system of interest, we obtain a functional that yields reliable confidence intervals for reaction energies. We demonstrate our approach on the example of catalytic nitrogen fixation. PMID:27159007

  5. Sampling of systematic errors to estimate likelihood weights in nuclear data uncertainty propagation

    NASA Astrophysics Data System (ADS)

    Helgesson, P.; Sjöstrand, H.; Koning, A. J.; Rydén, J.; Rochman, D.; Alhassan, E.; Pomp, S.

    2016-01-01

    In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random sampling, likelihood weights can be used to infer experimental information into the distributions for the ND. As the included number of correlated experimental points grows large, the computational time for the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also other problems related to the conventional computation of the likelihood, e.g., the assumption that all experimental uncertainties are Gaussian. In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead, the experimental correlations are included by sampling of systematic errors. It is shown that the model underlying the sampling methodology (using univariate normal distributions for random and systematic errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is also shown that the likelihood estimates obtained through sampling of systematic errors approach the likelihood obtained with matrix inversion as the sample size for the systematic errors grows large. In studied practical cases, it is seen that the estimates for the likelihood weights converge impractically slowly with the sample size, compared to matrix inversion. The computational time is estimated to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling of systematic errors has little potential to compete with matrix inversion in cases where the latter is applicable. Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret than the conventional model and the likelihood function involving the inverted covariance matrix. Therefore, this work can both have pedagogical value and be used to help motivating the conventional assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could also

  6. Statistical uncertainties and systematic errors in weak lensing mass estimates of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Köhlinger, F.; Hoekstra, H.; Eriksen, M.

    2015-11-01

    Upcoming and ongoing large area weak lensing surveys will also discover large samples of galaxy clusters. Accurate and precise masses of galaxy clusters are of major importance for cosmology, for example, in establishing well-calibrated observational halo mass functions for comparison with cosmological predictions. We investigate the level of statistical uncertainties and sources of systematic errors expected for weak lensing mass estimates. Future surveys that will cover large areas on the sky, such as Euclid or LSST and to lesser extent DES, will provide the largest weak lensing cluster samples with the lowest level of statistical noise regarding ensembles of galaxy clusters. However, the expected low level of statistical uncertainties requires us to scrutinize various sources of systematic errors. In particular, we investigate the bias due to cluster member galaxies which are erroneously treated as background source galaxies due to wrongly assigned photometric redshifts. We find that this effect is significant when referring to stacks of galaxy clusters. Finally, we study the bias due to miscentring, i.e. the displacement between any observationally defined cluster centre and the true minimum of its gravitational potential. The impact of this bias might be significant with respect to the statistical uncertainties. However, complementary future missions such as eROSITA will allow us to define stringent priors on miscentring parameters which will mitigate this bias significantly.

  7. A Novel Systematic Error Compensation Algorithm Based on Least Squares Support Vector Regression for Star Sensor Image Centroid Estimation

    PubMed Central

    Yang, Jun; Liang, Bin; Zhang, Tao; Song, Jingyan

    2011-01-01

    The star centroid estimation is the most important operation, which directly affects the precision of attitude determination for star sensors. This paper presents a theoretical study of the systematic error introduced by the star centroid estimation algorithm. The systematic error is analyzed through a frequency domain approach and numerical simulations. It is shown that the systematic error consists of the approximation error and truncation error which resulted from the discretization approximation and sampling window limitations, respectively. A criterion for choosing the size of the sampling window to reduce the truncation error is given in this paper. The systematic error can be evaluated as a function of the actual star centroid positions under different Gaussian widths of star intensity distribution. In order to eliminate the systematic error, a novel compensation algorithm based on the least squares support vector regression (LSSVR) with Radial Basis Function (RBF) kernel is proposed. Simulation results show that when the compensation algorithm is applied to the 5-pixel star sampling window, the accuracy of star centroid estimation is improved from 0.06 to 6 × 10−5 pixels. PMID:22164021

  8. Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Garcia, P.

    2016-04-01

    Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its

  9. Systematic Errors in Low-latency Gravitational Wave Parameter Estimation Impact Electromagnetic Follow-up Observations

    NASA Astrophysics Data System (ADS)

    Littenberg, Tyson B.; Farr, Ben; Coughlin, Scott; Kalogera, Vicky

    2016-03-01

    Among the most eagerly anticipated opportunities made possible by Advanced LIGO/Virgo are multimessenger observations of compact mergers. Optical counterparts may be short-lived so rapid characterization of gravitational wave (GW) events is paramount for discovering electromagnetic signatures. One way to meet the demand for rapid GW parameter estimation is to trade off accuracy for speed, using waveform models with simplified treatment of the compact objects’ spin. We report on the systematic errors in GW parameter estimation suffered when using different spin approximations to recover generic signals. Component mass measurements can be biased by \\gt 5σ using simple-precession waveforms and in excess of 20σ when non-spinning templates are employed. This suggests that electromagnetic observing campaigns should not take a strict approach to selecting which LIGO/Virgo candidates warrant follow-up observations based on low-latency mass estimates. For sky localization, we find that searched areas are up to a factor of ∼ 2 larger for non-spinning analyses, and are systematically larger for any of the simplified waveforms considered in our analysis. Distance biases for the non-precessing waveforms can be in excess of 100% and are largest when the spin angular momenta are in the orbital plane of the binary. We confirm that spin-aligned waveforms should be used for low-latency parameter estimation at the minimum. Including simple precession, though more computationally costly, mitigates biases except for signals with extreme precession effects. Our results shine a spotlight on the critical need for development of computationally inexpensive precessing waveforms and/or massively parallel algorithms for parameter estimation.

  10. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; Bard, Deborah; Bertin, Emmanuel; Bosch, James; Boutigny, Dominique; Courbin, Frederic; Dawson, William A.; Donnarumma, Annamaria; Fenech Conti, Ian; Gavazzi, Raphaël; Gentile, Marc; Gill, Mandeep S. S.; Hogg, David W.; Huff, Eric M.; Jee, M. James; Kacprzak, Tomasz; Kilbinger, Martin; Kuntzer, Thibault; Lang, Dustin; Luo, Wentao; March, Marisa C.; Marshall, Philip J.; Meyers, Joshua E.; Miller, Lance; Miyatake, Hironao; Nakajima, Reiko; Ngolé Mboula, Fred Maurice; Nurbaeva, Guldariya; Okura, Yuki; Paulin-Henriksson, Stéphane; Rhodes, Jason; Schneider, Michael D.; Shan, Huanyuan; Sheldon, Erin S.; Simet, Melanie; Starck, Jean-Luc; Sureau, Florent; Tewes, Malte; Zarb Adami, Kristian; Zhang, Jun; Zuntz, Joe

    2015-07-01

    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ˜1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.

  11. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    SciTech Connect

    Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; Bard, Deborah; Bertin, Emmanuel; Bosch, James; Boutigny, Dominique; Courbin, Frederic; Dawson, William A.; Donnarumma, Annamaria; Fenech Conti, Ian; Gavazzi, Raphael; Gentile, Marc; Gill, Mandeep S. S.; Hogg, David W.; Huff, Eric M.; Jee, M. James; Kacprzak, Tomasz; Kilbinger, Martin; Kuntzer, Thibault; Lang, Dustin; Luo, Wentao; March, Marisa C.; Marshall, Philip J.; Meyers, Joshua E.; Miller, Lance; Miyatake, Hironao; Nakajima, Reiko; Ngole Mboula, Fred Maurice; Nurbaeva, Guldariya; Okura, Yuki; Paulin-Henriksson, Stephane; Rhodes, Jason; Schneider, Michael D.; Shan, Huanyuan; Sheldon, Erin S.; Simet, Melanie; Starck, Jean -Luc; Sureau, Florent; Tewes, Malte; Zarb Adami, Kristian; Zhang, Jun; Zuntz, Joe

    2015-05-11

    The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.

  12. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    DOE PAGESBeta

    Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; Bard, Deborah; Bertin, Emmanuel; Bosch, James; Boutigny, Dominique; Courbin, Frederic; Dawson, William A.; Donnarumma, Annamaria; et al

    2015-05-11

    The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty aboutmore » a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less

  13. Estimation of Systematic Errors for Deuteron Electric Dipole Moment Search at COSY

    NASA Astrophysics Data System (ADS)

    Chekmenev, Stanislav

    2016-02-01

    An experimental method which is aimed to find a permanent EDM of a charged particle was proposed by the JEDI (Jülich Electric Dipole moment Investigations) collaboration. EDMs can be observed by their influence on spin motion. The only possible way to perform a direct measurement is to use a storage ring. For this purpose, it was decided to carry out the first precursor experiment at the Cooler Synchrotron (COSY). Since the EDM of a particle violates CP invariance it is expected to be tiny, treatment of all various sources of systematic errors should be done with a great level of precision. One should clearly understand how misalignments of the magnets affects the beam and the spin motion. It is planned to use a RF Wien filter for the precusor experiment. In this paper the simulations of the systematic effects for the RF Wien filter device method will be discussed.

  14. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014

    NASA Astrophysics Data System (ADS)

    Appleby, Graham; Rodríguez, José; Altamimi, Zuheir

    2016-06-01

    Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.

  15. Protecting weak measurements against systematic errors

    NASA Astrophysics Data System (ADS)

    Pang, Shengshi; Alonso, Jose Raul Gonzalez; Brun, Todd A.; Jordan, Andrew N.

    2016-07-01

    In this work, we consider the systematic error of quantum metrology by weak measurements under decoherence. We derive the systematic error of maximum likelihood estimation in general to the first-order approximation of a small deviation in the probability distribution and study the robustness of standard weak measurement and postselected weak measurements against systematic errors. We show that, with a large weak value, the systematic error of a postselected weak measurement when the probe undergoes decoherence can be significantly lower than that of a standard weak measurement. This indicates another advantage of weak-value amplification in improving the performance of parameter estimation. We illustrate the results by an exact numerical simulation of decoherence arising from a bosonic mode and compare it to the first-order analytical result we obtain.

  16. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  17. Bayesian Error Estimation Functionals

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    The challenge of approximating the exchange-correlation functional in Density Functional Theory (DFT) has led to the development of numerous different approximations of varying accuracy on different calculated properties. There is therefore a need for reliable estimation of prediction errors within the different approximation schemes to DFT. The Bayesian Error Estimation Functionals (BEEF) have been developed with this in mind. The functionals are constructed by fitting to experimental and high-quality computational databases for molecules and solids including chemisorption and van der Waals systems. This leads to reasonably accurate general-purpose functionals with particual focus on surface science. The fitting procedure involves considerations on how to combine different types of data, and applies Tikhonov regularization and bootstrap cross validation. The methodology has been applied to construct GGA and metaGGA functionals with and without inclusion of long-ranged van der Waals contributions. The error estimation is made possible by the generation of not only a single functional but through the construction of a probability distribution of functionals represented by a functional ensemble. The use of the functional ensemble is illustrated on compound heat of formation and by investigations of the reliability of calculated catalytic ammonia synthesis rates.

  18. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles. PMID:24258878

  19. A statistical analysis of systematic errors in temperature and ram velocity estimates from satellite-borne retarding potential analyzers

    SciTech Connect

    Klenzing, J. H.; Earle, G. D.; Heelis, R. A.; Coley, W. R.

    2009-05-15

    The use of biased grids as energy filters for charged particles is common in satellite-borne instruments such as a planar retarding potential analyzer (RPA). Planar RPAs are currently flown on missions such as the Communications/Navigation Outage Forecast System and the Defense Meteorological Satellites Program to obtain estimates of geophysical parameters including ion velocity and temperature. It has been shown previously that the use of biased grids in such instruments creates a nonuniform potential in the grid plane, which leads to inherent errors in the inferred parameters. A simulation of ion interactions with various configurations of biased grids has been developed using a commercial finite-element analysis software package. Using a statistical approach, the simulation calculates collected flux from Maxwellian ion distributions with three-dimensional drift relative to the instrument. Perturbations in the performance of flight instrumentation relative to expectations from the idealized RPA flux equation are discussed. Both single grid and dual-grid systems are modeled to investigate design considerations. Relative errors in the inferred parameters for each geometry are characterized as functions of ion temperature and drift velocity.

  20. Simulation of Systematic Errors in Phase-Referenced VLBI Astrometry

    NASA Astrophysics Data System (ADS)

    Pradel, N.; Charlot, P.; Lestrade, J.-F.

    2005-12-01

    The astrometric accuracy in the relative coordinates of two angularly-close radio sources observed with the phase-referencing VLBI technique is limited by systematic errors. These include geometric errors and atmospheric errors. Based on simulation with the SPRINT software, we evaluate the impact of these errors in the estimated relative source coordinates for standard VLBA observations. Such evaluations are useful to estimate the actual accuracy of phase-referenced VLBI astrometry.

  1. Measuring Systematic Error with Curve Fits

    ERIC Educational Resources Information Center

    Rupright, Mark E.

    2011-01-01

    Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…

  2. Antenna pointing systematic error model derivations

    NASA Technical Reports Server (NTRS)

    Guiar, C. N.; Lansing, F. L.; Riggs, R.

    1987-01-01

    The pointing model used to represent and correct systematic errors for the Deep Space Network (DSN) antennas is presented. Analytical expressions are given in both azimuth-elevation (az-el) and hour angle-declination (ha-dec) mounts for RF axis collimation error, encoder offset, nonorthogonality of axes, axis plane tilt, and structural flexure due to gravity loading. While the residual pointing errors (rms) after correction appear to be within the ten percent of the half-power beamwidth criterion commonly set for good pointing accuracy, the DSN has embarked on an extensive pointing improvement and modeling program aiming toward an order of magnitude higher pointing precision.

  3. Systematic errors in strong lens modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Traci Lin; Sharon, Keren; Bayliss, Matthew B.

    2015-08-01

    The lensing community has made great strides in quantifying the statistical errors associated with strong lens modeling. However, we are just now beginning to understand the systematic errors. Quantifying these errors is pertinent to Frontier Fields science, as number counts and luminosity functions are highly sensitive to the value of the magnifications of background sources across the entire field of view. We are aware that models can be very different when modelers change their assumptions about the parameterization of the lensing potential (i.e., parametric vs. non-parametric models). However, models built while utilizing a single methodology can lead to inconsistent outcomes for different quantities, distributions, and qualities of redshift information regarding the multiple images used as constraints in the lens model. We investigate how varying the number of multiple image constraints and available redshift information of those constraints (ex., spectroscopic vs. photometric vs. no redshift) can influence the outputs of our parametric strong lens models, specifically, the mass distribution and magnifications of background sources. We make use of the simulated clusters by M. Meneghetti et al. and the first two Frontier Fields clusters, which have a high number of multiply imaged galaxies with spectroscopically-measured redshifts (or input redshifts, in the case of simulated clusters). This work will not only inform upon Frontier Field science, but also for work on the growing collection of strong lensing galaxy clusters, most of which are less massive and are capable of lensing a handful of galaxies, and are more prone to these systematic errors.

  4. A posteriori error estimator and error control for contact problems

    NASA Astrophysics Data System (ADS)

    Weiss, Alexander; Wohlmuth, Barbara I.

    2009-09-01

    In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of H( div ) -conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. Moreover, the error is bounded by the first estimator with a constant one plus a higher order data oscillation term plus a term arising from the contact that is shown numerically to be of higher order. The second estimator is used in a control-based AFEM refinement strategy, and the decay of the error in the energy is shown. Several numerical tests demonstrate the performance of both estimators.

  5. Control by model error estimation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Skelton, R. E.

    1976-01-01

    Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).

  6. Reducing systematic error in weak lensing cluster surveys

    SciTech Connect

    Utsumi, Yousuke; Miyazaki, Satoshi; Hamana, Takashi; Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Oguri, Masamune

    2014-05-10

    Weak lensing provides an important route toward collecting samples of clusters of galaxies selected by mass. Subtle systematic errors in image reduction can compromise the power of this technique. We use the B-mode signal to quantify this systematic error and to test methods for reducing this error. We show that two procedures are efficient in suppressing systematic error in the B-mode: (1) refinement of the mosaic CCD warping procedure to conform to absolute celestial coordinates and (2) truncation of the smoothing procedure on a scale of 10'. Application of these procedures reduces the systematic error to 20% of its original amplitude. We provide an analytic expression for the distribution of the highest peaks in noise maps that can be used to estimate the fraction of false peaks in the weak-lensing κ-signal-to-noise ratio (S/N) maps as a function of the detection threshold. Based on this analysis, we select a threshold S/N = 4.56 for identifying an uncontaminated set of weak-lensing peaks in two test fields covering a total area of ∼3 deg{sup 2}. Taken together these fields contain seven peaks above the threshold. Among these, six are probable systems of galaxies and one is a superposition. We confirm the reliability of these peaks with dense redshift surveys, X-ray, and imaging observations. The systematic error reduction procedures we apply are general and can be applied to future large-area weak-lensing surveys. Our high-peak analysis suggests that with an S/N threshold of 4.5, there should be only 2.7 spurious weak-lensing peaks even in an area of 1000 deg{sup 2}, where we expect ∼2000 peaks based on our Subaru fields.

  7. Medication Errors in the Southeast Asian Countries: A Systematic Review

    PubMed Central

    Salmasi, Shahrzad; Khan, Tahir Mehmood; Hong, Yet Hoi; Ming, Long Chiau; Wong, Tin Wui

    2015-01-01

    Background Medication error (ME) is a worldwide issue, but most studies on ME have been undertaken in developed countries and very little is known about ME in Southeast Asian countries. This study aimed systematically to identify and review research done on ME in Southeast Asian countries in order to identify common types of ME and estimate its prevalence in this region. Methods The literature relating to MEs in Southeast Asian countries was systematically reviewed in December 2014 by using; Embase, Medline, Pubmed, ProQuest Central and the CINAHL. Inclusion criteria were studies (in any languages) that investigated the incidence and the contributing factors of ME in patients of all ages. Results The 17 included studies reported data from six of the eleven Southeast Asian countries: five studies in Singapore, four in Malaysia, three in Thailand, three in Vietnam, one in the Philippines and one in Indonesia. There was no data on MEs in Brunei, Laos, Cambodia, Myanmar and Timor. Of the seventeen included studies, eleven measured administration errors, four focused on prescribing errors, three were done on preparation errors, three on dispensing errors and two on transcribing errors. There was only one study of reconciliation error. Three studies were interventional. Discussion The most frequently reported types of administration error were incorrect time, omission error and incorrect dose. Staff shortages, and hence heavy workload for nurses, doctor/nurse distraction, and misinterpretation of the prescription/medication chart, were identified as contributing factors of ME. There is a serious lack of studies on this topic in this region which needs to be addressed if the issue of ME is to be fully understood and addressed. PMID:26340679

  8. More on Systematic Error in a Boyle's Law Experiment

    ERIC Educational Resources Information Center

    McCall, Richard P.

    2012-01-01

    A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.

  9. Adjoint Error Estimation for Linear Advection

    SciTech Connect

    Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S

    2011-03-30

    An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.

  10. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  11. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  12. Effects of Structural Errors on Parameter Estimates

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Paper introduces concept of near equivalence in probability between different parameters or mathematical models of physical system. One in series of papers, each establishes different part of rigorous theory of mathematical modeling based on concepts of structural error, identifiability, and equivalence. This installment focuses upon effects of additive structural errors on degree of bias in estimates parameters.

  13. Error Estimates for Numerical Integration Rules

    ERIC Educational Resources Information Center

    Mercer, Peter R.

    2005-01-01

    The starting point for this discussion of error estimates is the fact that integrals that arise in Fourier series have properties that can be used to get improved bounds. This idea is extended to more general situations.

  14. Systematic errors in precipitation measurements with different rain gauge sensors

    NASA Astrophysics Data System (ADS)

    Sungmin, O.; Foelsche, Ulrich

    2015-04-01

    Ground-level rain gauges provide the most direct measurement of precipitation and therefore such precipitation measurement datasets are often utilized for the evaluation of precipitation estimates via remote sensing and in climate model simulations. However, measured precipitation by means of national standard gauge networks is constrained by their spatial density. For this reason, in order to accurately measure precipitation it is of essential importance to understand the performance and reliability of rain gauges. This study is aimed to assess the systematic errors between measurements taken with different rain gauge sensors. We will mainly address extreme precipitation events as these are connected with high uncertainties in the measurements. Precipitation datasets for the study are available from WegenerNet, a dense network of 151 meteorological stations within an area of about 20 km × 15 km centred near the city of Feldbach in the southeast of Austria. The WegenerNet has a horizontal resolution of about 1.4-km and employs 'tripping bucket' rain gauges for precipitation measurements with three different types of sensors; a reference station provides measurements from all types of sensors. The results will illustrate systematic errors via the comparison of the precipitation datasets gained with different types of sensors. The analyses will be carried out by direct comparison between the datasets from the reference station. In addition, the dependence of the systematic errors on meteorological conditions, e.g. precipitation intensity and wind speed, will be investigated to assess the feasibility of applying the WegenerNet datasets for the study of extreme precipitation events. The study can be regarded as a pre-processing research to further studies in hydro-meteorological applications, which require high-resolution precipitation datasets, such as satellite/radar-derived precipitation validation and hydrodynamic modelling.

  15. Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data

    PubMed Central

    Hahn, Seungsoo; Kim, Dongsup

    2015-01-01

    Chromosome conformation capture (3C)-based techniques have recently been used to uncover the mystic genomic architecture in the nucleus. These techniques yield indirect data on the distances between genomic loci in the form of contact frequencies that must be normalized to remove various errors. This normalization process determines the quality of data analysis. In this study, we describe two systematic errors that result from the heterogeneous local density of restriction sites and different local chromatin states, methods to identify and remove those artifacts, and three previously described sources of systematic errors in 3C-based data: fragment length, mappability, and local DNA composition. To explain the effect of systematic errors on the results, we used three different published data sets to show the dependence of the results on restriction enzymes and experimental methods. Comparison of the results from different restriction enzymes shows a higher correlation after removing systematic errors. In contrast, using different methods with the same restriction enzymes shows a lower correlation after removing systematic errors. Notably, the improved correlation of the latter case caused by systematic errors indicates that a higher correlation between results does not ensure the validity of the normalization methods. Finally, we suggest a method to analyze random error and provide guidance for the maximum reproducibility of contact frequency maps. PMID:26717152

  16. Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data.

    PubMed

    Hahn, Seungsoo; Kim, Dongsup

    2015-01-01

    Chromosome conformation capture (3C)-based techniques have recently been used to uncover the mystic genomic architecture in the nucleus. These techniques yield indirect data on the distances between genomic loci in the form of contact frequencies that must be normalized to remove various errors. This normalization process determines the quality of data analysis. In this study, we describe two systematic errors that result from the heterogeneous local density of restriction sites and different local chromatin states, methods to identify and remove those artifacts, and three previously described sources of systematic errors in 3C-based data: fragment length, mappability, and local DNA composition. To explain the effect of systematic errors on the results, we used three different published data sets to show the dependence of the results on restriction enzymes and experimental methods. Comparison of the results from different restriction enzymes shows a higher correlation after removing systematic errors. In contrast, using different methods with the same restriction enzymes shows a lower correlation after removing systematic errors. Notably, the improved correlation of the latter case caused by systematic errors indicates that a higher correlation between results does not ensure the validity of the normalization methods. Finally, we suggest a method to analyze random error and provide guidance for the maximum reproducibility of contact frequency maps. PMID:26717152

  17. Improved Systematic Pointing Error Model for the DSN Antennas

    NASA Technical Reports Server (NTRS)

    Rochblatt, David J.; Withington, Philip M.; Richter, Paul H.

    2011-01-01

    New pointing models have been developed for large reflector antennas whose construction is founded on elevation over azimuth mount. At JPL, the new models were applied to the Deep Space Network (DSN) 34-meter antenna s subnet for corrections of their systematic pointing errors; it achieved significant improvement in performance at Ka-band (32-GHz) and X-band (8.4-GHz). The new models provide pointing improvements relative to the traditional models by a factor of two to three, which translate to approximately 3-dB performance improvement at Ka-band. For radio science experiments where blind pointing performance is critical, the new innovation provides a new enabling technology. The model extends the traditional physical models with higher-order mathematical terms, thereby increasing the resolution of the model for a better fit to the underlying systematic imperfections that are the cause of antenna pointing errors. The philosophy of the traditional model was that all mathematical terms in the model must be traced to a physical phenomenon causing antenna pointing errors. The traditional physical terms are: antenna axis tilts, gravitational flexure, azimuth collimation, azimuth encoder fixed offset, azimuth and elevation skew, elevation encoder fixed offset, residual refraction, azimuth encoder scale error, and antenna pointing de-rotation terms for beam waveguide (BWG) antennas. Besides the addition of spherical harmonics terms, the new models differ from the traditional ones in that the coefficients for the cross-elevation and elevation corrections are completely independent and may be different, while in the traditional model, some of the terms are identical. In addition, the new software allows for all-sky or mission-specific model development, and can utilize the previously used model as an a priori estimate for the development of the updated models.

  18. Systematic errors for a Mueller matrix dual rotating compensator ellipsometer.

    PubMed

    Broch, Laurent; En Naciri, Aotmane; Johann, Luc

    2008-06-01

    The characterization of anisotropic materials and complex systems by ellipsometry has pushed the design of instruments to require the measurement of the full reflection Mueller matrix of the sample with a great precision. Therefore Mueller matrix ellipsometers have emerged over the past twenty years. The values of some coefficients of the matrix can be very small and errors due to noise or systematic errors can induce distored analysis. We present a detailed characterization of the systematic errors for a Mueller Matrix Ellipsometer in the dual-rotating compensator configuration. Starting from a general formalism, we derive explicit first-order expressions for the errors on all the coefficients of the Mueller matrix of the sample. The errors caused by inaccuracy of the azimuthal arrangement of the optical components and residual ellipticity introduced by imperfect optical elements are shown. A new method based on a four-zone averaging measurement is proposed to vanish the systematic errors. PMID:18545594

  19. Strategies for minimizing the impact of systematic errors on land data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data assimilation concerns itself primarily with the impact of random stochastic errors on state estimation. However, the developers of land data assimilation systems are commonly faced with systematic errors arising from both the parameterization of a land surface model and the need to pre-process ...

  20. Optimal error regions for quantum state estimation

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Khoon Ng, Hui; Sehrawat, Arun; Li, Xikun; Englert, Berthold-Georg

    2013-12-01

    An estimator is a state that represents one's best guess of the actual state of the quantum system for the given data. Such estimators are points in the state space. To be statistically meaningful, they have to be endowed with error regions, the generalization of error bars beyond one dimension. As opposed to standard ad hoc constructions of error regions, we introduce the maximum-likelihood region—the region of largest likelihood among all regions of the same size—as the natural counterpart of the popular maximum-likelihood estimator. Here, the size of a region is its prior probability. A related concept is the smallest credible region—the smallest region with pre-chosen posterior probability. In both cases, the optimal error region has constant likelihood on its boundary. This surprisingly simple characterization permits concise reporting of the error regions, even in high-dimensional problems. For illustration, we identify optimal error regions for single-qubit and two-qubit states from computer-generated data that simulate incomplete tomography with few measured copies.

  1. Systematic Parameter Errors in Inspiraling Neutron Star Binaries

    NASA Astrophysics Data System (ADS)

    Favata, Marc

    2014-03-01

    The coalescence of two neutron stars is an important gravitational wave source for LIGO and other detectors. Numerous studies have considered the precision with which binary parameters (masses, spins, Love numbers) can be measured. Here I consider the accuracy with which these parameters can be determined in the presence of systematic errors due to waveform approximations. These approximations include truncation of the post-Newtonian (PN) series and neglect of neutron star (NS) spin, tidal deformation, or orbital eccentricity. All of these effects can yield systematic errors that exceed statistical errors for plausible parameter values. In particular, neglecting spin, eccentricity, or high-order PN terms causes a significant bias in the NS Love number. Tidal effects will not be measurable with PN inspiral waveforms if these systematic errors are not controlled.

  2. Systematic parameter errors in inspiraling neutron star binaries.

    PubMed

    Favata, Marc

    2014-03-14

    The coalescence of two neutron stars is an important gravitational wave source for LIGO and other detectors. Numerous studies have considered the precision with which binary parameters (masses, spins, Love numbers) can be measured. Here I consider the accuracy with which these parameters can be determined in the presence of systematic errors due to waveform approximations. These approximations include truncation of the post-Newtonian (PN) series and neglect of neutron star (NS) spin, tidal deformation, or orbital eccentricity. All of these effects can yield systematic errors that exceed statistical errors for plausible parameter values. In particular, neglecting spin, eccentricity, or high-order PN terms causes a significant bias in the NS Love number. Tidal effects will not be measurable with PN inspiral waveforms if these systematic errors are not controlled. PMID:24679276

  3. Reducing Measurement Error in Student Achievement Estimation

    ERIC Educational Resources Information Center

    Battauz, Michela; Bellio, Ruggero; Gori, Enrico

    2008-01-01

    The achievement level is a variable measured with error, that can be estimated by means of the Rasch model. Teacher grades also measure the achievement level but they are expressed on a different scale. This paper proposes a method for combining these two scores to obtain a synthetic measure of the achievement level based on the theory developed…

  4. Tolerance for error and computational estimation ability.

    PubMed

    Hogan, Thomas P; Wyckoff, Laurie A; Krebs, Paul; Jones, William; Fitzgerald, Mark P

    2004-06-01

    Previous investigators have suggested that the personality variable tolerance for error is related to success in computational estimation. However, this suggestion has not been tested directly. This study examined the relationship between performance on a computational estimation test and scores on the NEO-Five Factor Inventory, a measure of the Big Five personality traits, including Openness, an index of tolerance for ambiguity. Other variables included SAT-I Verbal and Mathematics scores and self-rated mathematics ability. Participants were 65 college students. There was no significant relationship between the tolerance variable and computational estimation performance. There was a modest negative relationship between Agreeableness and estimation performance. The skepticism associated with the negative pole of the Agreeableness dimension may be important to pursue in further understanding of estimation ability. PMID:15362423

  5. Jason-2 systematic error analysis in the GPS derived orbits

    NASA Astrophysics Data System (ADS)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Chinn, D. S.

    2011-12-01

    Several results related to global or regional sea level changes still too often rely on the assumption that orbit errors coming from station coordinates adoption can be neglected in the total error budget (Ceri et al. 2010). In particular Instantaneous crust-fixed coordinates are obtained by adding to the linear ITRF model the geophysical high-frequency variations. In principle, geocenter motion should also be included in this computation, in order to reference these coordinates to the center of mass of the whole Earth. This correction is currently not applied when computing GDR orbits. Cerri et al. (2010) performed an analysis of systematic errors common to all coordinates along the North/South direction, as this type of bias, also known as Z-shift, has a clear impact on MSL estimates due to the unequal distribution of continental surface in the northern and southern hemispheres. The goal of this paper is to specifically study the main source of errors which comes from the current imprecision in the Z-axis realization of the frame. We focus here on the time variability of this Z-shift, which we can decompose in a drift and a periodic component due to the presumably omitted geocenter motion. A series of Jason-2 GPS-only orbits have been computed at NASA GSFC, using both IGS05 and IGS08. These orbits have been shown to agree radially at less than 1 cm RMS vs our SLR/DORIS std0905 and std1007 reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Melachroinos et al. 2011). Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR-crossover residuals provide the best performance indicator for independent validation of the NASA/GSFC GPS-only reduced dynamic orbits. Reduced

  6. Neutrino spectrum at the far detector systematic errors

    SciTech Connect

    Szleper, M.; Para, A.

    2001-10-01

    Neutrino oscillation experiments often employ two identical detectors to minimize errors due to inadequately known neutrino beam. We examine various systematics effects related to the prediction of the neutrino spectrum in the `far' detector on the basis of the spectrum observed at the `near' detector. We propose a novel method of the derivation of the far detector spectrum. This method is less sensitive to the details of the understanding of the neutrino beam line and the hadron production spectra than the usually used `double ratio' method thus allowing to reduce the systematic errors.

  7. Systematic error analysis for 3D nanoprofiler tracing normal vector

    NASA Astrophysics Data System (ADS)

    Kudo, Ryota; Tokuta, Yusuke; Nakano, Motohiro; Yamamura, Kazuya; Endo, Katsuyoshi

    2015-10-01

    In recent years, demand for an optical element having a high degree of freedom shape is increased. High-precision aspherical shape is required for the X-ray focusing mirror etc. For the head-mounted display etc., optical element of the free-form surface is used. For such an optical device fabrication, measurement technology is essential. We have developed a high- precision 3D nanoprofiler. By nanoprofiler, the normal vector information of the sample surface is obtained on the basis of the linearity of light. Normal vector information is differential value of the shape, it is possible to determine the shape by integrating. Repeatability of sub-nanometer has been achieved by nanoprofiler. To pursue the accuracy of shapes, systematic error is analyzed. The systematic errors are figure error of sample and assembly errors of the device. This method utilizes the information of the ideal shape of the sample, and the measurement point coordinates and normal vectors are calculated. However, measured figure is not the ideal shape by the effect of systematic errors. Therefore, the measurement point coordinate and the normal vector is calculated again by feeding back the measured figure. Correction of errors have been attempted by figure re-derivation. It was confirmed theoretically effectiveness by simulation. This approach also applies to the experiment, it was confirmed the possibility of about 4 nm PV figure correction in the employed sample.

  8. Density Estimation Framework for Model Error Assessment

    NASA Astrophysics Data System (ADS)

    Sargsyan, K.; Liu, Z.; Najm, H. N.; Safta, C.; VanBloemenWaanders, B.; Michelsen, H. A.; Bambha, R.

    2014-12-01

    In this work we highlight the importance of model error assessment in physical model calibration studies. Conventional calibration methods often assume the model is perfect and account for data noise only. Consequently, the estimated parameters typically have biased values that implicitly compensate for model deficiencies. Moreover, improving the amount and the quality of data may not improve the parameter estimates since the model discrepancy is not accounted for. In state-of-the-art methods model discrepancy is explicitly accounted for by enhancing the physical model with a synthetic statistical additive term, which allows appropriate parameter estimates. However, these statistical additive terms do not increase the predictive capability of the model because they are tuned for particular output observables and may even violate physical constraints. We introduce a framework in which model errors are captured by allowing variability in specific model components and parameterizations for the purpose of achieving meaningful predictions that are both consistent with the data spread and appropriately disambiguate model and data errors. Here we cast model parameters as random variables, embedding the calibration problem within a density estimation framework. Further, we calibrate for the parameters of the joint input density. The likelihood function for the associated inverse problem is degenerate, therefore we use Approximate Bayesian Computation (ABC) to build prediction-constraining likelihoods and illustrate the strengths of the method on synthetic cases. We also apply the ABC-enhanced density estimation to the TransCom 3 CO2 intercomparison study (Gurney, K. R., et al., Tellus, 55B, pp. 555-579, 2003) and calibrate 15 transport models for regional carbon sources and sinks given atmospheric CO2 concentration measurements.

  9. Seeing Your Error Alters My Pointing: Observing Systematic Pointing Errors Induces Sensori-Motor After-Effects

    PubMed Central

    Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro

    2011-01-01

    During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649

  10. MAXIMUM LIKELIHOOD ANALYSIS OF SYSTEMATIC ERRORS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect

    Zhang Le; Timbie, Peter; Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S.; Sutter, Paul M.; Wandelt, Benjamin D.; Bunn, Emory F.

    2013-06-01

    We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that does not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately recover the underlying B-modes for r = 0.01 at 28 < l < 384, Gaussian-distributed pointing errors must be controlled to 0. Degree-Sign 7 root mean square for an interferometer with an antenna configuration similar to QUBIC, in agreement with analytical estimates. Only the statistical uncertainty for 28 < l < 88 would be changed at {approx}10% level. With the same instrumental configuration, we find that the pointing errors would slightly bias the 2{sigma} upper limit of the tensor-to-scalar ratio r by {approx}10%. We also show that the impact of pointing errors on the TB and EB measurements is negligibly small.

  11. Bayesian conformity assessment in presence of systematic measurement errors

    NASA Astrophysics Data System (ADS)

    Carobbi, Carlo; Pennecchi, Francesca

    2016-04-01

    Conformity assessment of the distribution of the values of a quantity is investigated by using a Bayesian approach. The effect of systematic, non-negligible measurement errors is taken into account. The analysis is general, in the sense that the probability distribution of the quantity can be of any kind, that is even different from the ubiquitous normal distribution, and the measurement model function, linking the measurand with the observable and non-observable influence quantities, can be non-linear. Further, any joint probability density function can be used to model the available knowledge about the systematic errors. It is demonstrated that the result of the Bayesian analysis here developed reduces to the standard result (obtained through a frequentistic approach) when the systematic measurement errors are negligible. A consolidated frequentistic extension of such standard result, aimed at including the effect of a systematic measurement error, is directly compared with the Bayesian result, whose superiority is demonstrated. Application of the results here obtained to the derivation of the operating characteristic curves used for sampling plans for inspection by variables is also introduced.

  12. An Empirically Based Error-Model for Radar Rainfall Estimates

    NASA Astrophysics Data System (ADS)

    Ciach, G. J.

    2004-05-01

    Mathematical modeling of the way radar rainfall (RR) approximates the physical truth is a prospective method to quantify the RR uncertainties. In this approach one can represent RR in the form of an "observation equation," that is, as a function of the corresponding true rainfall and a random error process. The error process describes the cumulative effect of all the sources of RR uncertainties. We present the results of our work on the identification and estimation of this relationship. They are based on the Level II reflectivity data from the WSR-88D radar in Tulsa, Oklahoma, and rainfall measurements from 23 surrounding Oklahoma Mesonet raingauges. Accumulation intervals from one hour to one day were analyzed using this sample. The raingauge accumulations were used as an approximation of the true rainfall in this study. The RR error-model that we explored is factorized into a deterministic distortion, which is a function of the true rainfall, and a multiplicative random error factor that is a positively-defined random variable. The distribution of the error factor depends on the true rainfall, however, its expectation in this representation is always equal to one (all the biases are modeled by the deterministic component). With this constraint, the deterministic distortion function can be defined as the conditional mean of RR conditioned on the true rainfall. We use nonparametric regression to estimate the deterministic distortion, and the variance and quantiles of the random error factor, as functions of the true rainfall. The results show that the deterministic distortion is a nonlinear function of the true rainfall that indicates systematic overestimation of week rainfall and underestimation of strong rainfall (conditional bias). The standard deviation of the error factor is a decreasing function of the true rainfall that ranges from about 0.8 for week rainfall to about 0.3 for strong rainfall. For larger time-scales, both the deterministic distortion and the

  13. Accuracy of image-plane holographic tomography with filtered backprojection: random and systematic errors.

    PubMed

    Belashov, A V; Petrov, N V; Semenova, I V

    2016-01-01

    This paper explores the concept of image-plane holographic tomography applied to the measurements of laser-induced thermal gradients in an aqueous solution of a photosensitizer with respect to the reconstruction accuracy of three-dimensional variations of the refractive index. It uses the least-squares estimation algorithm to reconstruct refractive index variations in each holographic projection. Along with the bitelecentric optical system, transferring focused projection to the sensor plane, it facilitates the elimination of diffraction artifacts and noise suppression. This work estimates the influence of typical random and systematic errors in experiments and concludes that random errors such as accidental measurement errors or noise presence can be significantly suppressed by increasing the number of recorded digital holograms. On the contrary, even comparatively small systematic errors such as a displacement of the rotation axis projection in the course of a reconstruction procedure can significantly distort the results. PMID:26835625

  14. Systematic lossy forward error protection for error-resilient digital video broadcasting

    NASA Astrophysics Data System (ADS)

    Rane, Shantanu D.; Aaron, Anne; Girod, Bernd

    2004-01-01

    We present a novel scheme for error-resilient digital video broadcasting,using the Wyner-Ziv coding paradigm. We apply the general framework of systematic lossy source-channel coding to generate a supplementary bitstream that can correct transmission errors in the decoded video waveform up to a certain residual distortion. The systematic portion consists of a conventional MPEG-coded bitstream, which is transmitted over the error-prone channel without forward error correction.The supplementary bitstream is a low rate representation of the transmitted video sequence generated using Wyner-Ziv encoding. We use the conventionally decoded error-concealed MPEG video sequence as side information to decode the Wyner-Ziv bits. The decoder combines the error-prone side information and the Wyner-Ziv description to yield an improved decoded video signal. Our results indicate that, over a large range of channel error probabilities, this scheme yields superior video quality when compared with traditional forward error correction techniques employed in digital video broadcasting.

  15. Ultraspectral Sounding Retrieval Error Budget and Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2011-01-01

    The ultraspectral infrared radiances obtained from satellite observations provide atmospheric, surface, and/or cloud information. The intent of the measurement of the thermodynamic state is the initialization of weather and climate models. Great effort has been given to retrieving and validating these atmospheric, surface, and/or cloud properties. Error Consistency Analysis Scheme (ECAS), through fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of absolute and standard deviation of differences in both spectral radiance and retrieved geophysical parameter domains. The retrieval error is assessed through ECAS without assistance of other independent measurements such as radiosonde data. ECAS re-evaluates instrument random noise, and establishes the link between radiometric accuracy and retrieved geophysical parameter accuracy. ECAS can be applied to measurements of any ultraspectral instrument and any retrieval scheme with associated RTM. In this paper, ECAS is described and demonstration is made with the measurements of the METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI)..

  16. Factoring Algebraic Error for Relative Pose Estimation

    SciTech Connect

    Lindstrom, P; Duchaineau, M

    2009-03-09

    We address the problem of estimating the relative pose, i.e. translation and rotation, of two calibrated cameras from image point correspondences. Our approach is to factor the nonlinear algebraic pose error functional into translational and rotational components, and to optimize translation and rotation independently. This factorization admits subproblems that can be solved using direct methods with practical guarantees on global optimality. That is, for a given translation, the corresponding optimal rotation can directly be determined, and vice versa. We show that these subproblems are equivalent to computing the least eigenvector of second- and fourth-order symmetric tensors. When neither translation or rotation is known, alternating translation and rotation optimization leads to a simple, efficient, and robust algorithm for pose estimation that improves on the well-known 5- and 8-point methods.

  17. The Effect of Systematic Error in Forced Oscillation Testing

    NASA Technical Reports Server (NTRS)

    Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.

    2012-01-01

    One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.

  18. GOMOS data characterization and error estimation

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Kyrölä, E.; Sofieva, V. F.; Laine, M.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton-D'Andon, O.; Barrot, G.; Mangin, A.; Guirlet, M.; Blanot, L.; Fehr, T.; Saavedra de Miguel, L.; Fraisse, R.

    2010-03-01

    The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation technique for monitoring ozone and other trace gases in the stratosphere and mesosphere. The self-calibrating measurement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required, provides excellent possibilities for long term monitoring of atmospheric composition. GOMOS uses about 180 brightest stars as the light source. Depending on the individual spectral characteristics of the stars, the signal-to-noise ratio of GOMOS is changing from star to star, resulting also varying accuracy to the retrieved profiles. We present the overview of the GOMOS data characterization and error estimation, including modeling errors, for ozone, NO2, NO3 and aerosol profiles. The retrieval error (precision) of the night time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Mesospheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are the incompletely corrected atmospheric turbulence causing scintillation, inaccurate aerosol modeling, uncertainties in cross sections of the trace gases and in the atmospheric temperature. The sampling resolution of GOMOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre-defined target resolution requirement is applied leading to 2-3 km resolution for ozone and 4 km resolution for other trace gases.

  19. GOMOS data characterisation and error estimation

    NASA Astrophysics Data System (ADS)

    Tamminen, J.; Kyrölä, E.; Sofieva, V. F.; Laine, M.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton-D'Andon, O.; Barrot, G.; Mangin, A.; Guirlet, M.; Blanot, L.; Fehr, T.; Saavedra de Miguel, L.; Fraisse, R.

    2010-10-01

    The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation technique for monitoring ozone, other trace gases and aerosols in the stratosphere and mesosphere. The self-calibrating measurement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required provides excellent possibilities for long-term monitoring of atmospheric composition. GOMOS uses about 180 of the brightest stars as its light source. Depending on the individual spectral characteristics of the stars, the signal-to-noise ratio of GOMOS varies from star to star, resulting also in varying accuracy of retrieved profiles. We present here an overview of the GOMOS data characterisation and error estimation, including modeling errors, for O3, NO2, NO3, and aerosol profiles. The retrieval error (precision) of night-time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Mesospheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are incompletely corrected scintillation, inaccurate aerosol modeling, uncertainties in cross sections of trace gases and in atmospheric temperature. The sampling resolution of GOMOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre-defined target resolution requirement is applied leading to 2-3 km vertical resolution for ozone and 4 km resolution for other trace gases and aerosols.

  20. Weak gravitational lensing systematic errors in the dark energy survey

    NASA Astrophysics Data System (ADS)

    Plazas, Andres Alejandro

    Dark energy is one of the most important unsolved problems in modern Physics, and weak gravitational lensing (WL) by mass structures along the line of sight ("cosmic shear") is a promising technique to learn more about its nature. However, WL is subject to numerous systematic errors which induce biases in measured cosmological parameters and prevent the development of its full potential. In this thesis, we advance the understanding of WL systematics in the context of the Dark Energy Survey (DES). We develop a testing suite to assess the performance of the shapelet-based DES WL measurement pipeline. We determine that the measurement bias of the parameters of our Point Spread Function (PSF) model scales as (S/N )-2, implying that a PSF S/N > 75 is needed to satisfy DES requirements. PSF anisotropy suppression also satisfies the requirements for source galaxies with S/N ≳ 45. For low-noise, marginally-resolved exponential galaxies, the shear calibration errors are up to about 0.06% (for shear values ≲ 0.075). Galaxies with S/N ≳ 75 present about 1% errors, sufficient for first-year DES data. However, more work is needed to satisfy full-area DES requirements, especially in the high-noise regime. We then implement tests to validate the high accuracy of the map between pixel coordinates and sky coordinates (astrometric solution), which is crucial to detect the required number of galaxies for WL in stacked images. We also study the effect of atmospheric dispersion on cosmic shear experiments such as DES and the Large Synoptic Survey Telescope (LSST) in the four griz bands. For DES (LSST), we find systematics in the g and r (g, r, and i) bands that are larger than required. We find that a simple linear correction in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r ( i) band for DES (LSST). More complex corrections will likely reduce the systematic cosmic-shear errors below statistical errors for LSST r band

  1. Gap filling strategies and error in estimating annual soil respiration.

    PubMed

    Gomez-Casanovas, Nuria; Anderson-Teixeira, Kristina; Zeri, Marcelo; Bernacchi, Carl J; DeLucia, Evan H

    2013-06-01

    Soil respiration (Rsoil ) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap filling of automated records to produce a complete time series. Although many gap filling methodologies have been employed, there is no standardized procedure for producing defensible estimates of annual Rsoil . Here, we test the reliability of nine different gap filling techniques by inserting artificial gaps into 20 automated Rsoil records and comparing gap filling Rsoil estimates of each technique to measured values. We show that although the most commonly used techniques do not, on average, produce large systematic biases, gap filling accuracy may be significantly improved through application of the most reliable methods. All methods performed best at lower gap fractions and had relatively high, systematic errors for simulated survey measurements. Overall, the most accurate technique estimated Rsoil based on the soil temperature dependence of Rsoil by assuming constant temperature sensitivity and linearly interpolating reference respiration (Rsoil at 10 °C) across gaps. The linear interpolation method was the second best-performing method. In contrast, estimating Rsoil based on a single annual Rsoil - Tsoil relationship, which is currently the most commonly used technique, was among the most poorly-performing methods. Thus, our analysis demonstrates that gap filling accuracy may be improved substantially without sacrificing computational simplicity. Improved and standardized techniques for estimation of annual Rsoil will be valuable for understanding the role of Rsoil in the global C cycle. PMID:23504959

  2. Spatial reasoning in the treatment of systematic sensor errors

    SciTech Connect

    Beckerman, M.; Jones, J.P.; Mann, R.C.; Farkas, L.A.; Johnston, S.E.

    1988-01-01

    In processing ultrasonic and visual sensor data acquired by mobile robots systematic errors can occur. The sonar errors include distortions in size and surface orientation due to the beam resolution, and false echoes. The vision errors include, among others, ambiguities in discriminating depth discontinuities from intensity gradients generated by variations in surface brightness. In this paper we present a methodology for the removal of systematic errors using data from the sonar sensor domain to guide the processing of information in the vision domain, and vice versa. During the sonar data processing some errors are removed from 2D navigation maps through pattern analyses and consistent-labelling conditions, using spatial reasoning about the sonar beam and object characteristics. Others are removed using visual information. In the vision data processing vertical edge segments are extracted using a Canny-like algorithm, and are labelled. Object edge features are then constructed from the segments using statistical and spatial analyses. A least-squares method is used during the statistical analysis, and sonar range data are used in the spatial analysis. 7 refs., 10 figs.

  3. SYSTEMATIC CONTINUUM ERRORS IN THE Ly{alpha} FOREST AND THE MEASURED TEMPERATURE-DENSITY RELATION

    SciTech Connect

    Lee, Khee-Gan

    2012-07-10

    Continuum fitting uncertainties are a major source of error in estimates of the temperature-density relation (usually parameterized as a power-law, T {proportional_to} {Delta}{sup {gamma}-1}) of the intergalactic medium through the flux probability distribution function (PDF) of the Ly{alpha} forest. Using a simple order-of-magnitude calculation, we show that few percent-level systematic errors in the placement of the quasar continuum due to, e.g., a uniform low-absorption Gunn-Peterson component could lead to errors in {gamma} of the order of unity. This is quantified further using a simple semi-analytic model of the Ly{alpha} forest flux PDF. We find that under(over)estimates in the continuum level can lead to a lower (higher) measured value of {gamma}. By fitting models to mock data realizations generated with current observational errors, we find that continuum errors can cause a systematic bias in the estimated temperature-density relation of ({delta}({gamma})) Almost-Equal-To -0.1, while the error is increased to {sigma}{sub {gamma}} Almost-Equal-To 0.2 compared to {sigma}{sub {gamma}} Almost-Equal-To 0.1 in the absence of continuum errors.

  4. Systematic error of lidar profiles caused by a polarization-dependent receiver transmission: quantification and error correction scheme.

    PubMed

    Mattis, Ina; Tesche, Matthias; Grein, Matthias; Freudenthaler, Volker; Müller, Detlef

    2009-05-10

    Signals of many types of aerosol lidars can be affected with a significant systematic error, if depolarizing scatterers are present in the atmosphere. That error is caused by a polarization-dependent receiver transmission. In this contribution we present an estimation of the magnitude of this systematic error. We show that lidar signals can be biased by more than 20%, if linearly polarized laser light is emitted, if both polarization components of the backscattered light are measured with a single detection channel, and if the receiver transmissions for these two polarization components differ by more than 50%. This signal bias increases with increasing ratio between the two transmission values (transmission ratio) or with the volume depolarization ratio of the scatterers. The resulting error of the particle backscatter coefficient increases with decreasing backscatter ratio. If the particle backscatter coefficients are to have an accuracy better than 5%, the transmission ratio has to be in the range between 0.85 and 1.15. We present a method to correct the measured signals for this bias. We demonstrate an experimental method for the determination of the transmission ratio. We use collocated measurements of a lidar system strongly affected by this signal bias and an unbiased reference system to verify the applicability of the correction scheme. The errors in the case of no correction are illustrated with example measurements of fresh Saharan dust. PMID:19424398

  5. Systematic Errors of the Fsu Global Spectral Model

    NASA Astrophysics Data System (ADS)

    Surgi, Naomi

    Three 20 day winter forecasts have been carried out using the Florida State University Global Spectral Model to examine the systematic errors of the model. Most GCM's and global forecast models exhibit the same kind of error patterns even though the model formulations vary somewhat between them. Some of the dominant errors are a breakdown of the trade winds in the low latitudes, an over-prediction of the subtropical jets accompanied by an upward and poleward shift of the jets, an error in the mean sea-level pressure with over-intensification of the quasi-stationary oceanic lows and continental highs and a warming of the tropical mid and upper troposphere. In this study, a number of sensitivity experiments have been performed for which orography, model physics and initialization are considered as possible causes of these errors. A parameterization of the vertical distribution of momentum due to the sub-grid scale orography has been implemented in the model to address the model deficiencies associated with orographic forcing. This scheme incorporates the effects of moisture on the wave induced stress. The parameterization of gravity wave drag is shown to substantially reduce the large-scale wind and height errors in regions of direct forcing and well downstream of the mountainous regions. Also, a parameterization of the heat and moisture transport associated with shallow convection is found to have a positive impact on the errors particularly in the tropics. This is accomplished by the increase of moisture supply from the subtropics into the deep tropics and a subsequent enhancement of the secondary circulations. A dynamic relaxation was carried out to examine the impact of the long wave errors on the shorter wave. By constraining the long wave error, improvement is shown for wavenumbers 5-7 on medium to extended range time intervals. Thus, improved predictability of the transient flow is expected by applying this initialization procedure.

  6. From Systematic Errors to Cosmology Using Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Hunterer, Dragan

    We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".

  7. Model error estimation and correction by solving a inverse problem

    NASA Astrophysics Data System (ADS)

    Xue, Haile

    2016-04-01

    Nowadays, the weather forecasts and climate predictions are increasingly relied on numerical models. Yet, errors inevitably exist in model due to the imperfect numeric and parameterizations. From the practical point of view, model correction is an efficient strategy. Despite of the different complexity of forecast error correction algorithms, the general idea is to estimate the forecast errors by considering the NWP as a direct problem. Chou (1974) suggested an alternative view by considering the NWP as an inverse problem. The model error tendency term (ME) due to the model deficiency is assumed as an unknown term in NWP model, which can be discretized into short intervals (for example 6 hour) and considered as a constant or linear form in each interval. Given the past re-analyses and NWP model, the discretized MEs in the past intervals can be solved iteratively as a constant or linear-increased tendency term in each interval. These MEs can be further used as the online corrections. In this study, an iterative method for obtaining the MEs in past intervals was presented, and its convergence had been confirmed with sets of experiments in the global forecast system of the Global and Regional Assimilation and Prediction System (GRAPES-GFS) for July-August (JA) 2009 and January-February (JF) 2010. Then these MEs were used to get online model corretions based of systematic errors of GRAPES-GFS for July 2009 and January 2010. The data sets associated with initial condition and sea surface temperature (SST) used in this study are both based on NCEP final (FNL) data. According to the iterative numerical experiments, the following key conclusions can be drawn:(1) Batches of iteration test results indicated that the hour 6 forecast errors were reduced to 10% of their original value after 20 steps of iteration.(2) By offlinely comparing the error corrections estimated by MEs to the mean forecast errors, the patterns of estimated errors were considered to agree well with those

  8. Quantifying Error in the CMORPH Satellite Precipitation Estimates

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yoo, S.; Xie, P.

    2010-12-01

    As part of the collaboration between China Meteorological Administration (CMA) National Meteorological Information Centre (NMIC) and NOAA Climate Prediction Center (CPC), a new system is being developed to construct hourly precipitation analysis on a 0.25olat/lon grid over China by merging information derived from gauge observations and CMORPH satellite precipitation estimates. Foundation to the development of the gauge-satellite merging algorithm is the definition of the systematic and random error inherent in the CMORPH satellite precipitation estimates. In this study, we quantify the CMORPH error structures through comparisons against a gauge-based analysis of hourly precipitation derived from station reports from a dense network over China. First, systematic error (bias) of the CMORPH satellite estimates are examined with co-located hourly gauge precipitation analysis over 0.25olat/lon grid boxes with at least one reporting station. The CMORPH exhibits biases of regional variations showing over-estimates over eastern China, and seasonal changes with over-/under-estimates during warm/cold seasons. The CMORPH bias presents range-dependency. In general, the CMORPH tends to over-/under-estimate weak / strong rainfall. The bias, when expressed in the form of ratio between the gauge observations and the CMORPH satellite estimates, increases with the rainfall intensity but tends to saturate at a certain level for high rainfall. Based on the above results, a prototype algorithm is developed to remove the CMORPH bias through matching the PDF of original CMORPH estimates against that of the gauge analysis using data pairs co-located over grid boxes with at least one reporting gauge over a 30-day period ending at the target date. The spatial domain for collecting the co-located data pairs is expanded so that at least 5000 pairs of data are available to ensure statistical availability. The bias-corrected CMORPH is then compared against the gauge data to quantify the

  9. Estimation of discretization errors in contact pressure measurements.

    PubMed

    Fregly, Benjamin J; Sawyer, W Gregory

    2003-04-01

    Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical. PMID:12600352

  10. ON THE ESTIMATION OF SYSTEMATIC UNCERTAINTIES OF STAR FORMATION HISTORIES

    SciTech Connect

    Dolphin, Andrew E.

    2012-05-20

    In most star formation history (SFH) measurements, the reported uncertainties are those due to effects whose sizes can be readily measured: Poisson noise, adopted distance and extinction, and binning choices in the solution itself. However, the largest source of error, systematics in the adopted isochrones, is usually ignored and very rarely explicitly incorporated into the uncertainties. I propose a process by which estimates of the uncertainties due to evolutionary models can be incorporated into the SFH uncertainties. This process relies on application of shifts in temperature and luminosity, the sizes of which must be calibrated for the data being analyzed. While there are inherent limitations, the ability to estimate the effect of systematic errors and include them in the overall uncertainty is significant. The effects of this are most notable in the case of shallow photometry, with which SFH measurements rely on evolved stars.

  11. High-dimensional bolstered error estimation

    PubMed Central

    Sima, Chao; Braga-Neto, Ulisses M.; Dougherty, Edward R.

    2011-01-01

    Motivation: In small-sample settings, bolstered error estimation has been shown to perform better than cross-validation and competitively with bootstrap with regard to various criteria. The key issue for bolstering performance is the variance setting for the bolstering kernel. Heretofore, this variance has been determined in a non-parametric manner from the data. Although bolstering based on this variance setting works well for small feature sets, results can deteriorate for high-dimensional feature spaces. Results: This article computes an optimal kernel variance depending on the classification rule, sample size, model and feature space, both the original number and the number remaining after feature selection. A key point is that the optimal variance is robust relative to the model. This allows us to develop a method for selecting a suitable variance to use in real-world applications where the model is not known, but the other factors in determining the optimal kernel are known. Availability: Companion website at http://compbio.tgen.org/paper_supp/high_dim_bolstering Contact: edward@mail.ece.tamu.edu PMID:21914630

  12. A posteriori pointwise error estimates for the boundary element method

    SciTech Connect

    Paulino, G.H.; Gray, L.J.; Zarikian, V.

    1995-01-01

    This report presents a new approach for a posteriori pointwise error estimation in the boundary element method. The estimator relies upon the evaluation of hypersingular integral equations, and is therefore intrinsic to the boundary integral equation approach. This property allows some theoretical justification by mathematically correlating the exact and estimated errors. A methodology is developed for approximating the error on the boundary as well as in the interior of the domain. In the interior, error estimates for both the function and its derivatives (e.g. potential and interior gradients for potential problems, displacements and stresses for elasticity problems) are presented. Extensive computational experiments have been performed for the two dimensional Laplace equation on interior domains, employing Dirichlet and mixed boundary conditions. The results indicate that the error estimates successfully track the form of the exact error curve. Moreover, a reasonable estimate of the magnitude of the actual error is also obtained.

  13. Estimating IMU heading error from SAR images.

    SciTech Connect

    Doerry, Armin Walter

    2009-03-01

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  14. Analysis and Correction of Systematic Height Model Errors

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.

    2016-06-01

    The geometry of digital height models (DHM) determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC). Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3) has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP), but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM) digital surface model (DSM) or the new AW3D30 DSM, based on ALOS PRISM images, are

  15. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  16. A Note on Confidence Interval Estimation and Margin of Error

    ERIC Educational Resources Information Center

    Gilliland, Dennis; Melfi, Vince

    2010-01-01

    Confidence interval estimation is a fundamental technique in statistical inference. Margin of error is used to delimit the error in estimation. Dispelling misinterpretations that teachers and students give to these terms is important. In this note, we give examples of the confusion that can arise in regard to confidence interval estimation and…

  17. Minimizing systematic errors in phytoplankton pigment concentration derived from satellite ocean color measurements

    SciTech Connect

    Martin, D.L.

    1992-01-01

    Water-leaving radiances and phytoplankton pigment concentrations are calculated from Coastal Zone Color Scanner (CZCS) total radiance measurements by separating atmospheric Rayleigh and aerosol radiances from the total radiance signal measured at the satellite. Multiple scattering interactions between Rayleigh and aerosol components together with other meteorologically-moderated radiances cause systematic errors in calculated water-leaving radiances and produce errors in retrieved phytoplankton pigment concentrations. This thesis developed techniques which minimize the effects of these systematic errors in Level IIA CZCS imagery. Results of previous radiative transfer modeling by Gordon and Castano are extended to predict the pixel-specific magnitude of systematic errors caused by Rayleigh-aerosol multiple scattering interactions. CZCS orbital passes in which the ocean is viewed through a modeled, physically realistic atmosphere are simulated mathematically and radiance-retrieval errors are calculated for a range of aerosol optical depths. Pixels which exceed an error threshold in the simulated CZCS image are rejected in a corresponding actual image. Meteorological phenomena also cause artifactual errors in CZCS-derived phytoplankton pigment concentration imagery. Unless data contaminated with these effects are masked and excluded from analysis, they will be interpreted as containing valid biological information and will contribute significantly to erroneous estimates of phytoplankton temporal and spatial variability. A method is developed which minimizes these errors through a sequence of quality-control procedures including the calculation of variable cloud-threshold radiances, the computation of the extent of electronic overshoot from bright reflectors, and the imposition of a buffer zone around clouds to exclude contaminated data.

  18. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  19. Estimation of Model Error Variances During Data Assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick

    2003-01-01

    Data assimilation is all about understanding the error characteristics of the data and models that are used in the assimilation process. Reliable error estimates are needed to implement observational quality control, bias correction of observations and model fields, and intelligent data selection. Meaningful covariance specifications are obviously required for the analysis as well, since the impact of any single observation strongly depends on the assumed structure of the background errors. Operational atmospheric data assimilation systems still rely primarily on climatological background error covariances. To obtain error estimates that reflect both the character of the flow and the current state of the observing system, it is necessary to solve three problems: (1) how to account for the short-term evolution of errors in the initial conditions; (2) how to estimate the additional component of error caused by model defects; and (3) how to compute the error reduction in the analysis due to observational information. Various approaches are now available that provide approximate solutions to the first and third of these problems. However, the useful accuracy of these solutions very much depends on the size and character of the model errors and the ability to account for them. Model errors represent the real-world forcing of the error evolution in a data assimilation system. Clearly, meaningful model error estimates and/or statistics must be based on information external to the model itself. The most obvious information source is observational, and since the volume of available geophysical data is growing rapidly, there is some hope that a purely statistical approach to model error estimation can be viable. This requires that the observation errors themselves are well understood and quantifiable. We will discuss some of these challenges and present a new sequential scheme for estimating model error variances from observations in the context of an atmospheric data

  20. Semiclassical Dynamicswith Exponentially Small Error Estimates

    NASA Astrophysics Data System (ADS)

    Hagedorn, George A.; Joye, Alain

    We construct approximate solutions to the time-dependent Schrödingerequation for small values of ħ. If V satisfies appropriate analyticity and growth hypotheses and , these solutions agree with exact solutions up to errors whose norms are bounded by for some C and γ>0. Under more restrictive hypotheses, we prove that for sufficiently small T', implies the norms of the errors are bounded by for some C', γ'>0, and σ > 0.

  1. TRAINING ERRORS AND RUNNING RELATED INJURIES: A SYSTEMATIC REVIEW

    PubMed Central

    Buist, Ida; Sørensen, Henrik; Lind, Martin; Rasmussen, Sten

    2012-01-01

    Purpose: The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries. Methods: A systematic search was performed in PubMed, Web of Science, Embase, and SportDiscus. Studies were included if they examined novice, recreational, or elite runners between the ages of 18 and 65. Exposure variables were training characteristics defined as volume, distance or mileage, time or duration, frequency, intensity, speed or pace, or similar terms. The outcome of interest was Running Related Injuries (RRI) in general or specific RRI in the lower extremity or lower back. Methodological quality was evaluated using quality assessment tools of 11 to 16 items. Results: After examining 4561 titles and abstracts, 63 articles were identified as potentially relevant. Finally, nine retrospective cohort studies, 13 prospective cohort studies, six case-control studies, and three randomized controlled trials were included. The mean quality score was 44.1%. Conflicting results were reported on the relationships between volume, duration, intensity, and frequency and RRI. Conclusion: It was not possible to identify which training errors were related to running related injuries. Still, well supported data on which training errors relate to or cause running related injuries is highly important for determining proper prevention strategies. If methodological limitations in measuring training variables can be resolved, more work can be conducted to define training and the interactions between different training variables, create several hypotheses, test the hypotheses in a large scale prospective study, and explore cause and effect relationships in randomized controlled trials. Level of evidence: 2a PMID:22389869

  2. Estimating errors in least-squares fitting

    NASA Technical Reports Server (NTRS)

    Richter, P. H.

    1995-01-01

    While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.

  3. Using Laser Scanners to Augment the Systematic Error Pointing Model

    NASA Astrophysics Data System (ADS)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  4. Using ridge regression in systematic pointing error corrections

    NASA Technical Reports Server (NTRS)

    Guiar, C. N.

    1988-01-01

    A pointing error model is used in the antenna calibration process. Data from spacecraft or radio star observations are used to determine the parameters in the model. However, the regression variables are not truly independent, displaying a condition known as multicollinearity. Ridge regression, a biased estimation technique, is used to combat the multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking (days 105 and 106 of 1987) were analyzed using both linear least squares and ridge regression methods. The advantages and limitations of employing the technique are presented. The problem is not yet fully resolved.

  5. Systematic lossy error protection for video transmission over wireless ad hoc networks

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqing; Rane, Shantanu; Girod, Bernd

    2005-07-01

    Wireless ad hoc networks present a challenge for error-resilient video transmission, since node mobility and multipath fading result in time-varying link qualities in terms of packet loss ratio and available bandwidth. In this paper, we propose to use a systematic lossy error protection (SLEP) scheme for video transmission over wireless ad hoc networks. The transmitted video signal has two parts-a systematic portion consisting of a video sequence transmitted without channel coding over an error-prone channel, and error protection information consisting of a bitstream generated by Wyner-Ziv encoding of the video sequence. Using an end-to-end video distortion model in conjunction with online estimates of packet loss ratio and available bandwidth, the optimal Wyner-Ziv description can be selected dynamically according to current channel conditions. The scheme can also be applied to choose one path for transmission from amongst multiple candidate routes with varying available bandwidths and packet loss ratios, so that the expected end-to-end video distortion is maximized. Experimental results of video transmission over a simulated ad hoc wireless network shows that the proposed SLEP scheme outperforms the conventional application layer FEC approach in that it provides graceful degradation of received video quality over a wider range of packet loss ratios and is less susceptible to inaccuracy in the packet loss ratio estimation.

  6. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  7. Finite element error estimation and adaptivity based on projected stresses

    SciTech Connect

    Jung, J.

    1990-08-01

    This report investigates the behavior of a family of finite element error estimators based on projected stresses, i.e., continuous stresses that are a least squared error fit to the conventional Gauss point stresses. An error estimate based on element force equilibrium appears to be quite effective. Examples of adaptive mesh refinement for a one-dimensional problem are presented. Plans for two-dimensional adaptivity are discussed. 12 refs., 82 figs.

  8. Error Estimation for Reduced Order Models of Dynamical Systems

    SciTech Connect

    Homescu, C; Petzold, L; Serban, R

    2004-01-22

    The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of small sample statistical condition estimation and error estimation using the adjoint method. Most importantly, the proposed approach allows the assessment of regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

  9. Parameter estimation and error analysis in environmental modeling and computation

    NASA Technical Reports Server (NTRS)

    Kalmaz, E. E.

    1986-01-01

    A method for the estimation of parameters and error analysis in the development of nonlinear modeling for environmental impact assessment studies is presented. The modular computer program can interactively fit different nonlinear models to the same set of data, dynamically changing the error structure associated with observed values. Parameter estimation techniques and sequential estimation algorithms employed in parameter identification and model selection are first discussed. Then, least-square parameter estimation procedures are formulated, utilizing differential or integrated equations, and are used to define a model for association of error with experimentally observed data.

  10. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  11. Preliminary estimates of radiosonde thermistor errors

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Luers, J. K.; Huffman, P. D.

    1986-01-01

    Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument.

  12. Minor Planet Observations to Identify Reference System Systematic Errors

    NASA Astrophysics Data System (ADS)

    Hemenway, Paul D.; Duncombe, R. L.; Castelaz, M. W.

    2011-04-01

    In the 1930's Brouwer proposed using minor planets to correct the Fundamental System of celestial coordinates. Since then, many projects have used or proposed to use visual, photographic, photo detector, and space based observations to that end. From 1978 to 1990, a project was undertaken at the University of Texas utilizing the long focus and attendant advantageous plate scale (c. 7.37"/mm) of the 2.1m Otto Struve reflector's Cassegrain focus. The project followed precepts given in 1979. The program had several potential advantages over previous programs including high inclination orbits to cover half the celestial sphere, and, following Kristensen, the use of crossing points to remove entirely systematic star position errors from some observations. More than 1000 plates were obtained of 34 minor planets as part of this project. In July 2010 McDonald Observatory donated the plates to the Pisgah Astronomical Research Institute (PARI) in North Carolina. PARI is in the process of renovating the Space Telescope Science Institute GAMMA II modified PDS microdensitometer to scan the plates in the archives. We plan to scan the minor planet plates, reduce the plates to the densified ICRS using the UCAC4 positions (or the best available positions at the time of the reductions), and then determine the utility of attempting to find significant systematic corrections. Here we report the current status of various aspects of the project. Support from the National Science Foundation in the last millennium is gratefully acknowledged, as is help from Judit Ries and Wayne Green in packing and transporting the plates.

  13. A-posteriori error estimation for second order mechanical systems

    NASA Astrophysics Data System (ADS)

    Ruiner, Thomas; Fehr, Jörg; Haasdonk, Bernard; Eberhard, Peter

    2012-06-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom. As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important. In this work, an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems. Due to the special second order structure of mechanical systems, an improvement of the a-posteriori error estimator is achieved. A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique. Therefore, it can be used for moment-matching based, Gramian matrices based or modal based model reduction techniques. The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system, and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  14. Approaches to relativistic positioning around Earth and error estimations

    NASA Astrophysics Data System (ADS)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  15. Estimates of Random Error in Satellite Rainfall Averages

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.

    2003-01-01

    Satellite rain estimates are most accurate when obtained with microwave instruments on low earth-orbiting satellites. Estimation of daily or monthly total areal rainfall, typically of interest to hydrologists and climate researchers, is made difficult, however, by the relatively poor coverage generally available from such satellites. Intermittent coverage by the satellites leads to random "sampling error" in the satellite products. The inexact information about hydrometeors inferred from microwave data also leads to random "retrieval errors" in the rain estimates. In this talk we will review approaches to quantitative estimation of the sampling error in area/time averages of satellite rain retrievals using ground-based observations, and methods of estimating rms random error, both sampling and retrieval, in averages using satellite measurements themselves.

  16. Systematics for checking geometric errors in CNC lathes

    NASA Astrophysics Data System (ADS)

    Araújo, R. P.; Rolim, T. L.

    2015-10-01

    Non-idealities presented in machine tools compromise directly both the geometry and the dimensions of machined parts, generating distortions in the project. Given the competitive scenario among different companies, it is necessary to have knowledge of the geometric behavior of these machines in order to be able to establish their processing capability, avoiding waste of time and materials as well as satisfying customer requirements. But despite the fact that geometric tests are important and necessary to clarify the use of the machine correctly, therefore preventing future damage, most users do not apply such tests on their machines for lack of knowledge or lack of proper motivation, basically due to two factors: long period of time and high costs of testing. This work proposes a systematics for checking straightness and perpendicularity errors in CNC lathes demanding little time and cost with high metrological reliability, to be used on factory floors of small and medium-size businesses to ensure the quality of its products and make them competitive.

  17. Systematic errors in two-dimensional digital image correlation due to lens distortion

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Yu, Liping; Wu, Dafang; Tang, Liqun

    2013-02-01

    Lens distortion practically presents in a real optical imaging system causing non-uniform geometric distortion in the recorded images, and gives rise to additional errors in the displacement and strain results measured by two-dimensional digital image correlation (2D-DIC). In this work, the systematic errors in the displacement and strain results measured by 2D-DIC due to lens distortion are investigated theoretically using the radial lens distortion model and experimentally through easy-to-implement rigid body, in-plane translation tests. Theoretical analysis shows that the displacement and strain errors at an interrogated image point are not only in linear proportion to the distortion coefficient of the camera lens used, but also depend on its distance relative to distortion center and its magnitude of displacement. To eliminate the systematic errors caused by lens distortion, a simple linear least-squares algorithm is proposed to estimate the distortion coefficient from the distorted displacement results of rigid body, in-plane translation tests, which can be used to correct the distorted displacement fields to obtain unbiased displacement and strain fields. Experimental results verify the correctness of the theoretical derivation and the effectiveness of the proposed lens distortion correction method.

  18. Systematic Error in UAV-derived Topographic Models: The Importance of Control

    NASA Astrophysics Data System (ADS)

    James, M. R.; Robson, S.; d'Oleire-Oltmanns, S.

    2014-12-01

    UAVs equipped with consumer cameras are increasingly being used to produce high resolution digital elevation models (DEMs) for a wide variety of geoscience applications. Image processing and DEM-generation is being facilitated by parallel increases in the use of software based on 'structure from motion' algorithms. However, recent work [1] has demonstrated that image networks from UAVs, for which camera pointing directions are generally near-parallel, are susceptible to producing systematic error in the resulting topographic surfaces (a vertical 'doming'). This issue primarily reflects error in the camera lens distortion model, which is dominated by the radial K1 term. Common data processing scenarios, in which self-calibration is used to refine the camera model within the bundle adjustment, can inherently result in such systematic error via poor K1 estimates. Incorporating oblique imagery into such data sets can mitigate error by enabling more accurate calculation of camera parameters [1]. Here, using a combination of simulated image networks and real imagery collected from a fixed wing UAV, we explore the additional roles of external ground control and the precision of image measurements. We illustrate similarities and differences between a variety of structure from motion software, and underscore the importance of well distributed and suitably accurate control for projects where a demonstrated high accuracy is required. [1] James & Robson (2014) Earth Surf. Proc. Landforms, 39, 1413-1420, doi: 10.1002/esp.3609

  19. A study of systematic errors in the PMD CamBoard nano

    NASA Astrophysics Data System (ADS)

    Chow, Jacky C. K.; Lichti, Derek D.

    2013-04-01

    Time-of-flight-based three-dimensional cameras are the state-of-the-art imaging modality for acquiring rapid 3D position information. Unlike any other technology on the market, it can deliver 2D images co-located with distance information at every pixel location, without any shadows. Recent technological advancements have begun miniaturizing such technology to be more suitable for laptops and eventually cellphones. This paper explores the systematic errors inherent to the new PMD CamBoard nano camera. As the world's most compact 3D time-of-flight camera it has applications in a wide domain, such as gesture control and facial recognition. To model the systematic errors, a one-step point-based and plane-based bundle adjustment method is used. It simultaneously estimates all systematic errors and unknown parameters by minimizing the residuals of image measurements, distance measurements, and amplitude measurements in a least-squares sense. The presented self-calibration method only requires a standard checkerboard target on a flat plane, making it a suitable candidate for on-site calibration. In addition, because distances are only constrained to lie on a plane, the raw pixel-by-pixel distance observations can be used. This makes it possible to increase the number of distance observations in the adjustment with ease. The results from this paper indicate that amplitude dependent range errors are the dominant error source for the nano under low scattering imaging configurations. Post user self-calibration, the RMSE of the range observations reduced by almost 50%, delivering range measurements at a precision of approximately 2.5cm within a 70cm interval.

  20. Error Estimates for Generalized Barycentric Interpolation

    PubMed Central

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2011-01-01

    We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions. PMID:23338826

  1. Error Estimates for Generalized Barycentric Interpolation.

    PubMed

    Gillette, Andrew; Rand, Alexander; Bajaj, Chandrajit

    2012-10-01

    We prove the optimal convergence estimate for first order interpolants used in finite element methods based on three major approaches for generalizing barycentric interpolation functions to convex planar polygonal domains. The Wachspress approach explicitly constructs rational functions, the Sibson approach uses Voronoi diagrams on the vertices of the polygon to define the functions, and the Harmonic approach defines the functions as the solution of a PDE. We show that given certain conditions on the geometry of the polygon, each of these constructions can obtain the optimal convergence estimate. In particular, we show that the well-known maximum interior angle condition required for interpolants over triangles is still required for Wachspress functions but not for Sibson functions. PMID:23338826

  2. Systematic vertical error in UAV-derived topographic models: Origins and solutions

    NASA Astrophysics Data System (ADS)

    James, Mike R.; Robson, Stuart

    2014-05-01

    Unmanned aerial vehicles (UAVs) equipped with consumer cameras are increasingly being used to produce high resolution digital elevation models (DEMs). However, although such DEMs may achieve centimetric detail, they can also display broad-scale systematic deformation (usually a vertical 'doming') that restricts their wider use. This effect can be particularly apparent in DEMs derived by structure-from-motion (SfM) processing, especially when control point data have not been incorporated in the bundle adjustment process. We illustrate that doming error results from a combination of inaccurate description of radial lens distortion and the use of imagery captured in near-parallel viewing directions. With such imagery, enabling camera self-calibration within the processing inherently leads to erroneous radial distortion values and associated DEM error. Using a simulation approach, we illustrate how existing understanding of systematic DEM error in stereo-pairs (from unaccounted radial distortion) up-scales in typical multiple-image blocks of UAV surveys. For image sets with dominantly parallel viewing directions, self-calibrating bundle adjustment (as normally used with images taken using consumer cameras) will not be able to derive radial lens distortion accurately, and will give associated systematic 'doming' DEM deformation. In the presence of image measurement noise (at levels characteristic of SfM software), and in the absence of control measurements, our simulations display domed deformation with amplitude of ~2 m over horizontal distances of ~100 m. We illustrate the sensitivity of this effect to variations in camera angle and flight height. Deformation will be reduced if suitable control points can be included within the bundle adjustment, but residual systematic vertical error may remain, accommodated by the estimated precision of the control measurements. Doming bias can be minimised by the inclusion of inclined images within the image set, for example

  3. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  4. Nonparametric Item Response Curve Estimation with Correction for Measurement Error

    ERIC Educational Resources Information Center

    Guo, Hongwen; Sinharay, Sandip

    2011-01-01

    Nonparametric or kernel regression estimation of item response curves (IRCs) is often used in item analysis in testing programs. These estimates are biased when the observed scores are used as the regressor because the observed scores are contaminated by measurement error. Accuracy of this estimation is a concern theoretically and operationally.…

  5. Systematic Biases in Human Heading Estimation

    PubMed Central

    Cuturi, Luigi F.; MacNeilage, Paul R.

    2013-01-01

    Heading estimation is vital to everyday navigation and locomotion. Despite extensive behavioral and physiological research on both visual and vestibular heading estimation over more than two decades, the accuracy of heading estimation has not yet been systematically evaluated. Therefore human visual and vestibular heading estimation was assessed in the horizontal plane using a motion platform and stereo visual display. Heading angle was overestimated during forward movements and underestimated during backward movements in response to both visual and vestibular stimuli, indicating an overall multimodal bias toward lateral directions. Lateral biases are consistent with the overrepresentation of lateral preferred directions observed in neural populations that carry visual and vestibular heading information, including MSTd and otolith afferent populations. Due to this overrepresentation, population vector decoding yields patterns of bias remarkably similar to those observed behaviorally. Lateral biases are inconsistent with standard Bayesian accounts which predict that estimates should be biased toward the most common straight forward heading direction. Nevertheless, lateral biases may be functionally relevant. They effectively constitute a perceptual scale expansion around straight ahead which could allow for more precise estimation and provide a high gain feedback signal to facilitate maintenance of straight-forward heading during everyday navigation and locomotion. PMID:23457631

  6. Error magnitude estimation in model-reference adaptive systems

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1975-01-01

    A second order approximation is derived from a linearized error characteristic equation for Lyapunov designed model-reference adaptive systems and is used to estimate the maximum error between the model and plant states, and the time to reach this peak following a plant perturbation. The results are applicable in the analysis of plants containing magnitude-dependent nonlinearities.

  7. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  8. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  9. Improving SMOS retrieved salinity: characterization of systematic errors in reconstructed and modelled brightness temperature images

    NASA Astrophysics Data System (ADS)

    Gourrion, J.; Guimbard, S.; Sabia, R.; Portabella, M.; Gonzalez, V.; Turiel, A.; Ballabrera, J.; Gabarro, C.; Perez, F.; Martinez, J.

    2012-04-01

    boundaries such as the Sky-Earth boundary. Data acquired over the Ocean rather than over Land are prefered to characterize such errors because the variability of the emissivity sensed over the oceanic domain is an order of magnitude smaller than over land. Nevertheless, characterizing such errors over the Ocean is not a trivial task. Even if the natural variability is small, it is larger than the errors to be characterized and the characterization strategy must account for it otherwise the estimated patterns will unfortunately vary significantly with the selected dataset. The communication will present results on a systematic error characterization methodology allowing stable error pattern estimates. Particular focus will be given to the critical data selection strategy and the analysis of the X- and Y-pol patterns obtained over a wide range of SMOS subdatasets. Impact of some image reconstruction options will be evaluated. It will be shown how the methodology is also an interesting tool to diagnose specific error sources. Criticality of accurate description of Faraday rotation effects will be evidenced and latest results about the possibility to infer such information from full Stokes vector will be presented.

  10. Evaluating concentration estimation errors in ELISA microarray experiments

    PubMed Central

    Daly, Don Simone; White, Amanda M; Varnum, Susan M; Anderson, Kevin K; Zangar, Richard C

    2005-01-01

    Background Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to estimate a protein's concentration in a sample. Deploying ELISA in a microarray format permits simultaneous estimation of the concentrations of numerous proteins in a small sample. These estimates, however, are uncertain due to processing error and biological variability. Evaluating estimation error is critical to interpreting biological significance and improving the ELISA microarray process. Estimation error evaluation must be automated to realize a reliable high-throughput ELISA microarray system. In this paper, we present a statistical method based on propagation of error to evaluate concentration estimation errors in the ELISA microarray process. Although propagation of error is central to this method and the focus of this paper, it is most effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization, and statistical diagnostics when evaluating ELISA microarray concentration estimation errors. Results We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of concentration estimation errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error. We summarize the results with a simple, three-panel diagnostic visualization featuring a scatterplot of the standard data with logistic standard curve and 95% confidence intervals, an annotated histogram of sample measurements, and a plot of the 95% concentration coefficient of variation, or relative error, as a function of concentration. Conclusions This statistical method should be of value in the rapid evaluation and quality control of high-throughput ELISA microarray analyses

  11. Stability and error estimation for Component Adaptive Grid methods

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph; Zhu, Xiaolei

    1994-01-01

    Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.

  12. Period Error Estimation for the Kepler Eclipsing Binary Catalog

    NASA Astrophysics Data System (ADS)

    Mighell, Kenneth J.; Plavchan, Peter

    2013-06-01

    The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg2 Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log σ P ≈ - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods >=62.5 days have KEBC period errors of ~0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

  13. PERIOD ERROR ESTIMATION FOR THE KEPLER ECLIPSING BINARY CATALOG

    SciTech Connect

    Mighell, Kenneth J.; Plavchan, Peter

    2013-06-15

    The Kepler Eclipsing Binary Catalog (KEBC) describes 2165 eclipsing binaries identified in the 115 deg{sup 2} Kepler Field based on observations from Kepler quarters Q0, Q1, and Q2. The periods in the KEBC are given in units of days out to six decimal places but no period errors are provided. We present the PEC (Period Error Calculator) algorithm, which can be used to estimate the period errors of strictly periodic variables observed by the Kepler Mission. The PEC algorithm is based on propagation of error theory and assumes that observation of every light curve peak/minimum in a long time-series observation can be unambiguously identified. The PEC algorithm can be efficiently programmed using just a few lines of C computer language code. The PEC algorithm was used to develop a simple model that provides period error estimates for eclipsing binaries in the KEBC with periods less than 62.5 days: log {sigma}{sub P} Almost-Equal-To - 5.8908 + 1.4425(1 + log P), where P is the period of an eclipsing binary in the KEBC in units of days. KEBC systems with periods {>=}62.5 days have KEBC period errors of {approx}0.0144 days. Periods and period errors of seven eclipsing binary systems in the KEBC were measured using the NASA Exoplanet Archive Periodogram Service and compared to period errors estimated using the PEC algorithm.

  14. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  15. Iraq War mortality estimates: A systematic review

    PubMed Central

    Tapp, Christine; Burkle, Frederick M; Wilson, Kumanan; Takaro, Tim; Guyatt, Gordon H; Amad, Hani; Mills, Edward J

    2008-01-01

    Background In March 2003, the United States invaded Iraq. The subsequent number, rates, and causes of mortality in Iraq resulting from the war remain unclear, despite intense international attention. Understanding mortality estimates from modern warfare, where the majority of casualties are civilian, is of critical importance for public health and protection afforded under international humanitarian law. We aimed to review the studies, reports and counts on Iraqi deaths since the start of the war and assessed their methodological quality and results. Methods We performed a systematic search of 15 electronic databases from inception to January 2008. In addition, we conducted a non-structured search of 3 other databases, reviewed study reference lists and contacted subject matter experts. We included studies that provided estimates of Iraqi deaths based on primary research over a reported period of time since the invasion. We excluded studies that summarized mortality estimates and combined non-fatal injuries and also studies of specific sub-populations, e.g. under-5 mortality. We calculated crude and cause-specific mortality rates attributable to violence and average deaths per day for each study, where not already provided. Results Thirteen studies met the eligibility criteria. The studies used a wide range of methodologies, varying from sentinel-data collection to population-based surveys. Studies assessed as the highest quality, those using population-based methods, yielded the highest estimates. Average deaths per day ranged from 48 to 759. The cause-specific mortality rates attributable to violence ranged from 0.64 to 10.25 per 1,000 per year. Conclusion Our review indicates that, despite varying estimates, the mortality burden of the war and its sequelae on Iraq is large. The use of established epidemiological methods is rare. This review illustrates the pressing need to promote sound epidemiologic approaches to determining mortality estimates and to establish

  16. Errors-in-variables modeling in optical flow estimation.

    PubMed

    Ng, L; Solo, V

    2001-01-01

    Gradient-based optical flow estimation methods typically do not take into account errors in the spatial derivative estimates. The presence of these errors causes an errors-in-variables (EIV) problem. Moreover, the use of finite difference methods to calculate these derivatives ensures that the errors are strongly correlated between pixels. Total least squares (TLS) has often been used to address this EIV problem. However, its application in this context is flawed as TLS implicitly assumes that the errors between neighborhood pixels are independent. In this paper, a new optical flow estimation method (EIVM) is formulated to properly treat the EIV problem in optical flow. EIVM is based on Sprent's (1966) procedure which allows the incorporation of a general EIV model in the estimation process. In EIVM, the neighborhood size acts as a smoothing parameter. Due to the weights in the EIVM objective function, the effect of changing the neighborhood size is more complex than in other local model methods such as Lucas and Kanade (1981). These weights, which are functions of the flow estimate, can alter the effective size and orientation of the neighborhood. In this paper, we also present a data-driven method for choosing the neighborhood size based on Stein's unbiased risk estimators (SURE). PMID:18255496

  17. A systematic impact assessment of GRACE error correlation on data assimilation in hydrological models

    NASA Astrophysics Data System (ADS)

    Schumacher, Maike; Kusche, Jürgen; Döll, Petra

    2016-02-01

    Recently, ensemble Kalman filters (EnKF) have found increasing application for merging hydrological models with total water storage anomaly (TWSA) fields from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. Previous studies have disregarded the effect of spatially correlated errors of GRACE TWSA products in their investigations. Here, for the first time, we systematically assess the impact of the GRACE error correlation structure on EnKF data assimilation into a hydrological model, i.e. on estimated compartmental and total water storages and model parameter values. Our investigations include (1) assimilating gridded GRACE-derived TWSA into the WaterGAP Global Hydrology Model and, simultaneously, calibrating its parameters; (2) introducing GRACE observations on different spatial scales; (3) modelling observation errors as either spatially white or correlated in the assimilation procedure, and (4) replacing the standard EnKF algorithm by the square root analysis scheme or, alternatively, the singular evolutive interpolated Kalman filter. Results of a synthetic experiment designed for the Mississippi River Basin indicate that the hydrological parameters are sensitive to TWSA assimilation if spatial resolution of the observation data is sufficiently high. We find a significant influence of spatial error correlation on the adjusted water states and model parameters for all implemented filter variants, in particular for subbasins with a large discrepancy between observed and initially simulated TWSA and for north-south elongated sub-basins. Considering these correlated errors, however, does not generally improve results: while some metrics indicate that it is helpful to consider the full GRACE error covariance matrix, it appears to have an adverse effect on others. We conclude that considering the characteristics of GRACE error correlation is at least as important as the selection of the spatial discretisation of TWSA observations, while the choice

  18. A systematic impact assessment of GRACE error correlation on data assimilation in hydrological models

    NASA Astrophysics Data System (ADS)

    Schumacher, Maike; Kusche, Jürgen; Döll, Petra

    2016-06-01

    Recently, ensemble Kalman filters (EnKF) have found increasing application for merging hydrological models with total water storage anomaly (TWSA) fields from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. Previous studies have disregarded the effect of spatially correlated errors of GRACE TWSA products in their investigations. Here, for the first time, we systematically assess the impact of the GRACE error correlation structure on EnKF data assimilation into a hydrological model, i.e. on estimated compartmental and total water storages and model parameter values. Our investigations include (1) assimilating gridded GRACE-derived TWSA into the WaterGAP Global Hydrology Model and, simultaneously, calibrating its parameters; (2) introducing GRACE observations on different spatial scales; (3) modelling observation errors as either spatially white or correlated in the assimilation procedure, and (4) replacing the standard EnKF algorithm by the square root analysis scheme or, alternatively, the singular evolutive interpolated Kalman filter. Results of a synthetic experiment designed for the Mississippi River Basin indicate that the hydrological parameters are sensitive to TWSA assimilation if spatial resolution of the observation data is sufficiently high. We find a significant influence of spatial error correlation on the adjusted water states and model parameters for all implemented filter variants, in particular for subbasins with a large discrepancy between observed and initially simulated TWSA and for north-south elongated sub-basins. Considering these correlated errors, however, does not generally improve results: while some metrics indicate that it is helpful to consider the full GRACE error covariance matrix, it appears to have an adverse effect on others. We conclude that considering the characteristics of GRACE error correlation is at least as important as the selection of the spatial discretisation of TWSA observations, while the choice

  19. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  20. Sensitivity analysis of DOA estimation algorithms to sensor errors

    NASA Astrophysics Data System (ADS)

    Li, Fu; Vaccaro, Richard J.

    1992-07-01

    A unified statistical performance analysis using subspace perturbation expansions is applied to subspace-based algorithms for direction-of-arrival (DOA) estimation in the presence of sensor errors. In particular, the multiple signal classification (MUSIC), min-norm, state-space realization (TAM and DDA) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms are analyzed. This analysis assumes that only a finite amount of data is available. An analytical expression for the mean-squared error of the DOA estimates is developed for theoretical comparison in a simple and self-contained fashion. The tractable formulas provide insight into the algorithms. Simulation results verify the analysis.

  1. Error decomposition and estimation of inherent optical properties.

    PubMed

    Salama, Mhd Suhyb; Stein, Alfred

    2009-09-10

    We describe a methodology to quantify and separate the errors of inherent optical properties (IOPs) derived from ocean-color model inversion. Their total error is decomposed into three different sources, namely, model approximations and inversion, sensor noise, and atmospheric correction. Prior information on plausible ranges of observation, sensor noise, and inversion goodness-of-fit are employed to derive the posterior probability distribution of the IOPs. The relative contribution of each error component to the total error budget of the IOPs, all being of stochastic nature, is then quantified. The method is validated with the International Ocean Colour Coordinating Group (IOCCG) data set and the NASA bio-Optical Marine Algorithm Data set (NOMAD). The derived errors are close to the known values with correlation coefficients of 60-90% and 67-90% for IOCCG and NOMAD data sets, respectively. Model-induced errors inherent to the derived IOPs are between 10% and 57% of the total error, whereas atmospheric-induced errors are in general above 43% and up to 90% for both data sets. The proposed method is applied to synthesized and in situ measured populations of IOPs. The mean relative errors of the derived values are between 2% and 20%. A specific error table to the Medium Resolution Imaging Spectrometer (MERIS) sensor is constructed. It serves as a benchmark to evaluate the performance of the atmospheric correction method and to compute atmospheric-induced errors. Our method has a better performance and is more appropriate to estimate actual errors of ocean-color derived products than the previously suggested methods. Moreover, it is generic and can be applied to quantify the error of any derived biogeophysical parameter regardless of the used derivation. PMID:19745859

  2. An analysis of the least-squares problem for the DSN systematic pointing error model

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1991-01-01

    A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.

  3. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the

  4. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the

  5. MONTE CARLO ERROR ESTIMATION APPLIED TO NONDESTRUCTIVE ASSAY METHODS

    SciTech Connect

    R. ESTEP; ET AL

    2000-06-01

    Monte Carlo randomization of nuclear counting data into N replicate sets is the basis of a simple and effective method for estimating error propagation through complex analysis algorithms such as those using neural networks or tomographic image reconstructions. The error distributions of properly simulated replicate data sets mimic those of actual replicate measurements and can be used to estimate the std. dev. for an assay along with other statistical quantities. We have used this technique to estimate the standard deviation in radionuclide masses determined using the tomographic gamma scanner (TGS) and combined thermal/epithermal neutron (CTEN) methods. The effectiveness of this approach is demonstrated by a comparison of our Monte Carlo error estimates with the error distributions in actual replicate measurements and simulations of measurements. We found that the std. dev. estimated this way quickly converges to an accurate value on average and has a predictable error distribution similar to N actual repeat measurements. The main drawback of the Monte Carlo method is that N additional analyses of the data are required, which may be prohibitively time consuming with slow analysis algorithms.

  6. Error Estimation for Reduced Order Models of Dynamical systems

    SciTech Connect

    Homescu, C; Petzold, L R; Serban, R

    2003-12-16

    The use of reduced order models to describe a dynamical system is pervasive in science and engineering. Often these models are used without an estimate of their error or range of validity. In this paper we consider dynamical systems and reduced models built using proper orthogonal decomposition. We show how to compute estimates and bounds for these errors, by a combination of the small sample statistical condition estimation method and of error estimation using the adjoint method. More importantly, the proposed approach allows the assessment of so-called regions of validity for reduced models, i.e., ranges of perturbations in the original system over which the reduced model is still appropriate. This question is particularly important for applications in which reduced models are used not just to approximate the solution to the system that provided the data used in constructing the reduced model, but rather to approximate the solution of systems perturbed from the original one. Numerical examples validate our approach: the error norm estimates approximate well the forward error while the derived bounds are within an order of magnitude.

  7. Minimax Mean-Squared Error Location Estimation Using TOA Measurements

    NASA Astrophysics Data System (ADS)

    Shen, Chih-Chang; Chang, Ann-Chen

    This letter deals with mobile location estimation based on a minimax mean-squared error (MSE) algorithm using time-of-arrival (TOA) measurements for mitigating the nonline-of-sight (NLOS) effects in cellular systems. Simulation results are provided for illustrating the minimax MSE estimator yields good performance than the other least squares and weighted least squares estimators under relatively low signal-to-noise ratio and moderately NLOS conditions.

  8. The systematic and random errors determination using realtime 3D surface tracking system in breast cancer

    NASA Astrophysics Data System (ADS)

    Kanphet, J.; Suriyapee, S.; Dumrongkijudom, N.; Sanghangthum, T.; Kumkhwao, J.; Wisetrintong, M.

    2016-03-01

    The purpose of this study to determine the patient setup uncertainties in deep inspiration breath-hold (DIBH) radiation therapy for left breast cancer patients using real-time 3D surface tracking system. The six breast cancer patients treated by 6 MV photon beams from TrueBeam linear accelerator were selected. The patient setup errors and motion during treatment were observed and calculated for interfraction and intrafraction motions. The systematic and random errors were calculated in vertical, longitudinal and lateral directions. From 180 images tracking before and during treatment, the maximum systematic error of interfraction and intrafraction motions were 0.56 mm and 0.23 mm, the maximum random error of interfraction and intrafraction motions were 1.18 mm and 0.53 mm, respectively. The interfraction was more pronounce than the intrafraction, while the systematic error was less impact than random error. In conclusion the intrafraction motion error from patient setup uncertainty is about half of interfraction motion error, which is less impact due to the stability in organ movement from DIBH. The systematic reproducibility is also half of random error because of the high efficiency of modern linac machine that can reduce the systematic uncertainty effectively, while the random errors is uncontrollable.

  9. Sampling errors in satellite estimates of tropical rain

    NASA Technical Reports Server (NTRS)

    Mcconnell, Alan; North, Gerald R.

    1987-01-01

    The GATE rainfall data set is used in a statistical study to estimate the sampling errors that might be expected for the type of snapshot sampling that a low earth-orbiting satellite makes. For averages over the entire 400-km square and for the duration of several weeks, strong evidence is found that sampling errors less than 10 percent can be expected in contributions from each of four rain rate categories which individually account for about one quarter of the total rain.

  10. Estimation of rod scale errors in geodetic leveling

    USGS Publications Warehouse

    Craymer, Michael R.; Vaníček, Petr; Castle, Robert O.

    1995-01-01

    Comparisons among repeated geodetic levelings have often been used for detecting and estimating residual rod scale errors in leveled heights. Individual rod-pair scale errors are estimated by a two-step procedure using a model based on either differences in heights, differences in section height differences, or differences in section tilts. It is shown that the estimated rod-pair scale errors derived from each model are identical only when the data are correctly weighted, and the mathematical correlations are accounted for in the model based on heights. Analyses based on simple regressions of changes in height versus height can easily lead to incorrect conclusions. We also show that the statistically estimated scale errors are not a simple function of height, height difference, or tilt. The models are valid only when terrain slope is constant over adjacent pairs of setups (i.e., smoothly varying terrain). In order to discriminate between rod scale errors and vertical displacements due to crustal motion, the individual rod-pairs should be used in more than one leveling, preferably in areas of contrasting tectonic activity. From an analysis of 37 separately calibrated rod-pairs used in 55 levelings in southern California, we found eight statistically significant coefficients that could be reasonably attributed to rod scale errors, only one of which was larger than the expected random error in the applied calibration-based scale correction. However, significant differences with other independent checks indicate that caution should be exercised before accepting these results as evidence of scale error. Further refinements of the technique are clearly needed if the results are to be routinely applied in practice.

  11. Verification of unfold error estimates in the unfold operator code

    SciTech Connect

    Fehl, D.L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}

  12. Verification of unfold error estimates in the unfold operator code

    NASA Astrophysics Data System (ADS)

    Fehl, D. L.; Biggs, F.

    1997-01-01

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums.

  13. First Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Data Processing Methods and Systematic Errors Limits

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.

    2003-01-01

    We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

  14. Error estimates for Gaussian quadratures of analytic functions

    NASA Astrophysics Data System (ADS)

    Milovanovic, Gradimir V.; Spalevic, Miodrag M.; Pranic, Miroslav S.

    2009-12-01

    For analytic functions the remainder term of Gaussian quadrature formula and its Kronrod extension can be represented as a contour integral with a complex kernel. We study these kernels on elliptic contours with foci at the points ±1 and the sum of semi-axes [varrho]>1 for the Chebyshev weight functions of the first, second and third kind, and derive representation of their difference. Using this representation and following Kronrod's method of obtaining a practical error estimate in numerical integration, we derive new error estimates for Gaussian quadratures.

  15. Bootstrapped DEPICT for error estimation in PET functional imaging.

    PubMed

    Kukreja, Sunil L; Gunn, Roger N

    2004-03-01

    Basis pursuit denoising is a new approach for data-driven estimation of parametric images from dynamic positron emission tomography (PET) data. At present, this kinetic modeling technique does not allow for the estimation of the errors on the parameters. These estimates are useful when performing subsequent statistical analysis, such as, inference across a group of subjects or when applying partial volume correction algorithms. The difficulty with calculating the error estimates is a consequence of using an overcomplete dictionary of kinetic basis functions. In this paper, a bootstrap approach for the estimation of parameter errors from dynamic PET data is presented. This paper shows that the bootstrap can be used successfully to compute parameter errors on a region of interest or parametric image basis. Validation studies evaluate the methods performance on simulated and measured PET data ([(11)C]Diprenorphine-opiate receptor and [(11)C]Raclopride-dopamine D(2) receptor). The method is presented in the context of PET neuroreceptor binding studies, however, it has general applicability to a wide range of PET/SPET radiotracers in neurology, oncology and cardiology. PMID:15006677

  16. Application of variance components estimation to calibrate geoid error models.

    PubMed

    Guo, Dong-Mei; Xu, Hou-Ze

    2015-01-01

    The method of using Global Positioning System-leveling data to obtain orthometric heights has been well studied. A simple formulation for the weighted least squares problem has been presented in an earlier work. This formulation allows one directly employing the errors-in-variables models which completely descript the covariance matrices of the observables. However, an important question that what accuracy level can be achieved has not yet to be satisfactorily solved by this traditional formulation. One of the main reasons for this is the incorrectness of the stochastic models in the adjustment, which in turn allows improving the stochastic models of measurement noises. Therefore the issue of determining the stochastic modeling of observables in the combined adjustment with heterogeneous height types will be a main focus point in this paper. Firstly, the well-known method of variance component estimation is employed to calibrate the errors of heterogeneous height data in a combined least square adjustment of ellipsoidal, orthometric and gravimetric geoid. Specifically, the iterative algorithms of minimum norm quadratic unbiased estimation are used to estimate the variance components for each of heterogeneous observations. Secondly, two different statistical models are presented to illustrate the theory. The first method directly uses the errors-in-variables as a priori covariance matrices and the second method analyzes the biases of variance components and then proposes bias-corrected variance component estimators. Several numerical test results show the capability and effectiveness of the variance components estimation procedure in combined adjustment for calibrating geoid error model. PMID:26306296

  17. Error propagation and scaling for tropical forest biomass estimates.

    PubMed Central

    Chave, Jerome; Condit, Richard; Aguilar, Salomon; Hernandez, Andres; Lao, Suzanne; Perez, Rolando

    2004-01-01

    The above-ground biomass (AGB) of tropical forests is a crucial variable for ecologists, biogeochemists, foresters and policymakers. Tree inventories are an efficient way of assessing forest carbon stocks and emissions to the atmosphere during deforestation. To make correct inferences about long-term changes in biomass stocks, it is essential to know the uncertainty associated with AGB estimates, yet this uncertainty is rarely evaluated carefully. Here, we quantify four types of uncertainty that could lead to statistical error in AGB estimates: (i) error due to tree measurement; (ii) error due to the choice of an allometric model relating AGB to other tree dimensions; (iii) sampling uncertainty, related to the size of the study plot; (iv) representativeness of a network of small plots across a vast forest landscape. In previous studies, these sources of error were reported but rarely integrated into a consistent framework. We estimate all four terms in a 50 hectare (ha, where 1 ha = 10(4) m2) plot on Barro Colorado Island, Panama, and in a network of 1 ha plots scattered across central Panama. We find that the most important source of error is currently related to the choice of the allometric model. More work should be devoted to improving the predictive power of allometric models for biomass. PMID:15212093

  18. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  19. Error estimation for the linearized auto-localization algorithm.

    PubMed

    Guevara, Jorge; Jiménez, Antonio R; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons' positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  20. Real-Time Estimation Of Aiming Error Of Spinning Antenna

    NASA Technical Reports Server (NTRS)

    Dolinsky, Shlomo

    1992-01-01

    Spinning-spacecraft dynamics and amplitude variations in communications links studied from received-signal fluctuations. Mathematical model and associated analysis procedure provide real-time estimates of aiming error of remote rotating transmitting antenna radiating constant power in narrow, pencillike beam from spinning platform, and current amplitude of received signal. Estimates useful in analyzing and enhancing calibration of communication system, and in analyzing complicated dynamic effects in spinning platform and antenna-aiming mechanism.

  1. Development of an integrated system for estimating human error probabilities

    SciTech Connect

    Auflick, J.L.; Hahn, H.A.; Morzinski, J.A.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project had as its main objective the development of a Human Reliability Analysis (HRA), knowledge-based expert system that would provide probabilistic estimates for potential human errors within various risk assessments, safety analysis reports, and hazard assessments. HRA identifies where human errors are most likely, estimates the error rate for individual tasks, and highlights the most beneficial areas for system improvements. This project accomplished three major tasks. First, several prominent HRA techniques and associated databases were collected and translated into an electronic format. Next, the project started a knowledge engineering phase where the expertise, i.e., the procedural rules and data, were extracted from those techniques and compiled into various modules. Finally, these modules, rules, and data were combined into a nearly complete HRA expert system.

  2. ORAN- ORBITAL AND GEODETIC PARAMETER ESTIMATION ERROR ANALYSIS

    NASA Technical Reports Server (NTRS)

    Putney, B.

    1994-01-01

    The Orbital and Geodetic Parameter Estimation Error Analysis program, ORAN, was developed as a Bayesian least squares simulation program for orbital trajectories. ORAN does not process data, but is intended to compute the accuracy of the results of a data reduction, if measurements of a given accuracy are available and are processed by a minimum variance data reduction program. Actual data may be used to provide the time when a given measurement was available and the estimated noise on that measurement. ORAN is designed to consider a data reduction process in which a number of satellite data periods are reduced simultaneously. If there is more than one satellite in a data period, satellite-to-satellite tracking may be analyzed. The least squares estimator in most orbital determination programs assumes that measurements can be modeled by a nonlinear regression equation containing a function of parameters to be estimated and parameters which are assumed to be constant. The partitioning of parameters into those to be estimated (adjusted) and those assumed to be known (unadjusted) is somewhat arbitrary. For any particular problem, the data will be insufficient to adjust all parameters subject to uncertainty, and some reasonable subset of these parameters is selected for estimation. The final errors in the adjusted parameters may be decomposed into a component due to measurement noise and a component due to errors in the assumed values of the unadjusted parameters. Error statistics associated with the first component are generally evaluated in an orbital determination program. ORAN is used to simulate the orbital determination processing and to compute error statistics associated with the second component. Satellite observations may be simulated with desired noise levels given in many forms including range and range rate, altimeter height, right ascension and declination, direction cosines, X and Y angles, azimuth and elevation, and satellite-to-satellite range and

  3. Estimating Filtering Errors Using the Peano Kernel Theorem

    SciTech Connect

    Jerome Blair

    2009-02-20

    The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.

  4. Estimating Filtering Errors Using the Peano Kernel Theorem

    SciTech Connect

    Jerome Blair

    2008-03-01

    The Peano Kernel Theorem is introduced and a frequency domain derivation is given. It is demonstrated that the application of this theorem yields simple and accurate formulas for estimating the error introduced into a signal by filtering it to reduce noise.

  5. Bootstrap Standard Error Estimates in Dynamic Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Browne, Michael W.

    2010-01-01

    Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…

  6. Error estimates for universal back-projection-based photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pandey, Prabodh K.; Naik, Naren; Munshi, Prabhat; Pradhan, Asima

    2015-07-01

    Photo-acoustic tomography is a hybrid imaging modality that combines the advantages of optical as well as ultrasound imaging techniques to produce images with high resolution and good contrast at high penetration depths. Choice of reconstruction algorithm as well as experimental and computational parameters plays a major role in governing the accuracy of a tomographic technique. Therefore error estimates with the variation of these parameters have extreme importance. Due to the finite support, that photo-acoustic source has, the pressure signals are not band-limited, but in practice, our detection system is. Hence the reconstructed image from ideal, noiseless band-limited forward data (for future references we will call this band-limited reconstruction) is the best approximation that we have for the unknown object. In the present study, we report the error that arises in the universal back-projection (UBP) based photo-acoustic reconstruction for planer detection geometry due to sampling and filtering of forward data (pressure signals).Computational validation of the error estimates have been carried out for synthetic phantoms. Validation with noisy forward data has also been carried out, to study the effect of noise on the error estimates derived in our work. Although here we have derived the estimates for planar detection geometry, the derivations for spherical and cylindrical geometries follow accordingly.

  7. Condition and Error Estimates in Numerical Matrix Computations

    SciTech Connect

    Konstantinov, M. M.; Petkov, P. H.

    2008-10-30

    This tutorial paper deals with sensitivity and error estimates in matrix computational processes. The main factors determining the accuracy of the result computed in floating--point machine arithmetics are considered. Special attention is paid to the perturbation analysis of matrix algebraic equations and unitary matrix decompositions.

  8. Concise Formulas for the Standard Errors of Component Loading Estimates.

    ERIC Educational Resources Information Center

    Ogasawara, Haruhiko

    2002-01-01

    Derived formulas for the asymptotic standard errors of component loading estimates to cover the cases of principal component analysis for unstandardized and standardized variables with orthogonal and oblique rotations. Used the formulas with a real correlation matrix of 355 subjects who took 12 psychological tests. (SLD)

  9. Note: Statistical errors estimation for Thomson scattering diagnostics

    SciTech Connect

    Maslov, M.; Beurskens, M. N. A.; Flanagan, J.; Kempenaars, M.; Collaboration: JET-EFDA Contributors

    2012-09-15

    A practical way of estimating statistical errors of a Thomson scattering diagnostic measuring plasma electron temperature and density is described. Analytically derived expressions are successfully tested with Monte Carlo simulations and implemented in an automatic data processing code of the JET LIDAR diagnostic.

  10. Error analysis for the Fourier domain offset estimation algorithm

    NASA Astrophysics Data System (ADS)

    Wei, Ling; He, Jieling; He, Yi; Yang, Jinsheng; Li, Xiqi; Shi, Guohua; Zhang, Yudong

    2016-02-01

    The offset estimation algorithm is crucial for the accuracy of the Shack-Hartmann wave-front sensor. Recently, the Fourier Domain Offset (FDO) algorithm has been proposed for offset estimation. Similar to other algorithms, the accuracy of FDO is affected by noise such as background noise, photon noise, and 'fake' spots. However, no adequate quantitative error analysis has been performed for FDO in previous studies, which is of great importance for practical applications of the FDO. In this study, we quantitatively analysed how the estimation error of FDO is affected by noise based on theoretical deduction, numerical simulation, and experiments. The results demonstrate that the standard deviation of the wobbling error is: (1) inversely proportional to the raw signal to noise ratio, and proportional to the square of the sub-aperture size in the presence of background noise; and (2) proportional to the square root of the intensity in the presence of photonic noise. Furthermore, the upper bound of the estimation error is proportional to the intensity of 'fake' spots and the sub-aperture size. The results of the simulation and experiments agreed with the theoretical analysis.

  11. Multiscale Systematic Error Correction via Wavelet-Based Band Splitting and Bayesian Error Modeling in Kepler Light Curves

    NASA Astrophysics Data System (ADS)

    Stumpe, Martin C.; Smith, J. C.; Van Cleve, J.; Jenkins, J. M.; Barclay, T. S.; Fanelli, M. N.; Girouard, F.; Kolodziejczak, J.; McCauliff, S.; Morris, R. L.; Twicken, J. D.

    2012-05-01

    Kepler photometric data contain significant systematic and stochastic errors as they come from the Kepler Spacecraft. The main cause for the systematic errors are changes in the photometer focus due to thermal changes in the instrument, and also residual spacecraft pointing errors. It is the main purpose of the Presearch-Data-Conditioning (PDC) module of the Kepler Science processing pipeline to remove these systematic errors from the light curves. While PDC has recently seen a dramatic performance improvement by means of a Bayesian approach to systematic error correction and improved discontinuity correction, there is still room for improvement. One problem of the current (Kepler 8.1) implementation of PDC is that injection of high frequency noise can be observed in some light curves. Although this high frequency noise does not negatively impact the general cotrending, an increased noise level can make detection of planet transits or other astrophysical signals more difficult. The origin of this noise-injection is that high frequency components of light curves sometimes get included into detrending basis vectors characterizing long term trends. Similarly, small scale features like edges can sometimes get included in basis vectors which otherwise describe low frequency trends. As a side effect to removing the trends, detrending with these basis vectors can then also mistakenly introduce these small scale features into the light curves. A solution to this problem is to perform a separation of scales, such that small scale features and large scale features are described by different basis vectors. We present our new multiscale approach that employs wavelet-based band splitting to decompose small scale from large scale features in the light curves. The PDC Bayesian detrending can then be performed on each band individually to correct small and large scale systematics independently. Funding for the Kepler Mission is provided by the NASA Science Mission Directorate.

  12. Analysis of possible systematic errors in the Oslo method

    SciTech Connect

    Larsen, A. C.; Guttormsen, M.; Buerger, A.; Goergen, A.; Nyhus, H. T.; Rekstad, J.; Siem, S.; Toft, H. K.; Tveten, G. M.; Wikan, K.; Krticka, M.; Betak, E.; Schiller, A.; Voinov, A. V.

    2011-03-15

    In this work, we have reviewed the Oslo method, which enables the simultaneous extraction of the level density and {gamma}-ray transmission coefficient from a set of particle-{gamma} coincidence data. Possible errors and uncertainties have been investigated. Typical data sets from various mass regions as well as simulated data have been tested against the assumptions behind the data analysis.

  13. Analysis of possible systematic errors in the Oslo method

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Guttormsen, M.; Krtička, M.; Běták, E.; Bürger, A.; Görgen, A.; Nyhus, H. T.; Rekstad, J.; Schiller, A.; Siem, S.; Toft, H. K.; Tveten, G. M.; Voinov, A. V.; Wikan, K.

    2011-03-01

    In this work, we have reviewed the Oslo method, which enables the simultaneous extraction of the level density and γ-ray transmission coefficient from a set of particle-γ coincidence data. Possible errors and uncertainties have been investigated. Typical data sets from various mass regions as well as simulated data have been tested against the assumptions behind the data analysis.

  14. Modeling systematic errors: polychromatic sources of Beer-Lambert deviations in HPLC/UV and nonchromatographic spectrophotometric assays.

    PubMed

    Galli, C

    2001-07-01

    It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods. PMID:11377063

  15. On causes of the origin of systematic errors in latitude determination with the Moscow PZT.

    NASA Astrophysics Data System (ADS)

    Volchkov, A. A.; Gutsalo, G. A.

    Peculiarities of eye response during visual measurements of star positions on photographic plates are considered. It is shown that variations of the plate background density can be a source of systematic errors during latitude determinations with a PZT.

  16. [Second victims of medical errors: a systematic review of the literature].

    PubMed

    Panella, Massimiliano; Rinaldi, Carmela; Vanhaecht, Kris; Donnarumma, Chiara; Tozzi, Quinto; Di Stanislao, Francesco

    2014-01-01

    "Second victims" are health care providers who remain traumatized and suffer at the psycho-physical level after being involved in a patient adverse event. A systematic review of the literature was conducted to: a) estimate the prevalence of second victims among healthcare workers, b) describe personal and work outcomes of second victims, c) identify coping strategies used by second victims to face their problems, and d) describe current support strategies. Findings reveal that the prevalence of "second victims" of medical errors is high, ranging in four studies from 10.4% to 43.3%. Medical errors have a negative impact on healthcare providers involved, leading to physical, cognitive and behavioural symptoms including the practice of defensive medicine. Managers of health organizations need to be aware of the "second victim" phenomenon and ensure adequate support is given to healthcare providers involved. The best strategy seems to be the creation of networks of support at both the individual and organizational levels. More research is needed to evaluate the efficacy of support structures for second victims and to quantify the extent of the practice of defensive medicine following medical error. PMID:24770362

  17. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  18. DEB: definite error bounded tangent estimator for digital curves.

    PubMed

    Prasad, Dilip K; Leung, Maylor K H; Quek, Chai; Brown, Michael S

    2014-10-01

    We propose a simple and fast method for tangent estimation of digital curves. This geometric-based method uses a small local region for tangent estimation and has a definite upper bound error for continuous as well as digital conics, i.e., circles, ellipses, parabolas, and hyperbolas. Explicit expressions of the upper bounds for continuous and digitized curves are derived, which can also be applied to nonconic curves. Our approach is benchmarked against 72 contemporary tangent estimation methods and demonstrates good performance for conic, nonconic, and noisy curves. In addition, we demonstrate a good multigrid and isotropic performance and low computational complexity of O(1) and better performance than most methods in terms of maximum and average errors in tangent computation for a large variety of digital curves. PMID:25122569

  19. Background error covariance estimation for atmospheric CO2 data assimilation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhishek; Engelen, Richard J.; Kawa, Stephan R.; Sweeney, Colm; Michalak, Anna M.

    2013-09-01

    any data assimilation framework, the background error covariance statistics play the critical role of filtering the observed information and determining the quality of the analysis. For atmospheric CO2 data assimilation, however, the background errors cannot be prescribed via traditional forecast or ensemble-based techniques as these fail to account for the uncertainties in the carbon emissions and uptake, or for the errors associated with the CO2 transport model. We propose an approach where the differences between two modeled CO2 concentration fields, based on different but plausible CO2 flux distributions and atmospheric transport models, are used as a proxy for the statistics of the background errors. The resulting error statistics: (1) vary regionally and seasonally to better capture the uncertainty in the background CO2 field, and (2) have a positive impact on the analysis estimates by allowing observations to adjust predictions over large areas. A state-of-the-art four-dimensional variational (4D-VAR) system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to illustrate the impact of the proposed approach for characterizing background error statistics on atmospheric CO2 concentration estimates. Observations from the Greenhouse gases Observing SATellite "IBUKI" (GOSAT) are assimilated into the ECMWF 4D-VAR system along with meteorological variables, using both the new error statistics and those based on a traditional forecast-based technique. Evaluation of the four-dimensional CO2 fields against independent CO2 observations confirms that the performance of the data assimilation system improves substantially in the summer, when significant variability and uncertainty in the fluxes are present.

  20. Error estimates and specification parameters for functional renormalization

    SciTech Connect

    Schnoerr, David; Boettcher, Igor; Pawlowski, Jan M.; Wetterich, Christof

    2013-07-15

    We present a strategy for estimating the error of truncated functional flow equations. While the basic functional renormalization group equation is exact, approximated solutions by means of truncations do not only depend on the choice of the retained information, but also on the precise definition of the truncation. Therefore, results depend on specification parameters that can be used to quantify the error of a given truncation. We demonstrate this for the BCS–BEC crossover in ultracold atoms. Within a simple truncation the precise definition of the frequency dependence of the truncated propagator affects the results, indicating a shortcoming of the choice of a frequency independent cutoff function.

  1. Difference image analysis: The interplay between the photometric scale factor and systematic photometric errors

    NASA Astrophysics Data System (ADS)

    Bramich, D. M.; Bachelet, E.; Alsubai, K. A.; Mislis, D.; Parley, N.

    2015-05-01

    Context. Understanding the source of systematic errors in photometry is essential for their calibration. Aims: We investigate how photometry performed on difference images can be influenced by errors in the photometric scale factor. Methods: We explore the equations for difference image analysis (DIA), and we derive an expression describing how errors in the difference flux, the photometric scale factor and the reference flux are propagated to the object photometry. Results: We find that the error in the photometric scale factor is important, and while a few studies have shown that it can be at a significant level, it is currently neglected by the vast majority of photometric surveys employing DIA. Conclusions: Minimising the error in the photometric scale factor, or compensating for it in a post-calibration model, is crucial for reducing the systematic errors in DIA photometry.

  2. On systematic errors in spectral line parameters retrieved with the Voigt line profile

    NASA Astrophysics Data System (ADS)

    Kochanov, V. P.

    2012-08-01

    Systematic errors inherent in the Voigt line profile are analyzed. Molecular spectrum processing with the Voigt profile is shown to underestimate line intensities by 1-4%, with the errors in line positions being 0.0005 cm-1 and the decrease in pressure broadening coefficients varying from 5% to 55%.

  3. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements

    NASA Astrophysics Data System (ADS)

    Houweling, S.; Krol, M.; Bergamaschi, P.; Frankenberg, C.; Dlugokencky, E. J.; Morino, I.; Notholt, J.; Sherlock, V.; Wunch, D.; Beck, V.; Gerbig, C.; Chen, H.; Kort, E. A.; Röckmann, T.; Aben, I.

    2013-10-01

    This study investigates the use of total column CH4 (XCH4) retrievals from the SCIAMACHY satellite instrument for quantifying large scale emissions of methane. A unique data set from SCIAMACHY is available spanning almost a decade of measurements, covering a period when the global CH4 growth rate showed a marked transition from stable to increasing mixing ratios. The TM5 4DVAR inverse modelling system has been used to infer CH4 emissions from a combination of satellite and surface measurements for the period 2003-2010. In contrast to earlier inverse modelling studies, the SCIAMACHY retrievals have been corrected for systematic errors using the TCCON network of ground based Fourier transform spectrometers. The aim is to further investigate the role of bias correction of satellite data in inversions. Methods for bias correction are discussed, and the sensitivity of the optimized emissions to alternative bias correction functions is quantified. It is found that the use of SCIAMACHY retrievals in TM5 4DVAR increases the estimated inter-annual variability of large-scale fluxes by 22% compared with the use of only surface observations. The difference in global methane emissions between two year periods before and after July 2006 is estimated at 27-35 Tg yr-1. The use of SCIAMACHY retrievals causes a shift in the emissions from the extra-tropics to the tropics of 50 ± 25 Tg yr-1. The large uncertainty in this value arises from the uncertainty in the bias correction functions. Using measurements from the HIPPO and BARCA aircraft campaigns, we show that systematic errors are a main factor limiting the performance of the inversions. To further constrain tropical emissions of methane using current and future satellite missions, extended validation capabilities in the tropics are of critical importance.

  4. A multi-year methane inversion using SCIAMACHY, accounting for systematic errors using TCCON measurements

    NASA Astrophysics Data System (ADS)

    Houweling, S.; Krol, M.; Bergamaschi, P.; Frankenberg, C.; Dlugokencky, E. J.; Morino, I.; Notholt, J.; Sherlock, V.; Wunch, D.; Beck, V.; Gerbig, C.; Chen, H.; Kort, E. A.; Röckmann, T.; Aben, I.

    2014-04-01

    This study investigates the use of total column CH4 (XCH4) retrievals from the SCIAMACHY satellite instrument for quantifying large-scale emissions of methane. A unique data set from SCIAMACHY is available spanning almost a decade of measurements, covering a period when the global CH4 growth rate showed a marked transition from stable to increasing mixing ratios. The TM5 4DVAR inverse modelling system has been used to infer CH4 emissions from a combination of satellite and surface measurements for the period 2003-2010. In contrast to earlier inverse modelling studies, the SCIAMACHY retrievals have been corrected for systematic errors using the TCCON network of ground-based Fourier transform spectrometers. The aim is to further investigate the role of bias correction of satellite data in inversions. Methods for bias correction are discussed, and the sensitivity of the optimized emissions to alternative bias correction functions is quantified. It is found that the use of SCIAMACHY retrievals in TM5 4DVAR increases the estimated inter-annual variability of large-scale fluxes by 22% compared with the use of only surface observations. The difference in global methane emissions between 2-year periods before and after July 2006 is estimated at 27-35 Tg yr-1. The use of SCIAMACHY retrievals causes a shift in the emissions from the extra-tropics to the tropics of 50 ± 25 Tg yr-1. The large uncertainty in this value arises from the uncertainty in the bias correction functions. Using measurements from the HIPPO and BARCA aircraft campaigns, we show that systematic errors in the SCIAMACHY measurements are a main factor limiting the performance of the inversions. To further constrain tropical emissions of methane using current and future satellite missions, extended validation capabilities in the tropics are of critical importance.

  5. Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.

  6. Emitter location independent of systematic errors in direction finders

    NASA Astrophysics Data System (ADS)

    Mahapatra, P. R.

    1980-11-01

    A scheme is suggested for the passive location of radio emitter position by using a mobile direction finder. The vehicle carrying the direction finder is made to maneuver such that the apparent direction of arrival is held constant. The resulting trajectory of the vehicle is a logarithmic spiral. The true direction of arrival can be obtained by monitoring the parameters of the spiral trajectory without using the value of the direction finder reading. Two specific algorithms to eliminate direction finder bias are presented and their sensitivity to random errors in measurement assessed.

  7. Test models for improving filtering with model errors through stochastic parameter estimation

    SciTech Connect

    Gershgorin, B.; Harlim, J. Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  8. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  9. Efficiently estimating salmon escapement uncertainty using systematically sampled data

    USGS Publications Warehouse

    Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.

    2007-01-01

    Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.

  10. Divergent estimation error in portfolio optimization and in linear regression

    NASA Astrophysics Data System (ADS)

    Kondor, I.; Varga-Haszonits, I.

    2008-08-01

    The problem of estimation error in portfolio optimization is discussed, in the limit where the portfolio size N and the sample size T go to infinity such that their ratio is fixed. The estimation error strongly depends on the ratio N/T and diverges for a critical value of this parameter. This divergence is the manifestation of an algorithmic phase transition, it is accompanied by a number of critical phenomena, and displays universality. As the structure of a large number of multidimensional regression and modelling problems is very similar to portfolio optimization, the scope of the above observations extends far beyond finance, and covers a large number of problems in operations research, machine learning, bioinformatics, medical science, economics, and technology.

  11. GPS/DR Error Estimation for Autonomous Vehicle Localization.

    PubMed

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  12. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  13. GPS/DR Error Estimation for Autonomous Vehicle Localization

    PubMed Central

    Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In

    2015-01-01

    Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997

  14. Gross error detection and stage efficiency estimation in a separation process

    SciTech Connect

    Serth, R.W.; Srikanth, B. . Dept. of Chemical and Natural Gas Engineering); Maronga, S.J. . Dept. of Chemical and Process Engineering)

    1993-10-01

    Accurate process models are required for optimization and control in chemical plants and petroleum refineries. These models involve various equipment parameters, such as stage efficiencies in distillation columns, the values of which must be determined by fitting the models to process data. Since the data contain random and systematic measurement errors, some of which may be large (gross errors), they must be reconciled to obtain reliable estimates of equipment parameters. The problem thus involves parameter estimation coupled with gross error detection and data reconciliation. MacDonald and Howat (1988) studied the above problem for a single-stage flash distillation process. Their analysis was based on the definition of stage efficiency due to Hausen, which has some significant disadvantages in this context, as discussed below. In addition, they considered only data sets which contained no gross errors. The purpose of this article is to extend the above work by considering alternative definitions of state efficiency and efficiency estimation in the presence of gross errors.

  15. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2013-08-01

    In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379

  16. Interpolation Error Estimates for Mean Value Coordinates over Convex Polygons

    PubMed Central

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2012-01-01

    In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π. PMID:24027379

  17. DtaRefinery, a Software Tool for Elimination of Systematic Errors from Parent Ion Mass Measurements in Tandem Mass Spectra Data Sets*

    PubMed Central

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.; Polpitiya, Ashoka D.; Purvine, Samuel O.; Anderson, Gordon A.; Camp, David G.; Smith, Richard D.

    2010-01-01

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and high throughput MS/MS fragmentation have become widely available in recent years, allowing for significantly better discrimination between true and false MS/MS peptide identifications by the application of a relatively narrow window for maximum allowable deviations of measured parent ion masses. To fully gain the advantage of highly accurate parent ion mass measurements, it is important to limit systematic mass measurement errors. Based on our previous studies of systematic biases in mass measurement errors, here, we have designed an algorithm and software tool that eliminates the systematic errors from the peptide ion masses in MS/MS data. We demonstrate that the elimination of the systematic mass measurement errors allows for the use of tighter criteria on the deviation of measured mass from theoretical monoisotopic peptide mass, resulting in a reduction of both false discovery and false negative rates of peptide identification. A software implementation of this algorithm called DtaRefinery reads a set of fragmentation spectra, searches for MS/MS peptide identifications using a FASTA file containing expected protein sequences, fits a regression model that can estimate systematic errors, and then corrects the parent ion mass entries by removing the estimated systematic error components. The output is a new file with fragmentation spectra with updated parent ion masses. The software is freely available. PMID:20019053

  18. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  19. Second-order systematic errors in Mueller matrix dual rotating compensator ellipsometry.

    PubMed

    Broch, Laurent; En Naciri, Aotmane; Johann, Luc

    2010-06-10

    We investigate the systematic errors at the second order for a Mueller matrix ellipsometer in the dual rotating compensator configuration. Starting from a general formalism, we derive explicit second-order errors in the Mueller matrix coefficients of a given sample. We present the errors caused by the azimuthal inaccuracy of the optical components and their influences on the measurements. We demonstrate that the methods based on four-zone or two-zone averaging measurement are effective to vanish the errors due to the compensators. For the other elements, it is shown that the systematic errors at the second order can be canceled only for some coefficients of the Mueller matrix. The calibration step for the analyzer and the polarizer is developed. This important step is necessary to avoid the azimuthal inaccuracy in such elements. Numerical simulations and experimental measurements are presented and discussed. PMID:20539341

  20. Systematic lossy error protection of video based on H.264/AVC redundant slices

    NASA Astrophysics Data System (ADS)

    Rane, Shantanu; Girod, Bernd

    2006-01-01

    We propose the use of H.264 redundant slices for Systematic Lossy Error Protection (SLEP) of a video signal transmitted over an error-prone channel. In SLEP, the video signal is transmitted to the decoder without channel coding. Additionally, a Wyner-Ziv encoded version of the video signal is transmitted in order to provide error-resilience. In the event of channel errors, the Wyner-Ziv description is decoded as a substitute for the error-prone portions of the primary video signal. Since the Wyner-Ziv description is typically coarser than the primary video signal, SLEP is a lossy error protection technique which trades-off residual quantization distortion for improved error-resilience properties, such as graceful degradation of decoder picture quality. We describe how H.264 redundant slices can be used to generate the Wyner-Ziv description, and present simulation results to demonstrate the advantages of this method over traditional methods such as FEC.

  1. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    PubMed Central

    Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  2. Augmented GNSS differential corrections minimum mean square error estimation sensitivity to spatial correlation modeling errors.

    PubMed

    Kassabian, Nazelie; Lo Presti, Letizia; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  3. Drug treatment of inborn errors of metabolism: a systematic review

    PubMed Central

    Alfadhel, Majid; Al-Thihli, Khalid; Moubayed, Hiba; Eyaid, Wafaa; Al-Jeraisy, Majed

    2013-01-01

    Background The treatment of inborn errors of metabolism (IEM) has seen significant advances over the last decade. Many medicines have been developed and the survival rates of some patients with IEM have improved. Dosages of drugs used for the treatment of various IEM can be obtained from a range of sources but tend to vary among these sources. Moreover, the published dosages are not usually supported by the level of existing evidence, and they are commonly based on personal experience. Methods A literature search was conducted to identify key material published in English in relation to the dosages of medicines used for specific IEM. Textbooks, peer reviewed articles, papers and other journal items were identified. The PubMed and Embase databases were searched for material published since 1947 and 1974, respectively. The medications found and their respective dosages were graded according to their level of evidence, using the grading system of the Oxford Centre for Evidence-Based Medicine. Results 83 medicines used in various IEM were identified. The dosages of 17 medications (21%) had grade 1 level of evidence, 61 (74%) had grade 4, two medications were in level 2 and 3 respectively, and three had grade 5. Conclusions To the best of our knowledge, this is the first review to address this matter and the authors hope that it will serve as a quickly accessible reference for medications used in this important clinical field. PMID:23532493

  4. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  5. CADNA: a library for estimating round-off error propagation

    NASA Astrophysics Data System (ADS)

    Jézéquel, Fabienne; Chesneaux, Jean-Marie

    2008-06-01

    The CADNA library enables one to estimate round-off error propagation using a probabilistic approach. With CADNA the numerical quality of any simulation program can be controlled. Furthermore by detecting all the instabilities which may occur at run time, a numerical debugging of the user code can be performed. CADNA provides new numerical types on which round-off errors can be estimated. Slight modifications are required to control a code with CADNA, mainly changes in variable declarations, input and output. This paper describes the features of the CADNA library and shows how to interpret the information it provides concerning round-off error propagation in a code. Program summaryProgram title:CADNA Catalogue identifier:AEAT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAT_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:53 420 No. of bytes in distributed program, including test data, etc.:566 495 Distribution format:tar.gz Programming language:Fortran Computer:PC running LINUX with an i686 or an ia64 processor, UNIX workstations including SUN, IBM Operating system:LINUX, UNIX Classification:4.14, 6.5, 20 Nature of problem:A simulation program which uses floating-point arithmetic generates round-off errors, due to the rounding performed at each assignment and at each arithmetic operation. Round-off error propagation may invalidate the result of a program. The CADNA library enables one to estimate round-off error propagation in any simulation program and to detect all numerical instabilities that may occur at run time. Solution method:The CADNA library [1] implements Discrete Stochastic Arithmetic [2-4] which is based on a probabilistic model of round-off errors. The program is run several times with a random rounding mode generating different results each

  6. Reducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star Trackers

    PubMed Central

    Xiong, Kun; Jiang, Jie

    2015-01-01

    Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. All the sources of systematic centroid errors related to fiber optic faceplates (FOFPs) throughout the detection process of the optoelectronic system were analyzed. Based on the general expression of the systematic centroid error deduced in the frequency domain and the FOFP modulation transfer function, an accurate expression that described the systematic centroid error of FOFPs was obtained. Furthermore, reduction of the systematic error between the optical lens and the input FOFP of the intensifier, the one among multiple FOFPs and the one between the output FOFP of the intensifier and the imaging chip of the detecting system were discussed. Two important parametric constraints were acquired from the analysis. The correctness of the analysis on the optoelectronic detecting system was demonstrated through simulation and experiment. PMID:26016920

  7. Reducing systematic centroid errors induced by fiber optic faceplates in intensified high-accuracy star trackers.

    PubMed

    Xiong, Kun; Jiang, Jie

    2015-01-01

    Compared with traditional star trackers, intensified high-accuracy star trackers equipped with an image intensifier exhibit overwhelmingly superior dynamic performance. However, the multiple-fiber-optic faceplate structure in the image intensifier complicates the optoelectronic detecting system of star trackers and may cause considerable systematic centroid errors and poor attitude accuracy. All the sources of systematic centroid errors related to fiber optic faceplates (FOFPs) throughout the detection process of the optoelectronic system were analyzed. Based on the general expression of the systematic centroid error deduced in the frequency domain and the FOFP modulation transfer function, an accurate expression that described the systematic centroid error of FOFPs was obtained. Furthermore, reduction of the systematic error between the optical lens and the input FOFP of the intensifier, the one among multiple FOFPs and the one between the output FOFP of the intensifier and the imaging chip of the detecting system were discussed. Two important parametric constraints were acquired from the analysis. The correctness of the analysis on the optoelectronic detecting system was demonstrated through simulation and experiment. PMID:26016920

  8. SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors

    SciTech Connect

    Kathuria, K; Siebers, J

    2014-06-01

    Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and are as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated

  9. Impact of radar systematic error on the orthogonal frequency division multiplexing chirp waveform orthogonality

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Liang, Xingdong; Chen, Longyong; Ding, Chibiao

    2015-01-01

    Orthogonal frequency division multiplexing (OFDM) chirp waveform, which is composed of two successive identical linear frequency modulated subpulses, is a newly proposed orthogonal waveform scheme for multiinput multioutput synthetic aperture radar (SAR) systems. However, according to the waveform model, radar systematic error, which introduces phase or amplitude difference between the subpulses of the OFDM waveform, significantly degrades the orthogonality. The impact of radar systematic error on the waveform orthogonality is mainly caused by the systematic nonlinearity rather than the thermal noise or the frequency-dependent systematic error. Due to the influence of the causal filters, the first subpulse leaks into the second one. The leaked signal interacts with the second subpulse in the nonlinear components of the transmitter. This interaction renders a dramatic phase distortion in the beginning of the second subpulse. The resultant distortion, which leads to a phase difference between the subpulses, seriously damages the waveform's orthogonality. The impact of radar systematic error on the waveform orthogonality is addressed. Moreover, the impact of the systematic nonlinearity on the waveform is avoided by adding a standby between the subpulses. Theoretical analysis is validated by practical experiments based on a C-band SAR system.

  10. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER.

    SciTech Connect

    QIAN,S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-08-25

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately.

  11. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Tadmor, Eitan

    1989-01-01

    Let u(x,t) be the possibly discontinuous entropy solution of a nonlinear scalar conservation law with smooth initial data. Suppose u sub epsilon(x,t) is the solution of an approximate viscosity regularization, where epsilon greater than 0 is the small viscosity amplitude. It is shown that by post-processing the small viscosity approximation u sub epsilon, pointwise values of u and its derivatives can be recovered with an error as close to epsilon as desired. The analysis relies on the adjoint problem of the forward error equation, which in this case amounts to a backward linear transport with discontinuous coefficients. The novelty of this approach is to use a (generalized) E-condition of the forward problem in order to deduce a W(exp 1,infinity) energy estimate for the discontinuous backward transport equation; this, in turn, leads one to an epsilon-uniform estimate on moments of the error u(sub epsilon) - u. This approach does not follow the characteristics and, therefore, applies mutatis mutandis to other approximate solutions such as E-difference schemes.

  12. Error Estimation of An Ensemble Statistical Seasonal Precipitation Prediction Model

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M.; Kim, Kyu-Myong; Li, Gui-Long

    2001-01-01

    This NASA Technical Memorandum describes an optimal ensemble canonical correlation forecasting model for seasonal precipitation. Each individual forecast is based on the canonical correlation analysis (CCA) in the spectral spaces whose bases are empirical orthogonal functions (EOF). The optimal weights in the ensemble forecasting crucially depend on the mean square error of each individual forecast. An estimate of the mean square error of a CCA prediction is made also using the spectral method. The error is decomposed onto EOFs of the predictand and decreases linearly according to the correlation between the predictor and predictand. Since new CCA scheme is derived for continuous fields of predictor and predictand, an area-factor is automatically included. Thus our model is an improvement of the spectral CCA scheme of Barnett and Preisendorfer. The improvements include (1) the use of area-factor, (2) the estimation of prediction error, and (3) the optimal ensemble of multiple forecasts. The new CCA model is applied to the seasonal forecasting of the United States (US) precipitation field. The predictor is the sea surface temperature (SST). The US Climate Prediction Center's reconstructed SST is used as the predictor's historical data. The US National Center for Environmental Prediction's optimally interpolated precipitation (1951-2000) is used as the predictand's historical data. Our forecast experiments show that the new ensemble canonical correlation scheme renders a reasonable forecasting skill. For example, when using September-October-November SST to predict the next season December-January-February precipitation, the spatial pattern correlation between the observed and predicted are positive in 46 years among the 50 years of experiments. The positive correlations are close to or greater than 0.4 in 29 years, which indicates excellent performance of the forecasting model. The forecasting skill can be further enhanced when several predictors are used.

  13. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  14. Effects of measurement error on estimating biological half-life

    SciTech Connect

    Caudill, S.P.; Pirkle, J.L.; Michalek, J.E. )

    1992-10-01

    Direct computation of the observed biological half-life of a toxic compound in a person can lead to an undefined estimate when subsequent concentration measurements are greater than or equal to previous measurements. The likelihood of such an occurrence depends upon the length of time between measurements and the variance (intra-subject biological and inter-sample analytical) associated with the measurements. If the compound is lipophilic the subject's percentage of body fat at the times of measurement can also affect this likelihood. We present formulas for computing a model-predicted half-life estimate and its variance; and we derive expressions for the effect of sample size, measurement error, time between measurements, and any relevant covariates on the variability in model-predicted half-life estimates. We also use statistical modeling to estimate the probability of obtaining an undefined half-life estimate and to compute the expected number of undefined half-life estimates for a sample from a study population. Finally, we illustrate our methods using data from a study of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure among 36 members of Operation Ranch Hand, the Air Force unit responsible for the aerial spraying of Agent Orange in Vietnam.

  15. Verification of unfold error estimates in the UFO code

    SciTech Connect

    Fehl, D.L.; Biggs, F.

    1996-07-01

    Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.

  16. Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters

    ERIC Educational Resources Information Center

    Hoshino, Takahiro; Shigemasu, Kazuo

    2008-01-01

    The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…

  17. Sources of systematic error in calibrated BOLD based mapping of baseline oxygen extraction fraction.

    PubMed

    Blockley, Nicholas P; Griffeth, Valerie E M; Stone, Alan J; Hare, Hannah V; Bulte, Daniel P

    2015-11-15

    Recently a new class of calibrated blood oxygen level dependent (BOLD) functional magnetic resonance imaging (MRI) methods were introduced to quantitatively measure the baseline oxygen extraction fraction (OEF). These methods rely on two respiratory challenges and a mathematical model of the resultant changes in the BOLD functional MRI signal to estimate the OEF. However, this mathematical model does not include all of the effects that contribute to the BOLD signal, it relies on several physiological assumptions and it may be affected by intersubject physiological variability. The aim of this study was to investigate these sources of systematic error and their effect on estimating the OEF. This was achieved through simulation using a detailed model of the BOLD signal. Large ranges for intersubject variability in baseline physiological parameters such as haematocrit and cerebral blood volume were considered. Despite this the uncertainty in the relationship between the measured BOLD signals and the OEF was relatively low. Investigations of the physiological assumptions that underlie the mathematical model revealed that OEF measurements are likely to be overestimated if oxygen metabolism changes during hypercapnia or cerebral blood flow changes under hyperoxia. Hypoxic hypoxia was predicted to result in an underestimation of the OEF, whilst anaemic hypoxia was found to have only a minimal effect. PMID:26254114

  18. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius

    NASA Astrophysics Data System (ADS)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  19. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    PubMed

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius. PMID:26931894

  20. Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments.

    PubMed

    Lamoreaux, Steve; Wong, Douglas

    2015-06-01

    The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented. PMID:25965319

  1. Mechanical temporal fluctuation induced distance and force systematic errors in Casimir force experiments

    NASA Astrophysics Data System (ADS)

    Lamoreaux, Steve; Wong, Douglas

    2015-06-01

    The basic theory of temporal mechanical fluctuation induced systematic errors in Casimir force experiments is developed and applications of this theory to several experiments is reviewed. This class of systematic error enters in a manner similar to the usual surface roughness correction, but unlike the treatment of surface roughness for which an exact result requires an electromagnetic mode analysis, time dependent fluctuations can be treated exactly, assuming the fluctuation times are much longer than the zero point and thermal fluctuation correlation times of the electromagnetic field between the plates. An experimental method for measuring absolute distance with high bandwidth is also described and measurement data presented.

  2. Backtracing particle rays through magnetic spectrometers: avoiding systematic errors in the reconstruction of target coordinates

    NASA Astrophysics Data System (ADS)

    Veit, Th.; Friedrich, J.; Offermann, E. A. J. M.

    1993-12-01

    The procedures used to model [J. Friedrich, Nucl. Instr. and Meth. A 293 (1990) 575] or to determine [N. Voegler et al., Nucl. Instr. and Meth. A 249 (1986) 337, H. Blok et al., ibid., vol. A 262 (1987) 291, and E.A.J.M. Offermann et al., ibid., vol. A 262 (1987) 298] the mapping properties of a magnetic spectrometer are based on a minimization of the variance of target coordinates. We show that backtracing with matrix elements, determined in this way, may contain systematic errors. As alternative, we propose to minimize the variance of the detector coordinates. This procedure avoids these systematic errors.

  3. The Origin of Systematic Errors in the GCM Simulation of ITCZ Precipitation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Suarez, M. J.; Bacmeister, J. T.; Chen, B.; Takacs, L. L.

    2006-01-01

    Previous GCM studies have found that the systematic errors in the GCM simulation of the seasonal mean ITCZ intensity and location could be substantially corrected by adding suitable amount of rain re-evaporation or cumulus momentum transport. However, the reason(s) for these systematic errors and solutions has remained a puzzle. In this work the knowledge gained from previous studies of the ITCZ in an aqua-planet model with zonally uniform SST is applied to solve this puzzle. The solution is supported by further aqua-planet and full model experiments using the latest version of the Goddard Earth Observing System GCM.

  4. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    SciTech Connect

    Wu Yan; Shannon, Mark A.

    2006-04-15

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed.

  5. Richardson Extrapolation Based Error Estimation for Stochastic Kinetic Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Cartwright, Keigh

    2014-10-01

    To have a high degree of confidence in simulations one needs code verification, validation, solution verification and uncertainty qualification. This talk will focus on numerical error estimation for stochastic kinetic plasma simulations using the Particle-In-Cell (PIC) method and how it impacts the code verification and validation. A technique Is developed to determine the full converged solution with error bounds from the stochastic output of a Particle-In-Cell code with multiple convergence parameters (e.g. ?t, ?x, and macro particle weight). The core of this method is a multi parameter regression based on a second-order error convergence model with arbitrary convergence rates. Stochastic uncertainties in the data set are propagated through the model usin gstandard bootstrapping on a redundant data sets, while a suite of nine regression models introduces uncertainties in the fitting process. These techniques are demonstrated on Flasov-Poisson Child-Langmuir diode, relaxation of an electro distribution to a Maxwellian due to collisions and undriven sheaths and pre-sheaths. Sandia National Laboratories is a multie-program laboratory managed and operated by Sandia Corporation, a wholly owned subisidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Real-Time Parameter Estimation Using Output Error

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.

    2014-01-01

    Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.

  7. Estimating Ocean Middle-Depth Velocities from ARGO Floats: Error Estimation and Application to Pacific

    NASA Astrophysics Data System (ADS)

    Xie, J.; Zhu, J.; Yan, C.

    2006-07-01

    The Array for Real-time Geostrophic Oceanography (ARGO) project creates a unique opportunity to estimate the absolute velocity at mid-depths of the global oceans. However, the estimation can only be made based on float surface trajectories. The diving and resurfacing positions of the float are not available in its trajectory file. This surface drifting effect makes it difficult to estimate mid-depth current. Moreover, the vertical shear during decent or ascent between parking depth and the surface is another major error source. In this presentation, we first quantify the contributions of the two major error sources using the current estimates from Estimating the Climate and Circulation of the Ocean (ECCO) and find that the surface drifting is a primary error source. Then, a sequential surface trajectory prediction/estimation scheme based on Kalman Filter is introduced and implemented to reduce the surface drifting error in the Pacific during November 2001 to October 2004. On average, the error of the estimated velocities is greatly reduced from 2.7 to 0.2 cm s if neglecting the vertical shear. These velocities with relative error less than 25% are analyzed and compared with previous studies on mid-depth currents. The current system derived from ARGO floats in Pacific at 1000 and 2000 dB is comparable to other measured by ADCP (Reid, 1997; Firing et al., 1998). This presentation is based on two submitted manuscripts of the same authors (Xie and Zhu, 2006; Zhu et al., 2006). More detailed results can be found in the two manuscripts.

  8. Models and error analyses in urban air quality estimation

    NASA Technical Reports Server (NTRS)

    Englar, T., Jr.; Diamante, J. M.; Jazwinski, A. H.

    1976-01-01

    Estimation theory has been applied to a wide range of aerospace problems. Application of this expertise outside the aerospace field has been extremely limited, however. This paper describes the use of covariance error analysis techniques in evaluating the accuracy of pollution estimates obtained from a variety of concentration measuring devices. It is shown how existing software developed for aerospace applications can be applied to the estimation of pollution through the processing of measurement types involving a range of spatial and temporal responses. The modeling of pollutant concentration by meandering Gaussian plumes is described in some detail. Time averaged measurements are associated with a model of the average plume, using some of the same state parameters and thus avoiding the problem of state memory. The covariance analysis has been implemented using existing batch estimation software. This usually involves problems in handling dynamic noise; however, the white dynamic noise has been replaced by a band-limited process which can be easily accommodated by the software.

  9. Optimizing MRI-targeted fusion prostate biopsy: the effect of systematic error and anisotropy on tumor sampling

    NASA Astrophysics Data System (ADS)

    Martin, Peter R.; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2015-03-01

    Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided "fusion" prostate biopsy aims to reduce the 21-47% false negative rate of clinical 2D TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsy still has a substantial false negative rate. Therefore, we propose optimization of biopsy targeting to meet the clinician's desired tumor sampling probability, optimizing needle targets within each tumor and accounting for uncertainties due to guidance system errors, image registration errors, and irregular tumor shapes. As a step toward this optimization, we obtained multiparametric MRI (mpMRI) and 3D TRUS images from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D surfaces that were registered to 3D TRUS. We estimated the probability, P, of obtaining a tumor sample with a single biopsy, and investigated the effects of systematic errors and anisotropy on P. Our experiments indicated that a biopsy system's lateral and elevational errors have a much greater effect on sampling probabilities, relative to its axial error. We have also determined that for a system with RMS error of 3.5 mm, tumors of volume 1.9 cm3 and smaller may require more than one biopsy core to ensure 95% probability of a sample with 50% core involvement, and tumors 1.0 cm3 and smaller may require more than two cores.

  10. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  11. Local error estimates for adaptive simulation of the reaction-diffusion master equation via operator splitting

    NASA Astrophysics Data System (ADS)

    Hellander, Andreas; Lawson, Michael J.; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps were adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the diffusive finite-state projection (DFSP) method, to incorporate temporal adaptivity.

  12. Practical Aspects of the Equation-Error Method for Aircraft Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene a.

    2006-01-01

    Various practical aspects of the equation-error approach to aircraft parameter estimation were examined. The analysis was based on simulated flight data from an F-16 nonlinear simulation, with realistic noise sequences added to the computed aircraft responses. This approach exposes issues related to the parameter estimation techniques and results, because the true parameter values are known for simulation data. The issues studied include differentiating noisy time series, maximum likelihood parameter estimation, biases in equation-error parameter estimates, accurate computation of estimated parameter error bounds, comparisons of equation-error parameter estimates with output-error parameter estimates, analyzing data from multiple maneuvers, data collinearity, and frequency-domain methods.

  13. A novel approach to an old problem: analysis of systematic errors in two models of recognition memory.

    PubMed

    Dede, Adam J O; Squire, Larry R; Wixted, John T

    2014-01-01

    For more than a decade, the high threshold dual process (HTDP) model has served as a guide for studying the functional neuroanatomy of recognition memory. The HTDP model's utility has been that it provides quantitative estimates of recollection and familiarity, two processes thought to support recognition ability. Important support for the model has been the observation that it fits experimental data well. The continuous dual process (CDP) model also fits experimental data well. However, this model does not provide quantitative estimates of recollection and familiarity, making it less immediately useful for illuminating the functional neuroanatomy of recognition memory. These two models are incompatible and cannot both be correct, and an alternative method of model comparison is needed. We tested for systematic errors in each model's ability to fit recognition memory data from four independent data sets from three different laboratories. Across participants and across data sets, the HTDP model (but not the CDP model) exhibited systematic error. In addition, the pattern of errors exhibited by the HTDP model was predicted by the CDP model. We conclude that the CDP model provides a better account of recognition memory than the HTDP model. PMID:24184486

  14. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2012-04-01

    It is well-known that quantitative precipitation estimation (QPE) is affected by many sources of error. The most important of these are 1) radar calibration, 2) wet radome attenuation, 3) rain attenuation, 4) vertical profile of reflectivity, 5) variations in drop size distribution, and 6) sampling effects. The study presented here is an attempt to separate and quantify these sources of error. For this purpose, QPE is performed very close to the radar (~1-2 km) so that 3), 4), and 6) will only play a minor role. Error source 5) can be corrected for because of the availability of two disdrometers (instruments that measure the drop size distribution). A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm in De Bilt, The Netherlands is analyzed. Radar, rain gauge, and disdrometer data from De Bilt are used for this. It is clear from the analyses that without any corrections, the radar severely underestimates the total rain amount (only 25 mm). To investigate the effect of wet radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation up to ~4 dB. The calibration of the radar is checked by looking at received power from the sun. This turns out to cause another 1 dB of underestimation. The effect of variability of drop size distributions is shown to cause further underestimation. Correcting for all of these effects yields a good match between radar QPE and gauge measurements.

  15. Convergence and error estimation in free energy calculations using the weighted histogram analysis method

    PubMed Central

    Zhu, Fangqiang; Hummer, Gerhard

    2012-01-01

    The weighted histogram analysis method (WHAM) has become the standard technique for the analysis of umbrella sampling simulations. In this paper, we address the challenges (1) of obtaining fast and accurate solutions of the coupled nonlinear WHAM equations, (2) of quantifying the statistical errors of the resulting free energies, (3) of diagnosing possible systematic errors, and (4) of optimal allocation of the computational resources. Traditionally, the WHAM equations are solved by a fixed-point direct iteration method, despite poor convergence and possible numerical inaccuracies in the solutions. Here we instead solve the mathematically equivalent problem of maximizing a target likelihood function, by using superlinear numerical optimization algorithms with a significantly faster convergence rate. To estimate the statistical errors in one-dimensional free energy profiles obtained from WHAM, we note that for densely spaced umbrella windows with harmonic biasing potentials, the WHAM free energy profile can be approximated by a coarse-grained free energy obtained by integrating the mean restraining forces. The statistical errors of the coarse-grained free energies can be estimated straightforwardly and then used for the WHAM results. A generalization to multidimensional WHAM is described. We also propose two simple statistical criteria to test the consistency between the histograms of adjacent umbrella windows, which help identify inadequate sampling and hysteresis in the degrees of freedom orthogonal to the reaction coordinate. Together, the estimates of the statistical errors and the diagnostics of inconsistencies in the potentials of mean force provide a basis for the efficient allocation of computational resources in free energy simulations. PMID:22109354

  16. Error estimation for CFD aeroheating prediction under rarefied flow condition

    NASA Astrophysics Data System (ADS)

    Jiang, Yazhong; Gao, Zhenxun; Jiang, Chongwen; Lee, Chunhian

    2014-12-01

    Both direct simulation Monte Carlo (DSMC) and Computational Fluid Dynamics (CFD) methods have become widely used for aerodynamic prediction when reentry vehicles experience different flow regimes during flight. The implementation of slip boundary conditions in the traditional CFD method under Navier-Stokes-Fourier (NSF) framework can extend the validity of this approach further into transitional regime, with the benefit that much less computational cost is demanded compared to DSMC simulation. Correspondingly, an increasing error arises in aeroheating calculation as the flow becomes more rarefied. To estimate the relative error of heat flux when applying this method for a rarefied flow in transitional regime, theoretical derivation is conducted and a dimensionless parameter ɛ is proposed by approximately analyzing the ratio of the second order term to first order term in the heat flux expression in Burnett equation. DSMC simulation for hypersonic flow over a cylinder in transitional regime is performed to test the performance of parameter ɛ, compared with two other parameters, Knρ and MaṡKnρ.

  17. Variance estimation for systematic designs in spatial surveys.

    PubMed

    Fewster, R M

    2011-12-01

    In spatial surveys for estimating the density of objects in a survey region, systematic designs will generally yield lower variance than random designs. However, estimating the systematic variance is well known to be a difficult problem. Existing methods tend to overestimate the variance, so although the variance is genuinely reduced, it is over-reported, and the gain from the more efficient design is lost. The current approaches to estimating a systematic variance for spatial surveys are to approximate the systematic design by a random design, or approximate it by a stratified design. Previous work has shown that approximation by a random design can perform very poorly, while approximation by a stratified design is an improvement but can still be severely biased in some situations. We develop a new estimator based on modeling the encounter process over space. The new "striplet" estimator has negligible bias and excellent precision in a wide range of simulation scenarios, including strip-sampling, distance-sampling, and quadrat-sampling surveys, and including populations that are highly trended or have strong aggregation of objects. We apply the new estimator to survey data for the spotted hyena (Crocuta crocuta) in the Serengeti National Park, Tanzania, and find that the reported coefficient of variation for estimated density is 20% using approximation by a random design, 17% using approximation by a stratified design, and 11% using the new striplet estimator. This large reduction in reported variance is verified by simulation. PMID:21534940

  18. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Parsai, Homayon; Cho, Paul S.; Phillips, Mark H.; Giansiracusa, Robert S.; Axen, David

    2003-05-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of +/-0.5 mm were shown to result in significant dosimetric deviations.

  19. Effects of measurement error on horizontal hydraulic gradient estimates.

    PubMed

    Devlin, J F; McElwee, C D

    2007-01-01

    During the design of a natural gradient tracer experiment, it was noticed that the hydraulic gradient was too small to measure reliably on an approximately 500-m(2) site. Additional wells were installed to increase the monitored area to 26,500 m(2), and wells were instrumented with pressure transducers. The resulting monitoring system was capable of measuring heads with a precision of +/-1.3 x 10(-2) m. This measurement error was incorporated into Monte Carlo calculations, in which only hydraulic head values were varied between realizations. The standard deviation in the estimated gradient and the flow direction angle from the x-axis (east direction) were calculated. The data yielded an average hydraulic gradient of 4.5 x 10(-4)+/-25% with a flow direction of 56 degrees southeast +/-18 degrees, with the variations representing 1 standard deviation. Further Monte Carlo calculations investigated the effects of number of wells, aspect ratio of the monitored area, and the size of the monitored area on the previously mentioned uncertainties. The exercise showed that monitored areas must exceed a size determined by the magnitude of the measurement error if meaningful gradient estimates and flow directions are to be obtained. The aspect ratio of the monitored zone should be as close to 1 as possible, although departures as great as 0.5 to 2 did not degrade the quality of the data unduly. Numbers of wells beyond three to five provided little advantage. These conclusions were supported for the general case with a preliminary theoretical analysis. PMID:17257340

  20. CTER—Rapid estimation of CTF parameters with error assessment

    PubMed Central

    Penczek, Pawel A.; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M.T.

    2014-01-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300 kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03 Å without, and 3.85 Å with, inclusion of astigmatism parameters. PMID:24562077

  1. CTER-rapid estimation of CTF parameters with error assessment.

    PubMed

    Penczek, Pawel A; Fang, Jia; Li, Xueming; Cheng, Yifan; Loerke, Justus; Spahn, Christian M T

    2014-05-01

    In structural electron microscopy, the accurate estimation of the Contrast Transfer Function (CTF) parameters, particularly defocus and astigmatism, is of utmost importance for both initial evaluation of micrograph quality and for subsequent structure determination. Due to increases in the rate of data collection on modern microscopes equipped with new generation cameras, it is also important that the CTF estimation can be done rapidly and with minimal user intervention. Finally, in order to minimize the necessity for manual screening of the micrographs by a user it is necessary to provide an assessment of the errors of fitted parameters values. In this work we introduce CTER, a CTF parameters estimation method distinguished by its computational efficiency. The efficiency of the method makes it suitable for high-throughput EM data collection, and enables the use of a statistical resampling technique, bootstrap, that yields standard deviations of estimated defocus and astigmatism amplitude and angle, thus facilitating the automation of the process of screening out inferior micrograph data. Furthermore, CTER also outputs the spatial frequency limit imposed by reciprocal space aliasing of the discrete form of the CTF and the finite window size. We demonstrate the efficiency and accuracy of CTER using a data set collected on a 300kV Tecnai Polara (FEI) using the K2 Summit DED camera in super-resolution counting mode. Using CTER we obtained a structure of the 80S ribosome whose large subunit had a resolution of 4.03Å without, and 3.85Å with, inclusion of astigmatism parameters. PMID:24562077

  2. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  3. Systematic errors in conductimetric instrumentation due to bubble adhesions on the electrodes: An experimental assessment

    NASA Astrophysics Data System (ADS)

    Neelakantaswamy, P. S.; Rajaratnam, A.; Kisdnasamy, S.; Das, N. P.

    1985-02-01

    Systematic errors in conductimetric measurements are often encountered due to partial screening of interelectrode current paths resulting from adhesion of bubbles on the electrode surfaces of the cell. A method of assessing this error quantitatively by a simulated electrolytic tank technique is proposed here. The experimental setup simulates the bubble-curtain effect in the electrolytic tank by means of a pair of electrodes partially covered by a monolayer of small polystyrene-foam spheres representing the bubble adhesions. By varying the number of spheres stuck on the electrode surface, the fractional area covered by the bubbles is controlled; and by measuring the interelectrode impedance, the systematic error is determined as a function of the fractional area covered by the simulated bubbles. A theoretical model which depicts the interelectrode resistance and, hence, the systematic error caused by bubble adhesions is calculated by considering the random dispersal of bubbles on the electrodes. Relevant computed results are compared with the measured impedance data obtained from the electrolytic tank experiment. Results due to other models are also presented and discussed. A time-domain measurement on the simulated cell to study the capacitive effects of the bubble curtain is also explained.

  4. Detecting Positioning Errors and Estimating Correct Positions by Moving Window

    PubMed Central

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  5. Errors of Remapping of Radar Estimates onto Cartesian Coordinates

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Ogden, F. L.

    2014-12-01

    Recent upgrades to operational radar rainfall products in terms of quality and resolution call for re-examination of the factors that contribute to the uncertainty of radar rainfall estimation. Remapping or gridding of radar polar observations onto Cartesian coordinates is implemented using various methods, and is often applied when radar estimates are compared against rain gauge observations, in hydrologic applications, or for merging data from different radars. However, assuming perfect radar observations, many of the widely used remapping methodologies do not conserve mass for the rainfall rate field. Research has suggested that optimal remapping should select all polar bins falling within or intersecting a Cartesian grid and assign them weights based on the proportion of each individual bin's area falling within the grid. However, to reduce computational demand practitioners use a variety of approximate remapping approaches. The most popular approximate approaches used are those based on extracting information from radar bins whose centers fall within a certain distance from the center of the Cartesian grid. This paper introduces a mass-conserving method for remapping, which we call "precise remapping", and evaluates it by comparing against two other commonly used remapping methods based on areal weighting and distance. Results show that the choice of the remapping method can lead to large errors in grid-averaged rainfall accumulations.

  6. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun; Harlim, John

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.

  7. Detecting Positioning Errors and Estimating Correct Positions by Moving Window.

    PubMed

    Song, Ha Yoon; Lee, Jun Seok

    2015-01-01

    In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282

  8. SU-F-BRD-03: Determination of Plan Robustness for Systematic Setup Errors Using Trilinear Interpolation

    SciTech Connect

    Fix, MK; Volken, W; Frei, D; Terribilini, D; Dal Pra, A; Schmuecking, M; Manser, P

    2014-06-15

    Purpose: Treatment plan evaluations in radiotherapy are currently ignoring the dosimetric impact of setup uncertainties. The determination of the robustness for systematic errors is rather computational intensive. This work investigates interpolation schemes to quantify the robustness of treatment plans for systematic errors in terms of efficiency and accuracy. Methods: The impact of systematic errors on dose distributions for patient treatment plans is determined by using the Swiss Monte Carlo Plan (SMCP). Errors in all translational directions are considered, ranging from −3 to +3 mm in mm steps. For each systematic error a full MC dose calculation is performed leading to 343 dose calculations, used as benchmarks. The interpolation uses only a subset of the 343 calculations, namely 9, 15 or 27, and determines all dose distributions by trilinear interpolation. This procedure is applied for a prostate and a head and neck case using Volumetric Modulated Arc Therapy with 2 arcs. The relative differences of the dose volume histograms (DVHs) of the target and the organs at risks are compared. Finally, the interpolation schemes are used to compare robustness of 4- versus 2-arcs in the head and neck treatment plan. Results: Relative local differences of the DVHs increase for decreasing number of dose calculations used in the interpolation. The mean deviations are <1%, 3.5% and 6.5% for a subset of 27, 15 and 9 used dose calculations, respectively. Thereby the dose computation times are reduced by factors of 13, 25 and 43, respectively. The comparison of the 4- versus 2-arcs plan shows a decrease in robustness; however, this is outweighed by the dosimetric improvements. Conclusion: The results of this study suggest that the use of trilinear interpolation to determine the robustness of treatment plans can remarkably reduce the number of dose calculations. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.

  9. Simultaneous Estimation of Photometric Redshifts and SED Parameters: Improved Techniques and a Realistic Error Budget

    NASA Astrophysics Data System (ADS)

    Acquaviva, Viviana; Raichoor, Anand; Gawiser, Eric

    2015-05-01

    We seek to improve the accuracy of joint galaxy photometric redshift estimation and spectral energy distribution (SED) fitting. By simulating different sources of uncorrected systematic errors, we demonstrate that if the uncertainties in the photometric redshifts are estimated correctly, so are those on the other SED fitting parameters, such as stellar mass, stellar age, and dust reddening. Furthermore, we find that if the redshift uncertainties are over(under)-estimated, the uncertainties in SED parameters tend to be over(under)-estimated by similar amounts. These results hold even in the presence of severe systematics and provide, for the first time, a mechanism to validate the uncertainties on these parameters via comparison with spectroscopic redshifts. We propose a new technique (annealing) to re-calibrate the joint uncertainties in the photo-z and SED fitting parameters without compromising the performance of the SED fitting + photo-z estimation. This procedure provides a consistent estimation of the multi-dimensional probability distribution function in SED fitting + z parameter space, including all correlations. While the performance of joint SED fitting and photo-z estimation might be hindered by template incompleteness, we demonstrate that the latter is “flagged” by a large fraction of outliers in redshift, and that significant improvements can be achieved by using flexible stellar populations synthesis models and more realistic star formation histories. In all cases, we find that the median stellar age is better recovered than the time elapsed from the onset of star formation. Finally, we show that using a photometric redshift code such as EAZY to obtain redshift probability distributions that are then used as priors for SED fitting codes leads to only a modest bias in the SED fitting parameters and is thus a viable alternative to the simultaneous estimation of SED parameters and photometric redshifts.

  10. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter

  11. Voigt profile introduces optical depth dependent systematic errors - Detected in high resolution laboratory spectra of water

    NASA Astrophysics Data System (ADS)

    Birk, Manfred; Wagner, Georg

    2016-02-01

    The Voigt profile commonly used in radiative transfer modeling of Earth's and planets' atmospheres for remote sensing/climate modeling produces systematic errors so far not accounted for. Saturated lines are systematically too narrow when calculated from pressure broadening parameters based on the analysis of laboratory data with the Voigt profile. This is caused by line narrowing effects leading to systematically too small fitted broadening parameters when applying the Voigt profile. These effective values are still valid to model non-saturated lines with sufficient accuracy. Saturated lines dominated by the wings of the line profile are sufficiently accurately modeled with a Voigt profile with the correct broadening parameters and are thus systematically too narrow when calculated with the effective values. The systematic error was quantified by mid infrared laboratory spectroscopy of the water ν2 fundamental. Correct Voigt profile based pressure broadening parameters for saturated lines were 3-4% larger than the effective ones in the spectroscopic database. Impacts on remote sensing and climate modeling are expected. Combination of saturated and non-saturated lines in the spectroscopic analysis will quantify line narrowing with unprecedented precision.

  12. Systematic Errors and Combination of the Individual CRF Solutions in the Framework of the IVS ICRF Pilot Project

    NASA Astrophysics Data System (ADS)

    Sokolova, J. R.

    2006-08-01

    New international Pilot Project for the redetermination of the ICRF was initiated by the International VLBI Service for Geodesy and Astrometry (IVS) in January 2005. The purpose of this project is to compare the individual CRF solutions and to analyse their systematic and random errors with focus on the selection of the optimal strategy for the next ICRF realization. Eight CRF realizations provided by the IVS Analysis Centres (GA, SHAO, DGFI, GIUB-BKG, JPL, MAO NANU, GSFC, USNO) were analyzed. In present study, four analytical models were used to investigate the systematic differences between solutions: solid rotation, rotation and deformation, and expansion by orthogonal functions: Legendre-Fourier polynomials and spherical functions. It was found that expansions by orthogonal function describe the differences between individual catalogues better than the two former models. Finally, the combined CRF was generated. Using the radio source positions from this combined catalogue for estimation of EOP has shown improvement of the uncertainty of universal time and nutation.

  13. Estimation of optical proximity effect caused by mask fabrication error

    NASA Astrophysics Data System (ADS)

    Kamon, Kazuya; Hanawa, Tetsuro; Moriizumi, Koichi

    1997-07-01

    To get wide lithography latitudes in ULSI fabrication, an optical proximity correction system is being widely used. We previously demonstrated that the optical proximity effect is highly dependent on beam interference conditions. By using an aperture with a spindle shaped opaque region and a controlling interference beam number optimized for imaging, we can obtain a high correction accuracy of less than +/- 0.01 micrometers for all kinds of pattern. To put the optical proximity correction into practical use, we must fabricate the corrected mask either by an EB or a laser writing system. But during mask writing, there is another problematic proximity effect. The optical proximity effect caused by mask fabrication error is becoming a serious problem. In this paper, we estimate the optical proximity effect caused by mask fabrication error. For EB writing, the mask feature size of 0.35 micrometers line changes dramatically in a space less than 0.8 micrometers in size; this is not tolerable. For a large pitch pattern, modified illumination reduces the DOF to 0 micrometers . Otherwise, laser writing stably fabricates a mask feature size for a 0.35 micrometers line, and the modified illumination reduces the optical proximity effect. This resist feature fluctuation is binary, so, correcting the mask pattern is easy. Although, it was wrongly thought that for larger pitch pattern, the DOF was reduced by the modified illumination, the DOF reduction actually came from the combination of the two proximity effects. Using an accurate mask produced by a laser writer, we do not observe any DOF reduction in modified illumination. Moreover, this has led to development of an optical proximity correction system with EB proximity correction.

  14. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    SciTech Connect

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.; Polpitiya, Ashoka D.; Purvine, Samuel O.; Anderson, Gordon A.; Camp, David G.; Smith, Richard D.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that can estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.

  15. Treatment of systematic errors in the processing of wide angle sonar sensor data for robotic navigation

    SciTech Connect

    Beckerman, M.; Oblow, E.M.

    1988-04-01

    A methodology has been developed for the treatment of systematic errors which arise in the processing of sparse sensor data. We present a detailed application of this methodology to the construction from wide-angle sonar sensor data of navigation maps for use in autonomous robotic navigation. In the methodology we introduce a four-valued labelling scheme and a simple logic for label combination. The four labels, conflict, occupied, empty and unknown, are used to mark the cells of the navigation maps; the logic allows for the rapid updating of these maps as new information is acquired. The systematic errors are treated by relabelling conflicting pixel assignments. Most of the new labels are obtained from analyses of the characteristic patterns of conflict which arise during the information processing. The remaining labels are determined by imposing an elementary consistent-labelling condition. 26 refs., 9 figs.

  16. A Posteriori Error Estimation for a Nodal Method in Neutron Transport Calculations

    SciTech Connect

    Azmy, Y.Y.; Buscaglia, G.C.; Zamonsky, O.M.

    1999-11-03

    An a posteriori error analysis of the spatial approximation is developed for the one-dimensional Arbitrarily High Order Transport-Nodal method. The error estimator preserves the order of convergence of the method when the mesh size tends to zero with respect to the L{sup 2} norm. It is based on the difference between two discrete solutions that are available from the analysis. The proposed estimator is decomposed into error indicators to allow the quantification of local errors. Some test problems with isotropic scattering are solved to compare the behavior of the true error to that of the estimated error.

  17. Bootstrap Standard Errors for Maximum Likelihood Ability Estimates When Item Parameters Are Unknown

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2014-01-01

    When item parameter estimates are used to estimate the ability parameter in item response models, the standard error (SE) of the ability estimate must be corrected to reflect the error carried over from item calibration. For maximum likelihood (ML) ability estimates, a corrected asymptotic SE is available, but it requires a long test and the…

  18. A constant altitude flight survey method for mapping atmospheric ambient pressures and systematic radar errors

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Ehernberger, L. J.

    1985-01-01

    The flight test technique described uses controlled survey runs to determine horizontal atmospheric pressure variations and systematic altitude errors that result from space positioning measurements. The survey data can be used not only for improved air data calibrations, but also for studies of atmospheric structure and space positioning accuracy performance. The examples presented cover a wide range of radar tracking conditions for both subsonic and supersonic flight to an altitude of 42,000 ft.

  19. Effects of systematic errors on the mixing ratios of trace gases obtained from occulation spectra

    NASA Technical Reports Server (NTRS)

    Shaffer, W. A.; Shaw, J. H.; Farmer, C. B.

    1983-01-01

    The influence of systematic errors in the parameters of the models describing the geometry and the atmosphere on the profiles of trace gases retrieved from simulated solar occultation spectra, collected at satellite altitudes, is investigated. Because of smearing effects and other uncertainties, it may be preferable to calibrate the spectra internally by measuring absorption lines of an atmospheric gas such as CO2 whose vertical distribution is assumed rather than to relay on externally supplied information.

  20. Types of Possible Survey Errors in Estimates Published in the Weekly Natural Gas Storage Report

    EIA Publications

    2016-01-01

    This document lists types of potential errors in EIA estimates published in the WNGSR. Survey errors are an unavoidable aspect of data collection. Error is inherent in all collected data, regardless of the source of the data and the care and competence of data collectors. The type and extent of error depends on the type and characteristics of the survey.

  1. The effect of systematic errors on the hybridization of optical critical dimension measurements

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhang, Nien Fan; Zhou, Hui; Silver, Richard M.

    2015-06-01

    In hybrid metrology two or more measurements of the same measurand are combined to provide a more reliable result that ideally incorporates the individual strengths of each of the measurement methods. While these multiple measurements may come from dissimilar metrology methods such as optical critical dimension microscopy (OCD) and scanning electron microscopy (SEM), we investigated the hybridization of similar OCD methods featuring a focus-resolved simulation study of systematic errors performed at orthogonal polarizations. Specifically, errors due to line edge and line width roughness (LER, LWR) and their superposition (LEWR) are known to contribute a systematic bias with inherent correlated errors. In order to investigate the sensitivity of the measurement to LEWR, we follow a modeling approach proposed by Kato et al. who studied the effect of LEWR on extreme ultraviolet (EUV) and deep ultraviolet (DUV) scatterometry. Similar to their findings, we have observed that LEWR leads to a systematic bias in the simulated data. Since the critical dimensions (CDs) are determined by fitting the respective model data to the measurement data by minimizing the difference measure or chi square function, a proper description of the systematic bias is crucial to obtaining reliable results and to successful hybridization. In scatterometry, an analytical expression for the influence of LEWR on the measured orders can be derived, and accounting for this effect leads to a modification of the model function that not only depends on the critical dimensions but also on the magnitude of the roughness. For finite arrayed structures however, such an analytical expression cannot be derived. We demonstrate how to account for the systematic bias and that, if certain conditions are met, a significant improvement of the reliability of hybrid metrology for combining both dissimilar and similar measurement tools can be achieved.

  2. Estimation of line-based target registration error

    NASA Astrophysics Data System (ADS)

    Ma, Burton; Peters, Terry M.; Chen, Elvis C. S.

    2016-03-01

    We present a novel method for estimating target registration error (TRE) in point-to-line registration. We develop a spatial stiffness model of the registration problem and derive the stiffness matrix of the model which leads to an analytic expression for predicting the root-mean-square (RMS) TRE. Under the assumption of isotropic localization noise, we show that the stiffness matrix for line-based registration is equal to the difference of the stiffness matrices for fiducial registration and surface-based registration. The expression for TRE is validated in the context of freehand ultrasound calibration performed using a tracked line fiducial as a calibration phantom. Measurements taken during calibration of a tracked linear ultrasound probe were used in simulations to assess TRE of point-to-line registration and the results were compared to the values predicted by the analytic expression. The difference between predicted and simulated RMS TRE magnitude for targets near the centroid of the registration points was less than 5% of the simulated magnitude when using more than 6 registration points. The difference between predicted and simulated RMS TRE magnitude for targets over the entire ultrasound image was almost always less than 10% of the simulated magnitude when using more than 10 registration points. TRE magnitude was minimized near the centroid of the registration points and the isocontours of TRE were elliptic in shape.

  3. Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    NASA Technical Reports Server (NTRS)

    Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.

    2007-01-01

    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross

  4. Local and Global Views of Systematic Errors of Atmosphere-Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Mechoso, C. Roberto; Wang, Chunzai; Lee, Sang-Ki; Zhang, Liping; Wu, Lixin

    2014-05-01

    Coupled Atmosphere-Ocean General Circulation Models (CGCMs) have serious systematic errors that challenge the reliability of climate predictions. One major reason for such biases is the misrepresentations of physical processes, which can be amplified by feedbacks among climate components especially in the tropics. Much effort, therefore, is dedicated to the better representation of physical processes in coordination with intense process studies. The present paper starts with a presentation of these systematic CGCM errors with an emphasis on the sea surface temperature (SST) in simulations by 22 participants in the Coupled Model Intercomparison Project phase 5 (CMIP5). Different regions are considered for discussion of model errors, including the one around the equator, the one covered by the stratocumulus decks off Peru and Namibia, and the confluence between the Angola and Benguela currents. Hypotheses on the reasons for the errors are reviewed, with particular attention on the parameterization of low-level marine clouds, model difficulties in the simulation of the ocean heat budget under the stratocumulus decks, and location of strong SST gradients. Next the presentation turns to a global perspective of the errors and their causes. It is shown that a simulated weak Atlantic Meridional Overturning Circulation (AMOC) tends to be associated with cold biases in the entire Northern Hemisphere with an atmospheric pattern that resembles the Northern Hemisphere annular mode. The AMOC weakening is also associated with a strengthening of Antarctic bottom water formation and warm SST biases in the Southern Ocean. It is also shown that cold biases in the tropical North Atlantic and West African/Indian monsoon regions during the warm season in the Northern Hemisphere have interhemispheric links with warm SST biases in the tropical southeastern Pacific and Atlantic, respectively. The results suggest that improving the simulation of regional processes may not suffice for a more

  5. Evaluation of the effect of myocardial segmentation errors on myocardial blood flow estimates from DCE-MRI

    NASA Astrophysics Data System (ADS)

    Biglands, J.; Magee, D.; Boyle, R.; Larghat, A.; Plein, S.; Radjenović, A.

    2011-04-01

    Quantitative analysis of cardiac dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) perfusion datasets is dependent on the drawing (manually or automatically) of myocardial contours. The required accuracy of these contours for myocardial blood flow (MBF) estimation is not well understood. This study investigates the relationship between myocardial contour errors and MBF errors. Myocardial contours were manually drawn on DCE-MRI perfusion datasets of healthy volunteers imaged in systole. Systematic and random contour errors were simulated using spline curves and the resulting errors in MBF were calculated. The degree of contour error was also evaluated by two recognized segmentation metrics. We derived contour error tolerances in terms of the maximum deviation (MD) a contour could deviate radially from the 'true' contour expressed as a fraction of each volunteer's mean myocardial width (MW). Significant MBF errors were avoided by setting tolerances of MD <= 0.4 MW, when considering the whole myocardium, MD <= 0.3 MW, when considering six radial segments, and MD <= 0.2 MW for further subdivision into endo- and epicardial regions, with the exception of the anteroseptal region, which required greater accuracy. None of the considered segmentation metrics correlated with MBF error; thus, both segmentation metrics and MBF errors should be used to evaluate contouring algorithms.

  6. Evaluating concentration estimation errors in ELISA microarray experiments

    SciTech Connect

    Daly, Don S.; White, Amanda M.; Varnum, Susan M.; Anderson, Kevin K.; Zangar, Richard C.

    2005-01-26

    Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Although propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.

  7. Systematic errors in the measurement of the permanent electric dipole moment (EDM) of the 199Hg atom

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Graner, Brent; Lindahl, Eric; Heckel, Blayne

    2016-03-01

    This talk provides a discussion of the systematic errors that were encountered in the 199Hg experiment described earlier in this session. The dominant systematic error, unseen in previous 199Hg EDM experiments, arose from small motions of the Hg vapor cells due to forces exerted by the applied electric field. Methods used to understand this effect, as well as the anticipated sources of systematic errors such as leakage currents, parameter correlations, and E2 and v × E / c effects, will be presented. The total systematic error was found to be 72% as large as the statistical error of the EDM measurement. This work was supported by NSF Grant 1306743 and by DOE Grant DE-FG02-97ER41020.

  8. Systematic errors in the measurement of the permanent electric dipole moment (EDM) of the 199 Hg atom

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Graner, Brent; Heckel, Blayne; Lindahl, Eric

    2016-05-01

    This talk provides a discussion of the systematic errors that were encountered in the 199 Hg experiment described earlier in this session. The dominant systematic error, unseen in previous 199 Hg EDM experiments, arose from small motions of the Hg vapor cells due to forces exerted by the applied electric field. Methods used to understand this effect, as well as the anticipated sources of systematic errors such as leakage currents, parameter correlations, and E2 and v × E / c effects, will be presented. The total systematic error was found to be 72% as large as the statistical error of the EDM measurement. This work was supported by NSF Grant 1306743 and by DOE Grant DE-FG02-97ER41020.

  9. Estimating Equating Error in Observed-Score Equating. Research Report.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and in the population of examinees. This definition underlies, for example, the well-known approximation to the standard error of equating by Lord (1982).…

  10. Random and systematic measurement errors in acoustic impedance as determined by the transmission line method

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Smith, C. D.

    1977-01-01

    The effect of random and systematic errors associated with the measurement of normal incidence acoustic impedance in a zero-mean-flow environment was investigated by the transmission line method. The influence of random measurement errors in the reflection coefficients and pressure minima positions was investigated by computing fractional standard deviations of the normalized impedance. Both the standard techniques of random process theory and a simplified technique were used. Over a wavelength range of 68 to 10 cm random measurement errors in the reflection coefficients and pressure minima positions could be described adequately by normal probability distributions with standard deviations of 0.001 and 0.0098 cm, respectively. An error propagation technique based on the observed concentration of the probability density functions was found to give essentially the same results but with a computation time of about 1 percent of that required for the standard technique. The results suggest that careful experimental design reduces the effect of random measurement errors to insignificant levels for moderate ranges of test specimen impedance component magnitudes. Most of the observed random scatter can be attributed to lack of control by the mounting arrangement over mechanical boundary conditions of the test sample.