Science.gov

Sample records for estrogen receptor beta

  1. Estrogen receptor beta agonists in neurobehavioral investigations.

    PubMed

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research. PMID:18600582

  2. Clinical significance of estrogen receptor beta in breast cancer.

    PubMed

    Saji, Shigehira; Hirose, Makiko; Toi, Masakazu

    2005-11-01

    Ever since the estrogen receptor (ER) beta was discovered in 1996, we have been trying to determine its value as a prognostic and/or predictive factor in breast cancer and its potential as a novel target for pharmacological intervention. Recent progress in cellular experiments has shown that ERbeta works as counter partner of ERalpha through inhibition of the transactivating function of ERalpha by heterodimerization, distinct regulation on several specific promoters by ERalpha or ERbeta, and ERbeta-specific regulated genes which are probably related to its anti-proliferative properties. Accumulated data from protein studies in breast cancer tissues indicate that positive expression of ERbeta appears to correlate with a favorable prognosis. Although the number of studies is small, a positive response to tamoxifen treatment is observed in both ERalpha- and ERbeta-positive populations. The significance of ERbeta2/cx, a splicing variant of ERbeta, remains controversial and needs to be analyzed in further studies. We postulate that a combined evaluation of ERbetacx with progesterone receptor may help the stratification of ERalpha-positive breast cancer. Epidemiological studies of hormone replacement therapy and isoflavone (genistein) consumption indicate the possible contribution of ERbeta-specific signaling in breast cancer prevention. A selective estrogen receptor modulator, which works as an antagonist of ERalpha and an agonist of ERbeta, may be a promising chemo-preventive treatment. PMID:16273360

  3. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  4. Estrogen receptor beta signals to inhibition of cardiac fibrosis.

    PubMed

    Pedram, Ali; Razandi, Mahnaz; Narayanan, Ramesh; Levin, Ellis R

    2016-10-15

    Cardiac fibrosis evolves from the cardiac hypertrophic state. In this respect, estrogen and estrogen receptor beta (ERβ) inhibit the effects of cardiac hypertrophic peptides that also stimulate fibrosis. Here we determine details of the anti-fibrotic functions of ERβ. In acutely isolated rat cardiac fibroblasts. E2 or a specific ERβ agonist (βLGND2) blocked angiotensin II (AngII) signaling to fibrosis. This resulted from ERβ activating protein kinase A and AMP kinase, inhibiting both AngII de-phosphorylation of RhoA and the resulting stimulation of Rho kinase. Inhibition of Rho kinase from ERβ signaling resulted in marked decrease of TGFβ expression, connective tissue growth factor production and function, matrix metalloproteinases 2 and 9 expression and activity, and the conversion of fibroblasts to myofibroblasts. Production of collagens I and III were also significantly decreased. Several important aspects were corroborated in-vivo from βLGND2-treated mice that underwent AngII-induced cardiac hypertrophy. Thus, ERβ in cardiac fibroblasts prevents key aspects of cardiac fibrosis development. PMID:27321970

  5. Estrogen Receptor Beta in the Brain: From Form to Function

    PubMed Central

    Weiser, Michael J.; Foradori, Chad D.; Handa, Robert J.

    2008-01-01

    Estrogens have numerous effects on the brain, both in adulthood and during development. These actions of estrogen are mediated by two distinct estrogen receptor (ER) systems, ER alpha (ERα) and ER beta (ERβ). In brain, ERα plays a critical role in regulating reproductive neuroendocrine function and behavior, however, a definitive role for ERβ in any neurobiological function has been slow in forthcoming. Clues to the function of ERβ in the central nervous system can be gleaned from the neuroanatomical distribution of ERβ and the phenotypes of neurons that express ERβ. ERβ immunoreactivity has been found in populations of GnRH, CRH, vasopressin, oxytocin and prolactin containing neurons in the hypothalamus. Utilizing subtype-selective estrogen receptor agonists can help determine the roles for ERβ in non-reproductive behaviors in rat models. ERβ selective agonists exert potent anxiolytic activity when animals were tested in a number of behavioral paradigms. Consistent with this, ERβ selective agonists also inhibited the ACTH and corticosterone response to stress. In contrast, ERα selective agonists were found to be anxiogenic and correspondingly increased the hormonal stress response. Taken together, our studies implicate ERβ as an important modulator of some non-reproductive neurobiological systems. The molecular and neuroanatomical targets of estrogen that are mediated by ERβ remain to be determined. A number of splice variants of ERβ mRNA have been reported in brain tissue. Imaging of eGFP labeled chimeric receptor proteins transfected into cell lines show that ERβ splice variation can alter trafficking patterns and function. The originally described ERβ (herein termed ER-β1) is characterized by possessing a high affinity for estradiol. Similar to ERα, it is localized in the nucleus and is trafficked to nuclear sites termed “hyperspeckles” following ligand binding. In contrast, ER-β2 contains an 18 amino acid insert within the ligand

  6. Estrogen receptor beta is a novel therapeutic target for photoaging.

    PubMed

    Chang, Ken C N; Wang, Yihe; Oh, Inn Gyung; Jenkins, Susan; Freedman, Leonard P; Thompson, Catherine C; Chung, Jin Ho; Nagpal, Sunil

    2010-05-01

    One of the many harmful factors faced by the skin is solar UV radiation, which damages skin by inducing chronic low-grade inflammation through increased expression of proinflammatory cytokines, metalloproteinases (MMPs) and cyclooxygenase-2 (COX-2). Estrogen receptors (ERs) alpha and beta are ligand-dependent transcription factors that are expressed in skin, and an ERbeta agonist has previously shown efficacy in vivo in models of pain and inflammation. Because ERbeta does not carry the breast and uterine proliferation liabilities of ERalpha, we decided to explore the possibility of using ERbeta as a target for photoaging. We show that ERbeta-selective compounds suppressed the expression of cytokines and MMPs in activated keratinocytes and fibroblast-based in vitro models of photoaging. Furthermore, in activated dermal fibroblasts, ERbeta-selective compounds also inhibited COX-2. These activities of ERbeta ligands in skin cells correlated with the expression levels of ERbeta and showed reversal by treatment with a potent synthetic ER antagonist. Furthermore, the pharmacology of ERbeta-selective compound was observed in wild-type but not in skin cells obtained from ERbeta knockout mice. Finally, we demonstrate that a synthetic ERbeta agonist inhibited UV-induced photodamage and skin wrinkle formation in a murine model of photoaging. Therefore, the potential of an ERbeta ligand to regulate multiple pathways underlying the cause of photoaging suggests ERbeta to be a novel therapeutic target for the prevention and treatment of photoaging. PMID:20110405

  7. Impaired estrogen sensitivity in bone by inhibiting both estrogen receptor alpha and beta pathways.

    PubMed

    Ogawa, S; Fujita, M; Ishii, Y; Tsurukami, H; Hirabayashi, M; Ikeda, K; Orimo, A; Hosoi, T; Ueda, M; Nakamura, T; Ouchi, Y; Muramatsu, M; Inoue, S

    2000-07-14

    Although it is well established that estrogen deficiency causes osteoporosis among the postmenopausal women, the involvement of estrogen receptor (ER) in its pathogenesis still remains uncertain. In the present study, we have generated rats harboring a dominant negative ERalpha, which inhibits the actions of not only ERalpha but also recently identified ERbeta. Contrary to our expectation, the bone mineral density (BMD) of the resulting transgenic female rats was maintained at the same level with that of the wild-type littermates when sham-operated. In addition, ovariectomy-induced bone loss was observed almost equally in both groups. Strikingly, however, the BMD of the transgenic female rats, after ovariectomized, remained decreased even if 17beta-estradiol (E(2)) was administrated, whereas, in contrast, the decrease of littermate BMD was completely prevented by E(2). Moreover, bone histomorphometrical analysis of ovariectomized transgenic rats revealed that the higher rates of bone turnover still remained after treatment with E(2). These results demonstrate that the prevention from the ovariectomy-induced bone loss by estrogen is mediated by ER pathways and that the maintenance of BMD before ovariectomy might be compensated by other mechanisms distinct from ERalpha and ERbeta pathways. PMID:10806217

  8. DHEA metabolites activate estrogen receptors alpha and beta

    PubMed Central

    Michael Miller, Kristy K.; Al-Rayyan, Numan; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M.; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo. PMID:23123738

  9. Molecular Characterization and Sex-Specific Tissue Expression of Estrogen Receptor Alpha (esr1), Estrogen Receptor Beta-a (esr2a) and Ovarian Aromatase (cyp19a1a) in Yellow Perch (Perca flavescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow perch (Perca flavescens) exhibit an estrogen-stimulated sexual size dimorphism (SSD) wherein females grow faster and larger than males. To aid in the examination of this phenomenon, the cDNA sequences encoding estrogen receptor-alpha (esr1), estrogen receptor-beta-a (esr2a) and ovarian aroma...

  10. Repression of estrogen receptor {beta} function by putative tumor suppressor DBC1

    SciTech Connect

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-02-12

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) {alpha} appears to promote the proliferation of cancer tissues, while ER{beta} can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ER{alpha} and ER{beta} may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ER{alpha} expression and promotes breast cancer cell survival by binding to ER{alpha}. Here we report an ER{beta}-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ER{beta} and DBC1 interact in a ligand-independent manner similar to ER{alpha}. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ER{beta}. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ER{alpha}, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ER{beta}in vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ER{beta}. These results implicate the principal role of DBC1 in regulating ER{beta}-dependent gene expressions.

  11. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential

    PubMed Central

    Paterni, Ilaria; Granchi, Carlotta; Katzenellenbogen, John A.; Minutolo, Filippo

    2014-01-01

    Estrogen receptors alpha (ERα) and beta (ERβ) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. Modulation of these receptors by prospective therapeutic agents is currently being considered for prevention and treatment of a wide variety of pathological conditions, such as, cancer, metabolic and cardiovascular diseases, neurodegeneration, inflammation, and osteoporosis. This review provides an overview and update of compounds that have been recently reported as modulators of ERs, with a particular focus on their potential clinical applications. PMID:24971815

  12. Estrogen Receptor Beta Expression in the Mouse Forebrain: Age and Sex Differences

    PubMed Central

    Zuloaga, Damian G.; Zuloaga, Kristen L.; Hinds, Laura R.; Carbone, David L.; Handa, Robert J.

    2016-01-01

    Estrogen receptors regulate multiple brain functions including stress, sexual, and memory associated behaviors as well as control of neuroendocrine and autonomic function. During development, estrogen signaling is involved in programming adult sex differences in physiology and behavior. Expression of estrogen receptor alpha changes across development in a region specific fashion. By contrast, estrogen receptor beta (ERβ) is expressed in many brain regions, yet few studies have explored sex and developmental differences in its expression largely due to the absence of selective reagents for anatomical localization of the protein. In this study, we utilized bacterial artificial chromosome transgenic mice expressing ERβ identified by enhanced green fluorescent protein (EGFP) to compare expression levels and distribution of ERβ in the male and female mouse forebrain on the day of birth (P0), postnatal day 4 (P4) and P21. Using qualitative analysis, we mapped the distribution of ERβ–EGFP and found developmental alterations in ERβ expression within the cortex, hippocampus, and hypothalamic regions including the arcuate, ventromedial, and paraventricular nuclei. We also report a sex difference in ERβ in the bed nucleus of the stria terminalis with males showing greater expression at P4 and P21. Another sex difference was found in the anteroventral periventricular nucleus of P21, but not P0 or P4 mice, where ERβ-EGFP-ir cells were densely clustered near the 3rd ventricle in females but not males. These developmental changes and sex differences in ERβ indicate a mechanism through which estrogens may differentially affect brain functions or program adult physiology at select times during development. PMID:23818057

  13. Expression of Estrogen Receptor Alpha and Beta is Decreased in Hypospadias

    PubMed Central

    Qiao, Liang; Rodriguez, Esequiel; Weiss, Dana A.; Ferretti, Max; Risbridger, Gail; Cunha, Gerald R.; Baskin, Laurence S.

    2012-01-01

    Purpose Estrogenic endocrine disruptors acting via estrogen receptors α and β have been implicated in the etiology of hypospadias. However, the expression and distribution of estrogen receptors α and β in normal and hypospadiac human foreskins is unknown. We characterized the location and expression of estrogen receptors α and β in normal and hypospadiac foreskins. Materials and Methods We prospectively collected excess foreskin from 35 patients undergoing hypospadias repair and 15 patients undergoing elective circumcision. Hypospadias was classified as severe in 18 patients and mild in 17 based on the ectopic position of the meatus. mRNA expression levels in estrogen receptors α and β were quantified using reverse transcriptase polymerase chain reaction. Receptor location was characterized by immunohistochemical analysis. Additionally immunohistochemical analysis was performed in 4 archived human fetal penises. Results Mean ± SD ages were similar for the circumcision (9.5 ± 3 months) and hypospadias repair groups (9 ± 3 months, p = 0.75). mRNA expression levels in estrogen receptors α and β were significantly decreased in hypospadiac foreskin cases compared to controls (p <0.001), while no statistically significant differences were seen between foreskins with severe and mild hypospadias. Estrogen receptor β immunostaining was strong in normal foreskin but weak in hypospadiac foreskin. Estrogen receptor β immunoreactivity was most intense in the stratum basale and stratum spinosum. Estrogen receptor α immunostaining was weak in normal and mild hypospadias foreskin, and undetectable in severe hypospadias. Fetal penises expressed strong estrogen receptor β immunopositivity in the urethral plate epithelium, corpus spongiosum, corpora cavernosa and penile skin, while estrogen receptor α immunostaining was not detected. Conclusions These data demonstrate a difference in estrogen receptor α and β expression and location in the foreskin of patients

  14. Support of a bi-faceted role of estrogen receptor beta in estrogen receptor alpha positive breast cancer cells

    PubMed Central

    Jonsson, Philip; Katchy, Anne; Williams, Cecilia

    2013-01-01

    Expression of estrogen receptor alpha (ERα) in breast cancer identifies patients most likely to respond to endocrine treatment. The second estrogen receptor, ERβ, is also expressed in breast tumors, but its function and therapeutic potential needs further study. Whereas in vitro studies have established that ERβ opposes transcriptional and proliferative functions of ERα, several clinical studies report its correlation to proliferative markers and poorer prognosis. The data demonstrating that ERβ opposes ERα are primarily based on transient expression of ERβ. Here, we explored the functions of constitutively expressed ERβ in ERα-positive breast cancer lines MCF7 and T47D. We found that ERβ, under these conditions heterodimerized with ERα in presence and absence of 17β-estradiol, and induced genome-wide transcriptional changes. Widespread anti-ERα signaling was, however, not observed and ERβ was not anti-proliferative. Tamoxifen antagonized proliferation and ER-mediated gene regulation both in the presence and absence of ERβ. In conclusion, ERβ’s role in cells adapted to its expression appears to differ from its role in cells with transient expression. Our study is important because it provides a deeper understanding of ERβ’s role in breast tumors that co-express both receptors and supports an emerging bi-faceted role of ERβ. PMID:24192230

  15. [Estrogens and pharmacological modulation of estrogen receptors].

    PubMed

    Sanidize, T V; Ratiani, L R; Gabuniia, L Iu; Tortladze, M L; Kuridze, N N

    2009-02-01

    Estrogens belong to more or less frequently prescribed preparations. Main fields of application of these preparations (as in monotherapy as well as in combination) are contraception and hormone replacement therapy during menopause. More uncommon indications of estrogens are growth inhibition and hypogonadism (in this case they are prescribed along with gonadotropic hormones). Synthesis and metabolism of estrogens, as well as their intracellular receptors are well studied these days, which allow us to understand physiology and pharmacology of these hormones. In pharmacology the main stage is detection of estrogen receptors inside of cells of targets. There are two types of estrogen receptors alpha- and beta- coded by different genes. A number of steroid and non-steroid compounds have characteristics of estrogens. Likely in the future their popularity will increase, as by the aging of population number of those women, who receive replacement therapy, will increase. Investigations to find an ideal elective modulator of estrogen receptors, that will possess anti-estrogenic activity in connection with mammal gland and develop indifference in connection with endometrium and at the same time will display ability to reduce hot flushes, bone resorption, atrophy of mucous membranes of vagina and urinary bladder, as well as it will favorably effect on metabolism of lipoproteins are carried out. PMID:19276483

  16. Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line.

    PubMed

    Amer, Dena A M; Kretzschmar, Georg; Müller, Nicole; Stanke, Nicole; Lindemann, Dirk; Vollmer, Günter

    2010-06-01

    Many flavonoids, a major group of phenolic plant-derived secondary metabolites, are known to possess estrogen-like bioactivities. However, little is known about their estrogenic properties in the central nervous system due to the lack of suitable cellular models expressing sufficient amounts of functional estrogen receptor beta (ERbeta). To overcome this deficit, we have created a cellular model, which is serotonergic in origin, to study properties of estrogenic substances by stably transducing RN46A-B14 cells derived from raphe nuclei region of the rat brain with a lentiviral vector encoding a human ERbeta. We clearly showed that the transgenic human ERbeta is a spontaneously expressed and a functional receptor. We have further assessed the estrogenicity of three different isoflavones and four different naringenin-type flavanones in this cell line utilizing a luciferase reporter gene assay. Genistein (GEN), Daidzein (DAI), Equol (EQ), Naringenin (NAR) and 8-prenylnaringenin (8-PN) showed strong estrogenic activity in a concentration-dependent manner as compared to 7-(O-prenyl)naringenin-4'-acetate (7-O-PN) which was only slightly estrogenic and 6-(1,1-dimethylallyl)naringenin (6-DMAN) that neither showed estrogenic nor anti-estrogenic activity in our model. All observed effects could be antagonized by the anti-estrogen fulvestrant. Moreover, co-treatment of cells with 17beta-estradiol (E2) and either GEN or DAI showed a slight additive effect as compared to EQ. On the other hand, 8-PN in addition to 7-O-PN, but not NAR and 6-DMAN, were able to slightly antagonize the responses triggered by E2. Our newly established cellular model may prove to be a useful tool in explicating basic physiological properties of ERbeta in the brain and may help unravel molecular and cellular mechanisms involved in serotonergic mood regulation by estrogen or potential plant-derived secondary metabolites. PMID:20433925

  17. INTERACTION OF PAH-RELATED COMPOUNDS WITH THE ALPHA AND BETA ISOFORMS OF ESTROGEN RECEPTOR. (R826192)

    EPA Science Inventory

    The ability of several 4- and 5-ring polycyclic aromatic hydrocarbons (PAHs), heterocyclic PAHs, and their monohydroxy derivatives to interact with the estrogen receptor (ER) alpha and beta isoforms was examined. Only compounds possessing a hydroxyl group were able to compete wit...

  18. Phenethyl pyridines with non-polar internal substituents as selective ligands for estrogen receptor beta.

    PubMed

    Waibel, Michael; Kieser, Karen J; Carlson, Kathryn E; Stossi, Fabio; Katzenellenbogen, Benita S; Katzenellenbogen, John A

    2009-09-01

    To create estrogen receptor beta (ERbeta)-selective ligands with improved biological characteristics, we have extended our investigations of structurally simple bibenzyl-core ligands by preparing a series of compounds in which one phenol is replaced by a 3-hydroxypyridine ring. These phenethyl pyridines were obtained by picoline anion alkylation, and compounds with different patterns of alkyl substitution on the central two carbon units were prepared. Binding affinities for ERalpha and ERbeta were determined, and ligands with promising affinities and selectivities for ERbeta were further tested for their gene transcriptional activity. Several compounds had high affinity selectivity and good potency selectivity in transcription assays. This study advances our understanding of compounds having ER-subtype selectivity and will help to direct efforts in developing novel ER ligands. PMID:19394116

  19. Design and synthesis of carborane-containing estrogen receptor-beta (ERβ)-selective ligands.

    PubMed

    Ohta, Kiminori; Ogawa, Takumi; Oda, Akifumi; Kaise, Asako; Endo, Yasuyuki

    2015-10-01

    Candidates for highly selective estrogen receptor-beta (ERβ) ligands (6a-c, 7a-c, 8a and 8b) were designed and synthesized based on carborane-containing ER ligands 1 and 2 as lead compounds. Among them, p-carboranylcyclohexanol derivatives 8a and 8b exhibited high ERβ selectivity in competitive binding assay: for example, 8a showed 56-fold selectivity for ERβ over ERα. Docking studies of 8a and 8b with the ERα and ERβ ligand-binding domains (LBDs) suggested that the p-carborane cage of the ligands is located close to key amino acid residues that influence ER-subtype selectivity, that is, Leu384 in the ERα LBD and Met336 in the ERβ LBD. The p-carborane cage in 8a and 8b appears to play a crucial role in the increased ERβ selectivity. PMID:26298498

  20. Up-regulation of PI3K/Akt signaling by 17{beta}-estradiol through activation of estrogen receptor-{alpha}, but not estrogen receptor-{beta}, and stimulates cell growth in breast cancer cells

    SciTech Connect

    Lee, Young-Rae; Park, Jinny; Kim, Jong-Suk; Youn, Hyun Jo; Jung, Sung Hoo . E-mail: shjung@chonbuk.ac.kr

    2005-11-04

    Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-{alpha} (ER{alpha}) and estrogen receptor-{beta} (ER{beta}). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP{sub 3}), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17{beta}-estradiol (E2) up-regulates PI3K in an ER{alpha}-dependent manner, but not ER{beta}, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ER{alpha}-positive MCF-7 cells and ER{alpha}-negative MDA-MB-231 cells with 10 nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP{sub 3} level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ER{alpha}-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ER{alpha}-dependent mechanism in MCF-7 cells.

  1. The role of estrogen receptor {beta} (ER{beta}) in malignant diseases-A new potential target for antiproliferative drugs in prevention and treatment of cancer

    SciTech Connect

    Warner, Margaret; Gustafsson, Jan-Ake

    2010-05-21

    The discovery of ER{beta} in the middle of the 1990s represents a paradigm shift in our understanding of estrogen signaling. It has turned out that estrogen action is not mediated by one receptor, ER{alpha}, but by two balancing factors, ER{alpha} and ER{beta}, which are often antagonistic to one another. Excitingly, ER{beta} has been shown to be widespread in the body and to be involved in a multitude of physiological and pathophysiological events. This has led to a strong interest of the pharmaceutical industry to target ER{beta} by drugs against various diseases. In this review, focus is on the role of ER{beta} in malignant diseases where the anti proliferative activity of ER{beta} gives hope of new therapeutic approaches.

  2. PGC-1{beta} regulates mouse carnitine-acylcarnitine translocase through estrogen-related receptor {alpha}

    SciTech Connect

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena; Marrero, Pedro F.; Haro, Diego; Relat, Joana

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes a variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.

  3. [Cloning of gene fragment of estrogen receptor-beta and its expression in mouse embryo].

    PubMed

    Zhang, Zi-Feng; Fan, Shao-Hua; Lu, Jun; Wu, Dong-Mei; Shan, Qun; Hu, Bin; Li, Fei; Zheng, Yuan-Lin

    2008-03-01

    In order to study the expression and regulation effects of estrogen receptor-beta (ERbeta) in the development of mouse embryo, the primer of ERbeta was designed, the ERbeta fragment was first obtained by RT-PCR and subcloned into plasmids pGEM- 3Z, then the recombinant plasmids were linearized with the restriction enzymes of EcoRand Hind. Using Sp6 and T7 RNA polymerase, the digoxigenin(dig) labeled sense and anti-sense probes were transcriped in vitro, respectively. Then the expression of ERbeta in mouse embryo was examined with the probes by whole-mount in situ hybridization. The results indicated that ERbeta is expressed in the brain, spinal neural tube, genital ridge, pericardium, limb bud and mandibular arch of 10.5 dpc embryo, and is also expressed in the telencephalon, mesencephalon, medulla oblongata, spinal cord and limb bud of 13.5 dpc embryo. These results suggest that ERbeta maybe play a role of regulation in sexual differentiation, primal differentiation of neural tube, further differentiation of three primary cerebral vesicles and spinal cord, generation and differentiation of bone and cartilage of limb bud, development of pericardium and configuration differentiation of mandibular in mouse embryo. PMID:18332005

  4. Estrogen receptors and endothelium.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Billon-Galés, Audrey; Favre, Julie; Laurell, Henrik; Lenfant, Françoise; Gourdy, Pierre

    2010-08-01

    Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators. PMID:20631350

  5. Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression.

    PubMed

    Liu, Meng-Min; Albanese, Chris; Anderson, Carol M; Hilty, Kristin; Webb, Paul; Uht, Rosalie M; Price, Richard H; Pestell, Richard G; Kushner, Peter J

    2002-07-01

    Induction of cyclin D1 gene transcription by estrogen receptor alpha (ERalpha) plays an important role in estrogen-mediated proliferation. There is no classical estrogen response element in the cyclin D1 promoter, and induction by ERalpha has been mapped to an alternative response element, a cyclic AMP-response element at -57, with possible participation of an activating protein-1 site at -954. The action of ERbeta at the cyclin D1 promoter is unknown, although evidence suggests that ERbeta may inhibit the proliferative action of ERalpha. We examined the response of cyclin D1 promoter constructs by luciferase assay and the response of the endogenous protein by Western blot in HeLa cells transiently expressing ERalpha, ERalphaK206A (a derivative that is superactive at alternative response elements), or ERbeta. In each case, ER activation at the cyclin D1 promoter is mediated by both the cyclic AMP-response element and the activating protein-1 site, which play partly redundant roles. The activation by ERbeta occurs only with antiestrogens. Estrogens, which activate cyclin D1 gene expression with ERalpha, inhibit expression with ERbeta. Strikingly, the presence of ERbeta completely inhibits cyclin D1 gene activation by estrogen and ERalpha or even by estrogen and the superactive ERalphaK206A. The observation of the opposing action and dominance of ERbeta over ERalpha in activation of cyclin D1 gene expression has implications for the postulated role of ERbeta as a modulator of the proliferative effects of estrogen. PMID:11986316

  6. Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway.

    PubMed

    Bowers, Laura W; Wiese, Megan; Brenner, Andrew J; Rossi, Emily L; Tekmal, Rajeshwar R; Hursting, Stephen D; deGraffenried, Linda A

    2015-01-01

    Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ≥30 kg/m2; normal weight (N): 18.5-24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease. PMID:26709918

  7. Stimulation of catecholamine synthesis through unique estrogen receptors in the bovine adrenomedullary plasma membrane by 17{beta}-estradiol

    SciTech Connect

    Yanagihara, Nobuyuki . E-mail: yanagin@med.uoeh-u.ac.jp; Liu, Minhui; Toyohira, Yumiko; Tsutsui, Masato; Ueno, Susumu; Shinohara, Yuko; Takahashi, Kojiro; Tanaka, Kazumi

    2006-01-13

    Incubation of cultured bovine adrenal medullary cells with 17{beta}-estradiol (E{sub 2}) (0.3-100 nM) or membrane-impermeable E{sub 2}-bovine serum albumin (100 nM) acutely increased {sup 14}C-catecholamine synthesis from [{sup 14}C]tyrosine. The stimulatory effect of E{sub 2} was not inhibited by ICI182,780, a nuclear estrogen receptor inhibitor. E{sub 2} also increased tyrosine hydroxylase activity and p44/42MAPK phosphorylation, the former of which was attenuated by U0126, an inhibitor of p44/42MAPK kinase. The plasma membrane isolated from the gland showed two classes of specific binding sites of [{sup 3}H]E{sub 2} with apparent K {sub d}s of 3.2 and 106 nM, and B {sub max}s of 0.44 and 8.5 pmol/mg protein, respectively. The high-affinity binding of [{sup 3}H]E{sub 2} was most strongly inhibited by E{sub 2} and phytoestrogens, and to lesser extents by other steroid hormones, while it was enhanced by ICI182,780 and environmental estrogenic pollutants. These findings suggest that E{sub 2} acutely stimulates catecholamine synthesis via activation of p44/42MAPK through unique estrogen receptors in the plasma membrane of bovine adrenal medulla.

  8. Estrogen stimulated migration and invasion of estrogen receptor-negative breast cancer cells involves an ezrin-dependent crosstalk between G protein-coupled receptor 30 and estrogen receptor beta signaling.

    PubMed

    Zhou, Kewen; Sun, Peng; Zhang, Yaxing; You, Xinchao; Li, Ping; Wang, Tinghuai

    2016-07-01

    Estrogen mediates important cellular activities in estrogen receptor negative (ER-) breast cancer cells via membrane associated G protein-coupled receptor 30 (GPR30). However, the biological role and mechanism of estrogen action on cell motility and invasion in this aggressive kind of tumors remains poorly understood. We showed here that treatment with 17β-estradiol (E2) in ER-negative cancer cells resulted in ezrin-dependent cytoskeleton rearrangement and elicited a stimulatory effect on cell migration and invasion. Mechanistically, E2 induced ezrin activation was mediated by distinct mechanisms in different cell contexts. In SK-BR-3 cells with a high GPR30/ERβ ratio, silencing of GPR30 was able to abolish E2 induced ERK1/2, AKT phosphorylation and ezrin activation, whereas in MDA-MB-231 cells with low GPR30/ERβ ratio, E2 stimulated ezrin activation was mediated by the ERβ/PI3K/AKT signaling pathway. Importantly, we showed that activation of GPR30 signaling significantly prevents ERβ activation induced ezrin phosphorylation, cell migration and invasion, indicating an antagonist effect between GPR30 and ERβ signaling in MDA-MB-231 cells. These findings highlight the important interplay between different estrogen receptors in estrogen induced cell motility and invasiveness in ER-negative breast cancer cells. PMID:26850467

  9. Modulation of vitellogenin synthesis through estrogen receptor beta-1 in goldfish (Carassius auratus) juveniles exposed to 17-{beta} estradiol and nonylphenol

    SciTech Connect

    Soverchia, L.; Ruggeri, B.; Palermo, F.; Mosconi, G.; Cardinaletti, G.; Scortichini, G.; Gatti, G.; Polzonetti-Magni, A.M. . E-mail: alberta.polzonetti@unicam.it

    2005-12-15

    Many synthetic chemicals, termed xenoestrogens, have been shown to interact as agonists with the estrogen receptor (ER) to elicit biological responses similar to those of natural hormones. To date, the regulation of vitellogenesis in oviparous vertebrates has been widely used for evaluation of estrogenic effects. Therefore, Carassius auratus juveniles were chosen as a fish model for studying the effects of estradiol-17{beta} and different concentrations (10{sup -6} and 10{sup -7} M) of 4-nonylphenol (4-NP) on the expression of liver ER{beta}-1 subtype; plasma vitellogenin and sex steroids (androgens and estradiol-17{beta}) were also evaluated together with the bioaccumulation process, through mass-spectrometry. C. auratus is a species widespread in the aquatic environment and, on the toxicological point of view, can be considered a good 'sentinel' species. Juveniles of goldfish were maintained in tanks with only tap water or water with different concentrations (10{sup -6} and 10{sup -7} M) of 4-nonylphenol (4-NP), or 10{sup -7} M of estradiol-17{beta}. After 3 weeks of treatment, animals were anesthetized within 5 min after capture, and blood was immediately collected into heparinized syringes by cardiac puncture and stored at -70 deg. C; the gonads were fixed, then frozen and stored at -70 deg. C; the whole fish, liver, and muscle tissues were harvested and immediately stored at -70 deg. C for molecular biology experiments and bioaccumulation measurements. The estrogenic effects of 4-NP were evidenced by the presence of plasma vitellogenin in juveniles exposed both to estradiol-17{beta} and the two doses of 4-NP; moreover, exposure to 4-NP also increased aromatization of androgens, as suggested by decreasing androgens and increasing estradiol-17{beta} plasma levels. The changes of these parameters were in agreement with the increasing transcriptional rate of ER{beta}-1 mRNA in the liver, demonstrating that both estradiol-17{beta} and 4-NP modulate the vitellogenin

  10. Expression of estrogen receptors alpha and beta in the corpus luteum and uterus from non-pregnant and pregnant llamas.

    PubMed

    Powell, Susan A; Smith, Bradford B; Timm, Karen I; Menino, Alfred R

    2007-08-01

    Because estrogen may be involved in maternal recognition of pregnancy and embryonic migration in llamas, expression of estrogen receptor subtypes alpha (ERalpha) and beta (ERbeta) was evaluated in corpus luteum (CL), endometrium, and uterus using relative RT-PCR. Tissues were recovered from sterile-mated (SM) and pregnant (PG) females during Days 7-11 and 7-13 (Day 0 = day of mating), respectively, and follicular phase and juvenile females. Luteal expression of ERalpha and beta was similar (P > 0.10) in SM and PG females and within Days 7-11, however, expression of ERalpha in ovarian tissue from follicular phase females was greater (P < 0.05) than Days 7 and 9 CL. Uterus expressed less ERalpha and beta compared to endometrium (P = 0.07 and P < 0.01, respectively). Expression of ERalpha was greater (P < 0.05) in Day 7 and follicular phase uteri than Days 9 and 11, Day 13 PG and juvenile uteri. Uterine ERbeta expression was greater (P = 0.09) in PG versus SM females and in mated compared to follicular phase females (P < 0.05). Endometrial expression of ERalpha and beta did not differ (P > 0.10) between SM and PG females or by day. The presence of luteal ER during this period may mean a role for estradiol in maternal recognition of pregnancy. Observed increases in uterine ER expression with no changes in endometrium suggest expression increased in myometrium and/or perimetrium. Upregulation of myometrial ERbeta in PG females may be involved in supporting uterine migration of the embryo. PMID:17219432

  11. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    SciTech Connect

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk; Ko, Jesang

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  12. The unliganded long isoform of estrogen receptor beta stimulates brain ryanodine receptor single channel activity alongside with cytosolic Ca2+

    PubMed Central

    Rybalchenko, Volodymyr; Grillo, Michael A.; Gastinger, Matthew J.; Rybalchenko, Nataliya; Payne, Andrew J.; Koulen, Peter

    2010-01-01

    Ca2+ release from intracellular stores mediated by endoplasmic reticulum membrane ryanodine receptors (RyR) plays a key role in activating and synchronizing downstream Ca2+-dependent mechanisms, in different cells varying from apoptosis to nuclear transcription and development of defensive responses. Recently discovered, atypical “non-genomic” effects mediated by estrogen receptors (ER) include rapid Ca2+ release upon estrogen exposure in conditions implicitly suggesting involvement of RyRs. In the present study, we report various levels of co-localization between RyR type 2 (RyR2) and ER type β (ERβ) in the neuronal cell line HT-22, indicating a possible functional interaction. Electrophysiological analyses revealed a significant increase in single channel ionic currents generated by mouse brain RyRs after application of the soluble monomer of the long form ERβ (ERβ1). The effect was due to a strong increase in open probability of RyR higher open channel sublevels at cytosolic [Ca2+] concentrations of 100 nM, suggesting a synergistic action of ERβ1 and Ca2+ in RyR activation, and a potential contribution to Ca2+-induced Ca2+ release rather than to basal intracellular Ca2+ concentration level at rest. This RyR/ERβ interaction has potential effects on cellular physiology, including roles of shorter ERβ isoforms and modulation of the RyR/ERβ complexes by exogenous estrogens. PMID:19899956

  13. Revisiting the neural role of estrogen receptor beta in male sexual behavior by conditional mutagenesis.

    PubMed

    Naulé, Lydie; Marie-Luce, Clarisse; Parmentier, Caroline; Martini, Mariangela; Albac, Christelle; Trouillet, Anne-Charlotte; Keller, Matthieu; Hardin-Pouzet, Hélène; Mhaouty-Kodja, Sakina

    2016-04-01

    Estradiol derived from neural aromatization of gonadal testosterone plays a key role in the perinatal organization of the neural circuitry underlying male sexual behavior. The aim of this study was to investigate the contribution of neural estrogen receptor (ER) β in estradiol-induced effects without interfering with its peripheral functions. For this purpose, male mice lacking ERβ in the nervous system were generated. Analyses of males in two consecutive tests with a time interval of two weeks showed an effect of experience, but not of genotype, on the latencies to the first mount, intromission, pelvic thrusting and ejaculation. Similarly, there was an effect of experience, but not of genotype, on the number of thrusts and mating length. Neural ERβ deletion had no effect on the ability of males to adopt a lordosis posture in response to male mounts, after castration and priming with estradiol and progesterone. Indeed, only low percentages of both genotypes exhibited a low lordosis quotient. It also did not affect their olfactory preference. Quantification of tyrosine hydroxylase- and kisspeptin-immunoreactive neurons in the preoptic area showed unaffected sexual dimorphism of both populations in mutants. By contrast, the number of androgen receptor- and ERα-immunoreactive cells was significantly increased in the bed nucleus of stria terminalis of mutant males. These data show that neural ERβ does not play a crucial role in the organization and activation of the neural circuitry underlying male sexual behavior. These discrepancies with the phenotype of global ERβ knockout models are discussed. PMID:26836767

  14. Phylogenetic sequence analysis, recombinant expression, and tissue distribution of a channel catfish estrogen receptor beta

    USGS Publications Warehouse

    Xia, Zhenfang; Gale, William L.; Chang, Xiaotian; Langenau, David; Patino, Reynaldo; Maule, Alec G.; Densmore, Llewellyn D.

    2000-01-01

    An estrogen receptor β (ERβ) cDNA fragment was amplified by RT-PCR of total RNAextracted from liver and ovary of immature channel catfish. This cDNA fragment was used to screen an ovarian cDNA library made from an immature female fish. A clone was obtained that contained an open reading frame encoding a 575-amino-acid protein with a deduced molecular weight of 63.9 kDa. Maximum parsimony and Neighbor Joining analyses were used to generate a phylogenetic classification of channel catfish ERβ on the basis of 25 full-length teleost and tetrapod ER sequences. The consensus tree obtained indicated the existence of two major vertebrate ER subtypes, α and β. Within each subtype, and in accordance with established phylogenetic relationships, teleost and tetrapod ER were monophyletic confirming the results of a previous analysis (Z. Xiaet al., 1999, Gen. Comp. Endocrinol. 113, 360–368). Extracts of COS-7 cells transfectedwith channel catfish ERβ cDNA bound estrogen with high affinity (Kd = 0.21 nM) and specificity. The affinity of channel catfish ERβ for estrogen was higher than previously reported for channel catfish ERα. As determined by qualitative RT-PCR, the tissue distributions of ERα and ERβ were similar but not identical. Both ER subtypes were present in ovary and testis. ERα was found in all other tissues examined from juvenile and mature fish of both sexes. ERβ was also found in most tissues except, in most cases, whole blood and head kidney. Interestingly, the pattern of expression of ER subtypes in head kidney always corresponded to the pattern in whole blood. In conclusion, we isolated a channel catfish ERβ with ligand-binding affinity and tissue expression patterns different from ERα. Also, we confirmed the validity of our previously proposed general classification scheme for vertebrate ER into α and β subtypes and within each subtype, into teleost and tetrapod clades.

  15. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach

    PubMed Central

    Niu, Ai-qin; Xie, Liang-jun; Wang, Hui; Zhu, Bing; Wang, Sheng-qi

    2016-01-01

    Background Estrogen receptors (ERs) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal approach to elicit beneficial estrogen-like activities and reduce side effects. Methods Herein, we focused on ER-β and developed its in silico quantitative structure-activity relationship models using machine learning (ML) methods. Results The chemical structures and ER-β bioactivity data were extracted from public chemogenomics databases. Four types of popular fingerprint generation methods including MACCS fingerprint, PubChem fingerprint, 2D atom pairs, and Chemistry Development Kit extended fingerprint were used as descriptors. Four ML methods including Naïve Bayesian classifier, k-nearest neighbor, random forest, and support vector machine were used to train the models. The range of classification accuracies was 77.10% to 88.34%, and the range of area under the ROC (receiver operating characteristic) curve values was 0.8151 to 0.9475, evaluated by the 5-fold cross-validation. Comparison analysis suggests that both the random forest and the support vector machine are superior for the classification of selective ER-β agonists. Chemistry Development Kit extended fingerprints and MACCS fingerprint performed better in structural representation between active and inactive agonists. Conclusion These results demonstrate that combining the fingerprint and ML approaches leads to robust ER-β agonist prediction models, which are potentially applicable to the identification of selective ER-β agonists. PMID:27486309

  16. Intracellular lactate-mediated induction of estrogen receptor beta (ERβ) in biphasic malignant pleural mesothelioma cells

    PubMed Central

    Zonca, Sara; Cilli, Michele; Rinaldi, Maurizio; Daga, Antonio; Nilsson, Stefan; Moro, Laura

    2015-01-01

    Biphasic malignant pleural mesothelioma (MPM) is the second most common histotype of MPM. It is histologically characterized by the concomitant presence of epithelioid and sarcomatoid features, the latter associated with worse prognosis. In this report we describe that silencing of AKT1 in spindle-shaped biphasic MPM cells promotes the shift toward an epithelioid phenotype. Furthermore, AKT1 silencing resulted in decreased expression of the lactate/H+ symporter MCT4 and its chaperone CD147/Basigin, and in the induction of estrogen receptor β (ERβ) expression. We provide evidence that ERβ expression is induced by increased intracellular lactate concentration. Spheroid culturing and tumor growth of ERβ negative biphasic MPM in nude mice resulted in the induction of ERβ expression and response to the selective agonist KB9520. In both models, the treatment with the ERβ agonist results in reduced cell proliferation, decreased expression of MCT4 and CD147/Basigin and increased acetylation and inactivation of AKT1. Collectively, in response to metabolic changes, ERβ expression is induced and exerts an anti-tumor effect through selective agonist activation. The possibility to reverse the more aggressive biphasic mesothelioma histotype by targeting ERβ with a selective agonist could represent a new effective treatment strategy. PMID:26208479

  17. Selective estrogen receptor-beta (SERM-beta) compounds modulate raphe nuclei tryptophan hydroxylase-1 (TPH-1) mRNA expression and cause antidepressant-like effects in the forced swim test.

    PubMed

    Clark, J A; Alves, S; Gundlah, C; Rocha, B; Birzin, E T; Cai, S-J; Flick, R; Hayes, E; Ho, K; Warrier, S; Pai, L; Yudkovitz, J; Fleischer, R; Colwell, L; Li, S; Wilkinson, H; Schaeffer, J; Wilkening, R; Mattingly, E; Hammond, M; Rohrer, S P

    2012-11-01

    Estrogen acts through two molecularly distinct receptors termed estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) which bind estradiol with similar affinities and mediate the effects of estrogen throughout the body. ERα plays a major role in reproductive physiology and behavior, and mediates classic estrogen signaling in such tissues as the uterus, mammary gland, and skeleton. ERβ, however, modulates estrogen signaling in the ovary, the immune system, prostate, gastrointestinal tract, and hypothalamus, and there is some evidence that ERβ can regulate ERα activity. Moreover, ERβ knockout studies and receptor distribution analyses in the CNS suggest that this receptor may play a role in the modulation of mood and cognition. In recent years several ERβ-specific compounds (selective estrogen receptor beta modulators; SERM-beta) have become available, and research suggests potential utility of these compounds in menopausal symptom relief, breast cancer prevention, diseases that have an inflammatory component, osteoporosis, cardiovascular disease, and inflammatory bowel disease, as well as modulation of mood, and anxiety. Here we demonstrate an antidepressant-like effect obtained using two SERM-beta compounds, SERM-beta1 and SERM-beta2. These compounds exhibit full agonist activity at ERβ in a cell based estrogen response element (ERE) transactivation assay. SERM-beta1 and 2 are non-proliferative with respect to breast as determined using the MCF-7 breast cancer cell-based assay and non-proliferative in the uterus as determined by assessing the effects of SERM-beta compounds on immature rat uterine weight and murine uterine weight. In vivo SERM-beta1 and 2 are brain penetrant and display dose dependent efficacy in the murine dorsal raphe assays for induction of tryptophan hydroxylase mRNA and progesterone receptor protein. These compounds show activity in the murine forced swim test and promote hippocampal neurogenesis acutely in rats. Taken

  18. Human sperm physiology: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) influence sperm metabolism and may be involved in the pathophysiology of varicocele-associated male infertility.

    PubMed

    Guido, Carmela; Perrotta, Ida; Panza, Salvatore; Middea, Emilia; Avena, Paola; Santoro, Marta; Marsico, Stefania; Imbrogno, Pietro; Andò, Sebastiano; Aquila, Saveria

    2011-12-01

    The mechanisms by which varicocele affects fertility remain undetermined. Estrogens play a key role in the human male reproduction and human sperm expresses the estrogen receptors (ERs) and aromatase. In this study, by Western blotting we evidenced the ERs content concomitantly in healthy sperm and in oligoastenoteratozoospermic (OAT) samples without and with varicocele. In varicocele a strong reduction of the ERβ was observed, while the ERα was almost absent. Besides, transmission electron microscopy (TEM) confirmed the reduction of ERs expression in "varicocele" sperm, indicating that varicocele has a detrimental effect on sperm structure at molecular level. To further define the estrogen significance in male gamete and the pathophysiology of varicocele we investigated both the expression of ERα and ERβ in normal and pathologic sperm samples as well as we evaluated estradiol (E2) action on lipid and glucose sperm metabolism. Responses to E2 treatments on cholesterol efflux, protein tyrosine phosphorylations, motility, and acrosin activity in varicocele sperm were reduced or absent. The evaluation of the triglycerides content, lipase and acyl-CoA dehydrogenase activities, suggest that E2 exerts a lipolytic effect on human sperm metabolism. Concerning glucose metabolism, it appears that E2 induces G6PDH activity concomitantly to the insulin secretion. In "varicocele" sperm, the E2 did not induce energy expenditure. OAT sperm had E2-responsiveness but in a lesser extent with respect healthy sperm. This study discovered a novel role for E2/ERs in human sperm physiology, since they modulate sperm metabolism and new detrimental effects related to the pathophysiology of the varicocele condition. PMID:21344398

  19. Effects of pinostrobin on estrogen metabolism and estrogen receptor transactivation.

    PubMed

    Le Bail, J C; Aubourg, L; Habrioux, G

    2000-08-01

    The interaction between the estrogen receptor and 5-hydroxy-7-methoxyflavanone (pinostrobin) was studied in the presence or absence of estradiol or dehydroepiandrosterone sulfate (DHEAS), respectively, using a stably transfected human breast cancer cell line (MVLN). We also evaluated its action on the proliferation in estrogen-dependent (MCF-7) human breast cancer cells in the same conditions than the estrogen receptor assay. On the other hand pinostrobin was evaluated for their effects on the human placental aromatase, 3beta-hydroxysteroid dehydrogenase Delta(4)/Delta(5) isomerase and 17beta-hydroxysteroid dehydrogenase activities. Pinostrobin did not possess antiestrogenic activity but presented anti-aromatase activity and decreased the growth of MCF-7 cells induced by DHEAS and E(2). This study provides particularly evidence of the potential biological interest of pinostrobin among the flavonoids. PMID:10840157

  20. MOLECULAR CLONING OF PORCINE ESTROGEN RECEPTOR-BETA COMPLEMENTARY DNAS AND DEVELOPMENTAL EXPRESSION I PERIIMPLANTATION EMBRYOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the pig, estrogens transiently produced by embryos and progestins of maternal origin target the uterine endometrium, causing alterations in gene expression and secretory activity, both of which are important for the initiation of embryo attachment. The potential direct embryotrophic roles of estr...

  1. Estrogen receptor scintigraphy.

    PubMed

    Scheidhauer, K; Scharl, A; Schicha, H

    1998-03-01

    Radio-labeled estrogen receptor ligands are tracers that can be used for functional receptor diagnosis. Their specificity towards receptors, together with the fact that only 50-70% of mammary carcinomas are receptor positive, renders them unsuitable for detection of primary tumors or metastases, and this means that estrogen receptor scintigraphy can be used neither for tumor screening nor for staging. However, both 18F-labeled and 123I-labeled estradiol derivatives are suitable for in vivo imaging of estrogen receptors. Their high specificity, established in animal experiments and in vitro studies has been reproduced in in vivo applications in humans. Tracers with positron radiation emitters are, however, hardly suitable for broad application owing to the short half-life of 18F, which would mean that users would need to be situated close to a cyclotron and a correspondingly equipped radiochemical laboratory. The number of available PET scanners, on the other hand, has increased over the last few years, especially in Germany, so that this, at least, does not present a limiting factor. All the same, 123I-labeled estradiol derivatives will find more widespread application, since the number of gamma-cameras incorporating modern multi-head systems is several times greater. The results of studies with 123I-E2-scintigraphy published to date are very promising, even given the initial technical problems mentioned above. As a method of examination, it could be optimised by using improved tracers with a higher tumor contrast and less disturbance from overlapping in diagnostically relevant locations, for instance, by selecting tracers with higher activities whose excretion is more renal than hepatobiliary. The use of modern multi-head camera systems can also be expected to improve the photon yield. PMID:9646642

  2. HOMOLOGY MODELING OF THE ESTROGEN RECEPTOR SUBTYPE BETA (ER-BETA) AND CALCULATION OF LIGAND BINDING AFFINITIES. (R826133)

    EPA Science Inventory

    Abstract

    Estrogen is a steroid hormone playing critical roles in physiological processes such as sexual differentiation and development, female and male reproductive processes, and bone health. Numerous natural and synthetic environmental compounds have been shown capa...

  3. Effect of cadmium on the interaction of 17beta-estradiol with the rainbow trout estrogen receptor.

    PubMed

    Nesatyy, Victor J; Ammann, Adrian A; Rutishauser, Barbara V; Suter, Marc J F

    2006-02-15

    The widely reported negative effects of xenoestrogens on the endocrine system of aquatic organisms gave raise to public concern and led to a number of screening and testing initiatives on the international level. Recent studies indicated that not only organic chemicals but also certain heavy metals, including cadmium, can mimic the effects of the endogenous estrogen receptor agonist 17beta-estradiol (E2) and lead to estrogen receptor activation. While the effects of cadmium on the endocrine system and its potential to harm living organisms are no longer in doubt, the exact mode of action is still essentially unknown. In the present study we utilized the rainbow trout ER alpha ligand binding domain (rtER-LBD) fused to glutathione-S-transferase, to study noncovalent interactions between cadmium and the rtER-LBD. ICP-MS data showed that the Cd uptake by the rtER-LBD was strongly pH-dependent. Previous results showing that Cd shields Cys residues of the rtER-LBD against chemical modification, and competitive binding experiments reported here provide insights into the specificity of the interaction of cadmium with the ER hormone binding cavity. It could, for instance, be shown that most of the cadmium adsorbed to the protein could be released into solution either under denaturing conditions, or by stripping from the protein surface using EDTA at physiological conditions. Competitive binding experiments using radio-labeled estradiol showed that, in contrast to previously published data, E2 has an affinity an order of magnitude higher for the ER than for Cd. ICP-MS experiments showed that, despite its higher affinity, increasing E2 concentrations were unable to replace Cd from the rtER-LBD that had been preequilibrated with Cd. These findings were independently confirmed by the [3H]-E2 binding assay. At the same time both ICP-MS and the [3H]-E2 binding assay showed that increasing Cd concentrations not only lead to a decrease in the specific estradiol binding, but also to

  4. Characterization of Schistosoma japonicum estrogen-related receptor beta like 1 and immunogenicity analysis of the recombinant protein.

    PubMed

    Wu, Xiujuan; Zhao, Bin; Hong, Yang; Li, Xuezheng; Peng, Jinbiao; Zhang, Juan; Wang, Fei; Shi, Yaojun; Fu, Zhiqiang; Lin, Jiaojiao

    2012-07-01

    The estrogen-related receptor beta like 1 (EsRRBL1) is a sex hormone receptor. Here, we describe the cloning and expression of the EsRRBL1 gene from Schistosoma japonicum (SjEsRRBL1). Quantitative real time PCR (qPCR) and Western blot analysis revealed that SjEsRRBL1 was highly expressed in 14-, 18-, 23- and 28-days-old schistosomes at the transcriptional and protein levels, when the schistosomes were undergoing early development of reproductive organs, male and female coupling, and egg-laying. qPCR also showed that schistosomula isolated from a S. japonicum-susceptible mouse host had 3- to 4-fold higher expression of SjEsRRBL1 than that from the S. japonicum non-permissive Microtus fortis host or the non-susceptible rat host. Moreover, SjEsRRBL1 expression was 2-fold higher in schistosomula from female mice than that from male mice. Western blot analysis revealed that rSjEsRRBL1 had good antigenicity. After immunization of BALB/c mice with recombinant (r)SjEsRRBL1, partial and significantly protective efficacy was observed in two independent trials (30.84% and 30.70% worm reduction; 35.39% and 35.61% liver eggs reduction), as compared with the blank control group. An enzyme-linked immunosorbent assay (ELISA) showed that mice vaccinated with rSjEsRRBL1 produced increased levels of specific IgG, IFN-γ and IL-4, but a reduced IgG1/IgG2a ratio, as compared to the adjuvant control group and the blank control group, suggesting that rSjEsRRBL1 vaccination could induce a mixed Th1/Th2 response. The results suggested that SjEsRRBL1 might be a critical regulator of schistosome development and represent a promising vaccine target for schistosomiasis. PMID:22626519

  5. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta.

    PubMed Central

    Stein, B; Yang, M X

    1995-01-01

    Bone metabolism is regulated by a balance between bone resorption caused by osteoclasts and bone formation caused by osteoblasts. This balance is disturbed in postmenopausal women as a result of lower serum estrogen levels. Estrogen, which is used in hormone replacement therapy to prevent postmenopausal osteoporosis, downregulates expression of the interleukin 6 (IL-6) gene in osteoblasts and bone marrow stromal cells. IL-6 is directly involved in bone resorption by activating immature osteoclasts. We show here that NF-kappa B and C/EBP beta are important regulators of IL-6 gene expression in human osteoblasts. Importantly, the IL-6 promoter is inhibited by estrogen in the absence of a functional estrogen receptor (ER) binding site. This inhibition is mediated by the transcription factors NF-kappa B and C/EBP beta. Evidence is presented for a direct interaction between these two factors and ER. We characterized the protein sequence requirements for this association in vitro and in vivo. The physical and functional interaction depends in part on the DNA binding domain and region D of ER and on the Rel homology domain of NF-kappa B and the bZIP region of C/EBP beta. The cross-coupling between ER, NF-kappa B, and C/EBP beta also results in reduced activity of promoters with ER binding sites. We further show that the mechanism of IL-6 gene repression by estrogen is clearly different from that of activation of promoters with ER binding sites. Therefore, drugs that separate the transactivation and transrepression functions of ER will be very helpful for treatment of osteoporosis without causing undesirable side effects. PMID:7651415

  6. (I-125) 17. cap alpha. -Iodovinyl 11. beta. -methoxyestradiol: in vivo and in vitro properties of a high-affinity estrogen-receptor radiopharmaceutical

    SciTech Connect

    Jagoda, E.M.; Gibson, R.E.; Goodgold, H.; Ferreira, N.; Francis, B.E.; Reba, R.C.; Rzeszotarski, W.J.; Eckelman, W.C.

    1984-04-01

    17 ..cap alpha..-(/sup 125/I)Iodovinyl 11 ..beta..-methoxyestradiol ((I-125)MIVE/sub 2/) has been prepared with high specific activity (155-2000 Ci/mmol) and a high affinity for the estrogen receptor. In vivo distribution studies using immature rats result in high levels of activity in the uterus (20-30% dose/g) with uterus-to-plasma ratios on the order of 68 to 100. Peak activity in the uterus is obtained between 2 and 4 hr, and by 6 hr 50% of the activity has washed out. The radioactive labeling of MIVE/sub 2/ is sufficiently rapid so that (I-123)MIVE/sub 2/ has been synthesized and is currently in clinical trials. These results suggest that MIVE/sub 2/ would be an excellent agent for the study of estrogen receptors in vivo and in vitro.

  7. Cell Cycle Regulation in the Estrogen Receptor Beta (ESR2)-Overexpressing Hep3B Hepatocellular Carcinoma Cell Line.

    PubMed

    Liu, Yi-Sheng; Tsai, Ying-Lan; Yeh, Yu-Lan; Chung, Li-Chin; Wen, Su-Ying; Kuo, Chia-Hua; Lin, Yueh-Min; Padma, V Vijaya; Kumar, V Bharath; Huang, Chih-Yang

    2015-04-30

    Epidemiological studies and experimental data have shown that the incidences of hepatocellular carcinoma in men are more frequent than in women. Evidence suggests that imbalance of hormones, including estrogen, androgen, prolactin, and growth hormone, modifies liver tumorigenesis. In this present study, we investigated how estrogen and estrogen receptor 2 (ESR2), regulates the cell cycle mechanism in Hep3B hepatocellular carcinoma cell line. Our results showed that ESR2 overexpression in the presence of 10⁻⁸ M 17-β-estradiol downregulated c-myc and cyclin D1 expression and simultaneously upregulated p27 expression. However, flow cytometry and MTT assays showed only minor G₁ phase arrest without affecting cell viability. Taken together, these observations indicate that ESR2 is required to lower tumorigenesis in males by altering cell cycle proteins in a ligand-dependent manner. PMID:25858474

  8. The androgen 5alpha-dihydrotestosterone and its metabolite 5alpha-androstan-3beta, 17beta-diol inhibit the hypothalamo-pituitary-adrenal response to stress by acting through estrogen receptor beta-expressing neurons in the hypothalamus.

    PubMed

    Lund, Trent D; Hinds, Laura R; Handa, Robert J

    2006-02-01

    Estrogen receptor beta (ERbeta) and androgen receptor (AR) are found in high levels within populations of neurons in the hypothalamus. To determine whether AR or ERbeta plays a role in regulating hypothalamo-pituitary-adrenal (HPA) axis function by direct action on these neurons, we examined the effects of central implants of 17beta-estradiol (E2), 5alpha-dihydrotestosterone (DHT), the DHT metabolite 5alpha-androstan-3beta, 17beta-diol (3beta-diol), and several ER subtype-selective agonists on the corticosterone and adrenocorticotropin (ACTH) response to immobilization stress. In addition, activation of neurons in the paraventricular nucleus (PVN) was monitored by examining c-fos mRNA expression. Pellets containing these compounds were stereotaxically implanted near the PVN of gonadectomized male rats. Seven days later, animals were killed directly from their home cage (nonstressed) or were restrained for 30 min (stressed) before they were killed. Compared with controls, E2 and the ERalpha-selective agonists moxestrol and propyl-pyrazole-triol significantly increased the stress induced release of corticosterone and ACTH. In contrast, central administration of DHT, 3beta-diol, and the ERbeta-selective compound diarylpropionitrile significantly decreased the corticosterone and ACTH response to immobilization. Cotreatment with the ER antagonist tamoxifen completely blocked the effects of 3beta-diol and partially blocked the effect of DHT, whereas the AR antagonist flutamide had no effect. Moreover, DHT, 3beta-diol, and diarylpropionitrile treatment significantly decreased restraint-induced c-fos mRNA expression in the PVN. Together, these studies indicate that the inhibitory effects of DHT on HPA axis activity may be in part mediated via its conversion to 3beta-diol and subsequent binding to ERbeta. PMID:16452668

  9. Loss of estrogen receptor beta expression in malignant human prostate cells in primary cultures and in prostate cancer tissues.

    PubMed

    Pasquali, D; Rossi, V; Esposito, D; Abbondanza, C; Puca, G A; Bellastella, A; Sinisi, A A

    2001-05-01

    The aim of this study was to investigate the expression of estrogen receptor (ER) beta and alpha genes in normal (N) and malignant (C) primary cultures of human prostate epithelial cells (PEC) and fibroblasts (PFC) and in the prostate tissue donors. Both ERbeta and ERalpha messenger ribonucleic acids were found by RT-PCR analysis in six NPECs and normal prostate tissues and in only one of six CPECs and in the respective cancer tissue donor. The other five CPECs and related cancer tissue donors and all normal and cancer PFCs expressed ERalpha messenger ribonucleic acid alone. Immunoblot analysis, using a polyclonal anti-ERbeta (C-terminal) antibody, demonstrated ERbeta protein in all NPEC lysates and in one of the six CPECS: ERalpha protein was expressed in both NPECs and CPECs when a polyclonal antibody directed against the ERalpha N-terminal domain was used. In contrast, ERalpha protein was not detected in two of the six CPEC lysates when ERalpha C-terminal monoclonal antibodies were used. Using a set of primers designed to amplify the region from exons 6-8, RT-PCR analysis demonstrated the absence of the expected transcript in these cells. The present study shows that the ERbeta gene is expressed together with ERalpha in normal prostates and NPECs, whereas it is barely detectable in prostate cancer and CPECS: Moreover, in some CPECs, the ERalpha gene may be transcribed in a changed protein, resulting from the expression of a deletion variant. Together, these data suggest that prostate malignancy is associated with a potential disorder of ER-mediated pathways. PMID:11344205

  10. Prognostic significance of full-length estrogen receptor beta expression in stage I-III triple negative breast cancer

    PubMed Central

    Shanle, Erin K; Onitilo, Adedayo A; Huang, Wei; Kim, KyungMann; Zang, Chong; Engel, Jessica M; Xu, Wei; Wisinski, Kari B

    2015-01-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which there is a need to identify new therapeutic targets. Full-length estrogen receptor beta (ERβ1) may be a possible target given its antiproliferative effects on breast cancer cells. The prognostic significance of ERβ in breast cancer subtypes has remained elusive, and disparate results observed across previously published reports might be due to the detection of multiple ERβ isoforms, the lack of specific antibodies and the use of different cutoffs to define ERβpositivity. The objective of this retrospective study was to determine the association between ERβ1 expression and disease-free and overall survival, as well as Ki67 expression, in non-metastatic TNBC. Immunohistochemical protocols were optimized using xenograft tissues obtained from a breast cancer cell line with inducible ERβ1 expression. ERβ1 localization and expression were assessed in two cohorts of TNBC using the VECTRATM platform. There was a close relationship between nuclear and cytoplasmic ERβ1 expression. ERβ1 was expressed in a subset of TNBCs, but its expression was significantly associated with Ki67 in only one of the cohorts. There was no significant association between ERβ1 expression and disease-free and overall survival in either cohort. Although these results suggest that ERβ1 expression alone may not be informative in TNBCs, this study provides a new strategy for optimizing and objectively measuring ERβ1 expression in tissues, which may provide a standard for ERβ1 immunohistochemistry in future large-scale clinical studies aimed at better understanding the role of ERβ1 in breast cancer. PMID:26328009

  11. Estrogen Receptor Beta rs1271572 Polymorphism and Invasive Ovarian Carcinoma Risk: Pooled Analysis within the Ovarian Cancer Association Consortium

    PubMed Central

    Lurie, Galina; Wilkens, Lynne R.; Thompson, Pamela J.; Shvetsov, Yurii B.; Matsuno, Rayna K.; Carney, Michael E.; Palmieri, Rachel T.; Wu, Anna H.; Pike, Malcolm C.; Pearce, Celeste L.; Menon, Usha; Gentry-Maharaj, Aleksandra; Gayther, Simon A.; Ramus, Susan J.; Whittemore, Alice S.; McGuire, Valerie; Sieh, Weiva; Pharoah, Paul D. P.; Song, Honglin; Gronwald, Jacek; Jakubowska, Anna; Cybulski, Cezary; Lubinski, Jan; Schildkraut, Joellen M.; Berchuck, Andrew; Krüger Kjær, Susanne; Høgdall, Estrid; Fasching, Peter A.; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Chenevix-Trench, Georgia; Webb, Penelope M.; Beesley, Jonathan; Goodman, Marc T.

    2011-01-01

    The association of ovarian carcinoma risk with the polymorphism rs1271572 in the estrogen receptor beta (ESR2) gene was examined in 4946 women with primary invasive ovarian carcinoma and 6582 controls in a pooled analysis of ten case-control studies within the Ovarian Cancer Association Consortium (OCAC). All participants were non-Hispanic white women. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression adjusted for site and age. Women with the TT genotype were at increased risk of ovarian carcinoma compared to carriers of the G allele (OR = 1.10; 95%; CI: 1.01–1.21; p = 0.04); the OR was 1.09 (CI: 0.99–1.20; p = 0.07) after excluding data from the center (Hawaii) that nominated this SNP for OCAC genotyping A stronger association of rs1271572 TT versus GT/GG with risk was observed among women aged ≤50 years versus older women (OR = 1.35; CI: 1.12–1.62; p = 0.002; p for interaction = 0.02) that remained statistically significant after excluding Hawaii data (OR = 1.34; CI: 1.11–1.61; p = 0.009). No heterogeneity of the association was observed by study, menopausal status, gravidity, parity, use of contraceptive or menopausal hormones, tumor histological type, or stage at diagnosis. This pooled analysis suggests that rs1271572 might influence the risk of ovarian cancer, in particular among younger women. PMID:21673961

  12. Fertility and developmental toxicity assessment in rats and rabbits with LY500307, a selective estrogen receptor beta (ERβ) agonist.

    PubMed

    Hilbish, Kim G; Breslin, William J; Johnson, Jason T; Sloter, Eddie D

    2013-10-01

    LY500307 is a selective estrogen receptor beta (ERβ) agonist that was developed for the treatment of benign prostatic hyperplasia. The in vitro functional selectivity of LY500307 for ERβ agonist activity is 32-fold above the activity at the alpha receptor (ERα). LY500307 was evaluated in a series of male (M) and female (F) rat fertility and rat and rabbit embryo-fetal development (EFD) studies, using 20 or 25 animals/group. LY500307 was administered daily by oral gavage starting 2 weeks (F) or 10 weeks (M) before mating, during cohabitation, until necropsy (M) or through gestation day (GD) 6 (F) in the fertility studies and from GD 6 to 17 (rats) or GD 7 to 19 (rabbits) in the EFD studies. Dosage levels of LY500307 ranged from 0.03 to 10 mg/kg/day for rats and from 1 to 25 mg/kg/day for rabbits. Fertility, estrous, maternal reproductive endpoints, conceptus viability, sperm parameters, organ weights, and histopathology were evaluated in the fertility studies. Maternal reproductive endpoints and fetal viability, weight, and morphology were evaluated in the EFD studies. Toxicokinetics were assessed in satellite animals. At 10 mg/kg/day in the male fertility study, findings included decreased body weight (BW); food consumption (FC); fertility, mating, and conception indices; sperm concentration; and reproductive tissue weight (associated with atrophic histologic changes). In the female fertility study, effects included decreased BW and FC at ≥0.3 mg/kg/day and persistent diestrus, delayed mating, and reduced fertility/conception indices at 3 mg/kg/day. In the rat EFD study, findings included decreased maternal BW and FC and increased incidences of adverse clinical signs, abortion, maternal mortality/moribundity, postimplantation loss, and fetal skeletal variations at 3 mg/kg/day. Effects in the rabbit EFD study were limited to decreases in maternal BW and FC at 25 mg/kg/day. In general, systemic maternal exposure increased proportionally with dosage in rats, but

  13. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  14. High-affinity binding of [3H]estradiol-17 beta by an estrogen receptor in the liver of the turtle.

    PubMed

    Ho, S M; Fehrer, S; Yu, M; Liang, L C; Press, D

    1988-06-01

    Specific [3H]estradiol-17 beta ([3H]E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds [3H]E2 with high affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of [3H]E2 binding activity in both cytosolic and nuclear fractions. The exchange between [3H]E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species. PMID:3417113

  15. High-affinity binding of (/sup 3/H)estradiol-17 beta by an estrogen receptor in the liver of the turtle

    SciTech Connect

    Ho, S.M.; Fehrer, S.; Yu, M.; Liang, L.C.; Press, D.

    1988-06-01

    Specific (3H)estradiol-17 beta ((3H)E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds (3H)E2 with high affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of (3H)E2 binding activity in both cytosolic and nuclear fractions. The exchange between (3H)E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species.

  16. Bibenzyl- and stilbene-core compounds with non-polar linker atom substituents as selective ligands for estrogen receptor beta.

    PubMed

    Waibel, Michael; De Angelis, Meri; Stossi, Fabio; Kieser, Karen J; Carlson, Kathryn E; Katzenellenbogen, Benita S; Katzenellenbogen, John A

    2009-09-01

    A series of structurally simple bibenzyl-diol and stilbene-diol core molecules, structural analogs of the well-known hexestrol and diethylstilbestrol non-steroidal estrogens, were prepared and evaluated as estrogen receptor (ER) subtype-selective ligands. Analysis of their ERalpha and ERbeta binding showed that certain substitution patterns engendered binding affinities that were >100-fold selective for ERbeta. When further investigated in cell-based gene transcription assays, some molecules showed similarly high relative transcriptional potency selectivity in favor of ERbeta. Interestingly, the most ERbeta-selective molecules were those bearing non-polar substituents on one of the internal carbon atoms. These compounds should be useful probes for determining the physiological roles of ERbeta, and they might lead to the development of more selective and thus safer pharmaceuticals. PMID:19286283

  17. Estrogen receptor beta as a prognostic factor in breast cancer patients: A systematic review and meta-analysis

    PubMed Central

    Chen, Kai; Su, Fengxi; Song, Erwei; Gong, Chang

    2016-01-01

    Background The prognostic role of estrogen receptor beta (ERβ) in early-stage breast cancer is unclear. We performed a systematic review and meta-analysis to evaluate the prognostic value of ERβ in early-stage breast cancer patients. Method We searched Medline, Embase, and the Web of Science for studies published between 1990 and 2015 that assessed ERβ status in breast cancer patients. A total of 25 studies comprising 9919 patients fitting our inclusion and exclusion criteria were included. The hazard ratios of ERβ status were extracted for diseases free survival (DFS)/) and overall survival (OS). Random or fixed-effects models were used when appropriate, and between-study heterogeneity was assessed. Results In the 20 studies that assessed ERβ status using immunohistochemical (IHC) methods, we observed significantly improved DFS in patients positive for ERβ-1 (HR=0.56, 95%CI 0.40-0.78, P=0.0007) and ERβ-2 (HR=0.67, 95%CI 0.45-1.00, P=0.05). Improved OS was associated with a positive status for pan-ERβ (HR=0.60, 95%CI 0.45-0.80, P=0.0004) and ERβ-2 (HR=0.44, 95%CI 0.31-0.62, P<0.0001). In ERα-positive patients, ERβ positivity was not associated with DFS (HR=0.77, 95%CI 0.46-1.27, P=0.31) or OS (HR=0.64, 95%CI 0.37-1.11, P=0.11). In contrast, ERβ expression was significantly associated with increased DFS (HR=0.37, 95%CI 0.14-0.93, P=0.03) or OS (HR=0.44, 95%CI 0.30-0.65, P<0.0001) in ERα-negative patients. We did not observe an association between ERβ mRNA levels and DFS and OS. Conclusion In this study, we showed that IHC ERβ status, rather than mRNA levels, is a prognostic factor that is associated with DFS and OS in breast cancer patients. The prognostic value of ERβ may be higher in ERα-negative patients than in ERα-positive patients. PMID:26863572

  18. Characterization of high specific activity (16 alpha-123I)Iodo-17 beta-estradiol as an estrogen receptor-specific radioligand capable of imaging estrogen receptor-positive tumors

    SciTech Connect

    Pavlik, E.J.; Nelson, K.; Gallion, H.H.; van Nagell, J.R. Jr.; Donaldson, E.S.; Shih, W.J.; Spicer, J.A.; Preston, D.F.; Baranczuk, R.J.; Kenady, D.E. )

    1990-12-15

    16 alpha-(123I)Iodo-17 beta-estradiol (16 alpha-(123I)E2) has been characterized for use as a selective radioligand for estrogen receptor (ERc) that is capable of generating in situ images of ERc-positive tumors. High specific activity 16 alpha-(123I)E2 (7,500-10,000 Ci/mmol) was used in all determinations. Radiochemical purity was determined by thin layer chromatography, and the selectivity of radioligand for ERc was evaluated using size exclusion high performance liquid chromatography on ERc prepared from rodent uteri. Efficiencies of radioidination approaching 100% were achieved, and excellent receptor selectivity was obtained even when the efficiency of radioiodination was as low as 10%. Low radiochemical purity was always associated with poor selectivity for ERc. No new radioligand species was generated during the course of radiodecay; however, reduced binding over time, even when increased activity was used to compensate for radiodecay, indicated that the formation of a radioinert competitor does occur. 16 alpha-(123I)E2 demonstrated stable, high affinity binding to ERc and was concentrated by ERc-positive tissues. After injecting 16 alpha-(123I)E2 in vivo, images of ERc-containing tissues were obtained, including rabbit reproductive tract and dimethylbenzanthracene-induced tumors. The demonstrations of ERc selectivity and image formation both indicate that 16 alpha-(123I)E2 should have promise as a useful new radiopharmaceutical for imaging ERc-positive cancers.

  19. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function.

    PubMed

    Weiser, Michael J; Foradori, Chad D; Handa, Robert J

    2010-06-01

    Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERbeta) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERbeta agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERbeta agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERbeta agonist can overcome this effect. These data suggest that estradiol signaling via ERbeta

  20. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function

    PubMed Central

    Weiser, Michael J.; Foradori, Chad D.; Handa, Robert J.

    2010-01-01

    Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERβ) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERβ agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERβ agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERβ agonist can overcome this effect. These data suggest that estradiol signaling via ERβ prevents

  1. ESTROGEN AND AGING AFFECT THE SYNAPTIC DISTRIBUTION OF ESTROGEN RECEPTOR BETA-IMMUNOREACTIVITY IN THE CA1 REGION OF FEMALE RAT HIPPOCAMPUS

    PubMed Central

    Waters, Elizabeth M.; Yildirim, Murat; Janssen, William G.M.; Lou, W.Y. Wendy; McEwen, Bruce S.; Morrison, John H.; Milner, Teresa A.

    2010-01-01

    Estradiol (E) mediates increased synaptogenesis in the hippocampal CA1 stratum radiatum (sr) and enhances memory in young and some aged female rats, depending on dose and age. Young females rats express more estrogen receptor α (ERα) immunolabeling in CA1sr spine synapse complexes than aged rats and ERα regulation is E sensitive in young but not aged rats. The current study examined whether estrogen receptor β (ERβ) expression in spine synapse complexes may be altered by age or E treatment. Young (3–4 months) and aged (22–23 months) female rats were ovariectomized 7 days prior to implantation of silastic capsules containing either vehicle (cholesterol) or E (10% in cholesterol) for 2 days. ERβ immunoreactivity (ir) in CA1sr was quantitatively analyzed using post-embedding electron microscopy. ERβ-ir was more prominent postsynaptically than presynaptically and both age and E treatment affected its synaptic distribution. While age decreased the spine synaptic complex localization of ERβ-ir (i.e., within 60 nm of the pre- and post-synaptic membranes), E treatment increased synaptic ERβ in both young and aged rats. In addition, the E treatment, but not age, increased dendritic shaft labeling. This data demonstrates that like ERα the levels of ERβ-ir decrease in CA1 axospinous synapses with age, however, unlike ERα the levels of ERβ-ir increase in these synapses in both young and aged rats in response to E. This suggests that synaptic ERβ may be a more responsive target to E, particularly in aged females. PMID:20875808

  2. Specific Activation of Estrogen Receptor Alpha and Beta Enhances Male Sexual Behavior and Neuroplasticity in Male Japanese Quail

    PubMed Central

    Seredynski, Aurore L.; Ball, Gregory F.; Balthazart, Jacques; Charlier, Thierry D.

    2011-01-01

    Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events. PMID:21533185

  3. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression.

    PubMed

    Avila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Hidalgo-Lanussa, Oscar; Baez, Eliana; Gonzalez, Janneth; Barreto, George E

    2016-09-15

    Tibolone, a synthetic steroid used for the prevention of osteoporosis and the treatment of climacteric symptoms in post-menopausal women, may exert tissue selective estrogenic actions acting on estrogen receptors (ERs). We previously showed that tibolone protects human T98G astroglial cells against glucose deprivation (GD). In this study we have explored whether the protective effect of tibolone on these cells is mediated by ERs. Experimental studies showed that both ERα and ERβ were involved in the protection by tibolone on GD cells, being ERβ preferentially involved on these actions over ERα. Tibolone increased viability of GD cells by a mechanism fully blocked by an ERβ antagonist and partially blocked by an ERα antagonist. Furthermore, ERβ inhibition prevented the effect of tibolone on nuclear fragmentation, ROS and mitochondrial membrane potential in GD cells. The protective effect of tibolone was mediated by neuroglobin. Tibolone upregulated neuroglobin in T98G cells and primary mouse astrocytes by a mechanism involving ERβ and neuroglobin silencing prevented the protective action of tibolone on GD cells. In summary, tibolone protects T98G cells by a mechanism involving ERβ and the upregulation of neuroglobin. PMID:27250720

  4. Synthesis and biological evaluation of phenolic 4,5-dihydroisoxazoles and 3-hydroxy ketones as estrogen receptor alpha and beta agonists.

    PubMed

    Poutiainen, Pekka K; Venäläinen, Tuomas A; Peräkylä, Mikael; Matilainen, Juha M; Väisänen, Sami; Honkakoski, Paavo; Laatikainen, Reino; Pulkkinen, Juha T

    2010-05-15

    In this work, 52 diphenyl-4,5-dihydroisoxazoles and -3-hydroxy ketones were prepared and their estrogen receptor alpha (ERalpha) and estrogen receptor beta (ERbeta) activities were explored in order to systematize and maximize their biological activity. The biological activity was firstly screened by using ERE reporter assay to find out how aromatic hydroxylation and methylation of the chiral centers of the compounds affect the ability of ER to mediate biological responses. For selected 19 compounds, the relative binding affinities (RBA, relative to 3,17beta-estradiol) and ability to induce transcription of primary E2 target gene pS2 in human MCF-7 breast cancer cells were determined. In the reporter assay, many compounds showed even stronger activity than E2 and some of them showed RBA larger than 1%. The highest RBAs were determined for the enantiomers of 1-hydroxy-6-(4-hydroxy-phenyl)-1-phenyl-hexan-3-one (50a and 50b). Isomer 50a showed high binding affinity both to ERalpha (with RBA approximately 200%) and ERbeta (with RBA approximately 60%), while the RBAs of 50b were ca. 40% of those. Some of the other compounds (with RBA approximately 1-16%) showed also notable ERalpha binding selectivity. When four most promising ligands (50a, 50b, 45a, and 45b) were studied with respect to their ability to induce the transcription of primary E2 target gene pS2, the compounds acted as agonists or partial agonists. Computer modeling was used to predict receptor binding conformations and to rationalize the RBA differences of the compounds. PMID:20430632

  5. Estrogen receptor beta signaling alters cellular inflammasomes activity after global cerebral ischemia in reproductively senescence female rats.

    PubMed

    de Rivero Vaccari, Juan Pablo; Patel, Hersila H; Brand, Frank J; Perez-Pinzon, Miguel A; Bramlett, Helen M; Raval, Ami P

    2016-02-01

    Periodic treatments with estrogen receptor subtype-β (ER-β) agonist reduce post-ischemic hippocampal injury in ovariectomized rats. However, the underlying mechanism of how ER-β agonists protect the brain remains unknown. Global cerebral ischemia activates the innate immune response, and a key component of the innate immune response is the inflammasome. This study tests the hypothesis that ER-β regulates inflammasome activation in the hippocampus, thus reducing ischemic hippocampal damage in reproductively senescent female rats that received periodic ER-β agonist treatments. First, we determined the effect of hippocampal ER-β silencing on the expression of the inflammasome proteins caspase 1, apoptosis-associated speck-like protein containing a CARD (ASC), and interleukin (IL)-1β. Silencing of ER-β attenuated 17β-estradiol mediated decrease in caspase 1, ASC, and IL-1β. Next, we tested the hypothesis that periodic ER-β agonist treatment reduces inflammasome activation and ischemic damage in reproductively senescent female rats. Periodic ER-β agonist treatments significantly decreased inflammasome activation and increased post-ischemic live neuronal counts by 32% (p < 0.05) as compared to the vehicle-treated, reproductively senescent rats. Current findings demonstrated that ER-β activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats. Further investigation on the role of a periodic ER-β agonist regimen to reduce the innate immune response in the brain could help reduce the incidence and the impact of global cerebral ischemia in post-menopausal women. We propose that estrogen receptor subtype-β (ER-β) activation regulates inflammasome activation and protects the brain from global ischemic damage in reproductively senescent female rats. PMID:26490364

  6. Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids.

    PubMed

    Han, Dal-Ho; Denison, Michael S; Tachibana, Hirofumi; Yamada, Koji

    2002-07-01

    In this study, we investigated the estrogenic activity of environmental estrogens by a competition binding assay using a human recombinant estrogens receptor (hERbeta) and by a proliferation assay using MCF-7 cells and a sulforhodamine-B assay. In the binding assay, pharmaceuticals had a stronger binding activity to hERbeta than that of some phytoestrogens (coumestrol, daidzein, genistein, luteolin, chrysin, flavone, and naringenin) or industrial chemicals, but phytoestrogens such as coumestrol had a binding activity as strong as pharmaceuticals such as 17alpha-ethynylestradiol (EE), tamoxifen (Tam), and mestranol. In the proliferation assay, pharmaceuticals such as diethylstilbestrol, EE, Tam, and clomiphene, and industrial chemicals such as 4-nonylphenol, bisphenol A, and 4-dihydroxybiphenyl had a proliferation-stimulating activity as strong as 17beta-estradiol (ES). In addition, we found that phytoestrogens such as coumestrol, daidzein, luteolin, and quercetin exerted a proliferation stimulating activity as strong as ES. Furthermore, we examined the suppression of proliferation-stimulating activity, induced by environmental estrogen, by flavonoids, such as daidzein, genistein, quercetin, and luteolin, and found that these flavonoids suppressed the induction of the proliferation-stimulating activity of environmental estrogens. The suppressive effect of flavonoids suggests that these compounds have anti-estrogenic and anti-cancer activities. PMID:12224631

  7. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  8. ESTROGEN RECEPTORS AND THE REGULATION OF NEURAL STRESS RESPONSES

    PubMed Central

    Handa, Robert J.; Mani, Shaila K.; Uht, Rosalie M.

    2012-01-01

    It is now well established that estrogens can influence a panoply of physiological and behavioral functions. In many instances, the effects of estrogens are mediated by the ‘classical’ actions of two different estrogen receptors (ER), alpha or beta. Estrogen receptor alpha and beta appear to have opposing actions in the control of stress responses and modulate different neurotransmitter or neuropeptide systems. Studies elucidating the molecular mechanisms for such regulatory processes are currently in progress. Furthermore, the use of ERalpha and ERbeta knockout mouse lines has allowed the exploration of the importance of these receptors in behavioral responses such as anxiety-like and depressive-like behaviors. This review examines some of the recent advances in our knowledge of hormonal control of neuroendocrine and behavioral responses to stress and underscore the importance of these receptors as future therapeutic targets for control of stress-related signaling pathways. PMID:22538291

  9. Modulation of thymosin beta 4 by estrogen.

    PubMed

    Suh, B Y; Naylor, P H; Goldstein, A L; Rebar, R W

    1985-02-15

    The endocrine thymus produces several hormone-like peptides (generically termed thymosins) which control development of the thymic-dependent lymphoid system and participate in the process of immune regulation. In addition, recent literature supports the hypothesis that gonadal steroids in general and estrogens in particular affect the immune system. To determine whether steroid hormones modulate secretion of thymic peptides, basal concentrations of thymosins alpha 1 and beta 4 were determined by radioimmunoassay in morning blood samples from 87 women in various clinical states. Basal concentrations of thymosin alpha 1 were similar in all women sampled. Basal levels of thymosin beta 4 were similar in normal women during the early follicular phase, women with premature ovarian failure, postmenopausal women not receiving estrogen, and individuals with gonadal dysgenesis. However, the marked variability of basal levels in premature ovarian failure and in postmenopausal women suggests that these groups are quite heterogeneous. Thymosin beta 4 concentrations were reduced in castrated women not receiving estrogen and were decreased more in both postmenopausal women and castrated women who were on chronic estrogen therapy. These data suggest that estrogens can modulate the circulating levels of thymosin beta 4 but not of thymosin alpha 1. We do not yet know whether sex steroids modulate secretion of other thymic peptides. PMID:2983555

  10. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  11. Functional characterization of estrogen receptor subtypes, ER{alpha} and ER{beta}, mediating vitellogenin production in the liver of rainbow trout

    SciTech Connect

    Leanos-Castaneda, Olga Kraak, Glen van der

    2007-10-15

    The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ER{alpha} and ER{beta}, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ER{alpha} selective agonist, methyl-piperidino-pyrazole (MPP) an ER{alpha} selective antagonist, and diarylpropionitrile (DPN) an ER{beta} selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbow trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [{sup 3}H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ER{alpha} could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ER{beta}. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ER{alpha}. On the other hand, once blocked ER{alpha} with MPP, the only manifestation of agonist activity of estradiol would be achieved via ER{beta}. In conclusion, the present results indicate that vitellogenin production is

  12. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats

    PubMed Central

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  13. Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats.

    PubMed

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt

    2016-01-01

    Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERβ, and G protein-coupled ER). Selective ERβ agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERβ agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERβ-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for

  14. Estrogen receptor beta and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading

    PubMed Central

    2014-01-01

    Background Joint diseases such as osteoarthritis (OA) predominantly afflict post-menopausal women, suggesting a pertinent role for female hormones. Estrogen receptor beta (ER-β) has been detected in connective tissues of the knee joint suggesting that these tissues are responsive to the hormone estrogen. Matrix metalloproteinase-1 (MMP-1) activity contributes to cartilage degradation, a key factor leading to OA development in synovial joints. Two polymorphic forms of MMP-1 exist due to a deletion/insertion of the guanine residue in the promoter, and the 2G allelic variant of MMP-1 exhibits more activity than the 1G allele. Previous studies have demonstrated that the polymorphic forms of the human MMP-1 are influenced by the modulating effects of estrogen receptor isoforms. In addition to hormonal influences, physiological factors such as altered mechanical loading are also contributory features of OA. In the present study, the combined influence of biomechanical and hormonal variables on the activity of MMP-1 isoforms was evaluated. We hypothesized that the combined effects of ER-β and sheer stress will differentially activate the two allelic forms of MMP-1 in a hormone-independent manner. Methods HIG-82 synoviocytes were transiently transfected with 1G or 2G alleles (±) ER-β and subjected to either shear or equibiaxial stress. Next, 1G/2G promoter activity was measured to determine the combined influence of physiological stimuli. Truncated ER-β constructs were used to determine the importance of different domains of ER-β on 1G/2G activation. Results The 2G allele exhibited a constitutively higher activity than the 1G allele, which was further increased when the transfected cells were subject to shear stress, but not equibiaxial stress. Moreover, the combination of ER-β and shear stress further increased the activity levels of the 1G/2G allelic variants. Additionally, select AF-2 truncated ER-β variants led to increased activity levels for the 2G allele

  15. Differential expression of estrogen-related receptors beta and gamma (ERRbeta and ERRgamma) and their clinical significance in human prostate cancer.

    PubMed

    Fujimura, Tetsuya; Takahashi, Satoru; Urano, Tomohiko; Ijichi, Nobuhiro; Ikeda, Kazuhiro; Kumagai, Jinpei; Murata, Taro; Takayama, Kenichi; Horie-Inoue, Kuniko; Ouchi, Yasuyoshi; Muramatsu, Masami; Homma, Yukio; Inoue, Satoshi

    2010-03-01

    Estrogen-related receptor (ERR) is a nuclear receptor that modulates the estrogen-signaling pathway. Here, we investigated the expression of both ERRbeta and ERRgamma in human prostate tissues. Using original rabbit polyclonal anti-ERRbeta and anti-ERRgamma antibodies, the expression of ERRbeta and ERRgamma was evaluated by immunohistochemical analysis of cancerous lesions (n = 107) and benign foci (n = 92), obtained by radical prostatectomy. Stained slides were evaluated for the proportion of immunoreactive cells and their staining intensity. Total immunoreactivity scores (IR scores; range, 0-8) were calculated as the sum of the proportion and intensity scores. The relationship between the clinicopathological characteristics of the patients and the expression of the three ERRs (ERRalpha, ERR beta, and ERR gamma) was evaluated. IR scores for ERRbeta and ERRgamma were significantly lower in cancerous lesions than that in benign foci (P < 0.0001, for both). Clinicopathological analyses revealed that the patients with low ERRgamma IR scores (

  16. Metabolic Actions of Estrogen Receptor Beta (ERβ) are Mediated by a Negative Cross-Talk with PPARγ

    PubMed Central

    Foryst-Ludwig, Anna; Clemenz, Markus; Hohmann, Stephan; Hartge, Martin; Sprang, Christiane; Frost, Nikolaj; Krikov, Maxim; Bhanot, Sanjay; Barros, Rodrigo; Morani, Andrea; Gustafsson, Jan-Åke; Unger, Thomas; Kintscher, Ulrich

    2008-01-01

    Estrogen receptors (ER) are important regulators of metabolic diseases such as obesity and insulin resistance (IR). While ERα seems to have a protective role in such diseases, the function of ERβ is not clear. To characterize the metabolic function of ERβ, we investigated its molecular interaction with a master regulator of insulin signaling/glucose metabolism, the PPARγ, in vitro and in high-fat diet (HFD)-fed ERβ -/- mice (βERKO) mice. Our in vitro experiments showed that ERβ inhibits ligand-mediated PPARγ-transcriptional activity. That resulted in a blockade of PPARγ-induced adipocytic gene expression and in decreased adipogenesis. Overexpression of nuclear coactivators such as SRC1 and TIF2 prevented the ERβ-mediated inhibition of PPARγ activity. Consistent with the in vitro data, we observed increased PPARγ activity in gonadal fat from HFD-fed βERKO mice. In consonance with enhanced PPARγ activation, HFD-fed βERKO mice showed increased body weight gain and fat mass in the presence of improved insulin sensitivity. To directly demonstrate the role of PPARγ in HFD-fed βERKO mice, PPARγ signaling was disrupted by PPARγ antisense oligonucleotide (ASO). Blockade of adipose PPARγ by ASO reversed the phenotype of βERKO mice with an impairment of insulin sensitization and glucose tolerance. Finally, binding of SRC1 and TIF2 to the PPARγ-regulated adiponectin promoter was enhanced in gonadal fat from βERKO mice indicating that the absence of ERβ in adipose tissue results in exaggerated coactivator binding to a PPARγ target promoter. Collectively, our data provide the first evidence that ERβ-deficiency protects against diet-induced IR and glucose intolerance which involves an augmented PPARγ signaling in adipose tissue. Moreover, our data suggest that the coactivators SRC1 and TIF2 are involved in this interaction. Impairment of insulin and glucose metabolism by ERβ may have significant implications for our understanding of hormone receptor

  17. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation

    PubMed Central

    Tsuda, Mumeko C.; Yamaguchi, Naoko; Nakata, Mariko; Ogawa, Sonoko

    2014-01-01

    Maternal separation (MS) is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER) β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO) mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT) mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h) from postnatal day 1–14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression. PMID:25228857

  18. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D). PMID:27197110

  19. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study

    PubMed Central

    Novelli, Flavia; Milella, Michele; Melucci, Elisa; Di Benedetto, Anna; Sperduti, Isabella; Perrone-Donnorso, Raffaele; Perracchio, Letizia; Venturo, Irene; Nisticò, Cecilia; Fabi, Alessandra; Buglioni, Simonetta; Natali, Pier Giorgio; Mottolese, Marcella

    2008-01-01

    Introduction Estrogen receptor-alpha (ER-α) and progesterone receptor (PgR) are consolidated predictors of response to hormonal therapy (HT). In contrast, little information regarding the role of estrogen receptor-beta (ER-β) in various breast cancer risk groups treated with different therapeutic regimens is available. In particular, there are no data concerning ER-β distribution within the novel molecular breast cancer subtypes luminal A (LA) and luminal B (LB), HER2 (HS), and triple-negative (TN). Methods We conducted an observational prospective study using immunohistochemistry to evaluate ER-β expression in 936 breast carcinomas. Associations with conventional biopathological factors and with molecular subtypes were analyzed by multiple correspondence analysis (MCA), while univariate and multivariate Cox regression analysis and classification and regression tree analysis were applied to determine the impact of ER-β on disease-free survival in the 728 patients with complete follow-up data. Results ER-β evenly distributes (55.5%) across the four molecular breast cancer subtypes, confirming the lack of correlation between ER-β and classical prognosticators. However, the relationships among the biopathological factors, analyzed by MCA, showed that ER-β positivity is located in the quadrant containing more aggressive phenotypes such as HER2 and TN or ER-α/PgR/Bcl2- tumors. Kaplan-Meier curves and Cox regression analysis identified ER-β as a significant discriminating factor for disease-free survival both in the node-negative LA (P = 0.02) subgroup, where it is predictive of response to HT, and in the node-positive LB (P = 0.04) group, where, in association with PgR negativity, it conveys a higher risk of relapse. Conclusion Our data indicated that, in contrast to node-negative patients, in node-positive breast cancer patients, ER-β positivity appears to be a biomarker related to a more aggressive clinical course. In this context, further investigations

  20. Seasonal expression of androgen receptor, aromatase, and estrogen receptor alpha and beta in the testis of the wild ground squirrel (Citellus dauricus Brandt).

    PubMed

    Li, Q; Zhang, F; Zhang, S; Sheng, X; Han, X; Weng, Q; Yuan, Z

    2015-01-01

    The aim of this study was to investigate the seasonal expression of androgen receptor (AR), estrogen receptors α and β (ERα and ERβ) and aromatase cytochrome P450 (P450arom) mRNA and protein by real-time PCR and immunohistochemistry in the wild ground squirrel (WGS) testes. Histologically, all types of spermatogenic cells including mature spermatozoa were identified in the breeding season (April), while spermatogonia and primary spermatocytes were observed in the nonbreeding season (June), and spermatogonia, primary spermatocytes and secondary spermatocytes were found in pre-hibernation (September). AR was present in Leydig cells, peritubular myoid cells and Sertoli cells in the breeding season and pre-hibernation with more intense staining in the breeding season, whereas AR was only found in Leydig cells in the nonbreeding season; P450arom was expressed in Leydig cells, Sertoli cells and germ cells during the breeding season, whereas P450arom was found in Leydig cells and Sertoli cells during pre-hibernation, but P450arom was not present in the nonbreeding season; stronger immunohistochemical signal for ERα was present in Sertoli cells and Leydig cells during the breeding season; ERβ was only expressed in Leydig cells of the breeding season. Consistent with the immunohistochemical results, the mean mRNA level of AR, P450arom, ERα and ERβ were higher in the testes of the breeding season when compared to pre-hibernation and the nonbreeding season. These results suggested that the seasonal changes in spermatogenesis and testicular recrudescence and regression process in WGSs might be correlated with expression levels of AR, P450arom and ERs, and that estrogen and androgen may play an important autocrine/paracrine role to regulate seasonal testicular function. PMID:25820559

  1. Expression of Estrogen Receptor Beta Predicts Oncologic Outcome of pT3 Upper Urinary Tract Urothelial Carcinoma Better Than Aggressive Pathological Features

    PubMed Central

    Luo, Hao Lun; Sung, Ming Tse; Tsai, Eing Mei; Lin, Chang Shen; Lee, Nai Lun; Chung, Yueh-Hua; Chiang, Po Hui

    2016-01-01

    Upper urinary tract urothelial carcinoma (UT-UC) is rare and treatment options or prognostic markers are limited. There is increasing evidence indicating that urothelial carcinoma may be an endocrine-related cancer. The aim of this study was to analyze the prognostic effect of estrogen receptor beta (ERβ) on the outcome of UT-UC. From 2005 to 2012, this study included 105 patients with pT3 UT-UC. Perioperative factors, pathological features, and ERβ immunostaining were reviewed and prognostic effects were examined by multivariate analysis. This study divided patients into either the ERβ-high (n = 52) or ERβ-low (n = 53) group and analyzed their oncologic outcomes. All pathological features except infiltrating tumor architecture (significantly higher incidence in ERβ-low group, p = 0.004) are symmetric in both groups. Low ERβ expression was significantly correlated with local recurrence and distant metastasis in univariate analysis (p = 0.035 and 0.004, respectively) and multivariate analysis (p = 0.05 and 0.008, respectively). Cell line study also proved that knock down of ERβ cause less UTUC proliferation and migration. In addition, ERβ agonist also enhanced the cytotoxic and migration inhibition effect of cisplatin and ERβ antagonist cause the UTUC cell more resistant to cisplatin. This result may help identify patients in need of adjuvant therapy or develop potential targeted therapy. PMID:27052470

  2. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  3. The Naturally Occurring Luteinizing Hormone Surge Is Diminished in Mice Lacking Estrogen Receptor Beta in the Ovary1

    PubMed Central

    Jayes, Friederike L.; Burns, Katherine A.; Rodriguez, Karina F.; Kissling, Grace E.; Korach, Kenneth S.

    2013-01-01

    ABSTRACT Female ESR2-null mice (betaERKO) display defects in ovarian function and are subfertile. Follicular maturation is impaired and explains smaller litters, but betaERKO also produce fewer litters, which may be partially due to inadequate ovulatory signals. To test this, the amplitude and timing of the naturally occurring luteinizing hormone (LH) surge was measured in individual intact betaERKO and wild-type (WT) mice. Vaginal cytology was evaluated daily, and blood samples were taken from mice in proestrus. The amplitude of the LH surge was severely blunted in betaERKO mice compared to WT, but pituitary LH levels revealed no differences. The betaERKO mice did not produce a preovulatory estradiol surge. To determine if the smaller LH surges and the reduced number of litters in betaERKO were due to the lack of ESR2 in the hypothalamic-pituitary axis or due to the absence of ESR2 in the ovary, ovaries were transplanted from WT into betaERKO mice and vice versa. The size of the LH surge was reduced only in mice lacking ESR2 within the ovary, and these mice had fewer litters. Fertility and size of the LH surge were rescued in betaERKO mice receiving a WT ovary. These data provide the first experimental evidence that the LH surge is impaired in betaERKO females and may contribute to their reduced fertility. ESR2 is not necessary within the pituitary and hypothalamus for the generation of a normal LH surge and for normal fertility, but ESR2 is essential within the ovary to provide proper signals. PMID:24337314

  4. Estrogen receptor beta (ERβ) mediates expression of β-catenin and proliferation in prostate cancer cell line PC-3.

    PubMed

    Lombardi, Ana Paola G; Pisolato, Raisa; Vicente, Carolina M; Lazari, Maria Fatima M; Lucas, Thaís F G; Porto, Catarina S

    2016-07-15

    The aim of the present study was to characterize the mechanism underlying estrogen effects on the androgen-independent prostate cancer cell line PC-3. 17β-estradiol and the ERβ-selective agonist DPN, but not the ERα-selective agonist PPT, increased the incorporation of [methyl-(3)H]thymidine and the expression of Cyclin D2, suggesting that ERβ mediates the proliferative effect of estrogen on PC-3 cells. In addition, upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by 17β-estradiol and DPN were blocked by the ERβ-selective antagonist PHTPP in PC-3 cells. Upregulation of Cyclin D2 and incorporation of [methyl-(3)H]thymidine induced by DPN were also blocked by PKF118-310, a compound that disrupts β-catenin-TCF (T-cell-specific transcription factor) complex, suggesting the involvement of β-catenin in the estradiol effects in PC-3 cells. A diffuse immunostaining for non-phosphorylated β-catenin was detected in the cytoplasm of PC-3 cells. Low levels of non-phosphorylated β-catenin immunostaining were also detected near the plasma membrane and in nuclei. Treatment of PC-3 cells with 17β-estradiol or DPN markedly increased non-phosphorylated β-catenin expression. These effects were blocked by pretreatment with the ERβ-selective antagonist PHTPP, PI3K inhibitor Wortmannin or AKT inhibitor MK-2206, indicating that ERβ-PI3K/AKT mediates non-phosphorylated β-catenin expression. Cycloheximide blocked the DPN-induced upregulation of non-phosphorylated β-catenin, suggesting de novo synthesis of this protein. In conclusion, these results suggest that estrogen may play a role in androgen-independent prostate cancer cell proliferation through a novel pathway, involving ERβ-mediated activation of β-catenin. PMID:27107935

  5. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    SciTech Connect

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.; Katamreddy, Subba R.; Navas III, Frank; Miller, Aaron B.; Williams, Shawn P.; Gray, David W.; Orband-Miller, Lisa A.; Shearin, Jean; Heyer, Dennis

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  6. Expression of estrogen and progesterone receptors in astrocytomas: a literature review.

    PubMed

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde-Junior, Airton Mendes; Barros-Oliveira, Maria da Conceição; Sousa, Emerson Brandão; Barros, Lorena da Rocha; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-08-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: "estrogen receptor beta" OR "estrogen receptor alpha" OR "estrogen receptor antagonists" OR "progesterone receptors" OR "astrocytoma" OR "glioma" OR "glioblastoma". Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  7. Reversal of fortune: estrogen receptor-β in endometriosis.

    PubMed

    Simmen, Rosalia C M; Kelley, Angela S

    2016-08-01

    Enhanced inflammation and reduced apoptosis sustain the growth of endometriotic lesions. Alterations in the expression of estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ) accompany the conversion of resident endometrial cells within the normal uterine environment to ectopic lesions located in extrauterine sites. Recent studies highlighted in this focused review linked ERβ to dysregulation of apoptotic and inflammatory networks involving novel interacting partners in endometriosis. The elucidation of these nongenomic actions of ERβ using human cells and mouse models is an important step in understanding key regulatory pathways that are disrupted leading to disease establishment and progression. PMID:27272520

  8. Differential estrogen receptor binding of estrogenic substances: a species comparison.

    PubMed

    Matthews, J; Celius, T; Halgren, R; Zacharewski, T

    2000-11-15

    The study investigated the ability of 34 natural and synthetic chemicals to compete with [3H]17beta-estradiol (E2) for binding to bacterially expressed glutathione-S-transferase (GST)-estrogen receptors (ER) fusion proteins from five different species. Fusion proteins consisted of the ER D, E and F domains of human alpha (GST-hERalphadef), mouse alpha (GST-mERalphadef), chicken (GST-cERdef), green anole (GST-aERdef) and rainbow trout ERs (GST-rtERdef). All five fusion proteins displayed high affinity for E2 with dissociation constants (K(d)) ranging from 0.3 to 0.9 nM. Although, the fusion proteins exhibited similar binding preferences and binding affinities for many of the chemicals, several differences were observed. For example, alpha-zearalenol bound with greater affinity to GST-rtERdef than E2, which was in contrast to other GST-ERdef fusion proteins examined. Coumestrol, genistein and naringenin bound with higher affinity to the GST-aERdef, than to the other GST-ERdef fusion proteins. Many of the industrial chemicals examined preferentially bound to GST-rtERdef. Bisphenol A, 4-t-octylphenol and o,p' DDT bound with approximately a ten-fold greater affinity to GST-rtERdef than to other GST-ERdefs. Methoxychlor, p,p'-DDT, o,p'-DDE, p,p'-DDE, alpha-endosulfan and dieldrin weakly bound to the ERs from the human, mouse, chicken and green anole. In contrast, these compounds completely displaced [3H]E2 from GST-rtERdef. These results demonstrate that ERs from different species exhibit differential ligand preferences and relative binding affinities for estrogenic compounds and that these differences may be due to the variability in the amino acid sequence within their respective ER ligand binding domains. PMID:11162928

  9. Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats.

    PubMed

    Briski, Karen P; Shrestha, Prem K

    2016-09-01

    Hindbrain dorsal vagal complex A2 noradrenergic signaling represses the pre-ovulatory luteinizing hormone (LH) surge in response to energy deficiency. Insulin-induced hypoglycemia augments A2 neuron adenosine 5'-monophosphate-activated protein kinase (AMPK) activity and estrogen receptor-beta (ERβ) expression, coincident with LH surge suppression. We hypothesized that ERβ is critical for hypoglycemia-associated patterns of LH secretion and norepinephrine (NE) activity in key reproduction-relevant forebrain structures. The neural mechanisms responsible for tight coupling of systemic energy balance and procreation remain unclear; here, we investigated whether ERβ-dependent hindbrain signals also control glucose counter-regulatory responses to hypoglycemia. Gonadal steroid-primed ovariectomized female rats were pretreated by caudal fourth ventricular administration of the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP) or vehicle before insulin injection at LH surge onset. Western blot analysis of laser-microdissected A2 neurons revealed hypoglycemic intensification of AMPK activity and dopamine-β-hydroxylase protein expression; the latter response was attenuated by PHTPP pretreatment. PHTPP regularized LH release, but not preoptic GnRH-I precursor protein expression in insulin-injected rats, and reversed hypoglycemic stimulation of glucagon and corticosterone secretion. Hypoglycemia caused PHTPP-reversible changes in NE and prepro-kisspeptin protein content in the hypothalamic arcuate (ARH), but not anteroventral periventricular nucleus. Results provide novel evidence for ERβ-dependent caudal hindbrain regulation of LH and counter-regulatory hormone secretion during hypoglycemia. Observed inhibition of LH likely involves mechanisms at the axon terminal that impede GnRH neurotransmission. Data also show that caudal hindbrain ERβ exerts site-specific control of NE activity in forebrain projection sites during

  10. Hepatic estrogen receptor and plasma 17{beta}-estradiol concentrations as biomarkers of 2,3,7,8-TCDD exposure in avian hatchlings

    SciTech Connect

    Janz, D.M.; Bellward, G.D.

    1995-12-31

    The authors have been investigating the sensitivity of various toxicologically relevant endpoints as environmental biomarkers in avian hatchlings exposed in ovo to 2,3,7,8-TCDD. Potential biomarkers included various endocrine endpoints such as plasma 17{beta}-estradiol (E{sub 2}), hepatic estrogen receptor (ER) affinities and concentrations, and plasma thyroid hormones, which were compared to hepatic ethoxyresorufin O-deethylase (EROD) induction. The animal models used were domestic chickens and pigeons, and great blue herons. An experiment conducted in pigeon hatchlings compared ``early`` (embryonic day 4; E4) vs. ``late`` (E14) in ovo exposure to 1 {micro}g/kg and 3 {micro}g/kg of TCDD, respectively. Birds were sacrificed on day of hatch (H) and day 7 after hatch (D7). In the late exposure experiment, plasma E{sub 2} concentrations were reduced at H and elevated at D7 in the TCDD-exposed birds (p < 0.05). Hepatic ER concentrations were elevated at H (p < 0.01). Although EROD was half-maximally induced at H and D7 in the early exposure experiment in pigeons, there was no effect of TCDD treatment on E, or ER levels. The nominal TCDD concentration in these pigeons (1 {micro}g/kg egg) was within the range observed in wild piscivorous bird eggs collected from aquatic systems contaminated with TCDD and related chemicals (approx. 0.5--2 ng TEQ/g egg). In herons exposed to 2 {micro}g/kg of TCDD at the midpoint of incubation, hepatic ER affinities (Kd) and concentrations (Bmax) were elevated in treated birds at H (p < 0.05); however there was no effect on plasma E, levels. Liver [{sup 3}H]-TCDD concentrations were 11.3 {+-} 0.8 ng/g at H, and 0.8 {+-} 0.1 ng/g at D7, representing 9.9% and 4.9% of the nominal TCDD dose, respectively.

  11. An alternate pathway for androgen regulation of brain function: Activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5α-androstane 3β, 17β diol

    PubMed Central

    Handa, Robert J.; Pak, Toni R.; Kudwa, Andrea E.; Lund, Trent D.; Hinds, Laura

    2008-01-01

    The complexity of gonadal steroid hormone actions is reflected in their broad and diverse effects on a host of integrated systems including reproductive physiology, sexual behavior, stress responses, immune function, cognition, and neural protection. Understanding the specific contributions of androgens and estrogens in neurons that mediate these important biological processes is central to the study of neuroendocrinology. Of particular interest in recent years has been the biological role of androgen metabolites. The goal of this review is to highlight recent data delineating the specific brain targets for the dihydrotestosterone metabolite, 5α-androstane, 3β, 17β-diol (3β-Diol). Studies using both in vitro and in vivo approaches provide compelling evidence that 3β-Diol is an important modulator of the stress response mediated by the hypothalmo-pituitary-adrenal axis. Further, the actions of 3β-Diol are mediated by estrogen receptors, and not androgen receptors, often through a canonical estrogen response element in the promoter of a given target gene. These novel findings compel us to re-evaluate the interpretation of past studies and the design of future experiments aimed at elucidating the specific effects of androgen receptor signaling pathways. PMID:18067894

  12. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  13. Evidence for estrogen receptor expression in germ cell and somatic cell subpopulations in the ovary of the newly hatched chicken.

    PubMed

    Méndez, M C; Chávez, B; Echeverría, O; Vilchis, F; Vázquez Nin, G H; Pedernera, E

    1999-10-01

    Estrogens are involved in the gonadal morphogenesis of vertebrates, and almost all hormonal effects of 17beta-estradiol are mediated through specific receptors. At the time of sexual differentiation in the chicken, or even before, there is evidence of the presence of estrogen receptors and the secretion of 17beta-estradiol. However, no information is available regarding the cellular types that express the estrogen receptor in the immature chick ovary. The present study analyzes estrogen receptor expression in germ and somatic cells of the ovary in the newly hatched chicken. Highly purified cell subpopulations of germ and somatic cells were evaluated for specific 17beta-estradiol nuclear binding. In addition, the estrogen receptor was localized at the ultrastructural level by the immunogold technique. Finally, reverse transcription and polymerase chain reaction procedures detected a steady-state level of mRNA for the estrogen receptor. Somatic cells including typical steroidogenic cells showed specific 17beta-estradiol nuclear binding, displayed the estrogen receptor, and possessed estrogen receptor transcripts. The same result was observed in primary oocytes, together with the ultrastructural localization of estrogen receptor in extended chromatin filaments. Our experimental data support the hypothesis that estrogens are involved in the function of somatic and germ cells subpopulations in the immature chicken ovary. PMID:10555548

  14. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  15. Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study

    PubMed Central

    Bálint, Flóra; Liposits, Zsolt; Farkas, Imre

    2016-01-01

    the effect of E2 whereas AM251 eliminated the action of DPN on the mPSCs. These data suggest the involvement of the retrograde endocannabinoid mechanism in the rapid direct effect of E2. These results collectively indicate that estrogen receptor beta and 2-AG/CB1 signaling mechanisms are coupled and play an important role in the mediation of the negative estradiol feedback on GnRH neurons in acute slice preparation obtained from intact, metestrous mice. PMID:27065803

  16. Estrogen and estrogen receptor alpha promotes malignancy and osteoblastic tumorigenesis in prostate cancer

    PubMed Central

    Mishra, Sweta; Tai, Qin; Gu, Xiang; Schmitz, James; Poullard, Ashley; Fajardo, Roberto J.; Mahalingam, Devalingam; Chen, Xiaodong; Zhu, Xueqiong; Sun, Lu-Zhe

    2015-01-01

    The role of estrogen signaling in regulating prostate tumorigenesis is relatively underexplored. Although, an increasing body of evidence has linked estrogen receptor beta (ERβ) to prostate cancer, the function of estrogen receptor alpha (ERα) in prostate cancer is not very well studied. We have discovered a novel role of ERα in the pathogenesis of prostate tumors. Here, we show that prostate cancer cells express ERα and estrogen induces oncogenic properties in prostate cancer cells through ERα. Importantly, ERα knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ERα with ICI 182,780 inhibited osteoblastic lesion formation and lung metastasis in vivo. Co-culture of pre-osteoblasts with cancer cells showed a significant induction of osteogenic markers in the pre-osteoblasts, which was attenuated by knockdown of ERα in cancer cells suggesting that estrogen/ERα signaling promotes crosstalk between cancer and osteoblastic progenitors to stimulate osteoblastic tumorigenesis. These results suggest that ERα expression in prostate cancer cells is essential for osteoblastic lesion formation and lung metastasis. Thus, inhibition of ERα signaling in prostate cancer cells may be a novel therapeutic strategy to inhibit the osteoblastic lesion development as well as lung metastasis in patients with advanced prostate cancer. PMID:26575018

  17. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    SciTech Connect

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoforms with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  18. Purified estrogen receptor enhances in vitro transcription.

    PubMed

    Nigro, V; Molinari, A M; Armetta, I; de Falco, A; Abbondanza, C; Medici, N; Puca, G A

    1992-07-31

    An in vitro transcription system was developed to investigate the mechanisms of gene regulation by the estrogen receptor (ER). ER purified from calf uterus was highly active in enhancing RNA transcription from a template DNA containing estrogen response elements (EREs) upstream from a minimal promoter. Under the conditions employed, no addition of tissue specific factors was required and both estrogen or antiestrogens were ineffective. The stimulation of transcription correlated with the copy number of EREs in the template. The addition of competitor ERE oligonucleotides specifically inhibited the ER-induced transcription. We suggest that the ER may be involved in the formation of the stable initiation complex. PMID:1497666

  19. Synthesis and estrogen receptor affinity of a 4-hydroxytamoxifen-labeled ligand for diagnostic imaging.

    PubMed

    Lashley, Matthew R; Niedzinski, Edmund J; Rogers, Jane M; Denison, Michael S; Nantz, Michael H

    2002-12-01

    A 10-step synthesis of a novel 4-hydroxytamoxifen-DTPA ligand (HOTam-DTPA) is reported. Tamoxifen and its primary metabolite 4-hydroxytamoxifen are common estrogen receptor ligands. Consequently, tamoxifen has found utility as the targeting component of various diagnostic agents for selective imaging of estrogen receptor-rich tissue, specifically breast cancer. An L-aspartic acid-derived DTPA analogue was attached to the ethyl side chain of 4-hydroxy-tamoxifen using N,N'-dimethylethylenediamine as a hydrophilic linker. A competitve estrogen receptor binding assay using [3H]-17beta-estradiol was performed to determine the effect of the ethyl side chain modification on estrogen receptor affinity. The results show that while the relative affinity of HOTam-DTPA for the estrogen receptor is approximately 10-fold lower than that of tamoxifen, it still remains a potent ligand at relatively low concentrations. PMID:12413861

  20. Temperature dependence of estrogen binding: importance of a subzone in the ligand binding domain of a novel piscine estrogen receptor.

    PubMed

    Tan, N S; Frecer, V; Lam, T J; Ding, J L

    1999-11-11

    The full length estrogen receptor from Oreochromis aureus (OaER) was cloned and expressed in vitro and in vivo as a functional transcription factor. Amino acid residues involved in the thermal stability of the receptor are located at/near subzones beta1 and beta3, which are highly conserved in other non-piscine species but not in OaER. Hormone binding studies, however, indicate that OaER is thermally stable but exhibited a approximately 3-fold reduced affinity for estrogen at elevated temperatures. Transfection of OaER into various cell lines cultured at different temperatures displayed a significant estrogen dose-response shift compared with that of chicken ER (cER). At 37 degrees C, OaER requires approximately 80-fold more estrogen to achieve half-maximal stimulation of CAT. Lowering of the incubation temperature from 37 degrees C to 25 degrees C or 20 degrees C resulted in a 4-fold increase in its affinity for estrogen. The thermally deficient transactivation of OaER at temperatures above 25 degrees C was fully prevented by high levels of estrogen. Thus, compared to cER, the OaER exhibits reduced affinity for estrogen at elevated temperature as reflected in its deficient transactivation capability. Amino acid replacements of OaER beta3 subzones with corresponding amino acids from cER could partially rescue this temperature sensitivity. The three-dimensional structure of the OaER ligand binding domain (LBD) was modelled based on conformational similarity and sequence homology with human RXRalpha apo, RARgamma holo and ERalpha LBDs. Unliganded and 17beta-estradiol-liganded OaER LBD retained the overall folding pattern of the nuclear receptor LBDs. The residues at/near the subzone beta3 of the LBD constitute the central core of OaER structure. Thus, amino acid alteration at this region potentially alters the structure and consequently its temperature-dependent ligand binding properties. PMID:10559464

  1. Estrogen receptor expert system overview and examples

    EPA Science Inventory

    The estrogen receptor expert system (ERES) is a rule-based system developed to prioritize chemicals based upon their potential for binding to the ER. The ERES was initially developed to predict ER affinity of chemicals from two specific EPA chemical inventories, antimicrobial pe...

  2. Estrogen receptor-beta mediates the protective effects of aromatase induction in the MMTV-Her-2/neu x aromatase double transgenic mice.

    PubMed

    Nair, Hareesh B; Perla, Rao P; Kirma, Nameer B; Krishnegowda, Naveen K; Ganapathy, Manonmani; Rajhans, Rajib; Nair, Sujit S; Saikumar, Pothana; Vadlamudi, Ratna K; Tekmal, Rajeshwar Rao

    2012-04-01

    Breast cancers amplified for the tyrosine kinase receptor Her-2/neu constitute ~30% of advanced breast cancer cases, and are characterized by hormone independence and aggressive growth, implicating this pathway in breast oncogenesis. The induction of Her-2/neu leads to tumor development in 60% of transgenic mice. We have previously examined the effects of estrogen in the MMTV-Her-2/neu background by generating the MMTV-Her-2/neu x aromatase double transgenic mouse strain. MMTV-Her-2/neu x aromatase mice developed fewer mammary tumors than the Her-2/neu parental strain. Our present data show the induction of several estrogen-related genes, including the tumor suppressors BRCA1 and p53, and a decrease in several angiogenic factors. The phosphorylated forms of MAPK p42/44 and AKT were lower in the MMTV-Her-2/neu x aromatase double transgenic mice compared to the MMTV-Her-2/neu parental strain; conversely, phospho-p38 levels were higher in the double transgenic strain. The ERβ-selective antagonist THC reversed these changes. The regulation of these factors by ERβ was confirmed in clones of MCF7 breast cancer cells overexpressing Her-2/neu in combination with ERβ, suggesting that ERβ may play a direct role in regulating MAPK and AKT pathways. In summary, the data suggest that ERβ may play a major role in decreasing tumorigenesis and that it may affect breast cancer cell proliferation and survival by altering MAPK and AKT activation as well as modulation of tumor suppressor and angiogenesis factors. Treatment with selective ERβ agonist may provide therapeutic advantages for the treatment and prevention of breast cancer. PMID:22006184

  3. Estradiol coupling to human monocyte nitric oxide release is dependent on intracellular calcium transients: evidence for an estrogen surface receptor.

    PubMed

    Stefano, G B; Prevot, V; Beauvillain, J C; Fimiani, C; Welters, I; Cadet, P; Breton, C; Pestel, J; Salzet, M; Bilfinger, T V

    1999-10-01

    We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium. PMID:10490972

  4. Deoxybenzoins are novel potent selective estrogen receptor modulators.

    PubMed

    Papoutsi, Zoi; Kassi, Eva; Fokialakis, Nikolas; Mitakou, Sofia; Lambrinidis, George; Mikros, Emmanuel; Moutsatsou, Paraskevi

    2007-09-01

    Deoxybenzoins are plant compounds with similar structure to isoflavones. In this study, we evaluated the ability of two synthesized deoxybenzoins (compound 1 and compound 2) (a) to influence the activity of the estrogen receptor subtypes ERalpha and ERbeta in HeLa cells co-transfected with an estrogen response element-driven luciferase reporter gene and ERalpha- or ERbeta-expression vectors, (b) to modulate the IGFBP-3 and pS2 protein in MCF-7 breast cancer cells, (c) to induce mineralization of KS483 osteoblasts and (d) to affect the cell viability of endometrial (Ishikawa) and breast (MCF-7, MDA-MB-231) cancer cells. Docking and binding energy calculations were performed using the mixed Monte Carlo/Low Mode search method (Macromodel 6.5). Compound 1 displayed significant estrogenic activity via ERbeta but no activity via ERalpha. Compound 2 was an estrogen-agonist via ERalpha and antagonist via ERbeta. Both compounds increased, like the pure antiestrogen ICI182780, the IGFBP-3 levels. Compound 2 induced, like 17beta-estradiol, significant mineralization in osteoblasts. The cell viability of Ishikawa cells was unchanged in the presence of either compound. Compound 1 increased MCF-7 cell viability consistently with an increase in pS2 levels, whereas compound 2 inhibited the cell viability. Molecular modeling confirmed the agonistic or antagonistic behaviour of compound 2 via ER subtypes. Compound 2, being an agonist in osteoblasts, an antagonist in breast cancer cells, with no estrogenic effects in endometrial cancer cells, makes it a potential selective estrogen receptor modulator and a choice for hormone replacement therapy. PMID:17659312

  5. Estrogen receptor transcription and transactivation: Estrogen receptor knockout mice: what their phenotypes reveal about mechanisms of estrogen action.

    PubMed

    Curtis Hewitt, S; Couse, J F; Korach, K S

    2000-01-01

    Natural, synthetic and environmental estrogens have numerous effects on the development and physiology of mammals. Estrogen is primarily known for its role in the development and functioning of the female reproductive system. However, roles for estrogen in male fertility, bone, the circulatory system and immune system have been established by clinical observations regarding sex differences in pathologies, as well as observations following menopause or castration. The primary mechanism of estrogen action is via binding and modulation of activity of the estrogen receptors (ERs), which are ligand-dependent nuclear transcription factors. ERs are found in highest levels in female tissues critical to reproduction, including the ovaries, uterus, cervix, mammary glands and pituitary gland. Since other affected tissues have extremely low levels of ER, indirect effects of estrogen, for example induction of pituitary hormones that affect the bone, have been proposed. The development of transgenic mouse models that lack either estrogen or ER have proven to be valuable tools in defining the mechanisms by which estrogen exerts its effects in various systems. The aim of this article is to review the mouse models with disrupted estrogen signaling and describe the associated phenotypes. PMID:11250727

  6. Calmodulin enhances the stability of the estrogen receptor.

    PubMed

    Li, Z; Joyal, J L; Sacks, D B

    2001-05-18

    The estrogen receptor mediates breast cell proliferation and is the principal target for chemotherapy of breast carcinoma. Previous studies have demonstrated that the estrogen receptor binds to calmodulin-Sepharose in vitro. However, the association of endogenous calmodulin with endogenous estrogen receptors in intact cells has not been reported, and the function of the interaction is obscure. Here we demonstrate by co-immunoprecipitation from MCF-7 human breast epithelial cells that endogenous estrogen receptors bind to endogenous calmodulin. Estradiol treatment of the cells had no significant effect on the interaction. However, incubation of the cells with tamoxifen enhanced by 5-10-fold the association of calmodulin with the estrogen receptor and increased the total cellular content of estrogen receptors by 1.5-2-fold. In contrast, the structurally distinct calmodulin antagonists trifluoperazine and CGS9343B attenuated the interaction between calmodulin and the estrogen receptor and dramatically reduced the number of estrogen receptors in the cell. Neither of these agents altered the amount of estrogen receptor mRNA, suggesting that calmodulin stabilizes the protein. This hypothesis is supported by the observation that, in the presence of Ca2+, calmodulin protected estrogen receptors from in vitro proteolysis by trypsin. Furthermore, overexpression of wild type calmodulin, but not a mutant calmodulin incapable of binding Ca2+, increased the concentration of estrogen receptors in MCF-7 cells, whereas transient expression of a calmodulin inhibitor peptide reduced the estrogen receptor concentration. These data demonstrate that calmodulin binds to the estrogen receptor in intact cells in a Ca2+-dependent, but estradiol-independent, manner, thereby modulating the stability and the steady state level of estrogen receptors. PMID:11278648

  7. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor {alpha} homo-dimerization

    SciTech Connect

    Oh, Yohan; Chung, Kwang Chul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of a DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.

  8. Sinonasal Leiomyoma With Estrogen Receptor Expression.

    PubMed

    Kim, Jong Seung; Shin, Jin Yong; Kwon, Sam Hyun

    2015-09-01

    Leiomyoma is an extremely rare tumor in sinonasal area. The reason for this is due to minimal amount of the smooth muscle in the area. The origin of this tumor is not clear and its etiology has not been proven in the literature. A 58-year-old woman who experienced nasal obstruction and epiphora visited our clinic. A huge mass was noted in right nasal cavity originating from the lacrimal bone area. The authors conducted endoscopic sinus surgery and obtained the specimen. Immunochemistry showed leiomyoma in the nasal cavity, which expressed estrogen receptor. There was no progesterone receptor expressed. The authors describe a sinonasal leiomyoma with estrogen receptors, not ever reported in previous article. PMID:26355987

  9. Comparison of Individual and Combined Effects of Four Endocrine Disruptors on Estrogen Receptor Beta Transcription in Cerebellar Cell Culture: The Modulatory Role of Estradiol and Triiodo-Thyronine

    PubMed Central

    Jocsak, Gergely; Kiss, David Sandor; Toth, Istvan; Goszleth, Greta; Bartha, Tibor; Frenyo, Laszlo V.; Horvath, Tamas L.; Zsarnovszky, Attila

    2016-01-01

    Background: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; Methods: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor β (ERβ) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; Results: Results show a wide diversity in ED effects on ERβ mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; Conclusion: The observed potency of the EDs to influence ERβ mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency. PMID:27338438

  10. Estrogen receptors and human disease: an update

    PubMed Central

    Burns, Katherine A.

    2016-01-01

    A myriad of physiological processes in mammals are influenced by estrogens and the estrogen receptors (ERs), ERα and ERβ. As we reviewed previously, given the widespread role for estrogen in normal human physiology, it is not surprising that estrogen is implicated in the development or progression of a number of diseases. In this review, we are giving a 5-year update of the literature regarding the influence of estrogens on a number of human cancers (breast, ovarian, colorectal, prostate, and endometrial), endometriosis, fibroids, and cardiovascular disease. A large number of sophisticated experimental studies have provided insights into human disease, but for this review, the literature citations were limited to articles published after our previous review (Deroo and Korach in J Clin Invest 116(3):561–570, 2006) and will focus in most cases on human data and clinical trials. We will describe the influence in which estrogen’s action, through one of or both of the ERs, mediates the aforementioned human disease states. PMID:22648069

  11. Estrogen and progesterone receptors in primary cutaneous melanoma.

    PubMed

    Ellis, D L; Wheeland, R G; Solomon, H

    1985-01-01

    Using a variety of techniques, estrogen and progesterone receptors have previously been identified in variable percentages of malignant melanomas. We examined 10 primary superficial spreading melanomas (SSM) with a fluorescent hormone-binding technique for estrogen and progesterone cytoplasmic receptors. Of these 6 SSM were markedly positive for estrogen and progesterone binding. Patients with dysplastic nevus syndrome (DNS) or a family history of DNS were markedly positive for estrogen and progesterone binding. A single patient with lentigo maligna and another patient with lentigo maligna melanoma were negative for estrogen and progesterone binding. None of the 21 control intradermal nevi examined for estrogen and progesterone binding exhibited marked positivity. PMID:3965520

  12. Research progress on the reproductive and non-reproductive endocrine tumors by estrogen-related receptors.

    PubMed

    Xu, Zhixiang; Liu, Jun; Gu, Lipeng; Ma, Xiaodong; Huang, Bin; Pan, Xuejun

    2016-04-01

    Oncologists have traditionally considered that tumorigenesis are closely related to classical nuclear estrogen receptors (ERs), such as estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), through the ligands binding and target gene transcription induction. Estrogen-related receptors (ERRs) have similar structures with ERs, which are also gradually thought to be relevant to reproductive endocrine tumor diseases, even non-reproductive endocrine tumors. In this review, different subtypes of ERRs and their structures firstly will be introduced, then the expression patterns in gynecological oncology (i.e., breast cancer, endometrial cancer, and ovarian cancer), male genitourinary system malignancy especially prostatic cancer along with other non-reproductive endocrine tumors (i.e., lung cancer, colorectal cancer, and liver cancer) will be described, and simultaneously the role of tumorigenesis related to ERRs will be discussed. Therefore, the review is benefit to explore the way of tumor prevention and treatment. PMID:26802897

  13. Comparison of immunocytochemical estrogen receptor assay, estrogen receptor enzyme immunoassay, and radioligand-labeled estrogen receptor assay in human breast cancer and uterine tissue

    SciTech Connect

    Heubner, A.; Beck, T.; Grill, H.J.; Pollow, K.

    1986-08-01

    Determination of estrogen receptor content in 82 breast cancer specimens with immunocytochemical estrogen receptor assay (ER-EIA) (Abbott) was compared with our routinely used binding assay using /sup 125/I-estradiol as radioligand with Scatchard plot analysis of the binding data. Although the estrogen receptor content measured with the ER-EIA was approximately 2-fold higher compared with the binding assay, the immunochemical method proved to be a useful alternative for estrogen receptor determination. Furthermore, it is possible to detect estrogen receptors in FPLC Superose 12 (size exclusion column) eluates or in the fractions obtained after sucrose density centrifugation using the ER-EIA. Forty breast cancer samples were analyzed utilizing the immunocytochemical technique (ER-ICA) for visualization of the estrogen receptor content in frozen tumor tissues in relationship to the quantitative results obtained with the ER-EIA assay. Specific staining for estrogen receptor was confined only to the cell nucleus, was distributed irregularly among the tumor cells, and was variable in intensity. The staining intensity and the percentage of positively stained cells increased with increasing level of cytosolic estrogen receptor. In 27 of 40 cases the immunocytochemical results correlated well with the ER-EIA assay. Nine cases were ER-ICA negative with positive ER-EIA, and four were ER-ICA positive with negative ER-EIA.

  14. The immunoexpression of androgen receptor, estrogen receptors alpha and beta, vanilloid type 1 receptor and cytochrome p450 aromatase in rats testis chronically treated with letrozole, an aromatase inhibitor.

    PubMed

    Pilutin, Anna; Misiakiewicz-Has, Kamila; Kolasa, Agnieszka; Baranowska-Bosiacka, Irena; Marchlewicz, Mariola; Wiszniewska, Barbara

    2014-01-01

    The function of testis is under hormonal control and any disturbance of hormonal homeostasis can lead to morphological and physiological changes. Therefore the aim of the study was to investigate the expression of androgen and estrogen receptors (AR, ERs), vanilloid receptor (TRPV1), cytochrome P450 aromatase (P450arom), as well as apoptosis of cells in testis of adult rats chronically treated with letrozole (LT), a non-steroidal aromatase inhibitor, for 6 months. The testicular tissues were fixed in Bouin's fixative and embedded in paraffin. Immunohistochemistry with monoclonal antibodies (abs) against AR, ERa, P450arom, and polyclonalabs against ERβ, TRPV1, caspase-3 was applied. Long-lasting estradiol deficiency, as an effect of LT treatment, produced changes in the morphology of testis and altered the expression of the studied receptors in cells of the seminiferous tubules and rate of cell apoptosis. The immunostaining for AR was found in the nuclei of Sertoli cells and the cytoplasm of spermatogonia and spermatocytes in III-IV stages of the seminiferous epithelium cycle. The intensity of staining for P450arom was lower in the testis of LT-treated rats as compared to control animals. The immunofluorescence of ERα and ERβ was observed exclusively in the nuclei of Leydig cells of LT-treated rats. There were no changes in localization of TRPV1, however, the intensity of reaction was stronger in germ cells of the seminiferous epithelium after LT treatment. The apoptosis in both groups of animals was observed within the population of spermatocytes and spermatids in II and III stages of the seminiferous epithelium cycle. In testis of LT-treated rats the immunoexpression of caspase-3 was additionally found in the germ cells in I and IV stages, and Sertoli, myoid and Leydig cells. In conclusion, our results underline the important role of letrozole treatment in the proper function of male reproductive system, and additionally demonstrate that hormonal imbalance can

  15. Expression and functional study of estrogen receptor-related receptors in human prostatic cells and tissues.

    PubMed

    Cheung, C P; Yu, Shan; Wong, K B; Chan, L W; Lai, Fernand M M; Wang, Xianghong; Suetsugi, Masatomo; Chen, Shiuan; Chan, Franky L

    2005-03-01

    Estrogen receptor-related receptors (ERRs; alpha, beta, gamma) are orphan nuclear receptors and constitutively active without binding to estrogen. Like estrogen receptors (ERs), ERRs bind to estrogen receptor elements and estrogen receptor element-related repeats. Growing evidence suggests that ERRs can cross-talk with ERs in different cell types via competition for DNA sites and coactivators. We hypothesize that ERRs might play regulatory roles in normal and neoplastic prostatic cells by sharing similar ER-mediated pathways or acting independently. In this study, we investigated mRNA and protein expression patterns of three ERR members in normal human prostate epithelial cells, established cell lines, cancer xenografts, and prostatic tissues. Additionally, effects of transient transfection of ERRs on prostatic cell proliferation and ER expression were also examined. RT-PCR showed that ERRalpha and ERRgamma transcripts were detected in most cell lines and xenografts, whereas ERRbeta was detected in normal epithelial cells and few immortalized cell lines but not in most cancer lines. Similar results were demonstrated in clinical prostatic specimens. Western blottings and immunohistochemistry confirmed similar expression patterns that ERR proteins were detected as nuclear proteins in epithelial cells, whereas their expressions became reduced or undetected in neoplastic prostatic cells. Transient transfection confirmed that ERRs were expressed in prostatic cells as nuclear proteins and transcriptionally active in the absence of estradiol. Transfection results showed that overexpression of ERRs inhibited cell proliferation and repressed ERalpha transcription in PC-3 cells. Our study shows that ERRs, which are coexpressed with ERs in prostatic cells, could regulate cell growth and modulate ER-mediated pathways via interference on ERalpha transcription in prostatic cells. PMID:15598686

  16. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  17. Soy isoflavones increase quinone reductase in hepa-1c1c7 cells via estrogen receptor beta and nuclear factor erythroid 2-related factor 2 binding to the antioxidant response element.

    PubMed

    Froyen, Erik B; Steinberg, Francene M

    2011-09-01

    Soy protein and isoflavones (genistein and daidzein) have been demonstrated to increase quinone reductase (QR) activity, protein, and mRNA in animal and cell culture models. However, their mechanism of action has not been completely characterized. Additionally, it has not been determined if equol, a daidzein metabolite, can modulate QR activity and expression. Estrogen receptor beta (ERβ) is thought to be involved in stimulating QR gene transcription by anti-estrogens and phytoestrogens, along with nuclear factor erythroid 2-related factor 2 (Nrf2). This study tested the hypothesis that genistein, daidzein and equol increase quinone reductase activity, protein and mRNA via ERβ and Nrf2 binding to the QR antioxidant response element (ARE). QR expression and activity were determined using TaqMan polymerase chain reaction, protein immunoblots and activity assays. Molecular events were investigated using luciferase reporter gene assays and chromatin immunoprecipitation (ChIP). Hepa-1c1c7 cells were treated with control [0.1% (v:v) dimethyl sulfoxide (DMSO)]; 1 μmol/L β-naphthoflavone (positive control); 5 μmol/L resveratrol (ChIP positive control for ERβ binding) and 1, 5 and 25 μmol/L genistein, daidzein or equol. Treatment durations were 1 h (ChIP), 24 h (mRNA and luciferase assays) and 24 and 48 h (protein and activity). Genistein, daidzein and equol increased QR activity, protein and mRNA, with daidzein and equol having more of an impact at physiologic concentrations (1 and 5 μmol/L) compared to genistein. Furthermore, the study results demonstrate that genistein, daidzein and equol interact with the QR ARE and that daidzein and equol act via both ERβ and Nrf2 binding strongly to the QR ARE. PMID:21167702

  18. Mouse monoclonal antibodies against estrogen receptor.

    PubMed

    De Rosa, Caterina; Rossi, Valentina; Abbondanza, Ciro

    2014-01-01

    The production of monoclonal antibodies, by cloning hybridoma derived from the fusion of myeloma cells and spleen lymphocytes, has allowed to obtain great advances in many fields of biological knowledge. The use of specific antibodies to the estrogen receptor, in fact, has been an invaluable method to bring out its mechanisms of action and its effects, both genomic and extra-genomic. Here we describe, step by step, the production of monoclonal antibodies, starting from protocol for antigen preparation to the selection of antibody-secreting hybridoma. PMID:25182770

  19. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  20. Interaction of putative estrogens and the estrogen receptor system in Leydig cells in the BALB/c mouse testis resulting in the initiation of DNA synthesis

    SciTech Connect

    Juriansz, R.L.

    1986-01-01

    Continuous administration of estrogens for 7-9 months, both steroidal and nonsteroidal, to male BALB/c mice, leads to the formation of testicular Leydig cell tumors. Three days following the subcutaneous implantation of a pellet of estrogen in cholesterol, there is a peak in the incorporation of /sup 3/H-thymidine into the DNA of the interstitial cells. These effects are hypothesized to be mediated by the estrogen receptor system in the Leydig cell. Common experimental techniques for the measurement of hormone binding, such as dextran coated charcoal treatment, proved to be impossible to employ in this system, therefore a procedure was developed using hydroxyapatite to obtain binding data. The cytosolic estrogen receptor was found to have a dissociation constant for estradiol-17..beta.. of 6.5 x 10/sup -8/ M, while that of the nuclear estrogen receptor was 1.25 x 10/sup -8/ M. Competition assays were utilized to determine the cytosolic estrogen receptor's affinity for nonsteroidal estrogens, steroidal estrogens, and triphenylethylene.

  1. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    SciTech Connect

    Robinson, Lisa J.; Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L.; Blair, Harry C.

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  2. Estrophilin immunoreactivity versus estrogen receptor binding activity in meningiomas: evidence for multiple estrogen binding sites

    SciTech Connect

    Lesch, K.P.; Schott, W.; Gross, S.

    1987-09-01

    The existence of estrogen receptors in human meningiomas has long been a controversial issue. This may be explained, in part, by apparent heterogeneity of estrogen binding sites in meningioma tissue. In this study, estrogen receptors were determined in 58 meningiomas with an enzyme immunoassay using monoclonal antibodies against human estrogen receptor protein (estrophilin) and with a sensitive radioligand binding assay using /sup 125/I-labeled estradiol (/sup 125/I-estradiol) as radioligand. Low levels of estrophilin immunoreactivity were found in tumors from 62% of patients, whereas radioligand binding activity was demonstrated in about 46% of the meningiomas examined. In eight (14%) tissue samples multiple binding sites for estradiol were observed. The immunoreactive binding sites correspond to the classical, high affinity estrogen receptors: the Kd for /sup 125/I-estradiol binding to the receptor was approximately 0.2 nM and the binding was specific for estrogens. The second, low affinity class of binding sites considerably influenced measurement of the classical receptor even at low ligand concentrations. The epidemiological and clinical data from patients with meningiomas, and the existence of specific estrogen receptors confirmed by immunochemical detection, may be important factors in a theory of oncogenesis.

  3. Evidence of a correlation of estrogen receptor level and avian osteoclast estrogen responsiveness.

    PubMed

    Pederson, L; Kremer, M; Foged, N T; Winding, B; Ritchie, C; Fitzpatrick, L A; Oursler, M J

    1997-05-01

    Isolated osteoclasts from 5-week-old chickens respond to estradiol treatment in vitro with decreased resorption activity, increased nuclear proto-oncogene expression, and decreased lysosomal enzyme secretion. This study examines osteoclasts from embryonic chickens and egg-laying hens for evidence of estrogen responsiveness. Although osteoclasts from both of these sources express estrogen receptor mRNA and protein, estradiol treatment had no effect on resorption activity. In contrast to the lack of effect on resorption, estradiol treatment for 30 minutes resulted in steady-state mRNA levels of c-fos and c-jun increasing in osteoclasts from embryonic chickens and decreasing in osteoclasts from egg-laying hens. These data suggest that a nuclear proto-oncogene response may not be involved in estradiol-mediated decreased osteoclast resorption activity. To examine the influence of circulating estrogen on osteoclast estrogen responsiveness, 5-week-old chickens were injected with estrogen for 4 days prior to sacrifice. Estradiol treatment of osteoclasts from these chickens did not decrease resorption activity in vitro. Transfection of an estrogen receptor expression vector into osteoclasts from the estradiol-injected chickens and egg-laying hens restored estrogen responsiveness. Osteoclasts from 5-week-old chickens and estradiol treated 5-week-old chickens transfected with the estrogen receptor expression vector contained significantly higher levels of estrogen receptor protein and responded to estradiol treatment by decreasing secretion of cathepsins B and L and tartrate-resistant acid phosphatase. In contrast, osteoclasts from embryonic chickens, egg-laying hens, and estradiol-treated 5-week-old chickens either untransfected or transfected with an empty expression vector did not respond similarly. These data suggest that modulation of osteoclast estrogen responsiveness may be controlled by changes in the osteoclast estrogen receptor levels. PMID:9144340

  4. Effects of pyridoxal 5'-phosphate on uterine estrogen receptor. II. Inhibition of estrogen . receptor transformation.

    PubMed

    Traish, A; Müller, R E; Wotiz, H H

    1980-05-10

    Previous observations suggested that pyridoxal 5'-phosphate was capable of inhibiting estrogen . receptor (R . E2) activation, or translocation to the nucleus, or both. The present study attempts to define more specifically the locus of this action. To this end we have examined the physicochemical alteration produced by interaction of pyridoxal 5'-phosphate with estrogen . receptor complex, using sucrose density gradient analysis and dissociation kinetics. Receptor transformation was inhibited when activation was performed in the presence of pyridoxal 5'-phosphate. This effect was protein- and pyridoxal 5'-phosphate concentration-dependent. When pyridoxal 5'-phosphate was introduced postactivation it did not have any effect on the activated receptor, but when similar treatment was followed by NABH4 reduction, the complex reverted to the monomeric entity. The dissociation behavior obtained with cytosol R . E2, warmed in the presence of pyridoxal 5'-phosphate, showed a biphasic curve suggesting that a significant portion of receptors remained nonactivated as demonstrated by the fast dissociating component. Due to the fact that Tris buffers cannot be used for pyridoxal 5'-phosphate experiments, we have used a borate buffer which resulted in a displacement of the sedimentation values from a 4S to 4.6 S for the unactivated receptor and 5S to 6 S for the activated form. The observations reported suggest that at least the initial effect of pyridoxal 5'-phosphate results in the inhibition of cytosolic receptor transformation from the nonactivated to the activated form. PMID:7372667

  5. Estrogen receptor mutations in tamoxifen-resistant breast cancer.

    PubMed

    Karnik, P S; Kulkarni, S; Liu, X P; Budd, G T; Bukowski, R M

    1994-01-15

    Clinical resistance to antiestrogens like tamoxifen is a major problem in the treatment of hormone-dependent breast cancers. Since the estrogen receptor plays a central role in mediating the effects of estrogens and antiestrogens, we hypothesized that mutations in the estrogen receptor could be one mechanism by which breast tumors evolve from a hormone-dependent to a hormone-independent phenotype. The eight exons of the estrogen receptor complementary DNA from 20 tamoxifen-resistant and 20 tamoxifen-sensitive tumors were screened by Single Strand Conformation Polymorphism (SSCP), and the variant conformers were sequenced to identify the nucleotide changes. A 42-base pair replacement was found in exon 6 of a tamoxifen-resistant tumor. A single base pair deletion in exon 6 of a tamoxifen-resistant metastatic tumor but not in the primary tumor was detected in another case. If translated, both these mutations could generate truncated receptors with an intact DNA-binding domain and a defective hormone-binding domain that could constitutively activate transcription of previously estrogen-responsive genes. The remaining 18 of 20 tamoxifen-resistant tumors did not contain mutations in any of the 8 exons of the estrogen receptor complementary DNA. These results suggest that mutations in the estrogen receptor occur at a low frequency and do not account for most estrogen-independent, tamoxifen-resistant breast tumors. PMID:8275466

  6. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  7. Estrogen-related receptor γ modulates cell proliferation and estrogen signaling in breast cancer.

    PubMed

    Ijichi, Nobuhiro; Shigekawa, Takashi; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Fujimura, Tetsuya; Tsuda, Hitoshi; Osaki, Akihiko; Saeki, Toshiaki; Inoue, Satoshi

    2011-01-01

    Breast cancer is primarily a hormone-dependent tumor that can be regulated by status of steroid hormones including estrogen and progesterone. Estrogen-related receptors (ERRs) are orphan nuclear receptors most closely related to estrogen receptor (ER) and much attention has been recently paid to the functions of ERRs in breast cancer in terms of the interactions with ER. In the present study, we investigated the expression of ERRγ in human invasive breast cancers by immunohistochemical analysis (n=110) obtained by radical mastectomy. Nuclear immunoreactivity of ERRγ was detected in 87 cases (79%) and tended to correlate with the lymph node status. No significant associations were observed with other clinicopathological characteristics, including the expression levels of both estrogen and progesterone receptors. In MCF-7 breast cancer cells, we demonstrated that ERRγ mRNA was up-regulated dose-dependently by estrogen, and that this up-regulation of ERRγ mRNA by estrogen was abolished by ICI 182,780 treatment. We also demonstrated that exogenously transfected ERRγ increased MCF-7 cell proliferation. Furthermore, ERRγ enhanced estrogen response element (ERE)-driven transcription in MCF-7 cells. In 293T cells, ERRγ could also stimulate ERE-mediated transcription with or without ERα. These results suggest that ERRγ plays an important role as a modulator of estrogen signaling in breast cancer cells. PMID:20883782

  8. [The beta-adrenergic receptor].

    PubMed

    Bicho, M P; Manso, C F

    1992-12-01

    The Authors review the constitution and mechanism of action of the beta adrenergic receptor. It is part of a large family which includes visual pigments, muscarinic, serotonergic, olfactive and substance K receptors. Catecholamines given an electron to the receptor. It goes then successively to the alpha submit of Gs protein ant to adenylyl cyclase. The process of activation consists in a successive transfer of one electron. PMID:1337834

  9. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  10. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  11. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    SciTech Connect

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  12. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species.

    PubMed

    Nagasawa, Kazue; Treen, Nicholas; Kondo, Reki; Otoki, Yurika; Itoh, Naoki; Rotchell, Jeanette M; Osada, Makoto

    2015-06-15

    Vertebrate-like sex steroid hormones have been widely detected in mollusks, and numerous experiments have shown the importance of steroids in gonad development. Nevertheless, their signaling pathways in invertebrates have not been uncovered yet. Steroid receptors are an ancient class of transcription factors with multiple roles in not only vertebrates but also invertebrates. Estrogen signaling is thought to have major roles in mollusk physiology, but the full repertoire of estrogen receptors is unknown. We presented the successful cloning of two novel forms of estrogen receptor-like genes. These receptors are present in two closely related species of Mytilus: Mytilus edulis and Mytilus galloprovincialis, commonly known and widely distributed sentinel species. Our phylogenetic analysis revealed that one of these receptors is an estrogen receptor (ER) and the other one is an estrogen-related receptor (ERR). Studies of expression analysis showed that both receptor mRNAs were localized in the oocytes and follicle cells in contact with developing oocytes in the ovary and Sertoli cells in the testis, and in the ciliated cells of the gill. In addition, we have evidence that one (ER) of these may have a capacity to autoregulate its own expression in the gonadal cells by estrogen (E2) and that this gene is responsive to estrogenic compounds. PMID:25862924

  13. Amphipathic Benzenes Are Designed Inhibitors of the Estrogen Receptor α/Steroid Receptor Coactivator Interaction

    PubMed Central

    Gunther, Jillian R.; Moore, Terry W.; Collins, Margaret L.; Katzenellenbogen, John A.

    2008-01-01

    We report here on the design, synthesis and evaluation of small molecule inhibitors of the interaction between a steroid receptor coactivator and estrogen receptor α. These inhibitors are based upon an amphipathic benzene scaffold whose hydrophobic face mimics the leucine-rich α-helical consensus sequence on the steroid receptor coactivators that interacts with a shallow groove on estrogen receptor α. Several of these molecules are among the most potent inhibitors of this interaction described to date, and they are active at low micromolar concentrations in both in vitro models of estrogen receptor action and in cell-based assays of estrogen receptor-mediated coactivator interaction and transcription. PMID:18484708

  14. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii. PMID:20600039

  15. Beta Adrenergic Receptors in Keratinocytes

    PubMed Central

    Sivamani, Raja K.; Lam, Susanne T.; Isseroff, R. Rivkah

    2007-01-01

    Synopsis Beta2 adrenergic receptors were identified in keratinocytes more than 30 years ago, but their function in the epidermis continues to be elucidated. Abnormalities in their expression, signaling pathway, or in the generation of endogenous catecholamine agonists by keratinocytes have been implicated in the pathogenesis of cutaneous diseases such as atopic dermatitis, vitiligo and psoriasis. New studies also indicate that the beta2AR also modulates keratinocyte migration, and thus can function to regulate wound re-epithelialization. This review focuses on the function of these receptors in keratinocytes and their contribution to cutaneous physiology and disease. PMID:17903623

  16. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  17. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  18. Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels

    PubMed Central

    Smiley, Dia A.; Khalil, Raouf A.

    2010-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  19. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane

    SciTech Connect

    Funakoshi, Takeshi; Yanai, Akie; Shinoda, Koh; Kawano, Michio M.; Mizukami, Yoichi . E-mail: mizukami@yamaguchi-u.ac.jp

    2006-08-04

    Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17{beta}-estradiol or E2) causes an elevation in the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.

  20. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides

    PubMed Central

    Kucinska, Malgorzata; Giron, Maria-Dolores; Piotrowska, Hanna; Lisiak, Natalia; Granig, Walter H.; Lopez-Jaramillo, Francisco-Javier; Salto, Rafael; Murias, Marek; Erker, Thomas

    2016-01-01

    The cytotoxicity of 27 benzanilides and dithiobenzanilides built on a stilbene scaffold and possessing various functional groups in aromatic rings previously described for their spasmolytic properties was assayed on three human cancer cell lines (A549 –lung adenocarcinoma, MCF-7 estrogen dependent breast adenocarcinoma and MDA-MB-231 estrogen independent breast adenocarcinoma) and 2 non-tumorigenic cell lines (CCD39Lu–lung fibroblasts, MCF-12A - breast epithelial). Three compounds (6, 15 and 18) showed selective antiproliferative activity against estrogen dependent MCF-7 cancer cells and their estrogenic activity was further confirmed in MCF-7 transfected with an estrogen receptor reporter plasmid and in HEK239 cells over-expressing the estrogen receptor alpha (ERα). Compound 18 is especially interesting as a potential candidate for therapy since it is highly toxic and selective towards estrogen dependent MCF7 cell lines (IC50 = 5.07 μM versus more than 100 μM for MDA-MB-231) and almost innocuous for normal breast cells (IC50 = 91.46 μM for MCF-12A). Docking studies have shown that compound 18 interacts with the receptor in the same cavity as estradiol although the extra aromatic ring is involved in additional binding interactions with residue W383. The role of W383 and the extended binding mode were confirmed by site-directed mutagenesis. PMID:26730945

  1. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  2. ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY

    PubMed Central

    Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.

    2016-01-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  3. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  4. Immunohistochemical detection of estrogen receptors in fish scales.

    PubMed

    Pinto, P I S; Estêvão, M D; Redruello, B; Socorro, S M; Canário, A V M; Power, D M

    2009-01-01

    Calcium mobilization from internal stores, such as scales, induced by 17beta-estradiol during sexual maturation in salmonids is well documented. This calcium mobilization from scales is proposed to be mediated by the estrogen receptor (ER). However, the ER subtypes involved and signaling mechanisms responsible for this effect remain to be fully characterized. In the present study, we have localized ERalpha, ERbetaa and ERbetab proteins in juvenile and adult sea bream (Sparus auratus) and Mozambique tilapia (Oreochromis mossambicus) scales by immunohistochemistry with sea bream ER subtype specific antibodies. The three ERs were detected in isolated or small groups of round cells, in the basal layer of the scales of both juvenile and adult fish and the localization and signal intensity varied with the species and age of the animals. The ERs may be co-localized in cells of the scale posterior region that expressed tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts. These results suggest that the calcium mobilizing action of 17beta-estradiol on fish scales is via its direct action on ERs localized in osteoclasts. PMID:18977356

  5. Homology-modeled ligand-binding domains of medaka estrogen receptors and androgen receptors: A model system for the study of reproduction

    SciTech Connect

    Cui Jianzhou Shen Xueyan; Yan Zuowei; Zhao Haobin; Nagahama, Yoshitaka

    2009-02-27

    Estrogen and androgen and their receptors play critical roles in physiological processes such as sexual differentiation and development. Using the available structural models for the human estrogen receptors alpha and beta and androgen receptor as templates, we designed in silico agonist and antagonist models of medaka estrogen receptor (meER) alpha, beta-1, and beta-2, and androgen receptor (meAR) alpha and beta. Using these models, we studied (1) the structural relationship between the ligand-binding domains (LBDs) of ERs and ARs of human and medaka, and (2) whether medaka ER and AR can be potential models for studying the ligand-binding activities of various agonists and antagonists of these receptors by docking analysis. A high level of conservation was observed between the sequences of the ligand-binding domains of meER{alpha} and huER{alpha}, meER{beta}1 and huER{beta}, meER{beta}2, and huER{beta} with 62.8%, 66.4%, and 65.1% identity, respectively. The sequence conservation between meAR{alpha} and huAR, meAR{beta}, and huAR was found with 70.1% and 61.0% of identity, respectively. Thirty-three selected endocrine disrupting chemicals (EDCs), including both agonists and antagonists, were docked into the LBD of ER and AR, and the corresponding docking score for medaka models and human templates were calculated. In order to confirm the conservation of the overall geometry and the binding pocket, the backbone root mean square deviation (RMSD) for C{alpha} atoms was derived from the structure superposition of all 10 medaka homology models to the six human templates. Our results suggested conformational conservation between the ERs and ARs of medaka and human, Thus, medaka could be highly useful as a model system for studies involving estrogen and androgen interaction with their receptors.

  6. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  7. In vivo dissection of the estrogen receptor alpha: uncoupling of its physiological effects and medical perspectives.

    PubMed

    Arnal, Jean-François; Gourdy, Pierre; Lenfant, Françoise

    2013-05-01

    Given this widespread role for estrogen in human physiology, it is not surprising that estrogen influence the pathophysiology of numerous diseases, including cancer (of the reproductive tract as breast, endometrial but also colorectal, prostate…), as well as neurodegenerative, inflammatory-immune, cardiovascular and metabolic diseases, and osteoporosis. These actions are mediated by the activation of estrogen receptors (ER) alpha (ERα) and beta (ERβ), which regulate target gene transcription (genomic action) through two independent activation functions (AF)-1 and AF-2, but can also elicit rapid membrane initiated steroid signals (MISS). Targeted ER gene inactivation has shown that although ERβ plays an important role in the central nervous system and in the heart, ERα appears to play a prominent role in most of the other tissues. Pharmacological activation or inhibition of ERα and/or ERβ provides already the basis for many therapeutic interventions, from contraception or hormone replacement at menopause to prevention of the recurrence of breast cancer. However, the use of these estrogens or selective estrogen receptors modulators (SERMs) have also induced undesired effects. Thus, an important challenge consists now to uncouple the beneficial actions from other deleterious ones. We summarize here an in vivo molecular "dissection" that allows to delineate in mouse the role of the main "subfunctions" of the receptor. This could pave the way to an optimization of the ER modulation. PMID:23566615

  8. The other estrogen receptor in the plasma membrane: implications for the actions of environmental estrogens.

    PubMed Central

    Watson, C S; Pappas, T C; Gametchu, B

    1995-01-01

    Environmental or nutritional estrogenic toxicants are thought to mediate developmental and carcinogenic pathologies. Estrogen receptor (ER) measurements are currently used to predict hormonal responsiveness; therefore all ER subpopulations should be considered. We have been involved in the immunoidentification and characterization of membrane steroid receptors in several systems and have recently shown that binding of estradiol (E2) to a subpopulation of ERs (mER) residing in the plasma membrane of GH3 pituitary tumor cells mediates the rapid release of prolactin (PRL). Here we review these findings and present other important characterizations of these receptors such as trypsin and serum susceptibility, movement in the membrane, confocal localization to the membrane, binding to and function of impeded ligands, and immunoseparation of cells bearing mER. We plan to use this system as a model for both the physiological and pathological nongenomic effects of estrogens and estrogenic xenobiotics. Specifically, it should be useful as an in vitro assay system for the ability of estrogenic xenobiotics to cause rapid PRL release as an example of nongenomic estrogen effects. Images Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 4. E Figure 4. F Figure 5. A Figure 5. B Figure 6. A Figure 6. B Figure 6. C Figure 7. A Figure 7. B Figure 7. C Figure 7. D PMID:8593873

  9. Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors

    PubMed Central

    Ruff, Marc; Gangloff, Monique; Marie Wurtz, Jean; Moras, Dino

    2000-01-01

    Estrogen receptors are members of the nuclear receptor steroid family that exhibit specific structural features, ligand-binding domain sequence identity and dimeric interactions, that single them out. The crystal structures of their DNA-binding domains give some insight into how nuclear receptors discriminate between DNA response elements. The various ligand-binding domain crystal structures of the two known estrogen receptor isotypes (α and β) allow one to interpret ligand specificity and reveal the interactions responsible for stabilizing the activation helix H12 in the agonist and antagonist positions. PMID:11250728

  10. Identification, cloning, and expression of human estrogen receptor-{alpha}36, a novel variant of human estrogen receptor-{alpha}66

    SciTech Connect

    Wang Zhaoyi; Zhang Xintian; Shen Peng; Loggie, Brian W.; Chang Yunchao; Deuel, Thomas F. . E-mail: tfdeuel@scripps.edu

    2005-11-04

    The identification and subsequent cloning of the 66-kDa human estrogen receptor (here termed hER-{alpha}66), its 46-kDa splice variant hER-{alpha}46, and the closely related hER-{beta} have had a profound impact on the generation of new understanding of estrogen-mediated functions and led to progress in diagnosis and treatment of human breast cancer. However, a persistent problem has been that not all findings previously reported in estrogen-stimulated cell proliferation can be explained through the known properties of the different estrogen receptors described. As the consequence of a search for alternative mechanisms to account for these different findings, we have now identified, cloned, and expressed in HEK 293 cells a previously unrecognized 36-kDa variant of hER-{alpha}66, termed hER-{alpha}36. hER-{alpha}36 differs from hER-{alpha}66 since it lacks both transcriptional activation domains (AF-1 and AF-2) but it retains the DNA-binding domain, and partial dimerization and ligand-binding domains of hER-{alpha}66. It also contains three myristoylation sites postulated to direct ER-{alpha}36 to the plasma membrane. It is concluded that ER-{alpha}36 is a unique variant of ER-{alpha}66; ER-{alpha}36 is predicted to function as a dominant-negative effector of hER-{alpha}66-mediated estrogen-responsive gene pathways and has the potential to trigger membrane-initiated mitogenic estrogen signaling.

  11. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  12. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  13. Comparative analysis of the interaction of various estrogens with the estrogen-receptor system of the uterus

    SciTech Connect

    Fanchenko, N.D.; Alekseeva, M.L.; Minina, L.S.; Novikov, E.A.; Khel'mun, D.K.

    1986-05-20

    The binding of various labeled estrogens under conditions of equilibrium in the cytosol of the uterus of sexually immature Wistar rats was studied. An analysis of the data obtained, as well as the kinetics of the dissociation of the complexes of the ligands used with specific high-affinity estrogen-binding sites of the cytosol, suggested that the population of estrogen receptors in the rat uterus is homogeneous. The possibility of intracellular regulation of the action of estrogens in the target cell in the presence of a homogeneous population of receptors, both at the receptor and at the post-receptor stages, is suggested.

  14. Structural and Functional Diversity of Estrogen Receptor Ligands

    PubMed Central

    Farooq, Amjad

    2015-01-01

    Estrogen receptors, comprised of ERα and ERβ isoforms in mammals, act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions from sexual development and reproduction to metabolic homeostasis. Herein, I revisit the structural basis of the binding of ERα to DNA and estradiol in light of the recent discoveries and emerging trends in the field of nuclear receptors. A particular emphasis of this review is on the chemical and structural diversity of an ever-increasing repertoire of physiological, environmental and synthetic ligands of estrogen receptors that ultimately modulate their interactions with cognate DNA located within the promoters of estrogen-responsive genes. In particular, modulation of estrogen receptors by small molecule ligands represents an important therapeutic goal toward the treatment of a wide variety of human pathologies including breast cancer, cardiovascular disease, osteoporosis and obesity. Collectively, this article provides an overview of a wide array of small organic and inorganic molecules that can fine-tune the physiological function of estrogen receptors, thereby bearing a direct impact on human health and disease. PMID:25866274

  15. Acute relaxation of mouse duodenum [correction of duodenun] by estrogens. Evidence for an estrogen receptor-independent modulation of muscle excitability.

    PubMed

    Díaz, Mario; Ramírez, Cristina M; Marin, Raquel; Marrero-Alonso, Jorge; Gómez, Tomás; Alonso, Rafael

    2004-10-01

    17-beta-Estradiol, the stereoisomer 17-alpha-estradiol and the synthetic estrogen diethylstilbestrol (DES), all caused a rapid (<3 min) dose-dependent reversible relaxation of mouse duodenal spontaneous activity, reduced basal tone and depressed the responses to CaCl(2) and KCl. The steroidal antiestrogen 7alpha-[9-[(4,4,5,5,5,-pentafluoropenty)sulphinyl]nonyl]-estra-1,3,5(19)-triene-3,17beta-diol (ICI182,780) failed to either mimic or prevent the effect of 17-beta-estradiol. The effect of estrogens was unrelated to activation of nitric oxide (NO), mitogen-activated protein kinase (MAPK), protein kinase A (PKA), protein kinase G (PKG) or protein kinase C (PKC). Estrogen-induced relaxation was partially reversed by 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-pyridine-3-carboxilic acid methyl ester (BAY-K8644), depolarization, or by application of tetraethylammonium or 4-aminopyridine, but not by glibenclamide, apamin, charybdotoxin, paxilline or verruculogen. The effects of BAY-K8644 and K(+) channel blockers were synergistic, and allowed relaxed tissues to recover spontaneous activity and basal tone. We hypothesize that the rapid non-genomic spasmolytic effect of estrogens on mouse duodenal muscle might be triggered by an estrogen-receptor-independent mechanism likely involving activation of tetraethylamonium- and 4-aminopyridine-sensitive K(+) channels and inhibition of L-type Ca2(+) channels on the smooth muscle cells. PMID:15464075

  16. Spatiotemporal dynamics of the expression of estrogen receptors in the postnatal mouse brain.

    PubMed

    Sugiyama, N; Andersson, S; Lathe, R; Fan, X; Alonso-Magdalena, P; Schwend, T; Nalvarte, I; Warner, M; Gustafsson, J-A

    2009-02-01

    This study reports on the spatiotemporal dynamics of the expression of estrogen receptors (ERs) in the mouse central nervous system (CNS) during the early postnatal and the peripubertal period. At postnatal day 7 (P7), neurons with strong nuclear immunostaining for both ERalpha and ERbeta1 were widely distributed throughout the brain. Sucrose density gradient sedimentation followed by western blotting supported the histochemical evidence for high levels of both ERs at P7. Over the following 2 days, there was a rapid downregulation of ERs. At P9, ERalpha expression was visible only in the hypothalamic area. Decline in ERbeta1 expression was slower than that of ERalpha, and ERalpha-negative, ERbeta1-positive cells were observed in the dentate gyrus and walls of third ventricle. Between P14 and P35, ERs were undetectable except for the hypothalamic area. As before P7, the ovary does not produce estrogen but does produce 5alpha-androstane-3beta, 17beta-diol (3betaAdiol), an estrogenic metabolite of dihydrotestosterone, we examined the effects of high levels of 3betaAdiol in the postnatal period. We used CYP7B1 knockout mice which cannot hydroxylate and inactivate 3betaAdiol. The brains of these mice are abnormally large with reduced apoptosis. In the early postnatal period, there was 1-week delay in the timing of the reduction in ER expression in the brain. These data reveal that the time when ERs might be activated in the brain is limited to the first 8 postnatal days. In addition, the importance of aromatase has to be reconsidered as the alternative estrogen, 3betaAdiol, is important in neuronal function in the postnatal brain. PMID:18982005

  17. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells.

    PubMed

    Sundar, Shyam N; Marconett, Crystal N; Doan, Victor B; Willoughby, Jamin A; Firestone, Gary L

    2008-12-01

    MCF7 cells are an estrogen-responsive human breast cancer cell line that expresses both estrogen receptor (ER) alpha and ERbeta. Treatment of MCF7 cells with artemisinin, an antimalarial phytochemical from the sweet wormwood plant, effectively blocked estrogen-stimulated cell cycle progression induced by either 17beta-estradiol (E(2)), an agonist for both ERs, or by propyl pyrazole triol (PPT), a selective ERalpha agonist. Artemisinin strongly downregulated ERalpha protein and transcripts without altering expression or activity of ERbeta. Transfection of MCF7 cells with ERalpha promoter-linked luciferase reporter plasmids revealed that the artemisinin downregulation of ERalpha promoter activity accounted for the loss of ERalpha expression. Artemisinin treatment ablated the estrogenic induction of endogenous progesterone receptor (PR) transcripts by either E(2) or PPT and inhibited the estrogenic stimulation of a luciferase reporter plasmid driven by consensus estrogen response elements (EREs). Chromatin immunoprecipitation assays revealed that artemisinin significantly downregulated the level of endogeneous ERalpha bound to the PR promoter, whereas the level of bound endogeneous ERbeta was not altered. Treatment of MCF7 cells with artemisinin and the pure antiestrogen fulvestrant resulted in a cooperative reduction of ERalpha protein levels and enhanced G(1) cell cycle arrest compared with the effects of either compound alone. Our results show that artemisinin switches proliferative human breast cancer cells from expressing a high ERalpha:ERbeta ratio to a condition in which ERbeta predominates, which parallels the physiological state linked to antiproliferative events in normal mammary epithelium. PMID:18784357

  18. STANDARDIZATION AND VALIDATION OF PROPOSED PROTOCOLS FOR IN VITRO SCREENING ASSAYS AND QSAR FOR ESTROGEN RECEPTOR AND ANDROGEN RECEPTOR

    EPA Science Inventory

    Screening EDCs for androgenic and antiandrogenic activities was recommended by the EDSTAC Committee in it Final Report. This research will develop in vitro approaches to assess estrogen receptor binding, develop cell lines that stably express estrogen receptor for screening EDC...

  19. [Beta-adrenergic receptor blocker poisoning].

    PubMed

    Reingardiene, Dagmara

    2007-01-01

    Beta-adrenergic receptor blocking drugs are used in the treatment of hypertension, angina, myocardial infarction, cardiac dysrhythmia, cardiomyopathy, migraine headache, thyrotoxicosis, and glaucoma. beta-adrenergic receptor blocking agents are competitive antagonist at beta(1), beta(2), or both types of adrenergic receptors. Overdoses of beta-adrenergic receptor blockers are uncommon, but are associated with significant morbidity and mortality. This review article discusses the properties of beta-adrenergic receptor blockers, presents the doses of these drugs causing toxicity and doses, after ingestion of which, referral to an emergency department is recommended. Clinical presentation of overdose (the cardiovascular, neurologic manifestations, pulmonary and other complications), diagnosis, and treatment (gastrointestinal decontamination; the usage of atropine, phosphodiesterase inhibitors, glucagon, insulin; indications for cardiac pacing, extracorporeal procedures of drug removal, etc.) are analyzed. In addition, this article focuses on clinical course and prognosis of beta-blocker overdose. PMID:17768375

  20. Estrogen-related receptor β (ERRβ) – renaissance receptor or receptor renaissance?

    PubMed Central

    Divekar, Shailaja D.; Tiek, Deanna M.; Fernandez, Aileen; Riggins, Rebecca B.

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  1. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  2. Effects of CYP7B1-mediated catalysis on estrogen receptor activation.

    PubMed

    Pettersson, Hanna; Lundqvist, Johan; Norlin, Maria

    2010-09-01

    Most of the many biological effects of estrogens are mediated via the estrogen receptors ERalpha and beta. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERbeta-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3beta,17beta-diol (Aene-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7alpha-hydroxy-DHEA, previously suggested to affect ERbeta-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3beta-Adiol. CYP7B1-mediated metabolism of 3beta-Adiol has been proposed to influence ERbeta-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERalpha and beta and that CYP7B1-mediated conversion of Aene-diol into a 7alpha-hydroxymetabolite will result in loss of action. PMID:20553962

  3. Designer interface peptide grafts target estrogen receptor alpha dimerization.

    PubMed

    Chakraborty, S; Asare, B K; Biswas, P K; Rajnarayanan, R V

    2016-09-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide "I-box" derived from ER residues 503-518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479-485), LQQQHQRLAQ (residues 497-506), and LSHIRHMSNK (residues 511-520) and reported the suitability of using LQQQHQRLAQ (ER 497-506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. PMID:27462021

  4. Polymorphic AAAG repeat length in estrogen-related receptor gamma (ERRγ) and risk of breast cancer in Iranian women.

    PubMed

    Karimi, Padideh; Hematti, Simin; Safari, Foruzan; Tavassoli, Manoochehr

    2013-11-01

    Estrogen-related receptors (ERRs) alpha, beta, and gamma are orphan nuclear receptors that modulate the estrogen signaling pathway and play roles in the regulation of breast cancer cell growth. To determine the association between breast cancer risk and alleles of the tetranucleotide repeat (AAAG)n in the intron of ERRγ gene, a case-control study of 200 breast cancer patients and 200 controls was performed in Iranian women. Our results demonstrate that women with short AAAG repeat are at higher risk of breast cancer (OR 7). This result suggests a possible involvement of polymorphic AAAG repeat of ERRγ gene in regulating its expression. PMID:24125170

  5. RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR

    EPA Science Inventory

    RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
    The USEPA has been mandated to screen industria...

  6. A novel carborane analog, BE360, with a carbon-containing polyhedral boron-cluster is a new selective estrogen receptor modulator for bone

    SciTech Connect

    Hirata, Michiko; Inada, Masaki; Matsumoto, Chiho; Takita, Morichika; Ogawa, Takumi; Endo, Yasuyuki; Miyaura, Chisato

    2009-03-06

    Carboranes are a class of carbon-containing polyhedral boron-cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors. Estrogen deficiency results in marked bone loss due to increased osteoclastic bone resorption in females, but estrogen replacement therapy is not generally used for postmenopausal osteoporosis due to the risk of uterine cancer. We synthesized a novel carborane compound BE360 to clarify its anti-osteoporosis activity. BE360 showed a high binding affinity to estrogen receptors (ER), ER{alpha} and ER{beta}. In ovariectomized (OVX) mice, femoral bone volume was markedly reduced and BE360 dose-dependently restored bone loss in OVX mice. However, BE360 did not exhibit any estrogenic activity in the uterus. BE360 also restored bone loss in orchidectomized mice without androgenic action in the sex organs. Therefore, BE360 is a novel selective estrogen receptor modulator (SERM) that may offer a new therapy option for osteoporosis.

  7. Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos.

    PubMed

    Nakabayashi, O; Kikuchi, H; Kikuchi, T; Mizuno, S

    1998-04-01

    In birds, differentiation of embryonic gonads is not as strictly determined by the genetic sex as it is in mammals, and can be influenced by early manipulation with a sex steroid hormone. Thus administration of an aromatase inhibitor induces testis development in the genetic female, and administration of estrogen induces a left ovotestis in the genetic male embryo. Another feature of avian gonadogenesis is that only the left ovary develops in most species. Molecular mechanisms underlying these features at the level of gene expression have not been elucidated. In this paper, we present evidence that a gene for aromatase cytochrome P-450, an enzyme required for the last step in the synthesis of estradiol-17beta, is expressed in medullae of the left and right gonads of a female chicken embryo, but not in those of a male chicken embryo, and that an estrogen receptor gene is expressed only in epithelium (and cortex later, in the female) of the left, not the right, gonad of both sexes, but the expression in the male left gonad is temporary and restricted to an early stage of development. Differential expression of these two genes serves well to explain the above features of gonadal development in birds. Furthermore, in ovo administration of estradiol-17beta from the 5th to the 14th day of incubation does not cause expression of the estrogen receptor gene in the right gonad of chicken embryos of either sex, suggesting that the absence of expression of the estrogen receptor gene in the right gonad is not the result of down-regulation, but may be regarded as an important cause of the unilateral ovarian development. PMID:9584834

  8. Inhibition of estrogen receptor {beta}-mediated human telomerase reverse transcriptase gene transcription via the suppression of mitogen-activated protein kinase signaling plays an important role in 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2}-induced apoptosis in cancer cells

    SciTech Connect

    Kondoh, Kei; Tsuji, Naoki; Asanuma, Koichi; Kobayashi, Daisuke; Watanabe, Naoki

    2007-10-01

    The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR)-{gamma} plays a role in cancer development in addition to its role in glucose metabolism. The natural ligand of PPAR-{gamma}, namely, 15-deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} (15d-PGJ{sub 2}), has been shown to possess antineoplastic activity in cancer cells. However, the mechanism underlying its antineoplastic activity remains to be elucidated. Inhibition of the expression of human telomerase reverse transcriptase (hTERT), a major determinant of telomerase activity, reportedly induces rapid apoptosis in cancer cells. In this study, we investigated the effect of 15d-PGJ{sub 2} on hTERT expression. We found that 15d-PGJ{sub 2} induced apoptosis in the MIAPaCa-2 pancreatic cancer cells and dose-dependently decreased hTERT mRNA and protein expression. Down-regulation of hTERT expression by hTERT-specific small inhibitory RNA also induced apoptosis. Furthermore, 15d-PGJ{sub 2} attenuated the DNA binding of estrogen receptor (ER). MIAPaCa-2 expressed only ER{beta}, and although its expression did not decrease due to 15d-PGJ{sub 2}, its phosphorylation was suppressed. Additionally, a mitogen-activated protein kinase (MAPK) kinase inhibitor decreased ER{beta} phosphorylation, and 15d-PGJ{sub 2} attenuated MAPK activity. We conclude that hTERT down-regulation by 15d-PGJ{sub 2} plays an important role in the proapoptotic property of the latter. Furthermore, 15d-PGJ{sub 2} inhibits ER{beta}-mediated hTERT gene transcription by suppressing ER{beta} phosphorylation via the inhibition of MAP kinase signaling.

  9. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  10. Estrogen receptors in the temporomandibular joint of the baboon (Papio cynocephalus): an autoradiographic study

    SciTech Connect

    Aufdemorte, T.B.; Van Sickels, J.E.; Dolwick, M.F.; Sheridan, P.J.; Holt, G.R.; Aragon, S.B.; Gates, G.A.

    1986-04-01

    Using an autoradiographic method, the temporomandibular joint (TMJ) complex of five aged female baboons was studied for the presence of receptors for estradiol-17 beta. The study was performed in an effort to learn more of the pathophysiology of this joint and in an attempt to provide a scientific basis to explain the reported preponderance of women who seek and undergo treatment for signs and symptoms referable to the TMJ. This experiment revealed that the TMJ complex contains numerous cells with receptors for estrogen, particularly the articular surface of the condyle, articular disk, and capsule. Muscles of mastication contained relatively fewer receptors. As a result, one may postulate a role for the sex steroid hormones in the maintenance, repair, and/or pathogenesis of the TMJ. Additional studies are necessary to fully determine the significance of hormone receptors in this site and any correlation between diseases of the TMJ and the endocrine status of affected patients.

  11. Estrogen receptor profiling and activity in cardiac myocytes.

    PubMed

    Pugach, Emily K; Blenck, Christa L; Dragavon, Joseph M; Langer, Stephen J; Leinwand, Leslie A

    2016-08-15

    Estrogen signaling appears critical in the heart. However a mechanistic understanding of the role of estrogen in the cardiac myocyte is lacking. Moreover, there are multiple cell types in the heart and multiple estrogen receptor (ER) isoforms. Therefore, we studied expression, localization, transcriptional and signaling activity of ERs in isolated cardiac myocytes. We found only ERα RNA (but no ERβ RNA) in cardiac myocytes using two independent methods. The vast majority of full-length ERα protein (ERα66) localizes to cardiac myocyte nuclei where it is competent to activate transcription. Alternate isoforms of ERα encoded by the same genomic locus (ERα46 and ERα36) have differential transcriptional activity in cardiac myocytes but also primarily localize to nuclei. In contrast to other reports, no ERα isoform is competent to activate MAPK or PI3K signaling in cardiac myocytes. Together these data support a role for ERα at the level of transcription in cardiac myocytes. PMID:27164442

  12. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats.

    PubMed

    Dumasia, Kushaan; Kumar, Anita; Kadam, Leena; Balasinor, N H

    2015-06-01

    Maintenance of normal male fertility relies on the process of spermatogenesis which is under complex endocrine control by mechanisms involving gonadotropin and steroid hormones. Although testosterone is the primary sex steroid in males, estrogen is locally produced in the testis and plays a very crucial role in male fertility. This is evident from presence of both the estrogen receptors alpha (ERα) and beta (ERβ) in the testis and their absence, as in the case of knockout mice models, leads to sterility. The present study was undertaken to understand individual roles of the two ERs in spermatogenesis and their direct contribution towards the maintenance of male fertility using receptor-subtype-specific ligands. Administration of ERα and β agonists to adult male rats for 60 days results in a significant decrease in fertility, mainly due to an increase in pre- and post-implantation loss and a concomitant decrease in litter size and sperm counts. Our results indicate that ERα is mainly involved in negative feedback regulation of gonadotropin hormones, whereas both ERs are involved in regulation of prolactin and testosterone production. Histological examinations of the testis reveal that ERβ could be involved in the process of spermiation since many failed spermatids were observed in stages IX-XI following ERβ agonist treatment. Our results indicate that overactivation of estrogen signaling through either of its receptors can have detrimental effects on the fertility parameters and that the two ERs have both overlapping and distinct roles in maintenance of male fertility. PMID:25869617

  13. Regulation of alternative splicing of liver scavenger receptor class B gene by estrogen and the involved regulatory splicing factors.

    PubMed

    Zhang, Xiaohui; Moor, Andrea N; Merkler, Kathleen A; Liu, Qiyuan; McLean, Mark P

    2007-11-01

    The scavenger receptor class B isoforms (SR-B) type I and type II mediate the selective uptake of high-density lipoprotein cholesterol and promote reverse cholesterol transport, an important atherosclerosis protection mechanism, in the liver. Previously it was shown that the hepatic expression of SR-BI and SR-BII is regulated by estrogen. In the present study, we demonstrate that estrogen differentially regulates expression of the glycosylated and nonglycosylated forms of SR-BI and SR-BII in rat liver and hepatic cells. We report that estrogen mainly induces the down-regulation of glycosylated SR-BI and the up-regulation of nonglycosylated SR-BII. To study how estrogen regulates expression of the SR-B isoforms, we constructed a SR-B minigene containing minimal genomic sequences and were able to demonstrate that estrogen directly regulates the pre-mRNA alternative splicing of the exogenously expressed SR-B minigene in hepatic cells. Furthermore, we showed that the overexpression of splicing factors alternative splicing factor/splicing factor 2, Transformer (Tra)-2alpha, and Tra2beta changes the splicing pattern of SR-B dramatically, whereas other splicing factors, such as heterogeneous nuclear ribonucleoprotein-G, SC-35, and arginine/serine-rich p40, had no effect. We also demonstrate that estrogen regulates Tra2beta expression levels in liver cells. These studies suggest that estrogen may regulate SR-B isoform expression at both the RNA splicing and posttranslational modification levels and that, for alternative splicing regulation, estrogen may function by regulating the expression of the splicing factors alternative splicing factor/splicing factor 2, Tra2alpha, and especially Tra2beta. PMID:17673517

  14. Aryl hydrocarbon receptor-independent activation of estrogen receptor-dependent transcription by 3-methycholanthrene

    SciTech Connect

    Shipley, Jonathan M.; Waxman, David J. . E-mail: djw@bu.edu

    2006-06-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that stimulates transcription directed by xenobiotic response elements upstream of target genes. Recently, AhR ligands were reported to induce formation of an AhR-estrogen receptor (ER) complex, which can bind to estrogen response elements (EREs) and stimulate transcription of ER target genes. Presently, we investigate the effect of the AhR ligands 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (BZ126) on ERE-regulated luciferase reporter activity and endogenous ER target gene expression. In MCF-7 human breast cancer cells, 3MC induced transcription of ER reporter genes containing native promoter sequences of the ER-responsive genes complement 3 and pS2 and heterologous promoters regulated by isolated EREs. Dose-response studies revealed that the concentration of 3MC required to half-maximally activate transcription (EC{sub 5}) was >100-fold higher for an ER reporter (27-57 {mu}M) than for an AhR reporter (86-250 nM) in both MCF-7 cells and in human endometrial cancer Ishikawa cells. 3MC also stimulated expression of the endogenous ER target genes amphiregulin, cathepsin D and progesterone receptor, albeit to a much lower extent than was achieved following stimulation with 17{beta}-estradiol. In Ishikawa cells, 3MC, but not BZ126 or TCDD, stimulated ER{alpha}-dependent reporter activity but did not induce expression of endogenous ER target genes. Finally, studies carried out in the AhR-positive rat hepatoma cell line 5L and the AhR-deficient variant BP8 demonstrated that ER reporter activity could be induced by 3MC in a manner that was independent of AhR and thus distinct from the AhR-ER 'hijacking' mechanism described recently. 3MC may thus elicit estrogenic activity by multiple mechanisms.

  15. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  16. COMPARISON OF FATHEAD MINNOW AND HUMAN ESTROGEN RECEPTOR BINDING TO ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Environmental estrogens have the potential to disrupt endocrine function in a myriad of species. However, in vitro assays designed to detect and characterize endocrine disrupting chemicals (EDCs) typically utilize mammalian estrogen receptors. Our overall objective is to charac...

  17. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    EPA Science Inventory

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  18. Bridging the Gap From Screening Assays to Estrogenic Effects in Fish: Potential Roles of Multiple Estrogen Receptor Subtypes

    PubMed Central

    2015-01-01

    This study seeks to delineate the ligand interactions that drive biomarker induction in fish exposed to estrogenic pollutants and provide a case study on the capacity of human (h) estrogen receptor (ER)-based in vitro screening assays to predict estrogenic effects in aquatic species. Adult male Japanese medaka (Oryzias latipes) were exposed to solutions of singular steroidal estrogens or to the estrogenic extract of an anaerobic swine waste lagoon. All exposure concentrations were calibrated to be equipotent based on the yeast estrogen screen (YES), which reports activation of hERα. These exposures elicited significantly different magnitudes of hepatic vitellogenin and choriogenin gene induction in the male medaka. Effects of the same YES-calibrated solutions in the T47D-KBluc assay, which reports activation of hERα and hERβ, generally recapitulated observations in medaka. Using competitive ligand binding assays, it was found that the magnitude of vitellogenin/choriogenin induction by different estrogenic ligands correlated positively with preferential binding affinity for medaka ERβ subtypes, which are highly expressed in male medaka liver prior to estrogen exposure. Results support emerging evidence that ERβ subtypes are critically involved in the teleost estrogenic response, with the ERα:ERβ ratio being of particular importance. Accordingly, incorporation of multiple ER subtypes into estrogen screening protocols may increase predictive value for the risk assessment of aquatic systems, including complex estrogenic mixtures. PMID:24422420

  19. Molecular cloning of estrogen receptor alpha of the Nile crocodile.

    PubMed

    Katsu, Yoshinao; Myburgh, Jan; Kohno, Satomi; Swan, Gerry E; Guillette, Louis J; Iguchi, Taisen

    2006-03-01

    Estrogens are essential for normal reproductive activity in female and male vertebrates. In female reptiles, they are essential for ovarian differentiation during a critical developmental stage. To understand the molecular mechanisms of estrogen action in the Nile crocodile (Crocodylus niloticus), we have isolated cDNA encoding the estrogen receptor alpha (ERalpha) from the ovary. Degenerate PCR primers specific to ER were designed and used to amplify Nile crocodile cDNA from the ovary. The full-length Nile crocodile ERalpha cDNA was obtained using 5' and 3' rapid amplification cDNA ends (RACE). The deduced amino acid sequence of the Nile crocodile ERalpha showed high identity to the American alligator ERalpha (98%), caiman ER (98%), lizard ER (82%) and chicken ERalpha (92%), although phylogenetic analysis suggested profound differences in the rate of sequence evolution for vertebrate ER sequences. Expression of ERalpha was observed in the ovary and testis of juvenile Nile crocodiles. These data provide a novel tool allowing future studies examining the regulation and ontogenic expression of ERalpha in crocodiles and expands our knowledge of estrogen receptor evolution. PMID:16455277

  20. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    SciTech Connect

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay; Pakdel, Farzad; Brion, François; Aït-Aïssa, Sélim; Cavaillès, Vincent; Bourguet, William; Gustafsson, Jan-Ake; and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  1. Nonsteroidal Bivalent Estrogen Ligands - An Application of the Bivalent Concept to the Estrogen Receptor

    PubMed Central

    Shan, Min; Carlson, Kathryn E.; Bujotzek, Alexander; Wellner, Anja; Gust, Ronald; Weber, Marcus; Katzenellenbogen, John A.; Haag, Rainer

    2013-01-01

    The estrogen receptor (ER) is a hormone-regulated transcription factor that binds, as a dimer, to estrogens and to specific DNA sequences. To explore at a fundamental level the geometric and topological features of bivalent-ligand binding to the ER dimer, dimeric ER crystal structures were used to rationally design nonsteroidal bivalent estrogen ligands. Guided by this structure-based ligand design, we prepared two series of bivalent ligands (agonists and antagonists) tethered by flexible spacers of varying lengths (7–47Å) and evaluated their ER-binding affinities for the two ER subtypes and their biological activities in cell lines. Bivalent ligands based on the agonist diethylstilbestrol (DES) proved to be poor candidates, but bivalent ligands based on the antagonist hydroxytamoxifen (OHT) were well suited for intensive study. Binding affinities of the OHT-based bivalent ligands were related to spacer length in a distinctive fashion, reaching two maximum values at 14 and 29Å in both ER subtypes. These results demonstrate that the bivalent concept can operate in determining ER-ligand binding affinity and suggest that two distinct modes operate for the binding of bivalent estrogen ligands to the ER dimers, an intermolecular as well as an intramolecular mode. Our insights, particularly the possibility of intramolecular bivalent binding on a single ER monomer, may provide an alternative strategy to prepare more selective and active ER antagonists for endocrine therapy of breast cancer. PMID:23312071

  2. Estrogen receptors alpha mediates postischemic inflammation in chronically estrogen-deprived mice.

    PubMed

    Cordeau, Pierre; Lalancette-Hébert, Mélanie; Weng, Yuan Cheng; Kriz, Jasna

    2016-04-01

    Estrogens are known to exert neuroprotective and immuneomodulatory effects after stroke. However, at present, little is known about the role of estrogens and its receptors in postischemic inflammation after menopause. Here, we provide important in vivo evidence of a distinct shift in microglial phenotypes in the model of postmenopause brain. Using a model-system for live imaging of microglial activation in the context of chronic estrogen- and ERα-deficiency associated with aging, we observed a marked deregulation of the TLR2 signals and/or microglial activation in ovariectomized and/or ERα knockout mice. Further analysis revealed a 5.7-fold increase in IL-6, a 4.7-fold increase in phospho-Stat3 levels suggesting an overactivation of JAK/STAT3 pathway and significantly larger infarction in ERα knockouts chronically deprived of estrogen. Taken together, our results suggest that in the experimental model of menopause and/or aging, ERα mediates innate immune responses and/or microglial activation, and ischemia-induced production of IL-6. Based on our results, we propose that the loss of functional ERα may lead to deregulation of postischemic inflammatory responses and increased vulnerability to ischemic injury in aging female brains. PMID:26973103

  3. Rapid Signaling Actions of Environmental Estrogens in Developing Granule Cell Neurons Are Mediated by Estrogen Receptor β

    PubMed Central

    Le, Hoa H.; Belcher, Scott M.

    2010-01-01

    Estrogenic endocrine disrupting chemicals (EDCs) constitute a diverse group of man-made chemicals and natural compounds derived from plants and microbial metabolism. Estrogen-like actions are mediated via the nuclear hormone receptor activity of estrogen receptor (ER)α and ERβ and rapid regulation of intracellular signaling cascades. Previous study defined cerebellar granule cell neurons as estrogen responsive and that granule cell precursor viability was developmentally sensitive to estrogens. In this study experiments using Western blot analysis and pharmacological approaches have characterized the receptor and signaling modes of action of selective and nonselective estrogen ligands in developing cerebellar granule cells. Estrogen treatments were found to briefly increase ERK1/2-phosphorylation and then cause prolonged depression of ERK1/2 activity. The sensitivity of granule cell precursors to estrogen-induced cell death was found to require the integrated activation of membrane and intracellular ER signaling pathways. The sensitivity of granule cells to selective and nonselective ER agonists and a variety of estrogenic and nonestrogenic EDCs was also examined. The ERβ selective agonist DPN, but not the ERα selective agonist 4,4′,4′-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol or other ERα-specific ligands, stimulated cell death. Only EDCs with selective or nonselective ERβ activities like daidzein, equol, diethylstilbestrol, and bisphenol A were observed to induce E2-like neurotoxicity supporting the conclusion that estrogen sensitivity in granule cells is mediated via ERβ. The presented results also demonstrate the utility of estrogen sensitive developing granule cells as an in vitro assay for elucidating rapid estrogen-signaling mechanisms and to detect EDCs that act at ERβ to rapidly regulate intracellular signaling. PMID:20926581

  4. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions.

    PubMed

    Ghisari, Mandana; Bonefeld-Jorgensen, Eva Cecilie

    2009-08-25

    Plasticizers are additives used to increase the flexibility or plasticity of the material to which they are added, normally rigid plastic and as additives in paint and adhesives. They are suspected to interfere with the endocrine system, including the estrogen and the thyroid hormone (TH) systems. We investigated in vitro the thyroid hormone-like and estrogenic activities of a range of widely used plasticizers and phenols including benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di(2-ethylhexyl) phthalate (DEHP), bis(2-ethylhexyl) adipate (DEHA), 4-tert-octylphenol (tOP), 4-chloro-3-methylphenol (CMP), 2,4-dichlorophenol (2,4-DCP), 2-phenylphenol (2-PP) and resorcinol. The TH disrupting potential was determined by the effect on the TH-dependent rat pituitary GH3 cell proliferation (T-screen). The estrogenic activities of the compounds were assessed in MVLN cells, stably transfected with an estrogen receptor (ER) luciferase reporter vector. Furthermore, the combined effect of a multi-components mixture of six plasticizers was evaluated for its estrogenic and TH-like activities. All the tested compounds, but 2-PP, significantly affected the GH3 cell proliferation. tOP, BBP and DBP activated ER transactivity, whereas DEHP antagonized the 17beta-estradiol induced ER function. The mixture significantly induced ER transactivity in an additive manner, whereas in the T-screen, the observed mixture effect was lower than predicted, suggesting a potential antagonizing effect of the mixture. In conclusion, the tested plasticizers and phenols elicited endocrine-disrupting potential that can be mediated via interference with the estrogen and TH systems. Moreover, the observed mixture effect stresses the importance of considering the combined effect of the compounds for risk assessment of human health. PMID:19463926

  5. Limited species differences in estrogen receptor alpha-medicated reporter gene transactivation by xenoestrogens.

    PubMed

    Sumida, Kayo; Ooe, Norihisa; Saito, Koichi; Kaneko, Hideo

    2003-01-01

    Estrogen receptors (ERs) play an important role in estrogen function. However, it is well known that there are species differences in amino acid sequences of the ligand binding domains. Here, we report on the analysis of species differences in ER-dependent transactivation with some chemicals using reporter gene assays. Full-length ER cDNAs from human, rat, chicken, alligator (Caiman), whiptail lizard, African clawed frog and rainbow trout were prepared from hepatic mRNA by the RT-PCR method and inserted into expression plasmids. Both expression and reporter plasmids were transiently transfected into HeLa cells, and then the estrogenic effects of chemicals were analyzed in terms of induction of luciferase activity. No species differences in transactivation were found among human, rat, chicken, alligator, whiptail lizard and African clawed frog ERs. However, thermo-dependent alteration in susceptibility to 17-beta-estradiol was observed with the rainbow trout ER because of thermo-dependence of estrogen binding. PMID:12648522

  6. Activation of estrogen receptor alpha disrupts differentiation of the reproductive organs in chicken embryos.

    PubMed

    Mattsson, Anna; Olsson, Jan A; Brunström, Björn

    2011-06-01

    Gonadal estrogen plays an important role in the differentiation of a female phenotype in birds. Exogenous compounds that interfere with estrogen signaling, for instance by binding to the estrogen receptors alpha and beta (ERα and ERβ), are therefore potential disruptors of sexual differentiation in birds. The ERα agonist propyl-pyrazole-triol (PPT), the ERα antagonist methyl piperidino pyrazole (MPP) and the ERβ agonist diarylproprionitrile (DPN) were used in the present study to explore the roles of the ERs in normal and disrupted sex differentiation in the chicken embryo. Activation of ERα by PPT caused disturbed differentiation of the reproductive organs in both sexes. In male embryos, PPT caused left-side ovotestis formation and retention of the Müllerian ducts. In female embryos, PPT caused retention of the right Müllerian duct (which normally regresses) and malformation of both Müllerian ducts. PPT also induced hepatic expression of mRNA for the estrogen-regulated egg yolk protein apoVLDL II. Notably, none of these effects were observed following treatment with DPN. ERα-inactivation by MPP counteracted the action of PPT but had little effect by its own. Our results indicate that ERα plays an important role in sex differentiation of the reproductive tract in female chicken embryos and show that ERα can mediate xenoestrogen-induced disturbances of sex differentiation. PMID:21420409

  7. Selective estrogen receptor modulators: tissue specificity and clinical utility

    PubMed Central

    Martinkovich, Stephen; Shah, Darshan; Planey, Sonia Lobo; Arnott, John A

    2014-01-01

    Selective estrogen receptor modulators (SERMs) are a diverse group of nonsteroidal compounds that function as agonists or antagonists for estrogen receptors (ERs) in a target gene-specific and tissue-specific fashion. SERM specificity involves tissue-specific expression of ER subtypes, differential expression of co-regulatory proteins in various tissues, and varying ER conformational changes induced by ligand binding. To date, the major clinical applications of SERMs are their use in the prevention and treatment of breast cancer, the prevention of osteoporosis, and the maintenance of beneficial serum lipid profiles in postmenopausal women. However, SERMs have also been found to promote adverse effects, including thromboembolic events and, in some cases, carcinogenesis, that have proven to be obstacles in their clinical utility. In this review, we discuss the mechanisms of SERM tissue specificity and highlight the therapeutic application of well-known and emergent SERMs. PMID:25210448

  8. Expression of Estrogen Receptor α in the Mouse Cerebral Cortex

    PubMed Central

    Dietrich, Alicia K.; Humphreys, Gwendolyn I.; Nardulli, Ann M.

    2015-01-01

    Although estrogen receptor alpha (ERα) and 17β-estradiol play critical roles in protecting the cerebral cortex from ischemia-induced damage, there has been some controversy about the expression of ERα in this region of the brain. We have examined ERα mRNA and protein levels in the cerebral cortices of female mice at postnatal days 5 and 17 and at 4, 13, and 18 months of age. We found that although ERα transcript levels declined from postnatal day 5 through 18 months of age, ERα protein levels remained stable. Importantly, expression of the E2-regulated progesterone receptor gene was sustained in younger and in older females suggesting that age-related changes in estrogen responsiveness in the cerebral cortex are not due to the absence of ERα protein. PMID:25700604

  9. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  10. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription.

    PubMed

    Halachmi, S; Marden, E; Martin, G; MacKay, H; Abbondanza, C; Brown, M

    1994-06-01

    The estrogen receptor is a transcription factor which, when bound to estradiol, binds DNA and regulates expression of estrogen-responsive genes. A 160-kilodalton estrogen receptor-associated protein, ERAP160, was identified that exhibits estradiol-dependent binding to the receptor. Mutational analysis of the receptor shows that its ability to activate transcription parallels its ability to bind ERAP160. Antiestrogens are unable to promote ERAP160 binding and can block the estrogen-dependent interaction of the receptor and ERAP160 in a dose-dependent manner. This evidence suggests that ERAP160 may mediate estradiol-dependent transcriptional activation by the estrogen receptor. Furthermore, the ability of antiestrogens to block estrogen receptor-ERAP160 complex formation could account for their therapeutic effects in breast cancer. PMID:8197458

  11. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  12. ERbeta-selective estrogen receptor modulators produce antianxiety behavior when administered systemically to ovariectomized rats.

    PubMed

    Walf, Alicia A; Frye, Cheryl A

    2005-09-01

    17beta-Estradiol (E2) may influence anxiety behavior; however, its effects and mechanisms are not well understood. To determine whether E2's effects on anxiety behavior may involve actions at intracellular estrogen receptor (ER) alpha or beta isoforms, selective ER modulators (SERMs) were administered (10 microg; s.c.) to ovariectomized rats 48 h before testing for anxiety behavior. Rats received sesame oil vehicle, 17beta-E2, which has a high affinity for ERalpha and ERbeta, or SERMs that vary in their activity at ERalpha and beta. ERalpha-selective SERMs were propyl pyrazole triol (PPT), which has more selective effects at ERalpha, than does the other ERalpha SERM utilized, 17alpha-E2, which also binds ERbeta. ERbeta-selective SERMs were diarylpropionitrile (DPN) and 7,12-dihydrocoumestan (coumestrol). DPN is more selective at ERbeta than coumestrol, which also binds ERalpha. 17beta-E2 and ERbeta-selective SERMs (DPN, coumestrol) produced clear antianxiety behavior in the open field, elevated plus maze, emergence, light-dark transition, defensive freezing, and Vogel punished drinking tasks. Anxiety behavior of rats administered ERalpha-selective SERMs (PPT, 17alpha-E2) was not different from vehicle; however, PPT and 17alpha-E2 enhanced sexual receptivity in a manner similar to 17beta-E2. Coadministration of tamoxifen (10 mg/kg) blocked the antianxiety behavior produced by 17beta-E2, DPN, or coumestrol. Together, these data suggest that actions at ERbeta may underlie some of E2's antianxiety effects. PMID:15798780

  13. Biomarker Genes for Detecting Estrogenic Activity of Endocrine Disruptors via Estrogen Receptors

    PubMed Central

    Jung, Eui-Man; An, Beum-Soo; Yang, Hyun; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-01-01

    Endocrine disruptors (EDs) are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by binding to these receptors. EDs are therefore a global concern and assays should be developed to efficiently determine whether these compounds are detrimental to biological systems. Diverse experimental methods may help determine the endocrine disrupting potential of EDs and evaluate the adverse effects of a single and/or combination of these reagents. Currently, biomarkers have been employed to objectively measure EDs potency and understand the underlying mechanisms. Further studies are required to develop ideal screening methods and biomarkers to determine EDs potency at environmentally relevant concentrations. In this review, we describe the biomarkers for estrogenicity of EDs identified both in vitro and in vivo, and introduce a biomarker, cabindin-D9k (CaBP-9k), that may be used to assess estrogenic activity of EDs. PMID:22690157

  14. Estrogen-related receptor alpha is critical for the growth of estrogen receptor-negative breast cancer.

    PubMed

    Stein, Rebecca A; Chang, Ching-Yi; Kazmin, Dmitri A; Way, James; Schroeder, Thies; Wergin, Melanie; Dewhirst, Mark W; McDonnell, Donald P

    2008-11-01

    Expression of estrogen-related receptor alpha (ERRalpha) has recently been shown to carry negative prognostic significance in breast and ovarian cancers. The specific role of this orphan nuclear receptor in tumor growth and progression, however, is yet to be fully understood. The significant homology between estrogen receptor alpha (ERalpha) and ERRalpha initially suggested that these receptors may have similar transcriptional targets. Using the well-characterized ERalpha-positive MCF-7 breast cancer cell line, we sought to gain a genome-wide picture of ERalpha-ERRalpha cross-talk using an unbiased microarray approach. In addition to generating a host of novel ERRalpha target genes, this study yielded the surprising result that most ERRalpha-regulated genes are unrelated to estrogen signaling. The relatively small number of genes regulated by both ERalpha and ERRalpha led us to expand our study to the more aggressive and less clinically treatable ERalpha-negative class of breast cancers. In this setting, we found that ERRalpha expression is required for the basal level of expression of many known and novel ERRalpha target genes. Introduction of a small interfering RNA directed to ERRalpha into the highly aggressive breast carcinoma MDA-MB-231 cell line dramatically reduced the migratory potential of these cells. Although stable knockdown of ERRalpha expression in MDA-MB-231 cells had no effect on in vitro cell proliferation, a significant reduction of tumor growth rate was observed when these cells were implanted as xenografts. Our results confirm a role for ERRalpha in breast cancer growth and highlight it as a potential therapeutic target for estrogen receptor-negative breast cancer. PMID:18974123

  15. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals☆☆☆

    PubMed Central

    Bannister, Richard; Beresford, Nicola; Granger, David W.; Pounds, Nadine A.; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J.

    2013-01-01

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p > 0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10−6 M for Gen and >10−5 M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of

  16. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist.

    PubMed

    Wang, Junjian; Fang, Fang; Huang, Zhiyan; Wang, Yanfei; Wong, Chiwai

    2009-02-18

    Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRalpha and ERRgamma). We demonstrated that kaempferol binds to ERRalpha and ERRgamma and blocks their interaction with coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors. PMID:19171140

  17. Splice isoform estrogen receptors as integral transmembrane proteins

    PubMed Central

    Kim, Kyung Hee; Toomre, Derek; Bender, Jeffrey R.

    2011-01-01

    In addition to enhancing or repressing transcription, steroid hormone receptors rapidly transduce kinase activation signals. On ligand engagement, an N-terminus–truncated splice isoform of estrogen receptor (ER) α, ER46, triggers membrane-initiated signals, resulting in endothelial nitric oxide synthase (eNOS) activation and endothelial NO production. The orientation of ER46 at the plasma membrane is incompletely defined. With the use of ecliptic pHluorin-fused ER46, total internal reflection fluorescence microscopy in live human endothelial cells illustrates that ER46 can topologically conform to a type I transmembrane protein structure. Mutation of isoleucine-386 at the center of ER46's transmembrane hydrophobic core prevents membrane spanning, obscures the N-terminal ectodomain, and effects a marked reduction in membrane-impermeant estrogen binding with diminished rapid eNOS activation and NO production, despite maintained genomic induction of an estrogen response element–luciferase reporter. Thus there exist pools of transmembrane steroid hormone receptors that are efficient signaling molecules and potential novel therapeutic targets. PMID:21937726

  18. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions. PMID:26037634

  19. Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2016-04-01

    In vertebrates, estrogens play fundamental roles in regulating reproductive activities through estrogen receptors (ESRs), and disruption of estrogen signaling is now of global concern for both wildlife and human health. To date, ESRs of only a limited number of species have been characterized. We investigated the functional diversity and molecular basis or ligand sensitivity of ESRs among ray-finned fish species (Actinopterygii), the most variable group within vertebrates. We cloned and characterized ESRs from several key species in the evolution of ray-finned fish including bichir (Polypteriformes, ESR1 and ESR2) at the basal lineage of ray-finned fish, and arowana (Osteoglossiformes, ESR1 and ESR2b) and eel (Anguilliformes, ESR1, ESR2a and ESR2b) both belonging to ancient early-branching lineages of teleosts, and suggest that ESR2a and ESR2b emerged through teleost-specific whole genome duplication, but an ESR1 paralogue has been lost in the early lineage of euteleost fish species. All cloned ESR isoforms showed similar responses to endogenous and synthetic steroidal estrogens, but they responded differently to non-steroidal estrogenic endocrine disrupting chemicals (EDCs) (e.g., ESR2a exhibits a weaker reporter activity compared with ESR2b). We show that variation in ligand sensitivity of ESRs can be attributed to phylogeny among species of different taxonomic groups in ray-finned fish. The molecular information provided contributes both to understanding of the comparative role of ESRs in the reproductive biology of fish and their comparative responses to EDCs. PMID:26707410

  20. Breast-related effects of selective estrogen receptor modulators and tissue-selective estrogen complexes

    PubMed Central

    2014-01-01

    A number of available treatments provide relief of menopausal symptoms and prevention of postmenopausal osteoporosis. However, as breast safety is a major concern, new options are needed, particularly agents with an improved mammary safety profile. Results from several large randomized and observational studies have shown an association between hormone therapy, particularly combined estrogen-progestin therapy, and a small increased risk of breast cancer and breast pain or tenderness. In addition, progestin-containing hormone therapy has been shown to increase mammographic breast density, which is an important risk factor for breast cancer. Selective estrogen receptor modulators (SERMs) provide bone protection, are generally well tolerated, and have demonstrated reductions in breast cancer risk, but do not relieve menopausal symptoms (that is, vasomotor symptoms). Tissue-selective estrogen complexes (TSECs) pair a SERM with one or more estrogens and aim to blend the positive effects of the components to provide relief of menopausal symptoms and prevention of postmenopausal osteoporosis without stimulating the breast or endometrium. One TSEC combination pairing conjugated estrogens (CEs) with the SERM bazedoxifene (BZA) has completed clinical development and is now available as an alternative option for menopausal therapy. Preclinical evidence suggests that CE/BZA induces inhibitory effects on breast tissue, and phase 3 clinical studies suggest breast neutrality, with no increases seen in breast tenderness, breast density, or cancer. In non-hysterectomized postmenopausal women, CE/BZA was associated with increased bone mineral density and relief of menopausal symptoms, along with endometrial safety. Taken together, these results support the potential of CE/BZA for the relief of menopausal symptoms and prevention of postmenopausal osteoporosis combined with breast and endometrial safety. PMID:25928299

  1. Selective binding of the estrogen receptor to one strand of the estrogen responsive element.

    PubMed Central

    Mukherjee, R

    1993-01-01

    The human estrogen receptor (hER) activates gene transcription by binding to cognate palindromic sequences called estrogen responsive elements (ERE). I used gel retardation assays and oligonucleotides containing the ERE from the Xenopus vitellogenin gene to study the interaction of the hER with the ERE. I observed that the hER bound to double-stranded ERE and to the single strand of the ERE that had T in the center with nearly equal affinity, but not to the strand which had A in the center. Interchanging the two central nucleotides changed the strand specificity. Binding of the hER to a single strand is extremely sensitive to temperature. Initial recognition of one of the two strands of the ERE may be involved in the binding of the hER to the ERE. Images PMID:8332462

  2. Proestrous compared to diestrous wildtype, but not estrogen receptor beta knockout, mice have better performance in the spontaneous alternation and object recognition tasks and reduced anxiety-like behavior in the elevated plus and mirror maze

    PubMed Central

    Walf, Alicia A.; Koonce, Carolyn; Manley, Kevin; Frye, Cheryl A.

    2008-01-01

    17β-Estradiol (E2) may influence cognitive and/or affective behavior in part via the β isoform of the estrogen receptor (ERβ). Endocrine status and behavior in cognitive (object recognition, T-maze), anxiety (open field, elevated plus maze, mirror maze, emergence), and motor/coordination (rotarod, activity chamber) tasks of proestrous and diestrous wildtype (WT) and ERβ knockout (βERKO) mice was examined. Proestrous (WT or βERKO), versus diestrous, mice had higher E2 and progestin levels in plasma, hippocampus, and cortex. The only effect of genotype on hormone levels was for corticosterone, such that βERKO mice had higher concentrations of corticosterone than did WT mice. Proestrous WT, but not βERKO, mice had improved performance in the object recognition (greater percentage of time with novel object) and T-maze tasks (greater percentage of spontaneous alternations) and less anxiety-like behavior in the plus maze (increased duration on open arms) and mirror chamber task (increased duration in mirror) than did diestrous mice. This pattern was not seen in the rotarod, open field, or activity monitor, suggesting effects may be specific to affective and cognitive behavior, rather than motor behavior/coordination. Thus, enhanced performance in cognitive tasks and anti-anxiety-like behavior of proestrous mice may require actions of ERβ in the hippocampus and/or cortex. PMID:18926853

  3. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    SciTech Connect

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  4. Different regions of the estrogen receptor are required for synergistic action with the glucocorticoid and progesterone receptors.

    PubMed

    Cato, A C; Ponta, H

    1989-12-01

    Estrogen and progesterone or estrogen and glucocorticoid receptors functionally cooperate in gene activation if their cognate binding sites are close to one another. These interactions have been described as synergism of action of the steroid receptors. The mechanism by which synergism is achieved is not clear, although protein-protein interaction of the receptors is one of the favorite models. In transfection experiments with receptor expression vectors and a reporter gene containing estrogen and progesterone-glucocorticoid receptor binding sites, we have examined the effects that different portions of the various receptors have on synergism. N-terminal domains of the chicken progesterone and human glucocorticoid receptors, when deleted, abolished the synergistic action of these receptors with the estrogen receptor. Deletion of the carboxy-terminal amino acids 341 to 595 of the estrogen receptor produced a mutant receptor that could not trans-activate on its own. This mutant receptor did not affect the action of the glucocorticoid receptor but functioned synergistically with the progesterone receptor. We therefore conclude that the synergistic action of the receptors for estrogen and progesterone is mechanistically different from the synergistic action of the receptors for estrogen and glucocorticoid. PMID:2586523

  5. Colocalization of Estrogen Receptors with the Fluorescent Tamoxifen Derivative, FLTX1, Analyzed by Confocal Microscopy.

    PubMed

    Morales, Araceli; Marín, Raquel; Marrero-Alonso, Jorge; Boto, Alicia; Díaz, Mario

    2016-01-01

    Tamoxifen is a selective estrogen receptor modulator that competitively binds the ligand-binding domain of estrogen receptors. Binding of tamoxifen displaces its cognate ligand, 17β-estradiol, thereby hampering the activation of estrogen receptors. Cellular labeling of ER is typically carried out using specific antibodies which require permeabilization of cells, incubation with secondary antibodies, and are expensive and time consuming. In this article, we describe the usefulness of FLTX1, a novel fluorescent tamoxifen derivative, which allows the labeling of estrogen receptors in immunocytochemistry and immunohistochemistry studies, both under permeabilized and non-permeabilized conditions. Further, besides labeling canonical estrogen receptors, this novel fluorescent probe is also suitable for the identification of unconventional targets such membrane estrogen receptors as well as other noncanonical targets, some of which are likely responsible for the number of undesired side effects reported during long-term tamoxifen treatments. PMID:26585134

  6. Ontogeny of the estrogen receptor in the chick oviduct.

    PubMed

    Joensuu, T K; Tuohimaa, P J

    1989-01-01

    The distribution of estrogen receptor (ER) in the chick oviduct was studied immunohistochemically with monoclonal antibody H222, known to recognize chick ER [1]. The ontogeny of ER appeared to be very dependent on cellular differentiation. In the undifferentiated oviduct ER was located in the epithelial, mesothelial, stromal and smooth muscle cells. During differentiation ER disappeared from the surface epithelium, mesothelium, stromal and smooth muscle cells. At the onset of differentiation the protodifferentiated gland cells invaginated into the underlying stroma; these cells expressed ER. In the fully differentiated chick oviduct ER was located only in the tubular gland cells, which correlates with the known transcriptional activity of estrogen-induced ovalbumin-gene. However, we have reported estrogen dependency of PR also in ER-negative stromal cells, the mechanism being so far unknown. It is possible that there are mechanisms other than ER regulating the expression of PR. Estrogen-induced differentiation did not differ from normal maturation in regard to the distribution of ER. Since stromal, epithelial, mesothelial and smooth muscle cells were ER-negative in the mature oviduct, the concentration of ER, i.e. ER binding sites/cell is underestimated when whole tissue homogenates are used. PMID:2626020

  7. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  8. Changes in estrogen receptor ERalpha and ERbeta expression in chicken (Gallus domesticus) adrenal gland during short-fasting and refeeding.

    PubMed

    Błachuta, Małgorzata; Wrońska-Fortuna, Danuta

    2012-01-01

    Estrogen receptors have been found in the adrenal gland of rodents, monkeys, mares and sheep, indicating a connection between sex steroids and the activity of the adrenal gland. In the present study, the expression of estrogen receptors alpha (ERalpha) and beta (ERbeta) in the chicken adrenal gland during stress induced by 24 h fasting and after refeeding was determined using reverse transcription and the polymerase chain reaction (RT-PCR). The presence of both ER mRNAs in the adrenal gland of all examined groups was found. The relative expression of ERalpha mRNA was higher than ERbeta mRNA. There were no significant differences in ERalpha mRNA expression among the examined groups. On the contrary, we observed changes in ERbeta expression during stress conditions. These findings indicate different pathways of estrogen action in the avian adrenal gland. Furthermore, changes in ERbeta level suggest that this form of estrogen receptor plays a predominant role for estrogen action in the chicken adrenal gland during stress. PMID:23342917

  9. Estrogen receptor α and G-protein coupled estrogen receptor 1 are localized to GABAergic neurons in the dorsal striatum.

    PubMed

    Almey, Anne; Milner, Teresa A; Brake, Wayne G

    2016-05-27

    Estrogens affect dopamine transmission in the striatum, increasing dopamine availability, maintaining D2 receptor density, and reducing the availability of the dopamine transporter. Some of these effects of estrogens are rapid, suggesting that they are mediated by membrane associated receptors. Recently our group demonstrated that there is extra-nuclear labeling for ERα, ERβ, and GPER1 in the striatum, but that ERα and GPER1 are not localized to dopaminergic neurons in this region. GABAergic neurons are the most common type of neuron in the striatum, and changes in GABA transmission affect dopamine transmission. Thus, to determine whether ERα or GPER1 are localized to GABAergic neurons, we double labeled the striatum with antibodies for ERα or GPER1 and GABA and examined them using electron microscopy. Ultrastructural analysis revealed that ERα and GPER1 are localized exclusively to extranuclear sites in the striatum, and ∼35% of the dendrites and axon terminals labeled for these receptors contain GABA immunoreactivity. Binding at membrane-associated ERα and GPER1 could account for rapid estrogen-induced decreases in GABA transmission in the striatum, which, in turn, could affect dopamine transmission in this region. PMID:27080432

  10. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  11. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  12. The G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Nuclear Estrogen Receptor Activity and Stimulates Novel Phosphoproteomic Signatures.

    PubMed

    Smith, L Cody; Ralston-Hooper, Kimberly J; Ferguson, P Lee; Sabo-Attwood, Tara

    2016-06-01

    Estrogen exerts cellular effects through both nuclear (ESR1 and ESR2) and membrane-bound estrogen receptors (G-protein coupled estrogen receptor, GPER); however, it is unclear if they act independently or engage in crosstalk to influence hormonal responses. To investigate each receptor's role in proliferation, transcriptional activation, and protein phosphorylation in breast cancer cells (MCF-7), we employed selective agonists for ESR1 propyl-pyrazole-triol (PPT), ESR2 diarylpropionitrile (DPN), and GPER (G-1) and also determined the impact of xenoestrogens bisphenol-A (BPA) and genistein on these effects. As anticipated, 17β-estradiol (E2), PPT, DPN, BPA, and genistein each enhanced proliferation and activation of an ERE-driven reporter gene whereas G-1 had no significant impact. However, G-1 significantly reduced E2-, PPT-, DPN-, BPA-, and genistein-induced proliferation and ERE activation at doses greater than 500 nM indicating that G-1 mediated inhibition is not ESR isotype specific. As membrane receptors initiate cascades of phosphorylation events, we performed a global phosphoproteomic analysis on cells exposed to E2 or G-1 to identify potential targets of receptor crosstalk via downstream protein phosphorylation targets. Of the 211 phosphorylated proteins identified, 40 and 13 phosphoproteins were specifically modified by E2 and G-1, respectively. Subnetwork enrichment analysis revealed several processes related to cell cycle were specifically enriched by G-1 compared with E2. Further there existed a number of newly identified proteins that were specifically phosphorylated by G-1. These phosphorylation networks highlight specific proteins that may modulate the inhibitory effects of G-1 and suggest a novel role for interference with nuclear receptor activity driven by E2 and xenoestrogens. PMID:27026707

  13. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump.

    PubMed

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina; Deng, Ruitang

    2015-04-01

    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR. PMID:25675114

  14. Social memory associated with estrogen receptor polymorphisms in women.

    PubMed

    Karlsson, Sara; Henningsson, Susanne; Hovey, Daniel; Zettergren, Anna; Jonsson, Lina; Cortes, Diana S; Melke, Jonas; Laukka, Petri; Fischer, Håkan; Westberg, Lars

    2016-06-01

    The ability to recognize the identity of faces and voices is essential for social relationships. Although the heritability of social memory is high, knowledge about the contributing genes is sparse. Since sex differences and rodent studies support an influence of estrogens and androgens on social memory, polymorphisms in the estrogen and androgen receptor genes (ESR1, ESR2, AR) are candidates for this trait. Recognition of faces and vocal sounds, separately and combined, was investigated in 490 subjects, genotyped for 10 single nucleotide polymorphisms (SNPs) in ESR1, four in ESR2 and one in the AR Four of the associations survived correction for multiple testing: women carrying rare alleles of the three ESR2 SNPs, rs928554, rs1271572 and rs1256030, in linkage disequilibrium with each other, displayed superior face recognition compared with non-carriers. Furthermore, the uncommon genotype of the ESR1 SNP rs2504063 was associated with better recognition of identity through vocal sounds, also specifically in women. This study demonstrates evidence for associations in women between face recognition and variation in ESR2, and recognition of identity through vocal sounds and variation in ESR1. These results suggest that estrogen receptors may regulate social memory function in humans, in line with what has previously been established in mice. PMID:26955855

  15. Pancreatic Insulin Content Regulation by the Estrogen Receptor ERα

    PubMed Central

    Alonso-Magdalena, Paloma; Ropero, Ana B.; Carrera, M. Pilar; Cederroth, Christopher R.; Baquié, Mathurin; Gauthier, Benoit R.; Nef, Serge; Stefani, Enrico; Nadal, Angel

    2008-01-01

    The function of pancreatic β-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ERα and ERβ, are important molecules involved in glucose metabolism, yet their role in pancreatic β-cell physiology is still greatly unknown. In this report we show that both ERα and ERβ are present in pancreatic β-cells. Long term exposure to physiological concentrations of 17β-estradiol (E2) increased β-cell insulin content, insulin gene expression and insulin release, yet pancreatic β-cell mass was unaltered. The up-regulation of pancreatic β-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ERα and ERβ agonists as well as ERαKO and ERβKO mice suggests that the estrogen receptor involved is ERα. The up-regulation of pancreatic insulin content by ERα activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis. PMID:18446233

  16. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation.

    PubMed

    Ho, Ming-Fen; Bongartz, Tim; Liu, Mohan; Kalari, Krishna R; Goss, Paul E; Shepherd, Lois E; Goetz, Matthew P; Kubo, Michiaki; Ingle, James N; Wang, Liewei; Weinshilboum, Richard M

    2016-03-01

    We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion. PMID:26866883

  17. Developmental phenotype of a membrane only estrogen receptor alpha (MOER) mouse.

    PubMed

    Pedram, Ali; Razandi, Mahnaz; Kim, Jin K; O'Mahony, Fiona; Lee, Eva Yhp; Luderer, Ulrike; Levin, Ellis R

    2009-02-01

    Estrogen receptors (ERs) alpha and beta exist as nuclear, cytoplasmic, and membrane cellular pools in a wide variety of organs. The relative contributions of each ERalpha pool to in vivo phenotypes resulting from estrogen signaling have not been determined. To address this, we generated a transgenic mouse expressing only a functional E domain of ERalpha at the plasma membrane (MOER). Cells isolated from many organs showed membrane only localized E domain of ERalpha and no other receptor pools. Liver cells from MOER and wild type mice responded to 17-beta-estradiol (E2) with comparable activation of ERK and phosphatidylinositol 3-kinase, not seen in cells from ERalphaKO mice. Mating the MOER female mice with proven male wild type breeders produced no pregnancies because the uterus and vagina of the MOER female mice were extremely atrophic. Ovaries of MOER and homozygous Strasbourg ERalphaKO mice showed multiple hemorrhagic cysts and no corpus luteum, and the mammary gland development in both MOER and ERalphaKO mice was rudimentary. Despite elevated serum E2 levels, serum LH was not suppressed, and prolactin levels were low in MOER mice. MOER and Strasbourg female mice showed plentiful abdominal visceral and other depots of fat and increased body weight compared to wild type mice despite comparable food consumption. These results provide strong evidence that the normal development and adult functions of important organs in female mice requires nuclear ERalpha and is not rescued by membrane ERalpha domain expression alone. PMID:19054762

  18. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...

  19. Dynamic Estrogen Receptor Interactomes Control Estrogen-Responsive Trefoil Factor (TFF) Locus Cell-Specific Activities

    PubMed Central

    Quintin, Justine; Le Péron, Christine; Palierne, Gaëlle; Bizot, Maud; Cunha, Stéphanie; Sérandour, Aurélien A.; Avner, Stéphane; Henry, Catherine; Percevault, Frédéric; Belaud-Rotureau, Marc-Antoine; Huet, Sébastien; Watrin, Erwan; Eeckhoute, Jérôme; Legagneux, Vincent; Salbert, Gilles

    2014-01-01

    Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur. PMID:24752895

  20. Estrogen Signalling and the Metabolic Syndrome: Targeting the Hepatic Estrogen Receptor Alpha Action

    PubMed Central

    Matic, Marko; Bryzgalova, Galyna; Gao, Hui; Antonson, Per; Humire, Patricia; Omoto, Yoko; Portwood, Neil; Pramfalk, Camilla; Efendic, Suad; Berggren, Per-Olof; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2013-01-01

    An increasing body of evidence now links estrogenic signalling with the metabolic syndrome (MS). Despite the beneficial estrogenic effects in reversing some of the MS symptoms, the underlying mechanisms remain largely undiscovered. We have previously shown that total estrogen receptor alpha (ERα) knockout (KO) mice exhibit hepatic insulin resistance. To determine whether liver-selective ablation of ERα recapitulates metabolic phenotypes of ERKO mice we generated a liver-selective ERαKO mouse model, LERKO. We demonstrate that LERKO mice have efficient reduction of ERα selectively within the liver. However, LERKO and wild type control mice do not differ in body weight, and have a comparable hormone profile as well as insulin and glucose response, even when challenged with a high fat diet. Furthermore, LERKO mice display very minor changes in their hepatic transcript profile. Collectively, our findings indicate that hepatic ERα action may not be the responsible factor for the previously identified hepatic insulin resistance in ERαKO mice. PMID:23451233

  1. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1.

    PubMed

    Pelekanou, Vasiliki; Kampa, Marilena; Kiagiadaki, Foteini; Deli, Alexandra; Theodoropoulos, Panayiotis; Agrogiannis, George; Patsouris, Efstratios; Tsapis, Andreas; Castanas, Elias; Notas, George

    2016-02-01

    Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes. PMID:26394816

  2. Estrogen has anti-amyloidogenic effects on Alzheimer's {beta}-amyloid fibrils in vitro

    SciTech Connect

    Morinaga, Akiyoshi; Hirohata, Mie; Ono, Kenjiro; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2007-08-03

    Inhibition of the assembly of amyloid {beta}-peptide (A{beta}) as well as the destabilization of preformed {beta}-amyloid fibrils (fA{beta}) in the central nervous system could be valuable therapeutics of patients with Alzheimer's disease (AD). Epidemiological studies have indicated that estrogen therapy reduced the risk of developing AD in women. Here, we examined the effects of estrogen (estrone (E1), estradiol (E2), and estriol (E3)) and related sexual steroids (androstenedione (AND) and testosterone (TES)) on the polymerization, extension and destabilization of fA{beta}(1-42) and fA{beta}(1-40) at pH 7.5 at 37 {sup o}C in vitro, using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies. E1, E2, and E3 dose-dependently inhibited the formation, as well as destabilization of fA{beta}s. The overall anti-amyloidogenic activity of these molecules was in the order of: E3 > E2 = E1 >>AND = TES. Estrogen could be a potential therapeutic agent to prevent or delay AD progression.

  3. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β.

    PubMed

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions. PMID:26812056

  4. Interaction of [3H] estradiol - and [3H] monohydroxytamoxifen-estrogen receptor complexes with a monoclonal antibody.

    PubMed

    Tate, A C; DeSombre, E R; Greene, G L; Jensen, E V; Jordan, V C

    1983-01-01

    The aim of this study was to compare and contrast the interaction of estrogen [( 3H]17 beta-estradiol)- or antiestrogen [( 3H]monohydroxytamoxifen)-receptor complexes from human breast tumor cytosols with monoclonal antibodies raised to the human breast tumor estrogen receptor. Breast tumor cytosols containing estrogen receptor which sedimented as radiolabeled peaks in either the 8S, 8S and 4S, or 4S regions of sucrose density gradients, interacted with the monoclonal antibody D547 to produce a broad 9-10S peak, a broad 8S-10S peak, or a more discrete 8S peak, respectively. On high salt (0.4M KC1) sucrose density gradients the 4S ligand-receptor complex plus antibody produced a binding peak at approximately the 8S region of the gradient. These sedimentation studies with the monoclonal antibody D547, and similar studies with the monoclonal antibody D58, could detect no differences in the cytosolic estrogen receptor whether complexed with [3H]estradiol or with [3H]monohydroxytamoxifen. These observations were confirmed by Scatchard equilibrium saturation analysis and sucrose density gradient analysis of cytosols from the MCF-7 human breast cancer cell line. The antibody D547 interacted with 8S ER from these cytosols to produce a broad 8S-10S peak, but the antibody produced no change in the affinity or number of binding sites present in these cytosols. It seems, therefore, that the antigenic determinants recognized by these particular antibodies on the breast tumor cytosolic receptor are not significantly altered by the binding of either an estrogen or an antiestrogen to the receptor. PMID:6671136

  5. An EGF receptor inhibitor induces RAR-{beta} expression in breast and ovarian cancer cells

    SciTech Connect

    Grunt, Thomas W. . E-mail: thomas.grunt@meduniwien.ac.at; Puckmair, Klaudia; Tomek, Katharina; Kainz, Birgit; Gaiger, Alexander

    2005-04-22

    Inhibition of the epidermal growth factor (EGF)-receptor (EGFR) has become a promising anticancer treatment strategy. In addition, application of retinoids yields encouraging results for cancer prevention and therapy. Many tumors express no or low amounts of retinoic acid receptor-{beta}2 (RAR-{beta}2) due to epigenetic silencing via DNA hypermethylation. RAR-{beta}2 is the main mediator of the antiproliferative effect of retinoids. RAR-{beta}2 re-expression causes reversal of transformation, cell cycle arrest, and restoration of retinoid sensitivity. RAR-{beta}2 is thus a tumor suppressor. Western blotting, colorimetric in vitro cell proliferation assays, and reverse transcription-polymerase chain reaction demonstrated that the EGFR inhibitor PD153035 not only blocked activation of EGFR and inhibited cell growth, but also stimulated RAR-{beta} expression in MDA-MB-468 breast and OVCAR-3 ovarian carcinoma cells. Upregulation of RAR-{beta} by PD153035 was confirmed by real-time reverse transcription-polymerase chain reaction. In contrast, expression of other retinoid receptors and of estrogen receptor-{alpha} was not affected. PD153035-mediated re-induction of RAR-{beta} was associated with demethylation of the RAR-{beta}2 gene promoter P2 as demonstrated by methylation-specific polymerase chain reaction. These novel results on the ErbB/retinoid receptor cross-talk may be useful for designing future anticancer combination regimens.

  6. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  7. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    SciTech Connect

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  8. Localization of estrogen receptor in the central lymphoid organs of chickens during the late stage of embryogenesis.

    PubMed

    Katayama, Masafumi; Fukuda, Tomokazu; Narabara, Kiyoaki; Abe, Asaki; Kondo, Yasuhiro

    2012-01-01

    Immunological function in chicks is greatly affected by estrogen treatment during embryogenesis, but the mechanism of the estrogen effect is not fully understood. To elucidate the effect of estrogen on immune function, we observed estrogen receptor expression in the thymus and bursa of chick embryos by immunohistochemistry. We compared the distribution of estrogen receptor-positive cells with that of keratin-positive epithelial cells. Intense expression of estrogen receptors was detected in thymic and bursal lymphocytes. In peripheral lymphocytes, ER mRNA was detected by RT-PCR analysis. The results of fluorescence-activated cell sorting analysis indicated that the estrogen receptor was expressed in the cytoplasm of the lymphocytes. Furthermore, intense expression of the estrogen receptor was also confirmed in thymic Hassall's corpuscles, bursal follicle-associated epithelial cells, and the bursal interfollicular epithelium. Our results indicate that estrogen affects the differentiation of thymic and bursal lymphocytes, suggesting that the underlying role for estrogen in immune function. PMID:23132558

  9. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations. PMID:26528239

  10. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  11. Expression of estrogen-related receptor gamma (ERRgamma) in human skin.

    PubMed

    Krahn-Bertil, Elodie; Bolzinger, Marie-Alexandrine; Andre, Valérie; Orly, Isabelle; Kanitakis, Jean; Rousselle, Patricia; Damour, Odile

    2008-01-01

    Skin is a non-classical target for estrogens. Despite evidence showing that estrogen receptors (ER) are expressed in skin, there are still extensive gaps in our understanding of how estrogens exert their action in non-reproductive tissues. Estrogen-related receptor gamma (ERRgamma), an orphan member of the nuclear receptor superfamily, shows a strong sequence homology with estrogen receptor alpha but it does not bind estradiol. Here, for the first time, we demonstrate the expression of ERRgamma in adult human skin. ERRgamma mRNA was detected in the keratinocytes and fibroblasts of 8 female donor skins using RT-PCR. The presence of the protein was confirmed using immunohistochemistry on 11 adult human skins and Western Blotting on monolayer-cultures of fibroblasts and keratinocytes from respectively 4 and 2 donors. This study shows that ERRgamma is expressed in human skin and could intervene in a potentially new estrogen signaling pathway in the skin. PMID:18573717

  12. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  13. Molecular Background of Estrogen Receptor Gene Expression in Endometriotic Cells.

    PubMed

    Izawa, Masao; Taniguchi, Fuminori; Harada, Tasuku

    2016-07-01

    The molecular background of estrogen receptor (ER) expression is important to understand the pathophysiology of the high estrogen environment in endometriosis. However, the molecular details have not been fully understood. The objective of this study is to evaluate the molecular background of ERα and ERβ messenger RNA (mRNA) expression in endometriotic cells. The following summarizes our observations: (1) ERα mRNA expression in endometriotic cells was estimated to be approximately one-tenth of that in endometrial cells. (2) Three mRNAs, which include 3 different 5'-untranslated exons tagged to an open reading frame of wild-type ERα, were detected. (3) Expression of ERβ mRNA depends mostly on 0N promoter and includes 2 open reading frames: one for a wild-type ERβ1 and another for a splice variant ERβ2. (4) Expression of ERβ1 mRNA was approximately 40-fold higher than that in endometrial cells. (5) Expression of ERβ2 mRNA was almost at a comparable level of the ERβ1. 9 (6) ERα and ERβ mRNAs are equivalently expressed in endometriotic cells. These observations show the molecular background of ER mRNA expression in endometriotic cells and provide a clue to further understanding the estrogen-dependent pathophysiology leading to clinical application in endometriosis. PMID:26704524

  14. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  15. Polyester monomers lack ability to bind and activate both androgenic and estrogenic receptors as determined by In Vitro and In Silico methods

    PubMed Central

    Osimitz, Thomas G.; Welsh, William J.; Ai, Ni; Toole, Colleen

    2015-01-01

    The paper presents results from the screening of seven monomers used by Eastman Chemical to make various polymers. Ethylene glycol, diethylene glycol, polytetramethylene glycol, isophthalic acid, monosodium-5-sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, and dimethylcyclohexanedicarboxylate were screened for potential androgenicity or estrogenicity. The following studies were conducted: QSAR for binding to the AR and ER, in vitro Androgen Receptor Binding Assay, in vitro Estrogen Receptor Binding Assays (alpha and beta isoforms), in vitro Androgen Receptor Transactivation Assay in human cells, and in vitro Estrogen Receptor Transactivation Assay in human cells. None of the QSAR models predicted that any of the monomers possessed appreciable binding affinity for either AR or ER. Binding assays showed no evidence of interaction with either the AR or the alpha or beta ER receptors. Similarly, the AR and ER transactivation assays were negative. Moreover, six of the seven monomers have been subjected to 13-week and developmental toxicity studies in rats with no androgen- or estrogen-related effects being noted. Given the negative results of the in vitro screening assays (except PMG which demonstrated cytotoxicity) as well as available repeated dose and developmental and reproductive studies, the data suggest that none of the monomers tested exhibit androgenic or estrogenic hazards. PMID:25455886

  16. Uterine Epithelial Cell Estrogen Receptor Alpha-Dependent and -Independent Genomic Profiles That Underlie Estrogen Responses in Mice1

    PubMed Central

    Winuthayanon, Wipawee; Hewitt, Sylvia C.; Korach, Kenneth S.

    2014-01-01

    ABSTRACT Estrogens exert their activity through estrogen receptor alpha (ERalpha) to stimulate hypertrophy and hyperplasia in the uterus. A uterine epithelial ERalpha conditional knockout mouse model (Wnt7aCre+;Esr1f/f or cKO) demonstrated that ERalpha in the epithelial cells was dispensable for an initial uterine proliferative response to 17beta-estradiol (E2) but required for subsequent uterine biological responses. This study aimed to characterize the differential gene expression patterns induced by E2 in the presence or absence of epithelial ERalpha. RNA microarray analysis revealed that approximately 20% of the genes differentially expressed at 2 h were epithelial ERalpha independent, as they were preserved in the cKO uteri. This indicates that early uterine transcripts mediated by stromal ERalpha are sufficient to promote initial proliferative responses. However, more than 90% of the differentially expressed transcripts at 24 h were not regulated in the cKO, indicating that the majority of later transcriptional regulation required epithelial ERalpha, especially those involved in mitosis. This shows that loss of regulation of these later transcripts results in blunted subsequent uterine growth after 3 days of E2 treatment. Additionally, progesterone's ability to inhibit E2-induced epithelial cell proliferation was impaired, consistent with a uterine receptivity defect that contributes to cKO infertility. These transcriptional profiles correlate with our previously observed biological responses, in which the initial proliferative response is independent of epithelial ERalpha and thus dependent on stromal ERalpha, yet epithelial ERalpha is essential for subsequent tissue responsiveness. PMID:25210133

  17. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  18. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor positive breast cancer

    PubMed Central

    Meric-Bernstam, Funda; Gonzalez-Angulo, Ana Maria; Ferrer-Lozano, Jaime; Perez-Fidalgo, Jose A.; Cristofanilli, Massimo; Gómez, Henry; Arteaga, Carlos L.; Giltnane, Jennifer; Balko, Justin M.; Cronin, Maureen T; Jarosz, Mirna; Sun, James; Hawryluk, Matthew; Lipson, Doron; Otto, Geoff; Ross, Jeffrey S; Dvir, Addie; Soussan-Gutman, Lior; Wolf, Ido; Rubinek, Tamar; Gilmore, Lauren; Schnitt, Stuart; Come, Steven E.; Pusztai, Lajos; Stephens, Philip; Brown, Myles; Miller, Vincent A.

    2014-01-01

    Purpose We undertook this study to determine the prevalence of estrogen receptor (ER) α (ESR1) mutations throughout the natural history of hormone dependent breast cancer and to delineate the functional roles of the most commonly detected alterations. Experimental Design We studied a total of 249 tumor specimens from 208 patients. The specimens include 134 ER positive (ER+/HER2–) and, as controls, 115 ER negative (ER−) tumors. The ER+ samples consist of 58 primary breast cancers and 76 metastatic samples. All tumors were sequenced to high unique coverage using next generation sequencing targeting the coding sequence of the estrogen receptor and an additional 182 cancer-related genes. Results Recurring somatic mutations in codons 537 and 538 within the ligand-binding domain of ER were detected in ER+ metastatic disease. Overall, the frequency of these mutations was 12% (9/76, 95% CI 6%-21%) in metastatic tumors and in a subgroup of patients who received an average of 7 lines of treatment the frequency was 20% (5/25, 95% CI 7%-41%). These mutations were not detected in primary or treatment naïve ER+ cancer or in any stage of ER− disease. Functional studies in cell line models demonstrate that these mutations render estrogen receptor constitutive activity and confer partial resistance to currently available endocrine treatments. Conclusions In this study we show evidence for the temporal selection of functional ESR1 mutations as potential drivers of endocrine resistance during the progression of ER positive breast cancer. PMID:24398047

  19. Identification of the estrogen receptor Cd-binding sites by chemical modification.

    PubMed

    Nesatyy, Victor J; Rutishauser, Barbara V; Eggen, Rik I L; Suter, Marc J-F

    2005-07-01

    The widely reported interactions of the estrogen receptor (ER) with endocrine disrupting chemicals (EDCs) present in the environment gave raise to public concern and led to a number of screening and testing initiatives on the international level. Recent studies indicated that certain heavy metals, including cadmium, can mimic the effects of the endogenous estrogen receptor agonist 17beta-estradiol, and lead to estrogen receptor activation. Previous studies of the chimeric proteins, which incorporate the ligand-binding domain of the human ER, identified Cys 381, Cys 447, Glu 523, His 524 and Asp 538 as possible sites of interactions with cadmium. In the present study we utilized the rainbow trout ER ligand-binding domain fused to glutathione-S-transferase, and used Cd-shielding against various types of chemical modification of the fusion protein to study non-covalent interactions between the ER and Cd. The distribution of exposed and shielded residues allowed to identify amino acid residues involved in the interaction. Our data indicated preferential protection of Cys groups by cadmium, suggesting their involvement in the interaction. This supports data found in the literature on the strong binding affinity of the thiol group towards metals. However, not all Cys in the fusion protein sequence were protected against chemical modification, illustrating the importance of their chemical environment. In general, the location of rtER-LBD Cys residues implicated in Cd interactions did not confirm assignments made by alanine-scanning mutagenesis for the hER, probably due to differences in experimental setup and fusion proteins used. The involvement of other functional groups such as carboxylic acids in the Cd interactions, though not confirmed, can not be completely ruled out due to the general limitations of the chemical modification approach discussed in detail. Suggestions for an improved experimental setup were made. PMID:15965534

  20. Estrogens, cartilage, and osteoarthritis.

    PubMed

    Richette, Pascal; Corvol, Maïté; Bardin, Thomas

    2003-08-01

    A role for estrogens in osteoarthritis is consistent with the larger increases in women than in men in the incidence and prevalence of hip, knee, and finger osteoarthritis after 50 years of age. Furthermore, hormone replacement therapy for the menopause seems to be associated with a decrease in the prevalence of symptoms and radiological alterations related to hip and knee osteoarthritis. The two estrogen receptors alpha and beta (ERalpha and Erbeta) have been identified in normal and osteoarthritic cartilage, indicating that cartilage can respond to estrogens. Finally, in vivo experiments in animals and in vitro studies have shed light on the mechanisms by which estrogens may influence chondrocyte metabolism. PMID:12951307

  1. Specific regulation of male rat liver cytosolic estrogen receptor by the modulator of the glucocorticoid receptor.

    PubMed

    Celiker, M Y; Haas, A; Saunders, D; Litwack, G

    1993-08-31

    Modulator is a novel low-molecular-weight organic compound that regulates activities of glucocorticoid and mineralocorticoid receptors as well as protein kinase C. In this study we show that male rat liver cytosolic estrogen receptor activation is inhibited by modulator in a dose-dependent manner. Fifty percent inhibition is obtained with 1 unit/ml modulator purified from bovine liver which is within the physiological concentration for modulator. However, sheep uterine cytosolic estrogen and androgen receptors are insensitive to regulation by modulator. Exogenous sodium molybdate treatment inhibits activation of all of these receptors of liver or uterus origin in an identical manner, further differentiating the effects of modulator and the molybdate anion. PMID:8363596

  2. Estrogen-related receptor γ is an in vivo receptor of bisphenol A.

    PubMed

    Tohmé, Marie; Prud'homme, Sophie M; Boulahtouf, Abdel; Samarut, Eric; Brunet, Frédéric; Bernard, Laure; Bourguet, William; Gibert, Yann; Balaguer, Patrick; Laudet, Vincent

    2014-07-01

    Bisphenol A (BPA) is an endocrine disruptor that displays estrogenic activity. Several reports suggest that BPA may have estrogen receptor-independent effects. In zebrafish, 50 μM BPA exposure induces otic vesicle abnormalities, including otolith aggregation. The purpose of this study was to test if BPA action was mediated in vivo during zebrafish development by the orphan nuclear estrogen related receptor (ERR) γ. Combining pharmacological and functional approaches, we demonstrate that the zebrafish ERRγ mediates BPA-induced malformations in otoliths. Using different bisphenol derivatives, we show that different compounds can induce a similar otolith phenotype than BPA and that the binding affinity of these derivatives to the zebrafish ERRγ correlates with their ability to induce otolith malformations. Morpholino knockdown of ERRγ function suppresses the BPA effect on otoliths whereas overexpression of ERRγ led to a BPA-like otolith phenotype. Moreover, a subphenotypical dose of BPA (1 μM) combined with ERRγ overexpression led to a full-dose (50 μM) BPA otolith phenotype. We therefore conclude that ERRγ mediates the otic vesicle phenotype generated by BPA. Our results suggest that the range of pathways perturbed by this compound and its potential harmful effect are larger than expected.-Tohmé, M., Prud'homme, S. M., Boulahtouf, A., Samarut, E., Brunet, F., Bernard, L., Bourguet, W., Gibert, Y., Balaguer, P., Laudet, V. Estrogen-related receptor γ is an in vivo receptor of bisphenol A. PMID:24744145

  3. Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression.

    PubMed

    Schausi, Diane; Tiffoche, Christophe; Thieulant, Marie-Lise

    2003-07-01

    We have characterized the intronic promoter of the rat estrogen receptor (ER) alpha gene, responsible for the lactotrope-specific truncated ER product (TERP)-1 isoform expression. Transcriptional regulation was investigated by transient transfections using 5'-deletion constructs. TERP promoter constructs were highly active in MMQ cells, a pure lactotrope cell line, whereas a low basal activity was detected in alphaT3-1 gonadotrope cells or in COS-7 monkey kidney cells. Serial deletion analysis revealed that 1) a minimal -693-bp region encompassing the TATA box is sufficient to allow lactotrope-specific expression; 2) the promoter contains strong positive cis-acting elements both in the distal and proximal regions, and 3) the region spanning the -1698/-1194 region includes repressor elements. Transient transfection studies, EMSAs, and gel shifts demonstrated that estrogen activates the TERP promoter via an estrogen-responsive element (ERE1) located within the proximal region. Mutation of ERE1 site completely abolishes the estradiol-dependent transcription, indicating that ERE1 site is sufficient to confer estrogen responsiveness to TERP promoter. In addition, ERalpha action was synergized by transfection of the pituitary-specific factor Pit-1. EMSAs showed that a single Pit-1 DNA binding element in the vicinity of the TATA box is sufficient to confer response by the TERP promoter. In conclusion, we demonstrated, for the first time, that TERP promoter regulation involves ERE and Pit-1 cis-elements and corresponding trans-acting factors, which could play a role in the physiological changes that occur in TERP-1 transcription in lactotrope cells. PMID:12810539

  4. Bioluminescence imaging of estrogen receptor activity during breast cancer progression

    PubMed Central

    Vantaggiato, Cristina; Dell’Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  5. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  6. Lessons from the dissection of the activation functions (AF-1 and AF-2) of the estrogen receptor alpha in vivo.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Abot, Anne; Valera, Marie-Cécile; Laurell, Henrik; Gourdy, Pierre; Lenfant, Françoise

    2013-06-01

    Estrogens influence most of the physiological processes in mammals, including but not limited to reproduction, cognition, behavior, vascular system, metabolism and bone integrity. Given this widespread role for estrogen in human physiology, it is not surprising that estrogen influence the pathophysiology of numerous diseases, including cancer (of the reproductive tract as breast, endometrial but also colorectal, prostate,…), as well as neurodegenerative, inflammatory-immune, cardiovascular and metabolic diseases, and osteoporosis. These actions are mediated by the activation of estrogen receptors (ER) alpha (ERα) and beta (ERβ), which regulate target gene transcription (genomic action) through two independent activation functions (AF)-1 and AF-2, but can also elicit rapid membrane initiated steroid signals (MISS). Targeted ER gene inactivation has shown that although ERβ plays an important role in the central nervous system and in the heart, ERα appears to play a prominent role in most of the other tissues. Pharmacological activation or inhibition of ERα and/or ERβ provides already the basis for many therapeutic interventions, from hormone replacement at menopause to prevention of the recurrence of breast cancer. However, the use of these estrogens or selective estrogen receptors modulators (SERMs) have also induced undesired effects. Thus, an important challenge consists now to uncouple the beneficial actions from other deleterious ones. The in vivo molecular "dissection" of ERα represents both a molecular and integrated approach that already allowed to delineate in mouse the role of the main "subfunctions" of the receptor and that could pave the way to an optimization of the ER modulation. PMID:23200732

  7. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    SciTech Connect

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  8. Assessing the estrogenic and dioxin-like activities of chemicals and complex mixtures using in vitro recombinant receptor-reporter gene assays.

    PubMed

    Balaguer, P; Joyeux, A; Denison, M S; Vincent, R; Gillesby, B E; Zacharewski, T

    1996-02-01

    In vitro recombinant receptor-reporter gene assays have been used to assess and rank the potency of chemicals and complex mixtures suspected of possessing estrogen and (or) aryl hydrocarbon receptor (AhR) mediated activity. The environmental estrogen (E2) bioassay consists of a Gal4-human estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc) that have been stably integrated into HeLa cells. The assay exhibits 10-fold induction in luciferase reporter gene activity following treatment with 1 nM 17 beta-estradiol and has a detection limit of approximately 5 pg of 17 beta-estradiol/mL. The AhR bioassay uses Hepa 1c1c7 wild-type cells transiently transfected with a dioxin response element regulated luciferase reporter gene. These assays were used to assess the estrogen and dioxin-like activities of naringenin, atrazine, and simazine and complex mixtures such as pulp and paper mill black liquor and urban air particulates. The activities of these chemicals and complex mixtures are confirmed using the pure antiestrogen ICI 164,384 and in in vitro gel retardation assays. Results of this study demonstrate the utility of in vitro recombinant receptor-reporter gene assays in identifying and assessing the estrogenic and dioxin-like activities of chemicals and complex mixtures. PMID:8723035

  9. Uncoupling of 5-HT1A receptors in the brain by estrogens: regional variations in antagonism by ICI 182,780.

    PubMed

    Mize, A L; Young, L J; Alper, R H

    2003-04-01

    Previously we have shown that 17beta-estradiol (in vivo and in vitro) rapidly decreases the function of serotonin(1A) (5-HT(1A)) receptors, allowing us to hypothesize that 17beta-estradiol accomplished this via activation of a membrane estrogen receptor. Hippocampus and frontal cortex obtained from ovariectomized rats were incubated with 17beta-estradiol or bovine serum albumin (BSA)-estradiol in the presence or absence of the estrogen receptor (ER) antagonist ICI 182,780. Membranes were prepared to measure R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding (a measure of 5-HT(1A) receptor coupling and function). In both hippocampus and frontal cortex, 17beta-estradiol and BSA-estradiol (50 nM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 blocked the effect of both the estrogens in hippocampus, but only the effect of 17beta-estradiol in frontal cortex. Due to the inability of ICI 182,780 to block the effects of BSA-estradiol in frontal cortex, similar experiments were performed using the selective estrogen receptor modulator tamoxifen as the agonist. Tamoxifen (100 nM and 1 microM) decreased R(+)8-OH-DPAT-stimulated [(35)S]GTPgammaS binding. ICI 182,780 (1 microM) blocked the ability of tamoxifen to decrease 5-HT(1A) receptor coupling in the hippocampus, but not in the frontal cortex. Taken together, these data support the existence of a pharmacologically distinct ER in hippocampus vs. frontal cortex that might be responsible for rapid uncoupling of 5-HT(1A) receptors. PMID:12668044

  10. How to target estrogen receptor-negative breast cancer?

    PubMed

    Rochefort, H; Glondu, M; Sahla, M E; Platet, N; Garcia, M

    2003-06-01

    Estrogen receptor (ER)-positive breast cancers generally have a better prognosis and are often responsive to anti-estrogen therapy, which is the first example of a successful therapy targeted on a specific protein, the ER. Unfortunately ER-negative breast cancers are more aggressive and unresponsive to anti-estrogens. Other targeted therapies are thus urgently needed, based on breast cancer oncogene inhibition or suppressor gene activation as far as molecular studies have demonstrated the alteration of expression, or structure of these genes in human breast cancer. Using the MDA-MB.231 human breast cancer cell line as a model of ER-negative breast cancers, we are investigating two of these approaches in our laboratory. Our first approach was to transfect the ER or various ER-deleted variants into an ER-negative cell line in an attempt to recover anti-estrogen responsiveness. The unliganded receptor, and surprisingly estradiol, were both found to inhibit tumor growth and invasiveness in vitro and in vivo. The mechanisms of these inhibitions in ER-negative cancer cells are being studied, in an attempt to target the ER sequence responsible for such inhibition in these cancer cells. Another strategy is trying to inhibit the activity or expression of an oncogene specifically overexpressed in most breast cancers. This approach was recently shown by others to be efficient in breast cancer therapy with HER2-Neu oncogene amplification using Herceptin. Without excluding other molecular putative targets, we have focused our research on cathepsin D as a potential target, since it is often overexpressed in aggressive human breast cancers, including ER-negative tumors, and rarely associated with HER2-Neu amplification. Our first results obtained in vitro on cell lines and in vivo in tumor xenografts in nude mice, illustrate that the mode of action of cathepsin D in breast cancer is useful to guide the development of these therapies. In the past 20 years we have learned that the