Science.gov

Sample records for estuaries estuarine processes

  1. Nutrient Inputs to Estuaries from Nine Scottish East Coast Rivers; Influence of Estuarine Processes on Inputs to the North Sea

    NASA Astrophysics Data System (ADS)

    Balls, Philip W.

    1994-10-01

    Nutrient distributions (nitrate, ammonia, phosphate and silicate) have been determined in the surface waters of nine North Sea estuaries: Tweed, Forth, Tay, Dee, Don, Ythan, Beauly/Inverness Firth, Cromarty Firth and Dornoch Firth. Seasonal variability has been examined by conducting surveys in April, July and September 1991 and February 1992. On each occasion, surveys of all nine estuaries were normally completed in 3-5 days of each other, around high water on spring tides. This intensive and strictly controlled sampling regime ensures a realistic comparison between nutrient concentrations in individual estuaries. Nutrient concentrations in individual rivers and estuaries are demonstrated to be related to land use. River catchments with intensive agriculture and low freshwater input, such as the Don and Ythan, have enhanced nitrate (up to 600 μM) and phosphate (up to 5 μM) concentrations in their estuaries. By contrast, Highland river catchments with mineral-poor soils, low populations and low agricultural intensity (Inverness, Cromarty and Dornoch Firths) generally lead to nutrient concentrations being lower in river water than in coastal seawater. Conservative mixing of dissolved nutrients is demonstrated to be a function of estuarine flushing time which controls the extent to which internal processes (biological and abiological) can modify nutrient inputs. Nutrients tend to behave conservatively in short rapidly flushed estuaries such as the Tweed, Don and Ythan. In contrast, internal processes are shown to be important when estimating riverine nutrient fluxes to the coastal zone from large slowly flushed estuaries such as the Forth, Tay and Dornoch Firth. For these systems, estimates of riverine inputs to the estuary do not provide a good estimate of the load entering the coastal zone. This is primarily due to the cycling of nutrient elements between dissolved and particulate (including sediment) phases. On a regional basis, gross nutrient inputs are

  2. Second international symposium on the biogeochemistry of model estuaries: Estuarine processes in global change

    SciTech Connect

    Not Available

    1991-12-31

    This report consists of abstracts of papers presented at the symposium of Biogeochemistry. The main topics discussed at the meeting are; nutrient and mineral cycling, trace element distribution, sources and sinks of estuaries, sedimentation, importance of organic matter, and other biogeochemical processes of estuaries.

  3. Second International Symposium on the Biogeochemistry of Model Estuaries: Estuarine processes in global change. Final report

    SciTech Connect

    Windom, H.L.

    1991-12-31

    This report summarizes estuary events discussed at the symposium on biogeochemistry. Topics include; sedimentation, salinity, inputs and outputs of the estuary, effects of global change, and the need for effective sampling and modeling of estuaries.

  4. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary

    NASA Astrophysics Data System (ADS)

    Dam, G.; Wegen, M.; Labeur, R. J.; Roelvink, D.

    2016-04-01

    We hindcast a 110 year period (1860-1970) of morphodynamic behavior of the Western Scheldt estuary by means of a 2-D, high-resolution, process-based model and compare results to a historically unique bathymetric data set. Initially, the model skill decreases for a few decades. Against common perception, the model skill increases after that to become excellent after 110 years. We attribute this to the self-organization of the morphological system which is reproduced correctly by the numerical model. On time scales exceeding decades, the interaction between the major tidal forcing and the confinement of the estuary overrules other uncertainties. Both measured and modeled bathymetries reflect a trend of decreasing energy dissipation, less morphodynamic activity, and thus a more stable morphology over time, albeit that the estuarine adaptation time is long (approximately centuries). Process-based models applied in confined environments and under constant forcing conditions may perform well especially on long (greater than decades) time scales.

  5. The effects of estuarine processes on the fluxes of inorganic and organic carbon in the Yellow River estuary

    NASA Astrophysics Data System (ADS)

    Gu, Dianjun; Zhang, Longjun; Jiang, Liqing

    2009-12-01

    Riverine carbon flux is an important component of the global carbon cycle. The spatial and temporal variations of organic and inorganic carbon were examined during both dry and wet seasons in the Yellow River estuary. Concentrations of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in the Yellow River during dry seasons were higher than those during wet seasons. The effective concentrations of DOC (CDOC*) were higher than the observed DOC at zero salinity. This input of DOC in the Yellow River estuary was due to sediment desorption processes in low salinity regions. In contrast to DOC, the effective concentrations of DIC were 10% lower than the DIC measured at freshwater end, and the loss of DIC was caused by CaCO3 precipitation in low salinity region. Particulate organic carbon (POC) and particulate inorganic carbon (PIC) contents of the particles stabilized to constant values (0.5%±0.05% and 1.8%±0.2%, respectively) within the turbidity maximum zone (TMZ) and showed no noticeable seasonal variations. A rapid drop of PIC and rise of POC occurred simultaneously outside the TMZ due to an intense dilution of riverine inorganic-rich particles being transported into a pool of aquatic organic-poor particles outside the TMZ. Annually, the Yellow River transported 6.95×105 t of DIC, 0.64×105 t of DOC, 78.58×105 t of PIC and 2.29×105 t of POC to the sea.

  6. Changes in Benthic Denitrification, Nitrate Ammonification, and Anammox Process Rates and Nitrate and Nitrite Reductase Gene Abundances along an Estuarine Nutrient Gradient (the Colne Estuary, United Kingdom)▿ †

    PubMed Central

    Dong, Liang F.; Smith, Cindy J.; Papaspyrou, Sokratis; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2009-01-01

    Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes (narG, napA, nirS, and nrfA) and corresponding transcripts encoding enzymes mediating nitrate reduction were determined by reverse transcription-quantitative PCR. In situ rates of DN and DNRA decreased toward the estuary mouth, with the findings from slurry experiments suggesting that the potential for DNRA increased while the DN potential decreased as nitrate concentrations declined. AN was detected only at the estuary head, accounting for ∼30% of N2 formation, with 16S rRNA genes from anammox-related bacteria also detected only at this site. Numbers of narG genes declined along the estuary, while napA gene numbers were stable, suggesting that NAP-mediated nitrate reduction remained important at low nitrate concentrations. nirS gene numbers (as indicators of DN) also decreased along the estuary, whereas nrfA (an indicator for DNRA) was detected only at the two uppermost sites. Similarly, nitrate and nitrite reductase gene transcripts were detected only at the top two sites. A regression analysis of log(n + 1) process rate data and log(n + 1) mean gene abundances showed significant relationships between DN and nirS and between DNRA and nrfA. Although these log-log relationships indicate an underlying relationship between the genetic potential for nitrate reduction and the corresponding process activity, fine-scale environmentally induced changes in rates of nitrate reduction are likely to be controlled at cellular and protein levels. PMID:19304834

  7. The ecology of Tijuana Estuary, California: An estuarine profile

    SciTech Connect

    Zedler, J.B.; Nordby, C.S.

    1986-06-01

    This is the first attempt to synthesize and interpret a rapidly growing data base on the estuary's diverse biota - its vegetation, algae, birds, fishes, and invertebrates. Because so many changes have occurred in response to recent catastrophic events, we describe how each aspect of the estuary appeared before 1980 and how it has responded to several perturbations. The experimental tests of these cause-effect relationships have not been completed, and there is little reason to expect that environmental conditions have stabilized or that new types of disturbances won't occur. Thus, this profile should be viewed as a stage in the process of understanding Tijuana Estuary. Like the estuary itself, our knowledge is continuously evolving.

  8. Infilling of the Hudson River Estuary During the Late Holocene (3000ka to Present): Implications for Estuarine Stratigraphic Models

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Pekar, S. F.; Ryan, W. B.; Carbotte, S.; Bell, R.; Burckle, L.

    2002-12-01

    accumulating in coastal bays (Sandy Hook, New Jersey) and on the inner shelf, and sediment export to the Hudson Shelf Valley on the mid-shelf is nearly non-existent, with sediments dated at 14ka from 14-C on the outer shelf. Additionally, anthropogenic activities (construction of bridges and dredging) alter sedimentation patterns in the estuary leading to continued localized erosion and deposition. For example, sediment export onto the shelf is taking place, not by natural processes but by dredging. The variability documented for the HRE indicates that although estuarine and stratigraphic models provide a framework for continental margin studies, the models need to be interpreted, taking into consideration these factors.

  9. Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW Europe

    NASA Astrophysics Data System (ADS)

    Ysebaert, T.; Herman, P. M. J.; Meire, P.; Craeymeersch, J.; Verbeek, H.; Heip, C. H. R.

    2003-05-01

    Few macrobenthic studies have dealt simultaneously with the two major gradients in estuarine benthic habitats: the salinity gradient along the estuary (longitudinal) and the gradients from high intertidal to deep subtidal sites (vertical gradient). In this broad-scale study, a large data set (3112 samples) of the Schelde estuary allowed a thorough analysis of these gradients, and to relate macrobenthic species distributions and community structure to salinity, depth, current velocities and sediment characteristics. Univariate analyses clearly revealed distinct gradients in diversity, abundance, and biomass along the vertical and longitudinal gradients. In general, highest diversity and biomass were observed in the intertidal, polyhaline zone and decreased with decreasing salinity. Abundance did not show clear trends and varied between spring and autumn. In all regions, very low values for all measures were observed in the subtidal depth strata. Abundance in all regions was dominated by both surface deposit feeders and sub-surface deposit feeders. In contrast, the biomass of the different feeding guilds showed clear gradients in the intertidal zone. Suspension feeders dominated in the polyhaline zone and showed a significant decrease with decreasing salinity. Surface deposit feeders and sub-surface deposit feeders showed significantly higher biomass values in the polyhaline zone as compared with the mesohaline zone. Omnivores showed an opposite trend. Multivariate analyses showed a strong relationship between the macrobenthic assemblages and the predominant environmental gradients in the Schelde estuary. The most important environmental factor was depth, which reflected also the hydrodynamic conditions (current velocities). A second gradient was related to salinity and confirms the observations from the univariate analyses. Additionally, sediment characteristics (mud content) explained a significant part of the macrobenthic community structure not yet explained by

  10. Development of an estuarine assessment scheme for the management of a highly urbanised catchment/estuary system, Sydney estuary, Australia.

    PubMed

    Birch, G F; Gunns, T J; Chapman, D; Harrison, D

    2016-05-01

    As coastal populations increase, considerable pressures are exerted on estuarine environments. Recently, there has been a trend towards the development and use of estuarine assessment schemes as a decision support tool in the management of these environments. These schemes offer a method by which complex environmental data is converted into a readily understandable and communicable format for informed decision making and effective distribution of limited management resources. Reliability and effectiveness of these schemes are often limited due to a complex assessment framework, poor data management and use of ineffective environmental indicators. The current scheme aims to improve reliability in the reporting of estuarine condition by including a concise assessment framework, employing high-value indicators and, in a unique approach, employing fuzzy logic in indicator evaluation. Using Sydney estuary as a case study, each of the 15 sub-catchment/sub-estuary systems were assessed using the current scheme. Results identified that poor sediment quality was a significant issue in Blackwattle/Rozelle Bay, Iron Cove and Hen and Chicken Bay while poor water quality was of particular concern in Duck River, Homebush Bay and the Parramatta River. Overall results of the assessment scheme were used to prioritise the management of each sub-catchment/sub-estuary assessed with Blackwattle/Rozelle Bay, Homebush Bay, Iron Cove and Duck River considered to be in need of a high priority management response. A report card format, using letter grades, was employed to convey the results of the assessment in a readily understood manner to estuarine managers and members of the public. Letter grades also provide benchmarking and performance monitoring ability, allowing estuarine managers to set improvement targets and assesses the effectiveness of management strategies. The current assessment scheme provides an effective, integrated and consistent assessment of estuarine health and

  11. SALT WATER INTRUSION AND ITS RELATIONSHIP WITH ESTUARINE ECOLOGY IN THE CHIKUGOGAWA ESTUARY

    NASA Astrophysics Data System (ADS)

    Yokoyama, Katsuhide; Ohmura, Taku; Suzuki, Tomoyuki; Takashima, Soutaro

    The spatiotemporal distribution of seawater intrusion in the Chikugogawa estuary was analyzed, and its relationship with the temporal variation of phytoplankton and engraulid fish, Coilia nasus, was discussed. The Chikugogawa estuary is vertically well mixed for most of the year, and a salt wedge is observed only when the tidal range decreases to 2 m or less. We found that the ratio of chlorophyll-a to pheophytin-a during the semilunar cycle varied according to the change in the mixing conditions in the estuary. Further, the number of sampled estuarine fish was related to the salinity and tidal range within the estuary; the fish was caught when the salinity was low and the tidal range was large. It is necessary to regulate the fresh water discharge in the estuary in order to maintain a low-salinity region that is suitable for the migration of fish and their spawning areas to the downstream of the river mouth barrage.

  12. Feeding preferences of estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus in a temperate estuary (Guadalquivir Estuary, SW Spain)

    NASA Astrophysics Data System (ADS)

    Vilas, César; Drake, Pilar; Fockedey, Nancy

    2008-04-01

    Mysid shrimps are an important component of estuarine food webs because they play a key role in energy transfer as intermediate prey. We investigated the seasonal, tidal and depth specific variation in the diet of the estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus and explored its implications for the planktonic community structure of a temperate estuary (Guadalquivir Estuary, SW Spain). Neomysis integer is an opportunistic omnivore feeding mainly on mesozooplankton and on members of the detrital-microbial loop, shifting prey seasonally according to availability. In contrast, R. tartessicus showed a more carnivorous diet and shifted its target prey during seasons of low resource availability. Despite statistically significant differences in diet composition, both species shared prey of similar size, particularly juvenile Mesopodopsis slabberi, the most abundant mysid species in this estuary, and copepods. Although these similarities imply inter-specific resource competition, their co-existence is achieved by niche partitioning and spatial segregation: the higher osmoregulatory capacity and foraging plasticity of N. integer confers a broader niche breadth for this species allowing N. integer to inhabit the more stressful oligohaline region of the estuary where R. tartessicus cannot survive. We propose that this mechanism relaxes the potential for competition between N. integer and R. tartessicus.

  13. Residual estuarine circulation in the Mandovi, a monsoonal estuary: A three-dimensional model study

    NASA Astrophysics Data System (ADS)

    Vijith, V.; Shetye, S. R.; Baetens, K.; Luyten, P.; Michael, G. S.

    2016-05-01

    Observations in the Mandovi estuary, located on the central west coast of India, have shown that the salinity field in this estuary is remarkably time-dependent and passes through all possible states of stratification (riverine, highly-stratified, partially-mixed and well-mixed) during a year as the runoff into the estuary varies from high values (∼1000 m3 s-1) in the wet season to negligible values (∼1 m3 s-1) at end of the dry season. The time-dependence is forced by the Indian Summer Monsoon (ISM) and hence the estuary is referred to as a monsoonal estuary. In this paper, we use a three-dimensional, open source, hydrodynamic, numerical model to reproduce the observed annual salinity field in the Mandovi. We then analyse the model results to define characteristics of residual estuarine circulation in the Mandovi. Our motivation to study this aspect of the Mandovi's dynamics is derived from the following three considerations. First, residual circulation is important to long-term evolution of an estuary; second, we need to understand how this circulation responds to strongly time-dependent runoff forcing experienced by a monsoonal estuary; and third, Mandovi is among the best studied estuaries that come under the influence of ISM, and has observations that can be used to validate the model. Our analysis shows that the residual estuarine circulation in the Mandovi shows four distinct phases during a year: a river like flow that is oriented downstream throughout the estuary; a salt-wedge type circulation, with flow into the estuary near the bottom and out of the estuary near the surface restricted close to the mouth of the estuary; circulation associated with a partially-mixed estuary; and, the circulation associated with a well-mixed estuary. Dimensional analysis of the field of residual circulation helped us to establish the link between strength of residual circulation at a location and magnitude of river runoff and rate of mixing at the location. We then

  14. DISTRIBUTION AND ABUNDANCE OF BURROWING SHRIMP IN TWO OREGON ESTUARIES AND IMPLICATIONS FOR ESTUARINE-SCALE NITROGEN DYNAMICS

    EPA Science Inventory

    Thalassinid burrowing shrimp (Neotrypaea californiensis and Upogebia pugettensis) inhabit large expanses of Pacific estuarine tide flats, from British Columbia to Baja California. The spatial distribution of shrimp populations within estuaries has rarely been quantified because ...

  15. Anthropogenic Influences on Estuarine Sedimentation and Ecology: Examples from Varved Sediments of the Pettaquamscutt River Estuary, Rhode Island

    EPA Science Inventory

    Estuaries and lakes are undergoing anthropogenic alterations as development and industry intensify in the modern world. Assessing the ecological health of such water bodies is difficult because accurate accounts of pre-anthropogenic estuarine/lacustrine conditions do not exist. ...

  16. Recruitment of flatfish species to an estuarine nursery habitat (Lima estuary, NW Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Ramos, Sandra; Ré, Pedro; Bordalo, Adriano A.

    2010-11-01

    One of the present concerns of fish biologists involves defining and identifying nursery habitats in the context of conservation and resource management strategies. Fish nursery studies usually report upon nursery occupation during the latter juvenile stages, despite the fact that recruitment to nurseries can start early in life, during the larval phase. Here we investigated the use of a temperate estuarine nursery area, the Lima estuary (NW Portugal), by initial development stages of flatfish species before and after metamorphosis, integrating the larval and juvenile phases. The Lima estuarine flatfish community comprised twelve taxa, seven of which were present as pelagic larvae, six as juveniles and three as adults. There was a general trend of increasing spring-summer abundance of both larvae and juveniles, followed by a sharp winter decrease, mainly of larval flatfishes. The Lima estuary was used by Solea senegalensis, Platichthys flesus and Solea solea as a nursery area, with direct settlement for the two first species. In contrast, indirect settlement was suggested for S. solea, with metamorphosis occurring outside the estuarine area. Estuarine recruitment of S. senegalensis varied between years, with young larvae occurring in the estuary throughout a prolonged period that lasted 6-9 months, corroborating the protracted spawning season. P. flesus, the second most abundant species, exhibited a typical spring estuarine recruitment, without inter-annual variations. Developed larvae arrived in the estuary during spring, whereas the 0-group juveniles emerged in the following summer period. The present study contributes new insight to our understanding of the economically important S. senegalensis, and highlights the importance of integrating the planktonic larval phase into traditional flatfish nursery studies.

  17. Utilization of organic matter by invertebrates along an estuarine gradient in an intermittently open estuary

    NASA Astrophysics Data System (ADS)

    Lautenschlager, Agnes D.; Matthews, Ty G.; Quinn, Gerry P.

    2014-08-01

    In intermittently open estuaries, the sources of organic matter sustaining benthic invertebrates are likely to vary seasonally, particularly between periods of connection and disconnection with the ocean and higher and lower freshwater flows. This study investigated the contribution of allochthonous and autochthonous primary production to the diet of representative invertebrate species using stable isotope analysis (SIA) during the austral summer and winter (2008, 2009) in an intermittently open estuary on the south-eastern coast of Australia. As the study was conducted towards the end of a prolonged period of drought, a reduced influence of freshwater/terrestrial organic matter was expected. Sampling was conducted along an estuarine gradient, including upper, middle and lower reaches and showed that the majority of assimilated organic matter was derived from autochthonous estuarine food sources. Additionally, there was an input of allochthonous organic matter, which varied along the length of the estuary, indicated by distinct longitudinal trends in carbon and nitrogen stable isotope signatures along the estuarine gradient. Marine seaweed contributed to invertebrate diets in the lower reaches of the estuary, while freshwater/terrestrial organic matter had increased influence in the upper reaches. Suspension-feeding invertebrates derived large parts of their diet from freshwater/terrestrial material, despite flows being greatly reduced in comparison with non-drought years.

  18. Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal).

    PubMed

    Cobelo-García, Antonio; Neira, Patricia; Mil-Homens, Mario; Caetano, Miguel

    2011-03-01

    Platinum contamination in estuarine and coastal sediments has been evaluated in three cores collected from the Tagus Estuary and Prodelta shelf sediments. Elevated concentrations, up to 25-fold enrichment compared to background values, were found in the upper layers of the estuarine sediments. The degree of Pt enrichment in the estuarine sediments varied depending on the proximity to vehicular traffic sources, with a maximum concentration of 9.5 ng g(-1). A considerable decrease of Pt concentrations with depth indicated the absence of significant contamination before the introduction of catalytic converters in automobiles. Platinum distribution in the Tagus Prodelta shelf sediment core showed no surface enrichment; instead a sub-surface maximum at the base of the mixed layer suggested the possibility of post-depositional mobility, thereby blurring the traffic-borne contamination signature in coastal sediments. PMID:21256526

  19. Estuarine habitat utilization by birds in Yaquina Estuary, Oregon

    EPA Science Inventory

    A wide variety of bird species are highly dependent on intertidal wetland habitats. Because of this dependency, birds are viewed as important indicators of wetland structure and function. Wetlands in Yaquina Bay along with the tidal wetlands in other Pacific coastal estuaries r...

  20. Using a Laboratory Simulator in the Teaching and Study of Chemical Processes in Estuarine Systems

    ERIC Educational Resources Information Center

    Garcia-Luque, E.; Ortega, T.; Forja, J. M.; Gomez-Parra, A.

    2004-01-01

    The teaching of Chemical Oceanography in the Faculty of Marine and Environmental Sciences of the University of Cadiz (Spain) has been improved since 1994 by the employment of a device for the laboratory simulation of estuarine mixing processes and the characterisation of the chemical behaviour of many substances that pass through an estuary. The…

  1. Influence of estuarine processes on spatiotemporal variation in bioavailable selenium

    USGS Publications Warehouse

    Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick

    2013-01-01

    Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.

  2. Modeling the Effects of Tidal Energy Extraction on Estuarine Hydrodynamics in a Stratified Estuary

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2013-08-15

    A three-dimensional coastal ocean model with a tidal turbine module was used in this paper to study the effects of tidal energy extraction on temperature and salinity stratification and density driven two-layer estuarine circulation. Numerical experiments with various turbine array configurations were carried out to investigate the changes in tidally mean temperature, salinity and velocity profiles in an idealized stratified estuary that connects to coastal water through a narrow tidal channel. The model was driven by tides, river inflow and sea surface heat flux. To represent the realistic size of commercial tidal farms, model simulations were conducted based on a small percentage of the total number of turbines that would generate the maximum extractable energy in the system. Model results indicated that extraction of tidal energy will increase the vertical mixing and decrease the stratification in the estuary. Extraction of tidal energy has stronger impact on the tidally-averaged salinity, temperature and velocity in the surface layer than the bottom. Energy extraction also weakens the two-layer estuarine circulation, especially during neap tides when tidal mixing the weakest and energy extraction is the smallest. Model results also show that energy generation can be much more efficient with higher hub height with relatively small changes in stratification and two-layer estuarine circulation.

  3. Growth and decline of shoreline industry in Sydney estuary (Australia) and influence on adjacent estuarine sediments.

    PubMed

    Birch, G F; Lean, J; Gunns, T

    2015-06-01

    Sydney estuary (Australia), like many urbanised waterways, is degraded due to an extended history of anthropogenic activity. Two major sources of contamination to this estuary are discharge by former shoreline industries and historic and contemporary catchment stormwater. The objectives of the present study were to document changes in shoreline land use from European settlement to the present day and determine the influence of this trend on the metal content of adjacent estuarine sediments. Temporal analysis of land use for seven time horizons between 1788 and 2010 showed rapid expansion of industry along much of the Sydney estuary foreshore soon after European settlement due to the benefits of easy and inexpensive access and readily available water for cooling and power. Shoreline industry attained maximum development in 1978 (32-km length) and declined rapidly to the present-day (9-km length) through redevelopment of industrial sites into medium- to high-density, high-value residential housing. Cores taken adjacent to 11 long-term industrial sites showed that past industrial practices contributed significantly to contamination of estuarine sediment. Subsurface metal concentrations were up to 35 times that of present-day surface sediment and over 100 times greater than natural background concentrations. Sedimentation rates for areas adjacent to shoreline industry were between 0.6 and 2.5 cm/year, and relaxation times were estimated at 50 to 100 years. Natural relaxation and non-disturbance of sediments may be the best management practice in most locations. PMID:25937494

  4. Estuarine nitrifiers: New players, patterns and processes

    NASA Astrophysics Data System (ADS)

    Bernhard, Anne E.; Bollmann, Annette

    2010-06-01

    Ever since the first descriptions of ammonia-oxidizing Bacteria by Winogradsky in the late 1800s, the metabolic capability of aerobic ammonia oxidation has been restricted to a phylogenetically narrow group of bacteria. However, the recent discovery of ammonia-oxidizing Archaea has forced microbiologists and ecologists to re-evaluate long-held paradigms and the role of niche partitioning between bacterial and archaeal ammonia oxidizers. Much of the current research has been conducted in open ocean or terrestrial systems, where community patterns of archaeal and bacterial ammonia oxidizers are highly congruent. Studies of archaeal and bacterial ammonia oxidizers in estuarine systems, however, present a very different picture, with highly variable patterns of archaeal and bacterial ammonia oxidizer abundances. Although salinity is often identified as an important factor regulating abundance, distribution, and diversity of both archaeal and bacterial ammonia oxidizers, the data suggest that the variability in the observed patterns is likely not due to a simple salinity effect. Here we review current knowledge of ammonia oxidizers in estuaries and propose that because of their steep physico-chemical gradients, estuaries may serve as important natural laboratories in which to investigate the relationships between archaeal and bacterial ammonia oxidizers.

  5. Superstorm Sandy-related Morphologic and Sedimentologic Changes in an Estuarine System: Barnegat Bay-Little Egg Harbor Estuary, New Jersey

    NASA Astrophysics Data System (ADS)

    Miselis, J. L.; Ganju, N. K.; Navoy, A.; Nicholson, R.; Andrews, B.

    2013-12-01

    Despite the well-recognized ecological importance of back-barrier estuaries, the role of storms in their geomorphic evolution is poorly understood. Moreover, the focus of storm impact assessments is often the ocean shorelines of barrier islands rather than the exchange of sediment from barrier to estuary. In order to better understand and ultimately predict short-term morphologic and sedimentologic changes in coastal systems, a comprehensive research approach is required but is often difficult to achieve given the diversity of data required. An opportunity to use such an approach in assessing the storm-response of a barrier-estuary system occurred when Superstorm Sandy made landfall near Atlantic City, New Jersey on 29 October 2012. Since 2011, the US Geological Survey has been investigating water circulation and water-quality degradation in Barnegat Bay-Little Egg Harbor (BBLEH) Estuary, the southern end of which is approximately 25 kilometers north of the landfall location. This effort includes shallow-water geophysical surveys to map the bathymetry and sediment distribution within BBLEH, airborne topo-bathymetric lidar surveys for mapping the shallow shoals that border the estuary, and sediment sampling, all of which have provided a recent picture of the pre-storm estuarine geomorphology. We combined these pre-storm data with similar post-storm data from the estuary and pre- and post-storm topographic data from the ocean shoreline of the barrier island to begin to understand the response of the barrier-estuary system. Breaches in the barrier island resulted in water exchange between the estuary and the ocean, briefly reducing residence times in the northern part of the estuary until the breaches were closed. Few morphologic changes in water depths greater than 1.5 m were noted. However, morphologic changes observed in shallower depths along the eastern shoreline of the estuary are likely related to overwash processes. In general, surficial estuarine sediments

  6. Modelling of cohesive sediment dynamics in tidal estuarine systems: Case study of Tagus estuary, Portugal

    NASA Astrophysics Data System (ADS)

    Franz, G.; Pinto, L.; Ascione, I.; Mateus, M.; Fernandes, R.; Leitão, P.; Neves, R.

    2014-12-01

    Cohesive sediment dynamics in estuarine systems is a major issue in water quality and engineering problems. Numerical models can help to assess the complex dynamics of cohesive sediments, integrating the information collected in monitoring studies. Following a numerical approach we investigated the main factors that influence the cohesive sediment dynamics in an estuarine system composed of large mudflats (Tagus estuary, Portugal). After a spin up period of the bottom layer and considering the combined effect of waves and currents on the bottom shear stress, the dynamics of cohesive sediment during the fortnightly and daily erosion-sedimentation cycle was properly reproduced by the model. The results of cohesive suspended sediments were validated with data from sixteen monitoring stations located along the estuary and turbidity data measured by two multiparametric probes. The hydrodynamics were previously validated by harmonic analysis and with ADCP data. Although tidal currents are the major cause of cohesive sediment erosion, the results suggest that wind waves also play an important role. The simulated sediment mass involved in the fortnightly tidal cycle was in the same order of magnitude of the annual load from the rivers, as observed in previous studies based on field data.

  7. Anthropogenic Influences on Estuarine Sedimentation and Ecology: Examples from Varved Sediments of the Pettaquanscutt River Estuary, Rhode Island

    EPA Science Inventory

    Estuaries and lakes are undergoing anthropogenic alterations as development and industry intensify in the modern world. Assessing the ecological health of such water bodies is difficult because accurate accounts of pre-anthropogenic estuarine/lacustrine conditions do not exist. S...

  8. Development of a Hydrodynamic Model for Skagit River Estuary for Estuarine Restoration Feasibility Assessment

    SciTech Connect

    Yang, Zhaoqing; Liu, Hedong; Khangaonkar, Tarang P.

    2006-08-03

    The Skagit River is the largest river in the Puget Sound estuarine system. It discharges about 39% of total sediment and more than 20% of freshwater into Puget Sound. The Skagit River delta provides rich estuarine and freshwater habitats for salmon and many other wildlife species. Over the past 150 years, economic development in the Skagit River delta has resulted in significant losses of wildlife habitat, particularly due to construction of dikes. Diked portion of the delta is known as Fir Island where irrigation practices for agriculture land over the last century has resulted in land subsidence. This has also caused reduced efficiency of drainage network and impeded fish passages through the area. In this study, a three-dimensional tidal circulation model was developed for the Skagit River delta to assist estuarine restoration in the Fir Island area. The hydrodynamic model used in the study is the Finite Volume Coastal Ocean Model (FVCOM). The hydrodynamic model was calibrated using field data collected from the study area specifically for the model development. Wetting and drying processes in the estuarine delta are simulated in the hydrodynamic model. The calibrated model was applied to simulate different restoration alternatives and provide guidance for estuarine restoration and management. Specifically, the model was used to help select and design configurations that would improve the supply of sediment and freshwater to the mudflats and tidal marsh areas outside of diked regions and then improve the estuarine habitats for salmon migration.

  9. Chapman Conference on Sediment Transport Processes in Estuaries

    NASA Astrophysics Data System (ADS)

    Perillo, Gerardo M. E.; Lavelle, J. William

    During the week of June 13-17, 1988, 72 sediment transport researchers “aggregated” at the Universidad Nacional del Sur in Bahfa Blanca, Argentina, to participate in an AGU Chapman Conference on Sediment Transport Processes in Estuaries. The main goals of the meeting were to discuss recent advances in estuarine science, to appraise promising future research directions, and to develop contacts and establish working relationships between Latin American and non-Latin- American estuarine researchers. The meeting drew participants from Argentina, Brazil, Chile, Uruguay, Venezuela, the U.S., Canada, Britain, France, the Federal Republic of Germany, The Netherlands, and South Africa. Meeting cosponsors were UNESCO, Secretaria de Ciencía y Técnica, Consejo Nacional de Investigaciones Cientificas y Técnicas, Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Universidad del Sur, Municipalidad de Bahia Blanca, Asociaciôn Argentina de Geofisicos y Geodestas (AGU sister organization), and the Instituto Argentino de Oceanografia (IADO).

  10. Estuarine research; an annotated bibliography of selected literature, with emphasis on the Hudson River estuary, New York and New Jersey

    USGS Publications Warehouse

    Embree, William N.; Wiltshire, Denise A.

    1978-01-01

    Abstracts of 177 selected publications on water movement in estuaries, particularly the Hudson River estuary, are compiled for reference in Hudson River studies. Subjects represented are the hydraulic, chemical, and physical characteristics of estuarine waters, estuarine modeling techniques, and methods of water-data collection and analysis. Summaries are presented in five categories: Hudson River estuary studies; hydrodynamic-model studies; water-quality-model studies; reports on data-collection equipment and methods; and bibliographies, literature reviews, conference proceedings, and textbooks. An author index is included. Omitted are most works published before 1965, environmental-impact statements, theses and dissertations, policy or planning reports, regional or economic reports, ocean studies, studies based on physical models, and foreign studies. (Woodard-USGS)

  11. Decadal morphological evolution of the Yangtze Estuary in response to river input changes and estuarine engineering projects

    NASA Astrophysics Data System (ADS)

    Luan, Hua Long; Ding, Ping Xing; Wang, Zheng Bing; Ge, Jian Zhong; Yang, Shi Lun

    2016-07-01

    The Yangtze Estuary in China has been intensively influenced by human activities including altered river and sediment discharges in its catchment and local engineering projects in the estuary over the past half century. River sediment discharge has significantly decreased since the 1980s because of upstream dam construction and water-soil conservation. We analyzed bathymetric data from the Yangtze Estuary between 1958 and 2010 and divided the entire estuary into two sections: inner estuary and mouth bar area. The deposition and erosion pattern exhibited strong temporal and spatial variations. The inner estuary and mouth bar area underwent different changes. The inner estuary was altered from sedimentation to erosion primarily at an intermediate depth (5-15 m) along with river sediment decline. In contrast, the mouth bar area showed continued accretion throughout the study period. The frequent river floods during the 1990s and simultaneously decreasing river sediment probably induced the peak erosion of the inner estuary in 1986-1997. We conclude that both sediment discharge and river flood events played important roles in the decadal morphological evolution of the Yangtze Estuary. Regarding the dredged sediment, the highest net accretion rate occurred in the North Passage where jetties and groins were constructed to regulate the navigation channel in 1997-2010. In this period, the jetties induced enhanced deposition at the East Hengsha Mudflat and the high accretion rate within the mouth bar area was maintained. The impacts of estuarine engineering projects on morphological change extended beyond their sites.

  12. Impact of boat generated waves over an estuarine intertidal zone of the Seine estuary (France)

    NASA Astrophysics Data System (ADS)

    Deloffre, Julien; Lafite, Robert

    2015-04-01

    Water movements in macrotidal estuaries are controlled by the tidal regime modulated seasonally by the fluvial discharge. Wind effect on hydrodynamics and sediment transport is also reported at the mouth. Besides estuaries are frequently man altered our knowledge on the human impact on hydrodynamics and sediment transport is less extended. As an example on the Seine estuary (France) port authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity over the last century. These developments led to secure sea vessel traffic in the Seine estuary but they also resulted in a change of estuarine hydrodynamics and sediment transport features. Consequences of boat generated waves are varied: increased water turbidity and sediment transfer, release of nutrient and contaminants in the water column, harmful to users, ecosystems and infrastructures generating important maintenance spending. The aim of this study is to analyse the impact of boat generated waves on sediment transport over an intertidal area. The studied site is located on the left bank in the fluvial part of the Seine estuary. On this site the maximum tidal range ranges between 1.25 and 3.5m respectively during neap and spring tide. The sampling strategy is based on continuous ADV acquisition at 4Hz coupled with turbidimeter and altimeter measurements (1 measurement every minute) in order to decipher sediment dynamics during one year. Our results indicate that sediment dynamics are controlled by river flow while medium term scale evolution is dependent on tidal range and short term dynamics on sea-vessels waves. 64% of boat passages generated significant sediment reworking (from few mm.min-1 to 3cm.min-1). This reworking rate is mainly controlled by two parameters: (i) water height on the site and (ii) vessels characteristics; in particular the distance between seabed and keel that generate a Bernoulli wave (with maximum amplitude of 0.6m

  13. An integrated East China Sea-Changjiang Estuary model system with aim at resolving multi-scale regional-shelf-estuarine dynamics

    NASA Astrophysics Data System (ADS)

    Ge, Jianzhong; Ding, Pingxing; Chen, Changsheng; Hu, Song; Fu, Gui; Wu, Lunyu

    2013-08-01

    A high-resolution numerical model system is essential to resolve multi-scale coastal ocean dynamics. So a multi-scale unstructured grid-based finite-volume coastal ocean model (FVCOM) system has been established for the East China Sea and Changjiang Estuary (ECS-CE) with the aim at resolving coastal ocean dynamics and understanding different physical processes. The modeling system consists of a three-domain-nested weather research and forecasting model, FVCOM model with the inclusion of FVCOM surface wave model in order to understand the wave-current interactions. The ECS-CE system contains three different scale models: a shelf-scale model for the East China Sea, an estuarine-scale model for the Changjiang Estuary and adjacent region, and a fine-scale model for the deep waterway regions. These three FVCOM-based models guarantee the conservation of mass and momentum transferring from outer domain to inner domain using the one-way common-grid nesting procedure. The model system has been validated using data from various observation data, including surface wind, tides, currents, salinity, and wave to accurately reveal the multi-scale dynamics of the East China Sea and Changjiang Estuary. This modeling system has been demonstrated via application to the seasonal variations of Changjiang diluted water and the bottom saltwater intrusion in the North Passage, and it shows strong potential for estuarine and coastal ocean dynamics and operational forecasting.

  14. Impacts of sea-level rise on estuarine circulation: An idealized estuary and San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Chua, Vivien P.; Xu, Ming

    2014-11-01

    Estuaries lie at the interface of land and sea, and are particularly vulnerable to sea-level rise due to climate change that might lead to intrusion of salt water further upstream and affect circulation patterns. Climate change is also likely to have a major impact on hydrological cycles and consequently lead to changes in freshwater inflows into estuaries. An idealized estuary model is employed to investigate the effects of sea-level rise and freshwater inflows on estuarine circulation. Rising sea levels result in a stronger longitudinal salinity gradient ∂s/∂x, indicating an increase in the strength of the gravitational circulation UGC, higher longitudinal dispersion coefficients K and enhanced salinity intrusion. Under low-flow conditions, the effects of sea level rise on salinity intrusion are largest because sea-level rise has a greater impact due to weaker vertical stratification. Strong flows increase the strength of the gravitational circulation, resulting in higher vertical stratification, which leads to the nonlinear feedback between vertical mixing and stratification. The effect of sea-level rise on salinity intrusion is reduced owing to the suppression of mixing by stratification. Supporting three-dimensional simulations from northern San Francisco Bay are presented. The intrusion length scale L is used as a substitute for regulating inflows to ensure that sufficient fresh water is available to flush the Bay. Following a set of standards explicitly stated in the 1994 Bay-Delta Accord, a series of simulations is performed and we find that with sea-level rise stronger inflows are required to maintain L at the proposed locations.

  15. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  16. Three-dimensional modeling of hydrodynamic processes in the St. Lucie Estuary

    NASA Astrophysics Data System (ADS)

    Ji, Zhen-Gang; Hu, Guangdou; Shen, Jian; Wan, Yongshan

    2007-06-01

    Comparing with the studies on large estuarine systems, such as the Chesapeake Bay and the San Francisco Bay, the processes of stratification and transport in small and shallow estuaries are relatively less studied. The St. Lucie Estuary (SLE) is a riverine estuary located on the east coast of south Florida. It is small and shallow, with mean depth of 2.4 m. To study the estuarine processes in the SLE, a hydrodynamic model was developed based on the Environmental Fluid Dynamics Code (EFDC) [Hamrick, J.M., 1992. A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects. The College of William and Mary, Virginia Institute of Marine Science, Special Report 317, 63 pp.]. The model was calibrated and verified using observational data obtained in 1999 and 2000, respectively. The model variables used for model data-comparisons are water elevation, velocity, temperature, and salinity. The model is then applied to study the hydrodynamic processes in the SLE. It is found that freshwater inflow plays a major role in the stratification and net flushing of the SLE. Stratification generally increases with freshwater inflow. But when the inflow is persistently large for a relatively long period, the estuary can suddenly change from very stratified to well mixed within a few tidal cycles and the stratification collapses. This finding suggests that large and persistent freshwater inflows do not always increase estuarine stratification. Instead, it may cause the stratification to collapse within a short period of time. In addition to gauged tributaries, ungauged lateral inflows can also be important to small and shallow estuaries like the SLE. Although small individually, the ungauged streams and surface runoffs can be a significant portion of the total inflow and affect salinity distribution significantly. Flushing time affects a wide range of hydrodynamic and water quality processes in the estuary. The model results indicate that commonly

  17. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Deng, Fengyu; Hou, Lijun; Liu, Min; Zheng, Yanling; Yin, Guoyu; Li, Xiaofei; Lin, Xianbiao; Chen, Fei; Gao, Juan; Jiang, Xiaofen

    2015-08-01

    Dissimilatory nitrate reduction processes, including denitrification, anaerobic ammonium oxidation (ANAMMOX), and dissimilatory nitrate reduction to ammonium (DNRA), play an important role in controlling the nitrate dynamics and fate in estuarine and coastal environments. We investigated potential rates of denitrification, ANAMMOX, and DNRA in the sediments of the Yangtze Estuary via slurry incubation experiments combined with isotope-tracing techniques to reveal their respective contributions to total nitrate reduction in this hypereutrophic estuarine ecosystem. Measured rates of denitrification, ANAMMOX, and DNRA ranged from 0.06 to 4.51 µmol N kg-1 h-1, 0.01 to 0.52 µmol N kg-1 h-1, and 0.03 to 0.89 µmol N kg-1 h-1, respectively. These potential dissimilatory nitrate reduction process rates correlated significantly with salinity, sulfide, organic carbon, and nitrogen. Denitrification contributed 38-96% total nitrate reduction in the Yangtze Estuary, as compared to 3-45% for DNRA and 1-36% for ANAMMOX. In total, the denitrification and ANAMMOX processes removed approximately 25% of the external inorganic nitrogen transported annually into the estuary. In contrast, most external inorganic nitrogen was retained in the estuary and contributes substantially to the severe eutrophication of the Yangtze Estuary.

  18. Estuary Turbidity Maxima -- Connections between the Tidal-Fluvial and Estuarine Regimes

    NASA Astrophysics Data System (ADS)

    Jay, D. A.; Talke, S. A.; Hudson, A. S.; Twardowski, M.

    2015-12-01

    An Estuary turbidity maximum or zone (ETM or ETZ) is an area of elevated sediment concentration that often occurs in coastal plain, salt wedge, and river-dominated estuaries. ETMs influence the morphodynamic development, biogeochemical cycling, and contaminant distribution of the many systems in which they occur. In developed estuaries, they are often created or augmented by dredging. Material of either fluvial or marine origin may be trapped, but fluvial supply is dominant in most river-estuary ETMs. An ETM can be described in terms of the type of particle trapping mechanisms that concentrate or trap suspended particulate matter (SPM). Convergent alongchannel SPM fluxes are required to create an ETM, and for a steady-state to pertain, seaward fluxes related to river flow must be balanced by landward mean, tidal or overtide fluxes. Horizontal and vertical salinity and/or sediment gradients often enhance trapping by concentrating SPM near the bed and cause near-bed landward flow and SPM transport. Also, lateral processes can concentrate or disperse SPM, and lags between SPM concentration and velocity are often a dominant factor in systems with fine grained sediment. The settled bed in an ETM may be fine grained, but ETM also occur in sand-bedded systems where no long-term deposition of ETM material occurs. We summarize results of theoretical models that provide a conceptual understanding of how ETM fluxes trap material and how ETM properties vary in response to external forcing. Remote sensing images provide a spatial view of ETM phenomena, and analyses of 15 years of ocean color data for the Columbia River Estuary validate theoretical results. Recent advances in acoustic and optical instrumentation in other environments should facilitate a new generation of ETM measurements, providing better time-space coverage and better flux estimates. Accordingly, we suggest ETM research questions for the coming decade.

  19. Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealised model applied to the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    de Swart, Huib E.; Alebregtse, Niels C.

    2015-04-01

    Many estuaries in the world show a complex pattern of interconnected branches. The water motion in these estuarine networks is dominated by tides and by net water transport, the latter being primarily forced by river discharge and by nonlinear tidal rectification processes. The behaviour of tides (sea surface height and currents) and the distribution of net water transport over the branches is an important topic of research, e.g. for flushing of pollutants, salinity intrusion and sediment transport. Field observations, e.g. in the Yangtze Estuary, show that tides and distribution of net water transport over the branches are highly sensitive to river discharge (wet and dry season) and to changes in geometry, e.g. due to navigational works. To understand such sensivities, this contribution presents a semi-analytical model that yields explicit solutions for tides and net water transport for arbitrary tidal network configurations. The model accounts for tide-river interactions, which in particular affect friction, and for tidal rectification processes. The model is subsequently applied to the Yangtze Estuary. It will be shown that tide-river interactions are crucial to understand the observed differences in tidal propagation between the wet and dry season. Furthermore, the relative increase of the net water transport driven by tidal rectification with respect to that driven by river discharge explains the observed differences in distribution of water transport over the branches between wet and dry season in this estuary. Finally, it will be shown that the construction of navigational works resulted in an increase of tidal currents, a decrease of net water transport and an increase in ebb-dominance in the North Passage of the Yangtze Estuary, consistent with observations.

  20. Radionuclide tracers for the fate of metals in the Savannah estuary: River-ocean exchange processes

    SciTech Connect

    Olsen, C.R.; Thein, M.; Larsen, I.L.; Byrd, J.T.; Windom, H.L.

    1989-01-01

    Plutonium-238 from the US Department of Energy's Savannah River Plant labels riverborne particles, providing a unique opportunity for examining the fate of metals in estuaries and for tracing river-ocean exchange processes. Results indicate that plutonium and lead-210 are enriched on estuarine particles and that inputs of plutonium from oceanic sources greatly exceed inputs from riverborne or drainage-basin sources as far upstream as the landward limit of seawater penetration. We suggest that these radionuclides (and other chemically reactive metals) are being scavenged from oceanic water by sorption onto particles in turbid estuarine and coastal areas. Since estuaries, bays, mangroves, and intertidal areas serve as effective traps for fine particles and associated trace substances, these results have important implications concerning the disposal of chemically reactive substances in oceanic waters. 13 refs., 1 fig., 1 tab.

  1. Use of Sediment Risk and Ecological/Conservation Value for Strategic Management of Estuarine Environments: Sydney Estuary, Australia

    NASA Astrophysics Data System (ADS)

    Birch, Gavin F.; Hutson, Philip

    2009-10-01

    Sediment mantling the floor of Sydney estuary contains a wide range of chemicals at highly elevated concentrations over extensive areas. Appropriate sediment management decisions are urgently required to prevent further degradation of sediment quality and to minimize resulting adverse ecological effects. The objective of the present work was to provide a systematic, estuary-wide assessment of sediment risk and ecological/conservation value throughout the harbor to guide sediment management decisions. Sediment risk is the likelihood of sediment chemistry causing adverse biological effects to bottom-dwelling animals and was conducted using national sediment quality guidelines (SQGs) for single contaminants and the mean SQG quotient approach to assess chemical mixtures. Sediment risk was negligible at the mouth of the estuary, but increased strongly landwards. The ecological/conservation value assessment was conducted to identify sites that warrant different levels of protection and was conducted using the value of ecological communities and priority waterway use. Consideration of these two parameters combined enabled the estuary to be prioritized for management attention. The prioritization and identification of appropriate management strategies were determined through the use of management matrices also based on sediment risk and ecological/conservation value. A computer package is being developed to provide managers with information on sediment risk, ecological/conservation value, the urgency and the type of management intervention required for any location in Sydney estuary, in real-time. This approach to estuarine management is unique and will greatly improve effective management of Sydney estuary, and other harbors in urgent need of management action and protection.

  2. Use of sediment risk and ecological/conservation value for strategic management of estuarine environments: Sydney estuary, Australia.

    PubMed

    Birch, Gavin F; Hutson, Philip

    2009-10-01

    Sediment mantling the floor of Sydney estuary contains a wide range of chemicals at highly elevated concentrations over extensive areas. Appropriate sediment management decisions are urgently required to prevent further degradation of sediment quality and to minimize resulting adverse ecological effects. The objective of the present work was to provide a systematic, estuary-wide assessment of sediment risk and ecological/conservation value throughout the harbor to guide sediment management decisions. Sediment risk is the likelihood of sediment chemistry causing adverse biological effects to bottom-dwelling animals and was conducted using national sediment quality guidelines (SQGs) for single contaminants and the mean SQG quotient approach to assess chemical mixtures. Sediment risk was negligible at the mouth of the estuary, but increased strongly landwards. The ecological/conservation value assessment was conducted to identify sites that warrant different levels of protection and was conducted using the value of ecological communities and priority waterway use. Consideration of these two parameters combined enabled the estuary to be prioritized for management attention. The prioritization and identification of appropriate management strategies were determined through the use of management matrices also based on sediment risk and ecological/conservation value. A computer package is being developed to provide managers with information on sediment risk, ecological/conservation value, the urgency and the type of management intervention required for any location in Sydney estuary, in real-time. This approach to estuarine management is unique and will greatly improve effective management of Sydney estuary, and other harbors in urgent need of management action and protection. PMID:19705195

  3. The influence of estuarine conditions on the dynamics of a coastal phytoplankton community in a micro-tidal estuary: Yura River Estuary, Japan

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Fukuzaki, K.; Akiyama, S.; Ichimi, K.; Kasai, A.; Fukushima, K.; Ueno, M.; Yoshioka, T.; Yamashita, Y.

    2011-12-01

    The western side of Wakasa Bay, Tango Sea, Japan receives most of its allochthonous nutrient input from the Yura River. The Yura Estuary is classified as micro-tidal with a spring tidal range of less than 0.5 m. In summer, generally, the river discharge is low and the sea level is high, so the salt wedge extends 20 km upstream. Then, phytoplankton blooms occur due to an influx of riverine nutrients in the estuary. In contrast, during spring, river discharge is high and the salt wedge is not formed. These seasonal differences in estuarine physical and biological conditions may affect the coastal zone. The objective of this study is to examine the influence of estuarine conditions on the dynamics of the coastal phytoplankton community in this micro-tidal estuary. For this objective, field surveys were conducted both in the coastal zone and the river side of this estuary. Four sampling stations with depths of 5, 10, 20 and 30 m were set in the coastal zone, and weekly surveys were conducted from December 2009 to June 2011. Six sampling stations were set between the mouth of the Yura River and 16 km upstream, and monthly surveys were conducted in summer (from June 2010 to August 2010) and spring (from February 2011 to April 2011). Vertical profiles of salinity, water temperature and chlorophyll fluorescence were measured with a CTD profiler at each station. With water samples taken from the surface, middle, and bottom layers at each station, concentrations of chlorophyll a, pheophytin, and nutrients were analyzed. The nutrients flux from the upstream to the estuary correlated strongly with river discharge, not with nutrient concentrations. In summer, when estuarine water were stratified, marine phytoplankton (mainly diatoms) developed in the middle layer of the estuary while freshwater phytoplankton (mainly green algae) increased in the surface layer of the river mouth. Nitrate concentration in riverine water was estimated to decline 15% while the water flowed from the

  4. The effects of changes to estuarine hydrology on system phosphorous retention capacity: The Mondego estuary, Portugal

    NASA Astrophysics Data System (ADS)

    Lillebø, A. I.; Otero, M.; Coelho, J. P.; Rodrigues, E. T.; Pereira, M. E.; Duarte, A. C.; Pardal, M. A.; Flindt, M. R.

    2012-03-01

    The Mondego estuary is a mainly polyhaline estuary in central Portugal in which eutrophication increased during the last decades of the 20th century. In 1998 the system hydrology was changed, aiming to reverse the eutrophication process. A long environmental monitoring database showed that the mean concentrations of dissolved inorganic phosphorus (DIP) increased by 50%, due to the increase in winter concentrations, i.e., in periods characterized by lower temperature and lower salinity. Given existing background knowledge, especially on the system hydrodynamics, phosphorus dynamics and phosphorus speciation in the estuary, we framed the hypothesis that the significant increase of DIP could be related to different sorption capacities of the sediments. The results highlighted two scenarios: i) Before 1998 the nutrient-rich freshwater input from the upstream cultivated lands entered the system through the area with the highest PO4-P adsorption capacity (Q∗ = 657 μg P g-1 wwt), thus the PO4-P availability in the water column was mostly dependent on the mineralization processes, which is in agreement with previous findings; ii) After 1998, the water residence time diminished from moderate (weeks) to short (days). This change coincided with a diversion of the water to an area with a much lower PO4-P adsorption capacity (Q∗ = 410 μg P g-1 wwt), which represented a decrease in 7.3% of the system adsorption capacity. This means that sediments were not able to adsorb much of the PO4-P and a higher equilibrium concentration occurred in the water column. The sorption study proved to be a valuable tool in testing our hypothesis and provided essential information on the mobility of PO4-P from soils/sediments to the water column.

  5. Estuarine resources use by juvenile Flagfin mojarra ( Eucinostomus melanopterus) in an inverse tropical estuary (Sine Saloum, Senegal)

    NASA Astrophysics Data System (ADS)

    Gning, Ndombour; Le Loc'h, François; Thiaw, Omar T.; Aliaume, Catherine; Vidy, Guy

    2010-03-01

    The Flagfin mojarra, Eucinostomus melanopterus, is a marine spawner whose young individuals are common in the Sine Saloum inverse estuary (Senegal). The species offers the opportunity to study both the use of the estuarine nursery resources and the impact of the particular environment of the inverse estuary on these resources. This will lead to a better understanding of the functioning of the nursery. We investigated the resources used by juvenile Flagfin mojarra by coupling stomach contents and stable isotopes methods. Young Flagfin mojarra feed on a wide range of invertebrates. Diet changed from copepods in the smallest size class (10-40 mm), to a range of invertebrates including amphipods, insect larvae, polychaetes and mollusc in the medium size class (up to 60 mm) and mainly polychaetes for individuals >60 mm in size. In mangrove habitats with moderate salinity, the diet was dominated by polychaetes and decapod larvae (crabs) whereas in habitats with higher salinity, diet was dominated by amphipods. In very hypersaline areas with scarce mangroves, diet comprised benthic copepods, chironomid larvae and ostracods. This agreed with a clear change in δ13C measured in fish sampled at downstream or upstream sites. Comparison with signatures of primary producers suggested that the local food web exploited by young Flagfin mojarra is mainly based on phytoplankton in the downstream mangrove area, and mainly on benthic microalgae in the upstream hypersaline area. As in many studies considering the food webs in mangrove, mangrove was not identified as a major contributor to the food web exploited by E. melanopterus. This needs further investigation particularly because the exportation of estuarine materials to the sea is limited in an inverse estuary.

  6. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. PMID:27155472

  7. Integrating management tools and concepts to develop an estuarine planning support system: A case study of the Humber Estuary, Eastern England.

    PubMed

    Lonsdale, Jemma-Anne; Weston, Keith; Barnard, Steve; Boyes, Suzanne J; Elliott, Michael

    2015-11-15

    Estuaries are important because of their multiple uses and users which often makes them challenging to manage since management must strike a balance between the needs of users, the estuaries' ecological and economic value and the context of multiple legislative drivers. To facilitate management we have therefore developed an Estuarine Planning Support System (EPSS) framework using the Humber Estuary, Eastern England, as a case study which integrates the current legislation tools and concepts. This integrated EPSS framework is an improvement on previous approaches for assessing cumulative impacts as it takes into account legislative drivers, management tools and other mechanisms for controlling plans/projects specific to the estuary. It therefore enables managers and users to assess and address both the current state and the way in which a new industrial, port or urban development could impact an estuary in an accessible and understandable framework. PMID:26342391

  8. Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal.

    PubMed

    Mil-Homens, M; Vale, C; Raimundo, J; Pereira, P; Brito, P; Caetano, M

    2014-07-15

    Upper sediments (0-5 cm) were sampled in 94 sites of water bodies of the fifteen Portuguese estuaries characterized by distinct settings of climate, topography and lithology, and marked by diverse anthropogenic pressures. Confined areas recognized as highly anthropogenic impacted, as well as areas dominated by erosion or frequently dredged were not sampled. Grain size, organic carbon (Corg), Al and trace elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were determined. Normalisation of trace element concentrations to Al and Corg, correlations between elements and Principal Component Analysis (PCA) allowed identifying elemental associations and the relevance of grain-size, lithology and anthropogenic inputs on sediment chemical composition. Whereas grain-size is the dominant effect for the majority of the studied estuaries, the southern estuaries Mira, Arade and Guadiana are dominated by specific lithologies of their river basins, and anthropogenic effects are identified in Ave, Leça, Tagus and Sado. This study emphasizes how baseline values of trace elements in sediments may vary within and among estuarine systems. PMID:24933166

  9. Over time and space changing characteristics of estuarine suspended particles in the German Weser and Elbe estuaries

    NASA Astrophysics Data System (ADS)

    Papenmeier, Svenja; Schrottke, Kerstin; Bartholomä, Alexander

    2014-01-01

    Fine cohesive, suspended sediments appear in all estuarine environments in a predominately flocculated state. The transport and deposition of these flocs is influenced by their in-situ and primary particle size distribution. Especially the size of the inorganic particles influences the density and hence the settling velocity of the flocculated material. To describe both the changes in primary particle size of suspended particulate matter as well as the variability of floc sizes over time and space, the data of In-Situ Particle-Size Distributions (ISPSDs), Primary Particle Size Distributions (PPSDs) and Suspended Sediment Concentrations (SSCs) were collected. For this, Laser In-Situ Scattering and Transmissiometry (LISST) measurements as well as the water samples were collected in the German Elbe and Weser estuaries, covering seasonal variability of the SSC. The data of the ISPSDs show that the inorganic and organic Suspended Particulate Matter (SPM), as found in the Elbe and Weser estuaries, mostly appears in a flocculated state. The substrate for organic matter is mainly imported from the seaside and transported into the estuaries as indicated by an upstream decrease of the amount of fine particles. In winter, when the freshwater discharge is high, different PPSDs are found in the case of the Elbe estuary in the Turbidity Maximum Zone (TMZ) as well as in the landward and in the seaward sections close to the TMZ. In summer, the distance between the seaward and the landward section is too low to obtain an individual PPSD within the Elbe TMZ. A missing correlation between the PPSD and ISPSD shows that the inorganic constituents do not have an influence on the in-situ floc size. Although flocs aggregate and disaggregate over a tidal cycle and with changing SSC, they do not change their PPSD. The microflocs are therefore strong enough to withstand further breakage into their inorganic constituents.

  10. Estuarine Landcover Along the Lower Columbia River Estuary Determined from Compact Ariborne Spectrographic Imager (CASI) Imagery, Technical Report 2003.

    SciTech Connect

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and riparian habitats is critical to the management of biological resources in the lower Columbia River. In a recently completed comprehensive ecosystem protection and enhancement plan for the lower Columbia River Estuary (CRE), Jerrick (1999) identified habitat loss and modification as one of the key threats to the integrity of the CRE ecosystem. This management plan called for an inventory of habitats as key first step in the CRE long-term restoration effort. While previous studies have produced useful data sets depicting habitat cover types along portions of the lower CRE (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999), no single study has produced a description of the habitats for the entire CRE. Moreover, the previous studies differed in data sources and methodologies making it difficult to merge data or to make temporal comparisons. Therefore, the Lower Columbia River Estuary Partnership (Estuary Partnership) initiated a habitat cover mapping project in 2000. The goal of this project was to produce a data set depicting the current habitat cover types along the lower Columbia River, from its mouth to the Bonneville Dam, a distance of {approx}230-km (Fig. 1) using both established and emerging remote sensing techniques. For this project, we acquired two types of imagery, Landsat 7 ETM+ and Compact Airborne Spectrographic Imager (CASI). Landsat and CASI imagery differ in spatial and spectral resolution: the Landsat 7 ETM+ sensor collects reflectance data in seven spectral bands with a spatial resolution of 30-m and the CASI sensor collects reflectance data in 19 bands (in our study) with a spatial resolution of 1.5-m. We classified both sets of imagery and produced a spatially linked, hierarchical habitat data set for the entire CRE and its floodplain. Landsat 7 ETM+ classification results are presented in a separate report (Garono et al., 2003). This report

  11. Estuaries of South Africa

    NASA Astrophysics Data System (ADS)

    Allanson, Brian; Baird, Dan

    1999-05-01

    Estuaries of South Africa presents an authoritative and comprehensive review of the current status of that country's estuarine research and management. Contributors provide information on a wide range of topics, including geological, physical and chemical processes; diversity and productivity of plant and animal communities; interactions among estuarine organisms; and system properties, ecological modeling and current management issues. This broad scope is complemented by a comparative perspective, resulting in a volume that provides a unique contribution to the subject of estuarine ecology. This volume is relevant to all those working in this field throughout the world.

  12. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA.

    PubMed

    Flitcroft, Rebecca; Burnett, Kelly; Christiansen, Kelly

    2013-07-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions. PMID:23689791

  13. A Simple Model that Identifies Potential Effects of Sea-Level Rise on Estuarine and Estuary-Ecotone Habitat Locations for Salmonids in Oregon, USA

    NASA Astrophysics Data System (ADS)

    Flitcroft, Rebecca; Burnett, Kelly; Christiansen, Kelly

    2013-07-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon ( Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon ( Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon ( O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.

  14. Estuarine intertidal habitat use by birds in a Pacific Northwest coastal estuary

    EPA Science Inventory

    Results of a year long study of the distribution of birds across five intertidal estuarine habitats reveal that tide level largely controls use of the habitats by birds. A total census of all birds observed from shoreline observation locations was made at five tide levels over s...

  15. Intertidal estuarine habitat utilization by birds in a Pacific Northwest coastal estuary

    EPA Science Inventory

    Results of a year long study of the distribution of birds across five intertidal estuarine habitats reveal that tide level largely controls use of the habitats by birds. A total census of all birds observed from shoreline locations was made at five tide levels over six, 2-month ...

  16. Net Subterranean Estuarine Export Fluxes of Dissolved Inorganic C, N, P, Si, and Total Alkalinity into the Jiulong River Estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wang, Z.; Zhai, W. D.; Moore, W. S.; Li, Q.; Yan, X.; Qi, D.; Jiang, Y.

    2014-12-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.24~0.51 in the spring, 0.56~1.16 in the summer, 0.38~0.79 in the fall, and 0.22~0.45 in the winter. This was equivalent to 6-16% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 51-89% of the concomitant riverine fluxes for DIC and TA, around 10-25% for DSi and DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source that spreads throughout the estuary in contrast to the major point sources of the river and the ocean for the estuary. Thus, despite apparent conservative mixing of DIC, DIN, and DSi, subterranean exports of these species into estuaries must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  17. The dynamics of the yeast community of the Tagus river estuary: testing the hypothesis of the multiple origins of estuarine yeasts.

    PubMed

    Coelho, Marco A; Almeida, João M F; Martins, Inês M; da Silva, A Jorge; Sampaio, José Paulo

    2010-10-01

    Yeasts are common inhabitants of different types of aquatic habitats, including marine and estuarine waters and rivers. Although numerous studies have surveyed yeast occurrence in these habitats, the identification of autochthonous populations has been problematic because several yeast species seem to be very versatile and therefore mere presence is not sufficient to establish an ecological association. In the present study we investigated the dynamics of the yeast community in the Tagus river estuary (Portugal) by combining a microbiological study involving isolation, quantification, and molecular identification of dominant yeast populations with the analysis of hydrological and hydrographical data. We set out to test the hypothesis of the multiple origins of estuarine yeast populations in a transect of the Tagus estuary and we postulate four possible sources: open sea, terrestrial, gastrointestinal and the estuary itself in the case of populations that have become resident. Candida parapsilosis and Pichia guilliermondii were correlated with Escherichia coli, which indicated an intestinal origin. Other cream-colored yeasts like Debaryomyces hansenii and Candida zeylanoides had similar dynamics, but no association with E. coli and quite distinct ecological preferences. They might represent a group of resident estuarine populations whose primary origin is diverse and can include marine, terrestrial, and gastrointestinal habitats. Another major yeast population was represented by Rhodotorula mucilaginosa. The cosmopolitan nature of that species and its moderate association with E. coli point to terrestrial sources as primary habitats. PMID:20422287

  18. USING INFORMATION ON SPATIAL VARIABILITY OF SMALL ESTUARIES IN DESIGNING LARGE GEOGRAPHIC SCALE ESTUARINE MONITORING PROGRAMS

    EPA Science Inventory

    In the early 1990s, EPA's Environmental Monitoring and Assessment Program (EMAP) documented the ecological condition of the overall population of small estuaries along the Mid-Atlantic coast of the United States. However, the Program did not provide information on the condition o...

  19. USING INFORMATION ON SPATIAL VARIABILITY OF SMALL ESTUARIES IN DESIGNING LARGE SCALE ESTUARINE MONITORING PROGRAMS

    EPA Science Inventory

    In the early 1990's, EPA's Environmental Monitoring and Assessment program (EMAP) documented the ecological condition of the overall population of small estuaries along the mid-Atlantic coast of the United States. However, the Program did not provide detailed information on the c...

  20. An Overview of Ecological Processes in the Rio de la Plata Estuary

    NASA Astrophysics Data System (ADS)

    Acha, M.; Mianzan, H.

    2005-05-01

    picnocline, meanwhile the upper layer is biologically poor. Marine species penetrate the estuary advected or following the saline waters. The surface salinity front is the offshore end of the salt wedge. At this portion of the estuary, mixing of estuarine and marine waters and enhancement of vertical nutrient flux fertilize the frontal area and another maximum chlorophyll-a concentrations is observed. Zooplankton concentrations, mainly gelatinous plankton have been reported here. Reproduction of some fishes seem also associated to this surface front. This front is the more subtle and high dynamic portion of the wedge, showing a seasonal pattern driven by winds. It delineates the boundary between the estuary and the continental shelf waters. The influence of this large river in the ecological processes of the continental shelf is largely unknown. The knowledge on the ecology of the Rio de la Plata estuary has been remarkably enlarged during the last ten years, and some ongoing researches such as the study of different sources of primary production and the complexity of the trophic pathways, looks promissory and surely will contribute to the understanding of the regional importance of the estuary.

  1. Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Alebregtse, N. C.; de Swart, H. E.

    2016-07-01

    Tidal propagation in, and division of net water transport over different channels in an estuarine network are analyzed using a newly developed idealized model. The water motion in this model is governed by the cross-sectionally averaged shallow water equations and is forced by tides at the seaward boundaries and by river discharge. Approximate analytical solutions are constructed by means of a harmonic truncation and a perturbation expansion in a small parameter, being the ratio of tidal amplitude and depth. The net water transport results from an imposed river discharge and from residual water transport generated by nonlinear tidal rectification. Two new drivers are identified that contribute to the net water transport in tidal estuarine networks, viz. the generation of residual water transport due to gradients in dynamic pressure and due to a coupling between the tidally averaged and quarter diurnal currents through the quadratic bottom stress. The model is applied in a case study on the Yangtze Estuary, to investigate tides and division of net water transport over its multiple channels during the wet and dry season, as well as before and after the construction of the Deepwater Navigation Channel. Model results agree fairly well with observations. Process analysis reveals that the decrease in tides from dry to wet season is due to enhanced bottom stress generated by river-tide interactions. Also, the seasonal variations in net water transport are explained. It is furthermore shown and explained that due to the Deepwater Navigation Channel tidal currents have increased and net water transport has decreased in the North Passage. These changes have profound implications for net sediment transport and salinity intrusion.

  2. Applications of remote sensing to estuarine problems. [estuaries of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.

    1975-01-01

    A variety of siting problems for the estuaries of the lower Chesapeake Bay have been solved with cost beneficial remote sensing techniques. Principal techniques used were repetitive 1:30,000 color photography of dye emitting buoys to map circulation patterns, and investigation of water color boundaries via color and color infrared imagery to scales of 1:120,000. Problems solved included sewage outfall siting, shoreline preservation and enhancement, oil pollution risk assessment, and protection of shellfish beds from dredge operations.

  3. Estuarine Habitats for Juvenile Salmon in the Tidally-Influenced Lower Columbia River and Estuary : Reporting Period September 15, 2008 through May 31, 2009.

    SciTech Connect

    Baptista, António M.

    2009-08-02

    This work focuses on the numerical modeling of Columbia River estuarine circulation and associated modeling-supported analyses conducted as an integral part of a multi-disciplinary and multi-institutional effort led by NOAA's Northwest Fisheries Science Center. The overall effort is aimed at: (1) retrospective analyses to reconstruct historic bathymetric features and assess effects of climate and river flow on the extent and distribution of shallow water, wetland and tidal-floodplain habitats; (2) computer simulations using a 3-dimensional numerical model to evaluate the sensitivity of salmon rearing opportunities to various historical modifications affecting the estuary (including channel changes, flow regulation, and diking of tidal wetlands and floodplains); (3) observational studies of present and historic food web sources supporting selected life histories of juvenile salmon as determined by stable isotope, microchemistry, and parasitology techniques; and (4) experimental studies in Grays River in collaboration with Columbia River Estuary Study Taskforce (CREST) and the Columbia Land Trust (CLT) to assess effects of multiple tidal wetland restoration projects on various life histories of juvenile salmon and to compare responses to observed habitat-use patterns in the mainstem estuary. From the above observations, experiments, and additional modeling simulations, the effort will also (5) examine effects of alternative flow-management and habitat-restoration scenarios on habitat opportunity and the estuary's productive capacity for juvenile salmon. The underlying modeling system is part of the SATURN1coastal-margin observatory [1]. SATURN relies on 3D numerical models [2, 3] to systematically simulate and understand baroclinic circulation in the Columbia River estuary-plume-shelf system [4-7] (Fig. 1). Multi-year simulation databases of circulation are produced as an integral part of SATURN, and have multiple applications in understanding estuary

  4. Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: An application of FVCOM

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Qi, Jianhua; Li, Chunyan; Beardsley, Robert C.; Lin, Huichan; Walker, Randy; Gates, Keith

    2008-07-01

    The tidal flooding/drying process in the Satilla River Estuary was examined using an unstructured-grid finite-volume coastal ocean model (FVCOM). Driven by tidal forcing at the open boundary and river discharge at the upstream end, FVCOM produced realistic tidal flushing in this estuarine tidal-creek intertidal salt-marsh complex, amplitudes and phases of the tidal wave, and salinity observed at mooring sites and along hydrographic transects. The model-predicted residual flow field is characterized by multiscale eddies in the main channel, which are verified by ship-towed ADCP measurements. To examine the impact of complex coastal geometry on water exchange in an estuarine tidal-creek salt-marsh system, FVCOM was compared with our previous structured-grid finite difference Satilla River Estuary model (ECOM-si). The results suggest that by failing to resolve the complex coastal geometry of tidal creeks, barriers and islands, a model can generate unrealistic flow and water exchange and thus predict the wrong dynamics for this estuary. A mass-conservative unstructured-grid model is required to accurately and efficiently simulate tidal flow and flushing in a complex geometrically controlled estuarine dynamical system.

  5. Variations of organic carbon stock in reclaimed estuarine soils (Villaviciosa estuary, NW Spain).

    PubMed

    Santín, Cristina; Otero, Xose Luis; Fernández, Susana; González-Pérez, Martha; Alvarez, Miguel Angel

    2007-05-25

    A study was carried out in the Villaviciosa Estuary (Asturias, NW Spain) to determine the effects of polderization on soil properties and soil organic carbon content. The results showed that the polderized soils were more acidic and contained less carbonates and a higher soil organic carbon (SOC) content than the natural soils. The organic carbon stock in the reclaimed soils ranged from 83.2 to 91.8 t ha(-1), whereas in natural soils was approximately 43.7 t ha(-1). The degree of humification of the surface humic acids also indicated that the stability and degree of decomposition of the organic matter was higher in the reclaimed soils than in natural soils. PMID:17374546

  6. Freshwater Inflows to San Francisco Bay and Estuary, California From Ion Microprobe Analysis of Trace Elements in Estuarine Bivalve Shells

    NASA Astrophysics Data System (ADS)

    Takesue, R. K.; Bacon, C. R.; Brown, C. L.; Schwartz, C. L.; Wooden, J. L.

    2002-12-01

    In San Francisco Bay and Estuary, salinity and trace metal distribution are closely linked to freshwater inflow from the Sacramento-San Joaquin (S-SJ) Rivers. Because the magnitude and timing of precipitation and snow melt influence river flow, records of salinity and trace metal variations in SF Bay-Estuary may provide information about regional climate variability. Some trace elements are incorporated into growth-banded calcium carbonate bivalve shells in proportion to ambient water concentration, or with a dependence on environmental conditions such as temperature, salinity, or biological productivity. The work presented here will explore whether such geochemical tracers and proxy relationships exist in modern SF Bay and Estuary bivalve shells, with an ultimate goal of using these relationships to reconstruct past regional climatological and local environmental conditions. A fast-growing euryhaline clam Potamocorbula amurensis was chosen for modern calibration studies because its physiology and ecology are well characterized, including tissue trace metal concentrations. High resolution trace metal records in P. amurensis shells may complement ongoing monthly monitoring efforts by providing information about short-term (weekly) changes in estuarine trace metal distributions, or by providing information about distributions before monitoring began. P. amurensis shells were collected near the confluence of the S-SJ Rivers (0-12 psu) and in northern SF Bay (up to 26 psu) following flood (1995) and drought (1991) years. B, Mg, S, V, Cr, Mn, Sr, and Ba concentrations were measured in situ across growth bands in shell cross sections by secondary ionization mass spectrometry (Stanford-USGSSHRIMP-RG). [M]/Cashell profiles were compared to records of calculated Delta outflow (an estimate of net S-SJ River discharge), salinity, and temperature. S-SJ waters entering SF Bay and Estuary are naturally enriched in V. All V/Cashell profiles showed peaks corresponding to winter

  7. Estuarine Physical Processes Research: Some Recent Studies and Progress

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.

    2002-12-01

    The literature on estuarine physical studies is vast, diverse and contains many valuable case studies in addition to pure, process-based research. This essay is an attempt to summarize both some of the more recent studies that have been undertaken during the last several years, as well as some of the trends in research direction and progress that they represent. The topics covered include field and theoretical studies on hydrodynamics, turbulence, salt and fine sediment transport and morphology. The development and ease-of-application of numerical and analytical models and technical software has been essential for much of the progress, allowing the interpretation of large amounts of data and assisting with the understanding of complex processes. The development of instrumentation has similarly been essential for much of the progress with field studies. From a process viewpoint, much more attention is now being given to interpreting intratidal behaviour, including the effects of tidal straining and suspended fine sediment on water column stratification, stability and turbulence generation and dissipation. Remote sensing from satellites and aircraft, together with fast sampling towed instruments and high frequency radar now provide unique, frequently high resolution views of spatial variability, including currents, frontal and plume phenomena, and tidal and wave-generated turbidity. Observations of fine sediment characteristics (floc size, aggregation mechanisms, organic coatings and settling velocity) are providing better parameterizations for sediment transport models. These models have enhanced our understanding both of the estuarine turbidity maximum and its relationship to fronts and intratidal hydrodynamic and sedimentological variability, as well as that of simple morphological features such as intertidal mudflats. Although few, interdisciplinary studies to examine the relationships between biology and estuarine morphology show that bivalve activity and the

  8. Estuarine and Tidal Freshwater Habitat Cover Types Along the Lower Columbia River Estuary Determined from Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery, Technical Report 2003.

    SciTech Connect

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and tidal floodplain ecosystems is critical to the management of biological resources in the lower Columbia River. Columbia River plants, fish, and wildlife require specific physicochemical and ecological conditions to sustain their populations. As habitats are degraded or lost, this capability is altered, often irretrievably; those species that cannot adapt are lost from the ecosystem. The Lower Columbia River Estuary Partnership (Estuary Partnership) completed a comprehensive ecosystem protection and enhancement plan for the lower Columbia River and estuary in 1999 (Jerrick, 1999). The plan identified habitat loss and modification as a critical threat to the integrity of the lower Columbia River ecosystem and called for a habitat inventory as a key first step in its long term restoration efforts. In 2000, the Estuary Partnership initiated a multiphase project to produce a spatial data set describing the current location and distribution of estuarine and tidal freshwater habitat cover types along the lower Columbia River from the river mouth to the Bonneville Dam using a consistent methodology and data sources (Fig. 1). The first phase of the project was the development of a broadbrush description of the estuarine and tidal freshwater habitat cover classes for the entire study area ({approx}146 river miles) using Landsat 7 ETM+ satellite imagery. Phase II of the project entailed analysis of the classified satellite imagery from Phase I. Analysis of change in landcover and a summary of the spatial relationships between cover types are part of Phase II. Phase III of the project included the classification of the high resolution hyperspectral imagery collected in 2000 and 2001 for key focal areas within the larger study area. Finally, Phase IV consists of this final report that presents results from refining the Landsat ETM+ classification and provides recommendations for future actions

  9. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  10. Estuarine ocean exchange in a North Pacific estuary: Comparison of steady state and dynamic models

    NASA Astrophysics Data System (ADS)

    Frick, Walter E.; Khangaonkar, Tarang; Sigleo, Anne C.; Yang, Zhaoqing

    2007-08-01

    Nutrient levels in coastal waters must be accurately assessed to determine the nutrient effects of increasing populations on coastal ecosystems. To accomplish this goal, in-field data with sufficient temporal resolution are required to define nutrient sources and sinks, and to ultimately calculate nutrient budgets. Models then are required for the interpretation and analysis of data sets. To quantify the coastal ocean nitrogen input to Yaquina Bay, Oregon, nitrate concentrations were measured by a moored sensor hourly for one month during summer upwelling some distance outside the estuary entrance jetties. The time series results then were interpreted using a steady state model (Visual Plumes' PDSW) and a hydrodynamic model, the Finite Volume Coastal Ocean Model (FVCOM). The physical scales of many stream and river plumes often lie between the scales for outfall mixing zone plume models, such as those found in EPA's Visual Plumes, and larger-sized grid scales for regional circulation models like FVCOM. A potential advantage of relatively simple, steady state plume models is that they use entrainment terms to close the plume equations, theory that has proven useful in simulating turbulent plume discharges from various sources, some approaching the dimensions of rivers. Important advantages of models like FVCOM are that they are dynamic and include the effects of the Earth's rotation. The results showed that the steady-state plume model simulates observed velocity and concentration data fairly well during periods of strong discharge velocity and weak ambient coastal currents. FVCOM was judged to give better estimates under all other ambient current conditions, although the data from the mooring cannot be used to prove this assertion as stronger currents would deflect the plume away from the mooring. Nevertheless, plume models may be useful in establishing boundary and initial conditions for hydrodynamic models.

  11. An overview of physical and ecological processes in the Rio de la Plata Estuary

    NASA Astrophysics Data System (ADS)

    Marcelo Acha, E.; Mianzan, Hermes; Guerrero, Raúl; Carreto, José; Giberto, Diego; Montoya, Norma; Carignan, Mario

    2008-07-01

    The Rio de la Plata is a large-scale estuary located at 35°S on the Atlantic coast of South America. This system is one of the most important estuarine environments in the continent, being a highly productive area that sustains valuable artisanal and coastal fisheries in Uruguay and Argentina. The main goals of this paper are to summarize recent knowledge on this estuary, integrating physical, chemical and biological studies, and to explore the sources and ecological meaning of estuarine variability associated to the stratification/mixing alternateness in the estuary. We summarized unpublished data and information from several bibliographic sources. From study cases representing different stratification conditions, we draw a holistic view of physical patterns and ecological processes of the stratification/mixing alternateness. This estuary is characterized by strong vertical salinity stratification most of the time (the salt-wedge condition). The head of the estuary is characterized by a well-developed turbidity front. High turbidity constrains their photosynthesis. Immediately offshore the turbidity front, water becomes less turbid and phytoplankton peaks. As a consequence, trophic web in the estuary could be based on two sources of organic matter: phytoplankton and plant detritus. Dense plankton aggregations occur below the halocline and at the tip of the salt wedge. The mysid Neomysis americana, a key prey for juvenile fishes, occurs all along the turbidity front. A similar spatial pattern is shown by one of the most abundant benthic species, the clam Mactra isabelleana. These species could be taken advantage of the particulate organic matter and/or phytoplankton concentrated near the front. Nekton is represented by a rich fish community, with several fishes breeding inside the estuary. The most important species in terms of biomass is Micropogonias furnieri, the main target for the coastal fisheries of Argentina and Uruguay. Two processes have been identified

  12. Choice chamber experiments to test the attraction of postflexion Rhabdosargus holubi larvae to water of estuarine and riverine origin

    NASA Astrophysics Data System (ADS)

    James, Nicola C.; Cowley, Paul D.; Whitfield, Alan K.; Kaiser, Horst

    2008-03-01

    Although the recruitment of larvae and juveniles of marine fishes into estuaries has been well documented, little is known about the factors governing the immigration of estuary-associated marine fishes into estuaries. Fishes have a well-developed sense of smell and it has been suggested by several workers that olfactory cues of freshwater or estuarine origin serve as stimuli, attracting larvae and juveniles of estuary-associated species into estuaries. Attraction of postflexion Rhabdosargus holubi larvae to estuary and river water from the Kowie estuarine system, South Africa, was measured using a rectangular choice chamber. In experiments, conducted during peak recruitment periods, larvae selected estuary and river water with a significantly higher frequency than sea water. This study, the first to assess the possible role of olfaction in the recruitment process of an estuary-associated marine fish species, demonstrates that larvae are able to recognise water from different origins, probably based on odour.

  13. Estuarine Food Webs

    EPA Science Inventory

    Estuaries provide habitat for abundant plants, animals and micro-organisms, ranging from microscopic plankton (bacteria, yeasts, algae, protozoa) to larger benthic and pelagic organisms (seagrass, clams, crabs, sea trout, pelicans and dolphins). Estuarine biota can be characteri...

  14. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China

    NASA Astrophysics Data System (ADS)

    Wang, Guizhi; Wang, Zhangyong; Zhai, Weidong; Moore, Willard S.; Li, Qing; Yan, Xiuli; Qi, Di; Jiang, Yuwu

    2015-01-01

    To evaluate geochemical impacts of the subterranean estuary (STE) on the Jiulong River estuary, China, we estimated seasonal fluxes of subterranean water discharge into the estuary based on the mass balance of radium isotopes and net subterranean export fluxes of dissolved inorganic C (DIC), N (DIN), Si (DSi), soluble reactive phosphorus (SRP), and total alkalinity (TA). Based on 226Ra data, the subterranean discharge (in 107 m3 d-1) was estimated to be 0.29-0.60 in the spring, 0.69-1.44 in the summer, 0.45-0.93 in the fall, and 0.26-0.54 in the winter. This was equivalent to 8-19% of the concomitant river discharge. The net spatially integrated material fluxes from the STE into the estuary were equivalent up to 45-110% of the concomitant riverine fluxes for DIC and TA, around 14-32% for DSi and 7-19% for DIN, and negligible for SRP. Paradoxically, the mixing lines along the salinity gradient revealed no apparent additions of these species. These additions are not revealed because the STE is a relatively small spatially-averaged source (at most 11% of the total input at steady state) that spreads throughout the estuary as a non-point source in contrast to the major point sources of the river and the ocean for the estuary and a true open ocean endmember is likely lacking. Greater water flushing in the summer might dilute the STE effect on the mixing lines even more. The great spatial variation in salinity in the estuary introduced the major uncertainty in our estimates of the flushing time, which further affected the estimate of the subterranean discharge and associated material fluxes. Additionally, the great spatial variation in the STE endmember caused the relatively large ranges in these flux estimates. Despite apparent conservative mixing of DIC, DIN, and DSi in estuaries, net subterranean exports must be taken into account in evaluating geochemical impacts of estuarine exports on shelf waters.

  15. Ecology of estuaries

    SciTech Connect

    Kennish, M.J.

    1986-01-01

    This book is a summary of information available on estuarine ecology, that reviews concepts and problems of estuaries and assesses the value of these coastal systems. It investigates such topics as water circulation and mixing, trace elements, nutrients, organic matter, and sedimentary processes, with reviews on more than two decades of intense study. Chapters reflect contributions from a variety of interdisciplinary sciences including botany, chemistry, ecology, geology, physics, and zoology.

  16. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.

    PubMed

    Yang, Lihua; Cheng, Qiao; Tam, Nora Fy; Lin, Li; Su, Weiqi; Luan, Tiangang

    2016-04-19

    The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific. PMID:26984110

  17. Spatial patterns of benthic macrofauna in relation to environmental variables in an intertidal habitat in the Humber estuary, UK: Developing a tool for estuarine shoreline management

    NASA Astrophysics Data System (ADS)

    Fujii, T.

    2007-10-01

    Spatial variations in benthic macrofaunal species composition, abundance and biomass in estuarine intertidal habitats have been often related to such environmental variables as salinity, sediment types and tidal depth. However, there have been few attempts to investigate the relations between such macrobenthic parameters and intertidal beach width gradient in order to predict their likely responses to coastal squeeze induced by accelerating sea-level rise in an estuarine environment. This article investigates the linkages between environmental variables and patterns in the distribution, abundance and biomass of estuarine intertidal macrobenthos in order to provide a basis for describing the effect of future sea-level rise in the Humber estuary, UK. Field surveys were conducted in September 2003 and 2004 over a variety of spatial scales based on a hierarchically scaled field study (system: 10 5 m; region: 10 5-10 4 m; local 10 4-10 3 m; transect: 10 3-10 2 m; station; 10 2-10 1 m) along two focal environmental gradients: (1) the longitudinal gradient (length of the estuary) over an entire estuarine system and (2) the beach width gradient (varying beach width altered by historic land-claim) over a sub-area of the estuary. Statistical analysis was carried out in order to identify key environmental variables and the most relevant spatial scales that best explain the observed spatial variability in macrobenthic biomasses. At the system scale, the dominant species were two bivalves Cerastoderma edule and Macoma balthica and a polychaete Nereis diversicolor, which accounted for 51.7%, 25.0% and 12.1%, respectively, of the total biomass. At the regional scale, univariate analysis showed clear trends in species richness, abundance and biomass along the longitudinal and beach width gradient. At the transect scale, multiple regression analysis revealed that the variances in biomass of M. balthica, C. edule and other remaining species as well as total macrobenthic biomass were

  18. Nutrient variability and its influence on nitrogen processes in a highly turbid tropical estuary (Bangpakong, Gulf of Thailand).

    PubMed

    Bordalo, Adriano A; Chalermwat, Kashane; Teixeira, Catarina

    2016-07-01

    Estuarine ecosystems in SE Asia have been poorly studied when compared to other tropical environments. Important gaps exist particularly in the understanding of their biogeochemical function and contribution to global change. In this work we looked into N-turnover in the water column and sediments of the Bangpakong estuary (13°N). A seasonal sampling program was performed along the salinity gradient covering different stretches of the estuary (68km). Key physical and chemical characteristics were also monitored in order to unravel possible environmental controls. Results showed the occurrence of active denitrification in sediments (5.7-50.9nmol N-N2/(cm(3)·hr)), and water column (3.5-1044pmol N-N2/(cm(3)·hr)). No seasonal or spatial variability was detected for denitrification potential in sediment samples. However, in the water column, the denitrification activity peaked during the transition season in the downstream sites coinciding with high turbidity levels. Therefore, in that period of the year, the water column compartment may be an important contributor to nitrate reduction within the estuary. The rather low nitrification rates detected were not always measurable, probably due to the reduced oxygen content and high siltation. This study is one of the few dealing simultaneously with sediments and water column processes in a highly turbid tropical estuary. Therefore, it emerges as a valuable contribution for the understanding of the dynamics of the nitrogen cycle in tropical environments by exploring the role of estuarine N microbial activity in reducing the effects of increased nitrogen loads. PMID:27372127

  19. Hydrodynamic and suspended sediment patterns in the estuarine turbidity zone of a mesotidal estuary from cross-sectional ADCP measurements and numerical simulations

    NASA Astrophysics Data System (ADS)

    Zorndt, Anna Christina; Grünler, Steffen; Schiller, Ulrike; Kösters, Frank

    2015-04-01

    Carefully assessing impacts of human interventions on hydrodynamics, salinity and sediment transport in estuaries has become increasingly important due to the high ecological importance of these systems. Quantifying these changes is commonly done by numerical modeling. However, model results highly rely on the applied model formulations and model parameters. Therefore, validation of the results with measurements is necessary. In case of suspended particulate matter, the use of stationary point measurements is limited due to the high spatial variability of sediments in the water column. This study focusses on modeling the estuarine turbidity maximum of the Weser estuary (Germany), which is a mesotidal and well- to partially mixed estuary. The estuarine turbidity maximum evolves due to known physical effects such as the gravitational circulation, tidal velocity and tidal mixing asymmetries as well as vertical and lateral advection. Those effects also contribute to high lateral and vertical variations which may in nature superposed with secondary currents by local bathymetric features. To increase the understanding of the high spatial and temporal variability of the suspended particulate matter and to validate numerical simulations, 13-hour measurements of three cross-profiles within the estuarine turbidity maximum were carried out in three consecutive years (2009 - 2011). Those consisted of continuous measurements of two vessel-mounted acoustic doppler current profiler, one of which was tilted by 20°. Also, a movable unit (with conductivity, temperature and depth probes, a laser in-situ scattering transmitter and an optical backscatter sensor) was used, also taking a water sample for calibration every 30 minutes. The employed hydrodynamical modeling tool based on the 3D shallow water equations is UnTRIM, described by Casulli and Zanolli (2002), together with the SediMorph module for calculation of transport of suspended and bed load. The model domain has a size of

  20. Monitoring Rehabilitation in Temperate North American Estuaries

    SciTech Connect

    Rice, Casimir A.; Hood, W Gregory; Tear, Lucinda M.; Simenstad, Charles; Williams, Gregory D.; Johnson, L. L.; Feist, B. E.; Roni, P.

    2005-02-01

    In this chapter, we propose that monitoring rehabilitation in estuarine ecosystems by necessity requires quantifying relationships between dynamic estuarine processes and sensitive indicators of ecosystem function. While we do discuss temperate systems in general, emphasis is placed on anadromous salmon habitats in the Pacific Northwest because anadromous fishes are such a major focus of rehabilitation efforts, and present some of the greater challenges in linking function of one segment of their life history to conditions in a specific habitat. We begin with a basic overview of the ecological and socioeconomic significance of, as well as anthropogenic effects on, estuaries. Next, we briefly summarize the various kinds of estuarine rehabilitation historically practiced in temperate regions, and review estuarine rehabilitation monitoring design and methods, highlighting the unique challenges involved in monitoring estuarine systems. We then close with a summary and conclusions.

  1. Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: A contrast between a developed and an undeveloped estuary.

    PubMed

    Granek, Elise F; Conn, Kathleen E; Nilsen, Elena B; Pillsbury, Lori; Strecker, Angela L; Rumrill, Steve S; Fish, William

    2016-07-01

    Chemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy contaminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chemicals of emerging concern including pharmaceuticals within two Oregon coastal estuaries (Coos and Netarts Bays). In the more urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concentration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each sampling season. Variability in contaminant types and concentrations across seasons and between species and media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy contaminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy compounds that remain long after prohibition of use. Our results point to the need for better understanding of the ecological and

  2. Young of the year bluefish (Pomatomus saltatrix) as a bioindicator of estuarine health: Establishing a new baseline for persistent organic pollutants after Hurricane Sandy for selected estuaries in New Jersey and New York

    USGS Publications Warehouse

    Smalling, Kelly; Deshpande, Ashok D.; Blazer, Vicki; Bruce W Dockum; DeMond Timmons; Beth L. Sharack; Baker, Ronald J.; Jennifer Samson; Reilly, Timothy J.

    2016-01-01

    Atlantic coastal bays of the US are essential habitat for young of year bluefish (Pomatomus saltatrix). Their residence in these estuaries during critical life stages, high lipid content, and piscivory make bluefish an ideal bioindicator species for evaluating estuarine health. Individual whole fish from four estuaries impacted by Hurricane Sandy were collected in August 2013, analyzed for a suite of persistent organic pollutants (POPs) including polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides and evaluated using health metrics. Concentrations in whole bluefish differed by estuary; however, concentrations for many POPs decreased or were similar to those observed prior to the hurricane. Prevalence of the ectoparasitic gill isopod (Lironeca ovalis) varied by estuary and no relationships between contaminants and lesions were observed. Bluefish should be considered for monitoring programs and, if sampled frequently, could be an effective bioindicator of incremental and episodic changes in contaminants within aquatic food webs.

  3. Young of the year bluefish (Pomatomus saltatrix) as a bioindicator of estuarine health: Establishing a new baseline for persistent organic pollutants after Hurricane Sandy for selected estuaries in New Jersey and New York.

    PubMed

    Smalling, Kelly L; Deshpande, Ashok D; Blazer, Vicki S; Dockum, Bruce W; Timmons, DeMond; Sharack, Beth L; Baker, Ronald J; Samson, Jennifer; Reilly, Timothy J

    2016-06-30

    Atlantic coastal bays of the US are essential habitat for young of year bluefish (Pomatomus saltatrix). Their residence in these estuaries during critical life stages, high lipid content, and piscivory make bluefish an ideal bioindicator species for evaluating estuarine health. Individual whole fish from four estuaries impacted by Hurricane Sandy were collected in August 2013, analyzed for a suite of persistent organic pollutants (POPs) including polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides and evaluated using health metrics. Concentrations in whole bluefish differed by estuary; however, concentrations for many POPs decreased or were similar to those observed prior to the hurricane. Prevalence of the ectoparasitic gill isopod (Lironeca ovalis) varied by estuary and no relationships between contaminants and lesions were observed. Bluefish should be considered for monitoring programs and, if sampled frequently, could be an effective bioindicator of incremental and episodic changes in contaminants within aquatic food webs. PMID:27039958

  4. How U-Th series radionuclides have come to trace estuarine processes

    NASA Astrophysics Data System (ADS)

    Church, T. M.

    2014-12-01

    Some forty years ago, the essence of estuarine processes was pioneered in terms of property-property (salinity) parameterization and end member mixing experiments. The result revealed how scavenging via "flocculation" of organic material such as humic acids affect primary nutrients and trace elements, many of pollutant interest. Defined in the Delaware are estuarine reaction zones, including one more "geochemical" in upper turbid areas and another more" biochemical" in more productive photic zones of lower areas. Since then, the natural U-Th radionuclide series have been employed to quantify estuarine transport and scavenging processes. Parent U appears negatively non-conserved during summer in estuarine and coastal waters, while that of Ra isotopes positively non-conservative dominated by a ground water end member. For both U and Ra, the biogeochemical influence of marginal salt marshes is significant. Indeed in the marsh atmospheric 210-Pb has become the metric of choice for the chronology of estuarine pollutant records. Using the more particle reactive isotopes in quantifying estuarine mixing processes (e.g. Th or Pb) proves to be fruitful in the Delaware and upper Chesapeake. While Th simply tracks that of particle abundance, both 210-Pb and 210-Po show differential scavenging with residence times of weeks to a month according to lithogenic and biogenic cycling processes, respectively.

  5. Downwelling wind, tides, and estuarine plume dynamics

    NASA Astrophysics Data System (ADS)

    Lai, Zhigang; Ma, Ronghua; Huang, Mingfen; Chen, Changsheng; Chen, Yong; Xie, Congbin; Beardsley, Robert C.

    2016-06-01

    The estuarine plume dynamics under a downwelling-favorable wind condition were examined in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to reduce these plume responses through local turbulent mixing and advection from upstream regions, resulting in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gradient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of the estuarine plume dynamics under downwelling-favorable wind conditions.

  6. ESTUARINE AND SCALAR PATTERNS OF INVASION IN THE SOFT-BOTTOM BENTHIC COMMUNITIES OF THE SAN FRANCISCO ESTUARY

    EPA Science Inventory

    The spatial patterns of nonindigenous species in seven subtidal soft-bottom communities in the San Francisco Estuary were quantified. Sixty nonindigenous species were found out of the 533 taxa enumerated (11%). Patterns of invasion across the communities were evaluated using a ...

  7. Contribution of intra-estuarine tributaries to estuarine sediment budget

    NASA Astrophysics Data System (ADS)

    Lemoine, M.; Deloffre, J.; Lafite, R.; Le Hir, P.; Oberle, K.; Petit, F.

    2012-04-01

    This study aims to quantify the sedimentary fluxes between the Seine estuary and an intra-estuarine tributary: the Risle river, located close to the Seine turbidity maximum (TM). Four key areas are monitored from the upstream river to the confluence. Water level, current speed, Suspended Solid Concentration (SSC) and salinity are continuously monitored at high-frequency during one hydrological cycle. This dataset allows to (i) identify the hydrodynamics and sedimentary forcing parameters including their spatial and temporal variability (from event to seasonal scale) and (ii) establish the sedimentary fluxes. It appears that the Risle river behaviour is similar to a macrotidal estuary. The hydrodynamics in the upstream part is mainly controlled by the river discharge that reflects the watershed inputs. The sedimentary fluxes are thus also controlled by the discharge in the order of 25,000 tons.years-1. In the downstream part, the tide is the main hydrodynamics forcing parameter (maximum current speed ~ 2.5m.s-1). The intertidal mudflats (44,000m2), only localised in this part, are subjected to erosion (10,000 tons.years-1). Erosion process is generally sudden and intense, with destabilization and removal of pluri-metric muddy blocks. This area is also characterized by the presence of a TM whom resuspended volume ranges between 5,000 tons (neap tide) and 25,000 tons (spring tide) which represents between 2 and 10 % of the Seine TM volume. During ebb, the Risle river plume contributes to locally increase the SSC in the Seine estuary, while during flood, particules from the Seine estuary are trapped in the river. Thus, exchanges between the Seine TM and a tributary located near this sedimentary stock are significant. This study was conducted during a period of low discharge with low intensity flood. In the Seine estuary, the TM average position is partially controlled by pluri-annual cycles. Besides this phenomenon is poorly examined in literature, the estuarine

  8. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Ye, Feng; Xu, Shendong; Jia, Guodong

    2015-12-01

    Particulate organic carbon (POC) in the Pearl River estuary (PRE), South China, along a salinity gradient from freshwater to seawater in four months was studied in order to determine its temporal and spatial changes in source and processing. Analytical parameters included chlorophyll-a (Chl-a), POC, and carbon isotopic composition of POC and the dissolved inorganic carbon (DIC) (δ13CPOC, δ13CDIC). POC varied greatly from freshwater to seawater, exhibiting a significant power law distribution with a rapid decrease (from >2.5 mg l-1 to <0.9 mg l-1) in a narrow salinity range of 0-5 and then a slow decline to ˜0.4 mg l-1 along the large salinity gradient in the estuary. POC was sourced predominantly from in situ phytoplankton, and hence largely reflective of primary production, in February, August, and November as indicated by mostly lower POC/Chl-a values (<200), and significant correlation between POC and Chl-a, as well as between δ13CPOC and δ13CDIC. But in May, soil-derived OC was dominant in freshwater and low salinity estuarine water, as suggested by low POC% in total suspended substance, low Chl-a values and high POC/Chl-a ratios, and higher δ13CPOC values that was not in parallel with δ13CDIC excursion. The offset between δ13CPOC and phytoplankton δ13C (inferred from δ13CDIC) was trivial or positive in salinity <12, but then became negative downstream, which was likely suggestive of biogeochemical change from net respiration in the upper estuary to net production in the lower and outer estuary. Our results demonstrated that in situ phytoplankton was the dominant source to the estuarine POC pool during most seasons of a year, except in May in the first phase of wet season when rainfall and river flux increased abruptly causing intensive flushing effect. We further suggested that POC may be undergone intensive processing within the PRE, which is important for understanding organic carbon delivery in this vigorous land-ocean interface.

  9. Estuarine acidification and minimum buffer zone—A conceptual study

    NASA Astrophysics Data System (ADS)

    Hu, Xinping; Cai, Wei-Jun

    2013-10-01

    This study uses a simulation method to explore how estuarine pH is affected by mixing between river water, anthropogenic CO2 enriched seawater, and by respiration. Three rivers with different levels of weathering products (Amazon, Mississippi, and St. Johns) are selected for this simulation. The results indicate that estuaries that receive low to moderate levels of weathering products (Amazon and St. Johns) exhibit a maximum pH decrease in the midsalinity region as a result of anthropogenic CO2 intrusion. This maximum pH decrease coincides with a previously unrecognized mid-salinity minimum buffer zone (MBZ). In addition, water column oxygen consumption can further depress pH for all simulated estuaries. We suggest that recognition of the estuarine MBZs may be important for studying estuarine calcifying organisms and pH-sensitive biogeochemical processes.

  10. Major hydrogeochemical processes in an acid mine drainage affected estuary.

    PubMed

    Asta, Maria P; Calleja, Maria Ll; Pérez-López, Rafael; Auqué, Luis F

    2015-02-15

    This study provides geochemical data with the aim of identifying and quantifying the main processes occurring in an Acid Mine Drainage (AMD) affected estuary. With that purpose, water samples of the Huelva estuary were collected during a tidal half-cycle and ion-ion plots and geochemical modeling were performed to obtain a general conceptual model. Modeling results indicated that the main processes responsible for the hydrochemical evolution of the waters are: (i) the mixing of acid fluvial water with alkaline ocean water; (ii) precipitation of Fe oxyhydroxysulfates (schwertmannite) and hydroxides (ferrihydrite); (iii) precipitation of Al hydroxysulfates (jurbanite) and hydroxides (amorphous Al(OH)3); (iv) dissolution of calcite; and (v) dissolution of gypsum. All these processes, thermodynamically feasible in the light of their calculated saturation states, were quantified by mass-balance calculations and validated by reaction-path calculations. In addition, sorption processes were deduced by the non-conservative behavior of some elements (e.g., Cu and Zn). PMID:25530015

  11. Comparison of the basin-scale effect of dredging operations and natural estuarine processes on suspended sediment concentration

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2002-01-01

    Suspended sediment concentration (SSC) data from San Pablo Bay, California, were analyzed to compare the basin-scale effect of dredging and disposal of dredged material (dredging operations) and natural estuarine processes. The analysis used twelve 3-wk to 5-wk periods of mid-depth and near-bottom SSC data collected at Point San Pablo every 15 min from 1993-1998. Point San Pablo is within a tidal excursion of a dredged-material disposal site. The SSC data were compared to dredging volume, Julian day, and hydrodynamic and meteorological variables that could affect SSC. Kendall's ??, Spearman's ??, and weighted (by the fraction of valid data in each period) Spearman's ??w correlation coefficients of the variables indicated which variables were significantly correlated with SSC. Wind-wave resuspension had the greatest effect on SSC. Median water-surface elevation was the primary factor affecting mid-depth SSC. Greater depths inhibit wind-wave resuspension of bottom sediment and indicate greater influence of less turbid water from down estuary. Seasonal variability in the supply of erodible sediment is the primary factor affecting near-bottom SSC. Natural physical processes in San Pablo Bay are more areally extensive, of equal or longer duration, and as frequent as dredging operations (when occurring), and they affect SSC at the tidal time scale. Natural processes control SSC at Point San Pablo even when dredging operations are occurring.

  12. Shock, Stress or Signal? Implications of Freshwater Flows for a Top-Level Estuarine Predator

    PubMed Central

    Taylor, Matthew D.; van der Meulen, Dylan E.; Ives, Matthew C.; Walsh, Chris T.; Reinfelds, Ivars V.; Gray, Charles A.

    2014-01-01

    Physicochemical variability in estuarine systems plays an important role in estuarine processes and in the lifecycles of estuarine organisms. In particular, seasonality of freshwater inflow to estuaries may be important in various aspects of fish lifecycles. This study aimed to further understand these relationships by studying the movements of a top-level estuarine predator in response to physicochemical variability in a large, temperate south-east Australian estuary (Shoalhaven River). Mulloway (Argyrosomus japonicus, 47–89 cm total length) were surgically implanted with acoustic transmitters, and their movements and migrations monitored over two years via fixed-position VR2W acoustic receivers configured in a linear array along the length of the estuary. The study period included a high degree of abiotic variability, with multiple pulses (exponentially high flows over a short period of time) in fresh water to the estuary, as well as broader seasonal variation in flow, temperature and conductivity. The relative deviation of fish from their modal location in the estuary was affected primarily by changes in conductivity, and smaller fish (n = 4) tended to deviate much further downstream from their modal position in the estuary than larger fish (n = 8). High-flow events which coincided with warmer temperatures tended to drive mature fish down the estuary and potentially provided a spawning signal to stimulate aggregation of adults near the estuary mouth; however, this relationship requires further investigation. These findings indicate that pulse and press effects of freshwater inflow and associated physicochemical variability play a role in the movements of mulloway, and that seasonality of large freshwater flows may be important in spawning. The possible implications of river regulation and the extraction of freshwater for consumptive uses on estuarine fishes are discussed. PMID:24752585

  13. Three dimensional water quality modeling of a shallow subtropical estuary.

    PubMed

    Wan, Yongshan; Ji, Zhen-Gang; Shen, Jian; Hu, Guangdou; Sun, Detong

    2012-12-01

    Knowledge of estuarine hydrodynamics and water quality comes mostly from studies of large estuarine systems. The processes affecting algae, nutrients, and dissolved oxygen (DO) in small and shallow subtropical estuaries are relatively less studied. This paper documents the development, calibration, and verification of a three dimensional (3D) water quality model for the St. Lucie Estuary (SLE), a small and shallow estuary located on the east coast of south Florida. The water quality model is calibrated and verified using two years of measured data. Statistical analyses indicate that the model is capable of reproducing key water quality characteristics of the estuary within an acceptable range of accuracy. The calibrated model is further applied to study hydrodynamic and eutrophication processes in the estuary. Modeling results reveal that high algae concentrations in the estuary are likely caused by excessive nutrient and algae supplies in freshwater inflows. While algal blooms may lead to reduced DO concentrations near the bottom of the waterbody, this study indicates that stratification and circulation induced by freshwater inflows may also contribute significantly to bottom water hypoxia in the estuary. It is also found that high freshwater inflows from one of the tributaries can change the circulation pattern and nutrient loading, thereby impacting water quality conditions of the entire estuary. Restoration plans for the SLE ecosystem need to consider both a reduction of nutrient loading and regulation of the freshwater discharge pattern. PMID:23122270

  14. Estuary Data Mapper

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing e-Estuary, a decision-support system for coastal management. E-Estuary has three elements: an estuarine geo-referenced relational database, watershed GIS coverages, and tools to support decision-making. To facilita...

  15. Changes to processes in estuaries and coastal waters due to intense multiple pressures - An introduction and synthesis

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven B.; Jennerjahn, Tim C.; Vizzini, Salvatrice; Zhang, Weiguo

    2015-04-01

    From the 2013 ECSA conference 'Estuaries and Coastal Areas in Times of Intense Change' a theme emerged that has ended up being the focus of this Special Issue of Estuarine Coastal and Shelf Science, namely 'Changes to processes in estuaries and coastal waters due to intense multiple pressures'. Many parts of the world are continuing to experience unprecedented rates of economic growth, and those responsible for managing coastal and estuarine areas must respond accordingly. At the same time, global climate change and sea level rise are also continuing, placing new or more intense pressures on coastal areas that must be dealt with in ways that are as far as possible managed as a result of good scientific understanding. There are other pressures too, which depend on the system concerned. This article provides an overview of the papers contained within the Special Issue and provides a discussion of how these fit within the main theme of intense multiple stressors, considering how a balance can be achieved between the needs of various different stakeholders and interest groups, and the sustainability of the system concerned. We categorise the papers in four main groupings: (1) stressors related to sea level rise; (2) stressors related to changes in fresh water inputs; (3) stressors related to anthropogenic pollution; and (4) the use of indicators as a means of assessing the effects of stressors, and reflect on the fact that despite the diversity of different challenges and geographical regions involved many of the approaches and discussions contained within the Special Issue have strong similarities, leading to a set of overarching principles that should be considered when making recommendations on management strategies.

  16. Ecology of estuaries

    SciTech Connect

    Kennish, M.J. )

    1992-01-01

    Ecology of Estuaries: Anthropogenic Effects represents the most definitive and comprehensive source of reference information available on the human impact on estuarine ecosystems. The book discusses both acute and insidious pollution problems plaguing these coastal ecotones. It also provides a detailed examination of the deleterious and pervasive effects of human activities on biotic communities and sensitive habitat areas in estuaries. Specific areas covered include organic loading, oil pollution, polynuclear aromatic hydrocarbons, chlorinated hydrocarbons, heavy metals, dredging and dredge-spoil disposal, radionuclides, as well as other contaminants and processes. The diverse components of these anthropogenic influences are assembled in an organized framework and presented in a clear and concise style that will facilitate their understanding.

  17. Circulation and physical processes within the San Gabriel River Estuary during summer 2005

    USGS Publications Warehouse

    Rosenberger, Kurt J.; Xu, Jingping; Stein, Eric D.; Noble, Marlene A.; Gartner, Anne L.

    2007-01-01

    The Southern California Coastal Water Research Project (SCCWRP) is developing a hydrodynamic model of the SGR estuary, which is part of the comprehensive water-quality model of the SGR estuary and watershed investigated by SCCWRP and other local agencies. The hydrodynamic model will help understanding of 1) the exchange processes between the estuary and coastal ocean; 2) the circulation patterns in the estuary; 3) upstream natural runoff and the cooling discharge from PGS. Like all models, the SGR hydrodynamic model is only useful after it is fully calibrated and validated. In May 2005, SCCWRP requested the assistance of the U.S. geological Survey (USGS) Coastal and Marine Geology team (CMG) in collecting data on the hydrodynamic conditions in the estuary during the summer dry season. The summer was chosen for field data collection as this was assumed to be the season with the greatest potential for chronic degraded water quality due to low river flow and high thermal stratification within the estuary (due to both higher average air temperature and PGS output). Water quality can be degraded in winter as well, when higher river discharge events bring large volumes of water from the Los Angeles basin into the estuary. The objectives of this project were to 1) collect hydrodynamic data along the SGR estuary; 2) study exchange processes within the estuary through analysis of the hydrodynamic data; and 3) provide field data for model calibration and validation. As the data only exist for the summer season, the results herein only apply to summer conditions.

  18. Estuary/ocean exchange and tidal mixing in a Gulf of Maine Estuary: A Lagrangian modeling study

    NASA Astrophysics Data System (ADS)

    Bilgili, Ata; Proehl, Jeffrey A.; Lynch, Daniel R.; Smith, Keston W.; Swift, M. Robinson

    2005-12-01

    A Lagrangian particle method embedded within a 2-D finite element code, is used to study the transport and ocean-estuary exchange processes in the well-mixed Great Bay Estuarine System in New Hampshire, USA. The 2-D finite element model, driven by residual, semi-diurnal and diurnal tidal constituents, includes the effects of wetting and drying of estuarine mud flats through the use of a porous medium transport module. The particle method includes tidal advection, plus a random walk model in the horizontal that simulates sub-grid scale turbulent transport processes. Our approach involves instantaneous, massive [O(500,000)] particle releases that enable the quantification of ocean-estuary and inter-bay exchanges in a Markovian framework. The effects of the release time, spring-neap cycle, riverine discharge and diffusion strength on the intra-estuary and estuary-ocean exchange are also investigated. The results show a rather dynamic interaction between the ocean and the estuary with a fraction of the exiting particles being caught up in the Gulf of Maine Coastal Current and swept away. Three somewhat different estimates of estuarine residence time are calculated to provide complementary views of estuary flushing. Maps of residence time versus release location uncover a strong spatial dependency of residence time within the estuary that has very important ramifications for local water quality. Simulations with and without the turbulent random walk show that the combined effect of advective shear and turbulent diffusion is very effective at spreading particles throughout the estuary relatively quickly, even at low (1 m 2/s) diffusivity. The results presented here show that a first-order Markov Chain approach has applicability and a high potential for improving our understanding of the mixing processes in estuaries.

  19. Mechanisms driving estuarine water quality: A 3D biogeochemical model for informed management

    NASA Astrophysics Data System (ADS)

    Wild-Allen, Karen; Skerratt, Jenny; Whitehead, Jason; Rizwi, Farhan; Parslow, John

    2013-12-01

    Estuaries are amongst the most productive marine ecosystems of the world but are also some of the most degraded due to coastal urban development. Sparse sampling of complex interactions between estuarine physics, sediment transport, chemistry, and biology limits understanding of the processes controlling estuarine water quality and confounds active management. We use a 3D coupled hydrodynamic, sediment and biogeochemical model to identify the key mechanisms driving fine-scale fluctuations in water quality in a temperate micro-tidal salt wedge estuary [Derwent Estuary, Tasmania]. Model results are dynamically consistent with relatively sparse monitoring data collected over a seasonal cycle and are considered to be a plausible hypothesis of sub-monitoring scale processes occurring in the estuary. The model shows enhanced mixing of nutrients across the pycnocline downstream of the salt wedge front that supports a persistent phytoplankton bloom. The length and flow regime of the estuary results in nutrient recycling and retention in the estuarine circulation driving a decline in bottom water dissolved oxygen in the mid- and upper-reaches. A budget analysis of modelled nitrogen suggests high levels of denitrification are critical to the maintenance of existing water quality. Active estuarine management focused on the improvement of bottom water dissolved oxygen for ecological health reasons must either concurrently reduce anthropogenic nitrogen loads or be sure to maintain high levels of microbial denitrification for net water quality improvement.

  20. Simple processes drive unpredictable differences in estuarine fish assemblages: Baselines for understanding site-specific ecological and anthropogenic impacts

    NASA Astrophysics Data System (ADS)

    Sheaves, Marcus

    2016-03-01

    Predicting patterns of abundance and composition of biotic assemblages is essential to our understanding of key ecological processes, and our ability to monitor, evaluate and manage assemblages and ecosystems. Fish assemblages often vary from estuary to estuary in apparently unpredictable ways, making it challenging to develop a general understanding of the processes that determine assemblage composition. This makes it problematic to transfer understanding from one estuary situation to another and therefore difficult to assemble effective management plans or to assess the impacts of natural and anthropogenic disturbance. Although system-to-system variability is a common property of ecological systems, rather than being random it is the product of complex interactions of multiple causes and effects at a variety of spatial and temporal scales. I investigate the drivers of differences in estuary fish assemblages, to develop a simple model explaining the diversity and complexity of observed estuary-to-estuary differences, and explore its implications for management and conservation. The model attributes apparently unpredictable differences in fish assemblage composition from estuary to estuary to the interaction of species-specific, life history-specific and scale-specific processes. In explaining innate faunal differences among estuaries without the need to invoke complex ecological or anthropogenic drivers, the model provides a baseline against which the effects of additional natural and anthropogenic factors can be evaluated.

  1. Comparing spatial and temporal dynamics of anammox and denitrifying communities at Cape Fear River Estuary and New River Estuary, North Carolina

    NASA Astrophysics Data System (ADS)

    Lisa, J. A.; Hirsch, M. D.; Duernberger, K. A.; Tobias, C. R.; Song, B.

    2010-12-01

    Anaerobic ammonium oxidation (anammox) and denitrification are two main microbial processes capable of removing fixed nitrogen by conversion into a gaseous species. Both microbial processes are known to occur in anoxic estuarine sediments and are capable of remediating excess nitrogen loadings from anthropogenic activities. In order to understand the importance of anammox and denitrification in estuarine ecosystems, we investigated both processes in two different estuaries of North Carolina to compare sedimentary nitrogen removal capacity and to identify key players of N2 production pathways. Both Cape Fear River Estuary (CFRE) and New River Estuary (NRE) are highly enriched with nitrogen from anthropogenic sources in spite of distinct geomorphological and geochemical characteristics. We conducted seasonal samplings to collect sediments across transects at fifteen stations along each estuary. 15N tracer techniques were used to measure spatial and temporal variations of N2 production by denitrification and anammox in estuarine sediments. Molecular analysis of nitrous oxide reductase (nosZ) and hydrazine oxidase (hzo) genes was conducted to examine community structures of denitrifying and anammox bacteria, respectively. Denitrification was found to be the dominant N2 production processes in both estuaries. Anammox contributed up to 19% and 15 % of total N2 productions in the CFEE and the NRE, respectively. Phylogenetic analysis of hzo genes identified that the anammox bacteria at both estuaries are closely associated with five known genera in the order Brocadiales. Anammox communities at the CFRE showed biogeographical distribution along the estuarine gradients while high seasonal variations were observed in the NRE communities. Spatial and temporal variations of denitrifying communities at both estuaries were also found based on nosZ gene analysis. Multivariate analysis was conducted to define key biogeochemical parameters influencing the community dynamics and

  2. SUSPENDED AND BENTHIC SEDIMENT RELATIONSHIPS IN THE YAQUINA ESTUARY, OREGON: NUTRIENT PROCESSING

    EPA Science Inventory

    Measurements of nutrient loading and subsequent nutrient processing are fundamental for determining biogeochemical processes in rivers and estuaries. In Oregon coastal watersheds, nutrient transport is strongly seasonal with up to 94% of the riverine dissolved nitrate and silic...

  3. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  4. Trace metals in estuarine sediments from the southwestern Spanish coast.

    PubMed

    Ruiz, F

    2001-06-01

    The impact of river-transported metal pollution and industrial wastes on the metal distribution (Cr, Cu, Zn, Pb) in estuarine sediments was studied in the southwestern Spanish estuaries. Intertidal and subtidal surface sediments of the Tinto-Odiel Estuary are very highly polluted by heavy metals, with geoaccumulation indices up to 4 in the three sedimentary environments studied (channel, channel border and salt marsh). The single exception is the Punta Umbria channel, very protected from the point sources by salt marsh deposits and hydraulic processes. In the remaining two estuaries, pollution (Pb, Cu) was only significant near the harbour situated in the Piedras river mouth, whereas very low values were found in the Guadiana Estuary. In these last rivers, the enrichment factor increases from the channel to the salt marsh sediments. PMID:11468926

  5. Using stable isotopes and models to explore estuarine linkages at multiple scales

    EPA Science Inventory

    Estuarine managers need tools to respond to dynamic stressors that occur in three linked environments – coastal ocean, estuaries and watersheds. Models have been the tool of choice for examining these dynamic systems because they simplify processes and integrate over multiple sc...

  6. Foraging ecology of sanderlings Calidris alba wintering in estuarine and non-estuarine intertidal areas

    NASA Astrophysics Data System (ADS)

    Lourenço, Pedro M.; Alves, José A.; Catry, Teresa; Granadeiro, José P.

    2015-10-01

    Outside the breeding season, most shorebirds use either estuarine or non-estuarine intertidal areas as foraging grounds. The sanderling Calidris alba is mostly associated with coastal sandy beaches, a habitat which is currently at risk worldwide due to increasing coastal erosion, but may also use estuarine sites as alternative foraging areas. We aimed to compare the trophic conditions for sanderlings wintering in estuarine and non-estuarine sites within and around the Tejo estuary, Portugal, where these two alternative wintering options are available within a relatively small spatial scale. To achieve this, we analysed sanderling diet, prey availability, foraging behaviour, and time and energy budgets in the different substrates available in estuarine and non-estuarine sites. In terms of biomass, the most important sanderling prey in the estuarine sites were siphons of the bivalve Scrobicularia plana, polychaetes, staphylinids and the gastropod Hydrobia ulvae. In non-estuarine sites the main prey were polychaetes, the bivalve Donax trunculus and chironomid larvae. Both food availability and energetic intake rates were higher on estuarine sites, and sanderlings spent a higher proportion of time foraging on non-estuarine sites. In the estuary, sanderlings foraged in muddy-sand substrate whenever it was available, achieving higher intake rates than in sandy substrates. In the non-estuarine sites they used both sandy and rocky substrates throughout the tidal cycle but had higher intakes rates in sandy substrate. Estuarine sites seem to offer better foraging conditions for wintering sanderlings than non-estuarine sites. However, sanderlings only use muddy-sand and sandy substrates, which represent a small proportion of the intertidal area of the estuary. The extent of these substrates and the current sanderling density in the estuary suggest it is unlikely that the estuary could provide alternative wintering habitat for sanderlings if they face habitat loss and

  7. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam

    SciTech Connect

    Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.; Borde, Amy B.

    2015-03-01

    This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels are increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.

  8. Estuarine Food for Thought

    NASA Astrophysics Data System (ADS)

    M�ller-Solger, A. B.; M�ller-Navarra, D. B.

    2002-12-01

    Recent research in animal and human nutrition has shown the importance of long-chain polyunsaturated fatty acids (LC-PUFA) such as the n-3 LC-PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These LC-PUFA are needed for healthy development and functioning of the nervous and vascular systems. De novo synthesis or elongation to LC-PUFA in animals is inefficient at best; thus sufficient amounts of these PUFA must be supplied by food sources. Algae, especially diatoms, dinoflagellates, and cryptophytes, are the quantitatively most important producers of EPA and DHA. These types of algae often dominate estuarine producer communities. The upper San Francisco Estuary is no exception, and we found its LC-PUFA-rich phytoplankton biomass, but not the quantitatively prevalent terrestrial plant detritus, to be highly predictive of zooplankton (Daphnia) growth. In contrast, in freshwater lakes dominated by relatively LC-PUFA-poor phytoplankton, EPA, not total phytoplankton biomass, best predicted Daphnia growth. The commonly high abundance of LC-PUFA-rich algae in estuaries may help explain the high trophic efficiencies in these systems and resulting high consumer production. Moreover, LC-PUFA-rich estuarine food resources may also provide essential nutrition and associated health and evolutionary benefits to land-dwelling consumers of such foods, including humans. Ensuring LC-PUFA-rich, uncontaminated estuarine production is thus an important goal for estuarine restoration and a convincing argument for estuarine conservation.

  9. Measuring hydrodynamics and sediment transport processes in the Dee estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-03-01

    The capability of monitoring and predicting the marine environment leads to a more sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes become an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The data aims to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data involves the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data covers flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, is being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  10. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-06-01

    The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  11. Sewage influence in a macrotidal estuary: Fatty acid and sterol distributions

    NASA Astrophysics Data System (ADS)

    Quemeneur, Michelle; Marty, Yanic

    1992-04-01

    Estuarine surface sediment and suspended matter from the Morlaix River estuary were analysed for fatty acids and sterols by HPLC and GC. This estuary represents a typical example of a coastal river estuary subjected to strong tides and receiving domestic wastes in its upper reaches. Wastewater fatty acid and sterol distribution patterns have been used to estimate the anthropogenic matter influx and its behaviour as an estuarine organic matter component. The 5 β-stanols, specific to fecal material and relatively persistent in the environment, provide a spatial view of sewage dispersion in estuarine waters and sediments and are used to calculate the relative importance of anthropogenic inputs in the degradable organic matter. Their distribution at high and low water indicates that anthropogenic particles are distributed throughout the estuary and may reach the coastal areas. However, owing to the dilution and the sedimentation processes, the anthropogenic matter contribution to the total organic matter is low in the outer estuary. By contrast, sediments from the upper estuary are strongly influenced by fresh anthropogenic inputs which may be detected by fatty acid fingerprint. The 18:1( n- 7)/18:1( n- 9) ratio which indicates the ability of the sediment to degrade the anthropogenic fresh material demonstrates a perturbation all along the narrow upper estuary.

  12. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters. PMID:26407145

  13. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  14. Research Experiences for Undergraduates in Estuarine and Atmospheric Processes

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.

    2009-12-01

    Our program in the School of Marine and Atmospheric Sciences at Stony Brook University is unique in emphasizing the interdisciplinary study of coastal ocean and atmospheric processes. We attract a large number of both male and female undergraduate applicants representing diverse ethnic groups from across the country. Many are multi-discipline majors merging geology, biology, chemistry, or physics with engineering, and/or mathematics and welcome the opportunity to combine their academic training to examine environmental problems. Our goal is a program reflective of today’s world and environmental challenges, one that provides a ‘hands-on’ research experience which illustrates the usefulness of scientific research for understanding real-world problems or phenomena, and one in which students are challenged to apply their academic backgrounds to develop intuition about natural systems and processes. Projects this past summer focused on assessing climate change and its effects on coastal environments and processes. Projects addressed the implications of a changing global climate over the next 50 years on hydrologic cycles and coastal environments like barrier islands and beaches, on seasonal weather conditions and extreme events, on aerosols and the Earth’s radiative balance, and on aquatic habitats and biota. Collaborative field and laboratory or computer-based projects involving two or three REU students, graduate students, and several mentors, enable undergraduate students appreciate the importance of teamwork in addressing specific scientific questions or gaining maximum insight into a particular phenomenon or process. We believe that our approach allows students to understand what their role will be as scientists in the next phase of our earth’s evolution.

  15. Evidence for enhanced mercury reactivity in response to estuarine mixing

    NASA Astrophysics Data System (ADS)

    Rolfhus, Kristofer R.; Lamborg, Carl H.; Fitzgerald, William F.; Balcom, Prentiss H.

    2003-11-01

    Bioaccumulation of methylmercury in coastal U.S. fisheries has led to the issuance of numerous fish consumption advisories, and yet little is known about the processes that make Hg species chemically labile in coastal and estuarine systems. This study examined the role of estuarine mixing in formation of labile Hg complexes (reactive Hg) from relatively refractory Hg-organic associations in river water and characterized the behavior and distribution of Hg species in the Connecticut River estuary during three distinct collection periods. Results indicate that while total Hg partitioning and concentrations remained fairly constant with increasing salinity, the fraction present as reactive Hg concentrations increased, primarily in the particulate phase. Mixing experiments using both natural and prepared waters indicate that riverine organic ligands rapidly scavenge reactive Hg from natural waters on timescales of minutes to hours, while samples free of riverine influence remained much more "reactive." Modeling of the estuarine system suggests that elevated concentrations of chloride and dilution of the dominant organic ligand associated with estuarine mixing enhance reactive Hg and predict a bulk log formation constant for the binding ligand of approximately 21. Analysis of Hg0 production from Hg(II)-spiked, incubated estuarine samples supports the speciation data as higher reactive Hg concentrations and Hg0 production rates were observed in the more saline samples. These results suggest that estuarine mixing may exacerbate Hg methylation, evasion, and bioaccumulation in some systems by promoting the formation of Hg species that are readily labile.

  16. Columbia River Estuary Ecosystem Classification — Concept and application

    USGS Publications Warehouse

    Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.

    2011-01-01

    This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.

  17. Regional carbon and CO2 budgets of North Sea tidal estuaries

    NASA Astrophysics Data System (ADS)

    Volta, C.; Laruelle, G. G.; Regnier, P.

    2016-07-01

    This study presents the first regional application of the generic estuarine reactive-transport model C-GEM (Carbon-Generic Estuary Model) that is here combined with high-resolution databases to produce a carbon and CO2 budget for all tidal estuaries discharging into the North Sea. Steady-state simulations are performed for yearly-averaged conditions to quantify the carbon processing in the six main tidal estuaries Elbe, Ems, Humber, Scheldt, Thames, and Weser, which show contrasted physical and biogeochemical dynamics and contribute the most to the regional filter. The processing rates derived from these simulations are then extrapolated to the riverine carbon loads of all the other North Sea catchments intercepted by smaller tidal estuarine systems. The Rhine-Meuse estuarine system is also included in the carbon budget and overall, we calculate that the export of organic and inorganic carbon from tidal estuaries to the North sea amounts to 44 and 409 Gmol C yr-1, respectively, while 41 Gmol C are lost annually through CO2 outgassing. The carbon is mostly exported from the estuaries in its inorganic form (>90%), a result that reflects the low organic/inorganic carbon ratio of the riverine waters, as well as the very intense decomposition of organic carbon within the estuarine systems. Our calculations also reveal that with a filtering capacity of 15% for total carbon, the contribution of estuaries to the CO2 outgassing is relatively small. Organic carbon dynamics is dominated by heterotrophic degradation, which also represents the most important contribution to the estuarine CO2 evasion. Nitrification only plays a marginal role in the CO2 dynamics, while the contribution of riverine oversaturated waters to the CO2 outgassing is generally significant and strongly varies across systems.

  18. PREDICTIONS IN AN INVADED WORLD - PART II: USING NICHE MODELS TO PREDICT DISTRIBUTIONS OF MARINE/ESTUARINE SPECIES AT THE ESTUARY SCALE

    EPA Science Inventory

    To better understand the potential geographical distributions of nonindigenous species (NIS), we are evaluating the ability of niche models to predict the presence of existing native and NIS species within individual estuaries based on landscape characteristics. One model being ...

  19. The use of vintage surficial sediment data and sedimentary cores to determine past and future trends in estuarine metal contamination (Sydney estuary, Australia).

    PubMed

    Birch, G F; Chang, C-H; Lee, J-H; Churchill, L J

    2013-06-01

    The objectives of the present investigation were to determine past trends in sediment contamination and possibly predict future trends. Multiple vintages of surficial sediment metal data, from a quasi-decadal 'Status and Trends' programme, were used to provide large-scale spatial information on current status and temporal change. This information was augmented by sediment cores, specifically located to verify surface sediment data and to determine trends at major points of stormwater discharge. The data obtained indicate that surficial sediment metal concentrations have declined, since about the early 1990s, in extensive parts of the upper and central estuaries and have increased slightly in the lower estuary, due mainly to a down-estuary shift in industry and urbanisation. Declining surficial sediment metal concentrations is due to a movement of industry out of the catchment, especially from foreshore areas and the introduction of regulation, which prevent pollutants being discharged directly to the estuary. The major present-day source of metals is stormwater, with minor inputs from the main estuary channel into embayments and runoff from previously contaminated mainland sites. Modelled relaxation rates are optimistic as high metal concentrations in stormwater will slow predicted rates. Stormwater remediation should be the main managerial focus for this estuary. Multiple vintages of surficial sediment metal data covering the past 30 years, supplemented by sedimentary core data, have allowed past and future contamination trends to be determined. This type of science-based information provides an important tool for strategic management of this iconic waterway. PMID:23570910

  20. Estuaries of the northeastern United States: Habitat and land use signatures

    USGS Publications Warehouse

    Roman, C.T.; Jaworski, N.; Short, F.T.; Findlay, S.; Warren, R.S.

    2000-01-01

    Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the dominant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure function, and processes of estuaries along latitudinal gradients.

  1. Human effects on estuarine shoreline decadal evolution

    NASA Astrophysics Data System (ADS)

    Rilo, A.; Freire, P.; Ceia, R.; Mendes, R. N.; Catalão, J.; Taborda, R.

    2012-04-01

    Due to their sheltered conditions and natural resources, estuaries were always attractive to human activities (industrial, agriculture, residential and recreation). Consequently, the complex interactions between anthropogenic and natural drivers increase estuarine shoreline vulnerability to climate changes impacts. The environmental sustainability of these systems depends on a fragile balance between societal development and natural values that can be further disturbed by climate change effects. This challenging task for scientific community, managers and stakeholders can only be accomplished with interdisplinary approaches. In this context, it seems clear that estuarine management plans should incorporate the concept of change into the planning of policy decisions since these natural dynamic areas are often under human pressure and are recognized as sensitive to climate change effects. Therefore, the knowledge about historical evolution of estuarine shoreline is important to provide new insights on the spatial and temporal dimensions of estuarine change. This paper aims to present and discuss shoreline changes due to human intervention in Tagus estuary, located on the west coast of Portugal. Detailed margins cartography, in a 550m fringe (drawn inland from the highest astronomical tide line), was performed based on 2007 orthophotos (spatial resolution of 0.5 m) analysis. Several classification categories were considered, as urbanized areas, industrial, port and airport facilities, agriculture spaces, green areas and natural zones. The estuarine bed (area bellow the highest astronomical tide line) was also mapped (including human occupation, natural habitats, morpho-sedimentary units) based on the geographic information above and LANSAT 7 TM+ images using image processing techniques. Aerial photographs dated from 1944, 1946, 1948, 1955 and 1958 were analyzed for a set of pilot zones in order to fully understand the decadal shoreline change. Estuarine bed presents

  2. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    SciTech Connect

    Bryan, Frank; Dennis, John; MacCready, Parker; Whitney, Michael

    2015-11-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.

  3. Anthropogenic Carbon Pump in an Urbanized Estuary

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Yoon, T. K.; Jin, H.; Begum, M. S.

    2015-12-01

    The importance of estuaries as a carbon source has been increasingly recognized over the recent decades. However, constraining sources of CO2 evasion from urbanized estuaries remains incomplete, particularly in densely populated river systems receiving high loads of organic carbon from anthropogenic sources. To account for major factors regulating carbon fluxes the tidal reach of the Han River estuary along the metropolitan Seoul, characterization of organic carbon in the main stem and major urban tributaries were combined with continuous, submersible sensor measurements of pCO2 at a mid-channel location over a year and continuous underway measurements using a submersible sensor and two equilibrator sytems across the estuarine section receiving urban streams. Single-site continuous measurements exhibited large seasonal and diurnal variations in pCO2, ranging from sub-ambient air levels to exceptionally high values approaching 10,000 ppm. Diurnal variations of pCO2 were pronounced in summer and had an inverse relationship with dissolved oxygen, pointing to a potential role of day-time algal consumption of CO2. Cruise measurements displayed sharp pCO2 pulses along the confluences of urban streams as compared with relatively low values along the upper estuary receiving low-CO2 outflows from upstream dams. Large downstream increases in pCO2, concurrent with increases in DOC concentrations and fluorescence intensities indicative of microbially processed organic components, imply a translocation and subsequent dilution of CO2 carried by urban streams and/or fast transformations of labile C during transit along downstream reaches. The unique combination of spatial and temporal continuous measurements of pCO2 provide insights on estuarine CO2 pulses that might have resulted from the interplay between high loads of CO2 and organic C of anthropogenic origin and their priming effects on estuarine microbial processing of terrigenous and algal organic matter.

  4. Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: A review

    NASA Astrophysics Data System (ADS)

    Nordstrom, Karl F.; Jackson, Nancy L.

    2012-02-01

    structures are common and have greater survivability in low-energy environments than high-energy environments; they are cheaper to build; and they have been implemented more frequently to control erosion. Their effect has been to reduce the extent of beach in small water bodies. Beach nourishment projects have been fewer than on exposed shores and the quantities smaller. Many nourishment projects have been implemented for amenity value and have been placed in locations where waves have not been able to create an equilibrium landform. The biggest difference in process controls between estuaries and lakes and reservoirs is in the mechanism for water level change. Tides and surges from external basins are important on estuarine beaches, whereas rainfall, runoff, groundwater flow, evapotranspiration and control by dams are more important in reservoirs and lakes. Future sea level rise will threaten beach environments in estuaries where shore parallel walls will prevent onshore migration of landforms and habitats and will change the number and locations of beaches in unarmored areas. Dam removal will pose a threat to the existence of reservoirs and dammed lakes. Water levels are more dependent on human actions in lakes and reservoirs, so changes can be minimal or increased to a greater extent than in estuaries. Lesser stability and predictability of beaches will complicate future management efforts.

  5. Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, J. A. (Principal Investigator); Rosenthal, A.; May, L. N., Jr.; Bauman, R. H.; Gosselink, J. G.

    1985-01-01

    The purpose of the project is to refine and validate a probabilistic spatial computer model through the analyses of thematic mapper imagery. The model is designed to determine how the interface between marshland and water changes as marshland is converted to water in a disintegrating marsh. Coastal marshland in Louisiana is disintegrating at the rate of approximately 40 sq mi a year, and an evaluation of the potential impact of this loss on the landings of estuarine-dependent fisheries is needed by fisheries managers. Understanding how marshland-water interface changes as coastal marshland is lost is essential to the process of evaluating fisheries effects, because several studies suggest that the production of estuarine-dependent fish and shellfish may be more closely related to the interface between marshland and water than to acreage of marshland. The need to address this practical problem has provided an opportunity to apply some scientifically interesting new techniques to the analyses of satellite imagery. Progress with the development of these techniques is the subject of this report.

  6. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington – Feasibility Assessment

    SciTech Connect

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-01-01

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding anddrainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  7. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington – Feasibility Assessment

    SciTech Connect

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-08-03

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding and drainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  8. Global change effects on biogeochemical processes of Argentinian estuaries: an overview of vulnerabilities and ecohydrological adaptive outlooks.

    PubMed

    Kopprio, Germán A; Biancalana, Florencia; Fricke, Anna; Garzón Cardona, John E; Martínez, Ana; Lara, Rubén J

    2015-02-28

    The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. PMID:25194878

  9. BENTHIC AND WATER COLUMN PROCESSES IN A SUBTROPICAL ESTUARY: EFFECTS OF LIGHT ON OXYGEN FLUXES

    EPA Science Inventory

    Murrell, M.C., J.D. Hagy, J.G. Campbell and J.M. Caffrey. In press. Benthic and Water Column Processes in a Subtropical Estuary: Effects of Light on Oxygen Fluxes (Abstract). To be presented at the ASLO 2004 Summer Meeting: The Changing Landscapes of Oceans and Freshwater, 13-18 ...

  10. PHYTOPLANKTON-AND DETRITUS-BASED FOOD WEBS IN GULF OF MEXICO ESTUARIERS: LESSONS FROM PENSACOLA BAY FL, USA

    EPA Science Inventory

    A central theme in estuarine ecology is understanding the connection between riverine delivery of nutrients and organic matter and how these materials are processed within the estuary. Key to this understanding is the ability to quantify the importance of detrital carbon in suppo...

  11. Scavenging Rate Ecoassay: A Potential Indicator of Estuary Condition

    PubMed Central

    Porter, Augustine G.; Scanes, Peter R.

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress. PMID:26024225

  12. Assessment of the zinc diffusion rate in estuarine zones.

    PubMed

    Sámano, María Luisa; Pérez, María Luisa; Claramunt, Inigo; García, Andrés

    2016-03-15

    Industrial pressures suffered by estuarine zones leave a pollution record in their sediment. Thus, high concentrations of many heavy metals and some organic compounds are often found in estuarine sediment. This work aims to contribute to the enhancement of water quality management strategies in these zones by studying in detail the diffusive processes that take place between the water and sediment using a two-pronged approach: experimental practice and numerical simulation. To provide an example of the practical application of the methodologies proposed in this paper, the Suances Estuary (northern Spain) was selected as the study zone. This estuary exhibits significant historical pollution and its sediment acts as a continuous internal source of zinc, mainly due to diffusive processes derived from the concentration gradient between the interstitial water at the solid particles of the sediment and the bottom of the water column. The experimentally obtained results, based on 6 case studies, demonstrated the buffering capacity of the system and allowed the determination of the required time for the mass transfer processes to reach an equilibrium state. Furthermore, the diffusion rate of zinc was approximately modeled taking into consideration the high concentration variability observed in sediment along the entire estuary. The convergence between the modeled and the experimental results indicated the required contact time to reach an equilibrium state in a real field situation. PMID:26851870

  13. Comparison of methods for the removal of organic carbon and extraction of chromium, iron and manganese from an estuarine sediment standard and sediment from the Calcasieu River estuary, Louisiana, U.S.A.

    USGS Publications Warehouse

    Simon, N.S.; Hatcher, S.A.; Demas, C.

    1992-01-01

    U.S. National Bureau of Standards (NBS) estuarine sediment 1646 from the Chesapeake Bay, Maryland, and surface sediment collected at two sites in the Calcasieu River estuary, Louisiana, were used to evaluate the dilute hydrochloric acid extraction of Cr, Fe and Mn from air-dried and freeze-dried samples that had been treated by one of three methods to remove organic carbon. The three methods for the oxidation and removal of organic carbon were: (1) 30% hydrogen peroxide; (2) 30% hydrogen peroxide plus 0.25 mM pyrophosphate; and (3) plasma oxidation (low-temperature ashing). There was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the percent of organic carbon removed by the three methods. Generally, there was no statistically significant difference at the 95% confidence level between air- and freeze-dried samples with respect to the concentration of Cr, Fe and Mn that was extracted, regardless of the extraction technique that was used. Hydrogen peroxide plus pyrophosphate removed the most organic carbon from sediment collected at the site in the Calcasieu River that was upstream from industrial outfalls. Plasma oxidation removed the most organic carbon from the sediment collected at a site in the Calcasieu River close to industrial outfalls and from the NBS estuarine sediment sample. Plasma oxidation merits further study as a treatment for removal of organic carbon. Operational parameters can be chosen to limit the plasma oxidation of pyrite which, unlike other Fe species, will not be dissolved by dilute hydrochloric acid. Preservation of pyrite allows the positive identification of Fe present as pyrite in sediments. ?? 1992.

  14. A framework for investigating general patterns of benthic β-diversity along estuaries

    NASA Astrophysics Data System (ADS)

    Barros, Francisco; Blanchet, Hugues; Hammerstrom, Kamille; Sauriau, Pierre-Guy; Oliver, John

    2014-08-01

    The description of major patterns in beta (β) diversity is important in order to understand changes in community composition and/or richness at different spatial and temporal scales, and can interrogate processes driving species distribution and community dynamics. Human impacts have pushed many estuarine systems far from their historical baseline of rich, diverse, and productive ecosystems. Despite the ecological and social importance of estuaries, there has not yet been an attempt to investigate patterns of β-diversity and its partitioning along estuarine systems of different continents. We aimed to evaluate if benthic assemblages would show higher turnover than nestedness in tropical than in temperate systems, if well-known impacted estuaries would show greater nestedness than less polluted systems, and to propose a conceptual framework for studying benthic macrofauna beta diversity along estuaries. We analyzed subtidal benthic macrofaunal data from estuaries in Brazil, USA and France. We estimated alpha (α), beta (β) and gamma (γ) diversity for each sampling time in each system, investigated patterns of β -diversity as multivariate dispersion and the partitioning (nestedness and replacement) of β-diversity along each estuary. There was a decrease in the α-diversity along marine to freshwater conditions at most of the estuaries and sampling dates. Beta diversity as multivariate dispersion showed high variability. Most of the estuaries showed a greater proportion of the β-diversity driven by replacement than nestedness. We suggest a conceptual framework for estuaries where relatively pristine estuaries would have their β-diversity mostly driven by replacement while impacted estuaries subjected to several anthropogenic stressors would show total nestedness or total replacement, depending on the stress.

  15. Effects of an estuarine plume-associated bloom on the carbonate system in the lower reaches of the Pearl River estuary and the coastal zone of the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Dai, Minhan; Zhai, Weidong; Cai, Wei-Jun; Callahan, Julie; Huang, Bangqin; Shang, Shaoling; Huang, Tao; Li, Xiaolin; Lu, Zhongming; Chen, Weifang; Chen, Zhaozhang

    2008-07-01

    We observed a phytoplankton bloom downstream of a large estuarine plume induced by heavy precipitation during a cruise conducted in the Pearl River estuary and the northern South China Sea in May-June 2001. The plume delivered a significant amount of nutrients into the estuary and the adjacent coastal region, and enhanced stratification stimulating a phytoplankton bloom in the region near and offshore of Hong Kong. A several fold increase (0.2-1.8 μg Chl L -1) in biomass (Chl a) was observed during the bloom. During the bloom event, the surface water phytoplankton community structure significantly shifted from a pico-phytoplankton dominated community to one dominated by micro-phytoplankton (>20 μm). In addition to increased Chl a, we observed a significant drawdown of pCO 2, biological uptake of dissolved inorganic carbon (DIC) and an associated enhancement of dissolved oxygen and pH, demonstrating enhanced photosynthesis during the bloom. During the bloom, we estimated a net DIC drawdown of 100-150 μmol kg -1 and a TAlk increase of 0-50 μmol kg -1. The mean sea-air CO 2 flux at the peak of the bloom was estimated to be as high as ˜-18 mmol m -2 d -1. For an average surface water depth of 5 m, a very high apparent biological CO 2 consumption rate of 70-110 mmol m -2 d -1 was estimated. This value is 2-6 times higher than the estimated air-sea exchange rate.

  16. The role of nutrient loading and eutrophication in estuarine ecology.

    PubMed Central

    Pinckney, J L; Paerl, H W; Tester, P; Richardson, T L

    2001-01-01

    Eutrophication is a process that can be defined as an increase in the rate of supply of organic matter (OM) to an ecosystem. We provide a general overview of the major features driving estuarine eutrophication and outline some of the consequences of that process. The main chemical constituent of OM is carbon (C), and therefore rates of eutrophication are expressed in units of C per area per unit time. OM occurs in both particulate and dissolved forms. Allochthonous OM originates outside the estuary, whereas autochthonous OM is generated within the system, mostly by primary producers or by benthic regeneration of OM. The supply rates of limiting nutrients regulate phytoplankton productivity that contributes to inputs of autochthonous OM. The trophic status of an estuary is often based on eutrophication rates and can be categorized as oligotrophic (<100 g C m(-2) y(-1), mesotrophic (100-300 g C m(-2) y(-1), eutrophic (300-500 g C m(-2) y(-1), or hypertrophic (>500 g C m(-2) y(-1). Ecosystem responses to eutrophication depend on both export rates (flushing, microbially mediated losses through respiration, and denitrification) and recycling/regeneration rates within the estuary. The mitigation of the effects of eutrophication involves the regulation of inorganic nutrient (primarily N and P) inputs into receiving waters. Appropriately scaled and parameterized nutrient and hydrologic controls are the only realistic options for controlling phytoplankton blooms, algal toxicity, and other symptoms of eutrophication in estuarine ecosystems. PMID:11677178

  17. RESPONSES OF EXPERIMENTAL ESTUARINE COMMUNITIES TO CONTINUOUS CHLORINATION

    EPA Science Inventory

    The effects of continuous chlorination (as NaOCl) on estuarine benthic organisms were investigated with plankton-derived experimental communities. Twelve consecutive studies were conducted, each of which consisted of approximately 60 days colonization periods from flowing estuari...

  18. Carbon dioxide emissions from estuaries of northern and northeastern Brazil

    PubMed Central

    Noriega, Carlos; Araujo, Moacyr

    2014-01-01

    The carbon dioxide flux through the air–water interface of coastal estuarine systems must be quantified to understand the regional balance of carbon and its transport through adjacent coastal regions. We estimated and calculated the emissions of carbon dioxide (FCO2) and the partial pressure of CO2 (pCO2) values in 28 estuarine environments at a variety of spatial scales in the northern and northeastern regions of Brazil. The results showed a mean FCO2 (water to air) of 55 ± 45 mmol·m−2·d−1. Additionally, a negative correlation between dissolved oxygen saturation and pCO2 was observed, indicating a control by biological processes and especially by organic matter degradation. This leads to increased dissolved CO2 concentration in estuarine waters which results in a pCO2 that reached 8,638 μatm. Our study suggests that northern and northeastern Brazilian estuaries act as sources of atmospheric CO2. The range of pCO2 observed were similar to those found in inner estuaries in other places around the world, with the exception of a few semi-arid estuaries (Köppen climate classification – BSh) in which record low levels of pCO2 have been detected. PMID:25145418

  19. Dissolved Vanillin as Tracer for Estuarine Lignin Conversion

    NASA Astrophysics Data System (ADS)

    Edelkraut, F.

    1996-12-01

    Lignin is produced only by vascular plants and therefore can be used as a tracer for terrestrial organic carbon input to the estuarine and marine environments. Lignin measurements have been done by analyses of the oxidation products such as vanillin or 4-hydroxybenzaldehyde. In the Elbe Estuary, free dissolved vanillin was analysed in order to test whether such measurements yield information on terrestrial carbon inputs into the Estuary and on the vanillin derived from lignin oxidation. In the period 1990-1992, concentrations of dissolved vanillin in the Elbe ranged from 0 to 60 μ g l -1(mean: 8 μg l -1). Higher values were found in areas of increased microbial activity such as the turbidity zone and the river mouth where the water chemistry is influenced by large tidal flats. No correlation was found between dissolved vanillin and suspended matter concentrations, although lignin is normally associated with suspended particulate matter, nor was a covariance seen between dissolved vanillin and the terrestrial carbon inputs into the Estuary. Apparently, biological conversion of lignin was faster than the transport processes, and local sources were more dominant for the vanillin concentration than riverine sources. The dissolved vanillin turnover was fast and, consequently, a significant amount of lignin may be converted within an estuary. In sediments from the Estuary, the concentrations of dissolved vanillin were similar to those found in the water phase and showed no clear vertical profile. The sediment is unlikely to be the source for vanillin.

  20. VARIATIONS IN THE SPECTRAL PROPERTIES OF FRESHWATER AND ESTUARINE CDOM CAUSED BY PARTITIONING ONTO RIVER AND ESTUARINE SEDIMENTS

    EPA Science Inventory

    The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...

  1. Detrital diversity influences estuarine ecosystem performance.

    PubMed

    Kelaher, Brendan P; Bishop, Melanie J; Potts, Jaimie; Scanes, Peter; Skilbeck, Greg

    2013-06-01

    Global losses of seagrasses and mangroves, eutrophication-driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy-two 0.25 m(2) plots (n = 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4 (+) , dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus-fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem. PMID:23505131

  2. CLASSIFYING OREGON ESTUARIES BY HABITAT: ANALYSIS OF EXISTING DATA AND A PROPOSAL FOR A PILOT STUDY

    EPA Science Inventory

    Because many estuarine resources are linked to benthic habitats, classification of estuaries by habitat types may prove a relevant approach for grouping estuaries with similar ecological values and vulnerability to landscape alterations. As a first step, we evaluated whether pub...

  3. The Role Of Coastal Management In Regulating Estuarine Fluxes

    NASA Astrophysics Data System (ADS)

    Jickells, T. D.

    2014-12-01

    Human activity is known to be increasing the fluxes of many nutrients and trace elements in many river systems. However, the impact of riverine inputs depends not only on the riverine nutrient flux, but also on its retention in estuaries and near shore coastal systems. The retention of nutrients and trace elements in coastal systems depends at least in part on particle water interactions. These interactions in turn depend on the physical configuration of the system which regulates processes such as resuspension and water-sediment interactions. Human activity is massively altering the shape of many estuaries by activities such as reclamation and flood defence. These changes have obvious and well documented ecological impacts. I will show using examples from UK systems how these changes in estuarine "geography" also greatly alter the effectiveness of estuaries as filters for nutrients and trace elements, with the potential to have a major impact on the fluxes of fluvial material to the continental shelf on regional scales. Rising sea levels are beginning to enforce a change of management strategy in coastal systems and this in turn may have major impacts on estuarine nutrient retention.

  4. Terrigenous clay deposition on estuarine sandflats: using stable isotopes to determine the role of the mud crab, Helice crassa Dana, in the recovery process.

    PubMed

    Gibbs, M; Thrush, S; Ellis, J

    2001-01-01

    Clay slurries, mixed in seawater, were deposited on intertidal mudflats in two contrasting estuaries in an experiment designed to evaluate the potential impact of soil erosion from adjacent urban developments on the biodiversity of the benthic communities, and the subsequent recovery mechanisms. Profiles of the natural abundance of stable isotopes from sediment cores where examined to determine immediate and longer-term impacts of the clay on the ambient sediments. The source clays with delta13C values of about -26 per thousand were easily distinguished from natural sediments with delta13C values of -19.7 +/- 1.1 per thousand at site OK and -14.2 +/- 0.9 per thousand at site WP, and bioturbation was seen to generate a gradient between these values. Physical processes of burial, or erosion and dispersal by estuarine flows initiated the recovery process. Repeated drying cycles left the clay surface cracked and able to trap natural sediments and food on the otherwise barren surface. Colonisation of the clay plots by the mud crab, Helice crassa, was important to the recovery process and depended on proximity to adjacent crab colonies. Burrowing activity by larger crabs enhanced the erosion of the clay surface while the resultant bioturbation blended the clay into the underlying sediments. Smaller crabs had less effect on erosion and bioturbation from their burrowing was mostly confined within the clay layer. Where the clay was more than 3 cm thick, they did not break through the bottom of the clay and the interface between clay and sediment was still sharp after 12 months. 13C variations also indicated that crab burrows and cracking of the clay surface moved natural sediment deep into the plots where it could be worked into the clay by subsequent crab burrowing activities thus enhancing recovery from the clay impact. PMID:11761401

  5. Sediment balance of intertidal mudflats in a macrotidal estuary

    NASA Astrophysics Data System (ADS)

    lafite, R.; Deloffre, J.; Lemoine, M.

    2012-12-01

    Intertidal area contributes widely to fine-grained sediment balance in estuarine environments. Their sedimentary dynamics is controlled by several forcing parameters including tidal range, river flow and swell, affected by human activities such as dredging, construction or vessels traffic leading to modify sediment transport pattern. Although the estuarine hydrodynamics is well documented, the link between forcing parameters and these sedimentary processes is weakly understood. One of the main reasons is the difficulty to integrate spatial (from the fluvial to the estuary mouth) and temporal (from swell in seconds to pluriannual river flow variability) patterns. This study achieved on intertidal mudflats distributed along the macrotidal Seine estuary (France) aims (i) to quantify the impact of forcing parameters on each intertidal area respect to its longitudinal position in the estuarine system and (ii) to assess the fine-grained sediment budget at estuarine scale. The Seine estuary is a macrotidal estuary developed over 160 km up the upstream limit of tidal wave penetration. With an average river flow of 450m3.s-1, 80% of the Suspended Particles Matter (SPM) annual flux is discharged during the flood period. In the downstream part, the Seine estuary Turbidity Maximum (TM) is the SPM stock located near the mouth. During their transfer toward the sea, the fine particles can be trapped in (i) the intertidal mudflats; preferential areas characterized by low hydrodynamics and generally sheltered of the tidal dominant flow, the main tidal current the Seine River and (ii) the TM. The Seine estuary is an anthropic estuary in order to secure navigation: one consequence of these developments is the tidal bore disappearance. Along the macrotidal Seine estuary hydrodynamics features and sedimentary fluxes were followed during at least 1 year using respectively Acoustic Doppler Velocimeter, Optical BackScatter and altimeter. Results in the fluvial estuary enhance the role of

  6. Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling

    USGS Publications Warehouse

    George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.

    2006-01-01

    - Provide the completed study to the CLAMP Steering Committee so that a recommendation about a long-term aquatic environment of the basin can be made. The hydrodynamic and sediment transport modeling task developed a number of different model simulations using a process-based morphological model, Delft3D, to help address these goals. Modeling results provide a qualitative assessment of estuarine behavior both prior to dam construction and after various post-dam removal scenarios. Quantitative data from the model is used in the companion biological assessment and engineering design components of the overall study. Overall, the modeling study found that after dam removal, tidal and estuarine processes are immediately restored, with marine water from Budd Inlet carried into North and Middle Basin on each rising tide and mud flats being exposed with each falling tide. Within the first year after dam removal, tidal processes, along with the occasional river floods, act to modify the estuary bed by redistributing sediment through erosion and deposition. The morphological response of the bed is rapid during the first couple of years, then slows as a dynamic equilibrium is reached within three to five years. By ten years after dam removal, the overall hydrodynamic and morphologic behavior of the estuary is similar to the pre-dam estuary, with the exception of South Basin, which has been permanently modified by human activities. In addition to a qualitative assessment of estuarine behavior, process-based modeling provides the ability address specific questions to help to inform decision-making. Considering that predicting future conditions of a complex estuarine environment is wrought with uncertainties, quantitative results in this report are often expressed in terms of ranges of possible outcomes.

  7. Impact of different tidal renewable energy projects on the hydrodynamic processes in the Severn Estuary, UK

    NASA Astrophysics Data System (ADS)

    Xia, Junqiang; Falconer, Roger A.; Lin, Binliang

    The Severn Estuary, located in the UK between south east Wales and south west England, is an ideal site for tidal renewable energy projects, since this estuary has the third highest tidal range in the world, with a spring tidal range approaching 14 m. The UK Government recently invited proposals for tidal renewable energy projects from the estuary and many proposals were submitted for consideration. Among the proposals submitted and subsequently shortlisted were: the Cardiff-Weston Barrage, the Fleming Lagoon and the Shoots Barrage, all three of which are nationally public interest. Therefore a two-dimensional finite volume numerical model, based on an unstructured triangular mesh, has been refined to study the hydrodynamic impact and flood inundation extent, post construction, of all three of these proposed tidal power projects. The model-predicted hydrodynamic processes have been analysed in detail, both without and with the structures, including the discharge processes at key sections, the contours of maximum and minimum water levels, the envelope curves of high and low water levels, the maximum tidal currents, the local velocity fields around the structures and the mean power output curves. Simulated results indicate that: (i) although the construction of the Cardiff-Weston Barrage would have an adverse impact on a range of environmental aspects, due to there being approximately a 50% decrease in the peak discharge entering the upstream region, it would reduce the maximum water levels upstream of the barrage by typically 0.3-1.2 m, which could be positive in respect of coastal flooding; (ii) the construction of the Fleming Lagoon would have little influence on the hydrodynamic processes in the Severn Estuary; and (iii) the construction of the Shoots Barrage would decrease the maximum water levels upstream of the M4 bridge by between 0.3 and 1.0 m, but it could lead to an increase in the maximum water levels downstream of the barrage by typically 20-30 cm.

  8. The relative importance of microbial nitrate reduction processes in an agriculturally-impacted estuary

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Francis, C. A.

    2013-12-01

    Human activities are increasing reactive nitrogen levels worldwide. Reactive nitrogen exists largely as nitrate and may be ecologically harmful to nutrient-limited systems. Nitrate loadings to the environment may be transformed by the microbial nitrate reduction processes of denitrification (converting nitrate to dinitrogen gas), or of dissimilatory nitrate reduction to ammonium (DNRA) (allowing reactive nitrogen to persist). The predominant nitrate reduction pathway largely determines the nitrogen removal capacity of the estuary. Therefore, identifying the relative importance of denitrification and DNRA in a given system provides insight into how much nitrate is transformed to dinitrogen and ammonium. Estuary sediments often have high nitrate reduction rates, but the environmental factors that determine which process prevails are underexplored. Nitrate availability and salinity are thought to influence which nitrate reduction process predominates. Elkhorn Slough is a small California estuary that experiences a range of nitrate concentrations (0 to over 2,000 μM) and salinities (0 to 33.5) depending on the agricultural runoff introduced through the Old Salinas River and the tidal influence. This study investigates how the fluctuating nutrient and salinity conditions found over the diel cycle at the interface of the Old Salinas River and Elkhorn Slough influences the nitrogen transformation rates observed. Benthic denitrification and DNRA are evaluated using whole sediment core incubations amended with an overlying 15NO3- labeled pool. Rates of denitrification and DNRA in the sediment are calculated using the isotope pairing technique. The results of this research will help elucidate the relative importance of dissimilatory nitrate removal pathways in an agriculturally-impacted estuary and ultimately reveal whether anthropogenic nitrate inputs are preserved or removed from the system.

  9. Seasonal variation in denitrification and dissimilatory nitrate reduction to ammonia process rates and corresponding key functional genes along an estuarine nitrate gradient

    PubMed Central

    Smith, Cindy J.; Dong, Liang F.; Wilson, John; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2015-01-01

    This research investigated spatial-temporal variation in benthic bacterial community structure, rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) processes and abundances of corresponding genes and transcripts at three sites—the estuary-head, mid-estuary and the estuary mouth (EM) along the nitrate gradient of the Colne estuary over an annual cycle. Denitrification rates declined down the estuary, while DNRA rates were higher at the estuary head and middle than the EM. In four out of the six 2-monthly time-points, rates of DNRA were greater than denitrification at each site. Abundance of gene markers for nitrate-reduction (nitrate reductase narG and napA), denitrification (nitrite reductase nirS) and DNRA (DNRA nitrite reductase nrfA) declined along the estuary with significant relationships between denitrification and nirS abundance, and DNRA and nrfA abundance. Spatially, rates of denitrification, DNRA and corresponding functional gene abundances decreased along the estuary. However, temporal correlations between rate processes and functional gene and transcript abundances were not observed. PMID:26082763

  10. Estuarine fish communities respond to climate variability over both river and ocean basins.

    PubMed

    Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D

    2015-10-01

    Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. PMID:25966973

  11. Trace elements and radionuclides in the Connecticut River and Amazon River estuary

    SciTech Connect

    Dion, E.P.

    1983-01-01

    The Connecticut River, its estuary, and the Amazon River estuary were studied to elucidate some of the processes which control river water chemistry and the flux of elements to the sea. The approach taken was to identify inputs to the Connecticut River and to investigate geochemical processes which modify the dissolved load. The form and quantity of nuclides which are in turn supplied to the estuary are altered by processes unique to that transition zone to the ocean. The Connecticut River estuary was sampled on a seasonal basis to investigate the role of the estuary in controlling the flux of elements to the sea. The knowledge gained from the Connecticut River study was applied to the quantitatively more significant Amazon River estuary. There a variety of samples were analyzed to understand the processes controlling the single greatest flux of elements to the Atlantic Ocean. The results indicate that estimates of the total flux of nuclides to the oceans can best be calculated based on groundwater inputs. Unless significant repositories for nuclides exist in the river-estuarine system, the groundwater flux of dissolved nuclides is that which will eventually be delivered to the ocean despite the reactions which were shown to occur in both rivers and estuaries. 153 references, 63 figures, 28 tables.

  12. An observational study of ice effects on Nelson River estuarine variability, Hudson Bay, Canada

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; McCullough, Greg K.; Gunn, Geoffrey G.; Hochheim, Klaus P.; Dorostkar, Abbas; Sydor, Kevin; Barber, David G.

    2012-09-01

    Many estuaries in high latitude regions are subjected to seasonally ice-covered conditions. However, ice effects on estuarine variability have received limited scientific attention and remain poorly understood. In this paper, an 11-month mooring record is used to examine seasonal variation of estuarine hydrodynamics in the Nelson River estuary (NRE), Hudson Bay (HB), in northern Canada. We show that ice cover strongly affects tidal amplitudes, velocities and phases in the NRE. In the mid-winter, the M2 tidal amplitude and consequently the tidal range are significantly reduced due to under-ice friction in HB, while conversely the M2 tidal velocity is amplified due to reduction of cross-section of the channel by formation of fast ice. A stronger surface seaward residual flow observed in the winter indicates that the formation of fast ice could also enhance the residual circulation. Suspended sediment concentration in the river mouth is reduced, also possibly due to the formation of fast ice that protects shallow nearshore shoals from erosion. This study demonstrates the importance of ice effects on estuarine variability and the complexity of processes in a seasonally ice-covered estuary.

  13. The response of circulation and salinity in a micro-tidal estuary to sub-tidal oscillations in coastal sea surface elevation

    NASA Astrophysics Data System (ADS)

    O'Callaghan, Joanne; Pattiaratchi, Charitha; Hamilton, David

    2007-08-01

    Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ˜24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water

  14. Food Webs in an Estuary.

    ERIC Educational Resources Information Center

    Dunne, Barbara B.

    The Maryland Marine Science Education Project has produced a series of mini-units in marine science education for the junior high/middle school classroom. This unit focuses on food chains in an estuary. Although the unit specifically treats the Chesapeake Bay, it may be adapted for use with similar estuarine systems. In addition, the unit may be…

  15. The Estuary Book: A Guide to Promoting Understanding and Regional Management of Maine's Estuaries and Embayments.

    ERIC Educational Resources Information Center

    Ruffing, Jenny

    The objective of this document is to provide information about estuaries, the impact of uses on the environmental health of an estuary, and what communities and concerned individuals can do to manage and protect their local estuarine resources successfully. Much of the information presented here pertains to other embayments along the Maine coast…

  16. Using skin temperature variability to quantify surface and subsurface estuarine processes

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Anderson, S. P.; Dugan, J. P.

    2012-12-01

    IR imagery is a unique tool to study nearshore processes. It not only provides a measure for surface skin temperature, but also permits the determination of surface currents. Variations in the skin temperature arise from disruption and renewal of the thermal boundary layer (TBL) as a result of wind forcing at the air-water interface, or due to turbulent eddies generated from below. The TBL plays a critical role in nearshore processes, in particular air-water heat and gas exchanges. It is essential to characterize the spatio-temporal scales of the disruption of the TBL and the extent to which it is renewed, as well as to understand how environmental factors relate to skin temperature variability. Furthermore, it is necessary to evaluate the ability not only to derive surface currents, but also to infer subsurface properties and processes from IR images. Estuarine and inlet environments such as the Hudson River are more complex, with multitude of additional processes at play, compared to the open ocean. For instance, the atmospheric boundary layer is complicated by the fact that that air is moving over both land and water, flow is fetch limited and there is orographic steering of winds. In addition, the subsurface turbulence is enhanced due to the bottom boundary layer. Here, high resolution IR imagery was collected from a ship stationed roughly 12 miles upstream of the New York Harbor in November 2010. On a nearby piling, several in situ instruments were mounted both above and below water, measuring environmental parameters such as wind speed, heat fluxes, air and water temperature, humidity as well as subsurface currents, turbulence, temperature and salinity. An IR imager installed on the cliff overlooking the river provided a complete view of the experiment area, with both the ship and the steel piling in its field of view. This study aims not only to characterize the skin temperature variability, but also to assess the validity of the various models for surface

  17. Modelling the water exchanges between an estuary and its underlying aquifer units

    NASA Astrophysics Data System (ADS)

    Baratelli, Fulvia; Flipo, Nicolas; David, Pierre-Yann; Pennequin, Didier; Lemoine, Jean Philippe; Bacq, Nicolas; Dupont, Jean-Paul

    2016-04-01

    This work aims at developing a coupled hydrological surface-subsurface model of estuarine processes. The exchanges between surface water and subsurface water affect the hydro-sedimentary and biogeochemical processes in estuarine environments. The thickness and the hydrodynamic properties of the sediments in an estuary are often characterized by significant spatial variations which influence the exchanges with the subsurface water. A methodology based on the conductance approach is proposed to quantify the water exchanges between an estuary and its underlying aquifer units. An application to the case of the Seine estuary (France) is presented. To this aim, an integrated distributed physically-based hydrological-hydrogeological model (CAWAQS) is used to simulate the surface and groundwater flows in a 9 500 km2 watershed representing the downstream part of the regional Seine River basin (80 000 km2) including its estuary. At the bottom of the estuary, a layer of low-permeability Holocene sediments overlays the aquifer formations (mainly Pleistocene alluvial sediments and Cretaceous chalk). The conductance coefficient is estimated by assuming a vertical flow in series through the low-permeability sediments and the aquifer. Moreover, the low-permeability sediments have been partially dredged to create a navigation channel, were the estuary water is in direct contact with the aquifer. These specificities are taken into account in the model. The water fluxes in the estuary are simulated at a resolution ranging from 100 m to 800 m and daily time step. As a preliminary result, the distribution of the average water fluxes over a 17 year period (1997-2014) has been calculated using an average distribution of water elevation in the estuary. The navigation channel is shown to drain the aquifer system as a consequence of the removal of the low-permeability sediments.

  18. On the effects of wind and tides on the hydrodynamics of a shallow mediterranean estuary

    NASA Astrophysics Data System (ADS)

    Hearn, Clifford J.; Robson, Barbara J.

    2002-12-01

    A study is made of the effect of wind and tides on the hydrodynamics of the shallow inner basins of mediterranean estuaries. The paper includes a case study of Harvey Estuary in southwestern Australia where salinity and temperature data exist for 11 years during the 1980s and 1990s when that estuary experienced massive annual blue-green algal blooms. An analysis is made of salt exchange through the channels that join estuarine basins of this class to either the ocean or, as in the case of Harvey Estuary, to another shallow estuarine basin. A detailed three-dimensional numerical model is also implemented for the basin of Harvey Estuary. It is concluded that exchange through the channel is dominated by the (mainly diurnal) tides, despite the general micro-tidal nature of this class of estuary, although the efficiency of this process is found to be controlled by the length of the channel. Wind set-up in the basin also produces channel exchange and for Harvey Estuary this is about 20% of the exchange due to tides. Baroclinic flow through the channel is also capable of producing significant exchange but this is suppressed by the tidal currents in the channel except immediately after riverflow. Salt transport along the basins of this class of estuary is mainly driven by the longitudinal density gradient and the strength of this process is controlled by vertical mixing from the wind. However, there is also significant salt transport from wind-induced advection, the effect of which changes seasonally with the direction of the salt gradient.

  19. Metagenomic 16s rRNA investigation of microbial communities in the Black Sea estuaries in South-West of Ukraine.

    PubMed

    Bobrova, Oleksandra; Kristoffersen, Jon Bent; Oulas, Anastasis; Ivanytsia, Volodymyr

    2016-01-01

    The Black Sea estuaries represent interfaces of the sea and river environments. Microorganisms that inhabit estuarine water play an integral role in all biochemical processes that occur there and form unique ecosystems. There are many estuaries located in the Southern-Western part of Ukraine and some of them are already separated from the sea. The aim of this research was to determine the composition of microbial communities in the Khadzhibey, Dniester and Sukhyi estuaries by metagenomic 16S rDNA analysis. This study is the first complex analysis of estuarine microbiota based on isolation of total DNA from a biome that was further subjected to sequencing. DNA was extracted from water samples and sequenced on the Illumina Miseq platform using primers to the V4 variable region of the 16S rRNA gene. Computer analysis of the obtained raw sequences was done with QIIME (Quantitative Insights Into Microbial Ecology) software. As the outcome, 57970 nucleotide sequences were retrieved. Bioinformatic analysis of bacterial community in the studied samples demonstrated a high taxonomic diversity of Prokaryotes at above genus level. It was shown that majority of 16S rDNA bacterial sequences detected in the estuarine samples belonged to phyla Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria, Verrucomicrobia, Planctomycetes. The Khadhzibey estuary was dominated by the Proteobacteria phylum, while Dniester and Sukhyi estuaries were characterized by dominance of Cyanobacteria. The differences in bacterial populations between the Khadzhibey, Dniester and Sukhyi estuaries were demonstrated through the Beta-diversity analysis. It showed that the Khadzhibey estuary's microbial community significantly varies from the Sukhyi and Dniester estuaries. The majority of identified bacterial species is known as typical inhabitants of marine environments, however, for 2.5% of microbial population members in the studied estuaries no relatives were determined. PMID:26929931

  20. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  1. The application of radioisotopes in the study of estuarine sedimentary processes

    NASA Astrophysics Data System (ADS)

    Clifton, R. J.; Hamilton, E. I.

    1982-04-01

    The spatial and temporal distributions of some radionuclides in effluents originating from the British Nuclear Fuels Ltd (BNFL) reprocessing plant at Windscale, which are released into the Irish Sea, have been studied in sediments at 16 sites in the salt marsh region near Newbiggin on the Esk estuary Cumbria, England. The concentration of non-conservative radionuclides in surface sediments of the area cannot be described by a single parameter, but there is a high correlation with organic C, Cu, Al and the Si : Al ratio with particle size. The preservation of the historical record of the BNFL effluents in the Esk sediments is dependent on the hydrology of the area, as it effects such processes as accretion, erosion and remixing. From the 106Ru and 210Po concentrations and the 137Cs : 134Cs ratio in the sediment profiles with depth, we have identified these processes. Sedimentation rates at sites of accretion vary between 0·5 and 3 cm year -1. However, at some sites they appear to be much higher, approximately 6 cm year -1 in the top 10 cm, but they are not consistent throughout the depth profiles. This may be a true reflection of variable accretion related to sediment type, or one which is influenced by surficial mixing. Some cores showed evidence of continuous accretion but no significant radioactivity was detected at depths below 35-40 cm, indicating an overall sedimentation rate of approximately 1·5 cm year -1 for the 25-30-year period since BNFL effluents first entered the Irish Sea.

  2. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: assessing the relative importance of environmental gradients

    EPA Science Inventory

    Question: Does wetland plant composition vary more by estuarine type (differentiated by the degree of riverine versus oceanic influence) or habitat type within estuaries (defined by US National Wetlands Inventory [NWI] marsh classes)? Location: Oregon estuaries: Netarts Bay, ...

  3. RELATIONS OF FISH AND SHELLFISH DISTRIBUTIONS TO HABITAT AND WATER QUALITY IN THE MOBILE BAY ESTUARY, USA

    EPA Science Inventory

    The Mobile Bay estuary provides rich habitat for many fish and shellfish, including those identified as economically and ecologically important. The National Estuary Program has focused on restoration of degraded estuarine habitat on which these species depend. To support this ...

  4. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. II. Nutrient loading, submarine light, and seagrasses

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter; Wan, Yongshan; Sun, Detong

    2014-12-01

    Short- and long-term changes in estuarine biogeochemical and biological attributes are consequences of variations in both the magnitude and composition of freshwater inputs. A common conceptualization of estuaries depicts nutrient loading from coastal watersheds as the stressor that promotes algal biomass, decreases submarine light penetration, and degrades seagrass habitats. Freshwater inflow depresses salinity while simultaneously introducing colored dissolved organic matter (color or CDOM) which greatly reduces estuarine light penetration. This is especially true for sub-tropical estuaries. This study applied a model of the Caloosahatchee River Estuary (CRE) in southwest Florida to explore the relationships between freshwater inflow, nutrient loading, submarine light, and seagrass survival. In two independent model series, the loading of dissolved inorganic nitrogen and phosphorus (DIN and DIP) was reduced by 10%, 20%, 30%, and 50% relative to the base model case from 2002 to 2009 (2922 days). While external nutrient loads were reduced by lowering inflow (Q0) in the first series (Q0 series), reductions were accomplished by decreasing the incoming concentrations of DIN and DIP in the second series (NP Series). The model also was used to explore the partitioning of submarine light extinction due to chlorophyll a, CDOM, and turbidity. Results suggested that attempting to control nutrient loading by decreasing freshwater inflow could have minor effects on water column concentrations but greatly influence submarine light and seagrass biomass. This is because of the relative importance of Q0 to salinity and submarine light. In general, light penetration and seagrass biomass decreased with increased inflow and CDOM. Increased chlorophyll a did account for more submarine light extinction in the lower estuary. The model output was used to help identify desirable levels of inflow, nutrient loading, water quality, salinity, and submarine light for seagrass in the lower CRE

  5. Spatial Pattern of Great Lakes Estuary Processes from Water Quality Sensing and Geostatistical Methods

    NASA Astrophysics Data System (ADS)

    Xu, W.; Minsker, B. S.; Bailey, B.; Collingsworth, P.

    2014-12-01

    Mixing of river and lake water can alter water temperature, conductivity, and other properties that influence ecological processes in freshwater estuaries of the Great Lakes. This study uses geostatistical methods to rapidly visualize and understand water quality sampling results and enable adaptive sampling to remove anomalies and explore interesting phenomena in more detail. Triaxus, a towed undulating sensor package, was used for collecting various physical and biological water qualities in three estuary areas of Lake Michigan in Summer 2011. Based on the particular sampling pattern, data quality assurance and quality control (QA/QC) processes, including sensor synchronization, upcast and downcast separation, and spatial outlier removal are first applied. An automated kriging interpolation approach that considers trend and anisotropy is then proposed to estimate data on a gridded map for direct visualization. Other methods are explored with the data to gain more insights on water quality processes. Local G statistics serve as a supplementary tool to direct visualization. The method identifies statistically high value zones (hot spots) and low value zones (cold spots) in water chemistry across the estuaries, including locations of water sources and intrusions. In addition, chlorophyll concentration distributions are different among sites. To further understand the interactions and differences between river and lake water, K-means clustering algorithm is used to spatially cluster the water based on temperature and specific conductivity. Statistical analysis indicates that clusters with significant river water can be identified from higher turbidity, specific conductivity, and chlorophyll concentrations. Different ratios between zooplankton biomass and density indicate different zooplankton structure across clusters. All of these methods can contribute to improved near real-time analysis of future sampling activity.

  6. Consistent Estimates for the Residence Time of Micro-tidal Estuaries

    NASA Astrophysics Data System (ADS)

    Rasmussen, B.; Josefson, A. B.

    2002-01-01

    Water exchange and residence time are calculated for 31 small Danish estuaries to assess the spatial variability of estuarine processes and biogeochemical properties. To identify the uncertainty of the residence time estimates, three different model types have been applied to the estuaries. The dynamic models applied comprise hydrodynamic (HD) models, and a well-mixed batch reactor model for the winter-nitrate concentration. Residence times of the dynamic models range from 0·3 to 127 d. The median value of the deviation between the results of these two model types is 30%. Furthermore, a morphological model is formulated. It includes entrance width as the independent variable, and the approximation that the saltwater flow per unit entrance width is equal for investigated Danish estuaries. This model yields a fair representation of water exchange and residence time over three and two orders of magnitude, respectively. The deviation from the dynamic model results is 40%. Hence, in comparison to entrance width, differences in mixing and forcing appear to be of limited importance to the water exchange variability between Danish estuaries. The morphological model may thus be used to give a sound estimate of the water exchange for Danish estuaries, where more detailed modelling is lacking. However, in either model comparison, the deviation between model results is less than the residence time variability between the estuaries. The models may thus supplement one another for making quantitatively acceptable analysis of processes and bio-geochemical properties in Danish estuaries.

  7. Spatial variation in the environmental control of crab larval settlement in a micro-tidal austral estuary

    NASA Astrophysics Data System (ADS)

    Pardo, Luis Miguel; Cardyn, Carlos Simón; Garcés-Vargas, José

    2012-09-01

    Settlement of benthic marine invertebrates is determined by the interaction between physical factors and biological processes, in which the tide, wind, and predation can play key roles, especially for species that recruit within estuaries. This complexity promotes high variability in recruitment and limited predictability of the size of annual cohorts. This study describes the settlement patterns of megalopae of the commercially important crab Cancer edwardsii at three locations (one in the center and two at the mouth of the estuary) within the Valdivia River estuary (~39.9°S), over three consecutive years (2006-2008). At each location, 12 passive benthic collectors with a natural substratum were deployed for 48 h at 7-day intervals, over a lunar cycle. Half of the collectors were covered with mesh to exclude predators. The main findings were as follows: (1) circulation changes due to upwelling relaxation or onshore winds controlled crab settlement at sites within the mouth of the estuary, (2) at the internal estuarine site, settlement was dominated by tidal effects, and (3) the effect of predation on settlement was negligible at all scales. The results show that the predominant physical factor controlling the return of competent crab larvae to estuarine environments varies spatially within the estuary. The lack of tidal influence on settlement at the mouth of the estuary can be explained by the overwhelming influence of the intense upwelling fronts and the micro-tidal regime in the study area.

  8. Siak River System — East-Sumatra: Characterisation of sources, estuarine processes, and discharge into the Malacca Strait

    NASA Astrophysics Data System (ADS)

    Siegel, Herbert; Stottmeister, Iris; Reißmann, Jan; Gerth, Monika; Jose, Christin; Samiaji, Joco

    2009-04-01

    Interdisciplinary pollution studies were performed in the Siak River system in the Riau Province of East-Sumatra (Indonesia). Remote sensing investigations combined with in situ measurements in different seasons of the years 2004-2006 were focused on the identification of different sources of water masses in the tributaries and on the discharge into the estuary and Malacca Strait. Ship-borne measurements comprised the determination of the concentration and composition of optically active water constituents and water colour. Satellite data of different spectral and spatial resolution were implemented. Sources of different water masses such as humic substance dominated rivers, erosion areas of high suspended matter concentration and areas of limited bio-productivity are identified. Sources of humic substances are the rivers Tapung Kanan, Mandau, Siak Kecil, and Bukit Batu which are draining peatlands. The absorption coefficients of dissolved organic substances are partly (Siak Kecil, 51.8 m - 1 ) more than double of the currently admitted coefficients. The highest suspended matter concentrations near a channel between Siak and Siak Kecil leading to lowest transparency are caused by the estuarine turbidity maximum developing at the tidal front. The lowest Chlorophyll concentrations were measured between Pekanbaru and the channel, in and downstream of an industrial area. The concentration and distribution of water constituents are characterised by distinct regional patterns independent from the monsoon phases. The high absorption of dissolved organic humic substances originated from draining peatlands shifts the maximum of spectral reflectances to 700 nm leading to the extreme brownish to red-brownish water colour. High scattering of suspended particles increases the reflectance in the entire spectral range. The strong changes in the water colour enables satellite data of the visible spectral range to follow the distribution patterns of the Siak River discharge in the

  9. Developing a salinity-based approach for the evaluation of DIN removal rate in estuarine ecosystems.

    PubMed

    Hong, Yiguo; Wang, Shuailong; Xu, Xiang-Rong; Wu, Jiapeng; Liu, Ling; Yue, Weizhong; Wu, Meilin; Wang, Youshao

    2015-10-01

    Estuaries play an important role in the removal of overloading nitrogen to relieve the eutrophic pressure of coastal seawater. However, the exact amount of nitrogen removed in estuarine ecosystems is difficult to be estimated because of the complex dynamic mixing process between riverine water and coastal seawater. In this study, a new method was developed to calculate the removal rate of dissolved inorganic nitrogen (DIN) in estuarine waters attributed to the mixing process and was based on the assumption that relative salinity can serve as an indicator of the degree of mixing. This assumption was supported by the experimental results that demonstrated a linear regression relationship between DIN decline and salinity increase Thus, the decreased amount of DIN in mixing waters attributed to the dilution effect could be determined with the salinity as an index. With this model, the DIN removal rate in both Chesapeake Bay and Pearl River Estuary were defined. As predicted, our analysis demonstrated that the DIN removal rate increased gradually from upstream to downstream in both studied estuaries with obvious seasonable variation pattern: high in warm seasons and low in cold seasons. The practical application of this method might be affected by multiple factors, including the geographic landform of estuaries, initial estuaries DIN concentration, the DIN concentration in seawater, DIN importing from tributaries, sewage discharge and hydrodynamic mixing. Therefore, the results supported the hypothesis that estuaries have a strong capability to remove the nitrogen inputted from human activities, especially in warm season and therefore should play an important role in regulating the balance of global nitrogen biogeochemical cycle. PMID:25957975

  10. Environmental response of an Irish estuary to changing land management practices.

    PubMed

    Ní Longphuirt, Sorcha; O'Boyle, Shane; Stengel, Dagmar Brigitte

    2015-07-15

    Anthropogenic pressures have led to problems of nutrient over-enrichment and eutrophication in estuarine and coastal systems on a global scale. Recent improvements in farming practices, specifically a decrease in fertiliser application rates, have reduced nutrient loadings in Ireland. In line with national and European Directives, monitoring of Irish estuarine systems has been conducted for the last 30years, allowing a comparison of the effectiveness of measures undertaken to improve water quality and chemical and biological trends. The Blackwater Estuary, which drains a large agricultural catchment on the south coast of Ireland, has experienced a decrease in calculated nitrogen (N) (17%) and phosphorus (P) (20%) loads in the last decade. Monitored long-term river inputs reflect the reductions while estuarine P concentrations, chlorophyll and dissolved oxygen saturation show concurrent improvement. Consistently high N concentrations suggest a decoupling between N loads and estuarine responses. This highlights the complex interaction between N and P load reductions, and biochemical processes relating to remineralisation and primary production which can alter the effectiveness of the estuarine filter in reducing nutrient transport to the coastal zone. Effective management and reduction of both diffuse and point nutrient sources to surface waters require a consideration of the processes which may alter the effectiveness of measures in estuarine and coastal waters. PMID:25863317

  11. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary.

    PubMed

    Lin, Xianbiao; Hou, Lijun; Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg(-1) d(-1) in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 10(5) t N yr(-1), and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12-15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  12. Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary

    PubMed Central

    Liu, Min; Li, Xiaofei; Yin, Guoyu; Zheng, Yanling; Deng, Fengyu

    2016-01-01

    Nitrogen mineralization is a key biogeochemical process transforming organic nitrogen to inorganic nitrogen in estuarine and coastal sediments. Although sedimentary nitrogen mineralization is an important internal driver for aquatic eutrophication, few studies have investigated sedimentary nitrogen mineralization in these environments. Sediment-slurry incubation experiments combined with 15N isotope dilution technique were conducted to quantify the potential rates of nitrogen mineralization in surface sediments of the Yangtze Estuary. The gross nitrogen mineralization (GNM) rates ranged from 0.02 to 5.13 mg N kg-1 d-1 in surface sediments of the study area. The GNM rates were generally higher in summer than in winter, and the relative high rates were detected mainly at sites near the north branch and frontal edge of this estuary. The spatial and temporal distributions of GNM rates were observed to depend largely on temperature, salinity, sedimentary organic carbon and nitrogen contents, and extracellular enzyme (urease and L-glutaminase) activities. The total mineralized nitrogen in the sediments of the Yangtze Estuary was estimated to be about 6.17 × 105 t N yr-1, and approximately 37% of it was retained in the estuary. Assuming the retained mineralized nitrogen is totally released from the sediments into the water column, which contributed 12–15% of total dissolved inorganic nitrogen (DIN) sources in this study area. This result indicated that the mineralization process is a significant internal nitrogen source for the overlying water of the Yangtze Estuary, and thus may contribute to the estuarine and coastal eutrophication. PMID:26991904

  13. OXYGEN UPTAKE AND NUTRIENT REGENERATION IN THE PECONIC ESTUARY

    EPA Science Inventory

    EXECUTIVE SUMMARY: OXYGEN UPTAKE AND NUTRIENT REGENERATION IN THE PECONIC ESTUARY Rates of oxygen consumption and nutrient regeneration were measured annually throughout the Peconic Estuarine System. Sediment and water column oxygen uptake were measured to determine the potential...

  14. Landscape Thresholds and the Condition of Northeastern Estuaries

    EPA Science Inventory

    Anthropogenic impacts to northeastern estuaries have been well documented and many researchers have quantified the associations between broad scale human land uses in contributing landscapes and impacted estuarine condition. However, associations alone are not adequate for ident...

  15. DOWNSTREAM MIGRATION OF SALMONID SMOLTS IN OREGON RIVERS AND ESTUARIES

    EPA Science Inventory

    Migratory fish passage is an important designated use for many Oregon estuaries. Acoustic transmitters were implanted in coho smolts in 2004 and 2006 to evaluate how estuarine habitat, and habitat loss, might affect population health. Acoustic receivers that identified individu...

  16. MAPPING BURROWING SHRIMP AND SEAGRASS IN YAQUINA ESTUARY

    EPA Science Inventory

    Burrowing shrimp and seagrasses create extensive intertidal and shallow subtidal habitats within Pacific NW estuaries. Maps of their populations are useful to inform estuarine managers of locations that deserve special consideration for conservation, and to inform oyster farmers...

  17. HIGH CYANOBACTERIAL ABUNDANCE IN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Aquatic phytoplankton comprise a wide variety of taxa spanning more than 2 orders of magnitude in size, yet studies of estuarine phytoplankton often overlook the picoplankton, particularly chroococcoid cyanobacteria (c.f. Synechocococcus). Three Gulf of Mexico estuaries (Apalachi...

  18. SPATIAL DISTRIBUTIONS OF BURROWING SHRIMP POPULATIONS IN TWO OREGON ESTUARIES

    EPA Science Inventory

    Thalassinid burrowing shrimp (Neotrypaea californiensis and Upogebia pugettensis) inhabit large expanses of Pacific estuarine tide flats, from British Columbia to Baja California. The spatial distribution of shrimp populations within estuaries has rarely been quantified because ...

  19. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Gong, Jun; Zhang, Xiaoli; Yin, Guoyu; You, Li

    2013-07-01

    ammonium oxidation (anammox) as an important process of nitrogen cycle has been studied in estuarine environments. However, knowledge about the dynamics of anammox bacteria and their interactions with associated activity remains scarce in these environments. Here we report the anammox bacterial diversity, abundance, and activity in the Yangtze Estuary, using molecular and isotope-tracing techniques. The phylogenetic analysis of 16S rRNA indicated that high anammox bacterial diversity occurred in this estuary, including Scalindua, Brocadia, Kuenenia, and two novel clusters. The patterns of community composition and diversity of anammox bacteria differed across the estuary. Salinity was a key environmental factor defining the geographical distribution and diversity of the anammox bacterial community at the estuarine ecosystem. Temperature and organic carbon also had significant influences on anammox bacterial biodiversity. The abundance of anammox bacteria ranged from 2.63 × 106 and 1.56 × 107 gene copies g-1, and its spatiotemporal variations were related significantly to salinity, temperature, and nitrite content. The anammox activity was related to temperature, nitrite, and anammox bacterial abundance, with values of 0.94-6.61 nmol N g-1 h-1. The tight link between the anammox and denitrification processes implied that denitrifying bacteria may be a primary source of nitrite for the anammox bacteria in the estuarine marshes. On the basis of the 15N tracing experiments, the anammox process was estimated to contribute 6.6%-12.9% to the total nitrogen loss whereas the remainder was attributed to denitrification.

  20. Long-Term Changes in Nitrogen Budgets and Retention in the Elbe Estuary

    NASA Astrophysics Data System (ADS)

    Eisele, Annika; van Beusekom, Justus E. E.; Wirtz, Kai

    2016-04-01

    Eutrophication remains one of the major factors influencing the ecological state of coastal ecosystems. Coastal eutrophication is in turn intimately linked to riverine nutrient loads. At the freshwater side of the estuary, nutrient loads can easily be quantified but estuarine processes including organic matter import from the sea and loss factors like denitrification can modify the actual nutrient loads reaching the coastal seas. We quantified and localized nutrient retention processes by analyzing changes of nutrient concentrations along the estuary and constructing nutrient budgets. Two methods -the Officer method based on conservative mixing and a new method based on changes in nitrogen concentrations along the freshwater part of the estuary- were compared using long term records for the Elbe River, a major European waterway. Nutrient budgets and dynamics reveal that nutrient retention processes in the water column play a substantial role in the Elbe River. Overall, ~25 mio mol/day N are imported into the Elbe estuary and ~20 mio mol/day DIN is exported, with obvious variations depending on river discharge and season. A nitrogen loss of about 20% falls within the range found in other studies. Whereas in the 1980s a significant part of the nitrogen input was retained by the estuary, in the 1990s and 2000s most of the imported total nitrogen was exported as DIN. At present, the retention of nitrogen -presumably due to increased denitrification- increases again. As these long-term changes in the retention capacity of the Elbe were supported by both methods, the calibrated station-based approach can now be used to calculate nutrient budgets in estuaries where no or only few transect data are available, such as the Weser and Ems estuary. Our presentation will finally discuss the possible impact of increased phytoplankton import from the Elbe River and increased import of suspended matter from the North Sea ecosystem on estuarine nitrogen dynamics.

  1. Ecohydraulics and Estuarine Wetland Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow

  2. A COMPARATIVE ANALYSIS OF NUTRIENT LOADING, NUTRIENT RETENTION AND NET ECOSYSTEM METABOLISM IN THREE TIDAL RIVER ESTUARIES DIFFERING PREDOMINATELY BY THEIR WATERSHED LAND USE TYPES.

    EPA Science Inventory

    Abstract and oral presentation for the Estuarine Research Federation Conference.

    Estuarine retention of watershed nutrient loads, system-wide nutrient biogeochemical fluxes, and net ecosystem metabolism (NEM) were determined in three estuaries exhibiting differing magnitud...

  3. Predicting habitat associations of five intertidal crab species among estuaries

    NASA Astrophysics Data System (ADS)

    Vermeiren, Peter; Sheaves, Marcus

    2014-08-01

    Intertidal crab assemblages that are active on the sediment surface of tropical estuaries during tidal exposure play an important role in many fundamental ecosystem processes. Consequently, they are critical contributors to a wide range of estuarine goods and services. However, a lack of understanding of their spatial organization within a large landscape context prevents the inclusion of intertidal crabs into generally applicable ecological models and management applications. We investigated spatial distribution patterns of intertidal crabs within and among eight dry tropical estuaries spread across a 160 km stretch of coast in North East Queensland, Australia. Habitat associations were modelled for five species based on photographic sampling in 40-80 sites per estuarine up- and downstream component: Uca seismella occurred in sites with little structure, bordered by low intertidal vegetation; Macrophthalmus japonicus occupied flat muddy sites with no structure or vegetation; Metopograpsus frontalis and Metopograpsus latifrons occupied sites covered with structure in more than 10% and 25% respectively. Finally, both Metopograpsus spp. and Metopograpsus thukuhar occupied rock walls. Habitat associations were predictable among estuaries with moderate to high sensitivity and low percentages of false positives indicating that simple, physical factors were adequate to explain the spatial distribution pattern of intertidal crabs. Results provide a necessary first step in developing generally applicable understanding of the fundamental mechanisms driving spatial niche organization of intertidal crabs within a landscape context.

  4. Immigration and early life stages recruitment of the European flounder (Platichthys flesus) to an estuarine nursery: The influence of environmental factors

    NASA Astrophysics Data System (ADS)

    Amorim, Eva; Ramos, Sandra; Elliott, Michael; Bordalo, Adriano A.

    2016-01-01

    Connectivity between coastal spawning grounds and estuarine nurseries is a critical step in the life cycle of many fish species. Larval immigration and transport-associated physical-biological processes are determinants of recruitment success to nursery areas. The recruitment of the European flounder, Platichthys flesus, to estuarine nurseries located at the southern edge of the species distribution range, has been usually investigated during its juvenile stages, while estuarine recruitment during the earlier planktonic life stage remains largely unstudied. The present study investigated the patterns of flounder larval recruitment and the influence of environmental factors on the immigration of the early life stages to the Lima estuary (NW Portugal), integrating data on fish larvae and post-settlement individuals (< 50 mm length), collected over 7 years. Late-stage larvae arrived at the estuary between February and July and peak abundances were observed in April. Post-settlement individuals (< 50 mm) occurred later between April and October, whereas newly-settled ones (< 20 mm) were found only in May and June. Variables associated with the spawning, survival and growth of larvae in the ocean (sea surface temperature, chlorophyll a and inland hydrological variables) were the major drivers of flounder occurrence in the estuarine nursery. Although the adjacent coastal area is characterized by a current system with strong seasonality and mesoscale variability, we did not identify any influence of variables related with physical processes (currents and upwelling) on the occurrence of early life stages in the estuary. A wider knowledge on the influence of the coastal circulation variability and its associated effects upon ocean-estuarine connectivity is required to improve our understanding of the population dynamics of marine spawning fish that use estuarine nurseries.

  5. The structure of the benthic macrofaunal assemblages and sediments characteristics of the Paraguaçu estuarine system, NE, Brazil

    NASA Astrophysics Data System (ADS)

    Barros, Francisco; Hatje, Vanessa; Figueiredo, Maria Betânia; Magalhães, Wagner Ferreira; Dórea, Haroldo Silveira; Emídio, Elissandro Soares

    2008-07-01

    The structure of the benthic macrofaunal assemblages of the estuarine portion of Paraguaçu River, NE, Brazil, and its relationship with surface sediment characteristics (trace metals, PAHs, nutrients and grain size) and physical variables were investigated at ten stations on two contrasting occasions, summer (dry season) and winter (rainy season). A total of 1258 individuals (632 in winter and 626 in summer) and 62 taxa representing polychaetes, crustaceans, bivalves, echinoderms, bryozoans, sponges, cnidarians and cephalochordates were collected. Benthic assemblages in the upper estuary were unlike those in the lower estuary and a clear substitution of benthic taxa along the estuary was observed. Macrofaunal invertebrates in the low salinity region, composed of coarse sediments, were dominated by tellinids, venerids (bivalves), cirolanids (isopods), cyclopoids (copepods), and nereidids (polychaetes). While the high salinity region, composed of fine sediments, were dominated by nuculids (bivalves), cirratulids (polychaetes), and by amphiurids (ophiuroids). The Paraguaçu estuarine system is not severely affected by anthropogenic activities. In the great majority of the study sites, concentrations of trace metals and PAHs in the sediments were near background values. Nutrients values were also low. We formulated new models of taxon distribution and suggested detailed studies on the effects of salinity variation and studies using functional approaches to better understand the processes causing the spatial patterns in tropical estuarine benthic assemblages.

  6. Fundamental research on estuaries: The importance of an interdisciplinary approach

    SciTech Connect

    Not Available

    1983-01-01

    In 1974 the Geophysics Research Board completed a plan, for a series of studies to be carried out on various subjects related to geophysics. One purpose of the studies is to provide assessments from the scientific community to aid policymakers in decisions on societal problems that involve geophysics. An important part of such an assessment is an evaluation of the adequacy of present geophysical knowledge and the appropriateness of present research programs to provide information required for those decisions. This study examines the need for basic research to understand estuarine processes. The major unanswered questions relate to the interrelationships of estuarine circulation, biota, geology, and chemistry, where an interdisciplinary coordinated effort will be necessary. The areas were organized around a traditional disciplinary facet of estuaries but focused on the interdisciplinary needs. 58 refs., 11 figs., 1 tab.

  7. Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2015-08-25

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existing baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.

  8. Responses of estuarine circulation and salinity to the loss of intertidal flats – A modeling study

    DOE PAGESBeta

    Yang, Zhaoqing; Wang, Taiping

    2015-08-25

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats caused by anthropogenic actions in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existingmore » baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Furthermore, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.« less

  9. Responses of estuarine circulation and salinity to the loss of intertidal flats - A modeling study

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoqing; Wang, Taiping

    2015-12-01

    Intertidal flats in estuaries are coastal wetlands that provide critical marine habitats to support wide ranges of marine species. Over the last century many estuarine systems have experienced significant loss of intertidal flats due to anthropogenic impacts. This paper presents a modeling study conducted to investigate the responses of estuarine hydrodynamics to the loss of intertidal flats in Whidbey Basin of Puget Sound on the northwest coast of North America. Changes in salinity intrusion limits in the estuaries, salinity stratification, and circulation in intertidal flats and estuaries were evaluated by comparing model results under the existing baseline condition and the no-flat condition. Model results showed that loss of intertidal flats results in an increase in salinity intrusion, stronger mixing, and a phase shift in salinity and velocity fields in the bay front areas. Model results also indicated that loss of intertidal flats enhances two-layer circulation, especially the bottom water intrusion. Loss of intertidal flats increases the mean salinity but reduces the salinity range in the subtidal flats over a tidal cycle because of increased mixing. Salinity intrusion limits extend upstream in all three major rivers discharging into Whidbey Basin when no intertidal flats are present. Changes in salinity intrusion and estuarine circulation patterns due to loss of intertidal flats affect the nearshore habitat and water quality in estuaries and potentially increase risk of coastal hazards, such as storm surge and coastal flooding. Lastly, model results suggested the importance of including intertidal flats and the wetting-and-drying process in hydrodynamic simulations when intertidal flats are present in the model domain.

  10. Impact of climate change on UK estuaries: A review of past trends and potential projections

    NASA Astrophysics Data System (ADS)

    Robins, Peter E.; Skov, Martin W.; Lewis, Matt J.; Giménez, Luis; Davies, Alan G.; Malham, Shelagh K.; Neill, Simon P.; McDonald, James E.; Whitton, Timothy A.; Jackson, Suzanna E.; Jago, Colin F.

    2016-02-01

    UK estuarine environments are regulated by inter-acting physical processes, including tidal, wave, surge, river discharge and sediment supply. They regulate the fluxes of nutrients, pollutants, pathogens and viruses that determine whether coastlines achieve the Good Environmental Status (GEnS) required by the EU's Marine Strategy Directive. We review 20th century trends and 21st century projections of changes to climatic drivers, and their potential for altering estuarine bio-physical processes. Sea-level rise will cause some marine habitats to expand, and others diminish in area extent. The overall consequences of estuarine morphodynamics to these habitat shifts, and vice-versa, are unknown. Increased temperatures could intensify microbial pathogen concentrations and increase public health risk. The patterns of change of other climatic drivers are difficult to predict (e.g., river flows and storm surges). Projected increased winter river flows throughout UK catchments will enhance the risks of coastal eutrophication, harmful algal blooms and hypoxia in some contexts, although there are spatial variabilities in river flow projections. The reproductive success of estuarine biota is sensitive to saline intrusion and corresponding turbidity maxima, which are projected to gradually shift landwards as a result of sea-level rise. Although more-frequent flushing events in winter and longer periods of drought in summer are predicted, whereby the subsequent estuarine mixing and recovery rates are poorly understood. With rising estuarine salinities, subtidal species can penetrate deeper into estuaries, although this will depend on the resilience/adaptation of the species. Many climate and impact predictions lack resolution and spatial cover. Long-term monitoring and increased research, which considers the catchment-river-estuary-coast system as a whole, is needed to support risk predicting and mitigatory strategies.

  11. Historical changes in the Columbia River Estuary

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Jay, David A.; Bradford Harvey, R.; Hamilton, Peter; Simenstad, Charles A.

    salinity intrusion length and the transport of salt into the estuary. The overall effects of human intervention in the physical processes of the Columbia River Estuary (i.e. decrease in freshwater inflow, tidal prism, and mixing; increase in flushing time and fine sediment deposition, and net accumulation of sediment) are qualitatively similar to those observed in less energetic and more obviously altered estuarine systems. A concurrent reduction in wetland habitats has resulted in an estimated 82% reduction in emergent plant production and a 15% reduction in benthic macroalgae production, a combined production loss of 51,675 metric tons of organic carbon per year. This has been at least partially compensated by a large increase in the supply of riverine detritus derived from freshwater phytoplankton primary production. Comparison of modern and estimated preregulation organic carbon budgets for the estuary indicates a shift from a food web based on comparatively refractory macrodetritus derived from emergent vegetation to one involving more labile microdetritus derived from allochthonous phytoplankton. The shift has been driven by human-induced changes to the physical environment of the estuary. While this is a relatively comprehensive study of historical physical changes, it is incomplete in that the sediment budget is still uncertain. More precise quantification of the modern estuarine sediment budget will require both a better understanding of the fluvial input and dredging export terms and a sediment tranport model designed to explain historical changes in the sediment budget. Oceanographic studies to better determine the mechanisms leading to the formation of the turbidity maximum are also needed. The combination of cartography and modelling used in this study should be applicable in other systems where large changes in morphology have occurred in historical time.

  12. Alkaline Phosphatase Activity : an overlooked player on the phosphate behavior in macrotidal estuaries

    NASA Astrophysics Data System (ADS)

    Delmas, Daniel; Labry, Claire; Youenou, Agnes; Quere, Julien; Auguet, Jean Christophe; Montanie, Helene

    2014-05-01

    The non-conservative behavior of phosphate within the estuarine salinity gradient is essentially assigned to physico-chemical processes, such as desorption at low salinity and to benthic exchanges. Microbial phosphatase activity (APA), generally related to phosphate deficiency, is seldom studied in phosphate rich estuarine waters. In order to address the impact of microbial activity (bacterial abundance, production BSP, APA) on phosphate behavior, we studied these activities on a seasonal basis within the salinity gradient of two macrotidal estuaries presenting different levels of suspended solids. Whatever the season the Charente estuary is characterized by high levels of Suspended Particulate Matter (SPM > 1g.L-1), particularly in the Maximum Turbidity Zone (MTZ) located at the 5-10 psu. In this area characterized by high BSP and APA there is a significant increase of PO4 levels especially during summer. In the Aulne estuary the particle load is significantly lower (1/10) but high BSP and APA are equally recorded. In the highly turbid waters of the Charente estuary, active phytoplankton is virtually absent as pheopigments constitute up to 80% of the total pigments, particularly in the MTZ, therefore APA may essentially have a bacterial origin. In the Aulne estuary attached bacteria are dominant, both in numbers and production, and their distribution along the haline gradient perfectly follows those of APA and phosphate levels. These observations, associated with the very close relationships observed between APA, SPM and BSP, suggest that APA derive mainly from bacterial (attached) origin and operate at the expense of particulate phosphorus and hence contribute to PO4 regeneration, especially in spring and summer. Finally, as APA increased as PO4, whereas the reverse is observed in both fresh and marine waters, an original scheme for APA regulation, related to the large dominance of attached bacteria can be described for the estuarine waters.

  13. RESPONSE OF GHOST SHRIMP (NEOTRYPAEA CALIFORNIENSIS) BIOTURBATION TO ORGANIC MATTER ENRICHMENT OF ESTUARINE INTERTIDAL SEDIMENTS

    EPA Science Inventory

    Populations of burrowing shrimp (Neotrypaea californiensis and Upogebia p;ugettensis) are the dominant invertebrate fauna on Pacific estuarine tide flats, occupying >80% of intertidal area in some estuaries. Burrowing shrimp are renowned for their bioturbation of intertidal sedi...

  14. A network model shows the importance of coupled processes in the microbial N cycle in the Cape Fear River Estuary

    NASA Astrophysics Data System (ADS)

    Hines, David E.; Lisa, Jessica A.; Song, Bongkeun; Tobias, Craig R.; Borrett, Stuart R.

    2012-06-01

    Estuaries serve important ecological and economic functions including habitat provision and the removal of nutrients. Eutrophication can overwhelm the nutrient removal capacity of estuaries and poses a widely recognized threat to the health and function of these ecosystems. Denitrification and anaerobic ammonium oxidation (anammox) are microbial processes responsible for the removal of fixed nitrogen and diminish the effects of eutrophication. Both of these microbial removal processes can be influenced by direct inputs of dissolved inorganic nitrogen substrates or supported by microbial interactions with other nitrogen transforming pathways such as nitrification and dissimilatory nitrate reduction to ammonium (DNRA). The coupling of nitrogen removal pathways to other transformation pathways facilitates the removal of some forms of inorganic nitrogen; however, differentiating between direct and coupled nitrogen removal is difficult. Network modeling provides a tool to examine interactions among microbial nitrogen cycling processes and to determine the within-system history of nitrogen involved in denitrification and anammox. To examine the coupling of nitrogen cycling processes, we built a nitrogen budget mass balance network model in two adjacent 1 cm3 sections of bottom water and sediment in the oligohaline portion of the Cape Fear River Estuary, NC, USA. Pathway, flow, and environ ecological network analyses were conducted to characterize the organization of nitrogen flow in the estuary and to estimate the coupling of nitrification to denitrification and of nitrification and DNRA to anammox. Centrality analysis indicated NH4+ is the most important form of nitrogen involved in removal processes. The model analysis further suggested that direct denitrification and coupled nitrification-denitrification had similar contributions to nitrogen removal while direct anammox was dominant to coupled forms of anammox. Finally, results also indicated that partial

  15. Climate variability in an estuary: Effects of riverflow on San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Peterson, David H.; Cayan, Daniel R.; Festa, John F.; Nichols, Frederic H.; Walters, Roy A.; Slack, James V.; Hager, Steven E.; Schemel, Laurence E.

    A simple conceptual model of estuarine variability in the context of climate forcing has been formulated using up to 65 years of estimated mean-monthly delta flow, the cumulative freshwater flow to San Francisco Bay from the Sacramento-San Joaquin River, and salinity observations near the mouth, head, mid-estuary, and coastal ocean. Variations in delta flow, the principal source of variability in the bay, originate from anomalous changes in northern and central California streamflow, much of which is linked to anomalous winter sea level pressure ("CPA") in the eastern Pacific. In years when CPA is strongly negative, precipitation in the watershed is heavy, delta flow is high, and the bay's salinity is low; similarly, when CPA is strongly positive, precipitation is light, delta flow is low, and the bay's salinity is high. Thus the pattern of temporal variability in atmospheric pressure anomalies is reflected in the streamflow, then in delta flow, then in estuarine variability. Estuarine salinity can be characterized by river to ocean patterns in annual cycles of salinity in relation to delta flow. Salinity (total dissolved solids) data from the relatively pristine mountain streams of the Sierra Nevada show that for a given flow, one observes higher salinities during the rise in winter flow than on the decline. Salinity at locations throughout San Francisco Bay estuary are also higher during the rise in winter flow than the decline (because it takes a finite time for salinity to fully respond to changes in freshwater flow). In the coastal ocean, however, the annual pattern of sea surface salinity is reversed: lower salinities during the rise in winter flow than on the decline due to effects associated with spring upwelling. Delta flow in spring masks these effects of coastal upwelling on estuarine salinity, including near the mouth of the estuary and, in fact, explains in a statistical sense 86 percent of the variance in salinity at the mouth of the estuary. Some of

  16. Climate variability in an estuary: Effects of riverflow on San Francisco Bay

    USGS Publications Warehouse

    Peterson, David H.; Cayan, Daniel R.; Festa, John F.; Nichols, Frederic H.; Walters, Roy A.; Slack, James V.; Hager, Stephen E.; Schemel, Laurence E.

    1989-01-01

    A simple conceptual model of estuarine variability in the context of climate forcing has been formulated using up to 65 years of estimated mean-monthly delta flow, the cumulative freshwater flow to San Francisco Bay from the Sacramento-San Joaquin River, and salinity observations near the mouth, head, mid-estuary, and coastal ocean. Variations in delta flow, the principal source of variability in the bay, originate from anomalous changes in northern and central California streamflow, much of which is linked to anomalous winter sea level pressure (“CPA”) in the eastern Pacific. In years when CPA is strongly negative, precipitation in the watershed is heavy, delta flow is high, and the bay's salinity is low; similarly, when CPA is strongly positive, precipitation is light, delta flow is low, and the bay's salinity is high. Thus the pattern of temporal variability in atmospheric pressure anomalies is reflected in the streamflow, then in delta flow, then in estuarine variability. Estuarine salinity can be characterized by river to ocean patterns in annual cycles of salinity in relation to delta flow. Salinity (total dissolved solids) data from the relatively pristine mountain streams of the Sierra Nevada show that for a given flow, one observes higher salinities during the rise in winter flow than on the decline. Salinity at locations throughout San Francisco Bay estuary are also higher during the rise in winter flow than the decline (because it takes a finite time for salinity to fully respond to changes in freshwater flow). In the coastal ocean, however, the annual pattern of sea surface salinity is reversed: lower salinities during the rise in winter flow than on the decline due to effects associated with spring upwelling. Delta flow in spring masks these effects of coastal upwelling on estuarine salinity, including near the mouth of the estuary and, in fact, explains in a statistical sense 86 percent of the variance in salinity at the mouth of the estuary. Some

  17. Estuarine 'collaboratories:' regional and global perspectives (Invited)

    NASA Astrophysics Data System (ADS)

    Baptista, A. M.; Needoba, J. A.; Davis, M.; Leinen, M.

    2013-12-01

    There is an urgent need to anticipate and manage environmental changes in estuaries, as these critical ecosystems provide services that are essential for regional and global sustainability. Collaboratively designed and operated estuarine observation and prediction systems are progressively enabling long-term and high-resolution characterizations of estuarine variability and function, thus providing a powerful foundation for stewardship activities. The benefits of these 'collaboratories' have been demonstrated regionally in various estuaries, and their broader scale potential is being explored through an emerging national and international initiative. The first part of this presentation will address the lessons learned from SATURN (http://www.stccmop.org), a mature multi-institutional 'collaboratory' for the Columbia River estuary. SATURN innovatively integrates sensors, models, flows of information, and communities of practice. This integration has fueled advances in understanding and prediction of the estuary as a complex and highly variable bioreactor, subject to shifts from global climate change and from evolving regional uses. Our focus will be on describing the aspects of the design and practice that make SATURN transformative as a scientific and management-support tool at a regional scale. The second part of the presentation will address the translation of lessons learned from and beyond SATURN into requirements for a global network of estuarine observation and prediction systems. 'Our Global Estuary' is an initiative designed to create and use such a network, to maximize the aggregate potential of estuaries as sentinels and key players in global sustainability. We will report on the main recommendations of the first planning workshop for this initiative, which will take place on October 2013.

  18. Trophic functioning of the St. Lucia estuarine lake during a drought phase assessed using stable isotopes

    NASA Astrophysics Data System (ADS)

    Govender, Natasha; Smit, Albertus J.; Perissinotto, Renzo

    2011-06-01

    The St. Lucia Estuary is Africa's largest estuarine system and is currently experiencing the stress of prolonged freshwater deprivation, manifested by extremely low water levels and hypersalinity. These unprecedented conditions have raised questions regarding the trophic functioning of the ecosystem. Despite the substantial amount of research previously undertaken within this system, no studies of food web structure and function have yet been documented. This study therefore aimed to examine the food web structure of the St. Lucia estuary system through the use of carbon and nitrogen stable isotope analysis. Analysis of carbon isotope ratios indicates that benthic carbon sources are most utilised at sites with low water levels and generally higher salinity (Catalina Bay, Charter's Creek). Conversely, the estuarine region of the mouth and Narrows, with its elevated water levels and lower salinity, still sustains a viable pelagic food web. Analysis of δ15N ratios indicates that the number of trophic transfers (food chain length) might be related to water levels. Overall, the study provides a greater understanding of the ecological processes of this complex estuarine lake, which may allow for future comparisons of trophic functioning under drought and normal/wet conditions to be made.

  19. Non-conservative behaviors of chromophoric dissolved organic matter in a turbid estuary: Roles of multiple biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Yang, Liyang; Guo, Weidong; Hong, Huasheng; Wang, Guizhi

    2013-11-01

    Chromophoric dissolved organic matter (CDOM) may show notable non-conservative behaviors in many estuaries due to a variety of biogeochemical processes. The partition between CDOM and chromophoric particulate organic matter (CPOM) was examined in the Jiulong Estuary (China) using absorption and fluorescence spectroscopy, which was also compared with microbial and photochemical degradations. The absorption coefficient of water-soluble CPOM (aCPOM(280)) at ambient Milli-Q water pH (6.1) ranged from 0.11 to 7.94 m-1 in the estuary and was equivalent to 5-101% of CDOM absorption coefficient. The aCPOM(280) correlated significantly with the concentration of suspended particulate matter and was highest in the bottom water of turbidity maximum zone. Absorption spectral slope (S275-295) and slope ratio (SR) correlated positively with salinity for both CPOM and CDOM, suggesting decreases in the average molecular weight with increasing salinity. The adsorption of CDOM to re-suspended sediments (at 500 mg L-1) within 2 h was equivalent to 4-26% of the initial aCDOM(280). The adsorption of CDOM to particles was less selective with respect to various CDOM constituents, while the microbial degradation resulted decreases in S275-295 and SR of CDOM and preferential removal of protein-like components. The partition between CPOM and CDOM represented a rapid and important process for the non-conservative behavior of CDOM in turbid estuaries.

  20. Challenging paradigms in estuarine ecology and management

    NASA Astrophysics Data System (ADS)

    Elliott, M.; Whitfield, A. K.

    2011-10-01

    For many years, estuarine science has been the 'poor relation' in aquatic research - freshwater scientists ignored estuaries as they tended to get confused by salt and tides, and marine scientists were more preoccupied by large open systems. Estuaries were merely regarded by each group as either river mouths or sea inlets respectively. For the past four decades, however, estuaries (and other transitional waters) have been regarded as being ecosystems in their own right. Although often not termed as such, this has led to paradigms being generated to summarise estuarine structure and functioning and which relate to both the natural science and management of these systems. This paper defines, details and affirms these paradigms that can be grouped into those covering firstly the science (definitions, scales, linkages, productivity, tolerances and variability) and secondly the management (pressures, valuation, health and services) of estuaries. The more 'science' orientated paradigms incorporate the development and types of ecotones, the nature of stressed and variable systems (with specific reference to resilience and redundancy), the relationship between generalists and specialists produced by environmental tolerance, the relevance of scale in relation to functioning and connectivity, the sources of production and degree of productivity, the biodiversity-ecosystem functioning and the stress-subsidy debates. The more 'management' targeted paradigms include the development and effects of exogenic unmanaged pressures and endogenic managed pressures, the perception of health and the ability to manage estuaries (related to internal and external influences), and the influence of all of these on the production of ecosystem services and societal benefits.

  1. C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system

    NASA Astrophysics Data System (ADS)

    Volta, C.; Arndt, S.; Savenije, H. H. G.; Laruelle, G. G.; Regnier, P.

    2014-07-01

    Reactive transport models (RTMs) are powerful tools for disentangling the complex process interplay that drives estuarine biogeochemical dynamics, for assessing the quantitative role of estuaries in global biogeochemical cycles and for predicting their response to anthropogenic disturbances (land-use change, climate change and water management). Nevertheless, the application of RTMs for a regional or global estimation of estuarine biogeochemical transformations and fluxes is generally compromised by their high computational and data demands. Here, we describe C-GEM (Carbon-Generic Estuary Model), a new one-dimensional, computationally efficient RTM that reduces data requirements by using a generic, theoretical framework based on the direct relationship between estuarine geometry and hydrodynamics. Despite its efficiency, it provides an accurate description of estuarine hydrodynamics, salt transport and biogeochemistry on the appropriate spatio-temporal scales. We provide a detailed description of the model, as well as a protocol for its set-up. The new model is then applied to the funnel-shaped Scheldt estuary (BE/NL), one of the best-surveyed estuarine systems in the world. Its performance is evaluated through comprehensive model-data and model-model comparisons. Model results show that C-GEM captures the dominant features of the biogeochemical cycling in the Scheldt estuary. Longitudinal steady-state profiles of oxygen, ammonium, nitrate and silica are generally in good agreement with measured data. In addition, simulated, system-wide integrated reaction rates of the main pelagic biogeochemical processes are comparable with those obtained using a high-resolved, two-dimensional RTM. A comparison of fully transient simulations results with those of a two-dimensional model shows that the estuarine net ecosystem metabolism (NEM) only differs by about 10%, while system-wide estimates of individual biogeochemical processes never diverge by more than 40%. A sensitivity

  2. Processes governing phytoplankton blooms in estuaries. II: The role of horizontal transport

    USGS Publications Warehouse

    Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Cloern, J.E.; Thompson, J.K.

    1999-01-01

    The development and distribution of phytoplankton blooms in estuaries are functions of both local conditions (i.e. the production-loss balance for a water column at a particular spatial location) and large-scale horizontal transport. In this study, the second of a 2-paper series, we use a depth-averaged hydrodynamic-biological model to identify transport-related mechanisms impacting phytoplankton biomass accumulation and distribution on a system level. We chose South San Francisco Bay as a model domain, since its combination of a deep channel surrounded by broad shoals is typical of drowned-river estuaries. Five general mechanisms involving interaction of horizontal transport with variability in local conditions are discussed. Residual (on the order of days to weeks) transport mechanisms affecting bloom development and location include residence time/export, import, and the role of deep channel regions as conduits for mass transport. Interactions occurring on tidal time scales, i.e. on the order of hours) include the phasing of lateral oscillatory tidal flow relative to temporal changes in local net phytoplankton growth rates, as well as lateral sloshing of shoal-derived biomass into deep channel regions during ebb and back into shallow regions during flood tide. Based on these results, we conclude that: (1) while local conditions control whether a bloom is possible, the combination of transport and spatial-temporal variability in local conditions determines if and where a bloom will actually occur; (2) tidal-time-scale physical-biological interactions provide important mechanisms for bloom development and evolution. As a result of both subtidal and tidal-time-scale transport processes, peak biomass may not be observed where local conditions are most favorable to phytoplankton production, and inherently unproductive areas may be regions of high biomass accumulation.

  3. Tide and Wind Forcing of Estuarine Air-Water Gas Transfer

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; Zappa, C. J.; McGillis, W. R.

    2008-12-01

    Recent studies have demonstrated that while gas transfer is primarily driven by wind, tidal currents can drive gas exchange in estuaries. Studies have also shown that the turbulent kinetic energy (TKE) dissipation just below the sea surface is a good proxy for the gas exchange velocity (k) for a wide range of forcing processes (e.g. wind, currents, rain). However, the connection between tidally-driven turbulence and gas exchange has not been investigated in detail. In this study, an autonomous instrumented surface platform deployment and one-dimensional numerical modeling are used to examine the influence of wind, tidal current shear, and water column bottom boundary layer (BBL) growth on gas transfer in an estuary. An autonomous instrumented surface platform was deployed for one month at a shallow site in the Hudson River estuary, measuring wind velocity, water velocity, TKE dissipation, air-water CO2 gradient and flux, and gas transfer velocity. Currents were 0-0.8 m s-1, winds 0-14 m s-1, depths 4.7-6.2 m, significant wave heights 0-0.8 m, and water pCO2 700-1600 μatm during the study. Surveys spanning the entire estuary from 2002 to the present broaden our understanding of tidal currents, stratification and turbulence to the entire estuary, with over a billion acoustic velocity measurements, millions of turbulence measurements, and 50 CTD surveys up the entire length of the estuary. The estuarine observations show a strong relationship between wind and k, but several recent parameterizations of k as a function of wind speed under-predict k for low-to-moderate winds (1-6 m s- 1). Upper water-column TKE dissipation and k are correlated, consistent with a recent parameterization. Both processes show enhancement when the turbulent BBL nears the sea surface. One-dimensional turbulence modeling is used to expand these results to a broad range of estuaries.

  4. Are there general spatial patterns of mangrove structure and composition along estuarine salinity gradients in Todos os Santos Bay?

    NASA Astrophysics Data System (ADS)

    Costa, Patrícia; Dórea, Antônio; Mariano-Neto, Eduardo; Barros, Francisco

    2015-12-01

    Species distribution and structural patterns of mangrove fringe forests along three tropical estuaries were evaluated in northeast of Brazil. Interstitial water salinity, percentage of fine sediments and organic matter content were investigated as explanatory variables. In all estuaries (Jaguaripe, Paraguaçu and Subaé estuaries), it was observed similar distribution patterns of four mangrove species and these patterns were mostly related with interstitial water salinity. Rhizophora mangle and Avicennia schaueriana tended to dominate sites under greater marine influence (lower estuary), while Avicennia germinans and Laguncularia racemosa dominated areas under greater freshwater influence (upper estuary), although the latter showed a wider distribution over these tropical estuarine gradients. Organic matter best explained canopy height and mean height. At higher salinities, there was practically no correlation between organic matter and density, but at lower salinity, organic matter was related to decreases in abundances. The described patterns can be related to interspecific differences in salt tolerance and competitive abilities and they are likely to be found at other tropical Atlantic estuaries. Future studies should investigate anthropic influences and causal processes in order to further improve the design of monitoring and restoration projects.

  5. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales

    USGS Publications Warehouse

    Knowles, Noah

    2002-01-01

    Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year-to-year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.

  6. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The land-water interface of coastal marshes may influence the production of estuarine-dependent fisheries more than the area of these marshes. To test this hypothesis, a spatial model was created to explore the dynamic relationship between marshland-water interface and level of disintegration in the decaying coastal marshes of Louisiana's Barataria, Terrebonne, and Timbalier basins. Calibrating the model with Landsat Thematic Mapper satellite imagery, a parabolic relationship was found between land-water interface and marsh disintegration. Aggregated simulation data suggest that interface in the study area will soon reach its maximum and then decline. A statistically significant positive linear relationship was found between brown shrimp catch and total interface length over the past 28 years. This relationship suggests that shrimp yields will decline when interface declines, possibly beginning about 1995.

  7. A Biological Condition Gradient Model for Historical Assessment of Estuarine Habitat Structure

    NASA Astrophysics Data System (ADS)

    Shumchenia, Emily J.; Pelletier, Marguerite C.; Cicchetti, Giancarlo; Davies, Susan; Pesch, Carol E.; Deacutis, Christopher F.; Pryor, Margherita

    2015-01-01

    Coastal ecosystems are affected by ever-increasing natural and human pressures. Because the physical, chemical, and biological characteristics unique to estuarine ecosystems control the ways that biological resources respond to ecosystem stressors, we present a flexible and adaptable biological assessment method for estuaries. The biological condition gradient (BCG) is a scientific framework of biological response to increasing anthropogenic stress that is comprehensive and ecosystem based and evaluates environmental conditions and the status of ecosystem services in order to identify, communicate, and prioritize management action. Using existing data, we constructed the first estuarine BCG framework that examines changes in habitat structure through time. Working in a New England (U.S.) estuary with a long history of human influence, we developed an approach to define a reference level, which we described as a "minimally disturbed" range of conditions for the ecosystem, anchored by observations before 1850 AD. Like many estuaries in the U.S., the relative importance of environmental stressors changed over time, but even qualitative descriptions of the biological indicators' status provided useful information for defining condition levels. This BCG demonstrated that stressors rarely acted alone and that declines in one biological indicator influenced the declines of others. By documenting the biological responses to cumulative stressors, the BCG inherently suggests an ecosystem-based approach to management. Additionally, the BCG process initiates thinking over long time scales and can be used to inspire scientists, managers, and the public toward environmental action.

  8. Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration

    NASA Astrophysics Data System (ADS)

    Elliott, Michael; Mander, Lucas; Mazik, Krysia; Simenstad, Charles; Valesini, Fiona; Whitfield, Alan; Wolanski, Eric

    2016-07-01

    Ecological Engineering (or Ecoengineering) is increasingly used in estuaries to re-create and restore ecosystems degraded by human activities, including reduced water flow or land poldered for agricultural use. Here we focus on ecosystem recolonization by the biota and their functioning and we separate Type A Ecoengineering where the physico-chemical structure is modified on the basis that ecological structure and functioning will then follow, and Type B Ecoengineering where the biota are engineered directly such as through restocking or replanting. Modifying the physical system to create and restore natural processes and habitats relies on successfully applying Ecohydrology, where suitable physical conditions, especially hydrography and sedimentology, are created to recover estuarine ecology by natural or human-mediated colonisation of primary producers and consumers, or habitat creation. This successional process then allows wading birds and fish to reoccupy the rehabilitated areas, thus restoring the natural food web and recreating nursery areas for aquatic biota. We describe Ecohydrology principles applied during Ecoengineering restoration projects in Europe, Australia, Asia, South Africa and North America. These show some successful and sustainable approaches but also others that were less than successful and not sustainable despite the best of intentions (and which may even have harmed the ecology). Some schemes may be 'good for the ecologists', as conservationists consider it successful that at least some habitat was created, albeit in the short-term, but arguably did little for the overall ecology of the area in space or time. We indicate the trade-offs between the short- and long-term value of restored and created ecosystems, the success at developing natural structure and functioning in disturbed estuaries, the role of this in estuarine and wetland management, and the costs and benefits of Ecoengineering to the socio-ecological system. These global case

  9. C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system

    NASA Astrophysics Data System (ADS)

    Volta, C.; Arndt, S.; Savenije, H. H. G.; Laruelle, G. G.; Regnier, P.

    2013-11-01

    The first part of this paper describes C-GEM (Carbon - Generic Estuary Model), a new, one-dimensional, generic reactive-transport model for the biogeochemical dynamics of carbon and associated bio-elements (N, P, Si) in estuaries. C-GEM is computationally efficient and reduces data-requirements by using an idealized representation of the estuarine geometry to quantitatively predict the dominant features of the estuarine hydrodynamics, salt transport and biogeochemistry. A protocol for the set-up of C-GEM for an estuarine system is also described. The second part of this paper presents, as a proof of concept, the application of C-GEM to the funnel-shaped Scheldt estuary (Belgium, the Netherlands), one of the best-surveyed system in the world. Steady-state and transient simulations are performed and the performance of C-GEM is evaluated through model-data and model-model comparison, using integrated measures of the estuarine biogeochemical functioning, such as system-wide estimates of the Net Ecosystem Metabolism (NEM). A sensitivity analysis is also carried out to identify model parameters that exert the most important control on biogeochemical processes and to assess the sensitivity of the NEM to uncertainties in parameter values. The paper ends by a short discussion of current model limitations with respect to local, regional and global scale applications.

  10. Behavior of dissolved aluminum in the Huanghe (Yellow River) and its estuary: Impact of human activities and sorption processes

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Wei; Ren, Jing-Ling; Zhang, Gui-Ling; Liu, Su-Mei; Zhang, Xiang-Zhao; Liu, Zhe; Zhang, Jing

    2015-02-01

    Dissolved aluminum (Al) is a sensitive tracer for biogeochemical cycles in the ocean. There has been a dramatic decline in water and sediment fluxes into the sea from the Huanghe because of climate change and human activities. Water-Sediment Regulation Schemes (WSRSs) have been implemented annually to flush trapped sediments from the upstream watercourse and reservoirs of the river. Monthly observations to investigate the behavior of dissolved Al in the lower reach of the Huanghe were carried out from November 2008 to December 2010. During 2009, daily observations were made to assess the impact of the ninth WSRS on the lower reach of the Huanghe and three cruises were carried out in the Huanghe Estuary in 2009 (prior to, during and following the WSRS). The monthly concentrations of dissolved Al ranged from 25 nM to 362 nM (average 90 nM) in the lower reach of the Huanghe. Assessment of the seasonal variation of dissolved Al showed that the highest concentrations occurred in summer and the lowest in winter: these corresponded to the variations in water discharge and sediment loads, which were controlled by WSRS events. During the ninth WSRS events in 2009 the daily runoff and sediment load increased from 200 m3/s to 3600 m3/s and from 0.1 g/L to 5 g/L, respectively. The concentration of dissolved Al increased from 180 nM to 600 nM (average 380 nM) in less than 20 days, which were equivalent to 43% of the annual Al flux into the Bohai. Exchange between dissolved and particulate Al, investigated using a simple sorption model based on the distribution coefficient (Kd), was approximately 106 mL/g in the Huanghe. The average concentrations of dissolved Al in the Huanghe Estuary prior to, during and following the WSRS were 243 nM, 238 nM and 186 nM, respectively. The comparable concentrations of dissolved Al in the Huanghe Estuary prior to and during the WSRS indicate that removal processes occurred in the initial stages of mixing in the estuary. The Al

  11. The tidal asymmetries and residual flows in Ems Estuary

    NASA Astrophysics Data System (ADS)

    Pein, Johannes Ulrich; Stanev, Emil Vassilev; Zhang, Yinglong Joseph

    2014-12-01

    A 3D unstructured-grid numerical model of the Ems Estuary is presented. The simulated hydrodynamics are compared against tidal gauge data and observations from research cruises. A comparison with an idealized test reveals the capability of the model to reproduce the secondary circulation patterns known from theoretical results. The simulations prove to be accurate and realistic, confirming and extending findings from earlier observations and modeling studies. The basic characteristics of dominant physical processes in the estuary such as tidal amplification, tidal damping, overtide generation, baroclinicity and internal mixing asymmetry are quantified. The model demonstrates an overall dominance of the flood currents in most of the studied area. However, the hypsometric control in the vicinity of Dollart Bay reverses this asymmetry, with the ebb currents stronger than the flood ones. Small-scale bathymetric characteristics and baroclinicity result in a very complex interplay between dominant physical mechanisms in different parts of the tidal channels and over the tidal flats. Residual flow reveals a clear overturning circulation in some parts of the estuary which is related to a mixing asymmetry between flood and ebb currents. We demonstrate that while areas close to the tidal river exhibit overall similarity with density controlled estuarine conditions, in large areas of the outer estuary barotropic forcing and complex bathymetry together with the density distribution affect substantially the horizontal circulation.

  12. Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus Estuary, Portugal)

    NASA Astrophysics Data System (ADS)

    Duarte, Bernardo; Silva, Gilda; Costa, José Lino; Medeiros, João Paulo; Azeda, Carla; Sá, Erica; Metelo, Inês; Costa, Maria José; Caçador, Isabel

    2014-10-01

    Worldwide estuarine ecosystems are by their privileged geographic location, anthropogenically impacted systems. Heavy metal contamination in estuarine waters and sediments are well known to be one of the most important outcomes driven from human activities. The partitioning of these elements has been widely focused, due to its importance not only on the estuarine biogeochemistry but also on its bioavailability to the trophic webs. As observed in other estuaries, in the Tagus basin, no increase in the partition coefficients with the increasing suspended particulate matter concentrations was observed, mostly due to a permanent dilution process of the suspended matter, rich in heavy metals and less contaminated and resuspended bottom sediments. Another important outcome of this study was the common origin of all the analysed heavy metals, probably due to the large industrialization process that the margins of the Tagus estuary suffered in the past, although no relationship was found with the presence of the different discharge areas. In fact, metal partitioning seems to be mostly influenced by the chemical species in which the pollutant is delivered to the system and on water chemistry, with a higher emphasis on the metal cycling essentially between the particulate and dissolved phase. This partitioning system acquires a relevant importance while evaluating the impacts of marine construction and the associated dredging operations, and consequent changes in the estuarine water chemistry.

  13. INDICATORS OF ECOSYSTEM INTEGRITY FOR ESTUARIES

    EPA Science Inventory

    Jordan, Stephen J. and Lisa M. Smith. In press. Indicators of Ecosystem Integrity for Estuaries. In: Proceedings of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel Island, FL. Sanibel-Captiva Conservation Foundation, Sanibel, FL. 23 p. (ERL,GB 1194).

    Ideal ...

  14. Controls on monthly estuarine residuals: Eulerian circulation and elevation

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer M.; Bolaños, Rodolfo; Souza, Alejandro J.

    2014-04-01

    The Dee Estuary, at the NW English-Welsh border, is a major asset, supporting: one of the largest wildlife habitats in Europe, industrial importance along the Welsh coastline and residential and recreational usage along the English coast. Understanding of the residual elevation is important to determine the total water levels that inundate intertidal banks, especially during storms. Whereas, improved knowledge of the 3D residual circulation is important in determining particle transport pathways to manage water quality and morphological change. Using mooring data obtained in February-March 2008, a 3D modelling system has been previously validated against in situ salinity, velocity, elevation and wave observations, to investigate the barotropic-baroclinic wave interaction within this estuary under full realistic forcing. The system consists of a coupled circulation-wave-turbulence model (POLCOMS-WAM-GOTM). Using this modelling system the contribution of different processes and their interactions to the monthly residuals in both elevation and circulation is now assessed. By studying a tidally dominated estuary under wave influence, it is found that baroclinicity induced by a weak river flow has greater importance in generating a residual circulation than the waves, even at the estuary mouth. Although the monthly residual circulation is dominated by tidal and baroclinic processes, the residual estuarine surface elevation is primarily influenced by the seasonal external forcing to the region, with secondary influence from the local wind conditions. During storm conditions, 3D radiation stress becomes important for both elevation and circulation at the event scale but is found here to have little impact over monthly time scales.

  15. Heavy metals and TPH effects on microbial abundance and diversity in two estuarine areas of the southern-central coast of São Paulo State, Brazil.

    PubMed

    Pinto, Aline Bartelochi; Pagnocca, Fernando Carlos; Pinheiro, Marcelo Antonio Amaro; Fontes, Roberto Fioravanti Carelli; de Oliveira, Ana Júlia Fernandes Cardoso

    2015-07-15

    Coastal areas may be impacted by human and industrial activities, including contamination by wastewater, heavy metals and hydrocarbons. This study aimed to evaluate the impact of hydrocarbons (TPH) and metals on the microbiota composition and abundance in two estuarine systems in the coast of São Paulo: the Santos (SE) and Itanhaém (IE) estuaries. The SE was found to be chronically contaminated by heavy metals and highly contaminated by hydrocarbons. This finding was correlated with the increased density of cyanobacteria in sediments and suggests the possible use of cyanobacteria for bioremediation. These contaminants influence the density and composition of estuarine microbiota that respond to stress caused by human activity. The results are troubling because quantitative and qualitative changes in the microbiota of estuarine sediments may alter microbiological processes such as decomposition of organic matter. Moreover, this pollution can result in damage to the environment, biota and human health. PMID:26021289

  16. A Comparative Ecological Approach to Assess the Role of Watersheds in Estuarine Condition

    EPA Science Inventory

    Estuarine condition is a function of the geophysical nature of the estuary, the ocean (and atmospheric) system, and the upstream watershed. To fully understand and predict how an estuary will respond to a mixture of natural and anthropogenic drivers and pressures each compartment...

  17. The Role of Watershed Characteristics in Estuarine Condition: An Empirical Approach

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  18. Comparative Ecological Approach to Assess the Role of Watersheds in Estuarine Condition

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  19. Observations of Floc Sizes in a Muddy Estuary

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Bale, A. J.; Stephens, J. A.; Frickers, P. E.; Harris, C.

    2010-04-01

    Measurements are presented of median floc diameters and associated environmental data over spring-tide tidal cycles at two stations in the muddy Tamar Estuary, UK, for winter, spring and summer conditions. The particulate organic carbon and particulate total carbon contents of mudflats and SPM (suspended particulate matter) at the stations, together with other evidence, indicates that much of the SPM was derived from mud sources that were located between the two stations during winter and spring, and from very mobile sediment sources in the upper estuary during summer. Observed in-situ median floc sizes varied widely, from <50 to >500 μm and rapid settling of particles close to HW and LW (high and low water) left only the smaller flocs in suspension. Time-series of depth-averaged median floc sizes generally were most closely, positively, correlated with depth-averaged SPM concentrations. Floc diameters tended to reach maximum median sizes near the time when SPM concentrations were highest. These high concentrations were in turn largely generated by resuspension of sediment during the fastest current speeds. Although such correlations may have arisen because of SPM-driven floc growth - despite fast tidal currents - there is also the possibility that tough aggregates were eroded from the intertidal mudflats and mudbanks. Although a hypothesis, such large aggregates of fine sediment may have resulted from the binding together of very fine bed particles by sticky extracellular polymeric substances (EPS) coatings, produced by benthic diatoms and by other biologically-mediated activity. A rapid reduction of SPM occurred at the up-estuary station within 2.5 h of HW on the flood, when decelerating currents were still relatively fast. It appears that at least two processes were at work: localised settling of the largest flocs and up-estuary transport in which large flocs were transported further into the estuary before settling into the Tamar's ETM (estuarine turbidity

  20. Modelling Oxygen Dynamics in an Intermittently Stratified Estuary: Estimation of Process Rates Using Field Data

    NASA Astrophysics Data System (ADS)

    Borsuk, M. E.; Stow, C. A.; Luettich, R. A.; Paerl, H. W.; Pinckney, J. L.

    2001-01-01

    The relationship between bottom water dissolved oxygen concentration, vertical stratification, and temperature was investigated for the Neuse River estuary, North Carolina, a shallow, intermittently-mixed estuary using approximately 10 years of weekly/biweekly, mid-channel data. A generalized additive model (GAM) was used to initially explore the major relationships among observed variables. The results of this statistical model guided the specification of a process-based model of oxygen dynamics that is consistent with theory yet simple enough to be parameterized using available field data. The nonlinear optimization procedure employed allows for the direct estimation of microbial oxygen consumption and physical reoxygenation rates, including the effects of temperature and vertical stratification. These estimated rates may better represent aggregate system behaviour than closed chamber measurements made in the laboratory and in situ. The resulting model describes 79% of the variation in dissolved oxygen concentration and is robust when compared across separate locations and time periods. Model predictions suggest that the spatial extent and duration of hypoxia in the bottom waters of the Neuse are controlled by the balance between the net oxygen depletion rate and the frequency of vertical mixing events. During cool months, oxygen consumption rates remain low enough to keep oxygen concentration well above levels of concern even under extended periods of stratification. A concentration below 4 mg l -1is only expected under extended periods without vertical mixing when bottom water temperature exceeds 15 °C, while a concentration below 2 mg l -1is only expected when water temperature exceeds 20 °C. To incorporate the effects of parameter uncertainty, model error, and natural variability on model prediction, we used Monte Carlo simulation to generate distributions for the predicted number of days of hypoxia during the summer season. The expected number of days with

  1. Remediation of Estuarine Barrages

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Lamping, J.; Wright, J.

    2003-04-01

    Estuarine barrages have become a popular component of urban regeneration in the UK. However, a range of problems have been identified with the construction and operation of barrages, including: excess sediment build up; low oxygen conditions and eutrophication. This project has examined 3 strategies for the remediation of estuarine barrages: use of aerators; flushing of the impoundment by lock management; and use of boom/skirt technologies. The results show that: flushing of the barrage is ineffective; and that boom/skirt technologies could be successful in stratified impoundments. Aerators were shown to give significant increases in dissolved oxygen levels and field studies were able to delimit times when aeration would be effective. The study has shown that most problems experienced by the barrage are the result of inputs to the barrage rather than caused by the internal processes of the barrage itself and as such esturies must be managed as part of the catchment as a whole.

  2. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The continuing disintegration of the coastal marshes of Louisiana is one of the major environmental problems of the nation. The problem of marsh loss in Louisiana is relevant to fishery management because Louisiana leads the nation in landings of fishery products, and most of the landed species are dependent upon estuaries and their associated tidal marshes. In evaluating the potential effect of marshland loss on fisheries, the first two critical factors to consider are: whether land-water interface in actual disintegrating marshes is currently increasing or decreasing, and the magnitude of the change. In the present study, LANDSAT Thematic Mapper (TM) data covering specific marshes in coastal Louisiana were used to test conclusions from the Browder et al (1984) model with regard to the stage in disintegration at which maximum interface occurs; to further explore the relationship between maximum interface and the pattern of distribution of land and water suggested by the model; and to determine the direction and degree of change in land-water interface in relation to land loss in actual marshes.

  3. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    NASA Astrophysics Data System (ADS)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  4. Application of cluster analysis to the geochemistry zonation of the estuary waters in the Tinto and Odiel rivers (Huelva, Spain).

    PubMed

    Grande, José Antonio; Borrego, José; de la Torre, Maria Luisa; Sáinz, A

    2003-06-01

    The combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel rivers. This estuary is in the southwest of the Iberian Peninsula and is one of the estuarine systems on the northwest coast of the Gulf of Cádiz. From the statistical treatment of data obtained by analyzing samples of water from this system, which is affected by industrial and mining pollution processes, we can see how the sampling points studied form two large groups depending on whether they receive tidal or fluvial influences. Fluvial input contributes acid water with high concentrations of heavy metal, whereas industrial effluents are responsible for the presence of phosphates, silica and other nutrients. The estuarine system of the Tinto and Odiel Rivers can be divided into three areas--the Tinto estuary, the Odiel estuary and the area of confluence--based on the physical--chemical characteristics of the water. PMID:12901168

  5. ECOLOGICAL CONDITION OF THE U.S. MID-ATLANTIC ESTUARIES: THE MID-ATLANTIC INTEGRATED ASSESSMENT (MAIA)

    EPA Science Inventory

    The Mid-Atlantic Integrated Assessment (MAIA-Estuaries) evaluated ecological conditions in US Mid-Atlantic estuaries during the summers of 1997 and 1998. Over 800 probability-based stations were monitored in four main estuarine systems?Chesapeake Bay, the Delaware Estuary, Maryla...

  6. Impact of estuarine pollution on birds

    USGS Publications Warehouse

    Blus, L.J.; Wiemeyer, Stanley N.; Kerwin, J.A.; Stendell, R.C.; Ohlendorf, H.M.; Stickel, L.F.

    1977-01-01

    Pollution of estuaries affects bird populations indirectly through changes in habitat and food supply. The multi-factor pollution of Chesapeake Bay has resulted in diminution of submerged aquatic plants and consequent change in food habits of the canvasback duck. Although dredge-spoil operations can improve wildlife habitat, they often result in its demise. Pollution of estuaries also affects birds directly, through chemical toxication, which may result in outright mortality or in reproductive impairment. Lead from industrial sources and roadways enters the estuaries and is accumulated in tissues of birds. Lead pellets deposited in estuaries as a result of hunting are consumed by ducks with sufficient frequency .to result m large annual die-offs from lead poisoning. Fish in certain areas, usually near industrial sources, may contain levels of mercury high enough to be hazardous to birds that consume them. Other heavy metals are present in estuarine birds, but their significance is poorly known. Oil exerts lethal or sublethal effects on birds by oiling their feathers, oiling eggs and young by contaminated parents, and by ingestion of oil-contaminated food. Organochlorine chemicals, of both agricultural and industrial origin, travel through the food chains and reach harmful levels in susceptible species of birds in certain estuarine ecosystems. Both outright mortality and reproductive impairment have occurred.

  7. Intra- and inter-seasonal variability of nutrients in a tropical monsoonal estuary (Zuari, India)

    NASA Astrophysics Data System (ADS)

    Subha Anand, S.; Sardessai, S.; Muthukumar, C.; Mangalaa, K. R.; Sundar, D.; Parab, S. G.; Dileep Kumar, M.

    2014-07-01

    A study was conducted to understand the intra- and inter-seasonal variability of dissolved oxygen and nutrients in a tropical monsoon estuary (Zuari in Goa, India). We adopted a dual sampling approach with (a) daily or alternate day sampling at a fixed location in the mid-estuarine zone and (b) longitudinal transect sampling from freshwater end to mouth during spring and neap tides of each month for about a year. Multivariate statistical analyses of oxygen and nutrients were carried out to evaluate the hypotheses: (i) biogeochemical processes chiefly regulate their variability and (ii) anthropogenic inputs lead to material accumulation in the estuary. Multivariate statistical analyses helped identify the controlling factors of the oxygen and nutrient variability. Our results significantly revealed (i) physical forcings (freshwater discharge and tidal circulation, these also facilitate sedimentary releases) are more important than biogeochemical processes in determining oxygen and nutrient variability in the water column and (ii) the monsoon driven regular annual flushing makes the system resilient to human interference as the Zuari estuary returns to normalcy by postmonsoon every year. Our study identified the significance of subsurface discharges in transporting mining effluents from the river basin. Results also suggest that extrapolation of controlling factors of biogeochemical variables at a fixed location to the entire estuary is untenable since the relative dominance of forcings vary in time and space in the estuary.

  8. Temporal and spatial variations in the biogeochemical cycling of cobalt in two urban estuaries: Hudson River Estuary and San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Tovar-Sánchez, Antonio; Sañudo-Wilhelmy, Sergio A.; Flegal, A. Russell

    2004-08-01

    Despite the fact that Co is an essential trace element for the growth of marine phytoplankton, there is very limited information on the cycling of this trace metal in the marine environment. We report here the distribution of dissolved (<0.4 μm) and particulate (>0.4 μm) Co in surface waters of the Hudson River Estuary (HRE) and San Francisco Bay (SFB). Samples were collected during several cruises (from 1990 to 1995 in SFB and from 1995 to 1997 in the HRE) along the whole salinity gradient. Dissolved Co concentrations (mean±1 standard deviation) were nearly identical in magnitude in both estuaries despite differences in climate, hydrography, riverine-flow conditions and land-usage (HRE=0.91±0.61 nM; SFB=1.12±0.69 nM). Dissolved Co levels in each system showed non-conservative distributions when plotted as a function of salinity, with increasing concentrations downstream from the riverine end-members. Desorption from suspended particulates and sewage inputs, therefore, seems to be the major processes responsible for the non-conservative behavior of Co observed. Mass balance estimates also indicated that most of the estuarine Co is exported out of both estuaries, indicating that they and other estuarine systems are principal sources of this essential trace element to the open ocean.

  9. Geospatial Habitat Analysis in Pacific Northwest Coastal Estuaries

    SciTech Connect

    Borde, Amy B. ); Thom, Ronald M. ); Rumrill, Steven; Miller, L M.

    2003-08-01

    We assessed historical changes in the location and amount of estuarine habitat in three of the four largest coastal estuaries in the Pacific Northwest (Grays Harbor, Willapa Bay, and Coos Bay) as part of the Pacific Northwest Coastal Ecosystem Regional Study (PNCERS). To accomplish this, navigation charts, hydrographic survey data, maps, and published descriptions were used to gain information on the location of the shoreline, bathymetry, and vegetated habitats, which was then digitized and subjected to geospatial analysis using a geographic information system. In addition, we used present-day elevational boundaries for marshes, flats, and eelgrass meadows to help define habitat areas where they were not indicated on historical maps. The analysis showed that tidal flats have decreased in all study areas; potential eelgrass habitat has increased in Grays Harbor and Willapa Bay and decreased slightly in Coos Bay; tidal wetland area has declined in all three coastal estuaries, with increases in localized areas due to filling and sedimentation; and dramatic changes have occurred at the mouths of Grays Harbor and Willapa Bay. As has been shown before, these data illustrate that direct physical alteration (filling and diking) has resulted in large changes to habitats. However, indirect impacts from forest practices in the watershed, as well as variation in climatic factors and oceanographic processes, may also have contributed to changes. The information provides more evidence for managing estuarine habitats in the region and a employing a historical template to plan habitat restoration in the future.

  10. Estuary Turbulence and Air-Water Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Orton, Philip Mark

    The mixing of constituents between estuarine bottom and surface waters or between estuarine surface waters and the atmosphere are two topics of growing interest, in part due to the potentially important role of estuaries in global carbon budgets. These two types of mixing are typically driven by turbulence, and a research project was developed to improve the scientific understanding of atmospheric and tidal controls on estuary turbulence and airwater exchange processes. Highlights of method development and field research on the Hudson River estuary include several deployments of bottom mounted current profilers to quantify the turbulent kinetic energy (TKE) budget, and construction and deployment of an instrumented catamaran that makes autonomous measurements of air-water CO2 exchange (FCO2), water TKE dissipation at 50 cm depth (epsilon50), and other physical properties just above and below the air-water interface. On the Hudson, wind correlates strongly with epsilon50, but surface water speed and airwater heat flux also have moderate correlations with epsilon50. In partially mixed estuaries such as the Hudson, as well as salt wedge estuaries, baroclinic pressure forcing typically causes spring ebb tides to have much stronger upper water column shear than flood tides. The Hudson data are used to show that this shear leads to local shear instability and stronger near-surface turbulence on spring ebbs. Also, buoyancy budget terms are compared to demonstrate how water-to-air heat fluxes can influence stratification and indirectly influence epsilon50. Looking more closely at the role of wind forcing, it is demonstrated that inland propagation of the sea breeze on warm sunny days leads to arrival in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the air-water CO2 flux by 1-2 orders of magnitude, and drives epsilon50 comparable to spring tide levels in the upper meter of the water

  11. Ordination of the estuarine environment: What the organism experiences

    EPA Science Inventory

    Investigators customarily schedule estuary sampling trips with regard to a variety of criteria, especially tide stage and the day-night cycle. However, estuarine organisms experience a wide suite of continuously changing tide and light conditions. Such organisms may undertake i...

  12. Responses of estuarine salinity and transport processes to potential future sea-level rise in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Hong, Bo; Shen, Jian

    2012-06-01

    Understanding the changes of hydrodynamics in estuaries with respect to magnitudes of sea-level rise is important to understanding the changes of biogeochemical processes that are coupled tightly with the physical processes. Based on the 21st century sea-level rise scenarios projected by the U.S. Climate Change Science Program (CCSP, 2009), the Chesapeake Bay was chosen as a prototype to study the responses of the estuary to potential future sea-level rise. The numerical model results show that the average salt content, salt intrusion length, and stratification will increase as sea level rises. The changes of these parameters have obvious seasonal and inter-annual variations. Both the salt content and stratification show more increase in spring (following the high-flow periods) and wet years than in autumn (following the low-flow periods) and dry years. The salt intrusion length has larger increase and greater standard deviation in autumn than in spring. The transport time scales are used to illustrate the variations of transport processes as sea level rises, and results indicate that (1) the exchange flow would be strengthened but the downstream transport of fresh water would be slower; (2) the residence time of the Bay would increase due to the increased volume and change of circulation; (3) the vertical transport time (reference to water surface) has more pronounced increase and the volume of water mass with different age groups increases with different rates. As a result, the retention time of dissolved substances in the Bay would increase. Although the increased tidal currents would strengthen the vertical mixing, the increased stratification would weaken the vertical exchange. The increase of vertical transport time is due to the impact of stratification changes, which overwhelms the impact of tidal changes. As the bottom dissolved oxygen (DO) supply is predominated by the vertical exchanges in the Chesapeake Bay, the increased upstream transport time has a

  13. Measuring the acute toxicity of estuarine sediments

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Lanberson, J.O.

    1989-01-01

    Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the physiological tolerance and sensitivity to chemical contaminants to serve in estuarine sediment toxicity tests. The study describes research on the estuarine burrowing amphipod, Eohaustorius estuarius Bosworth, 1973, whose survival was >95% in control sediments across a 2 to 28% salinity range over 10-d periods. E. estuarius also was acutely sensitive to low sediment concentrations of the polycyclic aromatic hydrocarbon, fluoranthene (LC50 approximately = 10.6 mg/kg), and its sensitivity to fluoranthene was not affected by salinity. E. estuarius was almost as sensitive as Rhepoxynius abronius to fluoranthene and to field-collected sediments from Puget Sound urban and industrial bays. E. estuarius was also more tolerant of very fine, uncontaminated sediments than R. abronius. Furthermore, E. estuarius was more sensitive to sediments spiked with fluoranthene than the freshwater amphipod, Hyalella azteca. E. estuarius, and possibly other estuarine haustoriid species, appears to be an excellent candidate for testing the acute toxicity if estuarine and marine sediments.

  14. Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: Implications for barrier-estuary connectivity

    USGS Publications Warehouse

    Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil Kamal; Navoy, Anthony S.

    2015-01-01

    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.

  15. 2004 AND 2006 COHO SMOLT MOVEMENT IN THE YAQUINA RIVER AND ESTUARY

    EPA Science Inventory

    Migratory fish passage is an important designated use for many Oregon estuaries. Acoustic transmitters were implanted in coho smolts in 2004 and 2006 to evaluate how estuarine habitat, and habitat loss, might affect population health. Acoustic receivers that identified individu...

  16. Processes controlling the seasonal and spatial variations in sulfate profiles in the pore water of the sediments surrounding Qi'ao Island, Pearl River Estuary, Southern China

    NASA Astrophysics Data System (ADS)

    Wu, Zijun; Zhou, Huaiyang; Ren, Dezhang; Gao, Hang; Li, Jiangtao

    2015-04-01

    Marine sediments are the main sink for seawater sulfate and bacterial sulfate reduction is a major component of the global sulfur cycle. Nevertheless, the factors controlling sulfate reduction in the coastal estuary sediments that undergo spatial and temporal variations are still not fully understood. In this study, we measured the concentrations of SO42-, Cl-, CH4, and DIC, and the δ13C of DIC in the pore water of five sampling stations surrounding the Qi'ao Island, Pearl River Estuary, Southern China during the dry season in November 2011 and during the wet season in May 2012. The results showed that the dilution-mixing of the Pearl River with low-concentration sulfate significantly affects the downcore profiles of the sulfate concentrations in the pore water of these estuary sediments. During the wet season, the dilution-mixing of the layers from the top of the sediments to a depth of 14-18 cm occurred at the different sampling stations. In this layer, the sulfate reduction is not appreciable based on the plot of the pore water Cl- and SO42-. Below the dilution-mixing layers, however, sulfate reduction that is driven by the anaerobic oxidation of methane (AOM) occurs. In our comparison, it appeared that the AOM played more important role in the consumption of the pore water sulfate in May 2012 than in November 2011. Meanwhile, we observed a relatively good correlation (r2=0.64) between the depth of the sulfate-methane interface (SMI) and the sulfate concentration in the pore water of the top sediments in dry season, indicating that the pore water sulfate concentration appears to be a primary controlling factor for the depth of the SMI in this estuary. These results highlight the need for an integrated analysis of the hydrologically driven the variations in the sulfate profiles to improve our understanding of the biogeochemical cycling of C, Fe and S and their budgets in estuarine environments.

  17. Silicon isotopic chemistry in the Changjiang Estuary and coastal regions: Impacts of physical and biogeochemical processes on the transport of riverine dissolved silica

    NASA Astrophysics Data System (ADS)

    Zhang, A. Y.; Zhang, J.; Hu, J.; Zhang, R. F.; Zhang, G. S.

    2015-10-01

    The dissolved silica (DSi) concentration and silicon isotopic composition (δ30Si) of surface water samples from the Changjiang Estuary was measured in summer and winter to study the behavior of DSi fluvial inputs into the estuary. The DSi concentration decreased away from the estuary and had a linear relationship with salinity, suggesting that mixing between river water and seawater is the dominant effect on DSi levels in the study area. Measured δ30Si in the Changjiang Estuary ranged from +1.48‰ to +2.35‰ in summer, and from +1.54‰ to +1.95‰ in winter. As a result of low light levels and abundant DSi riverine inputs, DSi remains relatively unaffected by biological utilization and fractionation in the near-shore region, and the isotopic imprint of water from the Changjiang can still be detected up to a salinity level of 20 in summer. An obvious increase in δ30Si was observed beyond this salinity level, indicating a significant increase in biological utilization and fractionation of DSi in high salinity waters. Lower water temperatures and light levels that prevail over the winter lead to the reduced fractionation of DSi compared with that in summer. The fractionation factor (30ɛ) was estimated using a steady state model to the high salinity waters, yielding a value of -0.95‰, which is in agreement with previous results obtained for Skeletonema costatum in cultivation experiments. The results of this study suggest that silicon isotopes can be used to identify the impact of biological utilization on the behavior of DSi in highly dynamic estuarine environments.

  18. Home advantage? Decomposition across the freshwater-estuarine transition zone varies with litter origin and local salinity.

    PubMed

    Franzitta, Giulio; Hanley, Mick E; Airoldi, Laura; Baggini, Cecilia; Bilton, David T; Rundle, Simon D; Thompson, Richard C

    2015-09-01

    Expected increases in the frequency and intensity of storm surges and river flooding may greatly affect the relative salinity of estuarine environments over the coming decades. In this experiment we used detritus from three contrasting environments (marine Fucus vesiculosus; estuarine Spartina anglica; terrestrial Quercus robur) to test the prediction that the decomposition of the different types of litter would be highest in the environment with which they are associated. Patterns of decomposition broadly fitted our prediction: Quercus detritus decomposed more rapidly in freshwater compared with saline conditions while Fucus showed the opposite trend; Spartina showed an intermediate response. Variation in macro-invertebrate assemblages was detected along the salinity gradient but with different patterns between estuaries, suggesting that breakdown rates may be linked in part to local invertebrate assemblages. Nonetheless, our results suggest that perturbation of salinity gradients through climate change could affect the process of litter decomposition and thus alter nutrient cycling in estuarine transition zones. Understanding the vulnerability of estuaries to changes in local abiotic conditions is important given the need to better integrate coastal proceses into a wider management framework at a time when coastlines are increasingly threatened by human activities. PMID:26247807

  19. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  20. Mineralogy and Sr-Nd isotopes of SPM and sediment from the Mandovi and Zuari estuaries: Influence of weathering and anthropogenic contribution

    NASA Astrophysics Data System (ADS)

    Purnachandra Rao, V.; Shynu, R.; Singh, Sunil K.; Naqvi, S. W. A.; Kessarkar, Pratima M.

    2015-04-01

    Clay minerals and Sr-Nd isotopes of suspended particulate matter (SPM) and bottom sediment were investigated along transect stations of the Mandovi and Zuari estuaries, western India to determine the provenance and role of estuarine processes on their distribution. Kaolinite and illite, followed by minor goethite, gibbsite and chlorite were present in SPM and bottom sediment at all stations, both during monsoon and pre-monsoon. Smectite occurred in traces at river end stations but its contents increased downstream in both estuaries. Smectite contents were much higher in Zuari than in Mandovi estuary. The 87Sr/86Sr ratios and ɛNd of SPM were higher than those in hinterland rocks and laterite soils. The Sr ratios were highest at river end stations of both estuaries and decreased sharply seaward. The Sm/Nd ratios of SPM and sediment were close to that of iron ore material flushed into the estuaries. The mean ɛNd of SPM and sediment were similar in both estuaries. It is suggested that the smectite is formed in coastal plains and its distribution downstream is controlled by lithology and drainage basin of rivers. Abundant kaolinite and high Sr ratios reflect chemical weathering and lateritization of source rocks. Sr isotopic ratios along transects are influenced by changes in salinity, organic matter and turbidity. High and near identical ɛNd values along transect stations of both estuaries suggest that the Nd isotopic compositions are influenced by the lateritization of source rocks and anthropogenic contribution of ore material.

  1. Colloidal size spectra, composition and estuarine mixing behavior of DOM in river and estuarine waters of the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengzhen; Stolpe, Björn; Guo, Laodong; Shiller, Alan M.

    2016-05-01

    Flow field-flow fractionation (FlFFF) coupled on-line with UV absorbance and fluorescence detectors was used to examine the colloidal composition and size distribution of optically active dissolved organic matter (DOM) in the lower Mississippi River (MR), the East Pearl River (EPR), the St. Louis Bay (SLB) estuary, and coastal waters of the northern Gulf of Mexico. In addition to field studies, laboratory mixing experiments using river and seawater end-members were carried out to study the processes controlling the estuarine mixing behavior and size partitioning of colloids with different sizes and composition. The colloidal size spectra of chromophoric DOM and humic-like DOM showed one dominant peak in the 0.5-4 nm size range, representing >75% of the total FlFFF-recoverable colloids. In contrast, protein-like DOM showed a bi-modal distribution with peaks at 0.5-4 nm and 4-8 nm, as well as a major portion (from ∼41% in the EPR to ∼72% in the Mississippi Bight) partitioned to the >20 nm size fraction. Bulk DOM was lower in abundance and molecular-weight in the MR compared with the EPR, while the proportion of colloidal protein-like DOM in the >20 nm size range was slightly larger in the MR compared with the EPR. These features are consistent with differences in land use, hydrological conditions, and water residence time between the two river basins, with more autochthonous DOM in MR waters. In the SLB estuary, different DOM components demonstrated different mixing behaviors. The abundance of colloidal chromophoric DOM decreased with increasing salinity and showed evident removal during estuarine mixing even though the bulk DOM appeared to be conservative. In contrast, colloidal humic-like DOM behaved conservatively inside SLB and during laboratory mixing experiments. The ratio of colloidal protein-like to humic-like DOM generally increased with increasing salinity, consistent with increasing autochthonous protein-like DOM and removal of terrestrially

  2. 18O and 226Ra in the Minjiang River estuary, China and their hydrological implications

    NASA Astrophysics Data System (ADS)

    Liu, Huatai; Guo, Zhanrong; Gao, Aiguo; Yuan, Xiaojie; Zhang, Bin

    2016-05-01

    In this work, the 2H, 18O and 226Ra values in groundwater and surface water in the Minjiang River estuary were investigated in the dry and wet seasons. The δ18O values in the dry season were always higher than those in the wet season in both groundwater and surface water because of the presence of evaporation in the water cycle process. During the dry season, the δ18O values in groundwater on the southern bank of the Minjiang River are much higher than those on the northern bank because evaporation is more intense in the farmland of the southern bank than in the urbanized northern bank. The δ18O values in the estuarine water exhibit a good positive correlation with salinity, with a coefficient of 0.96 (p = 0.05) in both seasons. The 226Ra activities in the estuarine water increase with increasing salinity because of desorption from riverine suspended particles. The 226Ra activity reaches a peak value at a salinity of 20.5. Based on a three-endmember model, the average proportions of the estuarine water are calculated to be 0.02 for groundwater, 0.39 for river water and 0.59 for seawater. From this mixing ratio, the groundwater discharge into the estuary is estimated to be 9.31 × 106 m3 d-1 in the wet season.

  3. Estuarine laterally averaged numerical dynamics: The development and testing of estuarine boundary conditions in the LARM code

    NASA Astrophysics Data System (ADS)

    Edinger, J. E.; Buchak, E. M.

    1981-11-01

    The longitudinal and vertical hydrodynamics and transport in stratified waterbodies as formulated for the Corps of Engineers Laterally Averaged Reservoir Model (LARM) have been transformed to estuaries by development of appropriate boundary conditions. The resulting computational code Laterally Averaged Estuary Model (LAEM) is tested on the Potomac River estuary for a short period of time with intensive field data. The estuary problem was formulated in terms of spatially varying geometry, a time-varying tide height and salinity distribution at the mouth, and freshwater inflow. The LARM code was found to reproduce overall estuarine dynamics including tide heights, tide phase shifts, and salinity distributions. In addition, detailed time-varying vertical velocity profiles were produced to a high degree of resolution. Detailed results of the model including the distribution of vertical velocities and turbulent dispersion coefficients were compared to those expected for a coastal plain estuary with favorable agreement.

  4. Relative importance of estuarine flatfish nurseries along the Portuguese coast

    NASA Astrophysics Data System (ADS)

    Cabral, Henrique N.; Vasconcelos, Rita; Vinagre, Catarina; França, Susana; Fonseca, Vanessa; Maia, Anabela; Reis-Santos, Patrick; Lopes, Marta; Ruano, Miguel; Campos, Joana; Freitas, Vânia; Santos, Paulo T.; Costa, Maria José

    2007-02-01

    The relative importance of nursery areas and their relationships with several environmental variables were evaluated in nine estuarine systems along the Portuguese coast based on trawl surveys. Historical data were used to outline changes and trends in the nursery function of some of these estuaries over the past decades. The dominant flatfish species in Portuguese estuaries were Platichthys flesus (Linnaeus, 1758), Solea solea (Linnaeus, 1758), Solea senegalensis Kaup, 1858 and Monochirus hispidus Rafinesque, 1814, but their occurrence differed among the estuaries. P. flesus only occurred in estuaries north of the Tejo estuary (39°N), S. solea was quite rare along the southern Portuguese coast (south of 37°30'N), S. senegalensis occurred in estuaries throughout the coast, but its abundance varied considerably, and the occurrence of M. hispidus was limited to the Sado estuary and Ria Formosa. A Correspondence Analysis was performed to evaluate the relationships between flatfish species abundance and geomorphologic and hydrologic characteristics of estuaries (latitude, freshwater flow, estuarine area, intertidal area, mean depth and residence time). Abiotic characteristics (depth, temperature, salinity, sediment type) of nursery grounds of each flatfish species were also evaluated. Results showed that some estuaries along the Portuguese coast have nursery grounds used by several flatfish species (e.g. Ria de Aveiro, Sado estuary), while in other systems a segregation was noticed, with juveniles of different species occurring in distinct estuarine areas (e.g. Minho and Mondego estuaries). This emphasizes the relevance of niche overlap, but the potential for competition may be considerably minimized by differences in resource use patterns and by an extremely high abundance of resources. Peak densities of flatfishes recorded in nurseries areas along the Portuguese coast were within the range of values reported for other geographical areas. Inter-annual abundance

  5. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  6. USING IMAGE PROCESSING METHODS WITH RASTER EDITING TOOLS FOR MAPPING EELGRASS DISTRIBUTIONS IN PACIFIC NORHWEST ESTUARIES

    EPA Science Inventory

    False-color near-infrared (CIR) aerial photography of seven Oregon estuaries was acquired at extreme low tides and digitally orthorectified with a ground pixel resolution of 25 cm to provide data for intertidal vegetation mapping. Exposed, semi-exposed and some submerged eelgras...

  7. Amino acids in the Pearl River Estuary and adjacent waters: origins, transformation and degradation

    NASA Astrophysics Data System (ADS)

    Chen, Jianfang; Li, Yan; Yin, Kedong; Jin, Haiyan

    2004-10-01

    Two cruises were conducted in the Pearl River Estuary (PRE) and adjacent coastal waters during July 1999 and 2000 to investigate spatial variation, transformation and degradation of amino acids (AAs). Salinity, suspended sediments (SS), chl a, nutrients, dissolved organic carbon, particulate organic carbon, AAs, and hexosamines were measured and analyzed. Concentrations of particulate hydrolysable AAs (PHAAs), dissolved combined AAs and dissolved free AAs ranged from 0.41 to 12.6 μmol L-1, 1.1 to 4.0 μmol L-1 and 0.15 to 1.10 μmol L-1, respectively. AAs concentrations were low in waters of salinity <10, increased to the maximum in the estuarine and coastal plumes (salinity =10-25) and decreased beyond the coastal plume. There was a region where PHAAs were maximum, which coincided with the region of the chl a maximum and depletion of dissolved inorganic phosphorus in the coastal plume south of Hong Kong. This indicates that most of the AAs in estuarine and coastal waters were produced through phytoplankton production and AAs might be a temporary sink for inorganic nitrogen. The ratios of AAs/HAs and glucosamine/galactosamine (Glc-NH2/Gal-NH2) were on average, 26.0 and 3.8, respectively, in biogenic particulate matter (chl a >5 μg L-1 and SS<10 mg L-1), decreased in turbid particles (SS>20 mg L-1) and reached the lowest values of 5.8 and 1.4 in sediments. In particular, the ratios of AAs/HAs, Glc-NH2/Gal-NH2 were low in the upper or northwest side of the estuary where turbidity was high. This indicated that these AAs were "old", likely due to resuspension of refractory organic matter from sediments or zooplankton grazing modification and bacterial reworking as the salt wedge advanced upstream near the bottom. Apparently, the dynamics of AAs in the PRE appeared to be governed by biological production processes and estuarine circulation in the estuary. As the chl a maximum developed downstream in the estuarine and coastal plume and the salt wedge moved upstream at

  8. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  9. Organic matter exploitation in a highly turbid environment: Planktonic food web in the Charente estuary, France

    NASA Astrophysics Data System (ADS)

    Modéran, Julien; David, Valérie; Bouvais, Pierre; Richard, Pierre; Fichet, Denis

    2012-02-01

    Estuaries are highly dynamic systems where multiple organic matter sources coexist and where complex biogeochemical processes greatly affect their fate. Although zooplankton plays a key role of in the energy fluxes between primary sources and exploited macrofauna, there is still a critical lack of field information concerning the spatio-temporal variability of the trophic pathways supporting its high biomasses in estuaries. From January 2007 to January 2008, suspended matter, microphytobenthos and zooplankton were sampled along the salinity gradient of the Charente estuary to determine their carbon and nitrogen stable isotope composition. The relative homogeneity of the δ 13C values of particulate organic matter (POM) all along the estuary (-23.6 to -26.5‰ except in March and June, ˜ -28.5‰) was attributed to physical mixing of marine and terrestrially derived organic matter with the great load of tidally resuspended particles. The five zooplankton taxa analysed displayed a wide range of δ 13C (from -34.9 to -17.4‰) and δ 15N values (3.4-15.2‰) over the year, providing strong evidence for high selectivity toward different organic matter sources and reinforcing the idea that a spatio-temporal succession of species assemblages lead to multiple trophic pathways and may stabilize the estuarine trophic network. The high δ 15N values of Eurytemora affinis in the maximum turbidity zone were believed to reflect a higher carnivorous tendency as a functional response to the strong decrease of phytoplankton availability. Conversely, Acartia spp. appeared unable to change their diet in the same way and was thus unable to colonize upstream areas. Stable isotope analysis also revealed that Mesopodopsis slabberi mostly relied on fresh phytoplankton and microphytobenthos while Neomysis integer presented a clear carnivorous tendency toward copepods, at least during the warm period. Additionally evidence was provided for passive (downstream advection of freshwater

  10. Identifying the sources and processes of mercury in subtropical estuarine and ocean sediments using Hg isotopic composition.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Chen, Baowei; Zhang, Junjun; Wang, Wenxiong; Li, Xiangdong

    2015-02-01

    The concentrations and isotopic compositions of mercury (Hg) in surface sediments of the Pearl River Estuary (PRE) and the South China Sea (SCS) were analyzed. The data revealed significant differences between the total Hg (THg) in fine-grained sediments collected from the PRE (8-251 μg kg(-1)) and those collected from the SCS (12-83 μg kg(-1)). Large spatial variations in Hg isotopic compositions were observed in the SCS (δ(202)Hg, from -2.82 to -2.10‰; Δ(199)Hg, from +0.21 to +0.45‰) and PRE (δ(202)Hg, from -2.80 to -0.68‰; Δ(199)Hg, from -0.15 to +0.16‰). The large positive Δ(199)Hg in the SCS indicated that a fraction of Hg has undergone Hg(2+) photoreduction processes prior to incorporation into the sediments. The relatively negative Δ(199)Hg values in the PRE indicated that photoreduction of Hg is not the primary route for the removal of Hg from the water column. The riverine input of fine particles played an important role in transporting Hg to the PRE sediments. In the deep ocean bed of the SCS, source-related signatures of Hg isotopes may have been altered by natural geochemical processes (e.g., Hg(2+) photoreduction and preferential adsorption processes). Using Hg isotope compositions, we estimate that river deliveries of Hg from industrial and urban sources and natural soils could be the main inputs of Hg to the PRE. However, the use of Hg isotopes as tracers in source attribution could be limited because of the isotope fractionation by natural processes in the SCS. PMID:25565343