Science.gov

Sample records for estuarine ecosystems

  1. Estuarine Total Ecosystem Metabolism

    EPA Science Inventory

    Total ecosystem metabolism (TEM), both as discrete measurements and as a theoretical concept, has an important history in ecosystem ecology, particularly in estuaries. Some of the earliest ecological studies were developed to determine how energy flowed through an ecosystem and w...

  2. Simulation modeling of estuarine ecosystems

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1980-01-01

    A simulation model has been developed of Galveston Bay, Texas ecosystem. Secondary productivity measured by harvestable species (such as shrimp and fish) is evaluated in terms of man-related and controllable factors, such as quantity and quality of inlet fresh-water and pollutants. This simulation model used information from an existing physical parameters model as well as pertinent biological measurements obtained by conventional sampling techniques. Predicted results from the model compared favorably with those from comparable investigations. In addition, this paper will discuss remotely sensed and conventional measurements in the framework of prospective models that may be used to study estuarine processes and ecosystem productivity.

  3. Detrital diversity influences estuarine ecosystem performance.

    PubMed

    Kelaher, Brendan P; Bishop, Melanie J; Potts, Jaimie; Scanes, Peter; Skilbeck, Greg

    2013-06-01

    Global losses of seagrasses and mangroves, eutrophication-driven increases in ephemeral algae, and macrophyte invasions have impacted estuarine detrital resources. To understand the implications of these changes on benthic ecosystem processes, we tested the hypotheses that detrital source richness, mix identity, and biomass influence benthic primary production, metabolism, and nutrient fluxes. On an estuarine muddy sandflat, we manipulated the availability of eight detrital sources, including mangrove, seagrass, and invasive and native algal species that have undergone substantial changes in distribution. Mixes of these detrital sources were randomly assigned to one of 12 treatments and dried detrital material was added to seventy-two 0.25 m(2) plots (n = 6 plots). The treatments included combinations of either two or four detrital sources and high (60 g) or low (40 g) levels of enrichments. After 2 months, the dark, light, and net uptake of NH4 (+) , dissolved inorganic nitrogen, and the dark efflux of dissolved organic nitrogen were each significantly influenced by the identity of detrital mixes, rather than detrital source richness or biomass. However, gross and net primary productivity, average oxygen flux, and net NOX and dissolved inorganic phosphorous fluxes were significantly greater in treatments with low than with high detrital source richness. These results demonstrate that changes in detrital source richness and mix identity may be important drivers of estuarine ecosystem performance. Continued impacts to estuarine macrophytes may, therefore, further alter detritus-fueled productivity and processes in estuaries. Specific tests that address predicted future changes to detrital resources are required to determine the consequences of this significant environmental problem. PMID:23505131

  4. Salt Marsh--Estuarine Ecosystem: A Liquid Asset

    ERIC Educational Resources Information Center

    Steever, E. Zell

    1977-01-01

    A comprehensive description of the salt marsh-estuarine ecosystem is provided. Topics discussed include: the general geologic history and formation of this ecosystem; physical and chemical parameters; variety; primary productivity; tidal zones; kind, sizes and abundance of vegetation; and the environmental factors influencing vegetation. (BT)

  5. DISTRIBUTION OF MIREX IN AN EXPERIMENTAL ESTUARINE ECOSYSTEM

    EPA Science Inventory

    Distribution of mirex in various compartments of an experimental estuarine ecosystem was determined. Uptake occurred from mirex concentrations in the water that averaged 0.061 plus or minus 0.031 micrograms/liter. Accumulation occurred to the highest degree in the hepato-pancreas...

  6. Managing bay and estuarine ecosystems for multiple services

    USGS Publications Warehouse

    Needles, Lisa A.; Lester, Sarah E.; Ambrose, Richard; Andren, Anders; Beyeler, Marc; Connor, Michael S.; Eckman, James E.; Costa-Pierce, Barry A.; Gaines, Steven D.; Lafferty, Kevin D.; Lenihan, Junter S.; Parrish, Julia; Peterson, Mark S.; Scaroni, Amy E.; Weis, Judith S.; Wendt, Dean E.

    2013-01-01

    Managers are moving from a model of managing individual sectors, human activities, or ecosystem services to an ecosystem-based management (EBM) approach which attempts to balance the range of services provided by ecosystems. Applying EBM is often difficult due to inherent tradeoffs in managing for different services. This challenge particularly holds for estuarine systems, which have been heavily altered in most regions and are often subject to intense management interventions. Estuarine managers can often choose among a range of management tactics to enhance a particular service; although some management actions will result in strong tradeoffs, others may enhance multiple services simultaneously. Management of estuarine ecosystems could be improved by distinguishing between optimal management actions for enhancing multiple services and those that have severe tradeoffs. This requires a framework that evaluates tradeoff scenarios and identifies management actions likely to benefit multiple services. We created a management action-services matrix as a first step towards assessing tradeoffs and providing managers with a decision support tool. We found that management actions that restored or enhanced natural vegetation (e.g., salt marsh and mangroves) and some shellfish (particularly oysters and oyster reef habitat) benefited multiple services. In contrast, management actions such as desalination, salt pond creation, sand mining, and large container shipping had large net negative effects on several of the other services considered in the matrix. Our framework provides resource managers a simple way to inform EBM decisions and can also be used as a first step in more sophisticated approaches that model service delivery.

  7. Contrasting tropical estuarine ecosystem functioning and stability: A comparative study

    NASA Astrophysics Data System (ADS)

    Villanueva, Maria Ching

    2015-03-01

    A comparative study of the Sine-saloum (Senegal) and Gambia (The Gambia) estuaries was performed based on trophic model outputs that describe the system structure and functioning. These trophic models were constructed such as to differentiate main energetic flows in the systems and express how climate change may have impacted ecosystem resilience to change. Estuarine fish assemblages are highly resilient despite exposure to vast hydrodynamic variations and stress. Coupled with strong anthropogenic-driven stresses such as fisheries and climate change, ecosystems may undergo severe regime shifts that may weaken their resilience and stability. Taxonomically related and morphologically similar species do not necessarily play similar ecological roles in these two ecosystems. Biomass and production in the Sine-saloum are concentrated at trophic levels (TLs) 2 and 3, while for the Gambia, both are concentrated at TL3. Higher TL biomasses in Gambia compared to Sine-Saloum may be explained by the latter ecosystem being characterized by inverse hypersalinity. Higher TL of production in Sine-Saloum is due to higher exploitations compared to Gambia where fishing activities are still less developed. High production and consumption rates of some groups in both ecosystems indicate high system productivity. Elevated productivity may be due to higher abundance of juvenile fishes in most groups that utilize the latter as refuge and/or nursery zones. Both ecosystems are phytoplankton-driven. Differences in group trophic and ecological roles are mainly due to adaptive responses of these species to seasonal and long-term climate and anthropogenic stressors. System indicators suggest different levels of ecosystem resilience and stability as a function of biodiversity. Relevance of other observations on ecosystem functioning and indicators in relation to perturbation is discussed.

  8. Biomonitoring of metal contamination in estuarine ecosystem using seagrass.

    PubMed

    Ahmad, Faridahanim; Azman, Shamila; Said, Mohd Ismid Mohd; Baloo, Lavania

    2015-01-01

    Metals concentrations (As, Cd, Cu, Hg and Pb) in seawater, sediment and the seagrass (Enhalus acoroides) were analysed at Pulai River estuary, Johor Straits, Malaysia. In this research, Enhalus acoroides was used in order to find it's efficiency in up taking metals with a role in phytoremediation. Seawater, sediment and Enhalus acoroides samples were collected, and data of Pearson's correlation coefficients were analysed using SPSS 16 software. Results show that lead levels were the highest metal content in Enhalus acoroides (202 ± 102 μg/gDW), seawater (268 ± 190 μg/L) and sediment (248 ± 218 μg/gDW), compared to other metals. There was a positive correlation for metal concentrations between Enhalus acoroides and sediment, but no correlation was found between Enhalus acoroides with seawater at estuarine area may be caused by inconsistent metal concentrations in seawater due to the influences of tidal changes and stormy waves. This indicates that Enhalus acoroides is a species possessing the capabilities to uptake metals from sediment, and suitable to act as both a phytoremediator and biomonitor in estuarine ecosystems due to sharp sensitivity to variation in the environment. PMID:26029376

  9. BIODEGRADATION AND GAS-EXCHANGE OF GASEOUS ALKANES IN MODEL ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Gas exchange-biodegradation experiments conducted in model estuarine ecosystems indicate that the ease of degradation of gaseious normal alkanes increases with chain length. The behavior of gaseous perhalogenated alkanes can be explained by gas exchange alone with no degradation....

  10. Pressures, stresses, shocks and trends in estuarine ecosystems - An introduction and synthesis

    NASA Astrophysics Data System (ADS)

    Jennerjahn, Tim C.; Mitchell, Steve B.

    2013-09-01

    In times of strongly increasing human uses of coastal zones estuaries deserve and do gain more attention in science and the public because of their extraordinary character in terms of their environmental setting as well as their economic potential. Taking this into account the 50th Conference of the Estuarine Coastal Sciences Association was held in Venice, Italy, in June 2012 with the maxim 'Today's science for tomorrow's management'. As a result of the Conference this special issue of Estuarine, Coastal and Shelf Science focusses on 'Pressures, stresses, shocks and trends in estuarine ecosystems'. Here we identify the major hazards to estuarine ecosystems as belonging to three categories: human activities, climate change and extreme events; and we discuss the special issue contributions in this context. Moreover, studies of indicators of environmental change and larger scale assessments of estuarine ecosystems are also highlighted. There are examples providing scientific evidence for a 'successful' management in terms of ecosystem recovery. However, for today's and future management it appears mandatory to use the term 'successful' in the sense of being beneficial for the ecosystem as well as for the stakeholders. With this in mind, we discuss the future of, and challenges to, estuarine ecosystems in the light of the environmental change of the Anthropocene in a final section.

  11. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2014-05-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of

  12. Phytoplankton primary production in the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Foster, S.Q.; Kleckner, A.E.

    2014-01-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land – estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m−2 yr−1, but the range is large: from −105 (net pelagic production in the Scheldt Estuary) to 1890 g C m−2 yr−1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year to year (but we only found eight APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods reported in the literature can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148

  13. Primary consumers enhance connectivity to marine and terrestrial ecosystems within estuarine food webs

    EPA Science Inventory

    The flux of organic matter (OM) across ecosystem boundaries can influence estuarine food web dynamics and productivity. However, this process is seldom investigated taking into account all the adjacent ecosystems (e.g. ocean, river, land) and different hydrological settings (i.e....

  14. DIEL FLUX OF DISSOLVED CARBOHYDRATE IN A SALT MARSH AND A SIMULATED ESTUARINE ECOSYSTEM

    EPA Science Inventory

    The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 cu m seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total d...

  15. PARTITIONING OF NO. 2 FUEL OIL IN CONTROLLED ESTUARINE ECOSYSTEMS, SEDIMENTS AND SUSPENDED PARTICULATE MATTER

    EPA Science Inventory

    To investigate the transport and incorporation of water-borne oil to sediments, no. 2 fuel oil was added as a dispersion in semiweekly doses to three controlled estuarine ecosystems. Samples of suspended particulate matter and sediments were analyzed by gas chromatography for sat...

  16. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems

    PubMed Central

    Lallias, Delphine; Hiddink, Jan G; Fonseca, Vera G; Gaspar, John M; Sung, Way; Neill, Simon P; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W Kelley; Creer, Simon

    2015-01-01

    Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a ‘melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype–environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both. PMID:25423027

  17. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems.

    PubMed

    Lallias, Delphine; Hiddink, Jan G; Fonseca, Vera G; Gaspar, John M; Sung, Way; Neill, Simon P; Barnes, Natalie; Ferrero, Tim; Hall, Neil; Lambshead, P John D; Packer, Margaret; Thomas, W Kelley; Creer, Simon

    2015-05-01

    Assessing how natural environmental drivers affect biodiversity underpins our understanding of the relationships between complex biotic and ecological factors in natural ecosystems. Of all ecosystems, anthropogenically important estuaries represent a 'melting pot' of environmental stressors, typified by extreme salinity variations and associated biological complexity. Although existing models attempt to predict macroorganismal diversity over estuarine salinity gradients, attempts to model microbial biodiversity are limited for eukaryotes. Although diatoms commonly feature as bioindicator species, additional microbial eukaryotes represent a huge resource for assessing ecosystem health. Of these, meiofaunal communities may represent the optimal compromise between functional diversity that can be assessed using morphology and phenotype-environment interactions as compared with smaller life fractions. Here, using 454 Roche sequencing of the 18S nSSU barcode we investigate which of the local natural drivers are most strongly associated with microbial metazoan and sampled protist diversity across the full salinity gradient of the estuarine ecosystem. In order to investigate potential variation at the ecosystem scale, we compare two geographically proximate estuaries (Thames and Mersey, UK) with contrasting histories of anthropogenic stress. The data show that although community turnover is likely to be predictable, taxa are likely to respond to different environmental drivers and, in particular, hydrodynamics, salinity range and granulometry, according to varied life-history characteristics. At the ecosystem level, communities exhibited patterns of estuary-specific similarity within different salinity range habitats, highlighting the environmental sequencing biomonitoring potential of meiofauna, dispersal effects or both. PMID:25423027

  18. An introduced Asian parasite threatens northeastern Pacific estuarine ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We test a prevalent assumption in marine ecology that species are native to where they are found until contrary evidence appears. The native assumption significantly biases interpretations of marine community and ecosystem dynamics if it results in oversight of critically important introduced specie...

  19. A Linked Physical and Biological Framework to Assess Biogeochemical Dynamics in a Shallow Estuarine Ecosystem

    NASA Astrophysics Data System (ADS)

    Buzzelli, C. P.; Wetzel, R. L.; Meyers, M. B.

    1999-12-01

    The littoral zone of Chesapeake Bay contains a mosaic of shallow vegetated and nonvegetated habitats with biotic components that are sensitive to changes in biological and physical driving factors. Static and dynamic modelling frameworks provide an integrative way to study complex hydrodynamic and biogeochemical processes in linked estuarine habitats. In this study we describe a spatial simulation model developed and calibrated relative to a specific littoral zone, estuarine ecosystem. The model consisted of four distinct habitats that contained phytoplankton, sediment microalgae, Zostera marina (eelgrass), and Spartina alterniflora. There was tidal exchange of phytoplankton, particulate and dissolved organic carbon and dissolved inorganic nitrogen between the littoral zone ecosystem and the offshore channel. Physical exchange and biogeochemical transformations within the habitats determined water column concentrations in each habitat. Predicted subtidal water column concentrations and Z. marina and S. alterniflora biomass were within the variability of validation data and the predicted annual rates of net primary production were similar to measured rates. Phytoplankton accounted for 17%, sediment microalgae 46%, the Z. marina community 24% and S. alterniflora 13% of the annual littoral zone primary production. The linked habitat model provided insights into producer, habitat and ecosystem carbon and nitrogen properties that might not have been evident with stand-alone models. Although it was an intra-ecosystem sink for particulate carbon, the seagrass habitat was a DOC source and responsible for over 30% of the littoral zone carbon and nitrogen primary production. The model predicted that the Goodwin Islands littoral zone was a sink of channel derived POC, but a source of DOC to the surrounding estuary. The framework created in this study of estuarine ecosystem dynamics is applicable to many different aquatic systems over a range of spatial and temporal scales.

  20. Will a rising sea sink some estuarine wetland ecosystems?

    PubMed

    Grenfell, S E; Callaway, R M; Grenfell, M C; Bertelli, C M; Mendzil, A F; Tew, I

    2016-06-01

    Sea-level rise associated with climate change presents a major challenge to plant diversity and ecosystem service provision in coastal wetlands. In this study, we investigate the effect of sea-level rise on benthos, vegetation, and ecosystem diversity in a tidal wetland in west Wales, the UK. Present relationships between plant communities and environmental variables were investigated through 50 plots at which vegetation (species and coverage), hydrological (surface or groundwater depth, conductivity) and soil (matrix chroma, presence or absence of mottles, organic content, particle size) data were collected. Benthic communities were sampled at intervals along a continuum from saline to freshwater. To ascertain future changes to the wetlands' hydrology, a GIS-based empirical model was developed. Using a LiDAR derived land surface, the relative effect of peat accumulation and rising sea levels were modelled over 200 years to determine how frequently portions of the wetland will be inundated by mean sea level, mean high water spring and mean high water neap conditions. The model takes into account changing extents of peat accumulation as hydrological conditions alter. Model results show that changes to the wetland hydrology will initially be slow. However, changes in frequency and extent of inundation reach a tipping point 125 to 175 years from 2010 due to the extremely low slope of the wetland. From then onwards, large portions of the wetland become flooded at every flood tide and saltwater intrusion becomes more common. This will result in a reduction in marsh biodiversity with plant communities switching toward less diverse and occasionally monospecific communities that are more salt tolerant. While the loss of tidal freshwater wetland is in line with global predictions, simulations suggest that in the Teifi marshes the loss will be slow at first, but then rapid. While there will be a decrease in biodiversity, the model indicated that at least for one ecosystem

  1. Linking terrestrial and estuarine ecosystems: Organic matter sources supporting the high secondary production of a non-indigenous bivalve

    EPA Science Inventory

    The Asian clam Corbicula fluminea is one of the most pervasive species in freshwater ecosystems. Our objective was to characterize the trophic interactions of C. fluminea in the Minho river estuary (NW-Iberian Peninsula, Europe), an estuarine ecosystem in which C. fluminea presen...

  2. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  3. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  4. Estimates of natural salinity and hydrology in a subtropical estuarine ecosystem: implications for Greater Everglades restoration

    USGS Publications Warehouse

    Marshall, Frank E.; Wingard, Georgiana L.; Pitts, Patrick A.

    2014-01-01

    Disruption of the natural patterns of freshwater flow into estuarine ecosystems occurred in many locations around the world beginning in the twentieth century. To effectively restore these systems, establishing a pre-alteration perspective allows managers to develop science-based restoration targets for salinity and hydrology. This paper describes a process to develop targets based on natural hydrologic functions by coupling paleoecology and regression models using the subtropical Greater Everglades Ecosystem as an example. Paleoecological investigations characterize the circa 1900 CE (pre-alteration) salinity regime in Florida Bay based on molluscan remains in sediment cores. These paleosalinity estimates are converted into time series estimates of paleo-based salinity, stage, and flow using numeric and statistical models. Model outputs are weighted using the mean square error statistic and then combined. Results indicate that, in the absence of water management, salinity in Florida Bay would be about 3 to 9 salinity units lower than current conditions. To achieve this target, upstream freshwater levels must be about 0.25 m higher than indicated by recent observed data, with increased flow inputs to Florida Bay between 2.1 and 3.7 times existing flows. This flow deficit is comparable to the average volume of water currently being diverted from the Everglades ecosystem by water management. The products (paleo-based Florida Bay salinity and upstream hydrology) provide estimates of pre-alteration hydrology and salinity that represent target restoration conditions. This method can be applied to any estuarine ecosystem with available paleoecologic data and empirical and/or model-based hydrologic data.

  5. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.

    PubMed

    Lefcheck, Jonathan S; Duffy, J Emmett

    2015-11-01

    The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context. PMID:27070016

  6. Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem.

    PubMed

    Serrano, Oscar; Lavery, Paul; Masque, Pere; Inostroza, Karina; Bongiovanni, James; Duarte, Carlos

    2016-04-01

    The study of a Posidonia australis sediment archive has provided a record of ecosystem dynamics and processes over the last 600 years in Oyster Harbour (SW Australia). Ecosystem shifts are a widespread phenomenon in coastal areas, and this study identifies baseline conditions and the time-course of ecological change (cycles, trends, resilience and thresholds of ecosystem change) under environmental stress in seagrass-dominated ecosystem. The shifts in the concentrations of chemical elements, carbonates, sediments <0.125 mm and stable carbon isotope signatures (δ(13) C) of the organic matter were detected between 1850s and 1920s, whereas the shift detected in P concentration occurred several decades later (1960s). The first degradation phase (1850s-1950s) follows the onset of European settlement in Australia and was characterized by a strong increase in sediment accumulation rates and fine-grained particles, driven primarily by enhanced run-off due to land clearance and agriculture in the catchment. About 80% of total seagrass area at Oyster Harbour was lost during the second phase of environmental degradation (1960s until present). The sharp increase in P concentration and the increasing contribution of algae and terrestrial inputs into the sedimentary organic matter pool around 1960s provides compelling evidence of the documented eutrophication of the estuary and the subsequent loss of seagrass meadows. The results presented demonstrate the power of seagrass sedimentary archives to reconstruct the trajectories of anthropogenic pressures on estuarine ecosystem and the associated regime shifts, which can be used to improve the capacity of scientists and environmental managers to understand, predict and better manage ecological change in these ecosystems. PMID:26818637

  7. Classification for Estuarine Ecosystems: A Review and Comparison of Selected Classification Schemes

    EPA Science Inventory

    Estuarine scientists have devoted considerable effort to classifying coastal, estuarine and marine environments and their watersheds, for a variety of purposes. These classifications group systems with similarities – most often in physical and hydrodynamic properties – in order ...

  8. Soil organic carbon stocks in estuarine and marine mangrove ecosystems are driven by nutrient colimitation of P and N.

    PubMed

    Weiss, Christian; Weiss, Joanna; Boy, Jens; Iskandar, Issi; Mikutta, Robert; Guggenberger, Georg

    2016-07-01

    Mangroves play an important role in carbon sequestration, but soil organic carbon (SOC) stocks differ between marine and estuarine mangroves, suggesting differing processes and drivers of SOC accumulation. Here, we compared undegraded and degraded marine and estuarine mangroves in a regional approach across the Indonesian archipelago for their SOC stocks and evaluated possible drivers imposed by nutrient limitations along the land-to-sea gradients. SOC stocks in natural marine mangroves (271-572 Mg ha(-1) m(-1)) were much higher than under estuarine mangroves (100-315 Mg ha(-1) m(-1)) with a further decrease caused by degradation to 80-132 Mg ha(-1) m(-1). Soils differed in C/N ratio (marine: 29-64; estuarine: 9-28), δ (15)N (marine: -0.6 to 0.7‰; estuarine: 2.5 to 7.2‰), and plant-available P (marine: 2.3-6.3 mg kg(-1); estuarine: 0.16-1.8 mg kg(-1)). We found N and P supply of sea-oriented mangroves primarily met by dominating symbiotic N2 fixation from air and P import from sea, while mangroves on the landward gradient increasingly covered their demand in N and P from allochthonous sources and SOM recycling. Pioneer plants favored by degradation further increased nutrient recycling from soil resulting in smaller SOC stocks in the topsoil. These processes explained the differences in SOC stocks along the land-to-sea gradient in each mangrove type as well as the SOC stock differences observed between estuarine and marine mangrove ecosystems. This first large-scale evaluation of drivers of SOC stocks under mangroves thus suggests a continuum in mangrove functioning across scales and ecotypes and additionally provides viable proxies for carbon stock estimations in PES or REDD schemes. PMID:27547332

  9. Joint Ecosystem Modeling (JEM) ecological model documentation volume 1: Estuarine prey fish biomass availability v1.0.0

    USGS Publications Warehouse

    Romañach, Stephanie S.; Conzelmann, Craig; Daugherty, Adam; Lorenz, Jerome L.; Hunnicutt, Christina; Mazzotti, Frank J.

    2011-01-01

    Estuarine fish serve as an important prey base in the Greater Everglades ecosystem for key fauna such as wading birds, crocodiles, alligators, and piscivorous fishes. Human-made changes to freshwater flow across the Greater Everglades have resulted in less freshwater flow into the fringing estuaries and coasts. These changes in freshwater input have altered salinity patterns and negatively affected primary production of the estuarine fish prey base. Planned restoration projects should affect salinity and water depth both spatially and temporally and result in an increase in appropriate water conditions in areas occupied by estuarine fish. To assist in restoration planning, an ecological model of estuarine prey fish biomass availability was developed as an evaluation tool to aid in the determination of acceptable ranges of salinity and water depth. Comparisons of model output to field data indicate that the model accurately predicts prey biomass in the estuarine regions of the model domain. This model can be used to compare alternative restoration plans and select those that provide suitable conditions.

  10. Developing a salinity-based approach for the evaluation of DIN removal rate in estuarine ecosystems.

    PubMed

    Hong, Yiguo; Wang, Shuailong; Xu, Xiang-Rong; Wu, Jiapeng; Liu, Ling; Yue, Weizhong; Wu, Meilin; Wang, Youshao

    2015-10-01

    Estuaries play an important role in the removal of overloading nitrogen to relieve the eutrophic pressure of coastal seawater. However, the exact amount of nitrogen removed in estuarine ecosystems is difficult to be estimated because of the complex dynamic mixing process between riverine water and coastal seawater. In this study, a new method was developed to calculate the removal rate of dissolved inorganic nitrogen (DIN) in estuarine waters attributed to the mixing process and was based on the assumption that relative salinity can serve as an indicator of the degree of mixing. This assumption was supported by the experimental results that demonstrated a linear regression relationship between DIN decline and salinity increase Thus, the decreased amount of DIN in mixing waters attributed to the dilution effect could be determined with the salinity as an index. With this model, the DIN removal rate in both Chesapeake Bay and Pearl River Estuary were defined. As predicted, our analysis demonstrated that the DIN removal rate increased gradually from upstream to downstream in both studied estuaries with obvious seasonable variation pattern: high in warm seasons and low in cold seasons. The practical application of this method might be affected by multiple factors, including the geographic landform of estuaries, initial estuaries DIN concentration, the DIN concentration in seawater, DIN importing from tributaries, sewage discharge and hydrodynamic mixing. Therefore, the results supported the hypothesis that estuaries have a strong capability to remove the nitrogen inputted from human activities, especially in warm season and therefore should play an important role in regulating the balance of global nitrogen biogeochemical cycle. PMID:25957975

  11. Biological indicators of changes in water quality and habitats of the coastal and estuarine areas of the Greater Everglades Ecosystem; Chapter 11

    USGS Publications Warehouse

    Wachnicka, Anna; Wingard, Georgiana L.

    2015-01-01

    This chapter summarizes the application of various biological indicators to studying the anthropogenic and natural changes in water quality and habitats that have occurred in the coastal and estuarine areas of the Greater Everglades ecosystem.

  12. The effect of physical drivers on ecosystem indices derived from ecological network analysis: Comparison across estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Niquil, Nathalie; Chaumillon, Eric; Johnson, Galen A.; Bertin, Xavier; Grami, Boutheina; David, Valérie; Bacher, Cédric; Asmus, Harald; Baird, Daniel; Asmus, Ragnhild

    2012-08-01

    The structure and function of estuarine food webs change in response to both natural and anthropogenic stresses. The construction of quantitative food webs and their analysis by means of Ecological Network Analysis provides outputs that have been used in many studies to assess system development, stress, robustness, resilience and maturity. Here we attempt to relate to the physical characteristics of the environment, ecosystem indices derived from Ecological Network Analysis. Ten models of food webs were gathered, across a selection of soft-bottom estuaries representative of a large morphological and hydrodynamic diversity, from wave-dominated to mixed energy tide-dominated systems. The selection allowed the comparison of their derived Ecological Network Analysis indices, because of similarities of accuracy in the representation of detritus and bacteria, and because models took into account all trophic levels up to top-predators. In order to obtain comparable physical characteristics, global models were used for a homogeneous description of tide and tidal prisms. Spearman correlations, hierarchical ascendant clustering and Redundancy Analysis were applied to examine the relationship between Ecological Network Analysis indices and physical characteristics. The set of four physical variables selected (catchment area, tidal range at neap tide, index of tide-wave domination and latitude in absolute value) explained 67% of the structure of the Ecological Network Analysis indices. This implies that the physical forcing related to climate, hydrodynamics and morphology is essential for determining the ecological emergent properties of the food web. In the European policy context of determining the 'good ecological status' of coastal ecosystems, it implies that the use of Ecological Network Analysis indices for basing the determination of operational indicators should be done, taking into account this context of a strong influence of physical factors.

  13. Perspectives on the microbial carbon pump with special reference to microbial respiration and ecosystem efficiency in large estuarine systems

    NASA Astrophysics Data System (ADS)

    Dang, H.; Jiao, N.

    2014-07-01

    Although respiration-based oxidation of reduced carbon releases CO2 into the environment, it provides an ecosystem with the metabolic energy for essential biogeochemical processes, including the newly proposed microbial carbon pump (MCP). The efficiency of MCP in heterotrophic microorganisms is related to the mechanisms of energy transduction employed and hence is related to the form of respiration utilized. Anaerobic organisms typically have lower efficiencies of energy transduction and hence lower efficiencies of energy-dependent carbon transformation. This leads to a lower MCP efficiency on a per-cell basis. Substantial input of terrigenous nutrients and organic matter into estuarine ecosystems typically results in elevated heterotrophic respiration that rapidly consumes dissolved oxygen, potentially producing hypoxic and anoxic zones in the water column. The lowered availability of dissolved oxygen and the excessive supply of nutrients such as nitrate from river discharge lead to enhanced anaerobic respiration processes such as denitrification and dissimilatory nitrate reduction to ammonium. Thus, some nutrients may be consumed through anaerobic heterotrophs, instead of being utilized by phytoplankton for autotrophic carbon fixation. In this manner, eutrophied estuarine ecosystems become largely fueled by anaerobic respiratory pathways and their efficiency is less due to lowered ecosystem productivity when compared to healthy and balanced estuarine ecosystems. This situation may have a negative impact on the ecological function and efficiency of the MCP which depends on the supply of both organic carbon and metabolic energy. This review presents our current understanding of the MCP mechanisms from the view point of ecosystem energy transduction efficiency, which has not been discussed in previous literature.

  14. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal

    PubMed Central

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ɸ (17.5%), V. alginolyticus ɸ (17.5%), V. parahaemolyticus ɸ (10%), V. cholerae non-O1/O139 ɸ (26.6%) and V. mimicus ɸ (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20–34°C), and to a lesser extent, in the summer (24–36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to β-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence. PMID:26340543

  15. Nutrient dynamics in tropical rivers, estuarine-lagoons, and coastal ecosystems along the eastern Hainan Island

    NASA Astrophysics Data System (ADS)

    Li, R. H.; Liu, S. M.; Li, Y. W.; Zhang, G. L.; Ren, J. L.; Zhang, J.

    2013-06-01

    Nutrient dynamics were studied along the eastern Hainan Island based on field observations during 2006-2009, to understand nutrient biogeochemical processes and to have an overview of human perturbations on coastal ecosystems in this tropical region. The concentrations of nutrients in the rivers had seasonal variations enriched with dissolved inorganic nitrogen (DIN). High riverine concentrations of nitrate were mainly originated from agricultural fertilizer input. The ratios of DIN : PO43- ranged from 37 to 1063, suggesting preferential PO43- relative to nitrogen in the rivers. The areal yields of dissolved silicate (DSi) varied from 76 to 448 × 103 mol km-2 yr-1 due to erosion over the drainage area, inducing high levels of DSi among worldwide tropical systems. Aquaculture ponds contained high concentrations of NH4+ (up to 157 μM) and DON (up to 130 μM). Particulate phosphorus concentrations (0.5 ∼1.4 μM) were in lower level comparied with estuaries around the world. Particulate silicate levels in rivers and lagoons were lower than global average level. Nutrient biogeochemistry in coastal areas were affected by human activities (e.g. aquaculture, agriculture), as well as natural events such as typhoon. Nutrient concentrations were low because open sea water dispersed land-derived nutrients. Nutrient budgets were built based on a steady-state box model, which showed that riverine fluxes would be magnified by estuarine processes (e.g. regeneration, desorption) in the Wenchanghe/Wenjiaohe Estuary, Wanquan River estuary, and the Laoyehai Lagoon except in the Xiaohai Lagoon. Riverine and groundwater input were the major sources of nutrients to the Xiaohai Lagoon and the Laiyehai Lagoon, respectively. Riverine input and aquaculture effluent were the major sources of nutrients to the eastern coastal of Hainan Island. Nutrient inputs to the coastal ecosystem can be increased by typhoon-induced runoff of rainwater, and phytoplankton bloom in the sea would be

  16. Review: phytoplankton primary production in the world's estuarine-coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Cloern, J. E.; Foster, S. Q.; Kleckner, A. E.

    2013-11-01

    Estuaries are biogeochemical hot spots because they receive large inputs of nutrients and organic carbon from land and oceans to support high rates of metabolism and primary production. We synthesize published rates of annual phytoplankton primary production (APPP) in marine ecosystems influenced by connectivity to land - estuaries, bays, lagoons, fjords and inland seas. Review of the scientific literature produced a compilation of 1148 values of APPP derived from monthly incubation assays to measure carbon assimilation or oxygen production. The median value of median APPP measurements in 131 ecosystems is 185 and the mean is 252 g C m-2 yr-1, but the range is large: from -105 (net pelagic production in the Scheldt Estuary) to 1890 g C m-2 yr-1 (net phytoplankton production in Tamagawa Estuary). APPP varies up to 10-fold within ecosystems and 5-fold from year-to-year (but we only found 8 APPP series longer than a decade so our knowledge of decadal-scale variability is limited). We use studies of individual places to build a conceptual model that integrates the mechanisms generating this large variability: nutrient supply, light limitation by turbidity, grazing by consumers, and physical processes (river inflow, ocean exchange, and inputs of heat, light and wind energy). We consider method as another source of variability because the compilation includes values derived from widely differing protocols. A simulation model shows that different methods can yield up to 3-fold variability depending on incubation protocols and methods for integrating measured rates over time and depth. Although attempts have been made to upscale measures of estuarine-coastal APPP, the empirical record is inadequate for yielding reliable global estimates. The record is deficient in three ways. First, it is highly biased by the large number of measurements made in northern Europe (particularly the Baltic region) and North America. Of the 1148 reported values of APPP, 958 come from sites

  17. Estuarine science and decision-support tools to restore Puget Sound delta and estuarine ecosystems: The Skagit River Delta

    NASA Astrophysics Data System (ADS)

    Grossman, E. E.; Rosenbauer, R. J.; Takesue, R. K.; Gelfenbaum, G.; Reisenbichler, R.; Paulson, A.; Sexton, N. R.; Labiosa, B.; Beamer, E. M.; Hood, G.; Wyllie-Echeverria, S.

    2006-12-01

    Historic land use, ongoing resource extraction, and population expansion throughout Puget Sound have scientists and managers rapidly seeking effective restoration strategies to recover salmon (a cultural icon, as well as, a host of other endangered species and threatened habitats. Of principal concern is the reduction of salmon (Oncorhynchus spp.) and diminished carrying capacity of critical habitat in deltaic regions. Delta habitats, essential to salmon survival, have lost 70 to 80 % area since ~1850 and are now adjusting to a new suite of environmental changes associated with land use practices, including wetland restoration, and regional climate change. The USGS Coastal Habitats in Puget Sound Project, in collaboration with partners from the Skagit River System Cooperative, University of Washington, and other federal, state, and local agencies, is integrating geologic, biologic, hydrologic, and socioeconomic information to quantify changes in the distribution and function of deltaic-estuarine nearshore habitats and better predict "possible futures". We are combining detailed geologic and geochemical analyses of sedimentary environments, plant biomarkers (n-alkanes, PAHs, fatty-acids, and sterols), and compound-specific isotopes to estimate historic habitat coverage, eelgrass (Zostera marina) abundance and modern characteristics of nutrient cycling. Hydrologic and sediment transport processes are being measured to characterize physical processes shaping modern habitats including sediment transport and freshwater mixing that control the temporal and spatial pattern of substrate and water column conditions available as habitat. We are using geophysical, remote sensing, and modeling techniques to determine large-scale coastal morphologic and land-use change and characterize how alteration of physical, hydrologic, and biogeochemical processes influence the dynamics of freshwater mixing, and sediment and nutrient transport in the nearshore. To assist restoration

  18. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems.

    PubMed

    Cloern, James E; Abreu, Paulo C; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John Olov Roger; Kahru, Mati; Sherwood, Edward T; Xu, Jie; Yin, Kedong

    2016-02-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines. PMID:26242490

  19. Peracarid assemblages of Zostera meadows in an estuarine ecosystem (O Grove inlet, NW Iberian Peninsula): spatial distribution and seasonal variation

    NASA Astrophysics Data System (ADS)

    Esquete, Patricia; Moreira, Juan; Troncoso, Jesús S.

    2011-12-01

    The Galician rias are singular and complex estuarine systems of great economic importance. Seagrasses are key elements of the ecosystem and favor the maintenance of high species diversity in benthic communities. Nevertheless, the ecological role of seagrass meadows in the Galician rias has been only partially assessed. Peracarid crustaceans are an important component of soft-bottom faunas and have great importance for the structure of benthic assemblages. In this work, species diversity, patterns of distribution and seasonal fluctuations of peracarids (Crustacea, Peracarida) are studied in estuarine sediments colonized by two species of Zostera ( Z. marina and Z. noltii) at the O Grove inlet (Ría de Arousa, Galicia, NW Iberian Peninsula). The spatial distribution of peracarid assemblages was characterized by high numerical dominances due to a few species, particularly tanaidaceans. The temporal study at a Z. marina meadow showed a strongly seasonal pattern defined by great fluctuations of the amphipod population, the latter being the dominant group in abundance and number of species. The highest numbers of species and individuals were observed in September, with minimum values in March. Analyses pointed out a high correlation among the granulometric features of the studied bottoms and the faunistic attributes. Nevertheless, the presence of the seagrasses should influence in a major way the hydrodynamic and sedimentary features of the habitat and utterly the spatial and temporal patterns observed in the peracarid assemblage in the O Grove inlet.

  20. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay

    USGS Publications Warehouse

    Cloern, J.E.; Jassby, A.D.

    2012-01-01

    Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces. San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays and inland seas in response to these diverse forces. We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion; human modification of sediment supply; introduction of non-native species; sewage input; environmental policy; and climate shifts. In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion; decreasing turbidity; restructuring of plankton communities; nutrient enrichment; elimination of hypoxia and reduced metal contamination of biota; and food web changes that decrease resistance of the estuary to nutrient pollution. Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems. The wide range of variability time scales and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs. But the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater.

  1. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Cloern, James E.; Jassby, Alan D.

    2012-12-01

    Poised at the interface of rivers, ocean, atmosphere and dense human settlement, estuaries are driven by a large array of natural and anthropogenic forces. San Francisco Bay exemplifies the fast-paced change occurring in many of the world's estuaries, bays, and inland seas in response to these diverse forces. We use observations from this particularly well-studied estuary to illustrate responses to six drivers that are common agents of change where land and sea meet: water consumption and diversion, human modification of sediment supply, introduction of nonnative species, sewage input, environmental policy, and climate shifts. In San Francisco Bay, responses to these drivers include, respectively, shifts in the timing and extent of freshwater inflow and salinity intrusion, decreasing turbidity, restructuring of plankton communities, nutrient enrichment, elimination of hypoxia and reduced metal contamination of biota, and food web changes that decrease resistance of the estuary to nutrient pollution. Detection of these changes and discovery of their causes through environmental monitoring have been essential for establishing and measuring outcomes of environmental policies that aim to maintain high water quality and sustain services provided by estuarine-coastal ecosystems. The many time scales of variability and the multiplicity of interacting drivers place heavy demands on estuarine monitoring programs, but the San Francisco Bay case study illustrates why the imperative for monitoring has never been greater.

  2. Seasonality, hydrology and life history in a Jurassic ecosystem: isotopic evidence from the Great Estuarine Group of Scotland

    NASA Astrophysics Data System (ADS)

    Patterson, W. P.; Oakley, J. R.

    2008-12-01

    A multi-isotope study was conducted to characterize the Jurassic ecosystem of the Great Estuarine Group (GEG) of the Inner Hebrides, Scotland. The GEG has long yielded exceptionally well-preserved aragonitic remains of vertebrate and invertebrate fauna. The group includes sediment that accumulated in water ranging from fresh (S permil = 0) to marginal marine, on the basis of macroinvertebrate and microinvertebrate fossil assemblages as well as isotope data. Oxygen isotope values and temperatures derived in this study correspond to the meteorologic and hydrologic parameters of a mid-latitude maritime climate with low seasonality, a mean annual temperature of 23°C, and abundant precipitation. In a previous study of whole otoliths, it was suggested that fish were migrating to and from the restricted GEG lagoon. Indeed, micromilling of fish otoliths reveals an isotope record of an ecosystem rich in species of fish with distinctive behaviors. Several species originate in freshwater environments, migrating to marine water during ontogeny (anadromy) whereas other species emerge in marine waters to ultimately migrate into fresh water (catadromy) presumably for reproductive reasons. Micromilled mollusks provide details of isotope variability that record temperature and precipitation fluctuation throughout the year. Estuarine water oxygen isotope values are calculated to range from -5 to -2 permil VSMOW, with the fresh water endmember estimated to be -6 permil VSMOW. This range is similar to that observed in modern low-latitude fresh water dominated estuaries. Stable isotope values obtained in this study represent the most ancient quantitative fish life history stable isotope data including fish paleodiet, paleoecology, and migratory behavior to date.

  3. ASSESSMENT OF RISK REDUCTION STRATEGIES FOR THE MANAGEMENT OF AGRICULTURAL NONPOINT SOURCE PESTICIDE RUNOFF IN ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Agricultural nonpoint source (NPS) runoff may result in significant discharges of pesticides, suspended sediments, and fertilizers into estuarine habitats adjacent to agricultural areas or downstream from agricultural watersheds. Exposure of estuarine fin fish and shellfish to to...

  4. Biogeochemical studies of technetium in marine and estuarine ecosystems. Progress report, 1 July 1979-30 June 1980

    SciTech Connect

    Beasley, T. M.

    1980-01-01

    Progress is reported in research dealing with the biogeochemical behavior of technetium in marine and estuarine ecosystems. Studies were planned to elaborate the biokinetic behavior of Tc as TcO/sub 4//sup -/ in selected marine and estuarine organisms and to determine the affinity of TcO/sub 4//sup -/ for different marine sediments under oxygenated conditions. It is concluded that concentration factors for TcO/sub 4//sup -/ in bivalve molluscs (oysters and mussels) do not exceed 2 when calculated for whole animals and when uptake is directly from water. Direct uptake from water by limpets (archeogastropod) are very much lower than have been reported for red abalone (archeogastropod). Whole body concentration factors for TcO/sub 4//sup -/ in the plaice, Pleuronectes platessa, where uptake is directly from labeled seawater, do not exceed 10 at equilibrium. Both the lobster, Homarus gammaris and the polychaete, Nereis diversicolor appear to concentrate Tc efficiently from water labelled intially with TcO/sub 4//sup -/. Both plaice and rays (Raja clavata) fed /sup 95m/Tc labeled Nereis show an initial rapid loss of the isotope for approximately five days. Thereafter, loss is much reduced. Shrimp (Palaemon elegans), Cragnon sp.) and Crab (Cancer pagurus) show concentration factors similar to plaice (C.F. is less than 10). Isopods, however, have concentration factors of only 3 following four weeks exposure to labeled seawater. Uptake of TcO/sub 4//sup -/ by phytoplankton is extremely low, which precludes experiments in which TcO/sub 4//sup -/ labeled phytoplankton can be fed to either bivalve molluscs or microzooplankton. Sediment distribution coefficients for TcO/sub 4//sup -/ are essentially zero and are independent of sediment type in well oxygenated seawater. Experiments to date have shown that it is not possible to make generalizations concerning the bioavailability of TcO/sub 4//sup -/ to marine organisms.

  5. Integrated Approaches to Estuarine Use and Protection: Tampa Bay Ecosystem Services Case Study.

    EPA Science Inventory

    The Tampa Bay region faces projected stress from climate change, contaminants, nutrients, and of human development on a natural ecosystem that is valued (economically, aesthetically and culturally) in its present state. With fast-paced population increases, conversion and develop...

  6. Detecting Subtle Shifts in Ecosystem Functioning in a Dynamic Estuarine Environment.

    PubMed

    Pratt, Daniel R; Lohrer, Andrew M; Thrush, Simon F; Hewitt, Judi E; Townsend, Michael; Cartner, Katie; Pilditch, Conrad A; Harris, Rachel J; van Colen, Carl; Rodil, Iván F

    2015-01-01

    Identifying the effects of stressors before they impact ecosystem functioning can be challenging in dynamic, heterogeneous 'real-world' ecosystems. In aquatic systems, for example, reductions in water clarity can limit the light available for photosynthesis, with knock-on consequences for secondary consumers, though in naturally turbid wave-swept estuaries, detecting the effects of elevated turbidity can be difficult. The objective of this study was to investigate the effects of shading on ecosystem functions mediated by sandflat primary producers (microphytobenthos) and deep-dwelling surface-feeding macrofauna (Macomona liliana; Bivalvia, Veneroida, Tellinidae). Shade cloths (which reduced incident light intensity by ~80%) were deployed on an exposed, intertidal sandflat to experimentally stress the microphytobenthic community associated with the sediment surface. After 13 weeks, sediment properties, macrofauna and fluxes of oxygen and inorganic nutrients across the sediment-water interface were measured. A multivariate metric of ecosystem function (MF) was generated by combining flux-based response variables, and distance-based linear models were used to determine shifts in the drivers of ecosystem function between non-shaded and shaded plots. No significant differences in MF or in the constituent ecosystem function variables were detected between the shaded and non-shaded plots. However, shading reduced the total explained variation in MF (from 64% in non-shaded plots to 15% in shaded plots) and affected the relative influence of M. liliana and other explanatory variables on MF. This suggests that although shade stress may shift the drivers of ecosystem functioning (consistent with earlier investigations of shading effects on sandflat interaction networks), ecosystem functions appear to have a degree of resilience to those changes. PMID:26214854

  7. Detecting Subtle Shifts in Ecosystem Functioning in a Dynamic Estuarine Environment

    PubMed Central

    Pratt, Daniel R.; Lohrer, Andrew M.; Thrush, Simon F.; Hewitt, Judi E.; Townsend, Michael; Cartner, Katie; Pilditch, Conrad A.; Harris, Rachel J.; van Colen, Carl; Rodil, Iván F.

    2015-01-01

    Identifying the effects of stressors before they impact ecosystem functioning can be challenging in dynamic, heterogeneous ‘real-world’ ecosystems. In aquatic systems, for example, reductions in water clarity can limit the light available for photosynthesis, with knock-on consequences for secondary consumers, though in naturally turbid wave-swept estuaries, detecting the effects of elevated turbidity can be difficult. The objective of this study was to investigate the effects of shading on ecosystem functions mediated by sandflat primary producers (microphytobenthos) and deep-dwelling surface-feeding macrofauna (Macomona liliana; Bivalvia, Veneroida, Tellinidae). Shade cloths (which reduced incident light intensity by ~80%) were deployed on an exposed, intertidal sandflat to experimentally stress the microphytobenthic community associated with the sediment surface. After 13 weeks, sediment properties, macrofauna and fluxes of oxygen and inorganic nutrients across the sediment-water interface were measured. A multivariate metric of ecosystem function (MF) was generated by combining flux-based response variables, and distance-based linear models were used to determine shifts in the drivers of ecosystem function between non-shaded and shaded plots. No significant differences in MF or in the constituent ecosystem function variables were detected between the shaded and non-shaded plots. However, shading reduced the total explained variation in MF (from 64% in non-shaded plots to 15% in shaded plots) and affected the relative influence of M. liliana and other explanatory variables on MF. This suggests that although shade stress may shift the drivers of ecosystem functioning (consistent with earlier investigations of shading effects on sandflat interaction networks), ecosystem functions appear to have a degree of resilience to those changes. PMID:26214854

  8. An Integrated Mercury Monitoring Program for Temperate Estuarine and Marine Ecosystems on the North American Atlantic Coast

    PubMed Central

    Evers, David C.; Mason, Robert P.; Kamman, Neil C.; Chen, Celia Y.; Bogomolni, Andrea L.; Taylor, David L.; Hammerschmidt, Chad R.; Jones, Stephen H.; Burgess, Neil M.; Munney, Kenneth; Parsons, Katharine C.

    2008-01-01

    During the past century, anthropogenic activities have altered the distribution of mercury (Hg) on the earth’s surface. The impacts of such alterations to the natural cycle of Hg can be minimized through coordinated management, policy decisions, and legislative regulations. An ability to quantitatively measure environmental Hg loadings and spatiotemporal trends of their fate in the environment is critical for science-based decision making. Here, we outline a Hg monitoring program for temperate estuarine and marine ecosystems on the Atlantic Coast of North America. This framework follows a similar, previously developed plan for freshwater and terrestrial ecosystems in the United States. Methylmercury (MeHg) is the toxicologically relevant form of Hg, and its ability to bioaccumulate in organisms and biomagnify in food webs depends on numerous biological and physicochemical factors that affect its production, transport, and fate. Therefore, multiple indicators are needed to fully characterize potential changes of Hg loadings in the environment and MeHg bioaccumulation through the different marine food webs. In addition to a description of how to monitor environmental Hg loads for air, sediment, and water, we outline a species-specific matrix of biotic indicators that include shellfish and other invertebrates, fish, birds and mammals. Such a Hg monitoring template is applicable to coastal areas across the Northern Hemisphere and is transferable to arctic and tropical marine ecosystems. We believe that a comprehensive approach provides an ability to best detect spatiotemporal Hg trends for both human and ecological health, and concurrently identify food webs and species at greatest risk to MeHg toxicity. PMID:19294469

  9. Diet shifts and population dynamics of estuarine foraminifera during ecosystem recovery after experimentally induced hypoxia crises

    NASA Astrophysics Data System (ADS)

    Brouwer, G. M.; Duijnstee, I. A. P.; Hazeleger, J. H.; Rossi, F.; Lourens, L. J.; Middelburg, J. J.; Wolthers, M.

    2016-03-01

    This study shows foraminiferal dynamics after experimentally induced hypoxia within the wider context of ecosystem recovery. 13C-labeled bicarbonate and glucose were added to the sediments to examine foraminiferal diet shifts during ecosystem recovery and test-size measurements were used to deduce population dynamics. Hypoxia-treated and undisturbed patches were compared to distinguish natural (seasonal) fluctuations from hypoxia-induced responses. The effect of timing of disturbance and duration of recovery were investigated. The foraminiferal diets and population dynamics showed higher fluctuations in the recovering patches compared to the controls. The foraminiferal diet and population structure of Haynesina germanica and Ammonia beccarii responded differentially and generally inversely to progressive stages of ecosystem recovery. Tracer inferred diet estimates in April and June and the two distinctly visible cohorts in the test-size distribution, discussed to reflect reproduction in June, strongly suggest that the ample availability of diatoms during the first month of ecosystem recovery after the winter hypoxia was likely profitable to A. beccarii. Enhanced reproduction itself was strongly linked to the subsequent dietary shift to bacteria. The distribution of the test dimensions of H. germanica indicated that this species had less fluctuation in population structure during ecosystem recovery but possibly reproduced in response to the induced winter hypoxia. Bacteria seemed to consistently contribute more to the diet of H. germanica than diatoms. For the diet and test-size distribution of both species, the timing of disturbance seemed to have a higher impact than the duration of the subsequent recovery period.

  10. Spatial distributions of grass shrimp (Palaemonetes pugio) populations in southeastern estuarine ecosystems influenced by urbanization

    SciTech Connect

    Scott, G.; Daugomah, J.; Devane, J.; Porter, D.; Edwards, D.

    1995-12-31

    Urbanization of coastal regions has resulted in the increased discharge of polycyclic aromatic hydrocarbons trace metals and habitat changes/modifications in adjacent upland areas which may affect grass shrimp populations. A study was conducted comparing larval abundance and adult grass shrimp biomass, abundance, size structure and sex ratios in an urbanized estuary, Murrells Inlet with pristine North Inlet, a NOAA national estuarine research reserve and sanctuary site. A total of 60 sites were sampled during the peak of grass shrimp abundance and compared in terms of spatial distributions and other relevant ancillary information. Factors such as sediment contaminant levels, physico-chemical parameters and land-use habitat modification were statistically compared using a Geographical Information Processing (GIP) techniques and appropriate spatial statistical methods. GIP results indicated similar levels of larval abundance in both estuaries and identified specific nursery ground regions in both estuaries. Adult grass shrimp abundances were greatly reduced in urban areas and grass shrimp desert regions were identified. These areas were correlated with regions having high levels of chemical contaminants and greatest physical disturbances. The mortality rate between larval and adult stages was much higher in urban areas suggesting that urbanization had a profound impact on grass shrimp.

  11. MICROBIAL COMMUNITY DIVERSITY AND CARBON UTILIZATION IN ESTUARINE ECOSYSTEMS OF SOUTHEASTERN U.S.A.

    EPA Science Inventory

    Estuaries are very dynamic ecosystems with regard to the transport and transformation of organic matter. Detrital organic matter is abundant in most estuaries, however, the dynamics of detritus utilization is not well understood. Two questions that remain unanswered are the sou...

  12. Relationship between N : P : Si ratio and phytoplankton community composition in a tropical estuarine mangrove ecosystem

    NASA Astrophysics Data System (ADS)

    Choudhury, A. K.; Bhadury, P.

    2015-02-01

    The present work aims at understanding the importance of Brzezinski-Redfield ratio (modified Redfield ratio) as a determinant of natural phytoplankton community composition in a mangrove ecosystem. Even though this ecoregion has been reported to be mostly eutrophic, localised and anthropogenic influences often result in habitat variability especially with regard to nutrient concentrations at different parts of this ecosystem. Phytoplankton, an important sentinel in aquatic ecosystems may respond differently to such alterations in habitat thereby bringing about significant changes in the community composition. Results show that even though habitat variability does exist at our study area and varied on a spatial and temporal scale, the nutrient concentrations were intricately balanced that never became limited and complemented well with the concept of modified Redfield ratio. However, an integrative approach to study phytoplankton community involving microscopy and rbcL clone library and sequencing approach revealed that it was the functional traits of individual phytoplankton taxa that determined the phytoplankton community composition rather than the nutrient concentrations of the study area. Hence we conclude that the recent concept of functional traits and elemental stoichiometry does not remain restricted to controlled environment of experimental studies only but occur in natural mangrove habitat.

  13. Restoring Resiliency: Case Studies from Pacific Northwest Estuarine Eelgrass (Zostera marina L.) Ecosystems

    SciTech Connect

    Thom, Ronald M.; Diefenderfer, Heida L.; Vavrinec, John; Borde, Amy B.

    2012-01-01

    The purpose of many ecological restoration projects is to establish an ecosystem with fully developed structure and function that exhibits resistance to and resilience from disturbances. Coastal restoration projects in the Pacific Northwest provide opportunities to understand what is required to restore the resilience of eelgrass (Zostera marina L.) populations. Factors influencing resilience observed in three case studies of eelgrass restoration include minimum viable population, adaptations of transplant populations, and natural and anthropogenic disturbances at restoration sites. The evaluation of resiliency depends on selecting appropriate monitoring metrics and the frequency and duration of monitoring. Eelgrass area, cover and shoot density provide useful and reliable metrics for quantifying resilience of restored meadows. Further, five years of monitoring of these metrics provides data that can reasonably predict the long-term viability of a planted plot. Eelgrass appears to be a resilient ecosystem in general, though one that data suggest may exhibit tipping points brought about by compounded environmental conditions outside of its tolerance ranges. Explicit inclusion of resilience in the planning and practice of habitat restoration may reduce uncertainties and improve the performance of restored systems by increasing buffering capacity, nurturing sources of renewal (e.g., seeds and rhizomes), and managing for habitat forming and maintaining processes (e.g., sediment dynamics) at multiple scales.

  14. Sedimentary Environment Influences the Effect of an Infaunal Suspension Feeding Bivalve on Estuarine Ecosystem Function

    PubMed Central

    Jones, Hannah F. E.; Pilditch, Conrad A.; Bruesewitz, Denise A.; Lohrer, Andrew M.

    2011-01-01

    The suspension feeding bivalve Austrovenus stutchburyi is a key species on intertidal sandflats in New Zealand, affecting the appearance and functioning of these systems, but is susceptible to several environmental stressors including sedimentation. Previous studies into the effect of this species on ecosystem function have been restricted in space and time, limiting our ability to infer the effect of habitat change on functioning. We examined the effect of Austrovenus on benthic primary production and nutrient dynamics at two sites, one sandy, the other composed of muddy-sand to determine whether sedimentary environment alters this key species' role. At each site we established large (16 m2) plots of two types, Austrovenus addition and removal. In winter and summer we deployed light and dark benthic chambers to quantify oxygen and nutrient fluxes and measured sediment denitrification enzyme activity to assess denitrification potential. Rates of gross primary production (GPP) and ammonium uptake were significantly increased when Austrovenus was added, relative to removed, at the sandy site (GPP, 1.5 times greater in winter and summer; ammonium uptake, 8 times greater in summer; 3-factor analysis of variance (ANOVA), p<0.05). Denitrification potential was also elevated in Austrovenus addition plots at the sandy site in summer (by 1.6 times, p<0.1). In contrast, there was no effect of Austrovenus treatment on any of these variables at the muddy-sand site, and overall rates tended to be lower at the muddy-sand site, relative to the sandy site (e.g. GPP was 2.1 to 3.4 times lower in winter and summer, respectively, p<0.001). Our results suggest that the positive effects of Austrovenus on system productivity and denitrification potential is limited at a muddy-sand site compared to a sandy site, and reveal the importance of considering sedimentary environment when examining the effect of key species on ecosystem function. PMID:22046446

  15. Phytoplankton Diversity and Community Composition along the Estuarine Gradient of a Temperate Macrotidal Ecosystem: Combined Morphological and Molecular Approaches

    PubMed Central

    Bazin, Pauline; Jouenne, Fabien; Friedl, Thomas; Deton-Cabanillas, Anne-Flore; Le Roy, Bertrand; Véron, Benoît

    2014-01-01

    Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description. PMID:24718653

  16. Estuarine ecosystem response to three large-scale Mississippi River flood diversion events.

    PubMed

    Roy, Eric D; White, John R; Smith, Emily A; Bargu, Sibel; Li, Chunyan

    2013-08-01

    Large inflows of nitrogen (N)-rich freshwater to estuaries can lead to expressions of eutrophication including harmful algal blooms of cyanobacteria (CyanoHABs). Lake Pontchartrain is a large, oligohaline estuary that occasionally receives episodic diversions of N-rich Mississippi River water via the Bonnet Carré Spillway to alleviate flood threats to New Orleans, LA. The extreme flood stage of the Lower Mississippi River in May 2011 prompted the tenth opening of the spillway since 1937. The 2011 opening occurred later in the season than the previous two lower discharge events (1997 and 2008) and was characterized by dissolved inorganic N loads 1.7 and 2.6 times greater than the 1997 and 2008 events, respectively. Rapid depletion of riverine nitrate (21 days) occurred post-spillway closure in 2011 with no associated CyanoHAB and was followed by an internal pulse of phosphorus (P) from sediments to restore N-limitation. Our analysis of recent spillway openings indicates that there is not a simple stimulus-response relationship between N loading and CyanoHAB formation. We investigate the systemic causal relationships that determine ecosystem response to these nutrient-rich freshwater inflows and highlight several important parameters including: external N loading, timing, magnitude, plume hydrodynamics, nutrient molar ratios, internal P loading, weather, and northern tributary discharge. Our results suggest that the turbulent, fluctuating environment and nutrient composition during diversions does not favor CyanoHAB formation and that the immense size and timing of the 2011 diversion may have resulted in near complete post-diversion CyanoHAB suppression by hydraulic flushing. PMID:23685135

  17. Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach

    USGS Publications Warehouse

    Johnson, B.T.; Long, E.R.

    1998-01-01

    Microtox?? and Mutatox?? were used to evaluate the acute toxicity and genotoxicity, respectively, of organic sediment extracts from Pensacola Bay and St. Andrew Bay, two estuaries that cover about 273 and 127 km2, respectively, along the Gulf coast of Florida, USA. The sensitivity and selectivity of these two bioluminescent toxicity assays were demonstrated in validation studies with over 50 pesticides, genotoxins, and industrial pollutants, both as single compounds and in complex mixtures. The 50% effective concentration (EC50) values of insecticides, petroleum products, and polychlorinated biphenyls determined by Microtox all tended to group around the mean EC50 value of 1.2 (0.8) mg/L. The polycyclic aromatic hydrocarbon sensitivity of Mutatox was in general similar to that reported in the Ames test. Surficial sediment samples were collected, extracted with dichloromethane, evaporated and concentrated under nitrogen, dissolved in dimethyl sulfoxide, assayed for acute toxicity and genotoxicity, and compared with reference sediments. Samples with low EC50 values, and determined to be genotoxic, were detected in Massalina Bayou, Watson Bayou, East Bay, and St. Andrew Bay-East in St. Andrew Bay as well as Bayou Grande, Bayou Chico, and Bayou Texar in Pensacola Bay. An overview of these data sets analyzed by Spearman rank correlation showed a significant correlation between acute toxicity and genotoxicity (p < 0.05). Microtox and Mutatox in tandem was a sensitive, cost-effective, and rapid (<24 h) screening tool that identified troublesome areas of pollution and assessed the potential sediment toxicity of lipophilic contaminants in aquatic ecosystems.

  18. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE... chosen to reflect regional differences and to include a variety of ecosystem types. A...

  19. Effects of Bottom-up and Top-down Controls and Climate Change on Estuarine Macrophyte Communities and the Ecosystem Services they Provide

    EPA Science Inventory

    Macrophytes provide important estuarine benthic habitats and support a significant portion of estuarine productivity. The composition and characteristics of these benthic communities are regulated bottom-up by resource availability and from the top-down by herbivory and predation...

  20. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: Carbon and nitrogen stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Doi, Hideyuki; Matsumasa, Masatoshi; Toya, Terumasa; Satoh, Nobuya; Mizota, Chitoshi; Maki, Yonosuke; Kikuchi, Eisuke

    2005-08-01

    Carbon and nitrogen stable isotope ( δ13C and δ15N, respectively) analyses were made on estuarine macrozoobenthos in order to examine the relationships between their feeding habits (feeding mode and food selectivity) and the spatial shifts in food sources from upstream to downstream in an estuary. The δ13C values of two ocypodid crabs were similar to those of benthic diatoms, indicating that they use their specialized mouth parts to selectively feed on benthic diatoms. The δ13C values of a gastropod and another ocypodid crab at the site furthest downstream were higher than values at an upstream site, suggesting that these unselective deposit feeders shift from feeding mainly on benthic diatoms downstream to feeding on sediment organic matter (SOM) upstream. The δ13C values of deposit feeding polychaetes were not significantly different among sampling sites, indicating that they feed mainly on SOM at all sites. These results show that species- and site-specific feeding habits must be considered when evaluating the roles of macrozoobenthos in regulating estuarine material flows.

  1. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  2. Isotopic distribution of carbon from sewage sludge and eutrophication in the sediments and food web of estuarine ecosystems

    SciTech Connect

    Gearing, P.J.; Gearing, J.N.; Maughan, J.T.; Oviatt, C.A. )

    1991-02-01

    Stable isotope ratios ({delta}{sup 13}C) from samples of water, sediments, and biota traced the behavior of organic carbon for 3 summer months in estuarine mesocosms (three controls, three with added sewage sludge, three with added inorganic nutrients). Isotope ratios proved to be a useful quantitative tracer for sewage carbon as well as for the fresh phytoplanktonic carbon produced during nutrient fertilization. Sewage sludge sedimented within hours of its addition, and approximately 50% remained in sediments after 99 days. The sludge was not inert, but was biologically oxidized at rates similar to those of phytoplankton carbon. Its residence time in the water column was too short for uptake by zooplankton, but it was readily assimilated by some benthic organisms. Fresh phytoplanktonic carbon from nutrient-induced blooms was isotopically heavy and thus distinguishable from old primary production (fixed before the experiment). It flowed through the pelagic and benthic food webs more extensively and more uniformly than did sludge carbon.

  3. Building Capacity for Collaborative Decisions, Resilient Ecosystems, and Sustainable Practices: Water, Land, Communtiy and People in Estuarine Watersheds

    EPA Science Inventory

    Population growth, urban expansion, and the warming climate have and will continue to stress our coastal ecosystems. Decisions on how and when to respond with stewardship, adaptation, and mitigation are made by individuals, municipalities, states, and agencies. These decisions ...

  4. Distribution of butyltin compounds in Brazil's southern and southeastern estuarine ecosystems: assessment of spatial scale and compartments.

    PubMed

    Dos Santos, Dayana Moscardi; Turra, Alexander; de Marchi, Mary Rosa Rodrigues; Montone, Rosalinda Carmela

    2016-08-01

    Butyltin compounds (BTs), including tributyltin (TBT) and its degradation products, dibutyltin and monobutyltin, have been found in a diversity of aquatic systems and causing toxic effects in target and nontarget organisms. They enter in coastal systems through different sources (as antifouling paints, industrial effluents, etc.) where they interact with biotic and abiotic components, and their distribution is commonly determined by the morphological and hydrodynamic conditions of the coastal systems. In this study, we discuss the contamination by BTs on a spatial scale (eight estuaries with three subareas each) and in different compartments of the estuaries (sediments, suspended particulate matter (SPM), and estuarine catfish tissues (liver and gills). Lower concentrations of BTs were found in the sediments (n.d. to 338 ng g(-1)) in comparison to studies before a ban of TBT in antifouling paints was enacted, mostly indicating an old input or preservation related with sediment properties and composition. For SPM samples (n.d. to 175 ng L(-1)) as well as in fish tissues (n.d. to 1426 ng g(-1)), the presence of these compounds was frequent, especially in the fish due to their movement throughout the estuaries and the potential to assess point sources of BTs. These results indicate that BTs persist in the environment, with variation in amounts between investigated estuaries and even at locations inside the same estuary, because of ideal preservation conditions, transport to remote areas, and input from different sources. PMID:27151240

  5. Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems

    USGS Publications Warehouse

    Cloern, James E.; Abreu, Paulo C.; Carstensen, Jacob; Chauvaud, Laurent; Elmgren, Ragnar; Grall, Jacques; Greening, Holly; Johansson, John O.R.; Kahru, Mati; Sherwood, Edward T.; Xu, Jie; Yin, Kedong

    2016-01-01

    Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2–5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (i) human activities as drivers of change; (ii) variability of the climate system as a driver of change; (iii) successes, disappointments and challenges of managing change at the sea-land interface; and (iv) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine–coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine–coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines.

  6. Developing best-practice Bayesian Belief Networks in ecological risk assessments for freshwater and estuarine ecosystems: a quantitative review.

    PubMed

    McDonald, K S; Ryder, D S; Tighe, M

    2015-05-01

    Bayesian Belief Networks (BBNs) are being increasingly used to develop a range of predictive models and risk assessments for ecological systems. Ecological BBNs can be applied to complex catchment and water quality issues, integrating multiple spatial and temporal variables within social, economic and environmental decision making processes. This paper reviews the essential components required for ecologists to design a best-practice predictive BBN in an ecological risk assessment (ERA) framework for aquatic ecosystems, outlining: (1) how to create a BBN for an aquatic ERA?; (2) what are the challenges for aquatic ecologists in adopting the best-practice applications of BBNs to ERAs?; and (3) how can BBNs in ERAs influence the science/management interface into the future? The aims of this paper are achieved using three approaches. The first is to demonstrate the best-practice development of BBNs in aquatic sciences using a simple nutrient model. The second is to discuss the limitations and challenges aquatic ecologists encounter when applying BBNs to ERAs. The third is to provide a framework for integrating best-practice BBNs into ERAs and the management of aquatic ecosystems. A quantitative review of the application and development of BBNs in aquatic science from 2002 to 2014 was conducted to identify areas where continued best-practice development is required. We outline a best-practice framework for the integration of BBNs into ERAs and study of complex aquatic systems. PMID:25733196

  7. A Holistic Approach to the Conservation and Propagation of Freshwater, Brackish and Estuarine Bivalves for Ecosystem Services.

    NASA Astrophysics Data System (ADS)

    Kreeger, D.

    2005-05-01

    Shellfish restoration is increasingly valued in estuaries such as Chesapeake Bay where oyster populations are known to function as living biofilters, performing critical ecosystem services. Less studied are the services rendered by other suspension-feeding bivalves that reside in fringing marshes around these estuaries, in brackish and freshwater tidal portions, and in freshwater tributaries. The potential benefits contributed by other native bivalves will be discussed with two case studies from the Delaware basin. These are the ribbed mussel (Geukensia demissa ), which is abundant in brackish and marine tidal marshes, and the unionid mussel (Elliptio complanata ), which is abundant in many rivers of the system. Ribbed mussels are abundant enough to filter a large portion of the tidal prism flushing marshes, facilitating the role that these systems play as a sink for suspended solids and nutrients. Similarly, data from the lower Brandywine River suggests that a vestigial community of freshwater unionids remains sufficiently abundant to have a measurable beneficial effect on water quality by removing more than 25 metric tons of suspended particulates per year. Hence, the conservation and propagation of freshwater unionids can yield benefits that extend beyond current interest that is focused on protecting their biodiversity. Future efforts to protect or reclaim water quality and ecosystem integrity may benefit by a basin-wide, holistic approach that promotes integrated "biofiltration services" by native bivalves living from the headwaters to the coastal shelf.

  8. Analyses of phosphorus and nitrogen cyclings in the estuarine ecosystem of Hiroshima Bay by a pelagic and benthic coupled model

    NASA Astrophysics Data System (ADS)

    Kittiwanich, J.; Yamamoto, T.; Kawaguchi, O.; Hashimoto, T.

    2007-10-01

    A pelagic and benthic coupled model expressing both phosphorus and nitrogen cyclings in the ecosystem of Hiroshima Bay, Japan was developed to investigate the fate and transportation of these elements and their annual budgets. The Bay was divided into eight (8) boxes, wherein two (2) areas ran horizontally and four (4) layers vertically. The model consists of equations representing all the concerned physical and biological processes. The results revealed that internal regeneration of materials is an important source of bio-available nutrients for phytoplankton growth. The study indicated that Hiroshima Bay's sediment functions as source of dissolved phosphorus and nitrogen for phytoplankton in the pelagic system, which is supported by calculated results indicating that the releasing rates of dissolved phosphorus and nitrogen from the sediment exceeded 100% of TP and TN loadings in the southern area. As for the northern area which is known to have significant loading via the river, the releasing rates were found to be up to 56% of TP and TN loadings. With regards to the denitrification process, the results revealed that 48% and 37% of NO 3- produced by nitrification was denitrified in the northern and southern areas, respectively. More than 10% of the total nitrogen loaded to the northern area of Hiroshima Bay was estimated to be denitrified. A similar trend was also found in the southern area where the figure was more than 14%. Such findings suggested that the process taking place in the sediment is an important natural purification mechanism that helps remove nitrogen from land. Whereas, almost all phosphorus in the sediment is remineralized, it subsequently goes back to the pelagic system and is repeatedly utilized for the growth of phytoplankton. The model used, therefore, provides a basis and tool to describe the dynamics of phosphorus and nitrogen cyclings in Hiroshima Bay.

  9. Comparative Analysis of Reproductive Traits in Black-Chinned Tilapia Females from Various Coastal Marine, Estuarine and Freshwater Ecosystems

    PubMed Central

    Kantoussan, Justin; Ndiaye, Papa; Thiaw, Omar Thiom; Albaret, Jean-Jacques

    2012-01-01

    The black-chinned tilapia Sarotherodon melanotheron is a marine teleost characterised by an extreme euryhalinity. However, beyond a certain threshold at very high salinity, the species exhibits impaired growth and precocious reproduction. In this study, the relationships between reproductive parameters, environmental salinity and condition factor were investigated in wild populations of this species that were sampled in two consecutive years (2003 and 2004) from three locations in Senegal with different salinities: Guiers lake (freshwater, 0 psu), Hann bay (seawater, 37 psu) and Saloum estuary (hypersaline water, 66–127 psu). The highest absolute fecundity and spawning weight were recorded in seawater by comparison to either freshwater or hypersaline water whereas the poorest condition factors were observed in the most saline sampling site. These results reflect higher resource allocation to the reproduction due to the lowest costs of adaptation to salinity in seawater (the natural environment of this species) rather than differences in food resources at sites and/or efficiency at foraging and prey availability. Fecundities, oocyte size as well as spawning weight were consistent from year to year. However, the relative fecundity in the Saloum estuary varied significantly between the dry and rainy raisons with higher values in the wet season, which seems to reflect seasonal variations in environmental salinity. Such a reproductive tactic of producing large amounts of eggs in the rainy season when the salinity in the estuary was lower, would give the fry a better chance at survival and therefore assures a high larval recruitment. An inverse correlation was found between relative fecundity and oocyte size at the two extreme salinity locations, indicating that S. melanotheron has different reproductive strategies in these ecosystems. The adaptive significance of these two reproductive modes is discussed in regard to the heavy osmotic constraint imposed by extreme

  10. Human mediated transport determines the non-native distribution of a dispersal limited estuarine invertebrate

    EPA Science Inventory

    Sessile invertebrates are common invaders of estuarine ecosystems. To expand their non-native ranges, these invasive taxa must contend with the geographically and ecologically discontinuous nature of estuarine habitats, in many cases without the benefit of highly dispersed larval...

  11. SPATIAL AND TEMPORAL VARIABILITY AND DRIVERS OF NET ECOSYSTEM METABOLISM IN WESTERN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Net ecosystem metabolism (NEM) is becoming a commonly used ecological indicator of estuarine ecosystem metabolic rates. Estuarine ecosystem processes are spatially and temporally variable, but the corresponding variability in NEM has not been properly assessed. Spatial and temp...

  12. Coupled Pollen, Spore, and Macrofossil Hudson River Marsh Paleoecological Analysis with X-Ray Fluorescence Elemental Analysis to Study Estuarine Ecosystem Response to Anthropogenic and Climatic Changes

    NASA Astrophysics Data System (ADS)

    Sritrairat, S.; Peteet, D. M.; Kenna, T. C.; Chillrud, S. N.; Kurdyla, D.; Guilderson, T.

    2007-12-01

    Stockport Flats (41.3N, 73.8W) and Tivoli North Bay (42.0N, 73.9W) are the two northernmost Hudson River National Estuarine Research Reserve freshwater tidal marshes in New York. Our paleoecological records based on pollen, spores, macrofossils, and loss-on-ignition (LOI) of marsh sediment cores at these two sites suggest significant local and regional anthropogenic changes and climatic variability, including the Medieval Warming Period. We implement the use of a field portable X-Ray Fluorescence Spectroscopy (Innov-X, USA) as an independent proxy to provide more information about chronology, watershed land-use changes, and estuarine processes. Over the last 200 years, there is a pronounced decrease in organic matter, a shift in vegetation, and an increase in invasive species such as Phragmites australis, Lythrum salicaria, and Typha angustifolia. Coupling of more traditional chronological measurements, such as Ambrosia pollen rise and radiometric dating (C-14, Cs-137, and Pb-210), with heavy metals profiles (Pb, Cr, Cu, and Zn) using the XRF unit provides additional time horizon markers, as these metals have distinct peaks in the 1960s and toward the present. Dates from the XRF profiles near the top of the core help to confirm the timing and rate of vegetation changes, especially the spreading of the invasive species. Discrete metal peaks using the XRF help to quickly determine the degree of disturbances and resolution of the cores as analysis of Cs-137 profile is much slower. Sediment proxies, including Ca, K, Ti/S, and Fe/S increase while Sr and Zr decrease toward the top of the core, probably representing higher erosion from land-use changes concurrent with lithologic shifts, LOI decline, and invasive species expansion. Sulfur concentration increases many orders of magnitude especially in the Stockport core and may be a good proxy of salinity, an indicator of drought and seawater rise. This information is valuable to compare with the vegetation changes to

  13. Electrochemical speciation of dissolved Cu, Pb and Zn in an estuarine ecosystem (Ria de Vigo, NW Spain): comparison between data treatment methods.

    PubMed

    Durán, Iria; Nieto, Oscar

    2011-09-30

    The total concentration and chemical speciation of Cu, Pb and Zn were determined by square wave anodic stripping voltammetry (SWASV) in the Ría de Vigo, an estuarine area located in NW Spain. Surface and bottom waters from 6 locations were collected in two seasons during 3 years. The total Pb was below 1 nM, and Cu and Zn concentrations, ranged from 3 to 44 nM and from 9 to 300 nM respectively. A gradient from sampling points located in the port of Vigo to external areas was observed. The speciation of the metals (ligand concentration and apparent complex formation constant K') was calculated using several methods: The Langmuir and Scatchard linear fits for one and two ligands, the Lorenzo non-linear fit for one ligand and Langmuir non-linear fit for two ligands. The capability of the different methods to achieve reliable results have been discussed and Langmuir linear fit as well as Lorenzo non-linear fit are the most suitable. Cu presented the highest ligand concentrations, followed by Zn and Pb, while mean log K' values fell in the range 5-9 (± 0.6) for all metals and samples. The adjustment of the data treatment methods used to calculate the speciation parameters was found to vary depending on the extent of complexation and on whether one or two ligands needed to be considered. PMID:21872034

  14. EXPECTED EFFECTS OF RESIDUAL CHLORINE AND NITROGEN IN SEWAGE EFFLUENT ON THE ESTUARINE ECOSYSTEM OF GREENWICH COVE, RI: AN ENERGY SYSTEMS AND RISK ASSESSMENT OF EFFECTS

    EPA Science Inventory

    Physical, toxicological, and energy systems modeling were combined to make estimates of likely ecosystem-level effects due to residual chlorine in sewage effluent. The energy systems model also allowed us to make estimates of the effects of nutrient loading on the estuary both se...

  15. Slow death for a swamp forest: Implications of salinity, infrastructure and their interactions for ecosystems in transition along North Carolina's estuarine coast

    NASA Astrophysics Data System (ADS)

    Moody, A.; Emanuel, R. E.

    2015-12-01

    Freshwater-dependent ecosystems of coastal North Carolina have been altered by humans over many centuries, mainly by draining these ecosystems to facilitate forestry and farming operations. In recent decades the quickening pace of sea level rise and infrequent but large coastal storms have exposed these ecosystems to additional pressures associated with the intrusion of brackish and salty water. Infrastructure, including roadbeds, levees, and other water management structures add additional complexity to this system by acting as either exacerbating or mitigating factors depending on time and location. This study investigates the dynamics of surface water and salinity in a critically stressed, freshwater swamp forest at Goose Creek State Park in coastal North Carolina. We evaluate temporal patterns of surface water elevation and salinity following a major inundation event (Hurricane Irene, 2011) at locations both upstream and downstream of an earthen roadbed that bisects the wetland. Results suggest that climatic conditions together with poor drainage through the roadbed caused harmful salinity levels to persist in the wetland for nearly a year following the hurricane, yet the potential also exists for the roadbed to protect the wetland from less extreme exposures to saltwater. This case study illustrates one facet of a complex, coupled natural-human system that is currently being reshaped by climate change. The work has implications for larger efforts to understand and assess the vulnerability of low-lying coastal regions to sea level rise and the preceding salinization.

  16. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; Borde, Amy B.; Woodley, Christa M.; Weitkamp, Laurie A.; Buenau, Kate E.; Kropp, Roy K.

    2013-12-01

    The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field

  17. Combining remote sensing and eddy covariance data to monitor the gross primary production of an estuarine wetland ecosystem in East China.

    PubMed

    Wu, Mingquan; Muhammad, Shakir; Chen, Fang; Niu, Zheng; Wang, Changyao

    2015-04-01

    Wetland ecosystems are very important for ecological diversity and have a strong ability to sequester carbon. Through comparisons with field measured eddy covariance data, we evaluated the relationships between the light use efficiency (LUE) index and the enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and land surface temperature (LST). Consequently, we have proposed a new model for the estimation of gross primary production (GPP) for wetland ecosystems using Moderate Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation indices, LST and the fraction of photosynthetically active radiation (FAPAR) absorbed by the active vegetation. This model was developed and validated for a study site on Chongming Island, Shanghai, China. Our results show that photosynthetically active radiation (PAR) was highly correlated with the LST, with a coefficient of determination (R(2)) of 0.59 (p < 0.001). Vegetation indices, such as EVI, NDVI and LST, were highly correlated with LUE. We found that the product of vegetation indices (VIs) and a modified form of LST (Te) can be used to estimate LUE, with an R(2) of 0.82 (P < 0.0001) and an RMSE of 0.054 kg C per mol PAR. This new model can provide reliable estimates of GPP (R(2) of 0.87 and RMSE of 0.009 kg C m(-2) 8 d(-1) (P < 0.0001)). PMID:25797359

  18. Valuing the non-market benefits of estuarine ecosystem services in a river basin context: Testing sensitivity to scope and scale

    NASA Astrophysics Data System (ADS)

    Pinto, R.; Brouwer, R.; Patrício, J.; Abreu, P.; Marta-Pedroso, C.; Baeta, A.; Franco, J. N.; Domingos, T.; Marques, J. C.

    2016-02-01

    A large scale contingent valuation survey is conducted among residents in one of the largest river basins in Portugal to estimate the non-market benefits of the ecosystem services associated with implementation of the European Water Framework Directive (WFD). Statistical tests of public willingness to pay's sensitivity to scope and scale are carried out. Decreasing marginal willingness to pay (WTP) is found when asking respondents to value two water quality improvement scenarios (within sample comparison), from current moderate water quality conditions to good and subsequently excellent ecological status. However, insensitivity to scale is found when asking half of the respondents to value water quality improvements in the estuary only and the other half in the whole basin (between sample comparison). Although respondents living outside the river basin value water quality improvements significantly less than respondents inside the basin, no spatial heterogeneity can be detected within the basin between upstream and downstream residents. This finding has important implications for spatial aggregation procedures across the population of beneficiaries living in the river basin to estimate its total economic value based on public WTP for the implementation of the WFD.

  19. Climate and anthropogenic factors influencing an estuarine ecosystem from NW Iberia: new high resolution multiproxy analyses from San Simón Bay (Ría de Vigo)

    NASA Astrophysics Data System (ADS)

    Muñoz Sobrino, Castor; García-Moreiras, Iria; Castro, Yoel; Martínez Carreño, Natalia; de Blas, Esther; Fernandez Rodríguez, Carlos; Judd, Alan; García-Gil, Soledad

    2014-06-01

    to a reinforcement of the Easter Atlantic (EA) pattern; and also that the intertidal/supratidal ecosystems inside San Simón Bay may have extended further in the past, at least towards the end of the 5th century, and between ca 1050-1350 AD and ca 1450-1750 AD. A number of local historical references are consistent with our palaeoecological data and so support the chronology proposed as well as many of the environmental changes reconstructed. This good agreement will help in the interpretation of other analogous sequences extending back in time.

  20. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem

    NASA Astrophysics Data System (ADS)

    Li, Maotian; Xu, Kaiqin; Watanabe, Masataka; Chen, Zhongyuan

    2007-01-01

    tends to be dominant species of the red tides off the Yangtze estuary. The number of big dams in the Yangtze River basin will double in the next 30-50 years. This will significantly influence the variations of nutrient fluxes in the river basin and estuary, in relation to health management of river-coast ecosystem.

  1. Estuarine Food Webs

    EPA Science Inventory

    Estuaries provide habitat for abundant plants, animals and micro-organisms, ranging from microscopic plankton (bacteria, yeasts, algae, protozoa) to larger benthic and pelagic organisms (seagrass, clams, crabs, sea trout, pelicans and dolphins). Estuarine biota can be characteri...

  2. A CONCEPTUAL MODEL FOR MULTI-SCALAR ASSESSMENTS OF ESTUARINE ECOLOGICAL INTEGRITY

    EPA Science Inventory

    A conceptual model was developed that relates an estuarine system's anthropogenic inputs to it's ecological integrity. Ecological integrity is operationally defined as an emergent property of an ecosystem that exists when the structural components are complete and the functional ...

  3. Estuarine Food for Thought

    NASA Astrophysics Data System (ADS)

    M�ller-Solger, A. B.; M�ller-Navarra, D. B.

    2002-12-01

    Recent research in animal and human nutrition has shown the importance of long-chain polyunsaturated fatty acids (LC-PUFA) such as the n-3 LC-PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These LC-PUFA are needed for healthy development and functioning of the nervous and vascular systems. De novo synthesis or elongation to LC-PUFA in animals is inefficient at best; thus sufficient amounts of these PUFA must be supplied by food sources. Algae, especially diatoms, dinoflagellates, and cryptophytes, are the quantitatively most important producers of EPA and DHA. These types of algae often dominate estuarine producer communities. The upper San Francisco Estuary is no exception, and we found its LC-PUFA-rich phytoplankton biomass, but not the quantitatively prevalent terrestrial plant detritus, to be highly predictive of zooplankton (Daphnia) growth. In contrast, in freshwater lakes dominated by relatively LC-PUFA-poor phytoplankton, EPA, not total phytoplankton biomass, best predicted Daphnia growth. The commonly high abundance of LC-PUFA-rich algae in estuaries may help explain the high trophic efficiencies in these systems and resulting high consumer production. Moreover, LC-PUFA-rich estuarine food resources may also provide essential nutrition and associated health and evolutionary benefits to land-dwelling consumers of such foods, including humans. Ensuring LC-PUFA-rich, uncontaminated estuarine production is thus an important goal for estuarine restoration and a convincing argument for estuarine conservation.

  4. Field Study Manual to Freshwater and Estuarine Habitats.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta.

    This field studies manual, developed by biology students in the 1971 Georgia Governor's Honors Program, was designed for collection of data pertinent to freshwater and estuarine habitats. In addition to the various methods of sampling the ecosystem and for quantification of the data, instructions for dividing the field study into three logical…

  5. Ecohydraulics and Estuarine Wetland Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow

  6. Marine and Estuarine Pollution.

    ERIC Educational Resources Information Center

    Reish, Donald J.

    1978-01-01

    Presents a literature review of the effects of various pollutants on marine and estuarine organisms, covering publications of 1976-77. This review includes: (1) effects of pesticides, dredging, dumping, sludge, and petroleum hydrocarbons; and (2) diseases and tissue abnormalities. A list of 441 references is also presented. (HM)

  7. Challenging paradigms in estuarine ecology and management

    NASA Astrophysics Data System (ADS)

    Elliott, M.; Whitfield, A. K.

    2011-10-01

    For many years, estuarine science has been the 'poor relation' in aquatic research - freshwater scientists ignored estuaries as they tended to get confused by salt and tides, and marine scientists were more preoccupied by large open systems. Estuaries were merely regarded by each group as either river mouths or sea inlets respectively. For the past four decades, however, estuaries (and other transitional waters) have been regarded as being ecosystems in their own right. Although often not termed as such, this has led to paradigms being generated to summarise estuarine structure and functioning and which relate to both the natural science and management of these systems. This paper defines, details and affirms these paradigms that can be grouped into those covering firstly the science (definitions, scales, linkages, productivity, tolerances and variability) and secondly the management (pressures, valuation, health and services) of estuaries. The more 'science' orientated paradigms incorporate the development and types of ecotones, the nature of stressed and variable systems (with specific reference to resilience and redundancy), the relationship between generalists and specialists produced by environmental tolerance, the relevance of scale in relation to functioning and connectivity, the sources of production and degree of productivity, the biodiversity-ecosystem functioning and the stress-subsidy debates. The more 'management' targeted paradigms include the development and effects of exogenic unmanaged pressures and endogenic managed pressures, the perception of health and the ability to manage estuaries (related to internal and external influences), and the influence of all of these on the production of ecosystem services and societal benefits.

  8. Remediation of Estuarine Barrages

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Lamping, J.; Wright, J.

    2003-04-01

    Estuarine barrages have become a popular component of urban regeneration in the UK. However, a range of problems have been identified with the construction and operation of barrages, including: excess sediment build up; low oxygen conditions and eutrophication. This project has examined 3 strategies for the remediation of estuarine barrages: use of aerators; flushing of the impoundment by lock management; and use of boom/skirt technologies. The results show that: flushing of the barrage is ineffective; and that boom/skirt technologies could be successful in stratified impoundments. Aerators were shown to give significant increases in dissolved oxygen levels and field studies were able to delimit times when aeration would be effective. The study has shown that most problems experienced by the barrage are the result of inputs to the barrage rather than caused by the internal processes of the barrage itself and as such esturies must be managed as part of the catchment as a whole.

  9. Mapping estuarine distributions of the non-indigenous Japanese Eelgrass Zostera japonica using Color Infrared Aerial Photography

    EPA Science Inventory

    This presentation describes a technique for mapping distributions of the nonindigenous Japanese eelgrass Zostera japonica in estuarine ecosystems of the Pacific Northwest. The relatively broad distribution of this intertidal plant, often on very soft substrate, makes classical g...

  10. A COMPARATIVE ANALYSIS OF NUTRIENT LOADING, NUTRIENT RETENTION AND NET ECOSYSTEM METABOLISM IN THREE TIDAL RIVER ESTUARIES DIFFERING PREDOMINATELY BY THEIR WATERSHED LAND USE TYPES.

    EPA Science Inventory

    Abstract and oral presentation for the Estuarine Research Federation Conference.

    Estuarine retention of watershed nutrient loads, system-wide nutrient biogeochemical fluxes, and net ecosystem metabolism (NEM) were determined in three estuaries exhibiting differing magnitud...

  11. Estuarine and lagoon biodiversity and their natural goods and services

    NASA Astrophysics Data System (ADS)

    Basset, A.; Elliott, M.; West, R. J.; Wilson, J. G.

    2013-11-01

    Assessing and monitoring ecosystem quality status and service provision of aquatic ecosystems is an increasingly important area of scientific, socio-economical and political interest. Contributions from two related meetings organized by the Estuarine & Coastal Sciences Association (ECSA) and the Euro-Mediterranean Lagoon Federation (EUROMEDLAG) address this area of interest in estuaries and lagoons, dominant types of transitional waters, by an integration of holistic and reductionistic approaches. In this context, we synthesise the key points raised by the contributions given at the two meetings to emphasise that transitional waters have emergent properties, which support their classification as an aquatic realm different from both freshwater and marine ones. They provide crucial ecosystem services, such as food provision and support for nutrient cycling, whose value and underlying mechanisms have been addressed with particular reference to estuarine ecosystems. The experimental studies show the mechanistic relationships and the responses of ecosystem functions and biodiversity to contrasting/changing environmental conditions with human activities as key drivers affecting both biodiversity conservation and ecosystem service provision.

  12. Estuarine 'collaboratories:' regional and global perspectives (Invited)

    NASA Astrophysics Data System (ADS)

    Baptista, A. M.; Needoba, J. A.; Davis, M.; Leinen, M.

    2013-12-01

    There is an urgent need to anticipate and manage environmental changes in estuaries, as these critical ecosystems provide services that are essential for regional and global sustainability. Collaboratively designed and operated estuarine observation and prediction systems are progressively enabling long-term and high-resolution characterizations of estuarine variability and function, thus providing a powerful foundation for stewardship activities. The benefits of these 'collaboratories' have been demonstrated regionally in various estuaries, and their broader scale potential is being explored through an emerging national and international initiative. The first part of this presentation will address the lessons learned from SATURN (http://www.stccmop.org), a mature multi-institutional 'collaboratory' for the Columbia River estuary. SATURN innovatively integrates sensors, models, flows of information, and communities of practice. This integration has fueled advances in understanding and prediction of the estuary as a complex and highly variable bioreactor, subject to shifts from global climate change and from evolving regional uses. Our focus will be on describing the aspects of the design and practice that make SATURN transformative as a scientific and management-support tool at a regional scale. The second part of the presentation will address the translation of lessons learned from and beyond SATURN into requirements for a global network of estuarine observation and prediction systems. 'Our Global Estuary' is an initiative designed to create and use such a network, to maximize the aggregate potential of estuaries as sentinels and key players in global sustainability. We will report on the main recommendations of the first planning workshop for this initiative, which will take place on October 2013.

  13. DIAGNOSING CAUSES OF IMPAIRMENT IN COASTAL ECOSYSTEMS

    EPA Science Inventory

    Engle, Virginia D. and Stephen J. Jordan. In press. Diagnosing Causes of Impairment in Coastal Ecosystems (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1008).

    Estuarine and coastal ecosystems are challenge...

  14. Impact of estuarine pollution on birds

    USGS Publications Warehouse

    Blus, L.J.; Wiemeyer, Stanley N.; Kerwin, J.A.; Stendell, R.C.; Ohlendorf, H.M.; Stickel, L.F.

    1977-01-01

    Pollution of estuaries affects bird populations indirectly through changes in habitat and food supply. The multi-factor pollution of Chesapeake Bay has resulted in diminution of submerged aquatic plants and consequent change in food habits of the canvasback duck. Although dredge-spoil operations can improve wildlife habitat, they often result in its demise. Pollution of estuaries also affects birds directly, through chemical toxication, which may result in outright mortality or in reproductive impairment. Lead from industrial sources and roadways enters the estuaries and is accumulated in tissues of birds. Lead pellets deposited in estuaries as a result of hunting are consumed by ducks with sufficient frequency .to result m large annual die-offs from lead poisoning. Fish in certain areas, usually near industrial sources, may contain levels of mercury high enough to be hazardous to birds that consume them. Other heavy metals are present in estuarine birds, but their significance is poorly known. Oil exerts lethal or sublethal effects on birds by oiling their feathers, oiling eggs and young by contaminated parents, and by ingestion of oil-contaminated food. Organochlorine chemicals, of both agricultural and industrial origin, travel through the food chains and reach harmful levels in susceptible species of birds in certain estuarine ecosystems. Both outright mortality and reproductive impairment have occurred.

  15. 15 CFR 921.3 - National Estuarine Research Reserve System biogeographic classification scheme and estuarine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... biogeographic classification scheme and estuarine typologies. (a) National Estuarine Research Reserves are... biogeographic classification scheme is used to ensure that the National Estuarine Research Reserve System... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false National Estuarine Research...

  16. Comparative analysis of chemical and microbial profiles in estuarine sediments sampled from Kanto and Tohoku regions in Japan.

    PubMed

    Asakura, Taiga; Date, Yasuhiro; Kikuchi, Jun

    2014-06-01

    Estuarine environments accumulate large quantities of organic matter from land masses adjoining the sea, and this is consumed as part of the detritus cycle. These environments are rich in biodiversity, and their ecosystem services greatly benefit humans. However, the estuarine environments have complicated aqueous ecosystems, thus the comprehensive evaluation of biotic interactions and stability is difficult using conventional hypothesis-driven approaches. In this study, we describe the advancement of an evaluation strategy for characterizing and visualizing the interactions and relationships among the microorganisms and chemicals in sediment ecosystems of estuarine environments by a combination of organic matter and elemental profiling as well as microbial profiling. We also report our findings from a comparative analysis of estuarine and coastal environmental samples collected from the Kanto and Tsunami-affected Tohoku regions in Japan. The microbial-gated correlation deployed from the coefficient of microbiota from the correlation matrix and network analysis was able to visualize and summarize the different relationships among the microbial communities, sediment organic matter, and element profiles based on geographical differences in Kanto and Tohoku regions. We demonstrated remarkable estuarine eutrophication in the Kanto region based on abundant sediment polypeptide signals and water nitrogen ions catabolized by microbiota. Therefore, we propose that this data-driven approach is a powerful method for analyzing, visualizing, and evaluating complex metabolic dynamics and networks in sediment microbial ecosystems and can be applied to other environmental ecosystems, such as deep sea sediments and agronomic and forest soils. PMID:24889864

  17. The role of nutrient loading and eutrophication in estuarine ecology.

    PubMed Central

    Pinckney, J L; Paerl, H W; Tester, P; Richardson, T L

    2001-01-01

    Eutrophication is a process that can be defined as an increase in the rate of supply of organic matter (OM) to an ecosystem. We provide a general overview of the major features driving estuarine eutrophication and outline some of the consequences of that process. The main chemical constituent of OM is carbon (C), and therefore rates of eutrophication are expressed in units of C per area per unit time. OM occurs in both particulate and dissolved forms. Allochthonous OM originates outside the estuary, whereas autochthonous OM is generated within the system, mostly by primary producers or by benthic regeneration of OM. The supply rates of limiting nutrients regulate phytoplankton productivity that contributes to inputs of autochthonous OM. The trophic status of an estuary is often based on eutrophication rates and can be categorized as oligotrophic (<100 g C m(-2) y(-1), mesotrophic (100-300 g C m(-2) y(-1), eutrophic (300-500 g C m(-2) y(-1), or hypertrophic (>500 g C m(-2) y(-1). Ecosystem responses to eutrophication depend on both export rates (flushing, microbially mediated losses through respiration, and denitrification) and recycling/regeneration rates within the estuary. The mitigation of the effects of eutrophication involves the regulation of inorganic nutrient (primarily N and P) inputs into receiving waters. Appropriately scaled and parameterized nutrient and hydrologic controls are the only realistic options for controlling phytoplankton blooms, algal toxicity, and other symptoms of eutrophication in estuarine ecosystems. PMID:11677178

  18. Halogen Radicals Promote the Photodegradation of Microcystins in Estuarine Systems.

    PubMed

    Parker, Kimberly M; Reichwaldt, Elke S; Ghadouani, Anas; Mitch, William A

    2016-08-16

    The transport of microcystin, a hepatotoxin produced by cyanobacteria (e.g., Microcystis aeruginosa), to estuaries can adversely affect estuarine and coastal ecosystems. We evaluated whether halogen radicals (i.e., reactive halogen species (RHS)) could significantly contribute to microcystin photodegradation during transport within estuaries. Experiments in synthetic and natural water samples demonstrated that the presence of seawater halides increased quantum yields for microcystin indirect photodegradation by factors of 3-6. Additional experiments indicated that photoproduced RHS were responsible for this effect. Despite the fact that dissolved organic matter (DOM) concentrations decreased in more saline waters, the calculated photochemical half-life of microcystin decreased 6-fold with increasing salinity along a freshwater-estuarine transect due to the halide-associated increase in quantum yield. Modeling of microcystin photodegradation along this transect indicated that the time scale for RHS-mediated microcystin photodegradation is comparable to the time scale of transport. Microcystin concentrations decline by ∼98% along the transect when considering photodegradation by RHS, but only by ∼54% if this pathway were ignored. These results suggest the importance of considering RHS-mediated photodegradation in future models of microcystin fate in freshwater-estuarine systems. PMID:27447196

  19. Methylmercury production in estuarine sediments: role of organic matter

    PubMed Central

    Schartup, Amina T.; Mason, Robert P.; Balcom, Prentiss H.; Hollweg, Terill A.; Chen, Celia Y.

    2013-01-01

    Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (HgII) species primarily in sediments then accumulates and biomagnifies in the food web. Most of the fish consumed in the US are from estuarine and marine systems highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern US (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across five orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas like Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries. PMID:23194318

  20. ECOLOGICAL RESPONSES TO POLLUTION ABATEMENT: A FRAMEWORK FOR MEASUREMENT AND ASSESSMENT FOR COASTAL ECOSYSTEMS

    EPA Science Inventory

    Ecological Responses to Pollution Abatement: A Framework for Measurement and Assessment for Coastal Ecosystems (Abstract). To be presented at the 16th Biennial Conference of the Estuarine Research Foundation, ERF 2001: An Estuarine Odyssey, 4-8 November 2001, St. Pete Beach, FL. ...

  1. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  2. 75 FR 59696 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... National Oceanic and Atmospheric Administration National Estuarine Research Reserve System AGENCY... Approval and Availability of Revised Management Plans for the following National Estuarine Research... management plans of the Arraigns Bay, RI National Estuarine Research Reserve and the Tijuana River,...

  3. 75 FR 49887 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... National Oceanic and Atmospheric Administration National Estuarine Research Reserve System AGENCY... Period for Revised Management Plans for the following National Estuarine Research Reserves: Narragansett... management plans of the Narragansett Bay, RI National Estuarine Research Reserve and the Tijuana, CA...

  4. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  5. INDICATORS OF ECOSYSTEM INTEGRITY FOR ESTUARIES

    EPA Science Inventory

    Jordan, Stephen J. and Lisa M. Smith. In press. Indicators of Ecosystem Integrity for Estuaries. In: Proceedings of the Estuarine Indicators Workshop, 29-31 October 2003, Sanibel Island, FL. Sanibel-Captiva Conservation Foundation, Sanibel, FL. 23 p. (ERL,GB 1194).

    Ideal ...

  6. EMERGY ANALYSIS OF THE COBSCOOK BAY ECOSYSTEM

    EPA Science Inventory

    A naturally eutrophic, estuarine ecosystem has developed in Cobscook Bay over the past three to four thousand years under the influence of six meter tides and rich flows of nitrogen from the deep waters of the Gulf of Maine. In this paper, measurements of primary production and...

  7. Small estuarine fishes feed on large trematode cercariae: Lab and field investigations

    USGS Publications Warehouse

    Kaplan, A.T.; Rebhal, S.; Lafferty, K.D.; Kuris, A.M.

    2009-01-01

    In aquatic ecosystems, dense populations of snails can shed millions of digenean trematode cercariae every day. These short-lived, free-living larvae are rich in energy and present a potential resource for consumers. We investigated whether estuarine fishes eat cercariae shed by trematodes of the estuarine snail Cerithidea californica. In aquaria we presented cercariae from 10 native trematode species to 6 species of native estuarine fishes. Many of these fishes readily engorged on cercariae. To determine if fishes ate cercariae in the field, we collected the most common fish species, Fundulus parvipinnis (California killifish), from shallow water on rising tides when snails shed cercariae. Of 61 killifish, 3 had recognizable cercariae in their gut. Because cercariae are common in this estuary, they could be frequent sources of energy for small fishes. In turn, predation on cercariae by fishes (and other predators) could also reduce the transmission success of trematodes. ?? 2009 American Society of Parasitologists.

  8. Ecotoxicology of bromoacetic acid on estuarine phytoplankton.

    PubMed

    Gordon, Ana R; Richardson, Tammi L; Pinckney, James L

    2015-11-01

    Bromoacetic acid is formed when effluent containing chlorine residuals react with humics in natural waters containing bromide. The objective of this research was to quantify the effects of bromoacetic acid on estuarine phytoplankton as a proxy for ecosystem productivity. Bioassays were used to measure the EC50 for growth in cultured species and natural marine communities. Growth inhibition was estimated by changes in chlorophyll a concentrations measured by fluorometry and HPLC. The EC50s for cultured Thalassiosira pseudonana were 194 mg L(-1), 240 mg L(-1) for Dunaliella tertiolecta and 209 mg L(-1) for Rhodomonas salina. Natural phytoplankton communities were more sensitive to contamination with an EC50 of 80 mg L(-1). Discriminant analysis suggested that bromoacetic acid additions cause an alteration of phytoplankton community structure with implications for higher trophic levels. A two-fold EC50 decrease in mixed natural phytoplankton populations affirms the importance of field confirmation for establishing water quality criteria. PMID:26247379

  9. Ecosystem services provided by Pacific NW estuaries: State of knowledge - March 3, 2011

    EPA Science Inventory

    Coastal regions in the United States are rapidly developing areas, with increasing urbanization and growing populations. Estuarine and nearshore coastal marine waters provide valuable ecosystem services to resident and transient human communities. In the Pacific Northwest (PNW) ...

  10. Stability and change in estuarine biofilm bacterial community diversity.

    PubMed

    Moss, Joseph A; Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2006-09-01

    Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen. PMID:16957182

  11. Contribution of intra-estuarine tributaries to estuarine sediment budget

    NASA Astrophysics Data System (ADS)

    Lemoine, M.; Deloffre, J.; Lafite, R.; Le Hir, P.; Oberle, K.; Petit, F.

    2012-04-01

    This study aims to quantify the sedimentary fluxes between the Seine estuary and an intra-estuarine tributary: the Risle river, located close to the Seine turbidity maximum (TM). Four key areas are monitored from the upstream river to the confluence. Water level, current speed, Suspended Solid Concentration (SSC) and salinity are continuously monitored at high-frequency during one hydrological cycle. This dataset allows to (i) identify the hydrodynamics and sedimentary forcing parameters including their spatial and temporal variability (from event to seasonal scale) and (ii) establish the sedimentary fluxes. It appears that the Risle river behaviour is similar to a macrotidal estuary. The hydrodynamics in the upstream part is mainly controlled by the river discharge that reflects the watershed inputs. The sedimentary fluxes are thus also controlled by the discharge in the order of 25,000 tons.years-1. In the downstream part, the tide is the main hydrodynamics forcing parameter (maximum current speed ~ 2.5m.s-1). The intertidal mudflats (44,000m2), only localised in this part, are subjected to erosion (10,000 tons.years-1). Erosion process is generally sudden and intense, with destabilization and removal of pluri-metric muddy blocks. This area is also characterized by the presence of a TM whom resuspended volume ranges between 5,000 tons (neap tide) and 25,000 tons (spring tide) which represents between 2 and 10 % of the Seine TM volume. During ebb, the Risle river plume contributes to locally increase the SSC in the Seine estuary, while during flood, particules from the Seine estuary are trapped in the river. Thus, exchanges between the Seine TM and a tributary located near this sedimentary stock are significant. This study was conducted during a period of low discharge with low intensity flood. In the Seine estuary, the TM average position is partially controlled by pluri-annual cycles. Besides this phenomenon is poorly examined in literature, the estuarine

  12. Foraging ecology of sanderlings Calidris alba wintering in estuarine and non-estuarine intertidal areas

    NASA Astrophysics Data System (ADS)

    Lourenço, Pedro M.; Alves, José A.; Catry, Teresa; Granadeiro, José P.

    2015-10-01

    Outside the breeding season, most shorebirds use either estuarine or non-estuarine intertidal areas as foraging grounds. The sanderling Calidris alba is mostly associated with coastal sandy beaches, a habitat which is currently at risk worldwide due to increasing coastal erosion, but may also use estuarine sites as alternative foraging areas. We aimed to compare the trophic conditions for sanderlings wintering in estuarine and non-estuarine sites within and around the Tejo estuary, Portugal, where these two alternative wintering options are available within a relatively small spatial scale. To achieve this, we analysed sanderling diet, prey availability, foraging behaviour, and time and energy budgets in the different substrates available in estuarine and non-estuarine sites. In terms of biomass, the most important sanderling prey in the estuarine sites were siphons of the bivalve Scrobicularia plana, polychaetes, staphylinids and the gastropod Hydrobia ulvae. In non-estuarine sites the main prey were polychaetes, the bivalve Donax trunculus and chironomid larvae. Both food availability and energetic intake rates were higher on estuarine sites, and sanderlings spent a higher proportion of time foraging on non-estuarine sites. In the estuary, sanderlings foraged in muddy-sand substrate whenever it was available, achieving higher intake rates than in sandy substrates. In the non-estuarine sites they used both sandy and rocky substrates throughout the tidal cycle but had higher intakes rates in sandy substrate. Estuarine sites seem to offer better foraging conditions for wintering sanderlings than non-estuarine sites. However, sanderlings only use muddy-sand and sandy substrates, which represent a small proportion of the intertidal area of the estuary. The extent of these substrates and the current sanderling density in the estuary suggest it is unlikely that the estuary could provide alternative wintering habitat for sanderlings if they face habitat loss and

  13. A Biological Condition Gradient Model for Historical Assessment of Estuarine Habitat Structure

    NASA Astrophysics Data System (ADS)

    Shumchenia, Emily J.; Pelletier, Marguerite C.; Cicchetti, Giancarlo; Davies, Susan; Pesch, Carol E.; Deacutis, Christopher F.; Pryor, Margherita

    2015-01-01

    Coastal ecosystems are affected by ever-increasing natural and human pressures. Because the physical, chemical, and biological characteristics unique to estuarine ecosystems control the ways that biological resources respond to ecosystem stressors, we present a flexible and adaptable biological assessment method for estuaries. The biological condition gradient (BCG) is a scientific framework of biological response to increasing anthropogenic stress that is comprehensive and ecosystem based and evaluates environmental conditions and the status of ecosystem services in order to identify, communicate, and prioritize management action. Using existing data, we constructed the first estuarine BCG framework that examines changes in habitat structure through time. Working in a New England (U.S.) estuary with a long history of human influence, we developed an approach to define a reference level, which we described as a "minimally disturbed" range of conditions for the ecosystem, anchored by observations before 1850 AD. Like many estuaries in the U.S., the relative importance of environmental stressors changed over time, but even qualitative descriptions of the biological indicators' status provided useful information for defining condition levels. This BCG demonstrated that stressors rarely acted alone and that declines in one biological indicator influenced the declines of others. By documenting the biological responses to cumulative stressors, the BCG inherently suggests an ecosystem-based approach to management. Additionally, the BCG process initiates thinking over long time scales and can be used to inspire scientists, managers, and the public toward environmental action.

  14. 75 FR 4349 - National Estuarine Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ...The National Oceanic and Atmospheric Administration, National Ocean Service, publishes this notice to re-open the solicitation period for the National Estuarine Research Reserve Land Acquisition and Construction Program FY10 to provide National Estuarine Research Reserve lead State agencies or designated universities in coastal States the opportunity to submit proposals for...

  15. Fish community-based measures of estuarine ecological quality and pressure-impact relationships

    NASA Astrophysics Data System (ADS)

    Fonseca, Vanessa F.; Vasconcelos, Rita P.; Gamito, Rita; Pasquaud, Stéphanie; Gonçalves, Catarina I.; Costa, José L.; Costa, Maria J.; Cabral, Henrique N.

    2013-12-01

    Community-based responses of fish fauna to anthropogenic pressures have been extensively used to assess the ecological quality of estuarine ecosystems. Several methodologies have been developed recently combining metrics reflecting community structure and function. A fish community facing significant environmental disturbances will be characterized by a simplified structure, with lower diversity and complexity. However, estuaries are naturally dynamic ecosystems exposed to numerous human pressures, making it difficult to distinguish between natural and anthropogenic-induced changes to the biological community. In the present work, the variability of several fish metrics was assessed in relation to different pressures in estuarine sites. The response of a multimetric index (Estuarine Fish Assessment Index) was also analysed. Overall, fish metrics and the multimetric index signalled anthropogenic stress, particularly environmental chemical pollution. The fish assemblage associated with this type of pressure was characterized by lower species diversity, lower number of functional guilds, lower abundance of marine migrants and of piscivorous individuals, and higher abundance of estuarine resident species. A decreased ecological quality status, based on the EFAI, was also determined for sites associated with this pressure group. Ultimately, the definition of each pressure groups favoured a stressor-specific analysis, evidencing pressure patterns and accounting for multiple factors in a highly dynamic environment.

  16. Ecoengineering with Ecohydrology: Successes and failures in estuarine restoration

    NASA Astrophysics Data System (ADS)

    Elliott, Michael; Mander, Lucas; Mazik, Krysia; Simenstad, Charles; Valesini, Fiona; Whitfield, Alan; Wolanski, Eric

    2016-07-01

    Ecological Engineering (or Ecoengineering) is increasingly used in estuaries to re-create and restore ecosystems degraded by human activities, including reduced water flow or land poldered for agricultural use. Here we focus on ecosystem recolonization by the biota and their functioning and we separate Type A Ecoengineering where the physico-chemical structure is modified on the basis that ecological structure and functioning will then follow, and Type B Ecoengineering where the biota are engineered directly such as through restocking or replanting. Modifying the physical system to create and restore natural processes and habitats relies on successfully applying Ecohydrology, where suitable physical conditions, especially hydrography and sedimentology, are created to recover estuarine ecology by natural or human-mediated colonisation of primary producers and consumers, or habitat creation. This successional process then allows wading birds and fish to reoccupy the rehabilitated areas, thus restoring the natural food web and recreating nursery areas for aquatic biota. We describe Ecohydrology principles applied during Ecoengineering restoration projects in Europe, Australia, Asia, South Africa and North America. These show some successful and sustainable approaches but also others that were less than successful and not sustainable despite the best of intentions (and which may even have harmed the ecology). Some schemes may be 'good for the ecologists', as conservationists consider it successful that at least some habitat was created, albeit in the short-term, but arguably did little for the overall ecology of the area in space or time. We indicate the trade-offs between the short- and long-term value of restored and created ecosystems, the success at developing natural structure and functioning in disturbed estuaries, the role of this in estuarine and wetland management, and the costs and benefits of Ecoengineering to the socio-ecological system. These global case

  17. 15 CFR 921.51 - Estuarine research guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.51 Estuarine research guidelines. (a) Research within the National Estuarine Research Reserve System shall be... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Estuarine research guidelines....

  18. 15 CFR 921.51 - Estuarine research guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.51 Estuarine research guidelines. (a) Research within the National Estuarine Research Reserve System shall be... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Estuarine research guidelines....

  19. 15 CFR 921.51 - Estuarine research guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.51 Estuarine research guidelines. (a) Research within the National Estuarine Research Reserve System shall be... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Estuarine research guidelines....

  20. 15 CFR 921.51 - Estuarine research guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.51 Estuarine research guidelines. (a) Research within the National Estuarine Research Reserve System shall be... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Estuarine research guidelines....

  1. 15 CFR 921.51 - Estuarine research guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.51 Estuarine research guidelines. (a) Research within the National Estuarine Research Reserve System shall be... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Estuarine research guidelines....

  2. A POLYCHLORINATED DIBENZOFURAN AND RELATED COMPOUNDS IN AN ESTUARINE ECOSYSTEM

    EPA Science Inventory

    A 2,4,8-trichlorodibenzofuran, a tetrachlorodiphenyl ether, and a trichlorodiphenyl ether have been identified in samples of edible marine organisms and suspended particulate material obtained from Narragansett Bay, RI. Rapid declines in the concentrations of these compounds with...

  3. Repeating patterns of virioplankton production within an estuarine ecosystem

    PubMed Central

    Winget, Danielle M.; Helton, Rebekah R.; Williamson, Kurt E.; Bench, Shellie R.; Williamson, Shannon J.; Wommack, K. Eric

    2011-01-01

    The Chesapeake Bay, a seasonally variable temperate estuary, provides a natural laboratory for examining the fluctuations and impacts of viral lysis on aquatic microorganisms. Viral abundance (VA) and viral production (VP) were monitored in the Chesapeake Bay over 4 1/2 annual cycles, producing a unique, long-term, interannual study of virioplankton production. High and dynamic VP rates, averaging 7.9 × 106 viruses per mL per h, indicate that viral lysis impacts a significant fraction of microorganisms in the Chesapeake. Viral-mediated bacterial mortality, VA, VP, and organic carbon release all displayed similar interannual and seasonal trends with higher values in 2003 and 2006 than in 2004 and 2005 and peaks in early spring and summer. Surprisingly, higher rates of viral lysis occurred in winter, resulting in a magnified effect of viral lysis on bacterioplankton during times of reduced productivity. Viral lysis directly impacted the organic carbon pool, contributing on average 76 μg of C per L per d, an amount capable of sustaining ∼55% of Chesapeake Bay bacterial production. The observed repeating interannual patterns of VP and lysis are likely interlinked with seasonal cycles of host abundance and diversity, which are in turn driven by annual cycles in environmental conditions, emphasizing the complex interplay of seasonality and microbial ecology in the Chesapeake Bay. PMID:21709214

  4. Downwelling wind, tides, and estuarine plume dynamics

    NASA Astrophysics Data System (ADS)

    Lai, Zhigang; Ma, Ronghua; Huang, Mingfen; Chen, Changsheng; Chen, Yong; Xie, Congbin; Beardsley, Robert C.

    2016-06-01

    The estuarine plume dynamics under a downwelling-favorable wind condition were examined in the windy dry season of the Pearl River Estuary (PRE) using the PRE primitive-equation Finite-Volume Community Ocean Model (FVCOM). The wind and tide-driven estuarine circulation had a significant influence on the plume dynamics on both local and remote scales. Specifically, the local effect of downwelling-favorable winds on the plume was similar to the theoretical descriptions of coastal plumes, narrowing the plume width, and setting up a vertically uniform downstream current at the plume edge. Tides tended to reduce these plume responses through local turbulent mixing and advection from upstream regions, resulting in an adjustment of the isohalines in the plume and a weakening of the vertically uniform downstream current. The remote effect of downwelling-favorable winds on the plume was due to the wind-induced estuarine sea surface height (SSH), which strengthened the estuarine circulation and enhanced the plume transport accordingly. Associated with these processes, tide-induced mixing tended to weaken the SSH gradient and thus the estuarine circulation over a remote influence scale. Overall, the typical features of downwelling-favorable wind-driven estuarine plumes revealed in this study enhanced our understanding of the estuarine plume dynamics under downwelling-favorable wind conditions.

  5. Pathobiology of marine and estuarine organisms

    SciTech Connect

    Couch, J.A.; Fournie, J.W.

    1992-12-01

    The book is an up-to-date compendium of scientific findings related to diseases of marine and estuarine organisms. The information was presented at the Gulf Breeze Symposium on Marine and Estuarine Disease Research sponsored by the U.S. Environmental Protection Agency (EPA) Environmental Monitoring and Assessment Program (EMAP) held in October 1990 on Pensacola Beach, Florida. Authors review the state-of-the-science and recommend research for future studies of the impact of xenobiotics and other anthropogenic stress factors on disease processes in marine and estuarine organisms.

  6. Storm-induced changes in coastal geomorphology control estuarine secondary productivity

    NASA Astrophysics Data System (ADS)

    Filgueira, Ramón; Guyondet, Thomas; Comeau, Luc A.; Grant, Jon

    2014-01-01

    Estuarine ecosystems are highly sensitive not only to projected effects of climate change such as ocean warming, acidification, and sea-level rise but also to the incidence of nor'easter storms and hurricanes. The effects of storms and hurricanes can be extreme, with immediate impact on coastal geomorphology and water circulation, which is integral to estuarine function and consequently to provision of ecosystem services. In this article, we present the results of a natural estuarine-scale experiment on the effects of changes in coastal geomorphology on hydrodynamics and aquaculture production. A bay in Prince Edward Island, Canada, was altered when a nor'easter storm eroded a second tidal inlet through a barrier island. Previous field and modeling studies allowed a comparison of prestorm and post-storm circulation, food limitation by cultured mussels, and aquaculture harvest. Dramatic increases in mussel production occurred in the year following the opening of the new inlet. Model studies showed that post-storm circulation reduced food limitation for cultured mussels, allowing greater growth. Climate change is expected to have severe effects on the delivery of marine ecosystem services to human populations by changing the underlying physical-biological coupling inherent to their functioning.

  7. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments.

    PubMed

    Yin, Guoyu; Hou, Lijun; Liu, Min; Zheng, Yanling; Li, Xiaofei; Lin, Xianbiao; Gao, Juan; Jiang, Xiaofen

    2016-07-01

    Nitrate overload is an important driver of water pollution in most estuarine and coastal ecosystems, and thus nitrate reduction processes have attracted considerable attention. Antibiotics contamination is also an emerging environmental problem in estuarine and coastal regions as a result of growing production and usage of antibiotics. However, the effects of antibiotics on nitrate reduction remain unclear in these aquatic ecosystems. In this study, continuous-flow experiments were conducted to examine the effects of thiamphenicol (TAP, a common chloramphenicol antibiotic) on nitrate reduction and greenhouse gas N2O release. Functional genes involved in nitrogen transformation were also quantified to explore the microbial mechanisms of the TAP influence. Production of N2 were observed to be inhibited by TAP treatment, which implied the inhibition effect of TAP on nitrate reduction processes. As intermediate products of nitrogen transformation processes, nitrite and N2O were observed to accumulate during the incubation. Different TAP inhibition effects on related functional genes may be the microbial mechanism for the changes of nutrient fluxes, N2 fluxes and N2O release rates. These results indicate that the antibiotics residues in estuarine and coastal ecosystems may contribute to nitrate retention and N2O release, which could be a major factor responsible for eutrophication and greenhouse effects. PMID:27105162

  8. Size matters: The contribution of mega-infauna to the food webs and ecosystem services of an Oregon estuary - ESA

    EPA Science Inventory

    Background/Questions/Methods Large-bodied invertebrates (bivalves, polychaetes, burrowing shrimps) are common to infaunal communities of NE Pacific estuaries, but their contribution to estuarine community structure, function and ecosystem services is poorly understood because ...

  9. Mechanisms driving estuarine water quality: A 3D biogeochemical model for informed management

    NASA Astrophysics Data System (ADS)

    Wild-Allen, Karen; Skerratt, Jenny; Whitehead, Jason; Rizwi, Farhan; Parslow, John

    2013-12-01

    Estuaries are amongst the most productive marine ecosystems of the world but are also some of the most degraded due to coastal urban development. Sparse sampling of complex interactions between estuarine physics, sediment transport, chemistry, and biology limits understanding of the processes controlling estuarine water quality and confounds active management. We use a 3D coupled hydrodynamic, sediment and biogeochemical model to identify the key mechanisms driving fine-scale fluctuations in water quality in a temperate micro-tidal salt wedge estuary [Derwent Estuary, Tasmania]. Model results are dynamically consistent with relatively sparse monitoring data collected over a seasonal cycle and are considered to be a plausible hypothesis of sub-monitoring scale processes occurring in the estuary. The model shows enhanced mixing of nutrients across the pycnocline downstream of the salt wedge front that supports a persistent phytoplankton bloom. The length and flow regime of the estuary results in nutrient recycling and retention in the estuarine circulation driving a decline in bottom water dissolved oxygen in the mid- and upper-reaches. A budget analysis of modelled nitrogen suggests high levels of denitrification are critical to the maintenance of existing water quality. Active estuarine management focused on the improvement of bottom water dissolved oxygen for ecological health reasons must either concurrently reduce anthropogenic nitrogen loads or be sure to maintain high levels of microbial denitrification for net water quality improvement.

  10. Assessing estuarine quality: A cost-effective in situ assay with amphipods.

    PubMed

    Martinez-Haro, Monica; Acevedo, Pelayo; Pais-Costa, Antónia Juliana; Taggart, Mark A; Martins, Irene; Ribeiro, Rui; Marques, João Carlos

    2016-05-01

    In situ assays based on feeding depression can be powerful ecotoxicological tools that can link physiological organism-level responses to population and/or community-level effects. Amphipods are traditional target species for toxicity tests due to their high sensitivity to contaminants, availability in the field and ease of handling. However, cost-effective in situ assays based on feeding depression are not yet available for amphipods that inhabit estuarine ecosystems. The aim of this work was to assess a short-term in situ assay based on postexposure feeding rates on easily quantifiable food items with an estuarine amphipod. Experiments were carried out under laboratory conditions using juvenile Echinogammarus marinus as the target individual. When 60 Artemia franciscana nauplii (as prey) were provided per individual for a period of 30 min in dark conditions, feeding rates could be easily quantified. As an endpoint, postexposure feeding inhibition in E. marinus was more sensitive to cadmium contamination than mortality. Assay calibration under field conditions demonstrated the relevance of sediment particle size in explaining individual feeding rates in uncontaminated water bodies. An evaluation of the 48-h in situ bioassay based on postexposure feeding rates indicated that it is able to discriminate between unpolluted and polluted estuarine sites. Using the harmonized protocol described here, the in situ postexposure feeding assay with E. marinus was found to be a potentially useful, cost-effective tool for assessing estuarine sediment and water quality. PMID:26874320

  11. Columbia River Estuary Ecosystem Classification — Concept and application

    USGS Publications Warehouse

    Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.

    2011-01-01

    This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.

  12. Trophic relationships in an estuarine environment: A quantitative fatty acid analysis signature approach

    NASA Astrophysics Data System (ADS)

    Magnone, Larisa; Bessonart, Martin; Gadea, Juan; Salhi, María

    2015-12-01

    In order to better understand the functioning of aquatic environments, it is necessary to obtain accurate diet estimations in food webs. Their description should incorporate information about energy flow and the relative importance of trophic pathways. Fatty acids have been extensively used in qualitative studies on trophic relationships in food webs. Recently a new method to estimate quantitatively single predator diet has been developed. In this study, a model of aquatic food web through quantitative fatty acid signature analysis was generated to identify the trophic interactions among the species in the Rocha Lagoon. The biological sampling over two consecutive annual periods was comprehensive enough to identify all functional groups in the aquatic food web (except birds and mammals). Heleobia australis seemed to play a central role in this estuarine ecosystem. As both, a grazer and a prey to several other species, probably H. australis is transferring a great amount of energy to upper trophic levels. Most of the species at Rocha Lagoon have a wide range of prey items in their diet reflecting a complex food web, which is characteristic of extremely dynamic environment as estuarine ecosystems. QFASA is a model in tracing and quantitative estimate trophic pathways among species in an estuarine food web. The results obtained in the present work are a valuable contribution in the understanding of trophic relationships in Rocha Lagoon.

  13. EFFECTS OF PENTACHLOROPHENOL ON DEVELOPMENT OF ESTUARINE COMMUNITIES

    EPA Science Inventory

    Pentachlorophenol affected the composition of communities of estuarine organisms developed in sand from planktonic larvae in estuarine water that flowed through ten control aquaria and ten aquaria per exposure concentration averaging 7, 76, or 622 micrograms/liter. Annelids, arth...

  14. Measuring the acute toxicity of estuarine sediments

    SciTech Connect

    DeWitt, T.H.; Swartz, R.C.; Lanberson, J.O.

    1989-01-01

    Estuarine sediments frequently are repositories and sources of anthropogenic contaminants. Toxicity is one method of assessing the environmental quality of sediments, yet because of the extreme range of salinities that characterize estuaries few infaunal organisms have both the physiological tolerance and sensitivity to chemical contaminants to serve in estuarine sediment toxicity tests. The study describes research on the estuarine burrowing amphipod, Eohaustorius estuarius Bosworth, 1973, whose survival was >95% in control sediments across a 2 to 28% salinity range over 10-d periods. E. estuarius also was acutely sensitive to low sediment concentrations of the polycyclic aromatic hydrocarbon, fluoranthene (LC50 approximately = 10.6 mg/kg), and its sensitivity to fluoranthene was not affected by salinity. E. estuarius was almost as sensitive as Rhepoxynius abronius to fluoranthene and to field-collected sediments from Puget Sound urban and industrial bays. E. estuarius was also more tolerant of very fine, uncontaminated sediments than R. abronius. Furthermore, E. estuarius was more sensitive to sediments spiked with fluoranthene than the freshwater amphipod, Hyalella azteca. E. estuarius, and possibly other estuarine haustoriid species, appears to be an excellent candidate for testing the acute toxicity if estuarine and marine sediments.

  15. EVALUATION AND EMERGY ANALYSIS OF THE COBSCOOK BAY ECOSYSTEM

    EPA Science Inventory

    A naturally eutrophic, estuarine ecosystem with many unique features has developed in Cobscook Bay over the past four thousand years under the influence of six meter tides and rich flows of nitrogen from the deep waters of the Gulf of Maine. In this paper measurements of primary ...

  16. Climate Change, Precipitation and Impacts on an Estuarine Refuge from Disease

    PubMed Central

    Levinton, Jeffrey; Doall, Michael; Ralston, David; Starke, Adam; Allam, Bassem

    2011-01-01

    Background Oysters play important roles in estuarine ecosystems but have suffered recently due to overfishing, pollution, and habitat loss. A tradeoff between growth rate and disease prevalence as a function of salinity makes the estuarine salinity transition of special concern for oyster survival and restoration. Estuarine salinity varies with discharge, so increases or decreases in precipitation with climate change may shift regions of low salinity and disease refuge away from optimal oyster bottom habitat, negatively impacting reproduction and survival. Temperature is an additional factor for oyster survival, and recent temperature increases have increased vulnerability to disease in higher salinity regions. Methodology/Principal Findings We examined growth, reproduction, and survival of oysters in the New York Harbor-Hudson River region, focusing on a low-salinity refuge in the estuary. Observations were during two years when rainfall was above average and comparable to projected future increases in precipitation in the region and a past period of about 15 years with high precipitation. We found a clear tradeoff between oyster growth and vulnerability to disease. Oysters survived well when exposed to intermediate salinities during two summers (2008, 2010) with moderate discharge conditions. However, increased precipitation and discharge in 2009 reduced salinities in the region with suitable benthic habitat, greatly increasing oyster mortality. To evaluate the estuarine conditions over longer periods, we applied a numerical model of the Hudson to simulate salinities over the past century. Model results suggest that much of the region with suitable benthic habitat that historically had been a low salinity refuge region may be vulnerable to higher mortality under projected increases in precipitation and discharge. Conclusions/Significance Predicted increases in precipitation in the northeastern United States due to climate change may lower salinities past

  17. Estuarine Biogeochemical Dynamics of Nutrients and Organic Carbon in the Columbia River: Observing Transformations Using a Biogeochemical Sensor Network

    NASA Astrophysics Data System (ADS)

    Needoba, J. A.; Peterson, T. D.; Riseman, S.; Wilkin, M.; Baptista, A. M.

    2015-12-01

    The Columbia River estuary is an ecosystem dominated by both a large river discharge and strong tidal forcing that creates fast currents, intense and variable physical stratification, low water residence times, and large gradients in salinity, temperature and water quality across the river to ocean boundary. Assessing ecosystem function and biogeochemical cycling in this environment is hampered by the inherent variability in both temporal and spatial timescales. In recent years the NSF Science and Technology Center for Coastal Margin Observation and Prediction has established a comprehensive in situ observation network that spans the estuarine gradient and captures variability associated with tides, diel cycles, episodic events, and seasonal changes in the river and ocean end-members. Here we describe the major patterns of variability in nitrate, orthophosphate, fluorescent dissolved organic carbon and related variables that demonstrate the dominant physical forcing and the biogeochemical hotspots within the ecosystem. These hotspots include intertidal lateral bays, the tidal freshwater river, and the estuarine turbidity maxima. Improved understanding of the role of these estuarine hotspots has informed ecosystem stewardship activities related to juvenile salmon survival, hypoxia, and food web structure.

  18. 76 FR 40338 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ...The Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce has approved the ACE Basin, SC National Estuarine Research Reserve and Old Woman Creek, OH National Estuarine Research Reserve Management Plan Revisions. The revised management plan for the ACE Basin, SC......

  19. 78 FR 26617 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ...Notice is hereby given that the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce is announcing a thirty day public comment period for the Grand Bay, Mississippi National Estuarine Research Reserve Management Plan and the Delaware National Estuarine Research Reserve......

  20. Modelling the effect of hydrological change on estuarine health: An Australian Perspective. (Invited)

    NASA Astrophysics Data System (ADS)

    Bruce, L. C.; Adiyanti, S.; Ruibal, A. L.; Hipsey, M. R.

    2013-12-01

    Estuaries provide an important role in the filtering and transformation of carbon and nutrients from coastal catchments into the marine environment. Global trends including climate change, increased population, industrialization and agriculture have led to the rapid deterioration of estuarine ecosystems across the world. Within the Australian context, a particular concern is how changes to hydrological regimes, due to both water diversions and climate variability, are contributing to increased stress and consequent decline in estuarine health. In this study we report the modeling output of five Australian estuaries, each with different hydrological regimes and alternative management issues relating to altered hydrology: 1) The Yarra River estuary is a highly urbanized system, also receiving agriculturally derived nutrients, where the concern is the role of periodic hypoxia in reducing the assimilation capacity of nitrogen and thus increased risk of algal blooms forming in the coastal environment; 2) The upper Swan River estuary in Western Australia, which experiences persistent anoxia and hypoxia brought about by reduced flows has led to the commissioning of several oxygenation plants to alleviate stress on biodiversity and overall estuarine health; 3) The health of the Caboolture estuary in Queensland has deteriorated in the past decade with the aim of model development to quantify the various sources of surface and groundwater derived nutrients; 4) The construction of an additional channel to increase flushing in the Peel Harvey estuary in Western Australia was designed to control persistent harmful algal blooms; and 5) The Lower River Murray estuary experienced a prolonged drought that led to the development of acid sulfate soils and acid drainage deteriorating water quality. For these applications we applied 3-D hydrodynamic-biogeochemical models to determine underlying relationships between altered flow regimes, increased temperatures and the response of

  1. Size matters: The contribution of mega-infauna to the food webs and ecosystem services of an Oregon estuary - 9-30-12

    EPA Science Inventory

    Large-bodied invertebrates (bivalves, polychaetes, burrowing shrimps) are common to infaunal communities of NE Pacific estuaries, but their contribution to estuarine community structure, function and ecosystem services is poorly understood because they are difficult to sample and...

  2. DIBUTYLPHTHALATE DEGRADATION IN ESTUARINE AND FRESHWATER SITES

    EPA Science Inventory

    Biotic and abiotic degradation of di-n-butylphthalate (DBP) in water and sediment/water systems from six different sites was investigated under laboratory conditions. Water and underlying sediment were collected from freshwater and estuarine sites in Florida, Mississippi, and Lou...

  3. EFFECT OF DIFLUBENZURON ON AN ESTUARINE CRUSTACEAN

    EPA Science Inventory

    Data are reported for tests exposing a small, estuarine crustacean, Mysidopsis bahia, to diflubenzuron (Dimilin, TH-6040, (1-(4-chlorophenyl)-3-(2,6-difluorobenzoyl)urea)) in flowing seawater. Tests were conducted in intermittent flows from a diluter or continuous flowing water i...

  4. Estuarine Oceanography. CEGS Programs Publication Number 18.

    ERIC Educational Resources Information Center

    Wright, F. F.

    Estuarine Oceanography is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. Designed for those interested in coastal oceanography or limnology, the module is structured as a laboratory supplement for undergraduate college classes but should be useful at all levels. The module has two…

  5. Spatial analysis of the trophic interactions between two juvenile fish species and their preys along a coastal-estuarine gradient

    NASA Astrophysics Data System (ADS)

    Kopp, Dorothée; Le Bris, Hervé; Grimaud, Lucille; Nérot, Caroline; Brind'Amour, Anik

    2013-08-01

    Coastal and estuarine systems provide nursery grounds for many marine fish species. Their productivity has been correlated with terrigeneous inputs entering the coastal-estuarine benthic food web, thereby favouring the establishment of fish juveniles. Studies in these ecosystems often describe the nursery as a single large habitat without verifying nor considering the presence of contiguous habitats. Our study aimed at identifying different habitats based on macrozoobenthic communities and morpho-sedimentary characteristics and assessing the trophic interactions between fish juveniles and their benthic preys within these habitats. It included 43 sampling sites covering 5 habitats in which we described taxonomically and quantitatively the invertebrates and fish communities with stable isotopes and gut contents. It suggested that the benthic common sole Solea solea displayed feeding plasticity at the population level, separating the juveniles (G0) from the older fish (G1) into different "feeding sub-populations". Size-based feeding plasticity was also observable in the spatial occupancy of that species in the studied bay. The demersal pouting, Trisopterus luscus, equally used the different habitats but displayed low feeding plasticity across and inside each habitat. Stable isotopes proved to be powerful tools to study the spatial distribution of trophic interactions in complex ecosystems like the bay of Vilaine and to define optimal habitats for fish that use the coastal-estuarine ecosystem as nursery grounds.

  6. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P < 0.01), with the dominant genus shifting from Brocadia in the freshwater region to Scalindua in the open ocean. Anammox bacterial abundance ranged from 3.67 × 105 to 8.22 × 107 copies 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  7. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  8. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed a study of…

  9. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses

    PubMed Central

    Wang, Sikai; Jin, Binsong; Qin, Haiming; Sheng, Qiang; Wu, Jihua

    2015-01-01

    Benthic bivalves are important links between primary production and consumers, and are essential intermediates in the flow of energy through estuarine systems. However, information on the diet of filter feeding bivalves in estuarine ecosystems is uncertain, as estuarine waters contain particulate matter from a range of sources and as bivalves are opportunistic feeders. We surveyed bivalves at different distances from the creek mouth at the Yangtze estuarine marsh in winter and summer, and analyzed trophic dynamics using stable isotope (SI) and fatty acid (FA) techniques. Different bivalve species had different spatial distributions in the estuary. Glauconome chinensis mainly occurred in marshes near the creek mouth, while Sinonovacula constricta preferred the creek. Differences were found in the diets of different species. S. constricta consumed more diatoms and bacteria than G. chinensis, while G. chinensis assimilated more macrophyte material. FA markers showed that plants contributed the most (38.86 ± 4.25%) to particular organic matter (POM) in summer, while diatoms contributed the most (12.68 ± 1.17%) during winter. Diatoms made the largest contribution to the diet of S. constricta in both summer (24.73 ± 0.44%) and winter (25.51 ± 0.59%), and plants contributed no more than 4%. This inconsistency indicates seasonal changes in food availability and the active feeding habits of the bivalve. Similar FA profiles for S. constricta indicated that the bivalve had a similar diet composition at different sites, while different δ13C results suggested the diet was derived from different carbon sources (C4 plant Spartina alterniflora and C3 plant Phragmites australis and Scirpus mariqueter) at different sites. Species-specific and temporal and/or spatial variability in bivalve feeding may affect their ecological functions in intertidal marshes, which should be considered in the study of food webs and material flows in estuarine ecosystems. PMID:26261984

  10. Trophic functioning of the St. Lucia estuarine lake during a drought phase assessed using stable isotopes

    NASA Astrophysics Data System (ADS)

    Govender, Natasha; Smit, Albertus J.; Perissinotto, Renzo

    2011-06-01

    The St. Lucia Estuary is Africa's largest estuarine system and is currently experiencing the stress of prolonged freshwater deprivation, manifested by extremely low water levels and hypersalinity. These unprecedented conditions have raised questions regarding the trophic functioning of the ecosystem. Despite the substantial amount of research previously undertaken within this system, no studies of food web structure and function have yet been documented. This study therefore aimed to examine the food web structure of the St. Lucia estuary system through the use of carbon and nitrogen stable isotope analysis. Analysis of carbon isotope ratios indicates that benthic carbon sources are most utilised at sites with low water levels and generally higher salinity (Catalina Bay, Charter's Creek). Conversely, the estuarine region of the mouth and Narrows, with its elevated water levels and lower salinity, still sustains a viable pelagic food web. Analysis of δ15N ratios indicates that the number of trophic transfers (food chain length) might be related to water levels. Overall, the study provides a greater understanding of the ecological processes of this complex estuarine lake, which may allow for future comparisons of trophic functioning under drought and normal/wet conditions to be made.

  11. Human effects on estuarine shoreline decadal evolution

    NASA Astrophysics Data System (ADS)

    Rilo, A.; Freire, P.; Ceia, R.; Mendes, R. N.; Catalão, J.; Taborda, R.

    2012-04-01

    Due to their sheltered conditions and natural resources, estuaries were always attractive to human activities (industrial, agriculture, residential and recreation). Consequently, the complex interactions between anthropogenic and natural drivers increase estuarine shoreline vulnerability to climate changes impacts. The environmental sustainability of these systems depends on a fragile balance between societal development and natural values that can be further disturbed by climate change effects. This challenging task for scientific community, managers and stakeholders can only be accomplished with interdisplinary approaches. In this context, it seems clear that estuarine management plans should incorporate the concept of change into the planning of policy decisions since these natural dynamic areas are often under human pressure and are recognized as sensitive to climate change effects. Therefore, the knowledge about historical evolution of estuarine shoreline is important to provide new insights on the spatial and temporal dimensions of estuarine change. This paper aims to present and discuss shoreline changes due to human intervention in Tagus estuary, located on the west coast of Portugal. Detailed margins cartography, in a 550m fringe (drawn inland from the highest astronomical tide line), was performed based on 2007 orthophotos (spatial resolution of 0.5 m) analysis. Several classification categories were considered, as urbanized areas, industrial, port and airport facilities, agriculture spaces, green areas and natural zones. The estuarine bed (area bellow the highest astronomical tide line) was also mapped (including human occupation, natural habitats, morpho-sedimentary units) based on the geographic information above and LANSAT 7 TM+ images using image processing techniques. Aerial photographs dated from 1944, 1946, 1948, 1955 and 1958 were analyzed for a set of pilot zones in order to fully understand the decadal shoreline change. Estuarine bed presents

  12. Mechanistic models as a transferable framework for projecting effects of habitat change on production and delivery of ecosystem services

    EPA Science Inventory

    Drawing a link between habitat change and the production and delivery of ecosystem services is a priority in coastal estuarine ecosystems. Mechanistic modeling tools are highly functional for exploring this link because they allow for the synthesis of multiple ecological and beh...

  13. Partitioning of trace elements in contaminated estuarine sediments: the role of environmental settings.

    PubMed

    Shaike, Mohmmad M; Nath, Bibhash; Birch, Gavin F

    2014-12-01

    Estuarine sedimentary environments safeguard aquatic ecosystem health by attenuating and transforming catchment-derived contaminants. Currently these environments are under severe stress from trace element contamination due to urbanization. Sediments of Sydney estuary (Australia) are highly elevated in a range of metals due to a long period of intense urbanization and industrialization, which has had a considerable influence on coastal ecosystem health and functioning. A three-stage sequential procedure following Bureau Communautaire de Référence (Community Bureau of Reference-BCR) technique was applied to sediments collected from Sydney estuary to determine their quality, elemental partitioning and ecosystem risk in three human-impacted environmental settings (i.e., mangrove-dominated, stormwater-dominated and industrial-dominated sites) and a control site in this coastal ecosystem. In all three environmental settings, Pb and Zn concentrations exceeded Australian Interim Sediment Quality Guidelines-High (ISQG-High) values and were mostly associated with the reducible and acid soluble fractions, respectively. Copper and Cr also exceeded ISQG-High values (especially in the industrial-dominated site), however the majority of these metals were associated with the oxidizable fraction. Arsenic and Ni concentrations were mostly below ISQG-High values (except one of the stormwater-dominated sites) and were associated with the residual fraction. These results suggest that the most easily mobilized metal was Zn followed by Pb and these metals together presented a risk to estuarine ecosystems in the three selected environmental settings. However, these metals are not always the most abundant in tissue of mangroves, oysters or prawns suggesting other mechanisms are important in a complex uptake process. PMID:25265026

  14. Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation

    PubMed Central

    Lopes, Viviana R.; Vasconcelos, Vitor M.

    2011-01-01

    Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria and green algae growth were evaluated. To understand how the estuarine cyanobacteria might influence the dynamics of phytoplankton, experiments were carried out with the freshwater species Microcystis aeruginosa and Chlorella sp., and the marine Synechocystis salina and Nannochloropsis sp. exposed to aqueous and organic (70% methanol) crude extracts of cyanobacteria for 96 h. The most pronounced effect observed was the growth stimulation. Growth inhibition was also observed for S. salina and M. aeruginosa target-species at the highest and lowest concentrations of cyanobacterial extracts. The methanolic crude extract of Phormidium cf. chalybeum LEGE06078 was effective against S. salina growth in a concentration-dependent manner after 96 h-exposure. All of the cyanobacterial isolates showed some bioactivity on the target-species growth, i.e., inhibitory or stimulating effects. These results indicate that the analyzed cyanobacterial isolates can potentially contribute to blooms’ proliferation of other cyanobacteria and to the abnormal growth of green algae disturbing the dynamic of estuarine phytoplankton communities. Since estuaries are transitional ecosystems, the benthic and picoplanktonic estuarine cyanobacteria can change both freshwater and marine phytoplankton succession, competition and bloom formation. Furthermore, a potential biotechnological application of these isolates as a tool to control cyanobacteria and microalgae proliferation can be feasible. This work is the first on the subject of growth responses of photoautotrophs to cyanobacteria from Atlantic estuarine environments. PMID:21673889

  15. 75 FR 69399 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office... Chesapeake Bay (Maryland) National Estuarine Research Reserves. The Coastal Zone Management Program... terms of financial assistance awards funded under the CZMA. The National Estuarine Research...

  16. 76 FR 14376 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office... its intent to evaluate the performance of the ACE Basin (South Carolina) National Estuarine Research Reserve and the Georgia Coastal Management Program. The National Estuarine Research Reserve...

  17. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  18. Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick

    2015-08-01

    For several decades now, there has been an increase in the sources and types of chemicals in estuarine and coastal waters as a consequence of anthropogenic activities. This has led to considerable concern about the effects of these chemicals on the marine food chain. The fact is that estuarine and coastal waters are the most productive ecosystems with high primary production by microalgae. The toxic pressure of specific phytotoxic chemicals now poses a major threat to these ecosystems. In a previous study, six herbicides (atrazine, diuron, irgarol, isoproturon, terbutryn and terbutylazine) were identified as the main contaminants affecting photosynthesis in marine microalgae. The purpose of this study is to investigate the toxic pressure of these herbicides in the Dutch estuarine and coastal waters in relation to the effective photosystem II efficiency (ΦPSII) in microalgae. Temporal and spatial variations in the concentrations of these herbicides were analyzed based on monitoring data. Additionally, a field study was carried out in which chemical analysis of water was performed and also a toxicity assessment using the Pulse Amplitude Modulation (PAM) fluorometry assay that measures ΦPSII. The toxic pressure on ΦPSII in microalgae has decreased with 55-82% from 2003 to 2012, with the Western Scheldt estuary showing the highest toxic pressure. By combining toxicity data from the PAM assay with chemical analysis of herbicide concentrations, we have identified diuron and terbutylazine as the main contributors to the toxic pressure on microalgae. Although direct effects are not expected, the toxic pressure is close to the 10% effect level in the PAM assay. A compliance check with the current environmental legislation of the European Union revealed that the quality standards are not sufficient to protect marine microalgae.

  19. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  20. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments.

    PubMed

    Hou, Lijun; Yin, Guoyu; Liu, Min; Zhou, Junliang; Zheng, Yanling; Gao, Juan; Zong, Haibo; Yang, Yi; Gao, Lei; Tong, Chunfu

    2015-01-01

    Denitrification is an important pathway of nitrogen removal and nitrous oxide (N2O) production in estuarine and coastal ecosystems, and plays a significant role in counteracting aquatic eutrophication induced by excessive nitrogen loads. Estuarine and coastal environments also suffer from increasing antibiotic contamination because of the growing production and usage of antibiotics. In this study, sediment slurry incubation experiments were conducted to determine the influence of sulfamethazine (SMT, a sulphonamide antibiotic) on denitrification and the associated N2O production. Genes important for denitrification and antibiotic resistance were quantified to investigate the microbial physiological mechanisms underlying SMT's effects on denitrification. SMT was observed to significantly inhibit denitrification rates, but increasing concentrations of SMT enhanced N2O release rates. The negative exponential relationships between denitrifying gene abundances and SMT concentrations showed that SMT reduced denitrification rates by restricting the growth of denitrifying bacteria, although the presence of the antibiotic resistance gene was detected during the incubation period. These results imply that the wide occurrence of residual antibiotics in estuarine and coastal ecosystems may influence eutrophication control, greenhouse effects, and atmospheric ozone depletion by inhibiting denitrification and stimulating the release of N2O. PMID:25525860

  1. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  2. Adventures in holistic ecosystem modelling: the cumberland basin ecosystem model

    NASA Astrophysics Data System (ADS)

    Gordon, D. C.; Keizer, P. D.; Daborn, G. R.; Schwinghamer, P.; Silvert, W. L.

    A holistic ecosystem model has been developed for the Cumberland Basin, a turbid macrotidal estuary at the head of Canada's Bay of Fundy. The model was constructed as a group exercise involving several dozen scientists. Philosophy of approach and methods were patterned after the BOEDE Ems-Dollard modelling project. The model is one-dimensional, has 3 compartments and 3 boundaries, and is composed of 3 separate submodels (physical, pelagic and benthic). The 28 biological state variables cover the complete estuarine ecosystem and represent broad functional groups of organisms based on trophic relationships. Although still under development and not yet validated, the model has been verified and has reached the stage where most state variables provide reasonable output. The modelling process has stimulated interdisciplinary discussion, identified important data gaps and produced a quantitative tool which can be used to examine ecological hypotheses and determine critical environmental processes. As a result, Canadian scientists have a much better understanding of the Cumberland Basin ecosystem and are better able to provide competent advice on environmental management.

  3. Coastal and Estuarine Waters: Light Behavior. Coastal and Estuarine Waters: Optical Sensors and Remote Sensing.

    EPA Science Inventory

    This article summarizes the use of remote sensing techniques and technology to monitor coastal and estuarine waters. These waters are rich in mineral particles stirred up from the seabed by tides and waves and dissolved organic matter transported by rivers. The majority of the li...

  4. OVERVIEW OF GIS APPLICATIONS IN ESTUARINE MONITORING AND ASSESSMENT RESEARCH

    EPA Science Inventory

    Geographic information systems (GIS) tools are now considered integral in estuarine monitoring and assessment research. A synopsis is presented of our estuarine applications of GIS in the Northeast region of the U.S. The applications discussed cover sample site selection, support...

  5. 78 FR 50038 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ...Notice is hereby given that the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce is announcing a thirty day public comment period for the Wells, Maine National Estuarine Research Reserve Management Plan revision. Pursuant to 15 CFR Section 921.33(c), the revised......

  6. EFFECT OF BARITE (BASO4) ON DEVELOPMENT OF ESTUARINE COMMUNITIES

    EPA Science Inventory

    Barite (BaSO4), the primary component of oil drilling muds, affected the composition of estuarine communities developed from planktonic larvae in aquaria containing sand and flowing estuarine water. Aquaria contained: sand only; a mixture (by volume) of 1 part barite and 10 parts...

  7. 78 FR 53732 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ...Notice is hereby given that the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce approves the Grand Bay, Mississippi and the Delaware National Estuarine Research Reserve Management Plan Revisions. The revised management plans outline the administrative structure;......

  8. 76 FR 16620 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-24

    ...Notice is hereby given that the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce is announcing a thirty-day comment period for the revised management plans and boundary amendments of the ACE Basin, SC National Estuarine Research Reserve and Old Woman Creek,......

  9. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  10. A Simulation Model for Studying Effects of Pollution and Freshwater Inflow on Secondary Productivity in an Ecosystem. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1974-01-01

    A mathematical model of an ecosystem is developed. Secondary productivity is evaluated in terms of man related and controllable factors. Information from an existing physical parameters model is used as well as pertinent biological measurements. Predictive information of value to estuarine management is presented. Biological, chemical, and physical parameters measured in order to develop models of ecosystems are identified.

  11. Effects of light reduction on food webs and associated ecosystem services of Yaquina Bay

    EPA Science Inventory

    Reduced water clarity can affect estuarine primary production but little is known of its subsequent effects to consumer guilds or ecosystem services. We investigated those effects using inverse analysis of modeled food webs of the lower (polyhaline) and upper (mesohaline) reache...

  12. Habitat and Recreational Fishing Opportunity in Tampa Bay: Linking Ecological and Ecosystem Services to Human Beneficiaries

    EPA Science Inventory

    Estimating value of estuarine habitat to human beneficiaries requires that we understand how habitat alteration impacts function through both production and delivery of ecosystem goods and services (EGS). Here we expand on the habitat valuation technique of Bell (1997) with an es...

  13. MONITORING REGIONAL-SCALE HYDROLOGIC PROCESSES IN THE SOUTH FLORIDA ECOSYSTEM

    EPA Science Inventory

    The overall goal of the research project is to develop new approaches to monitor and predict hydrologic processes in the South Florida ecosystem. The processes to be studied include: (1) the patterns of overland surface flow and freshwater estuarine inflow in southwestern Florida...

  14. Estimating flood exceedance probabilities in estuarine regions

    NASA Astrophysics Data System (ADS)

    Westra, Seth; Leonard, Michael

    2016-04-01

    Flood events in estuarine regions can arise from the interaction of extreme rainfall and storm surge. Determining flood level exceedance probabilities in these regions is complicated by the dependence of these processes for extreme events. A comprehensive study of tide and rainfall gauges along the Australian coastline was conducted to determine the dependence of these extremes using a bivariate logistic threshold-excess model. The dependence strength is shown to vary as a function of distance over many hundreds of kilometres indicating that the dependence arises due to synoptic scale meteorological forcings. It is also shown to vary as a function of storm burst duration, time lag between the extreme rainfall and the storm surge event. The dependence estimates are then used with a bivariate design variable method to determine flood risk in estuarine regions for a number of case studies. Aspects of the method demonstrated in the case studies include, the resolution and range of the hydraulic response table, fitting of probability distributions, computational efficiency, uncertainty, potential variation in marginal distributions due to climate change, and application to two dimensional output from hydraulic models. Case studies are located on the Swan River (Western Australia), Nambucca River and Hawkesbury Nepean River (New South Wales).

  15. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.

    1977-01-01

    Specifically, the study has addressed the following: (1) potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation or ecosystems highly stable or amenable to adaptive change, and (2) the sensitivity of key community components (the primary producers, consumers, and decomposers) to increased UV-B radiation. Three areas of study were examined during the past year: (1) a continuation of the study utilizing the two seminatural ecosystem chambers, (2) a pilot study utilizing three flow-through ecosystem tanks enclosed in a small, outdoor greenhouse, and (3) sensitivity studies of representative primary producers and consumers.

  16. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.; Worrest, R. C.

    1976-01-01

    Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.

  17. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2015-12-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  18. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery

    USGS Publications Warehouse

    Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P.

    2008-01-01

    The National Estuarine Research Reserve (NERR) program is a nationally coordinated research and monitoring program that identifies and tracks changes in ecological resources of representative estuarine ecosystems and coastal watersheds. In recent years, attention has focused on using high spatial and spectral resolution satellite imagery to map and monitor wetland plant communities in the NERRs, particularly invasive plant species. The utility of this technology for that purpose has yet to be assessed in detail. To that end, a specific high spatial resolution satellite imagery, QuickBird, was used to map plant communities and monitor invasive plants within the Hudson River NERR (HRNERR). The HRNERR contains four diverse tidal wetlands (Stockport Flats, Tivoli Bays, Iona Island, and Piermont), each with unique water chemistry (i.e., brackish, oligotrophic and fresh) and, consequently, unique assemblages of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). A maximum-likelihood classification was used to produce 20-class land cover maps for each of the four marshes within the HRNERR. Conventional contingency tables and a fuzzy set analysis served as a basis for an accuracy assessment of these maps. The overall accuracies, as assessed by the contingency tables, were 73.6%, 68.4%, 67.9%, and 64.9% for Tivoli Bays, Stockport Flats, Piermont, and Iona Island, respectively. Fuzzy assessment tables lead to higher estimates of map accuracies of 83%, 75%, 76%, and 76%, respectively. In general, the open water/tidal channel class was the most accurately mapped class and Scirpus sp. was the least accurately mapped. These encouraging accuracies suggest that high-resolution satellite imagery offers significant potential for the mapping of invasive plant species in estuarine environments. ?? 2007 Elsevier Inc. All rights reserved.

  19. Determination of fish trophic levels in an estuarine system

    NASA Astrophysics Data System (ADS)

    Pasquaud, S.; Pillet, M.; David, V.; Sautour, B.; Elie, P.

    2010-01-01

    The concept of trophic level is particularly relevant in order to improve knowledge of the structure and the functioning of an ecosystem. A precise estimation of fish trophic levels based on nitrogen isotopic signatures in environments as complex and fluctuant as estuaries requires a good description of the pelagic and benthic trophic chains and a knowledge of organic matter sources at the bottom. In this study these points are considered in the case of the Gironde estuary (south west France, Europe). To obtain a good picture of the food web, fish stomach content analyses and a bibliographic synthesis of the prey feeding ecology were carried out. Fish trophic levels were calculated from these results and δ 15N data. The feeding link investigation enabled us to identify qualitatively and quantitatively the different preys consumed by each fish group studied, to distinguish the prey feeding on benthos from those feeding on pelagos and to characterize the different nutritive pools at the base of the system. Among the species studied, only Liza ramada and the flatfish ( Platichthys flesus and Solea solea) depend mainly on benthic trophic compartments. All the other fish groups depend on several trophic (benthic and/or pelagic) sources. These results enabled us to correct the calculation of fish trophic levels which are coherent with their feeding ecology data obtained from the nitrogen isotopic integrative period. The present work shows that trophic positions are linked with the feeding ecology of fish species and vary according to individual size. Ecological data also allow the correction of the isotopic data by eliminating absurd results and showing the complementarity of the two methods. This work is the first to consider source variability in the fish food web. This is an indispensable step for trophic studies in a dynamic environment. The investigation of matter fluxes and recycling processes at the food web base would provide a useful improvement in future

  20. Sponge-rhodolith interactions in a subtropical estuarine system

    NASA Astrophysics Data System (ADS)

    Ávila, Enrique; Riosmena-Rodríguez, Rafael; Hinojosa-Arango, Gustavo

    2013-06-01

    The interactions between sponges and red macroalgae have been widely documented in tropical and subtropical environments worldwide, and many of them have been documented as mutualistic associations. Sponges, however, have also been frequently described as part of the associated fauna of rhodolith habitats (aggregations of free-living non-geniculated coralline macroalgae). Nonetheless, the types of interaction they establish as well as the role of sponges in these habitats remain unknown. In this study, the associations between sponges and rhodoliths were investigated in an estuarine ecosystem of the Mexican Pacific based on qualitative and quantitative data. A total of 13 sponge species were identified in five newly discovered rhodolith beds dominated by the non-geniculate coralline macroalga Lithophyllum margaritae. The sponge assemblages were strongly restricted to rhodolith habitats. The best predictor of sponge abundance (from 5.1 to 51.7 ind m-2) and species richness (from 2.6 to 6.1 sponge species m-2) was the rhodolith density rather than other population descriptors assessed (e.g., average size, branch density and sphericity). The identified sponges included a variety of forms: massive (46 %), encrusting (23 %), excavating (15 %), cushion-shape (8 %) and digitate (8 %). Moreover, more than 50 % of sponge species recorded (mainly massive and encrusting forms) were frequently found overgrowing and binding rhodoliths. Halichondria cf. semitubulosa and Mycale cecilia were the most common binding agents; these species bind an average of 3.1 and 6.6 rhodoliths per sponge individual, respectively. These findings reveal the importance of rhodoliths as habitat forming species, since these seaweed beds notably increased the substrate complexity in soft bottom environments. In addition, the relatively high abundance of sponges and their capability to bind rhodoliths suggest that these associated organisms could have an important contribution to rhodolith bed stability.

  1. Resistance among wild invertebrate populations to recurrent estuarine acidification

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Cabral, Henrique N.; Bishop, Melanie J.

    2011-07-01

    Acid sulphate soils (ASS), which occur on floodplains worldwide, pose a significant threat to estuarine ecosystems. In laboratory and field experiments, naïve calcifying organisms that are exposed for even short periods (1-2 mo) to runoff from ASS suffer 80% mortality and slowed growth. Based on these observations we expected that sampling of wild oyster, gastropod and crab populations at sites close to and away from drains discharging ASS runoff would reveal more depauperate populations, of sparser and smaller-sized individuals at the more acidified sites. Sampling within three estuaries of New South Wales, Australia, confirmed that the oyster Saccostrea glomerata and gastropods (primarily Bembicium auratum) were less abundant at ASS-affected than reference sites. Nevertheless, crab abundances did not differ between the acidified and reference sites and impacts to bivalves and gastropods were far smaller than predicted. Although at ASS-affected sites gastropod populations were dominated by smaller individuals than at reference sites, oyster populations were skewed towards larger individuals. Even at ASS-affected sites, oyster and gastropod abundances were within the range encountered in estuaries that are not influenced by ASS runoff. Behaviour, long-term physiological acclimation or genetic selection may be responsible for differences in the responses of wild and naïve macroinvertebrates to acidification. Alternatively, wild populations may exhibit some recovery between the rainfall events that transport ASS runoff into estuaries, despite the persistently lower pH near outflow drains. Irrespective, this study suggests that at the population level, calcifying organisms display a certain degree of natural resistance to recurrent disturbance from ASS runoff.

  2. Environmental predictors of estuarine fish landings along a temperate coastline

    NASA Astrophysics Data System (ADS)

    Saintilan, Neil; Wen, Li

    2012-11-01

    The regulation of freshwater flow into estuaries has been identified as a potential threat to estuarine ecosystem structure and function, and the productivity of fisheries in particular. Correlative studies are one means by which associations between freshwater inputs and commercial landings have been identified. The study compared monthly landings of five species of finfish and two species of crustacean with monthly and 6-month running means of river discharge, climatic variables (temperature and rainfall) and the area of vegetated habitat (saltmarsh, mangrove and seagrass) for 11 temperate estuaries on the NSW coast. The monthly climatic and discharge record covered a 10-year period (1997-2007). High river discharge and rainfall were associated with higher catches of flathead (Platycephalus spp.) and Mullet (Mugil spp.), a result consistent with subtropical estuaries to the north. We found no relationships between landings and river discharge for any of the other species, which included school prawns (Metapenaeus macleayi). Temporal variability at a monthly time-step was more consistently associated with variation in temperature, reflecting seasonal variation in activity, and possibly fishing effort. Landings of several species showed strong habitat relationships, with greater seagrass area consistently associated with higher catches of blue swimmer crab (Portunis pelagicus), and intertidal wetlands (mangrove and saltmarsh) with mud crab (Scylla serrata), school prawns, flathead, and mullet (Mugil spp.), a result consistent with habitat-scale surveys. The results draw into question the efficacy of dam releases as stimulants of fisheries productivity in the region, although the effects of flow on juvenile populations and catadromous species were not studied.

  3. Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide.

    PubMed

    Borja, Angel; Bricker, Suzanne B; Dauer, Daniel M; Demetriades, Nicolette T; Ferreira, João G; Forbes, Anthony T; Hutchings, Pat; Jia, Xiaoping; Kenchington, Richard; Carlos Marques, João; Zhu, Changbo

    2008-09-01

    In recent years, several sets of legislation worldwide (Oceans Act in USA, Australia or Canada; Water Framework Directive or Marine Strategy in Europe, National Water Act in South Africa, etc.) have been developed in order to address ecological quality or integrity, within estuarine and coastal systems. Most such legislation seeks to define quality in an integrative way, by using several biological elements, together with physico-chemical and pollution elements. Such an approach allows assessment of ecological status at the ecosystem level ('ecosystem approach' or 'holistic approach' methodologies), rather than at species level (e.g. mussel biomonitoring or Mussel Watch) or just at chemical level (i.e. quality objectives) alone. Increasing attention has been paid to the development of tools for different physico-chemical or biological (phytoplankton, zooplankton, benthos, algae, phanerogams, fishes) elements of the ecosystems. However, few methodologies integrate all the elements into a single evaluation of a water body. The need for such integrative tools to assess ecosystem quality is very important, both from a scientific and stakeholder point of view. Politicians and managers need information from simple and pragmatic, but scientifically sound methodologies, in order to show to society the evolution of a zone (estuary, coastal area, etc.), taking into account human pressures or recovery processes. These approaches include: (i) multidisciplinarity, inherent in the teams involved in their implementation; (ii) integration of biotic and abiotic factors; (iii) accurate and validated methods in determining ecological integrity; and (iv) adequate indicators to follow the evolution of the monitored ecosystems. While some countries increasingly use the establishment of marine parks to conserve marine biodiversity and ecological integrity, there is awareness (e.g. in Australia) that conservation and management of marine ecosystems cannot be restricted to Marine Protected

  4. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator.

    PubMed

    Nifong, James C; Layman, Craig A; Silliman, Brian R

    2015-01-01

    Large-bodied, top-predators are often highly mobile, with the potential to provide important linkages between spatially distinct food webs. What biological factors contribute to variation in cross-ecosystem movements, however, have rarely been examined. Here, we investigated how ontogeny (body size), sex and individual-level behaviour impacts intrapopulation variation in cross-ecosystem foraging (i.e. between freshwater and marine systems), by the top-predator Alligator mississippiensis. Field surveys revealed A. mississippiensis uses marine ecosystems regularly and are abundant in estuarine tidal creeks (from 0·3 to 6·3 individuals per km of creek, n = 45 surveys). Alligator mississippiensis captured in marine/estuarine habitats were significantly larger than individuals captured in freshwater and intermediate habitats. Stomach content analysis (SCA) showed that small juveniles consumed marine/estuarine prey less frequently (6·7% of individuals) than did large juveniles (57·8%), subadult (73%), and adult (78%) size classes. Isotopic mixing model analysis (SIAR) also suggests substantial variation in use of marine/estuarine prey resources with differences among and within size classes between sexes and individuals (range of median estimates for marine/estuarine diet contribution = 0·05-0·76). These results demonstrate the importance of intrapopulation characteristics (body size, sex and individual specialization) as key determinants of the strength of predator-driven ecosystem connectivity resulting from cross-ecosystem foraging behaviours. Understanding the factors, which contribute to variation in cross-ecosystem foraging behaviours, will improve our predictive understanding of the effects of top-predators on community structure and ecosystem function. PMID:25327480

  5. Sediment measurement in estuarine and coastal areas

    NASA Technical Reports Server (NTRS)

    Shelley, P. E.

    1976-01-01

    A survey of uses of estuarine and coastal areas is given. Problems associated with these uses are discussed, and data needs for intelligent management of these valuable areas are outlined. Suspended sediment measurements are seen to be one of the greatest needs. To help understand the complexity of the problem, a brief discussion of sediment mechanics is given, including sediment sources, characteristics, and transport. The impact of sediment mechanics on its direct measurement (sampling and analysis) is indicated, along with recommendations for directly obtaining representative data. Indirect measurement of suspended sediment by remote sensors is discussed both theoretically and in the light of some recent experiences. The need for an integrated, multidisciplinary program to solve the problem of quantitatively measuring suspended sediment with remote sensors is stressed, and several important considerations of such a program and benefits to be derived therefrom are briefly addressed.

  6. Numerical noise in ocean and estuarine models

    USGS Publications Warehouse

    Walters, R.; Carey, G.F.

    1984-01-01

    Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.

  7. Linking DNRA community structure and activity in a shallow lagoonal estuarine system

    PubMed Central

    Song, Bongkeun; Lisa, Jessica A.; Tobias, Craig R.

    2014-01-01

    Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are two nitrate respiration pathways in the microbial nitrogen cycle. Diversity and abundance of denitrifying bacteria have been extensively examined in various ecosystems. However, studies on DNRA bacterial diversity are limited, and the linkage between the structure and activity of DNRA communities has yet to be discovered. We examined the composition, diversity, abundance, and activities of DNRA communities at five sites along a salinity gradient in the New River Estuary, North Carolina, USA, a shallow temporal/lagoonal estuarine system. Sediment slurry incubation experiments with 15N-nitrate were conducted to measure potential DNRA rates, while the abundance of DNRA communities was calculated using quantitative PCR of nrfA genes encoding cytochrome C nitrite reductase, commonly found in DNRA bacteria. A pyrosequencing method targeting nrfA genes was developed using an Ion Torrent sequencer to examine the diversity and composition of DNRA communities within the estuarine sediment community. We found higher levels of nrfA gene abundance and DNRA activities in sediments with higher percent organic content. Pyrosequencing analysis of nrfA genes revealed spatial variation of DNRA communities along the salinity gradient of the New River Estuary. Percent abundance of dominant populations was found to have significant influence on overall activities of DNRA communities. Abundance of dominant DNRA bacteria and organic carbon availability are important regulators of DNRA activities in the eutrophic New River Estuary. PMID:25232351

  8. Maps showing textural characteristics of benthic sediments in the Corpus Christi Bay estuarine system, south Texas

    USGS Publications Warehouse

    Shideler, Gerald L.; Stelting, Charles E.; McGowen, Joseph H.

    1981-01-01

    Corpus Christi Bay is a heavily used estuary on the south Texas coast in the northwest Gulf of Mexico (fig. 1).  The Bay is stressed by diverse activities which could substantially affect its ecosystem.  Such activities include shipping, resource production (oil, gas, and construction aggregate), commercial and sport fishing, and recreation.  Shipping activities alone have had a substantial impact on the bay.  For example, the past maintenance of navigation channels has required extensive dredging and spoil disposal within the estuarine system.  Numerous subaqueous spoil disposal sites and subaerial spoil banks are present throughout the bay (fig. 1), and the selection of future spoil disposal sites is becoming a critical local problem.  As activities in the bay increase, the need for effective environmental management becomes increasingly important, and effective management necessitates a good understanding of the bay's physical characteristics.  The objective of this study is to provide detailed information about the textural composition of bottom sediments within the estuarine system, information which could be used in making environmental-management decisions.  Visual descriptions of bottom sediments in Corpus Christi Bay and adjacent areas have been presented by McGowen and Morton (1979).  Additionally, a study of the textures of sediments on the Inner Continental Shelf adjacent to the bay has been presented by Shideler and Berryhill (1977).

  9. Genetically Diverse Clostridium difficile Strains Harboring Abundant Prophages in an Estuarine Environment

    PubMed Central

    Hargreaves, K. R.; Colvin, H. V.; Patel, K. V.; Clokie, J. J. P.

    2013-01-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in health care settings across the world. Despite its pathogenic capacity, it can be carried asymptomatically and has been found in terrestrial and marine ecosystems outside hospital environments. Little is known about these environmental strains, and few studies have been conducted on estuarine systems. Although prophage abundance and diversity are known to occur within clinical strains, prophage carriage within environmental strains of C. difficile has not previously been explored. In this study, we isolated C. difficile from sites sampled in two consecutive years in an English estuarine system. Isolates were characterized by PCR ribotype, antibiotic resistance, and motility. The prevalence and diversity of prophages were detected by transmission electron microscopy (TEM) and a phage-specific PCR assay. We show that a dynamic and diverse population of C. difficile exists within these sediments and that it includes isolates of ribotypes which are associated with severe clinical infections and those which are more frequently isolated from outside the hospital environment. Prophage carriage was found to be high (75%), demonstrating that phages play a role in the biology of these strains. PMID:23913427

  10. Reconstructing early 17th century estuarine drought conditions from Jamestown oysters

    PubMed Central

    Harding, Juliana M.; Spero, Howard J.; Mann, Roger; Herbert, Gregory S.; Sliko, Jennifer L.

    2010-01-01

    Oysters (Crassostrea virginica) were a central component of the Chesapeake Bay ecosystem in 1607 when European settlers established Jamestown, VA, the first permanent English settlement in North America. These estuarine bivalves were an important food resource during the early years of the James Fort (Jamestown) settlement while the colonists were struggling to survive in the face of inadequate supplies and a severe regional drought. Although oyster shells were discarded as trash after the oysters were eaten, the environmental and ecological data recorded in the bivalve geochemistry during shell deposition remain intact over centuries, thereby providing a unique window into conditions during the earliest Jamestown years. We compare oxygen isotope data from these 17th century oyster shells with modern shells to quantify and contrast estuarine salinity, season of oyster collection, and shell provenance during Jamestown colonization (1609–1616) and the 21st century. Data show that oysters were collected during an extended drought between fall 1611 and summer 1612. The drought shifted the 14 psu isohaline above Jamestown Island, facilitating individual oyster growth and extension of oyster habitat upriver toward the colony, thereby enhancing local oyster food resources. Data from distinct well layers suggest that the colonists also obtained oysters from reefs near Chesapeake Bay to augment oyster resources near Jamestown Island. The oyster shell season of harvest reconstructions suggest that these data come from either a 1611 well with a very short useful period or an undocumented older well abandoned by late 1611. PMID:20534581

  11. Bathymetric effects on estuarine plume dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Jungwoo; Valle-Levinson, Arnoldo

    2013-04-01

    influence of bathymetry on an estuary plume at an estuary-shelf transition is studied with a three-dimensional ocean circulation model. To understand the response of the plume to bathymetry, several types of estuarine shapes and shelf geometries were adopted in this numerical study. The channel's shape and its width-to-depth aspect ratio affected the fate of the plume by determining flow characteristics inside the estuary. Moreover, the bathymetry of the shelf such as the shelf slope and the direction of a submarine channel defined the plume characteristics on the shelf. An estuarine channel with a triangular cross section generated relatively stronger exchange flows at midestuary than a rectangular cross section, which resulted in a larger surface plume over the shelf. The extension of the submarine channel onto the shelf favored increased plume water transport out to the shelf, a result of reduced frictional effects on the shelf. The orientation of the submarine channel changed the direction of the plume over the shelf, with no additional external forces. Two fronts developed at the edges of the submarine channel because of enhanced lateral shears in the flow. When the estuary was relatively wide compared to the internal Rossby radius (Kelvin number Ke ≥ 5), or when the relative strength of the freshwater discharge compared to the estuary width was weak (Rossby number Ro ≤ 0.05), the coastal plume did not expand up-shelf. In fact, results indicated that freshwater up-shelf transport in a coastal current, moving against Coriolis' accelerations, was proportional to Ro.

  12. Spatial patterns of distribution and the influence of seasonal and abiotic factors on demersal ichthyofauna in an estuarine tropical bay.

    PubMed

    da Silva, D R; Paranhos, R; Vianna, M

    2016-07-01

    This study focused on the influence of local-scale environmental factors on key metrics of fish community structure and function at Guanabara Bay, an estuarine system that differs from all other south-western Atlantic estuaries due to the influence of an annual low-intensity upwelling event during late spring and summer, between November and March, when a warm rainy climate prevails. The spatial patterns of the bottom temperature and salinity were more heterogeneous during the rainy season than the dry season, being linked to total precipitation and seasonal oceanographic events. The study identified 130 species and 45 families, placing Guanabara Bay as one of the most species-rich tropical estuarine ecosystems, far exceeding 22 other Brazilian estuaries. These results, in addition to characteristics such as a relatively well-preserved mangrove forest, high productivity and favourable conditions for the growth and reproduction of estuarine species, indicate that Guanabara Bay plays a central role in supporting large populations of fishes, including commercially important species. PMID:27401484

  13. Range Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After more than two hundred years, grazing remains California’s most extensive land use. The ‘Range Ecosystems’ chapter in the ‘Ecosystems of California’ sourcebook provides an integrated picture of the biophysical, social, and economic aspects of lands grazed by livestock in the state. Grazing mana...

  14. 76 FR 2083 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... National Oceanic and Atmospheric Administration National Estuarine Research Reserve System AGENCY..., National Oceanic and Atmospheric Administration, U.S. Department of Commerce. ACTION: Notice of Public... Management, National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), U.S....

  15. 78 FR 75548 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... National Oceanic and Atmospheric Administration National Estuarine Research Reserve System AGENCY..., National Oceanic and Atmospheric Administration, U.S. Department of Commerce ACTION: Notice of Approval of..., National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of...

  16. Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    EPA Science Inventory

    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational po...

  17. LANDSAT ESTUARINE WATER QUALITY ASSESSMENT OF SILVICULTURE AND DREDGING ACTIVITIES

    EPA Science Inventory

    This report describes the application of Landsat multispectral scanning to estuarine water quality, with specific reference to dredging and silviculture practices. Water quality data collected biweekly since 1972 in the Apalachicola, Bay, Florida, by Florida State University, and...

  18. RESPONSES OF EXPERIMENTAL ESTUARINE COMMUNITIES TO CONTINUOUS CHLORINATION

    EPA Science Inventory

    The effects of continuous chlorination (as NaOCl) on estuarine benthic organisms were investigated with plankton-derived experimental communities. Twelve consecutive studies were conducted, each of which consisted of approximately 60 days colonization periods from flowing estuari...

  19. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  20. Connecting fishery sustainability to estuarine habitats and nutrient loading

    EPA Science Inventory

    The production of several important fishery species depends on critical estuarine habitats, including seagrasses and salt marshes. Relatively simple models can be constructed to relate fishery productivity to the extent and distribution of these habitats by linking fishery-depend...

  1. SPECIES INTERACTIONS BETWEEN ESTUARINE DETRITIVORES: INHIBITION OR FACILITATION?

    EPA Science Inventory

    Native Hawaiian estuarine detritivores; the prawn Macrobrachium grandimanus, and the neritid gastropod Neritina vespertina, were maintained in flow-through microcosms with conditioned leaves from two riparian tree species, Hau (Hibiscus tiliaceus) and guava (Psidium guajava). Th...

  2. Evidence for enhanced mercury reactivity in response to estuarine mixing

    NASA Astrophysics Data System (ADS)

    Rolfhus, Kristofer R.; Lamborg, Carl H.; Fitzgerald, William F.; Balcom, Prentiss H.

    2003-11-01

    Bioaccumulation of methylmercury in coastal U.S. fisheries has led to the issuance of numerous fish consumption advisories, and yet little is known about the processes that make Hg species chemically labile in coastal and estuarine systems. This study examined the role of estuarine mixing in formation of labile Hg complexes (reactive Hg) from relatively refractory Hg-organic associations in river water and characterized the behavior and distribution of Hg species in the Connecticut River estuary during three distinct collection periods. Results indicate that while total Hg partitioning and concentrations remained fairly constant with increasing salinity, the fraction present as reactive Hg concentrations increased, primarily in the particulate phase. Mixing experiments using both natural and prepared waters indicate that riverine organic ligands rapidly scavenge reactive Hg from natural waters on timescales of minutes to hours, while samples free of riverine influence remained much more "reactive." Modeling of the estuarine system suggests that elevated concentrations of chloride and dilution of the dominant organic ligand associated with estuarine mixing enhance reactive Hg and predict a bulk log formation constant for the binding ligand of approximately 21. Analysis of Hg0 production from Hg(II)-spiked, incubated estuarine samples supports the speciation data as higher reactive Hg concentrations and Hg0 production rates were observed in the more saline samples. These results suggest that estuarine mixing may exacerbate Hg methylation, evasion, and bioaccumulation in some systems by promoting the formation of Hg species that are readily labile.

  3. VARIATIONS IN THE SPECTRAL PROPERTIES OF FRESHWATER AND ESTUARINE CDOM CAUSED BY PARTITIONING ONTO RIVER AND ESTUARINE SEDIMENTS

    EPA Science Inventory

    The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...

  4. Low mercury levels in marine fish from estuarine and coastal environments in southern China.

    PubMed

    Pan, Ke; Chan, Heidi; Tam, Yin Ki; Wang, Wen-Xiong

    2014-02-01

    This study is the first comprehensive evaluation of total Hg and methylmercury (MeHg) concentrations in wild marine fish from an estuarine and a coastal ecosystem in southern China. A total of 571 fish from 54 different species were examined. Our results showed that the Hg levels were generally low in the fish, and the Hg levels were below 30 ng g(-1) (wet weight) for 82% of the samples, which may be related to the reduced size of the fish and altered food web structure due to overfishing. Decreased coastal wetland coverage and different carbon sources may be responsible for the habitat-specific Hg concentrations. The degree of biomagnification was relatively low in the two systems. PMID:24292441

  5. Responses of estuarine nematodes to an increase in nutrient supply: an in situ continuous addition experiment.

    PubMed

    Ferreira, R C; Nascimento-Junior, A B; Santos, P J P; Botter-Carvalho, M L; Pinto, T K

    2015-01-15

    An experiment was carried out on an estuarine mudflat to assess impacts of inorganic nutrients used to fertilize sugar-cane fields on the surrounding aquatic ecosystem, through changes in the nematode community structure. During 118 days, nine quadrats each 4m(2) were sampled six times after the beginning of fertilizer addition. The fertilizer was introduced weekly in six areas, at two different concentrations (low and high doses), and three areas were used as control. The introduction of nutrients modified key nematode community descriptors. In general, the nematodes were negatively affected over the study period. However, Comesa, Metachromadora, Metalinhomoeus, Spirinia and Terschellingia were considered tolerant, and other genera showed different degrees of sensitivity. Nutrient input also affect the availability and quality of food, changing the nematode trophic structure. The use of inorganic fertilizer should be evaluated with care because of the potential for damage to biological communities of coastal aquatic systems. PMID:25499965

  6. Buffer zones promoting oligotrophication in golf course runoffs: fiddler crabs as estuarine health indicators.

    PubMed

    George, R Y; Bodnar, G; Gerlach, S L; Nelson, R M

    2001-01-01

    Nitrogen pollution above a threshold level induces a eutrophication process in coastal creek ecosystems and consequently impacts on the water quality. The remedy for this scenario is the introduction of methods to enhance oligotrophication by means of constructed wetlands and buffer zones. This paper discusses new data on nitrogen flux and population changes in the primary consumers in the Bradley Creek ecosystem, adjacent to the Duck Haven Golf Course in southeastern North Carolina. In 1998-99, over different seasons, density distribution of the field populations of the fiddler crab Uca minax, was monitored as an indicator of environmental health. A control site at Whiskey Creek, adjacent to the University Center for Marine Sciences, was monitored in the same period since this site is not influenced by any golf course nutrient flux. The results pointed out that threshold level for optimum population density in Spartina grandiflora salt marsh is 0.1 mg/L of nitrates. A dense crab population, adjacent to the golf course with a buffer zone, was indicative of restoration of the estuarine ecosystem. A model, involving the use of constructed wetlands for oligotrophication, is being prepared on the basis of studies conducted by the University of South Alabama for a stormwater wetland constructed adjacent to the university's golf course. PMID:11804155

  7. The Abundance and Activity of Nitrate-Reducing Microbial Populations in Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Cardarelli, E.; Francis, C. A.

    2014-12-01

    Estuaries are productive ecosystems that ameliorate nutrient and metal contaminants from surficial water supplies. At the intersection of terrestrial and aquatic environments, estuarine sediments host major microbially-mediated geochemical transformations. These include denitrification (the conversion of nitrate to nitrous oxide and/or dinitrogen) and dissimilatory nitrate reduction to ammonium (DNRA). Denitrification has historically been seen as the predominant nitrate attenuation process and functions as an effective sink for nitrate. DNRA has previously been believed to be a minor nitrate reduction process and transforms nitrate within the ecosystem to ammonium, a more biologically available N species. Recent studies have compared the two processes in coastal environments and determined fluctuating environmental conditions may suppress denitrification, supporting an increased role for DNRA in the N cycle. Nitrate availability and salinity are factors thought to influence the membership of the microbial communities present, and the nitrate reduction process that predominates. The aim of this study is to investigate how nitrate concentration and salinity alter the transcript abundances of N cycling functional gene markers for denitrification (nirK, nirS) and DNRA (nrfA) in estuarine sediments at the mouth of the hypernutrified Old Salinas River, CA. Short-term whole core incubations amended with artificial freshwater/artificial seawater (2 psu, 35 psu) and with varying NO3- concentrations (200mM, 2000mM) were conducted to assess the activity as well as the abundance of the nitrate-reducing microbial populations present. Gene expression of nirK, nirS, and nrfA at the conclusion of the incubations was quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). High abundances of nirK, nirS, and nrfA under particular conditions coupled with the resulting geochemical data ultimately provides insight onto how the aforementioned factors

  8. The influence of the Kennebec River discharge on estuarine and reverse estuarine flow in eastern Casco Bay, Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Wolovick, M.; Laine, E.; Roesler, C.; Teegarden, G.

    2008-12-01

    Harpswell Sound and the New Meadows estuary are narrow coastal embayments on the eastern side of Casco Bay, in the Gulf of Maine. Hourly oceanographic data was collected at both locations, including ADCP profiles of current velocity vs. depth. It was found that net circulation in both inlets displays both estuarine and inverse estuarine characteristics at various times. During periods of low discharge from the neighboring Kennebec River there is little connection between the two inlets, with New Meadows developing a three- layered circulation regime and Harpswell Sound having periods of negligible net flow punctuated by brief wind-driven events. However, when the discharge of the Kennebec River is high both inlets experience considerable freshening of surface water with corresponding increases in vertical stratification. In addition both inlets act in concert, experiencing near-simultaneous alternation between estuarine and inverse estuarine current regimes of relatively high strength. It is hypothesized that this coordinated reverse estuarine flow is caused by the passage of the leading edge of a bolus of fresher Kennebec discharge past the entrances of the inlets. Water flowing down the sloping surface of this bolus is deflected by the Coriolis force, running into the inlets at the surface and triggering a compensating outflow at depth. Conversely, coordinated estuarine flow is caused by the passage of the trailing edge of the bolus past the entrances, causing the sea surface slope to switch direction.

  9. Composition of estuarine colloidal material: organic components

    USGS Publications Warehouse

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  10. Estuarine nitrifiers: New players, patterns and processes

    NASA Astrophysics Data System (ADS)

    Bernhard, Anne E.; Bollmann, Annette

    2010-06-01

    Ever since the first descriptions of ammonia-oxidizing Bacteria by Winogradsky in the late 1800s, the metabolic capability of aerobic ammonia oxidation has been restricted to a phylogenetically narrow group of bacteria. However, the recent discovery of ammonia-oxidizing Archaea has forced microbiologists and ecologists to re-evaluate long-held paradigms and the role of niche partitioning between bacterial and archaeal ammonia oxidizers. Much of the current research has been conducted in open ocean or terrestrial systems, where community patterns of archaeal and bacterial ammonia oxidizers are highly congruent. Studies of archaeal and bacterial ammonia oxidizers in estuarine systems, however, present a very different picture, with highly variable patterns of archaeal and bacterial ammonia oxidizer abundances. Although salinity is often identified as an important factor regulating abundance, distribution, and diversity of both archaeal and bacterial ammonia oxidizers, the data suggest that the variability in the observed patterns is likely not due to a simple salinity effect. Here we review current knowledge of ammonia oxidizers in estuaries and propose that because of their steep physico-chemical gradients, estuaries may serve as important natural laboratories in which to investigate the relationships between archaeal and bacterial ammonia oxidizers.

  11. Estuarine ecology of phenanthrene-degrading bacteria

    NASA Astrophysics Data System (ADS)

    Guerin, William F.; Jones, Galen E.

    1989-08-01

    Phenanthrene degrading bacteria were ubiquitously distributed in waters and sediments of the Great Bay Estuary, NH, as determined using a 14C-phenanthrene mineralization assay. Similar activities were observed in water samples collected in March and June when these were incubated at 18 °C even though ambient water temperatures were 1-4 °C and 10-22 °C, respectively. This observation indicated the constant presence of a mesophilic phenanthrene-degrading bacterial population in the estuary. Among water samples, the highest biodegradation activities were associated with samples collected downstream from a dredging operation which introduced high concentrations of coal tar PAH (polycyclic aromatic hydrocarbons) into the Cocheco River, and in areas receiving PAH from pleasure and commercial boating activities. Mid-estuarine maxima in biodegradation activity during both sampling trips suggested adaptation of the microbial flora to the salinities prevailing in the low turnover, high residence time portion of the Estuary at the time of sampling. Despite the hydrophobicity of phenanthrene, no correlation between biodegradation rates and particulate matter concentrations were observed. Similarly, concentrations of nutrients and dissolved and particulate organic matter correlated poorly with biodegradation rates. Better agreements between 14C-phenanthrene mineralization potentials and plate counts on a phenanthrene/toluene agar (PTA) medium were observed. Phenanthrene biodegradative activities and numbers of culturable bacteria growing on PTA were governed by the degree of previous exposure to PAH.

  12. Passive acoustic threat detection in estuarine environments

    NASA Astrophysics Data System (ADS)

    Borowski, Brian; Sutin, Alexander; Roh, Heui-Seol; Bunin, Barry

    2008-04-01

    The Maritime Security Laboratory (MSL) at Stevens Institute of Technology supports research in a range of areas relevant to harbor security, including passive acoustic detection of underwater threats. The difficulties in using passive detection in an urban estuarine environment include intensive and highly irregular ambient noise and the complexity of sound propagation in shallow water. MSL conducted a set of tests in the Hudson River near Manhattan in order to measure the main parameters defining the detection distance of a threat: source level of a scuba diver, transmission loss of acoustic signals, and ambient noise. The source level of the diver was measured by comparing the diver's sound with a reference signal from a calibrated emitter placed on his path. Transmission loss was measured by comparing noise levels of passing ships at various points along their routes, where their distance from the hydrophone was calculated with the help of cameras and custom software. The ambient noise in the Hudson River was recorded under varying environmental conditions and amounts of water traffic. The passive sonar equation was then applied to estimate the range of detection. Estimations were done for a subset of the recorded noise levels, and we demonstrated how variations in the noise level, attenuation, and the diver's source level influence the effective range of detection. Finally, we provided analytic estimates of how an array improves upon the detection distance calculated by a single hydrophone.

  13. The Role of Heterotrophic Microbial Communities in Estuarine C Budgets and the Biogeochemical C Cycle with Implications for Global Warming: Research Opportunities and Challenges.

    PubMed

    Anderson, O Roger

    2016-05-01

    Estuaries are among the most productive and economically important marine ecosystems at the land-ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2 , while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle. PMID:26507684

  14. Influence of organic carbon on estuarine benthic infauna of the US west coast

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of eutrophication in estuarine environments. However, the determination of biologically relevant sediment TOC criteria to indicate estuarine condition is complicated by the relationship between TOC and grain size. Both va...

  15. Influence of organic carbon on estuarine benthic infauna of the US west coast - March 3, 2011

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of eutrophication in estuarine environments. However, the determination of biologically relevant sediment TOC criteria to indicate estuarine condition is complicated by the relationship between TOC and grain size. Both va...

  16. ALBEMARLE-PAMLICO ESTUARINE STUDY CCMP

    EPA Science Inventory

    The Albemarle-Pamlico estuary forms a complex and dynamic ecosystem which provides an invaluable bounty of natural resources. The sounds, rivers, creeks, wetlands, and terrestrial areas in the watershed of the system support a variety of uses. We depend on the system to supply fo...

  17. Estuarine Phytoplankton Monitoring to Meet Undergraduate and Faculty Research Objectives

    NASA Astrophysics Data System (ADS)

    Pride, C. J.; Wilson, J. J.; Butterbaugh, T.

    2004-12-01

    Phytoplankton monitoring is being used at Savannah State University to provide research experience for all upper-level marine science majors, to provide in-depth senior research projects, to engage lower-level students in marine science activities beyond the classroom, and to collect baseline data for faculty research proposals. The framework is built around a commitment to maintain a tidal creek monitoring site for larger phytoplankton (diatoms and dinoflagellates >20 microns) as part of the Southeast Phytoplankton Monitoring Network (SEPMN). Field supplies and on-going training are supported by SEPMN. Marine science majors monitor a series of Wilmington River estuary sites as part of a group research project in an upper-level course offered each spring. The group research assignment includes the writing of a full research report with citations from the primary literature and peer review of drafts. A few students are encouraged to pursue their senior research project in this field and maintain sampling over the remainder of the year. They have freedom to design their own project in the broader context of eutrophication, high frequency temporal variability, seasonality, drought/flood cycles, comparisons between estuaries of differing river discharge or extension of sampling offshore. Senior researchers help to train freshmen/sophomore field assistants to insure consistency in the monitoring from one year to the next. Student data from the Wilmington River estuary cover the greatest portion of an annual cycle. Diatoms far outnumbered dinoflagellates at all estuarine sampling locations under both winter and summer conditions. There is a seasonal transition in this estuary from dominance of Asterionella sp. in February to Chaetoceros sp. in June. Chaetoceros sp. were also dominant in the lower Savannah River estuary in June. Dominance of diatoms in these estuaries rather than dinoflagellates is a sign of a relatively healthy ecosystem. These diatoms, however, did

  18. [Vaginal ecosystem].

    PubMed

    Kovachev, S

    2011-01-01

    Vaginal flora plays an important role in preventing genital and urinary tract infections in women. In fact every little movement of obligate and/or facultative vaginal micro flora over the normal limits for this ecosystem causes vaginal disbacteriosis. Vaginal disbacteriosis is a risk condition which can cause infection. Thus an accurate understanding of the composition and ecology of the ecosystem is important to understanding the etiology of urogenital diseases. The aim of this review is to update knowledge about vaginal micro biota, the Lactobacillus species that dominate normal vaginal flora and the way they suppressed infectivity and/or proliferation of pathogenic bacteria. A Medline (Pub med) and medical literature search from 1990-2010 for relevant articles was performed and the most informative articles were selected. Lactic acid bacteria determinate the most of defense mechanisms of women vagina by concurrent adhesion, producing lactic acid, antimicrobial products, hydrogen peroxide and by local interactions with the innate and cell-mediated immune systems and plasminogen-plasmin system. All this mechanisms promotes the stability of the normal vaginal micro flora. Every Lactobacillus species play a different role in host--defense vaginal system. The presence of different Lactobacillus species with the normal vaginal micro flora is a major determinant to the stability of this micro flora and for urogenital health. PMID:21916315

  19. 15 CFR 921.52 - Promotion and coordination of estuarine research.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.52 Promotion and coordination of estuarine research. (a) NOAA will promote and... estuarine research. 921.52 Section 921.52 Commerce and Foreign Trade Regulations Relating to Commerce...

  20. 15 CFR 921.52 - Promotion and coordination of estuarine research.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.52 Promotion and coordination of estuarine research. (a) NOAA will promote and... estuarine research. 921.52 Section 921.52 Commerce and Foreign Trade Regulations Relating to Commerce...

  1. 15 CFR 921.52 - Promotion and coordination of estuarine research.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.52 Promotion and coordination of estuarine research. (a) NOAA will promote and... estuarine research. 921.52 Section 921.52 Commerce and Foreign Trade Regulations Relating to Commerce...

  2. 15 CFR 921.52 - Promotion and coordination of estuarine research.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.52 Promotion and coordination of estuarine research. (a) NOAA will promote and... estuarine research. 921.52 Section 921.52 Commerce and Foreign Trade Regulations Relating to Commerce...

  3. 15 CFR 921.52 - Promotion and coordination of estuarine research.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND COASTAL RESOURCE MANAGEMENT NATIONAL ESTUARINE RESEARCH RESERVE SYSTEM REGULATIONS Special Research Projects § 921.52 Promotion and coordination of estuarine research. (a) NOAA will promote and... estuarine research. 921.52 Section 921.52 Commerce and Foreign Trade Regulations Relating to Commerce...

  4. Cumulative Impact of Marinas on Estuarine Water Quality

    PubMed

    McAllister; Overton; Brill

    1996-05-01

    The purpose of this work is to present a modeling approach for assessing and managing the cumulative impact of marinas on estuarine systems. In doing so, both a water-quality model and a planning and management model are developed. The water-quality model predicts biochemical oxygen demand (BOD) and fecal coliform (FC) loadings from marina sources in a hypothetical North Carolina estuary. By running the water-quality model repeatedly with varied loading input, impact coefficients are determined. These impact coefficients are used in the planning and management model, the output of which gives the sizes and locations of marinas in the estuarine system such that dissolved oxygen (DO) and FC water-quality standards are maintained.Five different estuarine development scenarios are considered. Each scenario is evaluated with respect to both maximum and uniform land development constraints. In addition, two alternative fecal coliform standards are used with each of the development options. PMID:8661609

  5. Estuarine acidification and minimum buffer zone—A conceptual study

    NASA Astrophysics Data System (ADS)

    Hu, Xinping; Cai, Wei-Jun

    2013-10-01

    This study uses a simulation method to explore how estuarine pH is affected by mixing between river water, anthropogenic CO2 enriched seawater, and by respiration. Three rivers with different levels of weathering products (Amazon, Mississippi, and St. Johns) are selected for this simulation. The results indicate that estuaries that receive low to moderate levels of weathering products (Amazon and St. Johns) exhibit a maximum pH decrease in the midsalinity region as a result of anthropogenic CO2 intrusion. This maximum pH decrease coincides with a previously unrecognized mid-salinity minimum buffer zone (MBZ). In addition, water column oxygen consumption can further depress pH for all simulated estuaries. We suggest that recognition of the estuarine MBZs may be important for studying estuarine calcifying organisms and pH-sensitive biogeochemical processes.

  6. Estuarine circulation in the Taranto Seas.

    PubMed

    Pascalis, Francesca De; Petrizzo, Antonio; Ghezzo, Michol; Lorenzetti, Giuliano; Manfè, Giorgia; Alabiso, Giorgio; Zaggia, Luca

    2016-07-01

    The Taranto basin is a shallow water marine system in the South of Italy characterized by the presence of a lagoon environment together with a semi-enclosed bay connected to the Ionian Sea. This marine system experienced over the last few decades strong biochemical pollution and environmental degradation, and it is considered a hotspot study site for economic, ecological and scientific reasons. The aim of this study was to examine, on an annual temporal scale and with high spatial resolution, the main hydrodynamical processes and transport scales of the system by means of a 3D finite element numerical model application, adopting the most realistic forcing available. The model allowed us to assess the role played by baroclinic terms in the basin circulation, describing its estuarine nature. In particular, the main features of water circulation, salinity and temperature distribution, water renewal time and bottom stress were investigated. Our results allowed us to equate this system dynamic to that of a weakly stratified estuary, identifying the main driving sources of this mechanism. The vertical stratification over the whole year was proved to be stable, leading to a dual circulation flowing out on the surface, mainly through Porta Napoli channel, and inflowing on the bottom mainly through Navigabile channel. This process was responsible also for the renewal time faster on the bottom of the Mar Piccolo basin than the surface. Due to the great importance of the Taranto basin for what concerns sediment pollution, also the effect of currents in terms of bottom stress was investigated, leading to the conclusion that only in the inlets area the values of bottom stress can be high enough to cause erosion. PMID:26408109

  7. Living shorelines can enhance the nursery role of threatened estuarine habitats.

    PubMed

    Gittman, Rachel K; Peterson, Charles H; Currin, Carolyn A; Fodrie, F Joel; Piehler, Michael F; Bruno, John F

    2016-01-01

    Coastal ecosystems provide numerous services, such as nutrient cycling, climate change amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions and processes are modified by human activities locally and globally, with degradation of coastal ecosystems by development and climate change occurring at unprecedented rates. The demand for coastal defense strategies against storms and sea-level rise has increased with human population growth and development along coastlines world-wide, even while that population growth has reduced natural buffering of shorelines. Shoreline hardening, a common coastal defense strategy that includes the use of seawalls and bulkheads (vertical walls constructed of concrete, wood, vinyl, or steel), is resulting in a "coastal squeeze" on estuarine habitats. In contrast to hardening, living shorelines, which range from vegetation plantings to a combination of hard structures and plantings, can be deployed to restore or enhance multiple ecosystem services normally delivered by naturally vegetated shores. Although hundreds of living shoreline projects have been implemented in the United States alone, few studies have evaluated their effectiveness in sustaining or enhancing ecosystem services relative to naturally vegetated shorelines and hardened shorelines. We quantified the effectiveness of (1) sills with landward marsh (a type of living shoreline that combines marsh plantings with an offshore low-profile breakwater), (2) natural salt marsh shorelines (control marshes), and (3) unvegetated bulkheaded shores in providing habitat for fish and crustaceans (nekton). Sills supported higher abundances and species diversity of fishes than unvegetated habitat adjacent to bulkheads, and even control marshes. Sills also supported higher cover of filter-feeding bivalves (a food resource and refuge habitat for nekton) than bulkheads or control marshes. These ecosystem-service enhancements were detected on shores with

  8. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    USGS Publications Warehouse

    Larson, James H.; Trebitz, Anett S.; Steinman, Alan D.; Wiley, Michael J.; Carlson Mazur, Martha; Pebbles, Victoria; Braun, Heather A.; Seelbach, Paul W.

    2013-01-01

    At the interface of the Great Lakes and their tributary rivers lies the rivermouths, a class of aquatic ecosystem where lake and lotic processes mix and distinct features emerge. Many rivermouths are the focal point of both human interaction with the Great Lakes and human impacts to the lakes; many cities, ports, and beaches are located in rivermouth ecosystems, and these human pressures often degrade key ecological functions that rivermouths provide. Despite their ecological uniqueness and apparent economic importance, there has been relatively little research on these ecosystems as a class relative to studies on upstream rivers or the open-lake waters. Here we present a synthesis of current knowledge about ecosystem structure and function in Great Lakes rivermouths based on studies in both Laurentian rivermouths, coastal wetlands, and marine estuarine systems. A conceptual model is presented that establishes a common semantic framework for discussing the characteristic spatial features of rivermouths. This model then is used to conceptually link ecosystem structure and function to ecological services provided by rivermouths. This synthesis helps identify the critical gaps in understanding rivermouth ecology. Specifically, additional information is needed on how rivermouths collectively influence the Great Lakes ecosystem, how human alterations influence rivermouth functions, and how ecosystem services provided by rivermouths can be managed to benefit the surrounding socioeconomic networks.

  9. Biogeochemical classification of South Florida's estuarine and coastal waters.

    PubMed

    Briceño, Henry O; Boyer, Joseph N; Castro, Joffre; Harlem, Peter

    2013-10-15

    South Florida's watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida's estuarine and coastal waters is important to Everglades' restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida's coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria. PMID:23968989

  10. Remote sensing of estuarine fronts and their effects on pollutants

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Polis, D. F.

    1975-01-01

    The author has identified the following significant results. Imagery from LANDSAT 1 and 2 proved valuable in determining the location, type, and extent of estuarine fronts under different tidal conditions. Neither ships nor aircraft alone could provide as complete, synoptic, and repetitive an overview as did the satellites. Since estuarine fronts influence the movement of oil slicks and dispersion of other pollutants, cleanup operations depending on real time use of oil slick movement prediction models will benefit not only from aircraft tracking the actual slicks but also from real time satellite observations of surface currents and the location of frontal systems.

  11. ECOSYSTEM HEALTH: ENERGY INDICATORS

    EPA Science Inventory

    1. Ecosystem Health and Ecological Integrity
    2. Historical Background on Ecosystem Health
    3. Energy Systems Analysis, Health and Emergy
    4. Energy and Ecosystems
    5. Direct Measures of Ecosystem Health
    6. Indirect Measures of Ecosystem Health

  12. Estuarine and Tidal Freshwater Habitat Cover Types Along the Lower Columbia River Estuary Determined from Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery, Technical Report 2003.

    SciTech Connect

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and tidal floodplain ecosystems is critical to the management of biological resources in the lower Columbia River. Columbia River plants, fish, and wildlife require specific physicochemical and ecological conditions to sustain their populations. As habitats are degraded or lost, this capability is altered, often irretrievably; those species that cannot adapt are lost from the ecosystem. The Lower Columbia River Estuary Partnership (Estuary Partnership) completed a comprehensive ecosystem protection and enhancement plan for the lower Columbia River and estuary in 1999 (Jerrick, 1999). The plan identified habitat loss and modification as a critical threat to the integrity of the lower Columbia River ecosystem and called for a habitat inventory as a key first step in its long term restoration efforts. In 2000, the Estuary Partnership initiated a multiphase project to produce a spatial data set describing the current location and distribution of estuarine and tidal freshwater habitat cover types along the lower Columbia River from the river mouth to the Bonneville Dam using a consistent methodology and data sources (Fig. 1). The first phase of the project was the development of a broadbrush description of the estuarine and tidal freshwater habitat cover classes for the entire study area ({approx}146 river miles) using Landsat 7 ETM+ satellite imagery. Phase II of the project entailed analysis of the classified satellite imagery from Phase I. Analysis of change in landcover and a summary of the spatial relationships between cover types are part of Phase II. Phase III of the project included the classification of the high resolution hyperspectral imagery collected in 2000 and 2001 for key focal areas within the larger study area. Finally, Phase IV consists of this final report that presents results from refining the Landsat ETM+ classification and provides recommendations for future actions

  13. Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan

    PubMed Central

    Yoshida, Seiji; Date, Yasuhiro; Akama, Makiko; Kikuchi, Jun

    2014-01-01

    Environmental metabolomics or ionomics is widely used to characterize the effects of environmental stressors on the health of aquatic organisms. However, most studies have focused on liver and muscle tissues of fish, and little is known about how the other organs are affected by environmental perturbations and effects such as metal pollutants or eutrophication. We examined the metabolic and mineral profiles of three kinds of abundant fishes in estuarine ecosystem, yellowfin goby, urohaze-goby, and juvenile Japanese seabass sampled from Tsurumi River estuary, Japan. Multivariate analyses, including nuclear magnetic resonance-based metabolomics and inductively coupled plasma optical emission spectrometry-based ionomics approaches, revealed that the profiles were clustered according to differences among body tissues rather than differences in body size, sex, and species. The metabolic and mineral profiles of the muscle and fin tissues, respectively, suggest that these tissues are most appropriate for evaluating environmental perturbations. Such analyses will be highly useful in evaluating the environmental variation and diversity in aquatic ecosystems. PMID:25387575

  14. Ecosystem services in urban water investment.

    PubMed

    Kandulu, John M; Connor, Jeffery D; MacDonald, Darla Hatton

    2014-12-01

    Increasingly, water agencies and utilities have an obligation to consider the broad environmental impacts associated with investments. To aid in understanding water cycle interdependencies when making urban water supply investment decisions, an ecosystem services typology was augmented with the concept of integrated water resources management. This framework is applied to stormwater harvesting in a case study catchment in Adelaide, South Australia. Results show that this methodological framework can effectively facilitate systematic consideration and quantitative assessment of broad environmental impacts of water supply investments. Five ecosystem service impacts were quantified including provision of 1) urban recreational amenity, 2) regulation of coastal water quality, 3) salinity, 4) greenhouse gas emissions, and 5) support of estuarine habitats. This study shows that ignoring broad environmental impacts can underestimate ecosystem service benefits of water supply investments by a value of up to A$1.36/kL, or three times the cost of operating and maintenance of stormwater harvesting. Rigorous assessment of the public welfare impacts of water infrastructure investments is required to guide long-term optimal water supply investment decisions. Numerous challenges remain in the quantification of broad environmental impacts of a water supply investment including a lack of peer-reviewed studies of environmental impacts, aggregation of incommensurable impacts, potential for double-counting errors, uncertainties in available impact estimates, and how to determine the most suitable quantification technique. PMID:24992048

  15. Habitat Mapping and Classification of the Grand Bay National Estuarine Research Reserve using AISA Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Rose, K.

    2012-12-01

    Habitat mapping and classification provides essential information for land use planning and ecosystem research, monitoring and management. At the Grand Bay National Estuarine Research Reserve (GRDNERR), Mississippi, habitat characterization of the Grand Bay watershed will also be used to develop a decision-support tool for the NERR's managers and state and local partners. Grand Bay NERR habitat units were identified using a combination of remotely sensed imagery, aerial photography and elevation data. Airborne Imaging Spectrometer for Applications (AISA) hyperspectral data, acquired 5 and 6 May 2010, was analyzed and classified using ENVI v4.8 and v5.0 software. The AISA system was configured to return 63 bands of digital imagery data with a spectral range of 400 to 970 nm (VNIR), spectral resolution (bandwidth) at 8.76 nm, and 1 m spatial resolution. Minimum Noise Fraction (MNF) and Inverse Minimum Noise Fraction were applied to the data prior to using Spectral Angle Mapper ([SAM] supervised) and ISODATA (unsupervised) classification techniques. The resulting class image was exported to ArcGIS 10.0 and visually inspected and compared with the original imagery as well as auxiliary datasets to assist in the attribution of habitat characteristics to the spectral classes, including: National Agricultural Imagery Program (NAIP) aerial photography, Jackson County, MS, 2010; USFWS National Wetlands Inventory, 2007; an existing GRDNERR habitat map (2004), SAV (2009) and salt panne (2002-2003) GIS produced by GRDNERR; and USACE lidar topo-bathymetry, 2005. A field survey to validate the map's accuracy will take place during the 2012 summer season. ENVI's Random Sample generator was used to generate GIS points for a ground-truth survey. The broad range of coastal estuarine habitats and geomorphological features- many of which are transitional and vulnerable to environmental stressors- that have been identified within the GRDNERR point to the value of the Reserve for

  16. Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern Brazil.

    PubMed

    Cotovicz Junior, Luiz Carlos; Brandini, Nilva; Knoppers, Bastiaan Adriaan; Mizerkowski, Byanka Damian; Sterza, José Mauro; Ovalle, Alvaro Ramon Coelho; Medeiros, Paulo Ricardo Petter

    2013-04-01

    Anthropogenic eutrophication of aquatic ecosystems continues to be one of the major environmental issues worldwide and also of Brazil. Over the last five decades, several approaches have been proposed to discern the trophic state and the natural and cultural processes involved in eutrophication, including the multi-parameter Assessment of Estuarine Trophic Status (ASSETS) index model. This study applies ASSETS to four Brazilian lagoons (Mundaú, Manguaba, Guarapina, and Piratininga) and one estuarine delta (Paraíba do Sul River), set along the eastern Brazilian coast. The model combines three indices based on the pressure-state-response (PSR) approach to rank the trophic status and forecast the potential eutrophication of a system, to which a final ASSETS grade is established. The lagoons were classified as being eutrophic and highly susceptible to eutrophication, due primarily to their longer residence times but also their high nutrient input index. ASSETS classified the estuary of the Paraíba do Sul river with a low to moderate trophic state (e.g., largely mesotrophic) and low susceptibility to eutrophication. Its nutrient input index was high, but the natural high dilution and flushing potential driven by river flow mitigated the susceptibility to eutrophication. Eutrophication forecasting provided more favorable trends for the Mundaú and Manguaba lagoons and the Paraíba do Sul estuary, in view of the larger investments in wastewater treatment and remediation plans. The final ASSETS ranking system established the lagoons of Mundaú as "moderate," Manguaba as "bad," Guarapina as "poor," and Piratininga as "bad," whereas the Paraíba do Sul River Estuary was "good." PMID:22821328

  17. Habitat- and bay-scale connectivity of sympatric fishes in an estuarine nursery

    NASA Astrophysics Data System (ADS)

    Dance, Michael A.; Rooker, Jay R.

    2015-12-01

    Acoustic telemetry was used to examine habitat- and bay-scale connectivity for co-occurring juvenile fishes, southern flounder (Paralichthys lethostigma) and red drum (Sciaenops ocellatus), at two spatial scales in a model estuarine seascape. An acoustic positioning system was deployed to examine habitat-scale (ca. 1 m-1 km) movement, while a larger gridded array was deployed to examine bay-scale movement (ca. 1-20 km). Both species exhibited greater use of edge habitat and seagrass beds at the habitat scale; however, rates of movement within habitats varied between species. Southern flounder movement (mean = 4.0 m min-1) increased with decreasing habitat complexity (seagrass to bare sand) and increasing temperature, while red drum rate of movement (mean = 8.4 m min-1) was not significantly affected by environmental factors at the habitat scale, indicating the use of different foraging strategies (i.e. ambush vs. active). Bay-scale distribution was influenced by physicochemical conditions and seascape composition, with both species found most frequently in areas with high seagrass coverage and relative close proximity to tidal creeks and connective channels. Response to environmental variables often differed between species and the probability of bay-scale movement (>1 km) for southern flounder was greatest on days with narrow tidal ranges (<0.4 m) and higher temperatures (>17 °C), while the probability of bay-scale movement for red drum increased in response to decreasing salinity and lower temperatures (<16 °C). Species-specific variation in movement patterns within and across habitat types observed here at both the habitat and bay scale suggest sympatric species employ different strategies to partition resources within estuarine nursery areas and highlight the importance of multi-species assessments for improving our understanding of habitat value and ecosystem function.

  18. Evaluation of the utility of water quality based indicators of estuarine lagoon condition in NSW, Australia

    NASA Astrophysics Data System (ADS)

    Scanes, Peter; Coade, Geoff; Doherty, Maria; Hill, Ross

    2007-08-01

    Environmental indicators must have a predictable relationship with stressors to be of value in ecological assessments. We evaluated the information provided by commonly implemented monitoring indicators as a means of assessing of the level of ecological impact experienced by coastal lagoons in New South Wales, Australia. Existing data for environmental variables in coastal lagoons were correlated with independent estimates of catchment disturbance. There were few relationships between the monitoring variables (particularly water chemistry) and nutrient loads and catchment land use. Data from NSW catchments and lagoons were compared to analogous data from published northern hemisphere studies and it was clear that stressor variables were up to one to two orders of magnitude smaller in NSW, potentially explaining the lack of relationships with recognised indicators. Our study has highlighted the importance of using a range of indicators to assess trends in ecological condition of an estuarine ecosystem, particularly where stressor levels are not great. Using water quality as the sole means of determining lagoon condition was simply inadequate in NSW lagoons. We recommended that ecological outcome indicators such as algal abundance (macro and micro) and turbidity were most likely to show interpretable patterns at low to moderate nitrogen loadings (<40 kg Ha -1 yr -1) and that these should form the basis of estuarine trend monitoring in NSW lagoons. The demonstrated value of seagrass and macroalgal monitoring in estuaries with moderate to high nutrient loadings suggests that these indicators should not be overlooked when planning monitoring programs, recognising, however, they will not have strong discrimination at lower catchment loadings.

  19. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species

    USGS Publications Warehouse

    Carstensen, Jacob; Klais, Riina; Cloern, James E.

    2015-01-01

    Phytoplankton blooms are dynamic phenomena of great importance to the functioning of estuarine and coastal ecosystems. We analysed a unique (large) collection of phytoplankton monitoring data covering 86 coastal sites distributed over eight regions in North America and Europe, with the aim of investigating common patterns in the seasonal timing and species composition of the blooms. The spring bloom was the most common seasonal pattern across all regions, typically occurring early (February–March) at lower latitudes and later (April–May) at higher latitudes. Bloom frequency, defined as the probability of unusually high biomass, ranged from 5 to 35% between sites and followed no consistent patterns across gradients of latitude, temperature, salinity, water depth, stratification, tidal amplitude or nutrient concentrations. Blooms were mostly dominated by a single species, typically diatoms (58% of the blooms) and dinoflagellates (19%). Diatom-dominated spring blooms were a common feature in most systems, although dinoflagellate spring blooms were also observed in the Baltic Sea. Blooms dominated by chlorophytes and cyanobacteria were only common in low salinity waters and occurred mostly at higher temperatures. Key bloom species across the eight regions included the diatoms Cerataulina pelagica and Dactyliosolen fragilissimus and dinoflagellates Heterocapsa triquetra and Prorocentrum cordatum. Other frequent bloom-forming taxa were diatom genera Chaetoceros, Coscinodiscus, Skeletonema, and Thalassiosira. Our meta-analysis shows that these 86 estuarine-coastal sites function as diatom-producing systems, the timing of that production varies widely, and that bloom frequency is not associated with environmental factors measured in monitoring programs. We end with a perspective on the limitations of conclusions derived from meta-analyses of phytoplankton time series, and the grand challenges remaining to understand the wide range of bloom patterns and

  20. Tungsten-molybdenum fractionation in estuarine environments

    NASA Astrophysics Data System (ADS)

    Mohajerin, T. Jade; Helz, George R.; Johannesson, Karen H.

    2016-03-01

    Dissolved tungsten (W) and molybdenum (Mo) concentrations were measured in surface waters and sediment pore waters of Terrebonne Bay, a shallow estuary in the Mississippi River delta, to investigate the biogeochemical processes that fractionate these Group 6 elements relative to one another during transit from weathering to sedimentary environments. Although many of the chemical properties of W and Mo are similar, the two elements behave autonomously, and the fractionation mechanisms are only partly understood. In sulfidic pore waters, dissolved Mo is depleted relative to river water-seawater mixtures, whereas dissolved W is >10-fold enriched. Reductive dissolution of poorly crystalline phases like ferrihydrite, which is a preferential host of W relative to Mo in grain coatings on river-borne particles, can explain the dissolved W enrichment. Dissolved W becomes increasingly enriched as H2S(aq) rises above about 60 μM due to transformation of WO42- to thiotungstates as well as to additional reductive dissolution of phases that host W. In contrast, as rising sulfide transforms MoO42- to thiomolybdates in pore waters, dissolved Mo is suppressed, probably owing to equilibration with an Fe-Mo-S phase. This putative phase appears to control the aqueous ion product, Q = [Fe2+][MoS42-]0.6 [H2S0]0.4/[H+]0.8, at a value of 10-7.78. Concentrations of dissolved W and Mo in pore waters bear no relation to concentrations in surface waters of the same salinity. In surface waters, dissolved Mo is nearly conserved in the estuarine mixing zone. Dissolved W appears also to be conserved except for several cases where W may have been enhanced by exchange with underlying, W-rich pore waters. With increasing salinity, the molar Mo/W ratio rises from about 10 to about 1000 in surface waters whereas it is mostly <10 in underlying pore waters and in highly sulfidic pore waters is mostly near 1. Differences in two chemical properties may account for this fractionation of Mo with respect to

  1. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    . Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.

  2. Astronomical Ecosystems

    NASA Astrophysics Data System (ADS)

    Neuenschwander, D. E.; Finkenbinder, L. R.

    2004-05-01

    Just as quetzals and jaguars require specific ecological habitats to survive, so too must planets occupy a tightly constrained astronomical habitat to support life as we know it. With this theme in mind we relate the transferable features of our elementary astronomy course, "The Astronomical Basis of Life on Earth." Over the last five years, in a team-taught course that features a spring break field trip to Costa Rica, we have introduced astronomy through "astronomical ecosystems," emphasizing astronomical constraints on the prospects for life on Earth. Life requires energy, chemical elements, and long timescales, and we emphasize how cosmological, astrophysical, and geological realities, through stabilities and catastrophes, create and eliminate niches for biological life. The linkage between astronomy and biology gets immediate and personal: for example, studies in solar energy production are followed by hikes in the forest to examine the light-gathering strategies of photosynthetic organisms; a lesson on tides is conducted while standing up to our necks in one on a Pacific beach. Further linkages between astronomy and the human timescale concerns of biological diversity, cultural diversity, and environmental sustainability are natural and direct. Our experience of teaching "astronomy as habitat" strongly influences our "Astronomy 101" course in Oklahoma as well. This "inverted astrobiology" seems to transform our student's outlook, from the universe being something "out there" into something "we're in!" We thank the SNU Science Alumni support group "The Catalysts," and the SNU Quetzal Education and Research Center, San Gerardo de Dota, Costa Rica, for their support.

  3. TOXICOLOGICAL STUDIES IN TROPICAL ECOSYSTEMS: AN ECOTOXICOLOGICAL RISK ASSESSMENT OF PESTICIDE RUNOFF IN SOUTH FLORIDA ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    A multi-year study in the C-111 canal and associated sites in Florida Bay was undertaken in order to determine the potential contaminant risk that exists in South Florida. After examining extensive surface water data, as well as sediment, tissue, and semi-permeable membrane devic...

  4. EFFECTS OF SEVIN ON DEVELOPMENT OF EXPERIMENTAL ESTUARINE COMMUNITIES

    EPA Science Inventory

    The composition of animal communities developing from planktonic larvae in aquariums containing sand and flowing estuarine water was altered in the presence of the carbamate insecticide Sevin (carbaryl). Treatments were control and concentrations of Sevin that averaged 1.1, 11.1,...

  5. HALOCARBON PRODUCTION FROM OXIDATIVE BIOCIDES IN ESTUARINE WATERS

    EPA Science Inventory

    The formation of halo-organic compounds by chlorination of estuarine waters has been investigated under both laboratory and field conditions. Haloforms are readily generated in the laboratory with chlorine doses of 1 to 10 mg/l, the range employed by many coastal power plants. At...

  6. 75 FR 60720 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research Reserve System Correction In notice document 2010-24341 appearing on page 59696 in the issue of Tuesday, September 28, 2010 make...

  7. IMPACT OF UV-B RADIATION UPON ESTUARINE MICROCOSMS

    EPA Science Inventory

    Twelve flow-through estuarine microcosms were exposed daily to four different levels of UV-B radiation. In addition to a natural level of visible solar radiation. The parameters studied over a four week period were phytoplankton community composition, plankton biomass (ash-free d...

  8. RESPONSES OF DEVELOPING ESTUARINE MACROBENTHIC COMMUNITIES TO DRILLING MUDS

    EPA Science Inventory

    The effects of drilling mud, used in oil drilling operations, on development of estuarine macrobenthic communities from settling planktonic larvae were assessed by comparing numbers and species of animals that grew in uncontaminated and contaminated aquaria for 8 weeks. Aquaria c...

  9. Ordination of the estuarine environment: What the organism experiences

    EPA Science Inventory

    Investigators customarily schedule estuary sampling trips with regard to a variety of criteria, especially tide stage and the day-night cycle. However, estuarine organisms experience a wide suite of continuously changing tide and light conditions. Such organisms may undertake i...

  10. Monitoring nekton as a bioindicator in shallow estuarine habitats

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.; Heltshe, J.F.

    2003-01-01

    Long-term monitoring of estuarine nekton has many practical and ecological benefits but efforts are hampered by a lack of standardized sampling procedures. This study provides a rationale for monitoring nekton in shallow (< 1 m), temperate, estuarine habitats and addresses some important issues that arise when developing monitoring protocols. Sampling in seagrass and salt marsh habitats is emphasized due to the susceptibility of each habitat to anthropogenic stress and to the abundant and rich nekton assemblages that each habitat supports. Extensive sampling with quantitative enclosure traps that estimate nekton density is suggested. These gears have a high capture efficiency in most habitats and are small enough (e.g., 1 m(2)) to permit sampling in specific microhabitats. Other aspects of nekton monitoring are discussed, including spatial and temporal sampling considerations, station selection, sample size estimation, and data collection and analysis. Developing and initiating long-term nekton monitoring programs will help evaluate natural and human-induced changes in estuarine nekton over time and advance our understanding of the interactions between nekton and the dynamic estuarine environment.

  11. EFFECTS OF HALOGENATED ORGANIC COMPOUNDS ON PHOTOSYNTHESIS IN ESTUARINE PHYTOPLANKTON

    EPA Science Inventory

    Chlorine oxidants (chlorine gas, sodium hypochlorite, and calcium hypochlorite) are used as biocides to control fouling in seawater cooled power generating plants and to kill pathogens in sewage effluents entering estuarine waters. The effects of chlorinated by-products on estuar...

  12. UPTAKE AND TOXICITY OF TOXAPHENE IN SEVERAL ESTUARINE ORGANISMS

    EPA Science Inventory

    The organochlorine insecticide, toxaphene, was tested in flow-through bioassays to evaluate its toxicity to estuarine organisms. The organisms tested and their respective 96-hr LC50s (based on measured concentrations) are: pink shrimp (Penaeus duorarum), 1.4 micrograms/L; grass s...

  13. ACUTE TOXICITY AND BIOCONCENTRATION OF ENDOSULFAN-EXPOSED ESTUARINE ANIMALS

    EPA Science Inventory

    Acute (96-h) flow-through toxicity tests with endosulfan (Thiodan) were conducted with several estuarine animals. The test species and their 96-h lethal concentration for 50 percent of the organisms (LC50) values were: pink shrimp (Penaeus duorarum), 0.04 micrograms/litre; grass ...

  14. CADMIUM TOXICITY TO THREE SPECIES OF ESTUARINE INVERTEBRATES

    EPA Science Inventory

    Three species of estuarine invertebrates, Palaemonetes pugio (grass shrimp), Pagurus longicarpus (hermit crab) and Argopecten irradians (bay scallop), were exposed to Cd in flowing seawater at concentrations of 0.06, 0.12, 0.25, 0.5 and 1.0 mg/litre. Incipient LC50 values of 0.53...

  15. Marine and Estuarine Ecology. Man and the Gulf of Mexico.

    ERIC Educational Resources Information Center

    Irby, Bobby N.; And Others

    "Man and the Gulf of Mexico (MGM)" is a marine science curriculum developed to meet the marine science needs of tenth through twelfth grade students in Mississippi and Alabama schools. This MGM unit, which focuses on marine and estuarine ecology, is divided into six sections. The first section contains unit objectives, discussions of the estuarine…

  16. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    NASA Astrophysics Data System (ADS)

    Feng, Yang; Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr-1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr-1) and buried (46 × 109 g N yr-1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr-1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  17. Juvenile fish condition in estuarine nurseries along the Portuguese coast

    NASA Astrophysics Data System (ADS)

    Vasconcelos, R. P.; Reis-Santos, P.; Fonseca, V.; Ruano, M.; Tanner, S.; Costa, M. J.; Cabral, H. N.

    2009-03-01

    Connectivity between estuarine fish nurseries and coastal adult habitats can be affected by variations in juvenile growth and survival. Condition indices are renowned proxies of juvenile nutritional status and growth rates and are valuable tools to assess habitat quality. Biochemical (RNA:DNA ratio) and morphometric (Fulton's condition factor K) condition indices were determined in juveniles of Solea solea, Solea senegalensis, Platichthys flesus, Diplodus vulgaris and Dicentrarchus labrax collected in putative nursery areas of nine estuaries along the Portuguese coast (Minho, Douro, Ria de Aveiro, Mondego, Tejo, Sado, Mira, Ria Formosa and Guadiana) in the Spring and Summer of two consecutive years (2005 and 2006) with distinct climatic characteristics. Individual condition showed significant variation amongst species. The combined use of both condition indices highlighted the low correlation between them and that RNA:DNA had a higher sensitivity. RNA:DNA varied between years but overall the site relative patterns in condition were maintained from one year to the other. Higher RNA:DNA values were found in Spring than in Summer in most species. Intra-estuarine variation also occurred in several cases. Species specific trends in the variability of condition amongst estuaries were highlighted. Some estuaries had higher juvenile condition for more than one species but results did not reveal an identical trend for all species and sites, hindering the hypotheses of one estuarine nursery promoting superior growth for all present species. Significant correlations were found between condition indices, juvenile densities and environmental variables (water temperature, salinity and depth) in the estuarine nurseries. These influenced juvenile nutritional condition and growth, contributing to the variability in estuarine nursery habitat quality. Management and conservation wise, interest in multi-species approaches is reinforced as assessments based on a single species may not

  18. global research program: LTG2. Assess the potential impacts of global change on water quality and aquatic ecosystems in the US

    EPA Science Inventory

    Includes research on the effects of land use practices and climate change on terrestrial-aquatic linkages in the Willamette Basin Oregon and implications for water resources; assessment of the vulnerability of Pacific Coast estuarine ecosystems and population viability of key Pac...

  19. Oxygen-deficient waters along the Japanese coast and their effects upon the estuarine ecosystem.

    PubMed

    Suzuki, T

    2001-01-01

    Development of hypoxia in Japan has been confirmed in the inner part of almost every major bay of Japan on the Pacific Coast from Tokyo southward. This paper presents multiple aspects (present condition, hydraulic mechanism, effect upon fisheries, historical progress and nutrient budget between sediment and water) using Mikawa Bay, where Japan's most serious hypoxia occurs, as an example. Although hypoxia basically results from the increase of nutrient load input from domestic and livestock sources, the intense reclamation of shallows (including tidal flats) and the large reduction in river flow due to farmland irrigation drastically accelerated dissolved oxygen deficiency. Oxygen-deficient waters in Mikawa Bay are large enough to strip the water purification capacity of the remaining shallows. Unfortunately, the shallows have turned from a purifier to a source of nutrient load. These conditions are more or less common in all bays where the dissolved oxygen-deficient waters have been reported. To break this cycle, dissolved oxygen deficiency must be contained to the extent that the purification capacity of the shallows can be restored to an efficient level. For this purpose, the first thing to do is to restore tidal flats over an extensive area and to recover sufficient water flow, which may be a more urgent imperative than reducing the nutrient load input. PMID:11285889

  20. PROGRAM REVIEW PROCEEDINGS OF: ENVIRONMENTAL EFFECTS OF ENERGY RELATED ACTIVITIES ON MARINE/ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Fiscal year 1975 was the beginning of the Environmental Protection Agency's lead responsibility for the planning, coordination, and implementation of the Federal Interagency Energy/Environment R&D Program. The 'Report of the Interagency Working Group on Health and Environmental E...

  1. Ecosystem Services Provided by the Albemarle-Pamlico Watershed and Estuarine System

    EPA Science Inventory

    One of the most important water quality issues in the Albemarle-Pamlico watershed and estuary is related to management of reactive nitrogen (Nr). Other important issues include wetland restoration to ameliorate coastal eutrophication, interbasin transfers of water and effects on ...

  2. Developing ecosystem services-based assessment endpoints for determining ecological risks to estuarine environments

    EPA Science Inventory

    Current U.S. EPA ecological risk assessment (ERA) guidance defines an assessment endpoint (AE) as an explicit expression of the environmental value that is to be protected, and recommends that AEs are selected based on ecological relevance, susceptibility to known or potential st...

  3. MACROALGAL CANOPIES CONTRIBUTE TO EELGRASS (ZOSTERA MARINA) DECLINE IN TEMPERATE ESTUARINE ECOSYSTEMS. (U915335)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Energy Flow in the Kromme Estuarine Ecosystem, St Francis Bay, South Africa

    NASA Astrophysics Data System (ADS)

    Heymans, J. J.; Baird, D.

    1995-07-01

    An energy flow network was constructed for the Kromme estuary, South Africa. Extensive data, collected on this estuary, were used to calculate the energetics of each of the 27 compartments identified in this system. The model consists of three non-living and 24 living compartments. The non-living compartments were dissolved organic carbon (DOC), suspended and sediment particulate organic carbon (POC), while the living compartments consisted of four plant groups, three bacterial groups and 17 animal groups. The animals range from meiofauna to macrofauna and fish. Biomass of all compartments were estimated in mg C m -2and exchanges in mg C m -2day -1. It was found that the main primary producers are the marsh halophytes and macrophytes. It seems that although the salt marshes cover only 38% of the Kromme estuary, the marsh halophytes contribute 78% of the total primary production, making it the most important producer in this estuary. Less than 10% of the halophyte production enters the grazing food-chain, with the remainder being broken down to sediment detritus. This indicates that the sediment detritus, as well as the animals that feed on it, forms the most important part of this food-web.

  5. Guiding BMP adoption to improve water quality in various estuarine ecosystems in Western Australia.

    PubMed

    Keipert, N; Weaver, D; Summers, R; Clarke, M; Neville, S

    2008-01-01

    The Australian Government's Coastal Catchment Initiative (CCI) seeks to achieve targeted reductions in nutrient pollution to key coastal water quality hotspots, reducing algal blooms and fish kills. Under the CCI a Water Quality Improvement Plan (WQIP) is being prepared for targeted estuaries (Swan-Canning, near Perth, and the Vasse-Geographe, 140 km south of Perth) to address nutrient pollution issues. A range of projects are developing, testing and implementing agricultural Best Management Practices (BMPs) to reduce excessive loads of nutrients reaching the receiving waters. This work builds on progress-to-date achieved in a similar project in the Peel-Harvey Catchment (70 km south of Perth). It deals with the necessary steps of identifying the applicability of BMPs for nutrient attenuation, developing and promoting BMPs in the context of nutrient use and attenuation on farm and through catchments and estimating the degree to which BMP implementation can protect receiving waters. With a range of BMPs available with varying costs and effectiveness, a Decision Support System (DSS) to guide development of the WQIP and implementation of BMPs to protect receiving waters, is under development. As new information becomes available the DSS will be updated to ensure relevance and accuracy for decision-making and planning purposes. The DSS, calibrated for application in the catchments, will play a critical role in adaptive implementation of the WQIP by assessing the effect of land use change and management interventions on pollutant load generation and by providing a tool to guide priority setting and investment planning to achieve agreed WQIP load targets. PMID:18547926

  6. Studies of the San Francisco Bay, California, estuarine ecosystem regional monitoring program results, 1996

    USGS Publications Warehouse

    Baylosis, Jelriza I.; Edmunds, Jody L.; Cole, Brian E.; Cloern, James E.

    1997-01-01

    As part of a regional monitoring program, water samples were collected in the San Francisco Bay estuary during 21 cruises from January through December 1996. Conductivity, temperature, light attenuation, turbidity, oxygen, and in-vivo chlorophyll fluorescence were measured longitudinally and vertically in the main channel of the estuary from south of the Dumbarton Bridge in the southern part of the Bay to Rio Vista on the Sacramento River. Discrete water samples were analyzed for chlorophyll a, phaeopigments, suspended participate matter, and dissolved oxygen. Water density was calculated from salinity, temperature, and pressure (depth), and is included in the data summaries.

  7. Ecosystem Services in Lakes of the Northeastern United States: Upstream Benefits from Estuarine Nitrogen Reduction Scenarios

    EPA Science Inventory

    Reduction of nitrogen inputs to estuaries can be achieved by the control of agricultural, atmospheric, and urban sources. We use the USGS MRB1 SPARROW model to estimate reductions necessary to reduce nitrogen loads to estuaries by 10%. If only agricultural inputs are reduced, ...

  8. Estuarine Ecosystems: Using T & E Signature Approaches to Support STEM Integration

    ERIC Educational Resources Information Center

    McCulloch, Allison W.; Ernst, Jeremy V.

    2012-01-01

    STEM-based understandings and experiences that prepare learners beyond the classroom are of imminent need, as today's STEM education students are tomorrow's leaders in science, technology, engineering, mathematics, and education (Prabhu, 2009). Integrative STEM education signifies the intentional integration of science and mathematics with the…

  9. Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Buruaem, Lucas Moreira; de Castro, Ítalo Braga; Hortellani, Marcos Antonio; Taniguchi, Satie; Fillmann, Gilberto; Sasaki, Silvio Tarou; Varella Petti, Mônica Angélica; Sarkis, Jorge Eduardo de Souza; Bícego, Márcia Caruso; Maranho, Luciane Alves; Davanso, Marcela Bergo; Nonato, Edmundo Ferraz; Cesar, Augusto; Costa-Lotufo, Leticia Veras; Abessa, Denis Moledo de Souza

    2013-09-01

    Santos-São Vicente Estuarine System is a highly populated coastal zone in Brazil and where it is located the major port of Latin America. Historically, port activities, industrial and domestic effluents discharges have constituted the main sources of contaminants to estuarine system. This study aimed to assess the recent status of sediment quality from 5 zones of Port of Santos by applying a lines-of-evidence approach through integrating results of: (1) acute toxicity of whole sediment and chronic toxicity of liquid phases; (2) grain size, organic matter, organic carbon, nitrogen, phosphorus, trace metals, polycyclic aromatic hydrocarbons, linear alkylbenzenes and butyltins; (3) benthic community descriptors. Results revealed a gradient of increasing contamination for metals and organic compounds, alongside with their geochemical carriers. Sediment liquid phases were more toxic compared to whole sediment. Low number of species and individuals indicated the impoverishment of benthic community. The use of site-specific sediment quality guidelines was more appropriate to predict sediment toxicity. The integration of results through Sediment Quality Triad approach and principal component analysis allowed observing the effects of natural stressors and dredging on sediment quality and benthic distribution. Even with recent governmental efforts to control, pollution is still relevant in Port of Santos and a threat to local ecosystems.

  10. Finding refuge: The estuarine distribution of the nemertean egg predator Carcinonemertes errans on the Dungeness crab, Cancer magister

    NASA Astrophysics Data System (ADS)

    Dunn, Paul H.; Young, Craig M.

    2013-12-01

    Parasites can significantly impact ecosystems by altering the distributions and population sizes of their host organisms. Some hosts are thought to find refuge from parasitism by entering habitats where their parasites cannot survive. The nemertean worm Carcinonemertes errans is an egg predator that infects the Dungeness crab, Cancer magister, throughout the host's range. To determine if C. magister experiences a refuge from C. errans within estuarine environments, we examined the distribution of C. errans on Dungeness crabs within Oregon's Coos Bay Estuary. Year-round sampling over a three-year period also allowed us to test for temporal variation in the parasite's distribution. We found that parasite prevalence, mean intensity, and parasite density of C. errans infecting C. magister varied along a clear estuarine gradient, with crabs nearest the ocean carrying the heaviest parasite loads. Larger crabs were more heavily infected with worms, and seasonal infection patterns were observed at some sites within the bay. Crabs sampled from coastal waters near the estuary carried significantly more worms than did crabs from the bay, suggesting that the estuary is acting as a spatiotemporal parasite refuge for this important fishery species.

  11. Benthic infaunal community structuring in an acidified tropical estuarine system

    PubMed Central

    2014-01-01

    Background Recent studies suggest that increasing ocean acidification (OA) should have strong direct and indirect influences on marine invertebrates. While most theory and application for OA is based on relatively physically-stable oceanic ecological systems, less is known about the effects of acidification on nearshore and estuarine systems. Here, we investigated the structuring of a benthic infaunal community in a tropical estuarine system, along a steep salinity and pH gradient, arising largely from acid-sulphate groundwater inflows (Sungai Brunei Estuary, Borneo, July 2011- June 2012). Results Preliminary data indicate that sediment pore-water salinity (range: 8.07 - 29.6 psu) declined towards the mainland in correspondence with the above-sediment estuarine water salinity (range: 3.58 – 31.2 psu), whereas the pore-water pH (range: 6.47- 7.72) was generally lower and less variable than the estuarine water pH (range: 5.78- 8.3), along the estuary. Of the thirty six species (taxa) recorded, the polychaetes Neanthes sp., Onuphis conchylega, Nereididae sp. and the amphipod Corophiidae sp., were numerically dominant. Calcified microcrustaceans (e.g., Cyclopoida sp. and Corophiidae sp.) were abundant at all stations and there was no clear distinction in distribution pattern along the estuarine between calcified and non-calcified groups. Species richness increased seawards, though abundance (density) showed no distinct directional trend. Diversity indices were generally positively correlated (Spearman’s rank correlation) with salinity and pH (p <0.05) and negatively with clay and organic matter, except for evenness values (p >0.05). Three faunistic assemblages were distinguished: (1) nereid-cyclopoid-sabellid, (2) corophiid-capitellid and (3) onuphid- nereid-capitellid. These respectively associated with lower salinity/pH and a muddy bottom, low salinity/pH and a sandy bottom, and high salinity/pH and a sandy bottom. However, CCA suggested that species distribution

  12. Influence of a burrowing, metal-tolerant polychaete on benthic metabolism, denitrification and nitrogen regeneration in contaminated estuarine sediments.

    PubMed

    Banks, Joanne L; Ross, D Jeff; Keough, Michael J; Macleod, Catriona K; Keane, John; Eyre, Bradley D

    2013-03-15

    We investigated the effects of the burrowing cirratulid polychaete Cirriformia filigera (Delle Chiaje, 1828) on benthic respiration and nitrogen regeneration in metal-contaminated estuarine sediments using laboratory mesocosms. C. filigera is a dominant component of assemblages in the most severely contaminated sediments within the Derwent estuary, southern Australia. In the presence of C. filigera sediment O2 consumption doubled, with approximately 55% of this increase due to their respiration and the remaining 45% attributable to oxidation reactions and increased microbial respiration associated with burrow walls. Combined NO3 and NO2 fluxes were unaffected. The addition of labile organic matter did not affect benthic fluxes, in the presence or absence of C. filigera, presumably due to the short timeframe of the experiment and naturally enriched test sediments. The results suggest that a combination of tolerance and burrowing activity enables this species to provide an ecosystem service in the removal of N from contaminated sites. PMID:23398743

  13. AMBI indices and multivariate approach to assess the ecological health of Vellar-Coleroon estuarine system undergoing various human activities.

    PubMed

    Sigamani, Sivaraj; Perumal, Murugesan; Arumugam, Silambarasan; Preetha Mini Jose, H M; Veeraiyan, Bharathidasan

    2015-11-15

    Estuaries receive a considerable amount of pollutants from various sources. Presently an attempt has been made to assess whether the aquaculture discharges and dredging activities alter the ecological conditions of Vellar-Coleroon estuarine complex. The European Water Framework Directive (WFD) established a framework for the protection of marine waters. In this commission, a variety of indices were used, among them, AMBI (AZTI Marine Biotic Index) indices along with multivariate statistical approach is unique, to assess the ecological status by using macrobenthic communities. Keeping this in view, stations VE-1 and VE-4 in Vellar; CE-6 and CE-7 in Coleroon estuaries showed moderately disturbed with the AMBI values ranging between 3.45 and 3.72. The above said stations were situated near the shrimp farm discharge point and sites of dredging activities. The present study proves that various statistical and biotic indices have great potential in assessing the nature of the ecosystem undergoing various human pressures. PMID:26323865

  14. Ecosystem health: I. Measuring ecosystem health

    NASA Astrophysics Data System (ADS)

    Schaeffer, David J.; Herricks, Edwin E.; Kerster, Harold W.

    1988-07-01

    Ecosystem analysis has been advanced by an improved understanding of how ecosystems are structured and how they function. Ecology has advanced from an emphasis on natural history to consideration of energetics, the relationships and connections between species, hierarchies, and systems theory. Still, we consider ecosystems as entities with a distinctive character and individual characteristics. Ecosystem maintenance and preservation form the objective of impact analysis, hazard evaluation, and other management or regulation activities. In this article we explore an approach to ecosystem analysis which identifies and quantifies factors which define the condition or state of an ecosystem in terms of health criteria. We relate ecosystem health to human/nonhuman animal health and explore the difficulties of defining ecosystem health and suggest criteria which provide a functional definition of state and condition. We suggest that, as has been found in human/nonhuman animal health studies, disease states can be recognized before disease is of clinical magnitude. Example disease states for ecosystems are functionally defined and discussed, together with test systems for their early detection.

  15. Impact of frontal systems on estuarine sediment and pollutant dynamics.

    PubMed

    Duck, R W; Wewetzer, S F

    2001-02-01

    In this paper, a brief description of frontal systems, their modes of occurrence and impact on the estuarine environment, is presented. Previous studies of estuarine fronts have largely focused on the water surface and within the water column. New observations in the Tay Estuary, Scotland have shown that the presence of fronts within the water column may be marked, not only by surface foam bands, but also by abrupt (i.e. non-gradational) changes in the underlying bedform morphology and/or sediment facies, as detected using side-scan sonar. This preliminary evidence suggests that fronts may exert a control, not only on the surface and intra-water column sediment and pollutant partitioning, but also on the distribution and persistence of bedload transport pathways. PMID:11258822

  16. Cytotoxicity in L929 fibroblasts and inhibition of herpes simplex virus type 1 Kupka by estuarine cyanobacteria extracts.

    PubMed

    Lopes, Viviana R; Schmidtke, Michaela; Helena Fernandes, M; Martins, Rosário; Vasconcelos, Vitor

    2011-06-01

    The cyanobacteria are known to be a rich source of metabolites with a variety of biological activities in different biological systems. In the present work, the bioactivity of aqueous and organic (methanolic and hexane) crude extracts of cyanobacteria isolated from estuarine ecosystems was studied using different bioassays. The assessment of DNA damage on the SOS gene repair region of mutant PQ37 strain of Escherichia coli was performed. Antiviral activity was evaluated against influenza virus, HRV-2, CVB3 and HSV-1 viruses using crystal violet dye uptake on HeLa, MDCK and GMK cell lines. Cytotoxicity evaluation was performed with L929 fibroblasts by MTT assay. Of a total of 18 cyanobacterial isolates studied, only the crude methanolic extract of LEGE 06078 proved to be genotoxic (IF > 1.5) in a dose-dependent manner and other four were putative candidates to induce DNA damage. Furthermore, the crude aqueous extract of LEGE 07085 showed anti- herpes type 1 activity (IC50 = 174.10 μg dry extract mL(-1)) while not presenting any cytotoxic activity against GMK cell lines. Of the 54 cyanobacterial extracts tested, only the crude methanolic and hexane ones showed impair on metabolic activity of L929 fibroblasts after long exposure (48-72 h). The inhibition of HSV-1 and the strong cytotoxicity against L929 cells observed emphasizes the importance of evaluating the impact of those estuarine cyanobacteria on aquatic ecosystem and on human health. The data also point out their potential application in HSV-1 treatment and pharmacological interest. PMID:21396440

  17. Estuarine versus transient flow regimes in Juan de Fuca Strait

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; MiháLy, Steven F.; Kulikov, Evgueni A.

    2007-09-01

    Residual currents in Juan de Fuca Strait are observed to switch between two fundamental states: estuarine and transient. The estuarine regime, which prevails roughly 90% of the time in summer and 55% of the time in winter, has a fortnightly modulated, three-layer structure characterized by strong (˜50 cm s-1) outflow above 60 ± 15 m depth, moderate (˜25 cm s-1) inflow between 60 and 125 m depth, and weak (˜10 cm s-1) inflow below 125 ± 10 m depth. Rotation increases the upper layer depth by 40 m on the northern side of the channel and upwelling-favorable coastal winds augment inflow in the bottom layer by as much as 5 cm s-1. Rotation, combined with modulation of the estuarine currents by tidal mixing in the eastern strait, leads to fortnightly variability in the along-channel velocity and cross-channel positioning of the core flow regions. Transient flows, which occur roughly 10% of the time in summer and 45% of the time in winter, are rapidly evolving, horizontally and vertically sheared "reversals" in the estuarine circulation generated during poleward wind events along the outer coast. Major events can persist for several weeks, force a net inward transport, and give rise to an O(10) km wide, surface-intensified, O(100) cm s-1 inflow along the southern (Olympic Peninsula) boundary of the strait. This "Olympic Peninsula Countercurrent" is typically accompanied by an abrupt decrease in salinity, indicating that it is a buoyancy flow originating with low-density water on the northern Washington shelf.

  18. Survival of Escherichia coli and Salmonella spp. in estuarine environments.

    PubMed

    Rhodes, M W; Kator, H

    1988-12-01

    Survival of Escherichia coli and Salmonella spp. in estuarine waters was compared over a variety of seasonal temperatures during in situ exposure in diffusion chambers. Sublethal stress was measured by both selective-versus-resuscitative enumeration procedures and an electrochemical detection method. E. coli and Salmonella spp. test suspensions, prepared to minimize sublethal injury, were exposed in a shallow tidal creek and at a site 7.1 km further downriver. Bacterial die-off and sublethal stress in filtered estuarine water were inversely related to water temperature. Salmonella spp. populations exhibited significantly less die-off and stress than did E. coli at water temperatures of less than 10 degrees C. Although the most pronounced reductions (ca. 3 log units) in test bacteria occurred during seasonally warm temperatures in the presence of the autochthonous microbiota, 10(2) to 10(4) test cells per ml remained after 2 weeks of exposure to temperatures of greater than 15 degrees C. Reductions in test bacteria were associated with increases in the densities of microflagellates and plaque-forming microorganisms. These studies demonstrated the survival potential of enteric bacteria in estuarine waters and showed that survival was a function of interacting biological and physical factors. PMID:3066291

  19. Generation of an estuarine sediment plume by a tropical storm

    NASA Astrophysics Data System (ADS)

    Cheng, Peng; Li, Ming; Li, Yun

    2013-02-01

    Tropical Storm Lee (2011) caused a record flood in the Susquehanna River which discharged about 6.7 million tons of suspended sediments into the Bay, an amount equal to the input of 6 average years. The flood-carried sediment produced a large sediment plume that covered one half of Chesapeake Bay with the maximum suspended sediment concentration exceeding 2500 mg L-1. Three stages were identified in the development of the sediment plume, corresponding to three dominant forcing mechanisms, i.e., river flow, estuarine circulation, and sediment settling. Most of the flood-carried sediments were deposited in the Bay within 20 days. Sands were dumped in the Susquehanna Flats with a maximum thickness of 10 cm, while fine-grained sediments were dusted over a wide area in the upper Bay with a maximum thickness of 4 cm. Long-term simulation of the post-storm period showed that a majority of the flood sediments were redistributed to accumulate in the estuarine turbidity maximum region due to flood-ebb asymmetry in tidal suspension and advection by estuarine circulation and tidal flows while the rest were transported seaward and deposited in the mid-Bay. It is estimated that the flood delivered 9 months of particulate nitrogen and over 1 year of particulate phosphorus supplies to the estuary. This catastrophic event may change the geological history and exacerbate water-quality decline in the American largest estuary.

  20. Effects of leached mirex on experimental communities of estuarine animals.

    PubMed

    Tagatz, M E; Borthwick, P W; Ivey, J M; Knight, J

    1976-01-01

    Experimental communities of various estuarine animals in outdoor tanks were exposed to a continuous flow of water containing mirex for 10 weeks. The mirex was leached from fire ant bait (0.3% active ingredient) by fresh water which was then mixed with salt water to yield exposure concentrations averaging 0.038 mug/L. The experiment simulated runoff from treated land into estuarine areas. Mortality of grass shrimp (Palaemonetes vulgaris), pin, shrimp (Penaeus duorarum), common mud crabs (Panopeus herbstii), and striped hermit crabs (Clibanarius vittatus) was significantly high in tanks containing the toxicant. Mortality of ribbed mussels (Modiolus demissus) and American oysters (Crassostrea virginica) was significantly lower in treated tanks, probably because numbers of both species of crabs, which ate the bivalves, were reduced. Sheepshead minnows (Cyprinodon variegatus) were least affected by mirex. Almost all deaths occurred after 10 or more days of exposure. All exposed animals accumulated mirex, with maximum concentrations ranging from 5,500X (pink shrimp) to 73,700X (soft tissues of oysters) above the concentration in the water. Sand substratum contained mirex up to 1,500X that in the water. The study demonstrated that mirex can be leached from bait by fresh water and concentrated by and affect survival of members in an experimental estuarine community. PMID:999334

  1. 77 FR 25962 - Proposed Information Collection; Comment Request; Coastal and Estuarine Land Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... and Estuarine Land Conservation Planning, Protection or Restoration AGENCY: National Oceanic and..., restoration, or construction projects. The required information enables NOAA to implement the CELCP, under...

  2. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions

    NASA Astrophysics Data System (ADS)

    Bernardino, Angelo F.; Netto, Sérgio A.; Pagliosa, Paulo R.; Barros, Francisco; Christofoletti, Ronaldo A.; Rosa Filho, José S.; Colling, André; Lana, Paulo C.

    2015-12-01

    Estuaries are threatened coastal ecosystems that support relevant ecological functions worldwide. The predicted global climate changes demand actions to understand, anticipate and avoid further damage to estuarine habitats. In this study we reviewed data on polychaete assemblages, as a surrogate for overall benthic communities, from 51 estuaries along five Marine Ecoregions of Brazil (Amazonia, NE Brazil, E Brazil, SE Brazil and Rio Grande). We critically evaluated the adaptive capacity and ultimately the resilience to decadal changes in temperature and rainfall of the polychaete assemblages. As a support for theoretical predictions on changes linked to global warming we compared the variability of benthic assemblages across the ecoregions with a 40-year time series of temperature and rainfall data. We found a significant upward trend in temperature during the last four decades at all marine ecoregions of Brazil, while rainfall increase was restricted to the SE Brazil ecoregion. Benthic assemblages and climate trends varied significantly among and within ecoregions. The high variability in climate patterns in estuaries within the same ecoregion may lead to correspondingly high levels of noise on the expected responses of benthic fauna. Nonetheless, we expect changes in community structure and productivity of benthic species at marine ecoregions under increasing influence of higher temperatures, extreme events and pollution.

  3. Cellular internalization of silver nanoparticles in gut epithelia of the estuarine polychaete Nereis diversicolor.

    PubMed

    García-Alonso, Javier; Khan, Farhan R; Misra, Superb K; Turmaine, Mark; Smith, Brian D; Rainbow, Philip S; Luoma, Samuel N; Valsami-Jones, Eugenia

    2011-05-15

    Silver nanoparticles (AgNPs) are widely used which may result in environmental impacts, notably within aquatic ecosystems. As estuarine sediments are sinks for numerous pollutants, but also habitat and food for deposit feeders such as Nereis diversicolor, ingested sediments must be investigated as an important route of uptake for NPs. N. diversicolor were fed sediment spiked with either citrate capped AgNPs (30 ± 5 nm) or aqueous Ag for 10 days. Postexposure AgNPs were observed in the lumen of exposed animals, and three lines of evidence indicated direct internalization of AgNPs into the gut epithelium. With TEM, electron-dense particles resembling AgNPs were observed associated with the apical plasma membrane, in endocytotic pits and in endosomes. Energy dispersive X-ray analysis (EDX) confirmed the presence of Ag in these particles, which were absent in controls. Subcellular fractionation revealed that Ag accumulated from AgNPs was predominantly associated with inorganic granules, organelles, and the heat denatured proteins; whereas dissolved Ag was localized to the metallothionein fraction. Collectively, these results indicate separate routes of cellular internalization and differing in vivo fates of Ag delivered in dissolved and NP form. For AgNPs an endocytotic pathway appears to be a key route of cellular uptake. PMID:21517067

  4. The Distribution of Thermophilic Sulfate-reducing Bacteria Along an Estuarine Gradient Reveals Multiple Origins of Endospores in Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Bell, E.

    2015-12-01

    Cold marine sediments harbour inactive spores of thermophilic bacteria. These misplaced thermophiles are genetically similar to microorganisms detected in deep biosphere environments, leading to the hypothesis that seabed fluid flow transports thermophiles out of warm subsurface environments and into the ocean. Estuaries form the transition between the marine and the terrestrial biosphere and are influenced by tidal currents, surface run-off and groundwater seepage. Endospores from thermophilic bacteria present in estuarine sediments could therefore originate from a number of sources that may influence the estuary differently. We have therefore tested the hypothesis that this will lead to a gradient in the composition of thermophilic endospore populations in estuarine sediments. The distribution of thermophilic spore-forming sulfate-reducing bacteria along an estuarine gradient from freshwater (River Tyne, UK) to marine (North Sea) was investigated. Microbial community analysis by 16S rRNA gene amplicon sequencing revealed changes in the thermophilic population enriched at different locations within the estuary. Certain species were only detected at the marine end, highlighting possible links to deep marine biosphere habitats such as oil reservoirs that harbour closely related Desulfotomaculum spp. Conversely, other taxa were predominantly observed in the freshwater reaches of the estuary indicating dispersal from an upstream or terrestrial source. Different endospore populations were enriched dependent on incubation temperature and spore heat-resistance. Microcosms incubated at 50, 60 or 70°C showed a shift in the dominant species of Desulfotomaculum enriched as the temperature increased. Microcosms triple-autoclaved at 121°C prior to incubation still showed rapid and reproducible sulfate-reduction and some Desulfotomaculum spp. remained active after autoclaving at 130°C. These results show that temperature physiology and biogeographic patterns can be used to

  5. Influence of the invasive Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages

    NASA Astrophysics Data System (ADS)

    Ilarri, M. I.; Souza, A. T.; Antunes, C.; Guilhermino, L.; Sousa, R.

    2014-04-01

    One of the most widespread invasive alien species (IAS) in aquatic ecosystems is the Asian clam Corbicula fluminea. Several studies have shown that C. fluminea can cause large-scale changes in macrozoobenthic assemblages; however, very few attempted to investigate the effects of this IAS on mobile epibenthic species, such as fishes and crustaceans. In this context, the influence of C. fluminea on epibenthic species was investigated during one year by comparing the associated epibenthic fauna in three nearby sites of the Minho estuary (NW of the Iberian Peninsula), wherein the abiotic conditions are similar but the density of the Asian clam is highly different. From a total of 13 species, six were significantly influenced by C. fluminea; five responded positively, namely the brown shrimp Crangon crangon, the European eel Anguilla anguilla, the common goby Pomatoschistus microps, the brown trout Salmo trutta fario and the great pipefish Syngnathus acus, whereas the shore crab Carcinus maenas was negatively influenced. However, stomach contents analysis revealed that fish and crustacean species do not feed on C. fluminea, suggesting that this IAS is still not a large component of the diet of higher trophic levels in this estuarine ecosystem. Our results suggest that the structure provided by C. fluminea shells is likely to be one of the main factors responsible for the differences observed. C. fluminea physical structure seems to influence the epibenthic associated fauna, when found in densities higher than 1000 ind./m2, with sedentary small-bodied crustaceans and fishes being mainly attracted by the increasing in habitat complexity and consequent enhancement of heterogeneity and shelter availability.

  6. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  7. On Man and Ecosystems.

    ERIC Educational Resources Information Center

    Brookfield, Harold

    1982-01-01

    Distinctions between natural ecosystems and human ecosystems are misleading. Natural and social sciences can be integrated through the concept of a "human-use ecosystem," in which social scientists analyze the community, household, and individual, and natural scientists analyze the land. Includes a case study of St. Kitts. (KC)

  8. Ecosystem Health: Energy Indicators.

    EPA Science Inventory

    Just as for human beings health is a concept that applies to the condition of the whole organism, the health of an ecosystem refers to the condition of the ecosystem as a whole. For this reason, the study and characterization of ecosystems is fundamental to establishing accurate ...

  9. Principles of ecosystem sustainability

    SciTech Connect

    Chapin, F.S. III; Torn, M.S.; Tateno, Masaki

    1996-12-01

    Many natural ecosystems are self-sustaining, maintaining an characteristic mosaic of vegetation types of hundreds to thousands of years. In this article we present a new framework for defining the conditions that sustain natural ecosystems and apply these principles to sustainability of managed ecosystems. A sustainable ecosystem is one that, over the normal cycle of disturbance events, maintains its characteristics diversity of major functional groups, productivity, and rates of biogeochemical cycling. These traits are determined by a set of four {open_quotes}interactive controls{close_quotes} (climate, soil resource supply, major functional groups of organisms, and disturbance regime) that both govern and respond to ecosystem processes. Ecosystems cannot be sustained unless the interactive controls oscillate within stable bounds. This occurs when negative feedbacks constrain changes in these controls. For example, negative feedbacks associated with food availability and predation often constrain changes in the population size of a species. Linkages among ecosystems in a landscape can contribute to sustainability by creating or extending the feedback network beyond a single patch. The sustainability of managed systems can be increased by maintaining interactive controls so that they form negative feedbacks within ecosystems and by using laws and regulations to create negative feedbacks between ecosystems and human activities, such as between ocean ecosystems and marine fisheries. Degraded ecosystems can be restored through practices that enhance positive feedbacks to bring the ecosystem to a state where the interactive controls are commensurate with desired ecosystem characteristics. The possible combinations of interactive controls that govern ecosystem traits are limited by the environment, constraining the extent to which ecosystems can be managed sustainably for human purposes. 111 refs., 3 figs., 2 tabs.

  10. Estuarine wetland evolution including sea-level rise and infrastructure effects.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose Fernando; Trivisonno, Franco; Rojas, Steven Sandi; Riccardi, Gerardo; Stenta, Hernan; Saco, Patricia Mabel

    2015-04-01

    Estuarine wetlands are an extremely valuable resource in terms of biotic diversity, flood attenuation, storm surge protection, groundwater recharge, filtering of surface flows and carbon sequestration. On a large scale the survival of these systems depends on the slope of the land and a balance between the rates of accretion and sea-level rise, but local man-made flow disturbances can have comparable effects. Climate change predictions for most of Australia include an accelerated sea level rise, which may challenge the survival of estuarine wetlands. Furthermore, coastal infrastructure poses an additional constraint on the adaptive capacity of these ecosystems. Numerical models are increasingly being used to assess wetland dynamics and to help manage some of these situations. We present results of a wetland evolution model that is based on computed values of hydroperiod and tidal range that drive vegetation preference. Our first application simulates the long term evolution of an Australian wetland heavily constricted by infrastructure that is undergoing the effects of predicted accelerated sea level rise. The wetland presents a vegetation zonation sequence mudflats - mangrove - saltmarsh from the seaward margin and up the topographic gradient but is also affected by compartmentalization due to internal road embankments and culverts that effectively attenuates tidal input to the upstream compartments. For this reason, the evolution model includes a 2D hydrodynamic module which is able to handle man-made flow controls and spatially varying roughness. It continually simulates tidal inputs into the wetland and computes annual values of hydroperiod and tidal range to update vegetation distribution based on preference to hydrodynamic conditions of the different vegetation types. It also computes soil accretion rates and updates roughness coefficient values according to evolving vegetation types. In order to explore in more detail the magnitude of flow attenuation due to

  11. Fishing for ecosystem services

    USGS Publications Warehouse

    Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.

    2016-01-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  12. THE PACIFIC COAST ESTUARINE INFORMATION SYSTEM: CREATING A BASELINE FOR THE FUTURE

    EPA Science Inventory

    Coastal researchers and managers have a growing need for ready access to a diversity of
    data types, including estuarine-specific lists of native and nonindigenous species and estuarine/landscape characteristics. These data are key components in ecological risk assessments in g...

  13. AN EVALUATION OF ELECTRODE INSERTION TECHNIQUES FOR MEASUREMENT OF REDOX POTENTIAL IN ESTUARINE SEDIMENTS

    EPA Science Inventory

    Eh measurements by electrodes are commonly used to characterize redox status of sediments in freshwater, marine and estuarine studies, due to the relative ease and rapidity of data collection. In our studies of fine-grained estuarine seabeds, we observed that Eh values measured i...

  14. EFFECTS OF A LIGNOSULFONATE-TYPE DRILLING MUD ON DEVELOPMENT OF EXPERIMENTAL ESTUARINE MACROBENTHIC COMMUNITIES

    EPA Science Inventory

    Drilling mud, as used in exploratory drilling for oil offshore, affected the composition of estuarine communities that developed from planktonic larvae in aquaria containing sand and flowing estuarine water. Aquaria contained: sand only; a mixture (by volume) of 1 part mud and 10...

  15. Wind-induced variability of estuarine circulation in a tidally energetic inlet with curvature

    NASA Astrophysics Data System (ADS)

    Purkiani, Kaveh; Becherer, Johannes; Klingbeil, Knut; Burchard, Hans

    2016-05-01

    In numerous studies, the functioning of estuarine circulation has been investigated, under idealized conditions, by means of numerical models. This has led to a deep understanding of the theory of estuarine residual flows. However, the question as to how estuarine circulation is established in real estuaries, in response to their topographical and forcing characteristics, remains. The present study uses a highly accurate three-dimensional numerical model simulation to calculate estuarine circulation in a curved, tidally energetic channel of the Wadden Sea in the southeastern North Sea. The specific momentum balance of this curved inlet shows an approximate pressure-gradient—frictional balance in the longitudinal direction and a pressure gradient—centrifugal balance in the lateral direction. A local Wedderburn number is introduced to quantify the varying contributions of wind stress and gravitational forcing on estuarine circulation. A total exchange flow (TEF) analysis is combined with an analysis of the intensity of the vertical overturning circulation to understand the dynamics of estuarine exchange in this inlet. The results show how established forcing mechanisms of residual circulation, such as horizontal buoyancy gradients and wind stress, act in a combined way. In general, the strength of estuarine circulation is always positively correlated with wind stress, with frequent reversals of residual flow for wind stress directed toward higher buoyancy. Only during calm weather conditions are longitudinal and lateral estuarine circulation highly correlated with the respective buoyancy gradients.

  16. BOOK REVIEW: ESTUARINE SCIENCE: A SYNTHETIC APPROACH TO RESEARCH AND PRACTICE

    EPA Science Inventory

    This book is the product of fifty leading estuarine scientists most of whom attended a workshop convened for the purpose of "put[ting] together the case for synthesis of estuarine data and to show the capabilities of synthetic methods of research" (p. 2). The editor, John E. Hob...

  17. Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary's freshwater delta

    USGS Publications Warehouse

    Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Cole, B.E.; Schraga, T.S.; Arnsberg, A.

    2005-01-01

    Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that detritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production. ?? 2005 Estuarine Research Federation.

  18. Changes in metal contamination levels in estuarine sediments around India--an assessment.

    PubMed

    Chakraborty, Parthasarathi; Ramteke, Darwin; Chakraborty, Sucharita; Nagender Nath, B

    2014-01-15

    This review is the first attempt to comprehend the changes in metal contamination levels in surface estuarine sediments with changing time around India. Contamination factor, geoaccumulation index, pollution load index, effects range low and effects range median analysis were used to evaluate the quality of the estuarine sediments (by using the available literature data). This study suggests that estuarine sediments from the east coast of India were comparatively less contaminated by metals than the west coast. Sediments from those estuaries were found to be more contaminated by metals on which major cities are located. An improvement in estuarine sediment quality (in terms of metal contamination) over time around India was noticed. This study provides managers and decision-makers of environmental protection agency with a better scientific understanding for decision-making in controlling metal pollution in estuarine sediments around India. PMID:24211100

  19. Top 10 principles for designing healthy coastal ecosystems like the Salish Sea

    USGS Publications Warehouse

    Gaydos, Joseph K.; Dierauf, Leslie; Kirby, Grant; Brosnan, Deborah; Gilardi, Kirsten; Davis, Gary E.

    2008-01-01

    Like other coastal zones around the world, the inland sea ecosystem of Washington (USA) and British Columbia (Canada), an area known as the Salish Sea, is changing under pressure from a growing human population, conversion of native forest and shoreline habitat to urban development, toxic contamination of sediments and species, and overharvest of resources. While billions of dollars have been spent trying to restore other coastal ecosystems around the world, there still is no successful model for restoring estuarine or marine ecosystems like the Salish Sea. Despite the lack of a guiding model, major ecological principles do exist that should be applied as people work to design the Salish Sea and other large marine ecosystems for the future. We suggest that the following 10 ecological principles serve as a foundation for educating the public and for designing a healthy Salish Sea and other coastal ecosystems for future generations: (1) Think ecosystem: political boundaries are arbitrary; (2) Account for ecosystem connectivity; (3) Understand the food web; (4) Avoid fragmentation; (5) Respect ecosystem integrity; (6) Support nature's resilience; (7) Value nature: it's money in your pocket; (8) Watch wildlife health; (9) Plan for extremes; and (10) Share the knowledge.

  20. Turing Patterns in Estuarine Sediments by Microbiological Activity

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio

    2016-07-01

    The use of Turing mechanisms and lattice Lotka-Volterra model (LLV), also by means of the non-extensive statistical mechanics, can mathematically describe well the phenomena of clustering and their associated boundaries with fractal dimensionality, which occurs in various natural situations, among them, biogeochemical processes via microorganisms in estuarine and marine sediments on the planet Earth. The author did an experimental analysis in field work which took into account the spatial and temporal behavior of Turing patterns, in the form of microbial activity within estuarine subsurface sediments. We show we can find the characteristics of clustering and fractallity which are present in the dynamical LLV model and Turing patterns mechanisms, and the non-extensive statistical mechanics could be used to find the q-entropy (Sq), and other non-equilibrium statistical parameters of the studied estuarine (Caraís lagoon) subsurface biogeochemical system. In this paper, the author suggests that such kinds of subsurface ecological systems are of interest to Astrobiology because if we find Turing-type clustered geomorphological patterns, below meter scale, on the near subsurface and inside rocks at the surface of planet Mars, and also find non-equilibrium statistical parameters (temperature, [F], [C], [S], etc.), displaying Turing-type mechanism, in the aquatic environments of the internal seas of planets Jupiter's moon Europa and the internal global ocean of Saturn's moon Enceladus, that could mean that possible hypothetical biogeochemical activities are present in such places. This could be a bio-indicator tool. And with further studies we could find the q-entropy Sq to establish better defined statistical mechanical parameters for such environments and to refine models for their evolution, as we do on planet Earth.

  1. Transport of persistent organic pollutants by microplastics in estuarine conditions

    NASA Astrophysics Data System (ADS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-03-01

    Microplastics represent an increasing source of anthropogenic contamination in aquatic environments, where they may also act as scavengers and transporters of persistent organic pollutants. As estuaries are amongst the most productive aquatic systems, it is important to understand sorption behaviour and transport of persistent organic pollutants (POPs) by microplastics along estuarine gradients. The effects of salinity sorption equilibrium kinetics on the distribution coefficients (Kd) of phenanthrene (Phe) and 4,4‧-DDT, onto polyvinyl chloride (PVC) and onto polyethylene (PE) were therefore investigated. A salinity gradient representing freshwater, estuarine and marine conditions, with salinities corresponding to 0 (MilliQ water, 690 μS/cm), 8.8, 17.5, 26.3 and 35 was used. Salinity had no significant effect on the time required to reach equilibrium onto PVC or PE and neither did it affect desorption rates of contaminants from plastics. Although salinity had no effect on sorption capacity of Phe onto plastics, a slight decrease in sorption capacity was observed for DDT with salinity. Salinity had little effect on sorption behaviour and POP/plastic combination was shown to be a more important factor. Transport of Phe and DDT from riverine to brackish and marine waters by plastic is therefore likely to be much more dependent on the aqueous POP concentration than on salinity. The physical characteristics of the polymer and local environmental conditions (e.g. plastic density, particle residence time in estuaries) will affect the physical transport of contaminated plastics. A transport model of POPs by microplastics under estuarine conditions is proposed. Transport of Phe and DDT by PVC and PE from fresh and brackish water toward fully marine conditions was the most likely net direction for contaminant transport and followed the order: Phe-PE >> DDT-PVC = DDT-PE >> Phe-PVC.

  2. Estuarine Physical Processes Research: Some Recent Studies and Progress

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.

    2002-12-01

    The literature on estuarine physical studies is vast, diverse and contains many valuable case studies in addition to pure, process-based research. This essay is an attempt to summarize both some of the more recent studies that have been undertaken during the last several years, as well as some of the trends in research direction and progress that they represent. The topics covered include field and theoretical studies on hydrodynamics, turbulence, salt and fine sediment transport and morphology. The development and ease-of-application of numerical and analytical models and technical software has been essential for much of the progress, allowing the interpretation of large amounts of data and assisting with the understanding of complex processes. The development of instrumentation has similarly been essential for much of the progress with field studies. From a process viewpoint, much more attention is now being given to interpreting intratidal behaviour, including the effects of tidal straining and suspended fine sediment on water column stratification, stability and turbulence generation and dissipation. Remote sensing from satellites and aircraft, together with fast sampling towed instruments and high frequency radar now provide unique, frequently high resolution views of spatial variability, including currents, frontal and plume phenomena, and tidal and wave-generated turbidity. Observations of fine sediment characteristics (floc size, aggregation mechanisms, organic coatings and settling velocity) are providing better parameterizations for sediment transport models. These models have enhanced our understanding both of the estuarine turbidity maximum and its relationship to fronts and intratidal hydrodynamic and sedimentological variability, as well as that of simple morphological features such as intertidal mudflats. Although few, interdisciplinary studies to examine the relationships between biology and estuarine morphology show that bivalve activity and the

  3. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures

    USGS Publications Warehouse

    Culbertson, Charles W.; Zehnder, Alexander J. B.; Oremland, Ronald S.

    1981-01-01

    Acetylene disappeared from the gas phase of anaerobically incubated estuarine sediment slurries, and loss was accompanied by increased levels of carbon dioxide. Acetylene loss was inhibited by chloramphenicol, air, and autoclaving. Addition of 14C2H2 to slurries resulted in the formation of 14CO2 and the transient appearance of 14C-soluble intermediates, of which acetate was a major component. Acetylene oxidation stimulated sulfate reduction; however, sulfate reduction was not required for the loss of C2H2 to occur. Enrichment cultures were obtained which grew anaerobically at the expense of C2H2.

  4. ANALYSIS OF ESTUARINE TRACER-GAS TRANSPORT AND DESORPTION.

    USGS Publications Warehouse

    Bales, Jerad D.; Holley, Edward R.

    1987-01-01

    The riverine tracer-gas technique provides a direct, reach-averaged measure of gas exchange, is fairly simple to implement, and is widely accepted for determining reaeration-rate coefficients in rivers. The method, however, is not directly applicable to flows having vertical density gradients. Consequently, studies were undertaken to develop and evaluate methods for obtaining surface-exchange coefficients from estuarine tracer-gas data. Reasonable estimates of the desorption coefficient (within 50 percent of the correct value) were obtained when an analytical solution of the transport equation was compared with data from a numerically simulated continuous release of tracer gas.

  5. Estuarine fine-particle budget determined from radionuclide tracers

    SciTech Connect

    Olsen, C.R.; Cutshall, N.H.; Larsen, I.L.; Simpson, H.J.; Trier, R.M.; Bopp, R.F.

    1985-01-01

    The sedimentary distributions of radiocesium and plutonium have been used to determine patterns of fine-particle accumulation, estimate net sediment fluxes from different sources, and develop a fine-particle budget for the Hudson-Raritan estuary. It is proposed that the rates and patterns of fine-particle accumulation reflect a sediment surface in dynamic equilibrium with the wave and current regimes. Rates of accumulation in most estuarine areas appear to equal the rate of sea-level rise or land subsidence. Localized areas, which have not yet attained or are presently out of equilibrium, serve as fine particle traps. 13 references, 1 table.

  6. Estuarine density fronts and their effect on oil slicks

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Polis, D. F.; Davis, G. R.

    1976-01-01

    The author has identified the following significant results. Estuarine fronts represent regions of extremely high gradient or discontinuity in various parameters of physical interest, the most important being the water velocity and density fields. Aircraft and boats were combined to study the behavior of different types of fronts in Delaware Bay and their effect on pollutants in order to provide a basis for improving an oil drift and spreading model. Imagery from the LANDSAT satellites provided the most effective means of determining the location and extent of frontal systems over all portions of the tidal cycle. This data is being used to modify the oil drift and spreading model.

  7. Estuarine Landcover Along the Lower Columbia River Estuary Determined from Compact Ariborne Spectrographic Imager (CASI) Imagery, Technical Report 2003.

    SciTech Connect

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and riparian habitats is critical to the management of biological resources in the lower Columbia River. In a recently completed comprehensive ecosystem protection and enhancement plan for the lower Columbia River Estuary (CRE), Jerrick (1999) identified habitat loss and modification as one of the key threats to the integrity of the CRE ecosystem. This management plan called for an inventory of habitats as key first step in the CRE long-term restoration effort. While previous studies have produced useful data sets depicting habitat cover types along portions of the lower CRE (Thomas, 1980; Thomas, 1983; Graves et al., 1995; NOAA, 1997; Allen, 1999), no single study has produced a description of the habitats for the entire CRE. Moreover, the previous studies differed in data sources and methodologies making it difficult to merge data or to make temporal comparisons. Therefore, the Lower Columbia River Estuary Partnership (Estuary Partnership) initiated a habitat cover mapping project in 2000. The goal of this project was to produce a data set depicting the current habitat cover types along the lower Columbia River, from its mouth to the Bonneville Dam, a distance of {approx}230-km (Fig. 1) using both established and emerging remote sensing techniques. For this project, we acquired two types of imagery, Landsat 7 ETM+ and Compact Airborne Spectrographic Imager (CASI). Landsat and CASI imagery differ in spatial and spectral resolution: the Landsat 7 ETM+ sensor collects reflectance data in seven spectral bands with a spatial resolution of 30-m and the CASI sensor collects reflectance data in 19 bands (in our study) with a spatial resolution of 1.5-m. We classified both sets of imagery and produced a spatially linked, hierarchical habitat data set for the entire CRE and its floodplain. Landsat 7 ETM+ classification results are presented in a separate report (Garono et al., 2003). This report

  8. Influence of estuarine processes on spatiotemporal variation in bioavailable selenium

    USGS Publications Warehouse

    Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick

    2013-01-01

    Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.

  9. Assessment of the zinc diffusion rate in estuarine zones.

    PubMed

    Sámano, María Luisa; Pérez, María Luisa; Claramunt, Inigo; García, Andrés

    2016-03-15

    Industrial pressures suffered by estuarine zones leave a pollution record in their sediment. Thus, high concentrations of many heavy metals and some organic compounds are often found in estuarine sediment. This work aims to contribute to the enhancement of water quality management strategies in these zones by studying in detail the diffusive processes that take place between the water and sediment using a two-pronged approach: experimental practice and numerical simulation. To provide an example of the practical application of the methodologies proposed in this paper, the Suances Estuary (northern Spain) was selected as the study zone. This estuary exhibits significant historical pollution and its sediment acts as a continuous internal source of zinc, mainly due to diffusive processes derived from the concentration gradient between the interstitial water at the solid particles of the sediment and the bottom of the water column. The experimentally obtained results, based on 6 case studies, demonstrated the buffering capacity of the system and allowed the determination of the required time for the mass transfer processes to reach an equilibrium state. Furthermore, the diffusion rate of zinc was approximately modeled taking into consideration the high concentration variability observed in sediment along the entire estuary. The convergence between the modeled and the experimental results indicated the required contact time to reach an equilibrium state in a real field situation. PMID:26851870

  10. Rain reverses diel activity rhythms in an estuarine teleost

    PubMed Central

    Payne, Nicholas L.; van der Meulen, Dylan E.; Gannon, Ruan; Semmens, Jayson M.; Suthers, Iain M.; Gray, Charles A.; Taylor, Matthew D.

    2013-01-01

    Activity rhythms are ubiquitous in nature, and generally synchronized with the day–night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency. PMID:23173211

  11. A potential new estuarine amphipod test species from Europe

    SciTech Connect

    Quintino, V.M.S.; Re, A.

    1995-12-31

    Sediment toxicity testing is of recognized value, however tests do not exist for all ecoregions. In particular, there is a paucity of test species for estuarine conditions. To date such testing has been conducted using either Microtox or the Pacific amphipod, Eohaustorius estuarius. There are no other test species for which developed tests exist, which can tolerate the full range of estuarine salinities (0 to 35 ppt). The authors report testing with the Atlantic amphipod, Corophium multisetosum, which can survive well from 0 to 35 ppt. At the time of writing this abstract, initial testing has indicated appropriate dose-response relationships with the reference toxicant cadmium chloride, and an acute 10-day protocol has been successfully conducted at a range of test temperatures (15--22 C) and with salinities of 0.0, 0.2, 0.4, 0.8, 1.6, 3.2, 6.5, 12.5, 25.0, 50.0 and 100.0%. Work presently underway and expected to be reported at the World Congress includes finalization of methods development for acute (10-d static) testing, namely the sensitivity to a range of fines content in the sediment, and initiation of chronic (growth, reproduction success) testing.

  12. The Role Of Coastal Management In Regulating Estuarine Fluxes

    NASA Astrophysics Data System (ADS)

    Jickells, T. D.

    2014-12-01

    Human activity is known to be increasing the fluxes of many nutrients and trace elements in many river systems. However, the impact of riverine inputs depends not only on the riverine nutrient flux, but also on its retention in estuaries and near shore coastal systems. The retention of nutrients and trace elements in coastal systems depends at least in part on particle water interactions. These interactions in turn depend on the physical configuration of the system which regulates processes such as resuspension and water-sediment interactions. Human activity is massively altering the shape of many estuaries by activities such as reclamation and flood defence. These changes have obvious and well documented ecological impacts. I will show using examples from UK systems how these changes in estuarine "geography" also greatly alter the effectiveness of estuaries as filters for nutrients and trace elements, with the potential to have a major impact on the fluxes of fluvial material to the continental shelf on regional scales. Rising sea levels are beginning to enforce a change of management strategy in coastal systems and this in turn may have major impacts on estuarine nutrient retention.

  13. Isolation of heterotrophic diazotrophic bacteria from estuarine surface waters.

    PubMed

    Farnelid, Hanna; Harder, Jens; Bentzon-Tilia, Mikkel; Riemann, Lasse

    2014-10-01

    The wide distribution of diverse nitrogenase (nifH) genes affiliated with those of heterotrophic bacteria in marine and estuarine waters indicates ubiquity and an ecologically relevant role for heterotrophic N2 -fixers (diazotrophs) in aquatic nitrogen (N) cycling. However, the lack of cultivated representatives currently precludes an evaluation of their N2 -fixing capacity. In this study, microoxic or anoxic N-free media were inoculated with estuarine Baltic Sea surface water to select for N2 -fixers. After visible growth and isolation of single colonies on oxic plates or in anoxic agar tubes, nifH gene amplicons were obtained from 64 strains and nitrogenase activity, applying the acetylene reduction assay, was confirmed for 40 strains. Two strains, one Gammaproteobacterium affiliated with Pseudomonas and one Alphaproteobacterium affiliated with Rhodopseudomonas were shown to represent established members of the indigenous diazotrophic community in the Baltic Sea, with abundances of up to 7.9 × 10(4) and 4.7 × 10(4)  nifH copies l(-1) respectively. This study reports media for successful isolation of heterotrophic diazotrophs. The applied methodology and the obtained strains will facilitate future identification of factors controlling heterotrophic diazotrophic activity in aquatic environments, which is a prerequisite for understanding and evaluating their ecology and contribution to N cycling at local and regional scales. PMID:24330580

  14. Periodic stratification at the head of estuarine salt tip

    NASA Astrophysics Data System (ADS)

    Kim, Yong H.; Sanford, Lawrence; Hwang, Jin H.

    2014-05-01

    Conventionally, tidal straining has been known to induce more stratified condition during ebb in estuarine settings, i.e., strain-induced periodic stratification (SIPS). As opposed to the traditional tidal straining concept, observation data from the upperreach of Chesapeake Bay demonstrate that the water column is more stratified during flood than ebb, which results in condensed suspended sediment concentration near the bed during flood. In order to assess the stability of stratified flow, a composite Froude number is estimated for the outputs from an idealized 2-dimensional vertical numerical simulation. The results show theconsistency with the conventional tidal straining in case of relatively stronger density-induced bottom flow (e.g., Normal Periodic Stratification,NPS). However, the opposite case, i.e., stratified flow during flood, is observed when freshwater flow is relatively stronger in the upper layer (i.e., Inverse Periodic Stratification, IPS). Finally, this study shows that a composite Froude number analysis can be a proper indicator representing thetidal variability in the mixing pattern at the head of estuarine salt tips.

  15. Movement of spilled oil as predicted by estuarine nontidal drift

    USGS Publications Warehouse

    Conomos, T.J.

    1975-01-01

    Information on water movement obtained from bimonthly releases of surface and seabed drifters in the San Francisco Bay and adjacent Pacific Ocean is used to understand major processes controlling dispersal of oil after a spill of 3,200 m3 of Bunker C in the bay in January 1971. River-induced nontidal estuarine circulation was the dominant factor controlling net movement of the oil spilled at the entrance of the bay system, reinforcing ebbing tidal currents and causing the seaward movement of floating oil, which followed paths taken by surface drifters released 3 weeks before the spill. In contrast, some oil formed globules which sank to the near-bottom waters, had the same relative buoyancy as seabed drifters, and moved similarly, beaching in eastern San Pablo Bay after being transported landward in the near-bottom waters. No oil or surface drifters floated into the south bay because surface waters were drifting seaward, away from the south bay. Notable seasonally modulated phenomena which must be considered in predicting surface and near-bottom oil drifts of future spills include a summer (low-river discharge period) diminution of the estuarine circulation mechanism in the north and central bayadjacent ocean region and a seasonal reversal in two-layer drift in the south bay.

  16. Use of neomysis mercedis (crustacea: mysidacea) for estuarine toxicity tests

    SciTech Connect

    Brandt, O.M.; Fujimura, R.W.; Finlayson, B.J. )

    1993-03-01

    The mysid Neomysis mercedis was examined as a test organism for use in acute toxicity tests at intermediate salinities characteristic of estuarine waters. Several sensitive invertebrate species are available for marine assessments (mysids) and freshwater tests (cladocerans), but few are available for estuarine toxicity tests. Observations in the laboratory indicate that Neomysis mercedis can be reared successfully at a temperature of 17[degrees]C, a salinity of 2%, and a population density less than 5/L. Brine shrimp nauplii Artemia salina, algae, and commercial foods were used to sustain mysid cultures. Neomysis mercedis is vivaparous and can complete its life cycle in 3-4 months. Neomysis mercedis is as sensitive as or more sensitive to toxicants than the marine mysid Mysidopsis bahia and the freshwater cladocerans Daphnia magna, Ceriodaphnia dubia, and Simocephalus serrulatus. The mean 96-h LC50 values (concentrations lethal to half the test animals) for N. mercedis, in increasing order, were 0.20 [mu]g/L for thiobencarb, and for malathion, 14 [mu]g/L for carbofuran, 150 [mu]g/L for copper sulfate, 280 [mu]g/L for thiobencarb, and 1,600 [mu]g/L for molinate. Neonates (5 d postrelease) were generally more sensitive than older juveniles. Coefficients of variation (100[center dot]SD/mean) of LC50 values varied from 21 to 35%. 37 refs., 2 figs., 7 tabs.

  17. Simulating effects of highway embankments on estuarine circulation

    USGS Publications Warehouse

    Lee, Jonathan K.; Schaffranek, Raymond W.; Baltzer, Robert A.

    1994-01-01

    A two-dimensional depth-averaged, finite-difference, numerical model was used to simulate tidal circulation and mass transport in the Port Royal Sound. South Carolina, estuarine system. The purpose of the study was to demonstrate the utility of the Surface-Water. Integrated. Flow and Transport model (SWIFT2D) for evaluating changes in circulation patterns and mass transport caused by highway-crossing embankments. A model of subregion of Port Royal Sound including the highway crossings and having a grid size of 61 m (200ft) was derived from a 183-m (600-ft) model of the entire Port Royal Sound estuarine system. The 183-m model was used to compute boundary-value data for the 61-m submodel, which was then used to simulate flow conditions with and without the highway embankments in place. The numerical simulations show that, with the highway embankment in place, mass transport between the Broad River and Battery Creek is reduced and mass transport between the Beaufort River and Battery Creek is increased. The net result is that mass transport into and out of upper Battery Creek is reduced. The presence of the embankments also alters circulation patterns within Battery Creek.

  18. The negative role of turbulence in estuarine mass transport

    NASA Astrophysics Data System (ADS)

    Nunes Vaz, Richard A.; Lennon, Geoffrey W.; de Silva Samarasinghe, Jayantha R.

    1989-04-01

    It is competition between the various stratifying and mixing influences which determines the character of stratification in an estuary. Borrowing concepts which have been successfully applied to the discussion of stratification in shelf seas, a quantitative basis for determining the potential energy associated with vertical structure in estuaries is derived. The formulation, along similar lines to that of Bowden (1981), provides a simple but comprehensive method of incorporating many relevant stratifying and mixing influences in a given problem, and is also shown to be capable of rearrangement into forms akin to the estuarine Richardson number which is commonly found in discussions of estuarine statification. The paper argues, based on a survey of the literature, that in wide, relatively well-mixed estuaries, the greatest longitudinal mass flux occurs at times when stratification is most developed, that is, when the turbulent kinetic energy in the water column is at a minimum. Modulation of turbulence, principally at various tidal frequencies, causes a pulsing of the mass flux in which the contribution of each pulse increases non-linearly as the period of the modulation increases. Some, possibly significant, changes to the state of stratification and to the corresponding mass transport may occur in association with slack water periods. However, the spring-neap cycle is proposed to have a far greater influence on stratification, mass transport and the long-term mass balance in estuaries, and recent observational studies lend support to this position.

  19. Recent estuarine deposits, Chesapeake Bay and Apalachicola Bay

    SciTech Connect

    Donoghue, J.F.

    1985-02-01

    Estuarine facies are not easily discernible in the ancient record, because they represent a transition stage between fluvial and marine deposits. Modern estuarine sediments, nevertheless, are widespread because of the ongoing marine transgression. This widespread occurrence indicates that, during a highstand, estuaries are important centers for deposition of sediments shed from the continents. Sedimentologic studies have been made of 2 major estuaries: Chesapeake Bay (the largest US estuary) and Apalachicola Bay (estuary of the largest river in Florida). A detailed sediment budget for the Chesapeake, using radiotracers, clay mineralogy, magnetic stratigraphy, and other methods, demonstrates that the estuary is filling rapidly with sediment. Its remaining sedimentologic lifetime can be measured in centuries. Most of this filling has come at the expense of shoreline erosion. The rate of sedimentation, as measured by C-14, Pb-210, and Cs-137, has accelerated sharply over the past 2 centuries, from a few millimeters per year to present rates of a few centimeters per year. Sediment trapping effectiveness of the Chesapeake is nearly 100%. For Apalachicola Bay, the filling rate has been slower, although it appears to be nearly as efficient in retaining sediment. It has undergone a comparable change in sedimentation rates and sources over the past few centuries, as shown by magnetic stratigraphy and clay mineralogy. Given favorable conditions, such estuaries might be expected to contribute relatively thin but areally extensive bodies of fine-grained sediment to the rock record.

  20. Anthropogenic Impacts on the Evolution of Estuarine Fringe-marsh Shorelines: Implications of Coastal Setting on Marsh Sustainability

    NASA Astrophysics Data System (ADS)

    Mattheus, C. R.; Rodriguez, A. B.; McKee, B. A.; Currin, C.

    2009-12-01

    Fringe marshes, which are common to estuarine shorelines, provide essential ecosystem services to coastal regions, including carbon sequestration, provision of shelter and nursery grounds for aquatic and terrestrial animals, and buffering of lowland areas from marine flooding. Thousands of acres of intertidal wetlands are lost each year in the U.S., in part due to a recent acceleration in the rate of sea-level rise. The ability of a marsh to sustain itself by vertical accretion is generally limited by inorganic sediment supply. Despite a continuing global population boom, models attempting to forecast marsh response to future sea-level rise do not take land-use changes into account, which have the potential to alter sediment sources and modify or disrupt established sediment pathways. This study investigates how landscape modifications can alter nearshore sedimentation regimes and influence marsh-edge evolution. Marshes in this study are located in similar hydrologic and geographic settings within coastal North Carolina and have comparable vegetation densities; however, their respective coastal environments are affected by different land-use modifications. Site A is situated within an upper bay environment, whereas Site B is located along the estuarine shoreline of a barrier island. Both sites are part of the same estuarine system. Marsh-shoreline positions and surface elevations were monitored at the sites over a two-year period using high-resolution terrestrial LIDAR. This data set was supplemented with accretion rates obtained from radioisotope analysis, precipitation records, and information on land-use changes in an effort to develop an understanding of their effect on marsh evolution. The study region has undergone significant land-use changes, including the introduction of tree farming in the lower reaches of a tributary creek to the upper bay. Widespread deforestation in this watershed led to increased upland erosion and higher sediment-supply rates to the

  1. Managed island ecosystems

    USGS Publications Warehouse

    McEachern, Kathryn; Atwater, Tanya; Collins, Paul W.; Faulkner, Kate R.; Richards, Daniel V.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  2. Artificial ecosystem selection.

    PubMed

    Swenson, W; Wilson, D S; Elias, R

    2000-08-01

    Artificial selection has been practiced for centuries to shape the properties of individual organisms, providing Darwin with a powerful argument for his theory of natural selection. We show that the properties of whole ecosystems can also be shaped by artificial selection procedures. Ecosystems initiated in the laboratory vary phenotypically and a proportion of the variation is heritable, despite the fact that the ecosystems initially are composed of thousands of species and millions of individuals. Artificial ecosystem selection can be used for practical purposes, illustrates an important role for complex interactions in evolution, and challenges a widespread belief that selection is most effective at lower levels of the biological hierarchy. PMID:10890915

  3. Tidal variations in the Sundarbans Estuarine System, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Meenakshi; Shankar, D.; Sen, G. K.; Sanyal, P.; Sundar, D.; Michael, G. S.; Chatterjee, Abhisek; Amol, P.; Mukherjee, Debabrata; Suprit, K.; Mukherjee, A.; Vijith, V.; Chatterjee, Siddhartha; Basu, Anwesha; Das, Madhumita; Chakraborti, Saranya; Kalla, Aravind; Misra, Surja Kanta; Mukhopadhyay, Soumya; Mandal, Gopal; Sarkar, Kankan

    2013-08-01

    Situated in the eastern coastal state of West Bengal, the Sundarbans Estuarine System (SES) is India's largest monsoonal, macro-tidal delta-front estuarine system. It comprises the southernmost part of the Indian portion of the Ganga-Brahmaputra delta bordering the Bay of Bengal. The Sundarbans Estuarine Programme (SEP), conducted during 18-21 March 2011 (the Equinoctial Spring Phase), was the first comprehensive observational programme undertaken for the systematic monitoring of the tides within the SES. The 30 observation stations, spread over more than 3600 km2, covered the seven inner estuaries of the SES (the Saptamukhi, Thakuran, Matla, Bidya, Gomdi, Harinbhanga, and Raimangal) and represented a wide range of estuarine and environmental conditions. At all stations, tidal water levels (every 15 minutes), salinity, water and air temperatures (hourly) were measured over the six tidal cycles. We report the observed spatio-temporal variations of the tidal water level. The predominantly semi-diurnal tides were observed to amplify northwards along each estuary, with the highest amplification observed at Canning, situated about 98 km north of the seaface on the Matla. The first definite sign of decay of the tide was observed only at Sahebkhali on the Raimangal, 108 km north of the seaface. The degree and rates of amplification of the tide over the various estuarine stretches were not uniform and followed a complex pattern. A least-squares harmonic analysis of the data performed with eight constituent bands showed that the amplitude of the semi-diurnal band was an order of magnitude higher than that of the other bands and it doubled from mouth to head. The diurnal band showed no such amplification, but the amplitude of the 6-hourly and 4-hourly bands increased headward by a factor of over 4. Tide curves for several stations displayed a tendency for the formation of double peaks at both high water (HW) and low water (LW). One reason for these double-peaks was the HW

  4. Balancing the Need to Develop Coastal Areas with the Desire for an Ecologically Functioning Coastal Environment: Is Net Ecosystem Improvement Possible?

    SciTech Connect

    Thom, Ronald M.; Williams, Greg D.; Diefenderfer, Heida L.

    2005-03-01

    The global human population is growing exponentially, a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People want and need the economics provided by coastal development but they also want and need the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in the design and mitigation of nearshore structures has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology and adaptive management to incorporate science into decisions about use of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize estuarine areas for preservation, conservation and restoration. Case studies of Clinton, WA and Port Townsend, WA demonstrate the incorporation of an ecological perspective and technological solutions into design projects that affect the nearshore. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think that these kinds of methods can contribute to the net improvement of already degraded ecosystems. The challenges include applied science to understand the issues, education, incentives, empirical data (not rehashing of reviews), cumulative impact analysis, and an effective adaptive management program. Because the option

  5. Assessing responses of the Hiroshima Bay ecosystem to increasing or decreasing phosphorus and nitrogen inputs.

    PubMed

    Kittiwanich, Jutarat; Yamamoto, Tamiji; Kawaguchi, Osamu; Madinabeitia, Ione

    2016-01-30

    The Japanese Government is seeking an appropriate level of nutrient load from the land to maintain the highest possible estuarine fishery production and water transparency simultaneously. To provide a scientific basis for the governmental inquiry, we conducted sensitivity analyses using an ecosystem model of Hiroshima Bay in order to assess the ecosystem's responses to phosphorus and nitrogen inputs. Load levels of phosphorus (Case P), nitrogen (Case N) and both phosphorus and nitrogen (Case NP) that were different from the average loading recorded during 1991-2000 (±25%, ±50%, and ±75%) were applied. The results showed that phosphorus had a significantly greater impact on the primary production of the bay than nitrogen. Case P+25 increased the primary production but led to N-limitation. However, it was found that Case NP at the levels over +25% could bring the Hiroshima Bay ecosystem back to its eutrophic state of 30years ago. PMID:25936573

  6. Benthic assemblages of a temperate estuarine system in South America: Transition from a freshwater to an estuarine zone

    NASA Astrophysics Data System (ADS)

    Cortelezzi, Agustina; Capítulo, Alberto Rodrigues; Boccardi, Lucía; Arocena, Rafael

    2007-12-01

    The objectives of the present study were to describe the species composition, diversity and distribution of the zoobenthic assemblages, to estimate the abundance and biomass of the dominant species, and to identify the main environmental factors determining the distribution patterns of the invertebrates from a freshwater to an estuarine zone in a temperate estuary of South America. The Río de la Plata estuary is a microtidal system characterized by a high concentration of suspended solids. Fifty-three taxa of meso- and macro-invertebrates were identified in the samples collected during November and December 2001. Molluscs, annelids, crustaceans and nematodes were found at 90% of the sampling sites. Molluscs comprised up to about 90% of the total zoobenthos biomass: the remaining percentage corresponded mainly to annelids and less to nematodes and crustaceans. An ecocline along the salinity gradient could be observed for the benthic assemblages from the freshwater to the estuarine zone in Rio de la Plata. A Canonical Correspondence Analysis shows that results from sampling sites in the outer zone were strongly related to salinity, depth and pH and less to oxygen and percentage of clay. The results from stations in the inner zone, and part of the middle zone, were mainly related to the occurrence of sand and contents of NH 4+-N, NO 3--N, and PO 43--P.

  7. Coastal Zone Ecosystem Services: from science to values and decision making; a case study.

    PubMed

    Luisetti, T; Turner, R K; Jickells, T; Andrews, J; Elliott, M; Schaafsma, M; Beaumont, N; Malcolm, S; Burdon, D; Adams, C; Watts, W

    2014-09-15

    This research is concerned with the following environmental research questions: socio-ecological system complexity, especially when valuing ecosystem services; ecosystems stock and services flow sustainability and valuation; the incorporation of scale issues when valuing ecosystem services; and the integration of knowledge from diverse disciplines for governance and decision making. In this case study, we focused on ecosystem services that can be jointly supplied but independently valued in economic terms: healthy climate (via carbon sequestration and storage), food (via fisheries production in nursery grounds), and nature recreation (nature watching and enjoyment). We also explored the issue of ecosystem stock and services flow, and we provide recommendations on how to value stock and flows of ecosystem services via accounting and economic values respectively. We considered broadly comparable estuarine systems located on the English North Sea coast: the Blackwater estuary and the Humber estuary. In the past, these two estuaries have undergone major land-claim. Managed realignment is a policy through which previously claimed intertidal habitats are recreated allowing the enhancement of the ecosystem services provided by saltmarshes. In this context, we investigated ecosystem service values, through biophysical estimates and welfare value estimates. Using an optimistic (extended conservation of coastal ecosystems) and a pessimistic (loss of coastal ecosystems because of, for example, European policy reversal) scenario, we find that context dependency, and hence value transfer possibilities, vary among ecosystem services and benefits. As a result, careful consideration in the use and application of value transfer, both in biophysical estimates and welfare value estimates, is advocated to supply reliable information for policy making. PMID:24992461

  8. Where Will Ecosystems Go?

    SciTech Connect

    Janetos, Anthony C.

    2008-09-29

    Climate-induced changes in ecosystems have been both modeled and documented extensively over the past 15-20 years. Those changes occur in the context of many other stresses and interacting factors, but it is clear that many, if not most, ecosystems are sensitive to changing climate.

  9. The Library as Ecosystem

    ERIC Educational Resources Information Center

    Walter, Scott

    2008-01-01

    Ecology is the study of interactions between organisms and their environment, and the academic library could be considered to be an ecosystem, i.e., a "biological organization" in which multiple species must interact, both with one another and with their environment. The metaphor of the library as ecosystem is flexible enough to be applied not…

  10. Ecosystems, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Ecosystems," the sixth part of a six unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems. They make use of scientific and…

  11. Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: A contrast between a developed and an undeveloped estuary.

    PubMed

    Granek, Elise F; Conn, Kathleen E; Nilsen, Elena B; Pillsbury, Lori; Strecker, Angela L; Rumrill, Steve S; Fish, William

    2016-07-01

    Chemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy contaminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chemicals of emerging concern including pharmaceuticals within two Oregon coastal estuaries (Coos and Netarts Bays). In the more urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concentration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each sampling season. Variability in contaminant types and concentrations across seasons and between species and media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy contaminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy compounds that remain long after prohibition of use. Our results point to the need for better understanding of the ecological and

  12. Location Is Everything: Evaluating the Effects of Terrestrial and Marine Resource Subsidies on an Estuarine Bivalve

    PubMed Central

    Harding, Joel M. S.; Segal, Michelle R.; Reynolds, John D.

    2015-01-01

    Estuaries are amongst the world’s most productive ecosystems, lying at the intersection between terrestrial and marine environments. They receive substantial inputs from adjacent landscapes but the importance of resource subsidies is not well understood. Here, we test hypotheses for the effects of both terrestrial- and salmon-derived resource subsidies on the diet (inferred from stable isotopes of muscle tissue), size and percent nitrogen of the soft-shell clam (Mya arenaria), a sedentary estuarine consumer. We examine how these relationships shift across natural gradients among 14 estuaries that vary in upstream watershed size and salmon density on the central coast of British Columbia, Canada. We also test how assimilation and response to subsidies vary at smaller spatial scales within estuaries. The depletion and enrichment of stable isotope ratios in soft-shell clam muscle tissue correlated with increasing upstream watershed size and salmon density, respectively. The effects of terrestrial- and salmon-derived subsidies were also strongest at locations near stream outlets. When we controlled for age of individual clams, there were larger individuals with higher percent nitrogen content in estuaries below larger watersheds, though this effect was limited to the depositional zones below river mouths. Pink salmon exhibited a stronger effect on isotope ratios of clams than chum salmon, which could reflect increased habitat overlap as spawning pink salmon concentrate in lower stream reaches, closer to intertidal clam beds. However, there were smaller clams in estuaries that had higher upstream pink salmon densities, possibly due to differences in habitat requirements. Our study highlights the importance of upstream resource subsidies to this bivalve species, but that individual responses to subsidies can vary at smaller scales within estuaries. PMID:25993002

  13. Diversity and composition of estuarine and lagoonal fish assemblages of Socotra Island, Yemen.

    PubMed

    Lavergne, E; Zajonz, U; Krupp, F; Naseeb, F; Aideed, M S

    2016-05-01

    Estuarine and lagoonal surveys of Socotra Island and selected sites on the Hadhramout coast of Yemen were conducted with the objective of documenting and analysing fish diversity and assemblage structure. A total of 74 species in 35 families were recorded, among which 65 species in 32 families were from Socotra and 20 species in 17 families were from mainland Yemen. Twenty-one species represent new faunal records for Socotra. Including historic records re-examined in this study, the total fish species richness of estuaries and lagoons of Socotra Island reaches 76, which is relatively high compared to species inventories of well-researched coastal estuaries in southern Africa. Five species dominate the occurrence and abundance frequencies: Terapon jarbua, Hyporhamphus sindensis, Aphanius dispar, Ambassis gymnocephala and Chelon macrolepis. Rarefaction and extrapolation analyses suggest that the actual number of fish species inhabiting some of those estuaries might be higher than the one observed. Thus, additional sampling at specific sites should be conducted to record other less conspicuous species. Ordination and multivariate analyses identified four main distinct assemblage clusters. Two groups are geographically well structured and represent northern Socotra and mainland Yemen, respectively. The other two assemblage groups tend to be determined to a greater extent by the synchrony between physical (e.g. estuary opening periods) and biological (e.g. spawning and recruitment periods) variables than by geographical location. Finally, the single intertidal lagoon of Socotra represents by itself a specific fish assemblage. The high proportion of economically important fish species (38) recorded underscores the paramount importance of these coastal water bodies as nursery sites, and for sustaining vital provisioning ecosystem services. PMID:27170111

  14. Use of Metabolic Inhibitors to Characterize Ecological Interactions in an Estuarine Microbial Food Web.

    PubMed

    DeLorenzo, M.E.; Lewitus, A.J.; Scott, G.I.; Ross, P.E.

    2001-10-01

    Understanding microbial food web dynamics is complicated by the multitude of competitive or interdependent trophic interactions involved in material and energy flow. Metabolic inhibitors can be used to gain information on the relative importance of trophic pathways by uncoupling selected microbial components and examining the net effect on ecosystem structure and function. A eukaryotic growth inhibitor (cycloheximide), a prokaryotic growth inhibitor (antibiotic mixture), and an inhibitor of photosynthesis (DCMU) were used to examine the trophodynamics of microbial communities from the tidal creek in North Inlet, a salt marsh estuary near Georgetown, South Carolina. Natural microbial communities were collected in the spring, summer, and fall after colonization onto polyurethane foam substrates deployed in the tidal creek. Bacterial abundance and productivity, heterotrophic ciliate and flagellate abundance, and phototrophic productivity, biomass, and biovolume were measured at five time points after inhibitor additions. The trophic responses of the estuarine microbial food web to metabolic inhibitors varied with season. In the summer, a close interdependency among phototrophs, bacteria, and protozoa was indicated, and the important influence of microzooplanktonic nutrient recycling was evident (i.e., a positive feedback loop). In the fall, phototroph and bacteria interactions were competitive rather than interdependent, and grazer nutrient regeneration did not appear to be an important regulatory factor for bacterial or phototrophic activities. The results indicate a seasonal shift in microbial food web structure and function in North Inlet, from a summer community characterized by microbial loop dynamics to a more linear trophic system in the fall. This study stresses the important role of microbial loops in driving primary and secondary production in estuaries such as North Inlet that are tidally dominated by fluctuations in nutrient supply and a summer

  15. Location is everything: evaluating the effects of terrestrial and marine resource subsidies on an estuarine bivalve.

    PubMed

    Harding, Joel M S; Segal, Michelle R; Reynolds, John D

    2015-01-01

    Estuaries are amongst the world's most productive ecosystems, lying at the intersection between terrestrial and marine environments. They receive substantial inputs from adjacent landscapes but the importance of resource subsidies is not well understood. Here, we test hypotheses for the effects of both terrestrial- and salmon-derived resource subsidies on the diet (inferred from stable isotopes of muscle tissue), size and percent nitrogen of the soft-shell clam (Mya arenaria), a sedentary estuarine consumer. We examine how these relationships shift across natural gradients among 14 estuaries that vary in upstream watershed size and salmon density on the central coast of British Columbia, Canada. We also test how assimilation and response to subsidies vary at smaller spatial scales within estuaries. The depletion and enrichment of stable isotope ratios in soft-shell clam muscle tissue correlated with increasing upstream watershed size and salmon density, respectively. The effects of terrestrial- and salmon-derived subsidies were also strongest at locations near stream outlets. When we controlled for age of individual clams, there were larger individuals with higher percent nitrogen content in estuaries below larger watersheds, though this effect was limited to the depositional zones below river mouths. Pink salmon exhibited a stronger effect on isotope ratios of clams than chum salmon, which could reflect increased habitat overlap as spawning pink salmon concentrate in lower stream reaches, closer to intertidal clam beds. However, there were smaller clams in estuaries that had higher upstream pink salmon densities, possibly due to differences in habitat requirements. Our study highlights the importance of upstream resource subsidies to this bivalve species, but that individual responses to subsidies can vary at smaller scales within estuaries. PMID:25993002

  16. Relative importance of estuarine flatfish nurseries along the Portuguese coast

    NASA Astrophysics Data System (ADS)

    Cabral, Henrique N.; Vasconcelos, Rita; Vinagre, Catarina; França, Susana; Fonseca, Vanessa; Maia, Anabela; Reis-Santos, Patrick; Lopes, Marta; Ruano, Miguel; Campos, Joana; Freitas, Vânia; Santos, Paulo T.; Costa, Maria José

    2007-02-01

    The relative importance of nursery areas and their relationships with several environmental variables were evaluated in nine estuarine systems along the Portuguese coast based on trawl surveys. Historical data were used to outline changes and trends in the nursery function of some of these estuaries over the past decades. The dominant flatfish species in Portuguese estuaries were Platichthys flesus (Linnaeus, 1758), Solea solea (Linnaeus, 1758), Solea senegalensis Kaup, 1858 and Monochirus hispidus Rafinesque, 1814, but their occurrence differed among the estuaries. P. flesus only occurred in estuaries north of the Tejo estuary (39°N), S. solea was quite rare along the southern Portuguese coast (south of 37°30'N), S. senegalensis occurred in estuaries throughout the coast, but its abundance varied considerably, and the occurrence of M. hispidus was limited to the Sado estuary and Ria Formosa. A Correspondence Analysis was performed to evaluate the relationships between flatfish species abundance and geomorphologic and hydrologic characteristics of estuaries (latitude, freshwater flow, estuarine area, intertidal area, mean depth and residence time). Abiotic characteristics (depth, temperature, salinity, sediment type) of nursery grounds of each flatfish species were also evaluated. Results showed that some estuaries along the Portuguese coast have nursery grounds used by several flatfish species (e.g. Ria de Aveiro, Sado estuary), while in other systems a segregation was noticed, with juveniles of different species occurring in distinct estuarine areas (e.g. Minho and Mondego estuaries). This emphasizes the relevance of niche overlap, but the potential for competition may be considerably minimized by differences in resource use patterns and by an extremely high abundance of resources. Peak densities of flatfishes recorded in nurseries areas along the Portuguese coast were within the range of values reported for other geographical areas. Inter-annual abundance

  17. Estuarine Ecology of Juvenile Salmon in Western Alaska: a Review

    USGS Publications Warehouse

    Zimmerman, Christian E.; Hillgruber, Nicola

    2009-01-01

    In the late 1990s and early 2000s, large declines in numbers of chum salmon Oncorhynchus keta and Chinook salmon O. tshawytscha returning to the Arctic-YukonKuskokwim (AYK) region (Alaska, USA) illuminated the need for an improved understanding of the variables controlling salmon abundance at all life stages. In addressing questions about salmon abundance, large gaps in our knowledge of basic salmon life history and the critical early marine life stage were revealed. In this paper, results from studies conducted on the estuarine ecology of juvenile salmon in western Alaska are summarized and compared, emphasizing timing and distribution during outmigration, environmental conditions, age and growth, feeding, and energy content of salmon smolts. In western Alaska, water temperature dramatically changes with season, ranging from 0°C after ice melt in late spring/early summer to 19°C in July. Juvenile salmon were found in AYK estuaries from early May until August or September, but to date no information is available on their residence duration or survival probability. Chum salmon were the most abundant juvenile salmon reported, ranging in percent catch from <0.1% to 4.7% and most research effort has focused on this species. Abundances of Chinook salmon, sockeye salmon O. nerka, and pink salmon O. gorbuscha varied among estuaries, while coho salmon O. kisutch juveniles were consistently rare, never amounting to more than 0.8% of the catch. Dietary composition of juvenile salmon was highly variable and a shift was commonly reported from epibenthic and neustonic prey in lower salinity water to pelagic prey in higher salinity water. Gaps in the knowledge of AYK salmon estuarine ecology are still evident. For example, data on outmigration patterns and residence timing and duration, rearing conditions and their effect on diet, growth, and survival are often completely lacking or available only for few selected years and sites. Filling gaps in knowledge concerning salmon

  18. Tidal changes in estuarine systems induced by local geomorphologic modifications

    NASA Astrophysics Data System (ADS)

    Picado, Ana; Dias, João M.; Fortunato, André B.

    2010-10-01

    Although rising global sea levels will affect the estuarine flooded areas over the coming decades, the local and regional-scale processes will also induce important changes in these coastal systems. The main aim of this work is to investigate possible tidal changes in estuarine systems induced by local geomorphologic modifications, analysing the particular case of Ria de Aveiro which is in risk of inundation. Located in the Portuguese west coast, this tidally driven lagoon has a large area of mostly abandoned salt pans, which are in progressive degradation caused by the lack of maintenance and by the strong currents which erode their protective walls. To explore possible tidal changes the hydrodynamic model ELCIRC was applied to Ria de Aveiro to simulate and analyse the impact in the lagoon hydrodynamics of this degradation which results in the enlargement of the lagoon flooded area. A high-resolution grid (grid spacing of the order of 1 m) was developed in order to represent the narrow channels adjacent to the salt pans. The hydrodynamic model was then successfully calibrated and assessed for skill for the Aveiro lagoon through comparison between measurements and model results and quantification of the numerical accuracy. The model was subsequently used to investigate the effect of the flooded lagoon area enlargement on tidal propagation in Ria de Aveiro. Simulations were performed for three geomorphologic configurations, representing the reference or present situation and two flooded scenarios. Results were compared through the analysis of tidal currents, tidal asymmetry and tidal prism. The increase of the lagoon flooded area results in an intensification of the tidal currents, tidal prism and tidal asymmetry. Results also indicate that the tidal prism further increases when the flooding depth increases. Otherwise, changes in tidal currents and in tidal asymmetry pattern are negligible with the increase of the flooded area depth. These results indicate that

  19. Estaurine Freshwater Entrainment By Oyster Reefs: Quantifying A Keystone Ecosystem Service

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Olabarrieta, M.; Frederick, P.; Valle-Levinson, A.; Seavey, J.

    2014-12-01

    Oyster reefs have been shown to provide myriad critical ecosystem services, however their role in directing flow and currents during non-storm conditions has been largely neglected. In many regions, oyster reefs form as linear structures perpendicular to the coast and across the path of streams and rivers, potentially entraining large volumes of freshwater flow and altering nearshore mixing. We hypothesize that these reefs have the potential to influence salinity over large areas, providing a "keystone" ecosystem service by supporting multiple estuarine functions. Here we present results from a field and modeling study to quantify the effects of reef extent and elevation on estuarine salinities under varying river discharge. We found salinity differences ranging from 2 to 16 g/kg between inshore and offshore sides of degraded oyster reefs in the Suwannee Sound (FL, USA), supporting the role of reefs as local-scale freshwater dams. Moreover, differences between inshore and offshore salinities were correlated with flow, with the most marked differences during periods of low flow. Hydrodynamic modeling using the 3-D Regional Ocean Modeling System (ROMS) suggests that the currently degraded reef system entrained greater volumes of freshwater in the past, buffering the landward advance of high salinities, particularly during low flow events related to droughts. Using ROMS, we also modeled a variety of hypothetical oyster bar morphology scenarios (historical, current, and "restored") to understand how changes in reef structure (elevation, extent, and completeness) impact estuarine mixing and near-shore salinities. Taken together, these results serve to: 1) elucidate a poorly documented ecosystem service of oyster reefs; 2) provide an estimate of the magnitude and sptial extent of the freshwater entrainment effect; and 3) offer quantitative information to managers and restoration specialists interested in restoring oyster habitat.

  20. SEVEN PILLARS OF ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is widely proposed in the popular and professional literature as the modern and preferred way of managing natural resources and ecosystems. Advocates glowingly describe ecosystem management as an approach that will protect the environment, maintain healthy ec...

  1. Trace metals in estuarine sediments from the southwestern Spanish coast.

    PubMed

    Ruiz, F

    2001-06-01

    The impact of river-transported metal pollution and industrial wastes on the metal distribution (Cr, Cu, Zn, Pb) in estuarine sediments was studied in the southwestern Spanish estuaries. Intertidal and subtidal surface sediments of the Tinto-Odiel Estuary are very highly polluted by heavy metals, with geoaccumulation indices up to 4 in the three sedimentary environments studied (channel, channel border and salt marsh). The single exception is the Punta Umbria channel, very protected from the point sources by salt marsh deposits and hydraulic processes. In the remaining two estuaries, pollution (Pb, Cu) was only significant near the harbour situated in the Piedras river mouth, whereas very low values were found in the Guadiana Estuary. In these last rivers, the enrichment factor increases from the channel to the salt marsh sediments. PMID:11468926

  2. Microplastics in the Solent estuarine complex, UK: An initial assessment.

    PubMed

    Gallagher, Anthony; Rees, Aldous; Rowe, Rob; Stevens, John; Wright, Paul

    2016-01-30

    Microplastics are known to be an increasing component found within both marine sediments and the water column. This study carried out an initial assessment of the levels of microplastics present within the Solent estuarine complex, focusing specifically on the water column. A plankton net trawl survey was carried out, with samples analysed using visual observation and Fourier Transform Infrared Spectroscopy (FT-IR). The study identified significant quantities of plastics, ranging in shape, with hot spots found at confluence points within the estuary. Though the FT-IR analysis was inconclusive, the nature of the samples indicates the effect of oceanographic conditions on the prevalent types of microplastics found, which in turn identifies key local sources such as wastewater treatment plants and the plastics industry as being the dominant inputs. PMID:25908488

  3. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary

    NASA Astrophysics Data System (ADS)

    Dam, G.; Wegen, M.; Labeur, R. J.; Roelvink, D.

    2016-04-01

    We hindcast a 110 year period (1860-1970) of morphodynamic behavior of the Western Scheldt estuary by means of a 2-D, high-resolution, process-based model and compare results to a historically unique bathymetric data set. Initially, the model skill decreases for a few decades. Against common perception, the model skill increases after that to become excellent after 110 years. We attribute this to the self-organization of the morphological system which is reproduced correctly by the numerical model. On time scales exceeding decades, the interaction between the major tidal forcing and the confinement of the estuary overrules other uncertainties. Both measured and modeled bathymetries reflect a trend of decreasing energy dissipation, less morphodynamic activity, and thus a more stable morphology over time, albeit that the estuarine adaptation time is long (approximately centuries). Process-based models applied in confined environments and under constant forcing conditions may perform well especially on long (greater than decades) time scales.

  4. Longshore sediment transport rates on a microtidal estuarine beach

    USGS Publications Warehouse

    Nordstrom, K.F.; Jackson, N.L.; Allen, J.R.; Sherman, D.J.

    2003-01-01

    Longshore sediment transport rates were estimated on a microtidal estuarine beach in Great South Bay, N.Y., during two dyed sand tracer experiments using a temporal sampling method. Mean onshore wind speeds of 5.8 and 9.9 m/s resulted in root-mean-square wave heights of 0.07 and 0.08 m and wave angles of 3.0 and 10.1, causing transport rates of 0.468 and 0.972 m3/h. Rates were 3.1 to 6.5 times greater than predicted by existing equations using standard coefficients. Greater rates are attributed to the concentration of sediment transport in the energetic swash zone under plunging breakers.

  5. Estuarine stream piracy: Calvert County US Atlantic coastal plain

    SciTech Connect

    Vogt, P.R. )

    1991-07-01

    The topography of Maryland's western shore of the Chesapeake Bay shows that five steams now flowing eastward into the bay comprise the pirated (and inverted) headwaters of streams previously flowing westward from a varnished Pliocene upland now occupied by the central Chesapeake. Estuarine shoreline erosion during Pleistocene interglaciations removed the upland, exposing the upper reaches of west-flowing stream valleys. Headward (westward) erosion by east-flowing streams then occurred along existing valleys, facilitated by steep eastward gradients and easily eroded valley-floor sediments. Stream inversion may be more common than previously recognized, since any eroding shoreline causes consumption of seaward-draining watershed and steepening of gradients, thus setting the stage for eventual stream inversion.

  6. Physiological responses of estuarine animals to cadmium pollution

    NASA Astrophysics Data System (ADS)

    Theede, H.

    1980-03-01

    Toxic effects of cadmium contamination may be observed at all levels of organismic organization. In estuarine areas the sensitivity of euryhaline species to acute Cd toxicity is strongly modified by various abiotic factors, whereas long-term threshold values are less dependent on environmental parameters. Experiments with larval stages of the mollusc Mytilus edulis reveal that Cd effects on life functions such as development and growth are differentially modified by temperature and salinity. High Cd concentrations can be accumulated by adult bivalves of coastal areas without signs of physiological damage. Mechanisms of heavy-metal detoxication in these molluscs seem to be quite different from those known to exist in vertebrates. Among decapod crustaceans, stenoecous species tend to exhibit higher rates of Cd uptake than euryoecous ones. Rates of Cd uptake and of accumulation depend on external and internal factors. In adult Nereis succinea individuals sublethal Cd effects have been recorded on growth and food conversion (in terms of energy content).

  7. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    NASA Astrophysics Data System (ADS)

    Parker, Kimberly M.; Mitch, William A.

    2016-05-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl‑ and Br‑ by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters.

  8. Relating watershed nutrient loads to satellite derived estuarine water quality

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Le, C.

    2015-12-01

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems. This is partially due to a lack of observations. In many systems, satellite remote sensing of water quality variables may be used to supplement limited field observations and improve understanding of linkages to nutrients. Here, we present the results from a field and satellite ocean color study that quantitatively links nutrients to variations in estuarine water quality endpoints. The study was conducted in Pensacola Bay, Florida, an estuary in the northern Gulf of Mexico that is impacted by watershed nutrients. We developed new empirical band ratio algorithms to retrieve phytoplankton biomass as chlorophyll a (chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM) from the MEdium Resolution Imaging Spectrometer (MERIS). MERIS had suitable spatial resolution (300-m) for the scale of Pensacola Bay (area = 370 km2, mean depth = 3.4 m) and a spectral band centered at wavelength 709 nm that was used to minimize the effect of organic matter on chla retrieval. The algorithms were applied to daily MERIS remote sensing reflectance (level 2) data acquired from 2003 to 2011 to calculate nine-year time-series of mean monthly chla, CDOM, and SPM concentrations. The MERIS derived time-series were then analyzed for statistical relations with time-series of mean monthly river discharge and river loads of nitrogen, phosphorus, dissolved organic carbon, and SPM. Regression analyses revealed significant relationships between river loads and MERIS water quality variables. The simple regression models provide quantitative predictions about how much chla, CDOM, and SPM concentrations in Pensacola Bay will increase with increased river loading, which is necessary information

  9. Seasonal effects of leached mirex on selected estuarine animals.

    PubMed

    Tagatz, M E; Borthwick, P W; Forester, J

    1975-01-01

    Four 28-day seasonal experiments were conducted using selected estuarine animals in outdoor tanks that received continuous flow of mirex-laden water. Mirex (dodecachlorooctahydro-1,3,4-metheno-2H-cyclobuta [cd] pentalene) leached from fire ant bait (0.3% mirex) by fresh water and then mixed with salt water was toxic to blue crabs (Callinectes sapidus), pink shrimp (Penaeus duorarum), and grass shrimp (Palaemonetes pugio) but not to sheepshead minnows (Cyprinodon variegatus), at concentrations less than 0.53 mug/L in water. The amount of leaching was greatest in summer and least in spring. Greatest mortality occurred in summer at the highest water temperature and concentration of mirex; least mortality occurred in spring at the next to the lowest temperature and at the lowest concentration. Earliest deaths of blue crabs occurred after six days of exposure and shrimps after two days. Small juvenile crabs were more sensitive to leached mirex than were large juveniles. Mirex did not appear to affect growth or frequency of molting in crabs. All exposed animals concentrated mirex. Among animals that survived for 28 days, sheepshead minnows concentrated mirex 40,800X above the concentration in the water, blue crabs 2,300X, pink shrimp 10,000X, and grass shrimp 10,800X. Sand substrata contained mirex up to 770X that in the water. Most control and exposed animals in samples examined histologically had normal tissues, but alteration in gills of some exposed fish and natural pathogens in some exposed and control crabs and shrimp were observed. The experiments demonstrated that mirex can be leached from bait by fresh water, concentrated by estuarine organisms, and can be toxic to crabs and shrimps. PMID:1190846

  10. Halogen radicals contribute to photooxidation in coastal and estuarine waters.

    PubMed

    Parker, Kimberly M; Mitch, William A

    2016-05-24

    Although halogen radicals are recognized to form as products of hydroxyl radical ((•)OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM ((3)DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater (•)OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark (•)OH generation by gamma radiolysis demonstrates that halogen radical production via (•)OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl(-) and Br(-) by (3)DOM*, an (•)OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  11. CHARACTERIZING POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS INDIGENOUS TO SITES WITH DIFFERING ENVIRONMENTAL QUALITY

    EPA Science Inventory

    Populations of the non-migratory estuarine fish Fundulus heteroclitus were collected from New Bedford Harbor and distant clean sites to investigate whether indigenous populations have adapted genetically to the harbor's contamination. New Bedford Harbor, a major port in southe...

  12. RESPONSES OF ESTUARINE BENTHIC INVERTEBRATES TO SEDIMENT BURIAL: THE IMPORTANCE OF MOBILITY AND ADAPTATION

    EPA Science Inventory

    Estuarine benthic organisms are frequently subjected to disturbance events caused by hydrodynamic processes that disrupt and move the sediment in which the animals reside, however the mechanisms by which physical disturbance processes affect infaunal and epifaunal populations and...

  13. No estuarine intertidal bathymetry? No worries! Estimating intertidal depth contours from readily available GIS data

    EPA Science Inventory

    The importance of littoral elevation to the distribution of intertidal species has long been a cornerstone of estuarine ecology and its historical importance to navigation cannot be understated. However, historically, intertidal elevation measurements have been sparse likely due ...

  14. Ecological periodic tables for nekton and benthic macrofaunal community usage of estuarine habitats Slides

    EPA Science Inventory

    Ecological periodic tables for nekton and benthic macrofaunal community usage of estuarine habitats Steven P. Ferraro, U.S. Environmental Protection Agency, Newport, OR Background/Questions/Methods The chemical periodic table, the Linnaean system of classification, and the Her...

  15. Determining the direct upland hydrological contribution area of estuarine wetlands using Arc/GIS tools

    EPA Science Inventory

    The delineation of a polygon layer representing the direct upland runoff contribution to esturine wetland polygons can be a useful tool in estuarine wetland assessment. However, the traditional methods of watershed delineation using pour points and digital elevation models (DEMs)...

  16. RESPONSE OF GHOST SHRIMP (NEOTRYPAEA CALIFORNIENSIS) BIOTURBATION TO ORGANIC MATTER ENRICHMENT OF ESTUARINE INTERTIDAL SEDIMENTS

    EPA Science Inventory

    Populations of burrowing shrimp (Neotrypaea californiensis and Upogebia p;ugettensis) are the dominant invertebrate fauna on Pacific estuarine tide flats, occupying >80% of intertidal area in some estuaries. Burrowing shrimp are renowned for their bioturbation of intertidal sedi...

  17. Estuarine intertidal sediment temperature variability in Zoster marina and Z. japonica habitats in Yaquina Bay, Oregon

    EPA Science Inventory

    Physical characterization of intertidal estuarine plant habitats over time may reveal distribution-limiting thresholds. Temperature data from loggers embedded in sediment in transects crossing Zostera marina and Z. japonica habitats in lower Yaquina Bay, Oregon display signific...

  18. Factors Influencing Expanded Use of Urban Estuarine Habitats by Foraging Wading Birds

    EPA Science Inventory

    Urban estuarine habitats are often utilized by wildlife for foraging and other activities despite surrounding anthropogenic impact or disturbance. However little is known of the ecological factors that determine habitat value of these and other remnant natural habitats. We exam...

  19. Genetic architecture of evolved tolerance to PCBs in the estuarine fish Fundulus heteroclitus

    EPA Science Inventory

    Populations of Atlantic killifish (F. heteroclitus) resident to coastal estuarine habitats contaminated with halogenated aromatic hydrocarbons (HAHs) exhibit heritable resistance to the early life-stage toxicity associated with these compounds. Beyond our knowledge of the aryl hy...

  20. 75 FR 8649 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... National Oceanic and Atmospheric Administration Evaluation of State Coastal Management Programs and National Estuarine Research Reserves AGENCY: National Oceanic and Atmospheric Administration (NOAA), Office... Coastal Resource Management, National Ocean Service, National Oceanic and Atmospheric......

  1. TOXICITY OF TEXTILE MILL EFFLUENTS TO FRESHWATER AND ESTUARINE ALGAE, CRUSTACEANS AND FISHES

    EPA Science Inventory

    The toxicity of secondary waste effluents from textile manufacturing plants was determined with freshwater (Selenastrum capricornutum, Daphnia pulex, Pimephales promelus) and estuarine (Skeletonema costatum, Palaemonetes pugio, Cyprinodon variegatus) organisms. Daphnia pulex was ...

  2. RELEVANCE OF ROOTED VASCULAR PLANTS AS INDICATORS OF ESTUARINE SEDIMENT QUALITY

    EPA Science Inventory

    Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment evaluations is largely unknown. For this reason, the toxicities of whole se...

  3. 76 FR 46723 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... National Estuarine Research Reserves AGENCY: Commerce, National Oceanic and Atmospheric Administration... Commerce, and adhered to the terms of financial assistance awards funded under the CZMA. The...

  4. PHYSIOLOGICAL DYSFUNCTION IN ESTUARINE MYSIDS AND LARVAL DECAPODS WITH CHRONIC PESTICIDE EXPOSURE

    EPA Science Inventory

    A variety of physiological functions was examined in an estuarine mysid (Mysidopsis bahia) during life-cycle exposures to four classes of pesticides. Pesticide exposure initially elevated respiration rates of juveniles. These increased metabolic requirements reduced the amount of...

  5. RECOLONIZATION OF SEDIMENT-ASSOCIATED MICROALGAE AND EFFECTS OF ESTUARINE INFAUNA ON MICROALGAL PRODUCTION

    EPA Science Inventory

    Experiments were performed to determine the rate of recolonization of sediment-associated microalgae and effects of infauna on microalgal biomass and production. Estuarine sediment was defaunated and transplanted to the field and the laboratory. Recolonization of sediment by flor...

  6. PREDICTING ESTUARINE SEDIMENT METAL CONCENTRATIONS AND INFERRED ECOLOGICAL CONDITIONS: AN INFORMATION THEORETIC APPROACH

    EPA Science Inventory

    Empirically derived values associating sediment metal concentrations with degraded ecological conditions provide important information to assess estuarine condition. However, resources limit the number, magnitude, and frequency of monitoring programs to gather these data. As su...

  7. THE INFLUENCE OF INSECT JUVENILE HORMONE AGONISTTS ON METAMORPHOSIS AND REPRODUCTION IN ESTUARINE CRUSTACEANS

    EPA Science Inventory

    Comparative developmental and reproductive studies were performed on several species of estuarine crustaceans in response to three juvenile hormone agonists (JHAs) (methoprene, fenoxycarb, and pyriproxyfen). Larval development of the grass shrimp, Palaemonetes pugio, was greater ...

  8. Influence of sediment organic carbon on estuarine benthic species of the US West Coast

    EPA Science Inventory

    Total organic carbon (TOC) is often used as an indicator of nutrient enrichment in estuarine environments. However, the determination of biologically relevant TOC criteria to indicate sediment quality is complicated by the relationship between TOC and grain size. Both variables...

  9. Comparative bioaccumulation of trace metals in Penaeus stylirostris in estuarine and coastal environments

    NASA Astrophysics Data System (ADS)

    Páez-Osuna, F.; Ruiz-Fernández, C.

    1995-01-01

    Trace metal concentrations (Fe, Mn, Ni, Cu, Co, Cd, Cr and Zn) have been measured in estuarine and marine shrimp P. stylirostris collected in the Pacific coast of México. Estuarine individuals (juveniles) had higher concentrations of Fe and Mn than marine individuals (adults). Size-dependent relationships were observed and differed among the elements examined. A negative slope was found for Co, Fe, Mn and Ni in estuarine juvenile shrimps, while for Cu the opposite tendency occurred. In marine adults a positive slope was observed for Cd, Co, Cr and Cu. These findings may be due to two factors: (1) that P. stylirostris spends part of its life-cycle in estuarine/lagoon environments where it is more likely to be exposed to higher levels of bioavailable trace metals (natural and anthropogenic contributions) and/or (2) different metabolic requirements of young and older specimens, which is especially applicable to copper.

  10. PREDICTING THE OCCURRANCE OF ADAPTATION TO DIOXINLIKE COMPOUNDS IN POPULATIONS OF THE ESTUARINE FISH FUNDULUS HETEROCLITUS

    EPA Science Inventory

    A population of the non-migratory estuarine fish species Fundulus heteroclitus (mummichog) indigenous to a polychlorinated biphenyl (PCB)-contaminated Superfund site (New Bedford Harbor, NBH, MA, USA) demonstrates an inherited tolerance to local, dioxin-like contaminants (DLCs). ...

  11. INFLUENCE OF AN INSECT GROWTH REGULATOR ON THE LARVAL DEVELOPMENT OF AN ESTUARINE SHRIMP

    EPA Science Inventory

    The influence of methoprene, an insect growth regulator used in mosquito control, on larval development of the estuarine grass shrimp (Palaemonetes pugio) was examined in the laboratory. o grass shrimp larvae successfully completed metamorphosis when continuously exposed to 1000 ...

  12. Performance of Passive Samplers for Monitoring Estuarine Water Column Concentrations: 1. Contaminants of Concern

    EPA Science Inventory

    Contaminants enter marine and estuarine environments and can potentially pose risk to human and ecological health. Measuring contaminants of concern (COC) in these aqueous media can be difficult due to their relatively low solubilities and tendency to associate with environmenta...

  13. Artificial structures in sediment-dominated estuaries and their possible influences on the ecosystem.

    PubMed

    Wetzel, Markus A; Scholle, Jörg; Teschke, Katharina

    2014-08-01

    Artificial substrates are omnipresent today in most estuaries mostly in form of massive rip-rap used for groynes and jetties. In the Weser estuary, Germany, 60% of the shoreline is covered with such artificial substrates while, natural rocky substrate is lacking, as in all Wadden Sea estuaries. This large quantity of artificial substrates may be colonized by a benthic hard-substrate community which differs from the local natural soft-substrate assemblage. In this study we examined species compositions, abundances, biomass, and numbers of species of subtidal benthic communities on groynes and in the natural habitat, the sediment, along the salinity gradient of the Weser estuary. Species composition changed on both substrates significantly with salinity and was also significantly different between the substrates. In a comparison with the sediment, the groynes did not provide any benefit for non-indigenous nor for endangered species in terms of abundance, biomass, and number of species, but represent habitats with higher total abundances and biomass; though some non-indigenous species even occurred exclusively on groynes. In particular, groynes supported filter-feeding organisms which play an important role by linking benthic and pelagic food webs. The dominance of the suspension feeders affects crucial estuarine ecosystem services and may have important implications for the estuarine management by altering the estuarine ecological quality status. Hence, artificial substrates should be considered in future conservation planning and in ecological quality monitoring of the benthic fauna according to the European Water Framework Directive. PMID:24816192

  14. Comparing quality of estuarine and nearshore intertidal habitats for Carcinus maenas

    NASA Astrophysics Data System (ADS)

    Amaral, Valter; Cabral, Henrique N.; Jenkins, Stuart; Hawkins, Stephen; Paula, José

    2009-06-01

    Estuarine and nearshore marine areas are vital habitats for several fish and benthic invertebrates. The shore crab Carcinus maenas (Crustacea: Brachyura: Portunidae) inhabits a variety of coastal, estuarine and lagoon habitats. At low tide, habitat structural complexity may be most important for crabs in the intertidal, providing refuge from predation and desiccation. The quality of different vegetated and nonvegetated estuarine and rocky shore habitats in SW Portugal and SW England was evaluated for intertidal C. maenas populations. We estimated population density, size-structure, and potential growth (RNA/DNA ratios) to investigate habitat quality. Vegetated estuarine habitats supported higher crab densities, than nonvegetated estuarine and rocky shore habitats. Investigation of population size-structure revealed that all habitats seem important recruitment and nursery areas although estuarine habitats in SW Portugal appeared to support higher densities of new recruits than equivalent habitats in SW England. Significant variation was found in RNA/DNA ratios among habitats. Ratios were highest in the rocky shore suggesting a high quality habitat where growth potential is high. We speculate that competition from other top-predators ( Pachygrapsus spp.) rather than low habitat quality may limit the occurrence of C. maenas in intertidal rocky shore habitats in SW Portugal. In estuarine environments RNA/DNA ratios were significantly higher in the vegetated than in the nonvegetated estuarine habitats in SW Portugal but not in SW England, suggesting geographic differences in the extent to which highly structure habitats represent high quality. Our results challenge the current paradigm that structured habitats are necessarily those of higher quality for C. maenas.

  15. Estuarine laterally averaged numerical dynamics: The development and testing of estuarine boundary conditions in the LARM code

    NASA Astrophysics Data System (ADS)

    Edinger, J. E.; Buchak, E. M.

    1981-11-01

    The longitudinal and vertical hydrodynamics and transport in stratified waterbodies as formulated for the Corps of Engineers Laterally Averaged Reservoir Model (LARM) have been transformed to estuaries by development of appropriate boundary conditions. The resulting computational code Laterally Averaged Estuary Model (LAEM) is tested on the Potomac River estuary for a short period of time with intensive field data. The estuary problem was formulated in terms of spatially varying geometry, a time-varying tide height and salinity distribution at the mouth, and freshwater inflow. The LARM code was found to reproduce overall estuarine dynamics including tide heights, tide phase shifts, and salinity distributions. In addition, detailed time-varying vertical velocity profiles were produced to a high degree of resolution. Detailed results of the model including the distribution of vertical velocities and turbulent dispersion coefficients were compared to those expected for a coastal plain estuary with favorable agreement.

  16. Heavy-mineral provenance in an estuarine environment, Willapa Bay, Washington, USA: palaeogeographic implications and estuarine evolution

    USGS Publications Warehouse

    Luepke Bynum, Gretchen

    2007-01-01

    Modern sediments from representative localities in Willapa Bay, Washington, comprise two principal heavy-mineral suites. One contains approximately equivalent amounts of hornblende, orthopyroxene, and clinopyroxene; this is derived from the Columbia River, which discharges into the Pacific Ocean a short distance south of the bay. The other suite, dominated by clinopyroxene, is restricted to sands of rivers flowing into the bay from the east. The heavy-mineral distributions within the bay suggest that sand discharged from the Columbia River, borne north by longshore transport and carried into the bay by tidal currents, accounts for nearly all of the sand within the interior of Willapa Bay today. Pleistocene deposits on the east side of the bay contain three heavy-mineral assemblages, two of which are identical to the modern assemblages described above. These assemblages reflect the relative influence of tidal and fluvial processes on the Late Pleistocene deposits (100,000–200,000 BP. Amino acid racemization in Quaternary shell deposits at Willapa Bay, Washington. Geochimica et Cosmochimica Acta 43, 1505–1520). They are also consistent with those processes inferred on the basis of sedimentary structures and stratigraphic relations in about two-thirds of the samples examined. Anomalies can be explained by recycling of sand from older deposits. The persistence of the two heavy-mineral suites suggests that the pattern of estuarine sedimentation in Late Pleistocene deposits closely resembled that of the modern bay. The third heavy-mineral suite is enriched in epidote and occurs in a few older Pleistocene units. On the north side of the bay, the association of this suite with southwest-directed foresets in cross-bedded gravel indicates derivation from the northeast, perhaps from an area of glacial outwash. The presence of this suite in ancient estuarine sands exposed on the northeast side of the bay suggests that input from this northerly source may have

  17. Development of a Hydrodynamic Model for Skagit River Estuary for Estuarine Restoration Feasibility Assessment

    SciTech Connect

    Yang, Zhaoqing; Liu, Hedong; Khangaonkar, Tarang P.

    2006-08-03

    The Skagit River is the largest river in the Puget Sound estuarine system. It discharges about 39% of total sediment and more than 20% of freshwater into Puget Sound. The Skagit River delta provides rich estuarine and freshwater habitats for salmon and many other wildlife species. Over the past 150 years, economic development in the Skagit River delta has resulted in significant losses of wildlife habitat, particularly due to construction of dikes. Diked portion of the delta is known as Fir Island where irrigation practices for agriculture land over the last century has resulted in land subsidence. This has also caused reduced efficiency of drainage network and impeded fish passages through the area. In this study, a three-dimensional tidal circulation model was developed for the Skagit River delta to assist estuarine restoration in the Fir Island area. The hydrodynamic model used in the study is the Finite Volume Coastal Ocean Model (FVCOM). The hydrodynamic model was calibrated using field data collected from the study area specifically for the model development. Wetting and drying processes in the estuarine delta are simulated in the hydrodynamic model. The calibrated model was applied to simulate different restoration alternatives and provide guidance for estuarine restoration and management. Specifically, the model was used to help select and design configurations that would improve the supply of sediment and freshwater to the mudflats and tidal marsh areas outside of diked regions and then improve the estuarine habitats for salmon migration.

  18. How U-Th series radionuclides have come to trace estuarine processes

    NASA Astrophysics Data System (ADS)

    Church, T. M.

    2014-12-01

    Some forty years ago, the essence of estuarine processes was pioneered in terms of property-property (salinity) parameterization and end member mixing experiments. The result revealed how scavenging via "flocculation" of organic material such as humic acids affect primary nutrients and trace elements, many of pollutant interest. Defined in the Delaware are estuarine reaction zones, including one more "geochemical" in upper turbid areas and another more" biochemical" in more productive photic zones of lower areas. Since then, the natural U-Th radionuclide series have been employed to quantify estuarine transport and scavenging processes. Parent U appears negatively non-conserved during summer in estuarine and coastal waters, while that of Ra isotopes positively non-conservative dominated by a ground water end member. For both U and Ra, the biogeochemical influence of marginal salt marshes is significant. Indeed in the marsh atmospheric 210-Pb has become the metric of choice for the chronology of estuarine pollutant records. Using the more particle reactive isotopes in quantifying estuarine mixing processes (e.g. Th or Pb) proves to be fruitful in the Delaware and upper Chesapeake. While Th simply tracks that of particle abundance, both 210-Pb and 210-Po show differential scavenging with residence times of weeks to a month according to lithogenic and biogenic cycling processes, respectively.

  19. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  20. List identifies threatened ecosystems

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  1. Lakes Ecosystem Services Online

    EPA Science Inventory

    Northeastern lakes provide valuable ecosystem services that benefit residents and visitors and are increasingly important for provisioning of recreational opportunities and amenities. Concurrently, however, population growth threatens lakes by, for instance, increasing nutrient ...

  2. Self Contained Ecosystems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A self contained ecosystem developed at Jet Propulsion Laboratory is manufactured by Engineering and Research Associates. It is essentially a no-care aquarium which requires only natural or fluorescent light.

  3. Delineation of ecosystem regions

    NASA Astrophysics Data System (ADS)

    Bailey, Robert G.

    1983-07-01

    As a means of developing reliable estimates of ecosystem productivity, ecosystem classification needs to be placed within a geographical framework of regions or zones. This paper explains the basis for the regions delineated on the 1976 map Ecoregions of the United States. Four ecological levels are discussed—domain, division, province, and section—based on climatic and vegetational criteria. Statistical tests are needed to verify and refine map units.

  4. Bio-geomorphology of estuaries: the need for understanding the balance between ecosystem engineering, physical forcing and biomechanical species interactions

    NASA Astrophysics Data System (ADS)

    Bouma, Tjeerd; Balke, Thorsten; van Belzen, Jim; Cozzoli, Francesco; Suykerbuyk, Wouter; van Katwijk, Marieke; Temmerman, Stijn; Herman, Peter

    2013-04-01

    The estuarine environment is strongly affected by the hydrodynamic forces from currents and waves, which often form both a resource and a stress to the organisms inhabiting these areas. Organisms that inhabit these areas interact with these physical forces, and may thereby modify their abiotic environment. This is referred to as ecosystem engineering (EE), which may result in locally improved growing conditions for the organisms. By their activities, ecosystem engineers (EE's) can have major influence on sediment dynamics in the coastal ecosystems and may create self-organised bio-geomorphologic landscapes. However, the physical-driven sediment dynamics may also impose control over organism establishment and performance. And on top of that, ecosystem engineering organisms may affect the occurrence of each other via their effect on the environment (i.e., 'biomechanical warfare'). The combination of these 3 types of interactions makes the dynamics of biogeomorphic ecosystems complex to understand and model, and restoration of biogeomorphic ecosystems hard to accomplish. In our presentation we will highlight 3 aspects that we see as crucial to improve our understanding, modelling and restoration of biogeomorphic ecosystems: (1) the possibility to generalise EE-effects across species (2) identifying to which extent physical forcing may enable vs. restrict EE-effects (3) understanding the biological and physical thresholds to the establishment of EE's, and the long-term dynamics of biogemorphic ecosystems. Each of these aspects will be discussed based on experimental results.

  5. Seasonal dynamics of trophic relationships among co-occurring suspension-feeders in two shellfish culture dominated ecosystems

    NASA Astrophysics Data System (ADS)

    Lefebvre, Sébastien; Marín Leal, Julio César; Dubois, Stanislas; Orvain, Francis; Blin, Jean-Louis; Bataillé, Marie-Paule; Ourry, Alain; Galois, Robert

    2009-04-01

    The temporal dynamics of carbon and nitrogen isotope values of co-occurring suspension-feeders in two shellfish culture areas (Normandy, France) were investigated over two years to evaluate the inter-specific trophic partitioning and relative contributions of organic matter sources to benthic suspension-feeders' diet. Oysters ( Crassostrea gigas), mussels ( Mytilus edulis), cockles ( Cerastoderma edule), slipper limpets ( Crepidula fornicata), and sand-mason worms ( Lanice conchilega) were sampled in an estuarine environment (Baie des Veys, east Cotentin, Normandy), while oysters, mussels, slipper limpets, and honeycomb worms ( Sabellaria alveolata) were sampled in an open-marine environment (Lingreville-sur-mer, west Cotentin, Normandy). Whatever the sampling period, the bivalves, C. gigas and M. edulis, exhibited the lowest values of δ13C and δ15N compared with the other species. Feeding relationships among suspension-feeders in both C. gigas culture areas exhibited temporal variations due to the marine/estuarine influence and seasonal changes in food supply. In the open-marine ecosystem, the contribution of phytoplankton remained the most important for all species except S. alveolata, while in the estuarine ecosystem, microphytobenthos and/or macroalgae detritus contributed a larger extent to the organisms' diets. During phytoplankton bloom periods (e.g. May and July) suspension-feeders, except for S. alveolata, relied strongly on phytoplankton; however, the majority of suspension-feeders exhibited different opportunistic behaviour in winter when phytoplankton biomass might be a limiting factor. We hypothesized that differences in particle capture and selection by the suspension-feeders influenced their isotopic values. Feeding ecology of suspension-feeders partly explained why competition was limited and why ecosystems can often support unexpectedly large numbers of suspension-feeders. We also showed that understanding ecosystem characteristics of the organic

  6. Sources of organic matter for flatfish juveniles in coastal and estuarine nursery grounds: A meta-analysis for the common sole (Solea solea) in contrasted systems of Western Europe

    NASA Astrophysics Data System (ADS)

    Le Pape, O.; Modéran, J.; Beaunée, G.; Riera, P.; Nicolas, D.; Savoye, N.; Harmelin-Vivien, M.; Darnaude, A. M.; Brind'Amour, A.; Le Bris, H.; Cabral, H.; Vinagre, C.; Pasquaud, S.; França, S.; Kostecki, C.

    2013-01-01

    Coastal and estuarine nursery grounds are essential habitats for sustaining flatfish stocks since only these shallow and productive areas provide the high food supply that allows maximizing juvenile growth and survival in most flatfish species. However, the main organic matter sources at the basis of benthic food webs might differ drastically between estuarine nursery grounds under strong freshwater influences, where food webs are mainly supported by continental organic matter, and coastal ecosystems under limited freshwater influence, where the local marine primary production is the main source of carbon for the benthos. To better understand the links between continental inputs to the coastal zone and stock maintenance in the highly prized common sole, Solea solea (L.), we investigated the variability in the organic matter sources supporting the growth of its young-of-the-year (YoY) in five contrasted estuarine and coastal nursery grounds under varying freshwater influence. Stable isotopes of carbon and nitrogen allowed tracing the origin of the organic matter exploited by YoY soles in the very first months following their benthic settlement, i.e. when most of the juvenile mortality occurs in the species. A mixing model was run to unravel and quantify the contribution of all major potential sources of organic matter to sole food webs, with a sensitivity analysis allowing assessment of the impact of various trophic enrichment factors on model outputs. This meta-analysis demonstrated a relative robustness of the estimation of the respective contributions of the various organic matter sources. At the nursery scale, the upstream increase in freshwater organic matter exploitation by YoY soles and its positive correlation with inter-annual variations in the river flow confirmed previous conclusions about the importance of organic matter from continental origin for juvenile production. However, inter-site differences in the organic matter sources exploited for growth

  7. Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters.

    PubMed

    Pärnänen, Katariina; Karkman, Antti; Virta, Marko; Eronen-Rasimus, Eeva; Kaartokallio, Hermanni

    2015-01-01

    Polyhydroxyalkanoates (PHAs) are macromolecules produced by bacteria as means for storing carbon and energy in intracellular granules. PHAs have physical properties similar to those of plastics and have become of interest to industry as materials for environmentally friendly bioplastic production. There is an ongoing search for new PHA-producing bacterial strains and PHA-synthesizing enzymes tolerating extreme conditions to find ways of producing PHAs at cold temperatures and high solute concentrations. Moreover, the study of PHA producers in the sea-ice biome can aid in understanding the microbial ecology of carbon cycling in ice-associated ecosystems. In this study, PHA producers and PHA synthase genes were examined under the extreme environmental conditions of sea ice and cold seawater to find evidence of PHA production in an environment requiring adaptation to high salinity and cold temperatures. Sea ice and cold estuarine water samples were collected from the northern Baltic Sea and evidence of PHA production was gathered, using microscopy with Nile Blue A staining of PHA-granules and PCR assays detecting PHA-synthesis genes. The PHA granules and PHA synthases were found at all sampling locations, in both sea ice and water, and throughout the sampling period spanning over 10 years. Our study shows, for the first time, that PHA synthesis occurs in Baltic Sea cold-adapted bacteria in their natural environment, which makes the Baltic Sea and its cold environments an interesting choice in the quest for PHA-synthesizing bacteria and synthesis genes. PMID:25280551

  8. The influence of seasonality (dry and rainy) on the bioavailability and bioconcentration of metals in an estuarine zone

    NASA Astrophysics Data System (ADS)

    Milazzo, Alexandre Dacorso Daltro; Silva, Ana Carina Matos; Oliveira, Daiane Aparecida Francisco de; Cruz, Manoel Jerônimo Moreira da

    2014-08-01

    Knowledge on the concentration of metallic elements is important to certify the quality of ecosystems. Such behaviors in estuarine environments are dependent of factors such as rainfall and temperature of the water, interfering directly on the metal concentrations in biotic and abiotic components. This study observed the role that seasonality (dry and rainy) had on the bioavailability of metals (Fe, Zn, Mn, Cu, Ni, and Al) in surface water and sediment, and bioconcentration in oysters (Cassostrea rhizophorae) in the mangrove area of the São Paulo river estuary, Todos os Santos Bay. The metals concentration in three matrices analyzed varied between the periods studied. The values of physicochemical parameters also had significant variations. High levels of Zn and Cu were found in mollusks. The highest concentrations of metals analyzed were Al in waters, Fe in sediments and Zn in mollusks. These results showed that seasonality interferes directly in the physicochemical parameters analyzed (pH, dissolved oxygen, temperature, salinity and Eh), as well as on the bioavailability of metals in both water and sediment, influencing directly on the concentrations found in mollusks.

  9. Individual variation in ontogenetic niche shifts in habitat use and movement patterns of a large estuarine predator (Carcharhinus leucas).

    PubMed

    Matich, Philip; Heithaus, Michael R

    2015-06-01

    Ontogenetic niche shifts are common among animals, yet most studies only investigate niche shifts at the population level, which may overlook considerable differences among individuals in the timing and dynamics of these shifts. Such divergent behaviors within size-/age-classes have important implications for the roles a population-and specific age-classes-play in their respective ecosystem(s). Using acoustic telemetry, we tracked the movements of juvenile bull sharks in the Shark River Estuary of Everglades National Park, Florida, and found that sharks increased their use of marine microhabitats with age to take advantage of more abundant resources, but continued to use freshwater and estuarine microhabitats as refuges from marine predators. Within this population-level ontogenetic niche shift, however, movement patterns varied among individual sharks, with 47 % of sharks exhibiting condition-dependent habitat use and 53 % appearing risk-averse regardless of body condition. Among sharks older than age 0, fifty percent made regular movements between adjacent regions of the estuary, while the other half made less predictable movements that often featured long-term residence in specific regions. Individual differences were apparently shaped by both intrinsic and extrinsic factors, including individual responses to food-risk trade-offs and body condition. These differences appear to develop early in the lives of bull sharks, and persist throughout their residencies in nursery habitats. The widespread occurrence of intraspecific variation in behavior among mobile taxa suggests it is important in shaping population dynamics of at least some species, and elucidating the contexts and timing in which it develops and persists is important for understanding its role within communities. PMID:25669454

  10. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters. PMID:24015900

  11. The dyslexia ecosystem.

    PubMed

    Nicolson, Roderick I

    2002-01-01

    It is all too easy, in everyday interactions in dyslexia, to see the interactions in a semi-adversarial fashion--parents competing to get more support for children, researchers competing to get more support for their theories, schools trying to get more money for their programmes. Such a set of analyses may be described as 'zero-sum'. If one party gains, the other one loses. If, by contrast, one views the dyslexia community as a complex, inter-dependent 'ecosystem', a much more positive view emerges. It becomes clear that there are solutions for the system as a whole that are in a sense optimal for the system as a whole, solutions that are 'win-win', that is, all parties gain and none lose. In this article I develop this concept of the 'dyslexia ecosystem', and outline targets that would lead to progress for the ecosystem as a whole. PMID:12067187

  12. Ecology of Albemarle Sound, North Carolina: an estuarine profile

    SciTech Connect

    Copeland, B.J.; Hodson, R.G.; Riggs, S.R.; Easley, J.E. Jr.

    1983-09-01

    Albemarle Sound, a large oligohaline estuary in northeastern North Carloina, constitutes a significant portion of North Carolina's coastal system. It is shallow, wind dominated, and strongly influenced by freshwater inflow. These conditions, combined with limited oceanic access and exchange, maintain fresh- to brackish water conditions throughout most of the estuary during the year. The nekton are the most well-known biological component of this extensive estuarine system. Albemarle Sound is an important nursery area for a number of anadromous and migratory fish as well as the blue crab and supports fisheries for many of these species. Other biological components (phytoplankton, zooplankton, and benthos) in the estuary are less well studied. Declining fisheries, algal blooms in freshwater tributaries, and changing patterns of land and water use are among the critical issues facing managers of Albemarle Sound. This report discusses current steps being taken toward holistic management and provides a state-of-the-art information base and ecological synthesis of the estuary and its watershed. 89 references, 50 figures, 19 tables.

  13. Inverse estimation of parameters for an estuarine eutrophication model

    SciTech Connect

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulations with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.

  14. Hydrodynamic Forcing Mobilizes Cu in Low-Permeability Estuarine Sediments.

    PubMed

    Xie, Minwei; Wang, Ning; Gaillard, Jean-François; Packman, Aaron I

    2016-05-01

    Overlying hydrodynamics play critical roles in controlling surface-porewater exchanges in permeable sediments, but these effects have rarely been characterized in low-permeability sediments. We conducted a series of laboratory experiments to evaluate the effects of varied hydrodynamic conditions on the efflux of metals from low-permeability estuarine sediments. Two Cu-contaminated sediments obtained from the Piscataqua River were subject to controlled levels of hydrodynamic shear in Gust mesocosms, including episodic sediment resuspension. Overlying water and porewater samples were collected over the course of experiments and analyzed for metal concentrations. The two sediments had similar permeability (∼10(-15) m(2)), but different particle size distributions. Hydrodynamic forcing enhanced the mobilization and efflux of Cu from the coarser-grained sediments, but not the finer-grained sediments. Sediment resuspension caused additional transitory perturbations in Cu concentrations in the water column. Particulate metal concentrations increased significantly during resuspension, but then rapidly decreased to preresuspension levels following cessation of sediment transport. Overall, these results show that the mobility and efflux of metals are likely to be influenced by overlying hydrodynamics even in low-permeability sediments, and these effects are mediated by sediment heterogeneity and resuspension. PMID:27054802

  15. Sediment transport in a surface-advected estuarine plume

    NASA Astrophysics Data System (ADS)

    Yao, H. Y.; Leonardi, N.; Li, J. F.; Fagherazzi, S.

    2016-03-01

    The interplay between suspended-sediment transport and plume hydrodynamics in a surface-advected estuarine plume is studied using a three-dimensional numerical model. Our analysis focuses on the formation of a sediment-rich alongshore current and on the effect of sediments on the structure of the recirculating freshwater bulge. We introduce the ratio Y between the traveling time of sediment along the bulge edge and the settling timescale. When Y <1, suspended sediments enter the alongshore coastal current. When Y >1 the sediments are deposited within the bulge. We find that a critical range of settling velocities exist above which no transport in the costal current is allowed. Critical settling-velocity values increase with river discharge. Therefore, low magnitude and long-lasting floods promote sediment sorting in the continental shelf. We further find that, for a given flood duration, intermediate flood magnitudes at the limit between subcritical and supercritical flow maximize the alongshore sediment transport. Similarly, for a fixed input of water and sediments, intermediate discharge durations maximize alongshore sediment transport.

  16. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  17. Dissolved Vanillin as Tracer for Estuarine Lignin Conversion

    NASA Astrophysics Data System (ADS)

    Edelkraut, F.

    1996-12-01

    Lignin is produced only by vascular plants and therefore can be used as a tracer for terrestrial organic carbon input to the estuarine and marine environments. Lignin measurements have been done by analyses of the oxidation products such as vanillin or 4-hydroxybenzaldehyde. In the Elbe Estuary, free dissolved vanillin was analysed in order to test whether such measurements yield information on terrestrial carbon inputs into the Estuary and on the vanillin derived from lignin oxidation. In the period 1990-1992, concentrations of dissolved vanillin in the Elbe ranged from 0 to 60 μ g l -1(mean: 8 μg l -1). Higher values were found in areas of increased microbial activity such as the turbidity zone and the river mouth where the water chemistry is influenced by large tidal flats. No correlation was found between dissolved vanillin and suspended matter concentrations, although lignin is normally associated with suspended particulate matter, nor was a covariance seen between dissolved vanillin and the terrestrial carbon inputs into the Estuary. Apparently, biological conversion of lignin was faster than the transport processes, and local sources were more dominant for the vanillin concentration than riverine sources. The dissolved vanillin turnover was fast and, consequently, a significant amount of lignin may be converted within an estuary. In sediments from the Estuary, the concentrations of dissolved vanillin were similar to those found in the water phase and showed no clear vertical profile. The sediment is unlikely to be the source for vanillin.

  18. Rate of mercury loss from contaminated estuarine sediments

    USGS Publications Warehouse

    Bothner, Michael H.; Jahnke, R.A.; Peterson, M.L.; Carpenter, R.

    1980-01-01

    The concentration of mercury in contaminated estuarine sediments of Bellingham Bay, Washington was found to decrease with a half-time of about 1.3 yr after the primary anthropogenic source of mercury was removed. In situ measurements of the mercury flux from sediments, in both dissolved and volatile forms, could not account for this decrease. This result suggests that the removal of mercury is associated with sediment particles transported out of the study area. This decrease was modeled using a steady-state mixing model. Mercury concentrations in anoxic interstitial waters reached 3.5 ??g/l, 126 times higher than observed in the overlying seawater. Mercury fluxes from these sediments ranged from 1.2 to 2.8 ?? 10-5 ng/cm2/sec, all in a soluble form. In general, higher Hg fluxes were associated with low oxygen or reducing conditions in the overlying seawater. In contrast, no flux was measurable from oxidizing interstitial water having mercury concentrations of 0.01-0.06 ??/l. ?? 1980.

  19. The fate of fipronil in modular estuarine mesocosms.

    PubMed

    Walse, Spencer S; Pennington, Paul L; Scott, Geoffrey I; Ferry, John L

    2004-01-01

    The degradation and corresponding product manifold for the pesticide fipronil was determined in three replicate estuarine mesocosms. Aqueous fipronil concentrations rapidly decreased over the 672 h timescale of the experiment (95% removal). Loss was apparently first-order in fipronil, although there appeared to be a change in the removal mechanism after 96 h that corresponded to a dramatic slowdown in its disappearance. The reduction product of fipronil, fipronil sulfide, was not detected in the water column; however, it formed rapidly in sediments and was identified as the major product of fipronil degradation in the system (20% yield at 672 h, with respect to initial fipronil concentration). Fipronil sulfone is thought to form primarily via biological oxidation; and, although it was generated rapidly in the water column (10% yield), only trace amounts were detected in the sediment (1% yield). The direct photolysis product of fipronil, fipronil desulfinyl, was present in all samples; it formed rapidly in the water column (4% yield) and partitioned into the sediment phase (7% yield) over the course of the experiment. The mass balance on fipronil and associated products was 42% at 672 h. PMID:14737471

  20. Effects of sevin on development of experimental estuarine communities.

    PubMed

    Tagatz, M E; Ivey, J M; Lehman, H K; Oglesby, J L

    1979-07-01

    The composition of animal communities developing from planktonic larvae in aquariums. A marked increase in the abundance of the annelid Polydora ligni in aquariums containing sand and flowing estuarine water was altered in the presence of the carbamate insecticide Sevin (carbaryl). Treatments were control and concentrations of Sevin that averaged 1.1, 11.1, and 103 micrograms/l; each treatment was replicated 8 times. Animals that colonized aquarium sand were collected in a 1-mm mesh sieve after 10 wk of exposure. Mollusks' arthropods, annelids, and nemerteans were the numerically dominant phyla. The average number of species per aquarium was significantly less (alpha = 0.05) in aquariums containing 11.1 or 103 micrograms/l than in those containing 1.1 micrograms/l or in control aquariums. The abundant clam Ensis minor grew significantly less in length at the higher concentrations of Sevin. The amphipod Corophium acherusicum was particularly affected; significantly fewer were found at all concentrations than in the control aquariums containing 103 micrograms/l corresponded to a marked decrease in the number of other annelids and to a significant absence of nemerteans. PMID:114668

  1. Ecology of the Apalachicola Bay System: an estuarine profile

    SciTech Connect

    Livingston, R.J.

    1984-09-01

    Twelve years of studies in the Apalachicola Bay system are reviewed. Included are data on geography, hydrology, chemistry, geology, and biology. The system is part of a major drainage area including four rivers and associated wetlands in Georgia, Alabama, and Florida. It is a shallow coastal lagoon fringed by barrier islands and dominated by wind effects and tidal currents. River bottomlands (channels, sloughs, swamps, and backwater) and periodically flooded lowlands are important components. Principal influences on biological processes are basin physiography, river flow, nutrient input, and salinity. Water quality is affected by periodic wind and tidal influences and freshwater inflows. The system is in a relatively natural state, though hardly pristine. But economic development and population growth are beginning to threaten it. The area's economic and ecological importance as a food producer and shelter for diverse species has inspired a movement to protect its natural resources, including State and Federal land-purchase programs, integration of county land-use regulations into a comprehensive development, and creation of the Apalachicola River and Bay National Estuarine Sanctuary. 49 figs., 31 tabs.

  2. Source Evaluation and Trace Metal Contamination in Benthic Sediments from Equatorial Ecosystems Using Multivariate Statistical Techniques

    PubMed Central

    Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.

    2016-01-01

    Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934

  3. Antarctic terrestrial ecosystems

    SciTech Connect

    Walton, D.W.H.

    1987-01-01

    The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

  4. Bioenergetics in ecosystems

    USGS Publications Warehouse

    Madenjian, Charles P.

    2011-01-01

    A bioenergetics model for a fish can be defined as a quantitative description of the fish’s energy budget. Bioenergetics modeling can be applied to a fish population in a lake, river, or ocean to estimate the annual consumption of food by the fish population; such applications have proved to be useful in managing fisheries. In addition, bioenergetics models have been used to better understand fish growth and consumption in ecosystems, to determine the importance of the role of fish in cycling nutrients within ecosystems, and to identify the important factors regulating contaminant accumulation in fish from lakes, rivers, and oceans.

  5. Columbia River Estuary Ecosystem Classification Geomorphic Catena

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  6. Columbia River Estuary Ecosystem Classification Hydrogeomorphic Reach

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  7. MICROCOMPUTER CONTROL OF AN ESTUARINE RESEARCH MESOCOSM FACILITY

    EPA Science Inventory

    The paper describes the application of microcomputer technology to laboratory-oriented ecosystem research. The instrumentation offers the ability to monitor and manipulate variables of interest on a 'real time' basis. The microcomputer oontrol system was found to be reliable and ...

  8. Mercury bioaccumulation in an estuarine predator: Biotic factors, abiotic factors, and assessments of fish health.

    PubMed

    Smylie, Meredith S; McDonough, Christopher J; Reed, Lou Ann; Shervette, Virginia R

    2016-07-01

    Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution. PMID:27086072

  9. Spatial Variability of Benthic-Pelagic Coupling in an Estuary Ecosystem: Consequences for Microphytobenthos Resuspension Phenomenon

    PubMed Central

    Ubertini, Martin; Lefebvre, Sébastien; Gangnery, Aline; Grangeré, Karine; Le Gendre, Romain; Orvain, Francis

    2012-01-01

    The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter) and biological parameters (flora and fauna assemblages, chlorophyll) were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher resuspension effect in

  10. Catchment controls and human disturbances on the geomorphology of small Mediterranean estuarine systems

    NASA Astrophysics Data System (ADS)

    Estrany, Joan; Grimalt, Miquel

    2014-10-01

    Geographic signatures are physical and human-induced characteristics or processes that identify comparable or unique features of estuaries along latitudinal gradients. In Mediterranean areas, the microtidal regime and the strong seasonal and inter-annual contrasts cause an alternation between relatively high runoff and arid conditions. Furthermore, the long history of human settlement also increases the complexity in the study of these estuarine systems. This study investigates these signatures of the estuaries located within the Mallorcan eastern coast, which are geomorphologically homogeneous because of a similar bedrock geology and Holocene history. A multi-method approach focused on the integration of geomorphometry, hydraulics, historical sources and statistics was used. We explore the role played by catchment morphometric parameters, severe flash flood events and human disturbances in controlling the geomorphology of 10 beach-barrier enclosed, fluvial incised lagoons. Most of the lagoons discharge into 'calas', ranging in size from 1345 to 17,537 m2 and their related catchments are representative of the Mediterranean hydrological systems. Multiple regression models illustrate that the size, slope and drainage network development of the catchments explain the variance in length (r2 = 0.67), volume (r2 = 0.49), area (r2 = 0.64), circularity (r2 = 0.72) and average width (r2 = 0.81) of the lagoons. Depending on these catchment morphometric variables, the shape of the lagoons is also determined by the occurrence of catastrophic flash floods, which cause scouring and dredging, whereas the ordinary flood events and sea storms promote refilling and sedimentation. A historical analysis since 1850 documented 18 flood events, 5 of which were catastrophic with destructive effects along the catchments and large morphological changes in coastal lagoons. High intensity rainfall (up to 200 mm in 2 h), the geomorphometry of the catchments and the massive construction of

  11. Impact of boat generated waves over an estuarine intertidal zone of the Seine estuary (France)

    NASA Astrophysics Data System (ADS)

    Deloffre, Julien; Lafite, Robert

    2015-04-01

    Water movements in macrotidal estuaries are controlled by the tidal regime modulated seasonally by the fluvial discharge. Wind effect on hydrodynamics and sediment transport is also reported at the mouth. Besides estuaries are frequently man altered our knowledge on the human impact on hydrodynamics and sediment transport is less extended. As an example on the Seine estuary (France) port authorities have put emphasis on facilitating economic exchanges by means of embankment building and increased dredging activity over the last century. These developments led to secure sea vessel traffic in the Seine estuary but they also resulted in a change of estuarine hydrodynamics and sediment transport features. Consequences of boat generated waves are varied: increased water turbidity and sediment transfer, release of nutrient and contaminants in the water column, harmful to users, ecosystems and infrastructures generating important maintenance spending. The aim of this study is to analyse the impact of boat generated waves on sediment transport over an intertidal area. The studied site is located on the left bank in the fluvial part of the Seine estuary. On this site the maximum tidal range ranges between 1.25 and 3.5m respectively during neap and spring tide. The sampling strategy is based on continuous ADV acquisition at 4Hz coupled with turbidimeter and altimeter measurements (1 measurement every minute) in order to decipher sediment dynamics during one year. Our results indicate that sediment dynamics are controlled by river flow while medium term scale evolution is dependent on tidal range and short term dynamics on sea-vessels waves. 64% of boat passages generated significant sediment reworking (from few mm.min-1 to 3cm.min-1). This reworking rate is mainly controlled by two parameters: (i) water height on the site and (ii) vessels characteristics; in particular the distance between seabed and keel that generate a Bernoulli wave (with maximum amplitude of 0.6m

  12. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence.

    PubMed

    Capon, Samantha J; Lynch, A Jasmyn J; Bond, Nick; Chessman, Bruce C; Davis, Jenny; Davidson, Nick; Finlayson, Max; Gell, Peter A; Hohnberg, David; Humphrey, Chris; Kingsford, Richard T; Nielsen, Daryl; Thomson, James R; Ward, Keith; Mac Nally, Ralph

    2015-11-15

    The concepts of ecosystem regime shifts, thresholds and alternative or multiple stable states are used extensively in the ecological and environmental management literature. When applied to aquatic ecosystems, these terms are used inconsistently reflecting differing levels of supporting evidence among ecosystem types. Although many aquatic ecosystems around the world have become degraded, the magnitude and causes of changes, relative to the range of historical variability, are poorly known. A working group supported by the Australian Centre for Ecological Analysis and Synthesis (ACEAS) reviewed 135 papers on freshwater ecosystems to assess the evidence for pressure-induced non-linear changes in freshwater ecosystems; these papers used terms indicating sudden and non-linear change in their titles and key words, and so was a positively biased sample. We scrutinized papers for study context and methods, ecosystem characteristics and focus, types of pressures and ecological responses considered, and the type of change reported (i.e., gradual, non-linear, hysteretic or irreversible change). There was little empirical evidence for regime shifts and changes between multiple or alternative stable states in these studies although some shifts between turbid phytoplankton-dominated states and clear-water, macrophyte-dominated states were reported in shallow lakes in temperate climates. We found limited understanding of the subtleties of the relevant theoretical concepts and encountered few mechanistic studies that investigated or identified cause-and-effect relationships between ecological responses and nominal pressures. Our results mirror those of reviews for estuarine, nearshore and marine aquatic ecosystems, demonstrating that although the concepts of regime shifts and alternative stable states have become prominent in the scientific and management literature, their empirical underpinning is weak outside of a specific environmental setting. The application of these

  13. Shelf-sea ecosystems

    SciTech Connect

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  14. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems. PMID:27209800

  15. TERRESTRIAL ECOSYSTEM SIMULATOR

    EPA Science Inventory

    The Terrestrial Habitats Project at the Western Ecology Division (Corvallis, OR) is developing tools and databases to meet the needs of Program Office clients for assessing risks to wildlife and terrestrial ecosystems. Because habitat is a dynamic condition in real-world environm...

  16. The Vehicle Ecosystem

    NASA Astrophysics Data System (ADS)

    Kuschel, Jonas

    Ubiquitous computing in the vehicle industry has primarily focused on sensor data serving different ubiquitous on-board services (e.g., crash detection, antilock brake systems, or air conditioning). These services mainly address vehicle drivers while driving. However, in view of the role of vehicles in today's society, it goes without saying that vehicles relate to more than just the driver or occupants; they are part of a larger ecosystem, including traffic participants, authorities, customers and the like. To serve the ecosystem with ubiquitous services based on vehicle sensor data, there is a need for an open information infrastructure that enables service development close to the customer. This paper presents results from a research project on designing such an infrastructure at a major European vehicle manufacturer. Our empirical data shows how the vehicle manufacturer's conceptualization of services disagrees with the needs of vehicle stakeholders in a more comprehensive vehicle ecosystem. In light of this, we discuss the effect on information infrastructure design and introduce the distinction between information infrastructure as product feature and service facilitator. In a more general way, we highlight the importance of information infrastructure to contextualize the vehicle as part of a larger ecosystem and thus support open innovation.

  17. Biocomplexity in mangrove ecosystems.

    PubMed

    Feller, I C; Lovelock, C E; Berger, U; McKee, K L; Joye, S B; Ball, M C

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems. PMID:21141670

  18. Biocomplexity in Mangrove Ecosystems

    NASA Astrophysics Data System (ADS)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  19. Resolving drivers of variability in estuarine metabolism from sustained observations of water quality in the SE US

    EPA Science Inventory

    We examine trends in water quality in long-term monitoring (10-15 y) data collected at 5 estuarine systems of NOAA’s National Estuarine Research Reserve System: Grand Bay, MS; Weeks Bay, AL; Apalachicola Bay, FL; Rookery Bay, FL, and Guana Tolomatos and Matanzas Rivers, FL. These...

  20. CHEMOSENSORY ATTRACTION OF ZOOSPORES OF THE ESTUARINE DINOFLAGELLATES, PFIESTERIA PISCICIDA AND P. SHUMWAYAE, TO FINFISH MUCUS AND EXCRETA. (R825551)

    EPA Science Inventory

    Toxic strains of the estuarine dinoflagellates, Pfiesteria piscicida and P. shumwayae, can cause fish death and disease, whereas other estuarine `lookalike' species such as cryptoperidiniopsoids have not been ichthyotoxic under ecologically rel...

  1. Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Watersby Gas Segmented Continuous Flow Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of dissolved silicate concentration in estuarine and coastal waters. The dissolved silicate is mainly in the form of silicic acid, H SiO , in estuarine and 4 4 coastal waters. All soluble silicate, including colloidal silici...

  2. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Grand Bay National Estuarine Research Reserve has the highest biotic diversity of habitats and offer a reserve of food resources and commercially significant species. Rapid human civilization has led to accumulation of heavy metals and trace elements in estuaries. The Grand Bay National Estuarin...

  3. [Urban ecosystem services: A review].

    PubMed

    Mao, Qi-zheng; Huang, Gan-lin; Wu, Jian-guo

    2015-04-01

    Maintaining and improving ecosystem services in urban areas and human well-being are essential for sustainable development and therefore constitute an important topic in urban ecology. Here we reviewed studies on ecosystem services in urban areas. Based on the concept and classification of urban ecosystem services, we summarized characteristics of urban ecosystem services, including the human domination, high demand of ecosystem services in urban areas, spatial heterogeneity and temporal dynamics of ecosystem services supply and demand in urban areas, multi-services of urban green infrastructures, the socio-economic dimension of ecosystem services supply and ecosystem disservices in urban areas. Among different urban ecosystem services, the regulating service and cultural service are particularly indispensable to benefit human health. We pointed out that tradeoffs among different types of ecosystem services mostly occur between supportive service and cultural service, as well as regulating service and cultural service. In particular, we emphasized the relationship between landscape design (i.e. green infrastructure) and ecosystem services supply. Finally, we discussed current gaps to link urban ecosystem services studies to landscape design and management and pointed out several directions for future research in urban ecosystem services. PMID:26259442

  4. Synoptic events force biological productivity in Patagonian fjord ecosystems

    NASA Astrophysics Data System (ADS)

    Daneri, Giovanni

    2016-04-01

    The annual cycle of primary productivity of the Patagonian fjords has, to date, been described as a two phase system consisting of a short non productive winter phase (during June and July) and a productive phase extending from late winter (August) to autumn (May). Low levels of primary production, phytoplankton biomass and high concentrations of surface nutrients have been described as characterizing winter conditions while pulsed productivity events typifies the productivity pattern during the extended productive season. Pulsed productivity events characterize coastal waters where inorganic nutrients in surface layers are replenished following periods of intensive utilization by autotrophs. Freshwater input in Patagonian fjords in southern Chile (41-55°S) results in one of the largest estuarine regions worldwide. Here strong haline water column stratification prevents nutrient mixing to the surface layers thus potentially shutting off algal production. Our working hypothesis considered that in order to reconcile the observed pulsed productivity pattern, periodic breaking (associated to surface nutrient replenishment) and re-establishment of estuarine conditions (associated to water column stratification) would be required. Up to now however our understanding of the physical processes that control water column conditions in the Patagonian fjord area has been extremely limited. Here we present evidence linking the passage of synoptic low pressure fronts to pulsed productivity events in the Patagonian fjord area. These front controls and influence local processes of interaction between the fjord and the atmosphere generating a rapid water column response. In the specific case of the Puyuhuapi fjord we have been able to show that such synoptic fronts induce surface flow reversal and water column mixing. Phytoplankton blooming occurs after the passage of the synoptic front once calmer conditions prevail and estuarine conditions are re established. The occurrence of

  5. Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal).

    PubMed

    Cobelo-García, Antonio; Neira, Patricia; Mil-Homens, Mario; Caetano, Miguel

    2011-03-01

    Platinum contamination in estuarine and coastal sediments has been evaluated in three cores collected from the Tagus Estuary and Prodelta shelf sediments. Elevated concentrations, up to 25-fold enrichment compared to background values, were found in the upper layers of the estuarine sediments. The degree of Pt enrichment in the estuarine sediments varied depending on the proximity to vehicular traffic sources, with a maximum concentration of 9.5 ng g(-1). A considerable decrease of Pt concentrations with depth indicated the absence of significant contamination before the introduction of catalytic converters in automobiles. Platinum distribution in the Tagus Prodelta shelf sediment core showed no surface enrichment; instead a sub-surface maximum at the base of the mixed layer suggested the possibility of post-depositional mobility, thereby blurring the traffic-borne contamination signature in coastal sediments. PMID:21256526

  6. The diamondback terrapin: The biology, ecology, cultural history, and conservation status of an obligate estuarine turtle

    USGS Publications Warehouse

    Hart, K.M.; Lee, D.S.

    2006-01-01

    Ranging from Cape Cod to nearly the Texas-Mexico border, the diamondback terrapin (Malaclemys terrapin) is the only species of North American turtle restricted to estuarine systems. Despite this extensive distribution, its zone of occurrence is very linear, and in places fragmented, resulting in a relatively small total area of occupancy. On a global scale, excluding marine species, few turtles even venture into brackish water on a regular basis, and only two Asian species approach the North American terrapin's dependency on estuarine habitats. Here we describe some of the biological and behavioral adaptations of terrapins that allow them to live in the rather harsh estuarine environment. In this chapter we review the natural and cultural history of this turtle, discuss conservation issues, and provide information on the types of research needed to make sound management decisions for terrapin populations in peril.

  7. Fate of colloids during estuarine mixing in the Arctic

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Causserand, C.; Lanzanova, A.; Zouiten, C.

    2014-02-01

    The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river has a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed for three pore size cutoffs (1, 10, and 50 kDa) using an in situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease in concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~ 2-5‰, Ba, Mn) or intermediate (~ 10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the

  8. Reconstruction of historical estuarine inflows from tidal records.

    NASA Astrophysics Data System (ADS)

    Leffler, K. E.; Jay, D. A.

    2008-12-01

    The historic, pre-development condition of estuaries is of great interest for assessment of climatological and anthropogenic change, and as baseline data for future management. In the Northeast Pacific basin, the historic condition of estuaries is vital for understanding declines in salmonid populations. River inflow has changed due to climate change, as well as flow regulation, irrigation withdrawals, and channel modification. Estimation of historic flows is an important component of the estimation the overall, pre-development state of an estuary. Tidal height records are generally the longest available environmental record for estuarine systems, and frequently pre-date measurements of river flow, at least in the lower (tidal) reaches of major rivers. Thus, tidal records are attractive dataset to use for reconstruction of river flow. The mechanistic connection between river flow and tidal properties is the frictional interaction of flow with the tide - changes in flow change the tidal frequency spectrum (the latter normalized by the tidal potential or data from a nearby coastal station). Standard and robust harmonic analysis methods are used to estimate tidal constituents from the available high-low water records from Astoria, Oregon, USA from 1855 to 1868. Hourly records from 1870-1871 are used to verify tidal predictions from the high-low dataset. Bootstrap error estimation methods, previously applied to regularly-sampled tidal heights, are adapted to calculate confidence intervals for constituents calculated from the irregularly sampled high-low data. Empirical relationships between measured flow and tidal constituents are developed from the 1925-1955 time period. Using these relations, the riverine inflow to the Columbia estuary is estimated for the 1855-1868 time period, including the historic winter and spring floods of 1861-62, both amongst the larger known for the Columbia.

  9. Loss of Heterotrophic Biomass Structure in an Extreme Estuarine Environment

    NASA Astrophysics Data System (ADS)

    González-Oreja, J. A.; Saiz-Salinas, J. I.

    1999-03-01

    Macrozoobenthic assemblages inhabiting estuarine mudflats in areas located at high intertidal levels or close to the mouth had: (1) higher values of abundance, biomass and production; (2) larger mean body sizes; and (3) lower turnover rates than at the remaining stations located elsewhere in the organically enriched, severely polluted Bilbao Estuary. All these community descriptors were similar to those from the nearby and relatively unpolluted Plentzia Estuary, considered here as a reference location. Biomass was irregularly distributed among logarithmic classes of individual body dry weight (DW i). However, a tendency to increase biomass with mean DW iwas found at the reference estuary and at the seaward end of the polluted estuary. This indicated the prevalence of more stable and regular environmental conditions which favoured larger-bodied, K-selected species. In fact, a biomass 'sink' was identified in the adult individuals of the bivalve Scrobicularia plana(Da Costa), which were only found at the reference estuary (DW i=256 to 512 mg) and close to the mouth of the polluted estuary (DW i=128 to 256 mg). However, biomass was strongly centred around the smallest size classes (DW i<0·250 mg) in the middle and upper reaches of the polluted estuary. Only r-selected species of Oligochaeta and Nematoda were favoured under the influence of catastrophic events, indicating the existence of heavily disturbed habitats. Oxygen depletion in the water column was causing a clear segregation of two ecological strategies along the longitudinal axis of the polluted estuary. On the one hand, large sized 'persisters' were successful close to the mouth of the polluted estuary. On the other hand, small sized 'invaders' (or even the absence of macrofauna) characterized the other extreme of the gradient. Spectral methods revealed a reliable tool for quantifying faunal responses in relation to the stress induced by adverse environmental conditions.

  10. Cellular biomarkers for monitoring estuarine environments: transplanted versus native mussels.

    PubMed

    Nigro, M; Falleni, A; Barga, I Del; Scarcelli, V; Lucchesi, P; Regoli, F; Frenzilli, G

    2006-05-25

    In developed countries, estuarine environments are often subjected to chemical pollution, whose biological impact is profitably evaluated by the use of multi-biomarker approaches on sentinel species. In this paper, we investigate genotoxicity and lysosomal alterations in the Mediterranean mussel (Mytilus galloprovincialis), from the estuary of the River Cecina (Tuscany, Italy), selected as "pilot basin" within the Water Frame Directive (2000/60 European Community). Both native and 1 month transplanted mussels were used in order to compare these two approaches in terms of sensitiveness of specific biomarker responses. Genotoxic effects were evaluated as strand breaks, by single cell gel electrophoresis (or Comet assay), and as chromosomal alterations, by the micronucleus test in gill cells. Lysosomal alterations were assessed by the neutral red retention time (in haemocytes), lipofuscin accumulation and ultrastructure (in digestive cells). Heavy metal bioaccumulation was also analysed. Mussels from the River Cecina showed a general alteration of all the biomarkers investigated, accompanied by an elevation of tissue metal levels. However, some differences in specific responses occurred between transplanted and native mussels. Early biomarkers, such as those based on DNA and lysosomal membrane integrity, were induced at similar degree in native and transplanted mussels; while alterations resulting from cumulative events, as the increase of micronuclei frequency were much more elevated in native specimens (23.1+/-7.6) than in transplanted (9.3+/-4.7) and reference ones (5.8+/-5.2). Similarly, the comparison between lipofuscin accumulation and mean lysosomal diameter in impacted and control sites, gave significant differences exclusively with transplanted mussels. These results suggest that the parallel use of caged and native mussels in environmental biomonitoring can improve the characterization of the study area. PMID:16480782

  11. Biotic resistance to invasion along an estuarine gradient

    PubMed Central

    Hovel, Kevin A.

    2010-01-01

    Biotic resistance is the ability of native communities to repel the establishment of invasive species. Predation by native species may confer biotic resistance to communities, but the environmental context under which this form of biotic resistance occurs is not well understood. We evaluated several factors that influence the distribution of invasive Asian mussels (Musculista senhousia) in Mission Bay, a southern California estuary containing an extensive eelgrass (Zostera marina) habitat. Asian mussels exhibit a distinct spatial pattern of invasion, with extremely high densities towards the back of Mission Bay (up to 4,000 m−2) in contrast with near-complete absence at sites towards the front of the bay. We established that recruits arrived at sites where adult mussels were absent and found that dense eelgrass does not appear to preclude Asian mussel growth and survival. Mussel survival and growth were high in predator-exclusion plots throughout the bay, but mussel survival was low in the front of the bay when plots were open to predators. Additional experiments revealed that consumption by spiny lobsters (Panulirus interruptus) and a gastropod (Pteropurpura festiva) likely are the primary factors responsible for resistance to Asian mussel invasion. However, biotic resistance was dependent on location within the estuary (for both species) and also on the availability of a hard substratum (for P. festiva). Our findings indicate that biotic resistance in the form of predation may be conferred by higher order predators, but that the strength of resistance may strongly vary across estuarine gradients and depend on the nature of the locally available habitat. Electronic supplementary material The online version of this article (doi:10.1007/s00442-010-1700-7) contains supplementary material, which is available to authorized users. PMID:20602118

  12. Partitioning of Cd in geochemical fractions of anaerobic estuarine sediments

    NASA Astrophysics Data System (ADS)

    Rule, Joseph H.; Alden, Raymond W.

    1992-05-01

    Distribution of Cd in geochemical fractions of anaerobic estuarine sediments was determined before and after treatment of the sediments with added Cd. Portions of three sediment types (sandy, silty, and clayey) were treated with 5 and 10 mg kg -1 Cd as CdCl 2 and each type had an untreated control. Sediments were sampled at the start and at the conclusion of a 14 day laboratory bioaccumulation study. Each set was promptly extracted using a sequential technique for exchangeable, easily reducible, organic-sulphide, moderately reducible, and acid extractable phases. In the non-treated sediments, approximately 64% of the naturally occurring Cd was in the acid extractable phase with most of the balance in the organicsulphide phase (OSP). There was a similar amount of Cd in the acid extractable phase of all treatments of all sediments. For the treated sediments, the majority of the Cd was found in the OSP and ranged from 56% to 85% for all treatments and sediments. At the end of the experiment, a greater and more consistent level of Cd was present in the OSP (from 76% to 92%). These results show an initially rapid conversion of most of the added soluble Cd to the OSP with conversion of up to 92% of applied Cd to this phase within 14 days. The bulk of the OSP Cd is postulated to occur as sulphides which are an important reservoir of sediment Cd. Addition of Cd had no effect on the geochemical distribution of native Cu, Fe, Mn, Ni, Pb, or Zn.

  13. Controls on monthly estuarine residuals: Eulerian circulation and elevation

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer M.; Bolaños, Rodolfo; Souza, Alejandro J.

    2014-04-01

    The Dee Estuary, at the NW English-Welsh border, is a major asset, supporting: one of the largest wildlife habitats in Europe, industrial importance along the Welsh coastline and residential and recreational usage along the English coast. Understanding of the residual elevation is important to determine the total water levels that inundate intertidal banks, especially during storms. Whereas, improved knowledge of the 3D residual circulation is important in determining particle transport pathways to manage water quality and morphological change. Using mooring data obtained in February-March 2008, a 3D modelling system has been previously validated against in situ salinity, velocity, elevation and wave observations, to investigate the barotropic-baroclinic wave interaction within this estuary under full realistic forcing. The system consists of a coupled circulation-wave-turbulence model (POLCOMS-WAM-GOTM). Using this modelling system the contribution of different processes and their interactions to the monthly residuals in both elevation and circulation is now assessed. By studying a tidally dominated estuary under wave influence, it is found that baroclinicity induced by a weak river flow has greater importance in generating a residual circulation than the waves, even at the estuary mouth. Although the monthly residual circulation is dominated by tidal and baroclinic processes, the residual estuarine surface elevation is primarily influenced by the seasonal external forcing to the region, with secondary influence from the local wind conditions. During storm conditions, 3D radiation stress becomes important for both elevation and circulation at the event scale but is found here to have little impact over monthly time scales.

  14. Characterisation of estuarine intertidal macroalgae by laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gameiro, Carla; Utkin, Andrei B.; Cartaxana, Paulo

    2015-12-01

    The article reports the application of laser-induced fluorescence (LIF) for the assessment of macroalgae communities of estuarine intertidal areas. The method was applied for the characterisation of fifteen intertidal macroalgae species of the Tagus estuary, Portugal, and adjacent coastal area. Three bands characterised the LIF spectra of red macroalgae with emission maxima in the ranges 577-583 nm, 621-642 nm and 705-731 nm. Green and brown macroalgae showed one emission maximum in the red region (687-690 nm) and/or one in the far-red region (726-732 nm). Characteristics of LIF emission spectra were determined by differences in the main fluorescing pigments: phycoerythrin, phycocyanin and chlorophyll a (Chl a). In the green and brown macroalgae groups, the relative significance of the two emission maxima seems to be related to the thickness of the photosynthetic layer. In thick macroalgae, like Codium tomentosum or Fucus vesiculosus, the contribution of the far-red emission fluorescence peak was more significant, most probably due to re-absorption of the emitted red Chl a fluorescence within the dense photosynthetic layer. Similarly, an increase in the number of layers of the thin-blade green macroalgae Ulva rigida caused a shift to longer wavelengths of the red emission maximum and the development of a fluorescence peak at the far-red region. Water loss from Ulva's algal tissue also led to a decrease in the red/far-red Chl fluorescence ratio (F685/F735), indicating an increase in the density of chloroplasts in the shrinking macroalgal tissue during low tide exposure.

  15. POEM: PESTICIDE ORCHARD ECOSYSTEM MODEL

    EPA Science Inventory

    The Pesticide Orchard Ecosystem Model (POEM) is a mathematical model of organophosphate pesticide movement in an apple orchard ecosystem. In addition submodels on invertebrate population dynamics are included. The fate model allows the user to select the pesticide, its applicatio...

  16. BIOGEOCHEMICAL INDICATORS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Loadings of excess organic wastes and associated nutrients to aquatic systems has numerous deleterious consequences with respect to the ecosystem services provided by these important ecosystems including perturbation of organic matter and nutrient cycling rates, reduction in diss...

  17. WATER QUALITY AND PHYTOPLANKTON AS INDICATORS OF HURRICANE IMPACTS ON A LARGE ESTUARINE ECOSYSTEM. (R828677C001)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. RELATIONS BETWEEN BACTERIAL NITROGEN METABOLISM AND GROWTH EFFICIENCY IN AN ESTUARINE AND AN OPEN-WATER ECOSYSTEM

    EPA Science Inventory

    Bacterial uptake or release of dissolved nitrogen compounds (amino nitrogen, urea, ammonium and nitrate) were examined in 0.8 |m filtered water from an estuary (Santa Rosa Sound [SRS], northwestern Florida) and an open-water location in the Gulf of Mexico [GM]. The bacterial nutr...

  19. Recovery strategies for the California clapper rail (Rallus longirostris obsoletus) in the heavily-urbanized San Francisco estuarine ecosystem

    USGS Publications Warehouse

    Foin, T.C.; Garcia, E.J.; Gill, R.E.; Culberson, S.D.; Collins, J.N.

    1997-01-01

    The California clapper rail (Rallus longirostris obsoletus), a Federal- and State-listed endangered marsh bird, has a geographic range restricted to one of the most heavily-urbanized estuaries in the world. The rail population has long been in a state of decline, although the exact contribution of each of the many contributing causes remains unclear. The rail is one of the key targets of emerging plans to conserve and restore tidal marshlands. Reduction of tidal marsh habitat, estimated at 85-95%, has been the major historical cause of rail decline. Increased predation intensity may be the more important present problem, because habitat fragmentation and alteration coupled with the invasion of the red fox have made the remaining populations more vulnerable to predators. Population viability analysis shows that adult survivorship is the key demographic variable; reversals in population fate occur over a narrow range of ecologically realistic values. Analysis of habitat requirements and population dynamics of the clapper rail in the San Francisco Estuary shows that decreased within-marsh habitat quality, particularly reduction of tidal flows and alteration of drainage, is an important barrier to population recovery. Management and restoration activities should emphasize the development of well-channelized high tidal marsh, because this is the key requirement of rail habitat. Developing effective restoration programs depends upon having information that field research will not provide. The effect of spatial pattern of reserves requires accurate estimation of the effects of predation and inter-marsh movement, both of which are practically impossible to measure adequately. It will be necessary to develop and use simulation models that can be applied to geographic data to accomplish this task.

  20. Striped Bass Spawning in Non-Estuarine Portions of the Savannah River

    SciTech Connect

    Martin, D.; Paller, M.

    2007-04-17

    Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.

  1. Holocene history of the estuarine area surrounding Portage, Alaska, as recorded in a 93 m core.

    USGS Publications Warehouse

    Bartsch-Winkler, S.; Ovenshine, A.T.; Kachadoorian, R.

    1983-01-01

    Records four prograding cycles of estuarine deposition for the past 8230 + or - 100 years. Analyses of texture, mineralogy, paleontology, and sedimentary structures enable definition of eight lithologic units. Mineralogic studies show that past and present sedimentation at Portage has been largely mud and sand from the Susitna River on the NW side of Cook Inlet. Sedimentation rates for four intervals show rates to be higher and to vary more at depth than rates nearer the surface. Presently, deposition is accomplished 'instantly' as the result of tectonic subsidence and compaction of sediment caused by periodic earthquakes, in combination with a turbid estuarine system. -from Authors

  2. Ecosystems in the Learning Environment

    ERIC Educational Resources Information Center

    Louviere, Gregory

    2011-01-01

    Habitats, ecology and evolution are a few of the many metaphors commonly associated with the domain of biological ecosystems. Surprisingly, these and other similar biological metaphors are proving to be equally associated with a phenomenon known as digital ecosystems. Digital ecosystems make a direct connection between biological properties and…

  3. Investigating Ecosystems in a Biobottle

    ERIC Educational Resources Information Center

    Breene, Arnica; Gilewski, Donna

    2008-01-01

    Biobottles are miniature ecosystems made from 2-liter plastic soda bottles. They allow students to explore how organisms in an ecosystem are connected to each other, examine how biotic and abiotic factors influence plant and animal growth and development, and discover how important biodiversity is to an ecosystem. This activity was inspired by an…

  4. Biogeochemical processes underpin ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  5. A Biological Condition Gradient Model for Historical Assessment of Estuarine Habitat Structure

    EPA Science Inventory

    Coastal ecosystems are affected by ever increasing natural and human pressures. Because the physical, chemical, and biological characteristics unique to each ecosystem control the ways that biological resources respond to ecosystem stressors, we recommend a flexible and adaptable...

  6. Sagebrush Ecosystems Under Fire

    SciTech Connect

    Downs, Janelle L.

    2014-12-30

    Since settlement of the western United States began, sagebrush (Artemisia L. spp.) ecosystems have decreased both in quantity and quality. Originally encompassing up to 150 million acres in the West, the “interminable fields” of sage described by early explorers (Fremont 1845) have been degraded and often eliminated by conversion to agriculture, urbanization, livestock grazing, invasion by alien plants, and alteration of wildfire cycles (Hann et al. 1997; West 1999). More than half of the original sagebrush steppe ecosystems in Washington have been converted to agriculture and many of the remaining stands of sagebrush are degraded by invasion of exotic annuals such as cheatgrass (Bromus tectorum L.). Today, sagebrush ecosystems are considered to be one of the most imperiled in the United States (Noss, LeRoe and Scott 1995), and more than 350 sagebrush-associated plants and animals have been identified as species of conservation concern (Suring et al. 2005; Wisdom et al. 2005). The increasing frequency of wildfire in sagebrush-dominated landscapes is one of the greatest threats to these habitats and also presents one of the most difficult to control.

  7. Consequences of Increasing Hypoxic Disturbance on Benthic Communities and Ecosystem Functioning

    PubMed Central

    Villnäs, Anna; Norkko, Joanna; Lukkari, Kaarina; Hewitt, Judi; Norkko, Alf

    2012-01-01

    Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4+ and dissolved Si. Although effluxes of PO43− were not altered significantly, changes were observed in sediment PO43− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters

  8. Modeling the impact of watershed management policies on marine ecosystem services with application to Hood Canal, WA, USA

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Kim, C.; Marsik, M.; Spiridonov, G.; Toft, J.; Ruckelshaus, M.; Guerry, A.; Plummer, M.

    2011-12-01

    Humans obtain numerous benefits from marine ecosystems, including fish to eat; mitigation of storm damage; nutrient and water cycling and primary production; and cultural, aesthetic and recreational values. However, managing these benefits, or ecosystem services, in the marine world relies on an integrated approach that accounts for both marine and watershed activities. Here we present the results of a set of simple, physically-based, and spatially-explicit models that quantify the effects of terrestrial activities on marine ecosystem services. Specifically, we model the circulation and water quality of Hood Canal, WA, USA, a fjord system in Puget Sound where multiple human uses of the nearshore ecosystem (e.g., shellfish aquaculture, recreational Dungeness crab and shellfish harvest) can be compromised when water quality is poor (e.g., hypoxia, excessive non-point source pollution). Linked to the estuarine water quality model is a terrestrial hydrology model that simulates streamflow and nutrient loading, so land cover and climate changes in watersheds can be reflected in the marine environment. In addition, a shellfish aquaculture model is linked to the water quality model to test the sensitivity of the ecosystem service and its value to both terrestrial and marine activities. The modeling framework is general and will be publicly available, allowing easy comparisons of watershed impacts on marine ecosystem services across multiple scales and regions.

  9. Validating a turbulence closure against estuarine microstructure measurements

    NASA Astrophysics Data System (ADS)

    Peters, Hartmut; Baumert, Helmut Z.

    A simple k- ɛ turbulence closure is introduced which has no stability functions but instead a Richardson number-dependent turbulent Prandtl number. Its free parameters are determined in a comparison with microstructure observations from a stratified and sheared tidal estuary and laboratory measurements. The closure is able to simulate observed turbulent dissipation rates ( ɛ) and turbulent length scales ( lth) in regions of strong mean shear and small gradient Richardson number ( Rg) to within factors of 2-3. It fails in regions of small shear and large Rg, presumably because of the dominance of internal wave-driven mixing. Additional simulations with a k- ɛ closure with stability functions taken from Canuto et al. [Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean turbulence I: one-point closure model. Momentum and heat vertical diffusivities. J. Phys. Oceanogr. 31, 1413-1426] and with the closure of Baumert and Peters [Baumert, H., Peters, H., 2004. Turbulence closure, steady state, and collapse into waves. J. Phys. Oceanogr. 34, 505-512] show poor performance. Establishing a valid 1:1 comparison of simulated and observed ɛ and lth requires nudging the model velocity and density toward observed values because free model integrations quickly diverge from the observations. Steady state gradient Richardson numbers are constrained to a range of 0.18-0.25, while flux Richardson numbers are constrained to the range of 0.1-0.22. The closure output is rather insensitive to such parameter variations. The simulations are sensitive, however, to the treatment of the observed velocity and density used to nudge the model. Good closure performance requires averaging the measured tidal flow over about an hour, a time scale for which conventional numerical models of estuarine circulations should be able to match observed shears. In the closure simulations the TKE balance stays close to a production-dissipation balance. The time rate of change and vertical

  10. Obscuring ecosystem function with application of the ecosystem services concept.

    PubMed

    Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai

    2010-02-01

    Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also

  11. USE OF THE AMPHIPOD CRUSTACEAN HYALELLA AZTECA IN FRESHWATER AND ESTUARINE SEDIMENT TOXICITY TESTS

    EPA Science Inventory

    Hyalella azteca (Saussure), which are currently used in toxicity tests with freshwater sediments, were tested to determine their suitability for tests with estuarine sediments. eproduction was good after 24 d at and below 12.5 g/L (ppt) salinity in water only. C50 values (50% red...

  12. Characterization Methods for Small Estuarine Systems in the Mid-Atlantic Region of the United States

    EPA Science Inventory

    Various statistical methods were applied to spatially discrete data from 14 intensively sampled small estuarine systems in the mid-Atlantic U.S. The number of sites per system ranged from 6 to 37. The surface area of the systems ranged from 1.9 to 193.4 km2. Parameters examined ...

  13. COMPARISON OF MUTAGEN ACCUMULATION IN 3 ESTUARINE SPECIES USING THE SALMONELLA/MICROSOME ACTIVATION SYSTEM

    EPA Science Inventory

    Three estuarine organisms--oysters (Crassostrea virginica), sea squirts (Mogulla sp.), and shrimp (Peneaus sp.)--were examined for Ames test detectable levels of mutagens. Whole-tissue extracts of these organisms were made and tested using Salmonella typhimurium strains TA98, TA1...

  14. Estuarine intertidal habitat use by birds in a Pacific Northwest coastal estuary

    EPA Science Inventory

    Results of a year long study of the distribution of birds across five intertidal estuarine habitats reveal that tide level largely controls use of the habitats by birds. A total census of all birds observed from shoreline observation locations was made at five tide levels over s...

  15. Intertidal estuarine habitat utilization by birds in a Pacific Northwest coastal estuary

    EPA Science Inventory

    Results of a year long study of the distribution of birds across five intertidal estuarine habitats reveal that tide level largely controls use of the habitats by birds. A total census of all birds observed from shoreline locations was made at five tide levels over six, 2-month ...

  16. CHRONIC EFFECTS OF THREE CRUDE OILS ON OYSTERS SUSPENDED IN ESTUARINE PONDS

    EPA Science Inventory

    Gross and histological observations obtained from the study of oysters chronically exposed to single, low level (4 ppm) quantities of Empire Mix, Saudi Arabian, and Nigerian crude oils in estuarine ponds indicate a reduced intake and/or assimilation of food by the test animals. T...

  17. Trace fossil assemblages in the tide-dominated estuarine system: Ameki Group, south-eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Ekwenye, O. C.; Nichols, G.; Okogbue, C. O.; Mode, A. W.

    2016-06-01

    A systematic ichnological analysis with sedimentological study of the Eocene Ameki Group in south-eastern Nigeria, was conducted to infer depositional and biogenic processes operating during basin fill, identify discontinuities using substrate controlled ichnofacies, and identify the paleocological conditions that affected the diversity of the trace fossils. The Ameki Group represents a tide-dominated estuarine system characterised by a range of trace fossils assemblages. Eighteen individual ichnogenera and nineteen ichnospecies observed in the study area, were grouped into six recurring ichnofacies namely Scoyenia, Psilonichnus, Skolithos, Cruziana, Glossifungites and Teredolites. Skolithos and Cruziana ichnofacies are predominant in the estuarine deposits indicating that the sedimentary successions of the Eocene are dominantly of moderate to high energy marginal marine environments. The estuarine deposits (senus stricto) were controlled by low to fluctuating salinity levels, high sedimentation rate and fluctuating hydrodynamic energy. These resulted in the occurrence of low diversity of Scoyenia and Teredolites ichnofacies and low to moderate ichnodiversity of mixed Skolithos and depauperate Cruziana ichnofacies. Low levels of dissolved oxygen in quiescent water-embayment (open estuarine) resulted in low diversity of impoverished Cruziana ichnofacies. Glossifungites ichnofacies marked an amalgamated sequence boundary/marine flooding and an initial flooding surface at the base of the tidally influenced fluvial deposits.

  18. A Comparative Ecological Approach to Assess the Role of Watersheds in Estuarine Condition

    EPA Science Inventory

    Estuarine condition is a function of the geophysical nature of the estuary, the ocean (and atmospheric) system, and the upstream watershed. To fully understand and predict how an estuary will respond to a mixture of natural and anthropogenic drivers and pressures each compartment...

  19. The Role of Watershed Characteristics in Estuarine Condition: An Empirical Approach

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  20. Comparative Ecological Approach to Assess the Role of Watersheds in Estuarine Condition

    EPA Science Inventory

    Estuarine condition is a function of the nature of the estuary, ocean, and atmospheric systems, and the upstream watershed. To fully understand and predict how an estuary will respond to drivers and pressures, each compartment must be characterized. For example, eutrophication ef...

  1. Pesticide fate and transport from farm fields adjacent to the Jobos Bay National Estuarine Research Reserve

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is a primary land-use in the Jobos Bay National Estuarine Research Reserve (JBNERR) watershed located on Puerto Rico's southeast coast. Crop production in near-shore areas depends on pesticides for weed, disease and insect control. There are continuing concerns about their potential fo...

  2. MICROBIAL DIVERSITY IN SURFACE SEDIMENTS: A COMPARISON OF TWO ESTUARINE CONTINUUMS

    EPA Science Inventory

    The microbial diversity in estuarine sediments of the Altamaha and Savannah Rivers in Georgia were compared temporally and spatially using phospholipid fatty acid (PLFA) analysis. Surface sediment samples collected along a salinity gradient were also analyzed for ATP, TOC, and C ...

  3. NUTRIENT SOUIRCES, TRANSPORT, AND FATE IN COUPLED WATERSHED-ESTUARINE SYSTEMS OF COASTAL ALABAMA

    EPA Science Inventory

    The processes regulating sources, transport, and fate of nutrients were studied in 3 coupled watershed-estuarine systems that varied mainly by differences in the dominant land use-land cover (LULC), i.e. Weeks Bay -- agriculture, Dog River -- urban, and Fowl River -- forest. Mea...

  4. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-01-01

    The ability of Phragmites australis to take up heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Hg) and other trace elements (As, Se, Ba), from estuarine sediments was investigated using a pilot plant experimental approach. Bioaccumulation (BCF) and translocation factors (TF) were calculated in vegetative and senescence periods for two populations of P. australis, from contaminated (MIC) and non-contaminated (GAL) estuarine sediments, respectively, both growing in estuarine contaminated sediment (RIA) from ría del Carmen y Boo, Santander Bay, Spain. The highest BCF values were obtained for Ni (0.43), Ba (0.43) Mo (0.36), Cr (0.35), and Cd (0.31) for plants collected from site GAL following the senescence period. The highest BCF values recorded for plants collected from MIC following the senescence period were for Mo (0.22) and Cu (0.22). Following senescence, plants collected from GAL and MIC presented TF>1 for Ni, Mo, Se, and Zn, and in addition plants collected from MIC presented TF>1 for Ba, Cr, and Mn. A substantial increase of Micedo's rhizosphere, six times higher than Galizano's rhizosphere, suggested adaptation to contaminated sediment. The evaluated communities of P. australis demonstrated their suitability for phytoremediation of heavy metals contaminated estuarine sediments. PMID:26375048

  5. PHOSPHOROUS AND NITROGEN LIMITATION OF PRIMARY PRODUCTION IN A SIMULATED ESTUARINE GRADIENT

    EPA Science Inventory

    The transition between phosphorus limitation of primary production in freshwater and nitrogen limitation in seawater was examined along an estuarine gradient simulated in 4 large 13 M3 enclosures connected in a series and containing pelagic and benthic subsystems. ominal saliniti...

  6. Best Practices in Marine and Coastal Science Education: Lessons Learned from a National Estuarine Research Reserve.

    ERIC Educational Resources Information Center

    McDonnell, Janice D.

    The Jacques Cousteau National Estuarine Research Reserve (JC NERR) program has successfully capitalized on human fascination with the ocean by using the marine environment to develop interest and capability in science. The Institute of Marine & Coastal Sciences, as the managing agency of the JC NERR, makes its faculty, staff resources, and…

  7. Method 365.5 Determination of Orthophosphate in Estuarine and Coastal Waters by Automated Colorimetric Analysis

    EPA Science Inventory

    This method provides a procedure for the determination of low-level orthophosphate concentrations normally found in estuarine and/or coastal waters. It is based upon the method of Murphy and Riley1 adapted for automated segmented flow analysis2 in which the two reagent solutions ...

  8. 75 FR 16747 - Evaluation of State Coastal Management Programs and National Estuarine Research Reserves

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ...The NOAA Office of Ocean and Coastal Resource Management (OCRM) announces its intent to evaluate the performance of the Louisiana Coastal Management Program and the Great Bay (New Hampshire) National Estuarine Research Reserve. The Coastal Zone Management Program evaluation will be conducted pursuant to section 312 of the Coastal Zone Management Act of 1972, as amended (CZMA) and regulations......

  9. An Estuarine Fish Bioassay for Sensitive Biomonitoring of Oil-related Contamination

    EPA Science Inventory

    An embryonic and larval bioassay using the estuarine fish, Fundulus heteroclitus, was modified for the rapid detection of bioavailable compounds that act through the aryl hydrocarbon receptor (AhR). The early development of fishes is particularly sensitive to AhR agonists, such ...

  10. Occurrence and use of an estuarine habitat by giant manta ray Manta birostris.

    PubMed

    Medeiros, A M; Luiz, O J; Domit, C

    2015-06-01

    Based on the knowledge of local artisanal fishermen and on direct observations, this study presents evidence that the giant manta ray Manta birostris uses the Paranaguá estuarine complex in south Brazil, south-western Atlantic Ocean, in a predictable seasonal pattern. Behavioural observations suggest that the estuary can act as a nursery ground for M. birostris during the summer. PMID:25898851

  11. OVERVIEW OF SAFETY OF MICROBIAL INSECTICIDES TO ESTUARINE AND MARINE ORGANISMS

    EPA Science Inventory

    The chapter presents an overview of safety tests of microbial insecticides to estuarine and marine organisms that have been performed to date. Approaches and experimental design, species of MPCAs tested, systems used, and endpoints and results evaluated for determination of risks...

  12. Fate of Triclosan and Evidence for Reductive Dechlorination of Triclocarban in Estuarine Sediment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biocides triclosan (TCS) and triclocarban (TCC) are wastewater contaminants whose occurrence and fate in estuarine sediments remain unexplored. We examined contaminant profiles in 137Cs/7Be-dated sediment cores taken near wastewater treatment plants in the Chesapeake Bay watershed (CB), Maryland...

  13. Identification of Starling Circovirus in an Estuarine Mollusc (Amphibola crenata) in New Zealand Using Metagenomic Approaches

    PubMed Central

    Dayaram, Anisha; Goldstien, Sharyn; Zawar-Reza, Peyman; Gomez, Christopher; Harding, Jon S.

    2013-01-01

    Two complete genomes of starling circovirus (StCV) were recovered from Amphibola crenata, an estuarine New Zealand mollusc. This is the first report of StCV outside Europe. The viral genomes were recovered from rolling circle-amplified enriched circular DNA followed by back-to-back primers and specific primer PCR amplification. PMID:23723397

  14. CONJUGAL TRANSFER AT NATURAL POPULATION DENSITIES IN A MICROCOSM SIMULATING AN ESTUARINE ENVIRONMENT

    EPA Science Inventory

    Estuarine microcosms were used to follow conjugal transfer of a broad host range IncP1 plasmid from a Pseudomonas putida donor to indigenous bacteria. onor cells were added at a concentration similar to the natural abundance of bacteria in the water column (10 6/mi). ransfer was ...

  15. Adaptation of the Estuarine Fish, Fundulus heterclitus (Atlantic Killifish) to Polychlorinated Biphenyls (PCBs)

    EPA Science Inventory

    To characterize intra-specific variation in sensitivity to highly toxic pollutants in the non-migratory estuarine Atlantic killifish (Fundulus heteroclitus), we compared early life stage responses to the prototypical dioxin-like compound, 3,3’4,4’,5 hexachlorobiphenyl (PCB126). ...

  16. CHANGES IN THE PHYSIOLOGICAL PERFORMANCE AND ENERGY METABOLISM OF AN ESTUARINE MYSID

    EPA Science Inventory

    Measures of physiological performance and energy metabolism were made on an estuarine mysid (Mysidopsis bahia) exposed throughout a life cycle to the defoliant DEF. EF concentrations > 0.246 ug/l reduced survival through release of the first brood. oung production was completely ...

  17. TOXICITY AND BIOCONCENTRATION OF BHC AND LINDANE IN SELECTED ESTUARINE ANIMALS

    EPA Science Inventory

    Flow-through, 96-hr bioassays were conducted to determine the acute toxicity of technical BHC and lindane to several estuarine animals. Test animals and their respective 96-hr lindane LC50 values were: mysid (Mysidopsis bahia), 6.3 micrograms/L; pink shrimp (Penaeus duorarum), 0....

  18. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Designation of National Estuarine Research Reserves. 921.30 Section 921.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT...

  19. 15 CFR 921.40 - Ongoing oversight and evaluations of designated National Estuarine Research Reserves.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Ongoing oversight and evaluations of designated National Estuarine Research Reserves. 921.40 Section 921.40 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND...

  20. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    EPA Science Inventory

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  1. Modeling aspects of estuarine eutrophication. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning mathematical modeling of existing water quality stresses in estuaries, harbors, bays, and coves. Both physical hydraulic and numerical models for estuarine circulation are discussed. (Contains a minimum of 96 citations and includes a subject term index and title list.)

  2. 15 CFR 921.30 - Designation of National Estuarine Research Reserves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Designation of National Estuarine Research Reserves. 921.30 Section 921.30 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OCEAN AND COASTAL RESOURCE MANAGEMENT...

  3. Sewage effects in marine and estuarine environments. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the effects of disposal of sewage effluents and sludge on marine and estuarine environments. Citations discuss the effects on specific flora and fauna, ocean dumping problems, and pollutant distribution. Regional and site-specific studies regarding environmental effects of ocean waste disposal are presented. (Contains 250 citations and includes a subject term index and title list.)

  4. Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems

    EPA Science Inventory

    Stable carbon and nitrogen isotope ratios were measured in the muscle tissues of young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA. These systems included three coastal lagoons (Ni...

  5. SELECTING, DEVELOPING AND MAINTAINING ECOLOGICAL INDICATORS OF ESTUARINE CONDITION: THE NATIONAL COASTAL ASSESSMENT EXPERIENCE

    EPA Science Inventory

    The purpose of the National Coastal Assessment (NCA) is to estimate the status and trends of the condition of the nation's coastal resources on a state, regional and national basis. From 1999-2003, 100% of the nation's estuarine waters (at over 4500 locations) were representative...

  6. Using a Laboratory Simulator in the Teaching and Study of Chemical Processes in Estuarine Systems

    ERIC Educational Resources Information Center

    Garcia-Luque, E.; Ortega, T.; Forja, J. M.; Gomez-Parra, A.

    2004-01-01

    The teaching of Chemical Oceanography in the Faculty of Marine and Environmental Sciences of the University of Cadiz (Spain) has been improved since 1994 by the employment of a device for the laboratory simulation of estuarine mixing processes and the characterisation of the chemical behaviour of many substances that pass through an estuary. The…

  7. Predicting the Spatial Distribution of Organic Contaminants in an Estuarine System using a Random Forest Approach

    EPA Science Inventory

    Modeling the magnitude and distribution of estuarine sediment contamination by pollutants of historic (e.g. PCB) and emerging concern (e.g., personal care products, PCP) is often limited by incomplete site knowledge and inadequate sediment contamination sampling. We tested a mode...

  8. Using stable isotopes and models to explore estuarine linkages at multiple scales

    EPA Science Inventory

    Estuarine managers need tools to respond to dynamic stressors that occur in three linked environments – coastal ocean, estuaries and watersheds. Models have been the tool of choice for examining these dynamic systems because they simplify processes and integrate over multiple sc...

  9. The Importance of Allochthonous Subsidies to an Estuarine Food Web along a Salinity Gradient

    EPA Science Inventory

    Estuarine food webs function within a heterogeneous mosaic and are supported by a mix of primary producers from both local and distant sources. Processes governing the exchange and consumption of organic matter (OM), however, are poorly understood. To study the contribution of ...

  10. FIELD VALIDATION OF MULTI-SPECIES LABORATORY TEST SYSTEMS FOR ESTUARINE BENTHIC COMMUNITIES

    EPA Science Inventory

    The major objective of the project was to determine the validity of using multispecies laboratory systems to evaluate the response of estuarine benthic communities to an introduced stress. In a 5-year period, experiments in Apalachicola Bay, Florida, and the York River, Virginia,...

  11. DETERMINATION OF LETHAL DISSOLVED OXYGEN LEVELS FOR SELECTED MARINE AND ESTUARINE FISHES, CRUSTACEANS AND A BIVALVE

    EPA Science Inventory

    The objective of this study was to provide a database of the incipient lethal concentrations for reduced dissolved oxygen (DO) for selected marine and estuarine species including 12 species of fish, 9 crustaceans, and 1 bivalve. All species occur in the Virginian Province, USA, w...

  12. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?

    USGS Publications Warehouse

    Luoma, Samuel N.

    1996-01-01

    Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.

  13. Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders.

    PubMed

    Vasslides, James M; Jensen, Olaf P

    2016-01-15

    Ecosystem-based approaches, including integrated ecosystem assessments, are a popular methodology being used to holistically address management issues in social-ecological systems worldwide. In this study we utilized fuzzy logic cognitive mapping to develop conceptual models of a complex estuarine system among four stakeholder groups. The average number of categories in an individual map was not significantly different among groups, and there were no significant differences between the groups in the average complexity or density indices of the individual maps. When ordered by their complexity scores, eight categories contributed to the top four rankings of the stakeholder groups, with six of the categories shared by at least half of the groups. While non-metric multidimensional scaling (nMDS) analysis displayed a high degree of overlap between the individual models across groups, there was also diversity within each stakeholder group. These findings suggest that while all of the stakeholders interviewed perceive the subject ecosystem as a complex series of social and ecological interconnections, there are a core set of components that are present in most of the groups' models that are crucial in managing the system towards some desired outcome. However, the variability in the connections between these core components and the rest of the categories influences the exact nature of these outcomes. Understanding the reasons behind these differences will be critical to developing a shared conceptual model that will be acceptable to all stakeholder groups and can serve as the basis for an integrated ecosystem assessment. PMID:26520042

  14. Phosphorus distribution in the estuarine sediments of the Daliao river, China

    NASA Astrophysics Data System (ADS)

    Wang, Ping; He, Mengchang; Lin, Chunye; Men, Bin; Liu, Ruimin; Quan, Xiangchun; Yang, Zhifeng

    2009-09-01

    The objective of this study was to investigate the phosphorus distribution in the estuarine sediments of the Daliao river, intensively affected by municipal effluent and agricultural activity for about 50 years. Surface sediment samples were taken at 35 sites in the estuarine area and phosphorus species and contents of total P, Al, Fe, and Ca in the sediments were measured. Results showed that the content of total P in the sediments ranged from 230 to 841 mg kg -1, with an average of 549 mg kg -1. Ca-bound P, residual P, Al-bound P, reductant-soluble P, Fe-bound P, and soluble and loosely bound P were averagely 44.5, 21.6, 13.6, 11.7, 8.9 and 0.2% of total P, respectively. With the gradual increase of total P content, Al-bound P, reductant-soluble P, and Fe-bound P generally increased, while the rest species of P did not. This might indicate that anthropogenic P is bound to Al and Fe oxides. Regression analysis showed that Al-bound P and sum of Fe-bound P and reductant-soluble P were correlated to the contents of total Al and Fe, respectively. On the other hand, Ca-bound P was not correlated to the content of total Ca in the sediment, probably suggesting that Ca-P was mainly from authigenic marine origin. Whereas the content of total P in the estuarine sediments of the Daliao river was within the range of total P content for Chinese and worldwide river estuaries as well as coastal sediments, non-calcium apatite phosphorus content in the estuarine sediments of the Daliao river was relatively higher, indicating higher release risk and bioavailability of P in the sediment. On the other hand, the molar ratio of total Fe to total P was 16-34 in the estuarine sediments of the Daliao river, suggesting that iron oxides/hydroxides in the sediments might be able to sequester more phosphorus. Therefore, the accumulation or release of P in/from the estuarine sediments might be dependent on the external loading of P and the estuarine eutrophication may be sustained by the

  15. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the "adaptive cycle". Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  16. Resilience, Integrity and Ecosystem Dynamics: Bridging Ecosystem Theory and Management

    NASA Astrophysics Data System (ADS)

    Müller, Felix; Burkhard, Benjamin; Kroll, Franziska

    In this paper different approaches to elucidate ecosystem dynamics are described, illustrated and interrelated. Ecosystem development is distinguished into two separate sequences, a complexifying phase which is characterized by orientor optimization and a destruction based phase which follows disturbances. The two developmental pathways are integrated in a modified illustration of the “adaptive cycle”. Based on these fundamentals, the recent definitions of resilience, adaptability and vulnerability are discussed and a modified comprehension is proposed. Thereafter, two case studies about wetland dynamics are presented to demonstrate both, the consequences of disturbance and the potential of ecosystem recovery. In both examples ecosystem integrity is used as a key indicator variable. Based on the presented results the relativity and the normative loading of resilience quantification is worked out. The paper ends with the suggestion that the features of adaptability could be used as an integrative guideline for the analysis of ecosystem dynamics and as a well-suited concept for ecosystem management.

  17. Ecosystem approaches to human health.

    PubMed

    Nielsen, N O

    2001-01-01

    The promotion of human health must be embedded in the wider pursuit of ecosystem health. Interventions will be impaired if ecosystem-linked determinants of health are not taken into account. In the extreme case, if ecosystems lose their capacity for renewal, society will lose life support services. Essential features of ecosystem health are the capacity to maintain integrity and to achieve reasonable and sustainable human goals. An ecosystem approach to research and management must be transdisciplinary and assure participation of stakeholders. These requisites provide a means for science to better deal with the complexity of ecosystems, and for policy-makers and managers to establish and achieve reasonable societal goals. The ecosystem approach can determine links between human health and activities or events which disturb ecosystem state and function. Examples are: landscape disturbance in agriculture, mining, forestry, urbanization, and natural disasters. An understanding of these links can provide guidance for management interventions and policy options that promote human health. An ecosystem approach to management must be adaptive because of irreducible uncertainty in ecosystem function. PMID:11426267

  18. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus)

    PubMed Central

    Rodgers, Essie M.; Schwartz, Jonathon J.; Franklin, Craig E.

    2015-01-01

    Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of ‘fright-dive’ capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; ‘moderate’ climate warming, 31.5°C; ‘high’ climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28–35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained ‘fright-dive’ performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming. PMID:27293738

  19. Zooplankton community structure during a transition from dry to wet state in a shallow, subtropical estuarine lake

    NASA Astrophysics Data System (ADS)

    Carrasco, Nicola K.; Perissinotto, Renzo

    2015-12-01

    Lake St Lucia is among the most important shallow ecosystems globally and Africa's largest estuarine lake. It has long been regarded as a resilient system, oscillating through periods of hypersalinity and freshwater conditions, depending on the prevailing climate. The alteration of the system's catchment involving the diversion of the Mfolozi River away from Lake St Lucia, however, challenged the resilience of the system, particularly during the most recent drought (2002-2011), sacrificing much of its biodiversity. This study reports on the transition of the St Lucia zooplankton community from a dry hypersaline state to a new wet phase. Sampling was undertaken during routine quarterly surveys at five representative stations along the lake system from February 2011 to November 2013. A total of 54 taxa were recorded during the study period. The zooplankton community was numerically dominated by the calanoid copepods Acartiella natalensis and Pseudodiaptomus stuhlmanni and the cyclopoid copepod Oithona brevicornis. While the mysid Mesopodopsis africana was still present in the system during the wet phase, it was not found in the swarming densities that were recorded during the previous dry phase, possibly due to increased predation pressure, competition with other taxa and or the reconnection with the Mfolozi River via a beach spillway. The increase in zooplankton species richness recorded during the present study shows that the system has undergone a transition to wet state, with the zooplankton community structure reflecting that recorded during the past. It is likely, though, that only a full restoration of natural mouth functioning will result in further diversity increases.

  20. Molecular Response of Estuarine Fish to Hypoxia: A Comparative Study with Ruffe and Flounder from Field and Laboratory

    PubMed Central

    Tiedke, Jessica; Thiel, Ralf; Burmester, Thorsten

    2014-01-01

    On a global scale, the frequencies and magnitudes of hypoxic events in coastal and estuarine waters have increased dramatically over the past 20 years. Fish populations are suitable indicators for the assessment of the quality of aquatic ecosystems, as they are omnipresent and often comprise a variety of different lifestyles and adaption strategies. We have investigated on the molecular level the impact of hypoxia on two fish species typical of European estuaries. We monitored the expression of eleven putatively hypoxia-responsive genes by means of quantitative real-time RT-PCR in brains, gills and hearts of the ruffe (Gymnocephalus cernua) and the flounder (Platichthys flesus). We first investigated the effect of naturally occurring hypoxia in the Elbe estuary. In a second approach, expression changes in the response to hypoxia were monitored under controlled laboratory conditions. The genes that showed the strongest effect were two respiratory proteins, myoglobin and neuroglobin, as well as the apoptosis enzyme caspase 3. As previously observed in other fish, myoglobin, which was considered to be muscle-specific, was found in brain and gills as well. Comparison of field and laboratory studies showed that – with the exception of the heart of flounder – that mRNA levels of the selected genes were about the same, suggesting that laboratory conditions reflect natural conditions. Likewise, trends of gene expression changes under hypoxia were the same, although hypoxia response was more pronounced in the Elbe estuary. In general, the flounder displayed a stronger response to hypoxia than the ruffe, suggesting that the flounder is more susceptible to hypoxia. The most pronounced differences were found among tissues within a species, demonstrating that hypoxia response is largely tissue-specific. In summary, our data suggest that laboratory experiments essentially mimic field data, but additional environmental factors enhance hypoxia response in nature. PMID:24595439