Sample records for ethane nickelii complex

  1. Mononuclear thiocyanate containing nickel(II) and binuclear azido bridged nickel(II) complexes of N4-coordinate pyrazole based ligand: Syntheses, structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Monfort, Montserrat; Kumar, Sujit Baran

    2013-10-01

    Two mononuclear nickel(II) complexes [NiL1(NCS)2] (1) and [NiL2(NCS)2] (2) and two azido bridged binuclear nickel(II) complexes [Ni(()2()2] (3) and [Ni(()2()2] (4), where L1, L2, L1‧ and L2‧ are N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1), N,N-bis((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2), N,N-diethyl-N‧-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine (L1‧) and N-((1H-pyrazol-1-yl)methyl)-N‧,N‧-diethylethane-1,2-diamine (L2‧) have been synthesized and characterized by microanalyses and physico-chemical methods. Single crystal X-ray diffraction analyses revealed that complexes 1 and 2 are mononuclear NCS- containing Ni(II) complex with octahedral geometry and complexes 3 and 4 are end-on (μ-1,1) azido bridged binuclear Ni(II) complexes with distorted octahedral geometry. Variable temperature magnetic studies of the complexes 3 and 4 display ferromagnetic interaction with J values 19 and 32 cm-1, respectively.

  2. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-06

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  3. Synthesis and Characterization of Dimethylbis(2-pyridyl)borate Nickel(II) Complexes: Unimolecular Square-Planar to Square-Planar Rotation around Nickel(II)

    PubMed Central

    2015-01-01

    The syntheses of novel dimethylbis(2-pyridyl)borate nickel(II) complexes 4 and 6 are reported. These complexes were unambiguously characterized by X-ray analysis. In dichloromethane solvent, complex 4 undergoes a unique square-planar to square-planar rotation around the nickel(II) center, for which activation parameters of ΔH⧧ = 12.2(1) kcal mol–1 and ΔS⧧ = 0.8(5) eu were measured via NMR inversion recovery experiments. Complex 4 was also observed to isomerize via a relatively slow ring flip: ΔH⧧ = 15.0(2) kcal mol–1; and ΔS⧧ = −4.2(7) eu. DFT studies support the experimentally measured rotation activation energy (cf. calculated ΔH⧧ = 11.1 kcal mol–1) as well as the presence of a high-energy triplet intermediate (ΔH = 8.8 kcal mol–1). PMID:24882919

  4. Reversible double oxidation and protonation of the non-innocent bridge in a nickel(II) salophen complex.

    PubMed

    de Bellefeuille, David; Askari, Mohammad S; Lassalle-Kaiser, Benedikt; Journaux, Yves; Aukauloo, Ally; Orio, Maylis; Thomas, Fabrice; Ottenwaelder, Xavier

    2012-12-03

    Substitution on the aromatic bridge of a nickel(II) salophen complex with electron-donating dimethylamino substituents creates a ligand with three stable, easily and reversibly accessible oxidation states. The one-electron-oxidized product is characterized as a nickel(II) radical complex with the radical bore by the central substituted aromatic ring, in contrast to other nickel(II) salen or salophen complexes that oxidize on the phenolate moieties. The doubly oxidized product, a singlet species, is best described as having an iminobenzoquinone bridge with a vinylogous distribution of bond lengths between the dimethylamino substituents. Protonation of the dimethylamino substituents inhibits these redox processes on the time scale of cyclovoltammetry, but electrolysis and chemical oxidation are consistent with deprotonation occurring concomitantly with electron transfer to yield the mono- and dioxidized species described above.

  5. Polymers containing nickel(II) complexes of Goedken's macrocycle: optimized synthesis and electrochemical characterization.

    PubMed

    Paquette, Joseph A; Sauvé, Ethan R; Gilroy, Joe B

    2015-04-01

    The synthesis and characterization of a new class of nickel-containing polymers is described. The optimized copolymerization of alkyne-bearing nickel(II) complexes of Goedken's macrocycle (4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) and brominated 9,9-dihexylfluorene produced polymers with potential application as functional redox-active materials. The title polymers exhibit electrochemically reversible, ligand-centered oxidation events at 0.24 and 0.73 V versus the ferrocene/ferrocenium redox couple. They also display exceptional thermal stability and interesting absorption properties due to the presence of the macrocyclic nickel(II) complexes and π-conjugated units incorporated in their backbones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  7. Stability of nickel(II) glycylglycinate complexes in aqueous solutions of dimethylsulfoxide at 298.15 K

    NASA Astrophysics Data System (ADS)

    Naumov, V. V.; Isaeva, V. A.; Kovaleva, Yu. A.; Sharnin, V. A.

    2013-07-01

    Stability constants of nickel(II) glycylglycinate complexes in aqueous solutions of dimethylsulfoxide of variable composition (from 0.00 to 0.60 mole fractions DMSO) are determined according to potentiometry at 298.15 K and an ionic strength of 0.1 M (NaClO4). It is determined that with a rise in the concentration of an organic cosolvent in solution, the stability of nickel(II) complexes with glycylglycinate ion on the whole increases, but the log K stability = f( X DMSO) dependences are of a critical character with a maximum of 0.3 mole fractions DMSO. It is demonstrated that the rise in the stability of complexes is related to the destabilization of ligands in the low concentration range of the organic component, while the presence of a maximum is due to the different dynamics of the solvation contributions from reagents during changes in the Gibbs energy of reaction.

  8. Spectroscopic characterization, antioxidant and antitumour studies of novel bromo substituted thiosemicarbazone and its copper(II), nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Lavanya, M.; Kalangi, Suresh K.; Sarala, Y.; Ramachandraiah, C.; Varada Reddy, A.

    2015-01-01

    A new, slightly distorted octahedral complex of copper(II), square planar complexes of nickel(II) and palladium(II) with 2,4‧-dibromoacetophenone thiosemicarbazone (DBAPTSC) are synthesized. The ligand and the complexes are characterized by FT-IR, FT-Raman, powder X-ray diffraction studies. The IR and Raman data are correlated for the presence of the functional groups which specifically helped in the confirmation of the compounds. In addition, the free ligand is unambiguously characterized by 1H and 13C NMR spectroscopy while the copper(II) complex is characterized by electron paramagnetic resonance spectroscopy (EPR). The g values for the same are found to be 2.246 (g1), 2.012 (g2) and 2.005 (g3) which suggested rhombic distortions. The HOMO-LUMO band gap calculations for these compounds are found to be in between 0.5 and 4.0 eV and these compounds are identified as semiconducting materials. The synthesized ligand and its copper(II), nickel(II) and palladium(II) complexes are subjected to antitumour activity against the HepG2 human hepatoblastoma cell lines. Among all the compounds, nickel(II) complex is found to exert better antitumour activity with 57.6% of cytotoxicity.

  9. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    NASA Astrophysics Data System (ADS)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  10. [CNN]-pincer nickel(II) complexes of N-heterocyclic carbene (NHC): synthesis and catalysis of the Kumada reaction of unactivated C-Cl bonds.

    PubMed

    Sun, Yunqiang; Li, Xiaoyan; Sun, Hongjian

    2014-07-07

    Three novel [CNN]-pincer nickel(ii) complexes with NHC-amine arms were synthesized in three steps. Complex was proven to be an efficient catalyst for the Kumada coupling of aryl chlorides or aryl dichlorides under mild conditions.

  11. Investigation on biomolecular interactions of nickel(II) complexes with monoanionic bidentate ligands

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Sethupathi, Murugan; Ojwach, Stephen O.; Sengottuvelan, Nallathambi

    2018-01-01

    Reactions of monoanionic bidentate ligands 5-methylsalicylaldehyde (5-msal), 5-bromosalicylaldehyde (5-brsal), 5-nitrosalicylaldehyde (5-nsal) and 2-hydroxy-1-naphthaldehyde (2-hnap) with nickel perchlorate hexahydrate produced nickel(II) complexes 1-4, respectively. Single crystal X-ray analyses of complexes 1 and 2 confirmed bidentate mode of the ligands with O˄O coordination to give square planar geometry around nickel atoms. Complexes 1-4 showed one quasi-reversible redox peak at cathodic region (-0.67 to -0.80 V) and one redox peak at anodic region (+1.08 to +1.44 V) assignable to the Ni(II)/Ni(I) and Ni(II)/Ni(III) redox couples, respectively. The complexes exhibited good bovine serum albumin (BSA) binding abilities with a maximum binding constant of 1.96 × 105 M-1. The binding of complexes with calf thymus DNA (ctDNA) showed that the binding affinity is consistent with an increase in steric bulk of the ligands. The nuclease activity of the complexes showed efficient oxidative cleavage in the presence of hydrogen peroxide as an oxidizing agent. The complexes showed higher zone of inhibition when screened for antimicrobial activity against bacteria and human pathogenic fungi.

  12. Highly preorganized pyrazolate-bridged palladium(II) and nickel(II) complexes in bimetallic norbornene polymerization.

    PubMed

    Sachse, Anna; Demeshko, Serhiy; Dechert, Sebastian; Daebel, Venita; Lange, Adam; Meyer, Franc

    2010-04-28

    New derivatives of pyrazolate-based binucleating ligands HL with appended imine functions have been synthesized to provide a versatile set of ligand systems with different backbone substituents both at the pyrazole-C(4) and the imine-C (H, Me, Ph). These scaffolds have two adjacent coordination compartments akin to the alpha-diimine type. A series of binuclear palladium(II) complexes [LPd(2)Cl(3)] (1-4) and tetranuclear nickel(II) complexes [L(2)Ni(4)Br(6)(solvent)(4)] (5, 6) of the various ligands have been prepared and characterized, including X-ray structural analyses for two representative Pd and the two Ni complexes. Complexes 5 and 6 were found to contain an unusual central mu(4)-bromide. Mononuclear nickel(II) complexes [L(2)Ni] were detected as intermediates in the formation of the tetranuclear complexes and have been characterized by X-ray analyses in two cases (7, 8). The interconversion between 5' and 7 has been investigated by UV/Vis spectroscopy and ESI mass spectrometry, and magnetic coupling in the [L(2)Ni(4)Br(6)(solvent)(4)] complexes has been studied (SQUID). Trans-coupling via the central mu(4)-bromide is suggested to mediate significant antiferromagnetic interaction. The reactivity of such types of Pd and Ni complexes has been tested for the vinyl/addition polymerization of norbornene. In the presence of an excess of cocatalyst methylaluminoxane (MAO) the palladium complexes show high activity up to 5.9 x 10(6) g(PNB) mol(Pd)(-1) h(-1) at 20 degrees C, while activities of the nickel systems are much lower, but strongly solvent dependent. Detailed studies on the dependence of activity on polymerization conditions such as molar ratios of catalyst and cocatalyst, temperature, reaction time and solvent were carried out. All obtained polynorbornenes (PNB) were noncrystalline and insoluble, but have high glass transition temperatures (T(g)). Microstructures were analyzed by IR spectroscopy and solid state (CP/MAS) (13)C NMR, revealing distinct

  13. Synthesis, structure and catalytic activities of nickel(II) complexes bearing N4 tetradentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Sarkar, Saikat; Nag, Sanat Kumar; Chattopadhyay, Asoke Prasun; Dey, Kamalendu; Islam, Sk. Manirul; Sarkar, Avijit; Sarkar, Sougata

    2018-05-01

    Two new nickel(II) complexes [Ni(L)Cl2] (1) and [Ni(L)(NCS)2] (2) of a neutral tetradentate mono-condensed Schiff base ligand, 3-(2-(2-aminoethylamino)ethylimino)butan-2-one oxime (L) have been synthesized and characterized using different physicochemical techniques e.g. elemental analyses, spectroscopic (IR, Electronic, NMR) methods, conductivity and molecular measurements. The crystal structure of complex (2) has been determined by using single crystal X-ray diffraction method and it suggests a distorted octahedral geometry around nickel(II) having a NiN6 coordinating atmosphere. The non-coordinated Osbnd H group on the ligand L remain engaged in H-bonding interactions with the S end of the coordinated thiocyanate moiety. These H-bonding interactions lead to Osbnd S separations of 3.132 Å and play prominent role in crystal packing. It is observed that the mononuclear units are glued together with such Osbnd H…S interactions and finally results in an 1D supramolecular sheet-like arrangement. DFT/TDDFT based theoretical calculations were also performed on the ligand and the complexes aiming at the accomplishment of idea regarding their optimized geometry, electronic transitions and the molecular energy levels. Finally the catalytic behavior of the complexes for oxidation of styrene has also been carried out. A variety of reaction conditions like the effect of solvent, effect of temperature and time as well as the effect of ratio of substrate to oxidant were thoroughly studied to judge the catalytic efficiency of the Ni(II) coordination entity.

  14. Electrocatalytic Hydrogen Production by a Nickel(II) Complex with a Phosphinopyridyl Ligand.

    PubMed

    Tatematsu, Ryo; Inomata, Tomohiko; Ozawa, Tomohiro; Masuda, Hideki

    2016-04-18

    A novel nickel(II) complex [Ni(L)2 Cl]Cl with a bidentate phosphinopyridyl ligand 6-((diphenylphosphino)methyl)pyridin-2-amine (L) was synthesized as a metal-complex catalyst for hydrogen production from protons. The ligand can stabilize a low Ni oxidation state and has an amine base as a proton transfer site. The X-ray structure analysis revealed a distorted square-pyramidal Ni(II)  complex with two bidentate L ligands in a trans arrangement in the equatorial plane and a chloride anion at the apex. Electrochemical measurements with the Ni(II) complex in MeCN indicate a higher rate of hydrogen production under weak acid conditions using acetic acid as the proton source. The catalytic current increases with the stepwise addition of protons, and the turnover frequency is 8400 s(-1) in 0.1 m [NBu4 ][ClO4 ]/MeCN in the presence of acetic acid (290 equiv) at an overpotential of circa 590 mV. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of Ethane-1,2-diamine in Inert Complexes.

    ERIC Educational Resources Information Center

    Searle, Graeme H.

    1985-01-01

    Describes a procedure for determining ethane-1,2-diamine (EN) which is generally applicable for inert or labile complexes or for EN in its salts, although it cannot be used directly with ammonium or coordinated ammonia. It gives results with five percent accuracy or better and requires less than one hour laboratory time. (JN)

  16. Indirect electroreductive cyclization and electrohydrocyclization using catalytic reduced nickel(II) salen.

    PubMed

    Miranda, James A; Wade, Carolyn J; Little, R Daniel

    2005-09-30

    [Chemical reaction: See text] We describe efforts to achieve the electroreductive cyclization (ERC) and the electrohydrocyclization (EHC) reactions using catalytic nickel(II) salen as a mediator. While nickel(II) salen proved effective, the analogous cobalt complex as well as nickel(II) cyclam were not. The transformations were achieved in yields ranging from 60 to 94% using either a mercury pool or an environmentally preferable reticulated vitreous carbon (RVC) cathode. These examples represent the first instances wherein a nickel salen complex has been used in this manner. Clear differences between the voltammetric behavior of the ERC and EHC substrates were observed. The bisenoate 14, for example, displays a substantially larger catalytic current. When the structurally modified mediator 31 was used, the electron-transfer pathway shuts down. Instead, the reduced form of 31 behaves as an electrogenerated base, leading to the formation of the intramolecular Michael adduct 23. Presumably, the methyl groups of the modified ligand diminish the ability of the reduced form of the complex to serve as a nucleophile but not as a base. Aldehyde 23 was also characterized as a side product of the nickel(II) salen mediated electroreductive cyclization of 11. Given that it is absent from nonmediated processes, its formation is linked to the presence of the mediator. To account for the results, we favor the existence of a mechanistic continuum involving an equilibrium between nickel(II) salen (15) and two reduced forms, one being the metal-centered species 16, the other being a ligand-centered species 17. We postulate that one form may be more prominently involved with the chemistry than another, depending upon the electronic properties/requirements of the substrate, and suggest that the equilibrium will shift to accommodate the need. Thus, for a hard electrophile like an alkyl halide, the properties of 16 ought to dominate, whereas 17 ought to predominate as the reactive

  17. A novel tridentate coordination mode for the carbonatonickel system exhibited in an unusual hexanuclear nickel(II) mu3-carbonato-bridged complex.

    PubMed

    Anderson, James C; Blake, Alexander J; Moreno, Rafael Bou; Raynel, Guillaume; van Slageren, Joris

    2009-11-14

    The fixation of CO(2) at ambient temperature has been achieved by the reaction of Ni(cod)(2) and TMEDA in CO(2) saturated THF that yields a novel hexanuclear nickel(II) mu(3)-carbonato bridged complex [Ni(6)(mu(3)-CO(3))(4)(TMEDA)(6)(H(2)O)(12)](OH)(4) in 59% yield. The complex was characterised by MS analysis and the structure corroborated by single-crystal X-ray crystallography. The complex exhibits a rare carbonato binding mode for Ni(II) complexes and moderately strong antiferromagnetic interactions.

  18. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiming; Li, Baiyan; Wu, Zili

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO 3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO 3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  19. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and -Complexation

    DOE PAGES

    Zhang, Yiming; Li, Baiyan; Wu, Zili; ...

    2015-01-09

    The introduction of the combination of open metal site (OMS) and -complexation into MOF has led to very high ethylene/ethane adsorption selectivity at 318K, as illustrated in the context of MIL-101-Cr-SO 3Ag. The interactions with ethylene from both OMS and -complexation in MIL-101-Cr-SO 3Ag have been investigated by in situ IR spectroscopic studies and computational calculations, which suggest -complexation contributes dominantly to the high ethylene/ethane adsorption selectivity.

  20. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    PubMed

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  1. Synthesis and Ligand Non-Innocence of Thiolate-Ligated (N4S) Iron(II) and Nickel(II) Bis(imino)pyridine Complexes

    PubMed Central

    Widger, Leland R.; Jiang, Yunbo; Siegler, Maxime; Kumar, Devesh; Latifi, Reza; de Visser, Sam P.; Jameson, Guy N.L.; Goldberg, David P.

    2013-01-01

    The known iron(II) complex [FeII(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [FeII(LN3S)(py)](OTf) (2) and [FeII(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, UV-vis, 1H NMR, and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [NiII(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1 – 3 and 5 undergo a single reduction process with E1/2 between −0.9 to −1.2 V versus Fc+/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the mono-reduced complex [Fe(LN3S)(DMAP)]0 (4), which was characterized by X-ray crystallography, UV-vis, EPR (g = [2.155, 2.057, 2.038]) and Mössbauer (δ = 0.33 mm s−1; ΔEQ = 2.04 mm s−1) spectroscopies. Computational methods (DFT) were employed to model complexes 3 – 5. The combined experimental and computational studies show that 1 – 3 are 5-coordinate, high-spin (S = 2) FeII complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) FeII complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (Stotal = ½) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the mono-reduced 4 appears to react with O2 to give a mixture of S- and Fe-oxygenates. The nickel(II) complex 5 does not react with O2, and even when the mono-reduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  2. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  3. N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2010-09-01

    A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.

  4. Crystal structure and electrochemical properties of [Ni(bztmpen)(CH3CN)](BF4)2 {bztmpen is N-benzyl-N,N',N'-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}.

    PubMed

    Chen, Lin; Ren, Gan; Guo, Yakun; Sang, Ge

    2017-06-01

    The mononuclear nickel title complex (acetonitrile-κ N ){ N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine}-nickel(II) bis-(tetra-fluor-ido-borate), [Ni(C 30 H 35 N 5 )(CH 3 CN)](BF 4 ) 2 , was prepared from the reaction of Ni(BF 4 ) 2 ·6H 2 O with N -benzyl- N , N ', N '-tris-[(6-methyl-pyridin-2-yl)meth-yl]ethane-1,2-di-amine ( bztmpen ) in aceto-nitrile at room temperature. With an open site occupied by the aceto-nitrile mol-ecule, the nickel(II) atom is chelated by five N-atom sites from the ligand and one N atom from the ligand, showing an overall octa-hedral coordination environment. Compared with analogues where the 6-methyl substituent is absent, the bond length around the Ni 2+ cation are evidently longer. Upon reductive dissociation of the acetro-nitrile mol-ecule, the title complex has an open site for a catalytic reaction. The title complex has two redox couples at -1.50 and -1.80 V ( versus F c +/0 ) based on nickel. The F atoms of the two BF 4 - counter-anions are split into two groups and the occupancy ratios refined to 0.611 (18):0.389 (18) and 0.71 (2):0.29 (2).

  5. Pyrazolate-based copper(II) and nickel(II) [2 x 2] grid complexes: protonation-dependent self-assembly, structures and properties.

    PubMed

    Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc

    2007-05-28

    The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (xComplexes 1-3 have been structurally characterised and found to be isomorphous, with each ligand strand acting as a hybrid N3-NO chelator. The copper ions in 1 are in a distorted square-pyramidal N(4)O coordination environment with rather long M-O(apical) distances. The coordination sphere about the nickel ions in 2 is roughly the same, but with even longer M...O distances, and it is therefore best described as N4 square-planar with low-spin nickel(II) ions. The single crystal X-ray data obtained for the mixed-metal complex 3 gave the best results assuming a statistical distribution of copper and nickel ions. X-Band EPR spectra of 1 and 2 indicate magnetically coupled copper(II) ions and low-spin nickel(II), respectively. EPR spectra of a powdered sample of a complex with the general formulation [Cu(x)Ni(4-x)(HL)4].8H(2)O with a large excess of Ni(2+) (95%) was shown to be characteristic for individual copper(II) ions in the tetranuclear grid system. Magnetic susceptibility data of 1 indicate weak antiferromagnetic spin coupling between the copper ions (J = -8.2 +/- 0.4 cm(-1)), which is explained by the particular spatial arrangement of the magnetic orbitals.

  6. Nickel(I) and nickel(III) complexes of substituted tetraaza macrocycles formed by pulse radiolysis and electrochemistry of nickel(II) precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, P.V.; Lawrance, G.A.; Sangster, D.F.

    The square-planar nickel(II) complexes of the ligands 8-methyl-8-nitro-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 8-amino-8-methyl-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane, and 9-methyl-9-nitro-1,4,7,11-tetraazacyclotridecane (I-IV) react rapidly with hydroxyl radicals and aquated electrons (e/sub aq/). The initial transient products of these reactions decay via first-order kinetics within a few milliseconds in neutral aqueous solution at 22/degrees/C in all cases. Electronic spectra and decay rate constants, as well as formation rate constants, are reported for all transients. Reaction of the nitro-substituted complexes with e/sub aq/ led to electron addition to the nitro group rather than to the metal center; otherwise, a Ni/sup I/ transient is observed. Following reaction with OH, themore » product of the initial decay remains a Ni/sup III/ species. This is more long-lived, and stabilization of Ni/sup III/ by axial coordination of the pendant amine in II is indicated. No notable stabilization of Ni/sup I/ or Ni/sup III/ from the presence of the bicyclic azamethylene football in I-III occurs. Cyclic voltammetry in acetonitrile identified both one-electron oxidation and one-electron reduction processes for the nickel(II) complexes, as well as nitro group reduction, where this group was pendant to the macrocycle. 34 references, 3 figures, 3 tables.« less

  7. Luminescence of five-coordinated nickel(ii) complexes with substituted-8-hydroxyquinolines and macrocyclic ligands.

    PubMed

    Santana, M Dolores; García-Bueno, Rocío; García, Gabriel; Pérez, José; García, Luis; Monge, Miguel; Laguna, Antonio

    2010-02-21

    A series of heteroleptic quinolinolate pentacoordinated nickel(ii) complexes, [Ni(mcN(3))(R(1),R(2),R(3)-8-hq)](PF(6)), were synthesized and characterized by spectroscopic methods. Single-crystal X-ray diffraction studies for [(Me(3)-mcN(3))Ni(N,O-2-CN-8-hq)][PF(6)] (6a), [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] (2b) and [(Me(4)-mcN(3))Ni(N,O-5,7-I(2)-8-hq)][PF(6)] (5b) indicate that these complexes consist of a square-pyramidal ligand arrangement containing one chelating quinolinolate and one macrocyclic ligand (mcN(3)). Variation of the substituents on quinolinolate ligands imposes obvious electronic or structural effects on the nickel atom. These chromophores absorb moderately in the visible region and emit in the yellowish-green spectral region from a quinolinolate-centered intraligand charge-transfer excited state. The emission maxima are in the range 520-548 nm, with quantum yields between 0.11 and 1.63%, in deoxygenated organic solvents at room temperature. TD-DFT calculations allow exploration of the photophysical properties of complex [(Me(4)-mcN(3))Ni(N,O-8-hq)][PF(6)] and reveal the influence of the quinolinolate ligand on the HOMO/LUMO energies and oscillator strengths.

  8. Raman studies of methane-ethane hydrate metastability.

    PubMed

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  9. Production of High-Purity Anhydrous Nickel(II) Perrhenate for Tungsten-Based Sintered Heavy Alloys

    PubMed Central

    Leszczyńska-Sejda, Katarzyna; Benke, Grzegorz; Kopyto, Dorota; Majewski, Tomasz; Drzazga, Michał

    2017-01-01

    This paper presents a method for the production of high-purity anhydrous nickel(II) perrhenate. The method comprises sorption of nickel(II) ions from aqueous nickel(II) nitrate solutions, using strongly acidic C160 cation exchange resin, and subsequent elution of sorbed nickel(II) ions using concentrated perrhenic acid solutions. After the neutralization of the resulting rhenium-nickel solutions, hydrated nickel(II) perrhenate is then separated and then dried at 160 °C to obtain the anhydrous form. The resulting compound is reduced in an atmosphere of dissociated ammonia in order to produce a Re-Ni alloy powder. This study provides information on the selected properties of the resulting Re-Ni powder. This powder was used as a starting material for the production of 77W-20Re-3Ni heavy alloys. Microstructure examination results and selected properties of the produced sintered heavy alloys were compared to sintered alloys produced using elemental W, Re, and Ni powders. This study showed that the application of anhydrous nickel(II) perrhenate in the production of 77W-20Re-3Ni results in better properties of the sintered alloys compared to those made from elemental powders. PMID:28772808

  10. Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff base ligands: Synthesis, characterization and biocidal activities

    NASA Astrophysics Data System (ADS)

    Shabbir, Muhammad; Akhter, Zareen; Ashraf, Ahmad Raza; Ismail, Hammad; Habib, Anum; Mirza, Bushra

    2017-12-01

    Nickel(II) and palladium(II) triphenylphosphine complexes incorporating tridentate Schiff bases have been prepared and characterized by elemental analysis as well as by spectroscopic techniques (FTIR & NMR). The synthesized compounds were assessed to check their potential biocidal activity by using different biological assays (brine shrimp cytotoxicity, antimicrobial, antioxidant, antitumor and drug-DNA interaction). Results of brine shrimp cytotoxicity assay showed that ligand molecules are more bioactive than metal complexes with LD50 as low as 12.4 μg/mL. The prominent antitumor activity was shown by nickel complexes while the palladium complexes exhibited moderate activity. The synthesized compounds have shown high propensity for DNA binding either through intercalation or groove binding which represents the mechanism of antitumor effect of these compounds. Additionally, ligand molecules and nickel metal complexes showed significant antioxidant activity with IC50 values as low as 3.1 μg/mL and 18.9 μg/mL respectively while palladium complexes exhibited moderate activity. Moreover, in antimicrobial assays H2L1, Ni(L1)PPh3 and H2L3 showed dual inhibition against bacterial and fungal strains while for the rest of the compounds varying degree of activity was recorded against different strains. Overall comparison of results suggests that the synthesized compounds can be promising candidate for drug formulation and development.

  11. Facile Dehydrogenation of Ethane on the IrO2(110) Surface.

    PubMed

    Bian, Yingxue; Kim, Minkyu; Li, Tao; Asthagiri, Aravind; Weaver, Jason F

    2018-02-21

    Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO 2 (110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO 2 (110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K. Continued heating causes as much as 40% of the dissociated ethane to dehydrogenate and desorb as ethylene near 350 K, with the remainder oxidizing to CO x species. Both TPRS and DFT show that ethylene desorption is the rate-controlling step in the conversion of ethane to ethylene on IrO 2 (110) during TPRS. Partial hydrogenation of the IrO 2 (110) surface is found to enhance ethylene production from ethane while suppressing oxidation to CO x species. DFT predicts that hydrogenation of reactive oxygen atoms of the IrO 2 (110) surface effectively deactivates these sites as H atom acceptors, and causes ethylene desorption to become favored over further dehydrogenation and oxidation of ethane-derived species. The study reveals that IrO 2 (110) exhibits an exceptional ability to promote ethane dehydrogenation to ethylene near room temperature, and provides molecular-level insights for understanding how surface properties influence selectivity toward ethylene production.

  12. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  13. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance

  14. Airborne Ethane Observations over the Barnett and Bakken Shale Formations: Quantification of Ethane Fluxes and Attribution of Methane Emissions

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.

    2014-12-01

    The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes

  15. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons

  16. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,

  17. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption.

    PubMed

    Pires, João; Pinto, Moisés L; Saini, Vipin K

    2014-08-13

    The separation of ethylene from ethane is one of the most energy-intensive single distillations practiced. This separation could be alternatively made by an adsorption process if the adsorbent would preferentially adsorb ethane over ethylene. Materials that exhibit this feature are scarce. Here, we report the case of a metal-organic framework, the IRMOF-8, for which the adsorption isotherms of ethane and ethylene were measured at 298 and 318 K up to pressures of 1000 kPa. Separation of ethane/ethylene mixtures was achieved in flow experiments using a IRMOF-8 filled column. The interaction of gas molecules with the surface of IRMOF-8 was explored using density functional theory (DFT) methods. We show both experimentally and computationally that, as a result of the difference in the interaction energies of ethane and ethylene in IRMOF-8, this material presents the preferential adsorption of ethane over ethylene. The results obtained in this study suggest that MOFs with ligands exhibiting high aromaticity character are prone to adsorb ethane preferably over ethylene.

  18. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  19. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    PubMed

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  20. Formation of a new benzene-ethane co-crystalline structure under cryogenic conditions.

    PubMed

    Vu, Tuan Hoang; Cable, Morgan L; Choukroun, Mathieu; Hodyss, Robert; Beauchamp, Patricia

    2014-06-12

    We report the first experimental finding of a solid molecular complex between benzene and ethane, two small apolar hydrocarbons, at atmospheric pressure and cryogenic temperatures. Considerable amounts of ethane are found to be incorporated inside the benzene lattice upon the addition of liquid ethane onto solid benzene at 90-150 K, resulting in formation of a distinctive co-crystalline structure that can be detected via micro-Raman spectroscopy. Two new features characteristic of these co-crystals are observed in the Raman spectra at 2873 and 1455 cm(-1), which are red-shifted by 12 cm(-1) from the υ1 (a1g) and υ11 (eg) stretching modes of liquid ethane, respectively. Analysis of benzene and ethane vibrational bands combined with quantum mechanical modeling of isolated molecular dimers reveal an interaction between the aromatic ring of benzene and the hydrogen atoms of ethane in a C-H···π fashion. The most favored configuration for the benzene-ethane dimer is the monodentate-contact structure, with a calculated interaction energy of 9.33 kJ/mol and an equilibrium bonding distance of 2.66 Å. These parameters are comparable to those for a T-shaped co-crystalline complex between benzene and acetylene that has been previously reported in the literature. These results are relevant for understanding the hydrocarbon cycle of Titan, where benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism.

  1. Dinuclear Nickel(II) Complexes as Models for the Active Site of Urease.

    PubMed

    Volkmer, Dirk; Hommerich, Birgit; Griesar, Klaus; Haase, Wolfgang; Krebs, Bernt

    1996-06-19

    Dinuclear nickel(II) complexes of the ligands 2,6-bis[bis((2-benzimidazolylmethyl)amino)methyl]-p-cresol (bbapOH), N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (tbpOH), N-methyl-N,N',N'-tris(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (m-tbpOH) and 1-[N,N-bis(2-benzimidazolylmethyl)amino]-3-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-hydroxypropane (bpepOH) were prepared in order to model the active site of urease. The novel asymmetric structures of the dinuclear complexes were characterized by X-ray structure analysis. The complex [Ni(2)(bbapO)(ClO(4))(H(2)O)(MeOH)](ClO(4))(2).Et(2)O, 1, crystallizes in the monoclinic space group P2(1)/c, with a = 10.258(2) Å, b = 19.876(3) Å, c = 25.592(4) Å, and beta = 97.12(2) degrees. The nickel ions in 1 are bridged by the phenoxy donor of the ligand and a perchlorate anion. The complexes [Ni(2)(tbpO)(MeCOO)(H(2)O)](ClO(4))(2).H(2)O.Et(2)O, 2, [Ni(2)(m-tbpO)(PhCOO)(EtOH)(2)](ClO(4))(2).EtOH, 3, and [Ni(2)(bpepO)(MeCOO)(H(2)O)(2)](ClO(4))(2).H(2)O.Et(2)O.2EtOH, 4, also crystallize in the monoclinic crystal system with the following unit cell parameters: 2, C2/c, a = 35.360(13) Å, b = 10.958(3) Å, c = 24.821(10) Å, beta = 103.55(3) degrees; 3, Cc, a = 14.663(5) Å, b = 32.630(13) Å, c = 9.839(3) Å, beta = 92.49(2) degrees; 4, C2/c, a = 27.689(13) Å, b = 12.187(5) Å, c = 31.513(14) Å, beta = 115.01(3) degrees. The dinuclear centers of all these complexes are bridged by the alkoxy donor of the ligand and a carboxylate function. Compounds 2 and 3 have one of the nickel ions in a five-coordinated, trigonal bipyramidal coordination environment and thus show a high structural similarity to the dinuclear active site of urease from Klebsiella aerogenes. Furthermore, their magnetic and spectroscopic properties were determined and related to those of the urease enzymes. Activity toward hydrolysis of test substrates (4-nitrophenyl)urea, 4-nitroacetanilide, 4-nitrophenyl phosphate or bis(4

  2. Effect of substituents on prediction of TLC retention of tetra-dentate Schiff bases and their Copper(II) and Nickel(II) complexes.

    PubMed

    Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M

    2017-03-01

    The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands.

    PubMed

    Takaichi, June; Morimoto, Yuma; Ohkubo, Kei; Shimokawa, Chizu; Hojo, Takayuki; Mori, Seiji; Asahara, Haruyasu; Sugimoto, Hideki; Fujieda, Nobutaka; Nishiwaki, Nagatoshi; Fukuzumi, Shunichi; Itoh, Shinobu

    2014-06-16

    Nickel complexes of a series of β-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the β-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel

  4. A Noble-Metal-Free Nickel(II) Polypyridyl Catalyst for Visible-Light-Driven Hydrogen Production from Water.

    PubMed

    Yuan, Yong-Jun; Lu, Hong-Wei; Tu, Ji-Ren; Fang, Yong; Yu, Zhen-Tao; Fan, Xiao-Xing; Zou, Zhi-Gang

    2015-10-05

    The complex [Ni(bpy)3](2+) (bpy=2,2'-bipyridine) is an active catalyst for visible-light-driven H2 production from water when employed with [Ir(dfppy)2 (Hdcbpy)] [dfppy=2-(3,4-difluorophenyl)pyridine, Hdcbpy=4-carboxy-2,2'-bipyridine-4'-carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2 -evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3 ](2+). This study may offer a new paradigm for constructing simple and noble-metal-free catalysts for photocatalytic hydrogen production. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  6. The mononuclear nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2 N2 ,N3 ]nickel(II) protects tomato from Verticillium dahliae by inhibiting fungal growth and activating plant defences.

    PubMed

    Zine, Hanane; Rifai, Lalla Aicha; Koussa, Tayeb; Bentiss, Fouad; Guesmi, Salaheddine; Laachir, Abdelhakim; Makroum, Kacem; Belfaiza, Malika; Faize, Mohamed

    2017-01-01

    The antifungal properties of the nickel(II) complex bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ 2 N 2 ,N 3 ]nickel(II) [NiL 2 (N 3 ) 2 ] and its parental ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole were examined to evaluate their ability to protect tomato plants against Verticillium dahliae. Our main objectives were to determine their effects on the in vitro growth of the pathogen, and their aptitude for controlling verticillium wilt and activating plant defence responses in the greenhouse. NiL 2 (N 3 ) 2 exhibited in vitro an elevated inhibition of radial growth of three strains of the pathogen. According to the strain, the EC 50 values ranged from 10 to 29 µg mL -1 for NiL 2 (N 3 ) 2 . In the greenhouse, it induced an elevated protection against V. dahliae when it was applied twice as foliar sprays at 50 µg mL -1 . It reduced the leaf alteration index by 85% and vessel browning by 96%. In addition, its protective ability was associated with the accumulation of H 2 O 2 and the activation of total phenolic content, as well as potentiation of the activity of peroxidase and polyphenol oxidase. These results demonstrated that the coordination of the ligand with Ni associated with the azide as a coligand resulted in an improvement in its biological activity by both inhibiting the growth of V. dahliae and activating plant defence responses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Structure and Stability of Carboxylate Complexes. 20. Diaqua Bis(methoxyacetato) Complexes of Nickel(II), Copper(II), and Zinc(II): A Structural Study of the Dynamic Pseudo-Jahn-Teller Effect.

    PubMed

    Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.

    1997-06-18

    The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.

  8. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  9. Synthesis and Properties of Homonuclear, Dimetallic Nickel(II), Copper(II) and Zinc(II) Complexes of p-Xylenediyl and 2-Butynediyl-Bridged Dicyclens

    DTIC Science & Technology

    1993-05-01

    urease which contains two nickel ions in the active site. Catalytic hydrolysis studies are in progress. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21...for hydrolytic metalloenzymes. In contrast, the enzyme urease has becti show’n tU coftifl two nickel(II) ions in the active site," but as yet the

  10. Nickel(ii) inhibits the oxidation of DNA 5-methylcytosine in mammalian somatic cells and embryonic stem cells.

    PubMed

    Yin, Ruichuan; Mo, Jiezhen; Dai, Jiayin; Wang, Hailin

    2018-03-01

    Nickel is found widely in the environment. It is an essential microelement but also toxic. However, nickel displays only weak genotoxicity and mutagenicity. Exploration of the epigenetic toxicity of nickel is extremely interesting. Iron(ii)- and 2-oxoglutarate-dependent Tet dioxygenases are a class of epigenetic enzymes that catalyze the oxidation of DNA 5-methylcytosine (5mC). Thus, they are critical for DNA demethylation and, importantly, are involved with nuclear reprogramming, embryonic development, and regulation of gene expression. Here, we demonstrated that nickel(ii) dramatically inhibits Tet proteins-mediated oxidation of DNA 5mC in cells ranging from somatic cell lines to embryonic stem cells, as manifested by the consistent observation of a significant decrease in 5-hydroxymethylcytosine, a critical intermediate resulting from the oxidation of 5mC. The inhibitory effects of nickel(ii) were concentration- and time-dependent. Using HEK293T cells overexpressing Tet proteins and ascorbic acid-stimulated Tet-proficient ES cells, we observed that nickel(ii) significantly reduced DNA demethylation at the global level. Interestingly, we also showed that nickel(ii) might affect the naïve or ground state of pluripotent embryonic stem cells. Here we show, for the first time, that nickel(ii) represses the oxidation of DNA 5mC and potentially alters the Tet proteins-regulated DNA methylation landscape in human cells. These findings provide new insights into the epigenetic toxicology of nickel.

  11. Nickel(II) Complex of Polyhydroxybenzaldehyde N4-Thiosemicarbazone Exhibits Anti-Inflammatory Activity by Inhibiting NF-κB Transactivation

    PubMed Central

    Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil

    2014-01-01

    Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407

  12. Variation of M···H-C Interactions in Square-Planar Complexes of Nickel(II), Palladium(II), and Platinum(II) Probed by Luminescence Spectroscopy and X-ray Diffraction at Variable Pressure.

    PubMed

    Poirier, Stéphanie; Lynn, Hudson; Reber, Christian; Tailleur, Elodie; Marchivie, Mathieu; Guionneau, Philippe; Probert, Michael R

    2018-06-12

    Luminescence spectra of isoelectronic square-planar d 8 complexes with 3d, 4d, and 5d metal centers show d-d luminescence with an energetic order different from that of the spectrochemical series, indicating that additional structural effects, such as different ligand-metal-ligand angles, are important factors. Variable-pressure luminescence spectra of square-planar nickel(II), palladium(II), and platinum(II) complexes with dimethyldithiocarbamate ({CH 3 } 2 DTC) ligands and their deuterated analogues show unexpected variations of the shifts of their maxima. High-resolution crystal structures and crystal structures at variable pressure for [Pt{(CH 3 ) 2 DTC} 2 ] indicate that intermolecular M···H-C interactions are at the origin of these different shifts.

  13. a Hamiltonian to Obtain a Global Frequency Analysis of all the Vibrational Bands of Ethane

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, Nasser; Norooz Oliaee, Jalal

    2016-06-01

    The interest in laboratory spectroscopy of ethane stems from the desire to understand the methane cycle in the atmospheres of planets and their moons and from the importance of ethane as a trace species in the terrestrial atmosphere. Solar decomposition of methane in the upper part of these atmospheres followed by a series of reactions leads to a variety of hydrocarbon compounds among which ethane is often the second most abundant species. Because of its high abundance, ethane spectra have been measured by Voyager and Cassini in the regions around 30, 12, 7, and 3 μm. Therefore, a complete knowledge of line parameters of ethane is crucial for spectroscopic remote sensing of planetary atmospheres. Experimental characterization of torsion-vibration states of ethane lying below 1400 cm-1 have been made previously, but extension of the Hamiltonian model for treatment of the strongly perturbed νb{8} fundamental and the complex band system of ethane in the 3 micron region requires careful examination of the operators for many new torsionally mediated vibration-rotation interactions. Following the procedures outlined by Hougen, we have re-examined the transformation properties of the total angular momentum, the translational and vibrational coordinates and momenta of ethane, and for vibration-torsion-rotation interaction terms constructed by taking products of these basic operators. It is found that for certain choices of phase, the doubly degenerate vibrational coordinates with and symmetry can be made to transform under the group elements in such a way as to yield real matrix elements for the torsion-vibration-rotation couplings whereas other choices of phase may require complex algebra. In this talk, I will discuss the construction of a very general torsion-vibration-rotation Hamiltonian for ethane, as well as the prospect for using such a Hamiltonian to obtain a global frequency analysis (based in large part on an extension of earlier programs and ethane fits^a from

  14. Nickel(II) complexes of tripodal 4N ligands as catalysts for alkane oxidation using m-CPBA as oxidant: ligand stereoelectronic effects on catalysis.

    PubMed

    Balamurugan, Mani; Mayilmurugan, Ramasamy; Suresh, Eringathodi; Palaniandavar, Mallayan

    2011-10-07

    Several mononuclear Ni(II) complexes of the type [Ni(L)(CH(3)CN)(2)](BPh(4))(2) 1-7, where L is a tetradentate tripodal 4N ligand such as N,N-dimethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L1), N,N-diethyl-N',N'-bis(pyrid-2-ylmethyl)ethane-1,2-diamine (L2), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)-N'-(pyrid-2-ylmethyl)ethane-1,2-diamine (L3), N,N-dimethyl-N',N'-bis(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine (L4), N,N-dimethyl-N',N'-bis(quinolin-2-ylmethyl)ethane-1,2-diamine (L5), tris(benzimidazol-2-ylmethyl)amine (L6) and tris(pyrid-2-ylmethyl)amine (L7), have been isolated and characterized using CHN analysis, UV-Visible spectroscopy and mass spectrometry. The single-crystal X-ray structures of the complexes [Ni(L1)(CH(3)CN)(H(2)O)](ClO(4))(2) 1a, [Ni(L2)(CH(3)CN)(2)](BPh(4))(2) 2, [Ni(L3)(CH(3)CN)(2)](BPh(4))(2) 3 and [Ni(L4)(CH(3)CN)(2)](BPh(4))(2) 4 have been determined. All these complexes possess a distorted octahedral coordination geometry in which Ni(II) is coordinated to four nitrogen atoms of the tetradentate ligands and two CH(3)CN (2, 3, 4) or one H(2)O and one CH(3)CN (1a) are located in cis positions. The Ni-N(py) bond distances (2.054(2)-2.078(3) Å) in 1a, 2 and 3 are shorter than the Ni-N(amine) bonds (2.127(2)-2.196(3) Å) because of sp(2) and sp(3) hybridizations of the pyridyl and tertiary amine nitrogens respectively. In 3 the Ni-N(im) bond (2.040(5) Å) is shorter than the Ni-N(py) bond (2.074(4) Å) due to the stronger coordination of imidazole compared with the pyridine donor. In dichloromethane/acetonitrile solvent mixture, all the Ni(ii) complexes possess an octahedral coordination geometry, as revealed by the characteristic ligand field bands in the visible region. They efficiently catalyze the hydroxylation of alkanes when m-CPBA is used as oxidant with turnover number (TON) in the range of 340-620 and good alcohol selectivity for cyclohexane (A/K, 5-9). By replacing one of the pyridyl donors in TPA by a weakly

  15. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  16. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  17. Polymer complexes. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes.

    PubMed

    El-Sonbati, A Z; El-Bindary, A A; Diab, M A

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  18. Structural changes and preferential cage occupancy of ethane hydrate and methane-ethane mixed gas hydrate under very high pressure.

    PubMed

    Hirai, Hisako; Takahara, Naoya; Kawamura, Taro; Yamamoto, Yoshitaka; Yagi, Takehiko

    2008-12-14

    High-pressure experiments of ethane hydrate and methane-ethane mixed hydrates with five compositions were performed using a diamond anvil cell in a pressure range of 0.1-2.8 GPa at room temperature. X-ray diffractometry and Raman spectroscopy showed structural changes as follows. The initial structure, structure I (sI), of ethane hydrate was retained up to 2.1 GPa without any structural change. For the mixed hydrates, sI was widely distributed throughout the region examined except for the methane-rich and lower pressure regions. For the ethane-rich and intermediate composition regions (73 mol % ethane sample and 53% sample), sI was maintained up to 2.1 GPa. With increasing methane component (34% and 30% samples), sI existed at pressures from 0.1 to about 1.0 GPa. Hexagonal structure (sH) appeared in addition to sI at 1.3 GPa for the 34% sample and at 1.1 GPa for the 30% sample. By further increasing the methane component (22% sample), structure II (sII) existed solely up to 0.3 GPa. From 0.3 to 0.6 GPa, sII and sI coexisted, and from 0.6 to 1.0 GPa only sI existed. At 1.2 GPa sH appeared, and sH and sI coexisted up to 2.1 GPa. Above 2.1 GPa, ethane hydrate and all of the mixed hydrates decomposed into ice VI and ethane fluid or methane-ethane fluid, respectively. The Raman study revealed that occupation of the small cages by ethane molecules occurred above 0.1 GPa in ethane hydrate and continued up to decomposition at 2.1 GPa, although it is thought that ethane molecules are contained only in the large cage.

  19. Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides.

    PubMed

    Bilyachenko, Alexey N; Yalymov, Alexey I; Shul'pina, Lidia S; Mandelli, Dalmo; Korlyukov, Alexander A; Vologzhanina, Anna V; Es'kova, Marina A; Shubina, Elena S; Levitsky, Mikhail M; Shul'pin, Georgiy B

    2016-05-19

    New hexanuclear nickel(II) silsesquioxane [(PhSiO1.5)12(NiO)₆(NaCl)] (1) was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,5)12(NiO)₆(NaCl)(C₄H₈O₂)13(PhCN)₂(H₂O)₂ and studied by X-ray and topological analysis. The compound exhibits cylinder-like type of molecular architecture and represents very rare case of polyhedral complexation of metallasilsesquioxane with benzonitrile. Complex 1 exhibited catalytic activity in activation of such small molecules as light alkanes and alcohols. Namely, oxidation of alcohols with tert-butylhydroperoxide and alkanes with meta-chloroperoxybenzoic acid. The oxidation of methylcyclohexane gave rise to the isomeric ketones and unusual distribution of alcohol isomers.

  20. Characterization of the Unusual Product from the Reaction between Cobalt(II) Chloride, Ethane-1,2-diamine, and Hydrochloric Acid: An Undergraduate Project Involving an Unknown Metal Complex.

    ERIC Educational Resources Information Center

    Curtis, Neil F.; And Others

    1986-01-01

    Discusses the need for student research-type chemistry projects based upon "unknown" metal complexes. Describes an experiment involving the product from the reaction between cobalt(II) chloride, ethane-1,2-diamine (en) and concentrated hydrochloric acid. Outlines the preparation of the cobalt complex, along with procedure, results and…

  1. Amavadin and other vanadium complexes as remarkably efficient catalysts for one-pot conversion of ethane to propionic and acetic acids.

    PubMed

    Kirillova, Marina V; Kuznetsov, Maxim L; da Silva, José A L; Guedes da Silva, Maria Fátima C; Fraústo da Silva, João J R; Pombeiro, Armando J L

    2008-01-01

    Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed.

  2. Oxidation of ethane by an Acremonium species.

    PubMed Central

    Davies, J S; Wellman, A M; Zajic, J E

    1976-01-01

    Ethane oxidation was studied in ethane-grown resting cells (mycelia) of an Acremonium sp. and in cell-free preparations of such mycelia. From resting cell experiments evidence was found for a pathway of ethane oxidation via ethanol, acetaldehyde, and acetic acid. In vitro studies indicated that ethane-oxidizing activity in such mycelia occurred predominantly in the microsomal fraction of crude homogenates. Microsomal preparations were inactive in the absence of added coenzyme. Marked stimulation of activity was obtained in such preparations with reduced nicotinamide adenine dinucleotide phosphate and to a much lesser degree with nicotinamide adenine dinucleotide phosphate. Ethane oxidation was inhibited by sodium azide and carbon monoxide. PMID:9900

  3. Atmospheric chemistry of ethane and ethylene

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Herman, J. R.; Maier, E. J.; Mcquillan, C. J.

    1982-01-01

    It is shown by a study of ethane and ethylene photochemistry that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Ethane observations indicating free Cl concentrations below 30 km that are only 10% of the value predicted by the present model calculations cannot be explained by heterogeneous aerosol concentration processes, and contradict current stratospheric photochemistry. The chemical destruction of ethane and ethylene leads to the generation of such compounds as carbon monoxide and formaldehyde, and it is found that the tropospheric concentrations of the latter are enhanced by nearly a factor of three for an ethylene mixing ratio of 2 ppb.

  4. Measurements of ethane in Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.

    2011-12-01

    Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears

  5. Luminescent low-valent rhenium complexes with 1,2-bis(dialkylphosphino)ethane ligands. synthesis and X-ray crystallographic, electrochemical, and spectroscopic characterization.

    PubMed

    Messersmith, Stephania J; Kirschbaum, Kristin; Kirchhoff, Jon R

    2010-04-19

    A series of low-valent rhenium phosphine complexes with the general formula [Re(dmpe)(3-x)(depe)(x)](2+/+) (x = 0-3), where dmpe is 1,2-bis(dimethylphosphino)ethane and depe is 1,2-bis(diethylphosphino)ethane, were synthesized and characterized. The reaction of [Re(benzil)(PPh(3))Cl(3)] with the appropriate phosphine yielded the homoleptic tris complexes [Re(dmpe)(3)](+) and [Re(depe)(3)](2+), while the mixed-ligand complexes [Re(dmpe)(2)(depe)](+) and [Re(dmpe)(depe)(2)](2+) were prepared from [Re(dmpe)(2)Cl(2)](+) and [Re(depe)(2)Cl(2)](+), respectively. The oxidation state of the final product strongly depends on the donating properties of the ligand. Each complex, however, exhibits a diffusion-controlled, reversible one-electron transfer between Re(I) and Re(II) with formal reduction potentials, E degrees ', ranging from -0.09 to -0.28 V versus a ferrocene external standard. Subsequent oxidation to Re(III) was found to be chemically irreversible. UV-vis and luminescence spectroelectrochemical techniques were used to study the spectral properties of the Re(I) and Re(II) forms. The Re(II) complexes are red in color and exhibit absorption features from 350 to 600 nm; the lowest-energy transition was assigned as a sigma(P) to dpi(Re) ligand-to-metal charge-transfer (LMCT) transition. Excitation into the lowest-energy absorption band revealed rare examples of luminescent (Phi approximately 0.07) LMCT excited states from d(5) transition-metal complexes in a room temperature solution. Structural characterization of salts of both oxidation states of [Re(dmpe)(2)(depe)](2+/+) was also performed.

  6. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  7. Topological study of diverse hydrogen-bonded patterns found in a system of a nickel(II) complex and the sulfate anion.

    PubMed

    Harvey, Miguel Angel; Suarez, Sebastián; Zolotarev, Pavel N; Proserpio, Davide M; Baggio, Ricardo

    2018-03-01

    A nickel(II) coordination complex, bis[2,6-bis(1H-benzimidazol-2-yl-κN 3 )pyridine-κN]nickel(II) sulfate, [Ni(C 19 H 13 N 5 ) 2 ]SO 4 or [Ni(H 2 L) 2 ]SO 4 , having four peripheral tetrahedrally oriented N-H donor units, combines with sulfate bridges to create hydrogen-bonded structures of varied dimensionality. The three crystal structures reported herein in the space groups P2 1 2 1 2 1 , I-4 and Pccn are defined solely by strong charge-assisted N-H...O hydrogen bonds and contain disordered guests (water and dimethylformamide) that vary in size, shape and degree of hydrophilicity. Two of the compounds are channelled solids with three-dimensional structures, while the third is one-dimensional in nature. In spite of their differences, all three present a striking resemblance to the previously reported anhydrous relative [Guo et al. (2011). Chin. J. Inorg. Chem. 27, 1517-1520], which is considered as the reference framework from which all three title compounds are derived. The hydrogen-bonded frameworks are described and compared using crystallographic and topological approaches.

  8. Atmospheric chemistry: The return of ethane

    NASA Astrophysics Data System (ADS)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  9. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  10. Abnormal exhaled ethane concentrations in scleroderma.

    PubMed

    Cope, K A; Solga, S F; Hummers, L K; Wigley, F M; Diehl, A M; Risby, T H

    2006-01-01

    Scleroderma (systemic sclerosis) is a chronic multisystem autoimmune disease in which oxidative stress is suspected to play a role in the pathophysiology. Therefore, it was postulated that patients with scleroderma would have abnormally high breath ethane concentrations, which is a volatile product of free-radical-mediated lipid peroxidation, compared with a group of controls. There was a significant difference (p<0.05) between the mean exhaled ethane concentration of 5.27 pmol ml(-1) CO(2) (SEM=0.76) in the scleroderma patients (n=36) versus the mean exhaled concentration of 2.72 pmol ml(-1) CO(2) (SEM=0.71) in a group of healthy controls (n=21). Within the scleroderma group, those subjects taking a calcium channel blocker had lower ethane concentrations compared with patients who were not taking these drugs (p=0.05). There was a significant inverse association between lung diffusion capacity for carbon monoxide (per cent of predicted) and ethane concentration (b=-2.8, p=0.026, CI=-5.2 to -0.35). These data support the presence of increased oxidative stress among patients with scleroderma that is detected by measuring breath ethane concentrations.

  11. Ultrasonic velocity dispersion in ethane-argon mixtures.

    NASA Technical Reports Server (NTRS)

    Amme, R. C.; Warren, B. E.

    1968-01-01

    Ultrasonic interferometry to measure velocity dispersion in ethane-Ar mixtures, discussing ethane relaxation characteristics and relaxation characteristics and relaxation times for particle collisions

  12. Demonstration of an ethane spectrometer for methane source identification.

    PubMed

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.

  13. Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies

    NASA Technical Reports Server (NTRS)

    Diaz, Neil C.; Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.; Rutz, Jeff; Mudgett, Paul; Schultz, John

    2004-01-01

    Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique, we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have determined nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5- dimercapto-1,3,4-thiadiazole (DMTD) and 4-(2- pyridylazo)-resorcinol (PAR). These developments are also extending a new variant of C-SPE in which immobilized reagents are being incorporated into this methodology in order to optimize sample reaction conditions and to introduce the colorimetric reagent. This paper describes the status of our development of these two new methods.

  14. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    PubMed

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  15. Nickel(II) affects poly(ADP-ribose) polymerase-mediated DNA repair in normal and cancer cells.

    PubMed

    Wozniak, Katarzyna; Czechowska, Agnieszka; Blasiak, Janusz

    2006-01-01

    Nickel(II) can be genotoxic, but the mechanism of its genotoxicity is not fully understood and the process of DNA repair may be considered as its potential target. We studied the effect of nickel chloride on the poly(ADP-ribose) polymerase (PARP)-mediated repair of DNA damaged by gamma-radiation and idarubicin with the alkaline comet assay in normal and cancer cells. Our results indicate that nickel chloride at very low, non-cytotoxic concentration of 1 microM can affect PARP-mediated DNA repair of lesions evoked by idarubicin and gamma-radiation. We also suggest that in the quiescent lymphocytes treated with gamma-radiation, nickel(II) could interfere with DNA repair process independent of PARP.

  16. Structural characterization of a hydroperoxo nickel complex and its autoxidation: mechanism of interconversion between peroxo, superoxo, and hydroperoxo species.

    PubMed

    Rettenmeier, Christoph A; Wadepohl, Hubert; Gade, Lutz H

    2015-04-13

    Pincer-stabilized nickel(I) complexes readily react with molecular oxygen to form dinuclear 1,2-μ-peroxo-bridged nickel(II) complexes, which are the major components of a dynamic equilibrium with the corresponding mononuclear superoxo species. The peroxo complexes further react with hydrogen peroxide to give the corresponding nickel(II) hydroperoxides. One of these hitherto elusive species was characterized by X-ray diffraction for the first time [O-O bond length: 1.492(2) Å]. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.

    PubMed

    Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I

    2015-07-07

    We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.

  18. Ethane: A Key to Evaluating Natural Gas Industrial Emissions

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Agnese, M.; Roscioli, J. R.; Floerchinger, C. R.; Knighton, W. B.; Pusede, S. E.; Diskin, G. S.; DiGangi, J. P.; Sachse, G. W.; Eichler, P.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Conley, S. A.; Petron, G.

    2014-12-01

    Airborne and mobile-surface measurements of ethane at 1Hz in the Denver-Julesberg oil and gas production basin in NE Colorado reveal a rich set of emission sources and magnitudes. Although ethane has only a mild influence on hemispheric ozone levels, it is often co-emitted with larger hydrocarbons including hazardous air pollutants (HAPs) and ozone precursors that impact local and regional air quality. Ethane/methane enhancement ratios provide a map of expected emission source types in different areas around greater Denver. Links are drawn between the ethane content of isolated methane emission plumes and the prevalence of concomitant HAP and ozone precursor species. The efficacy of using ethane as a dilution tracer specific to the oil & gas footprint will be demonstrated.

  19. 40 CFR 721.3248 - Ethane, 1,2,2- trichlorodifluoro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethane, 1,2,2- trichlorodifluoro-. 721... Substances § 721.3248 Ethane, 1,2,2- trichlorodifluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 1,2,2-trichlorodifluoro- (CAS No...

  20. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  1. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    PubMed

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. An analytical solubility model for nitrogen-methane-ethane ternary mixtures

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Meyerhofer, Peter; Lorenz, Ralph; Lemmon, Eric

    2018-01-01

    Saturn's moon Titan has surface liquids of liquid hydrocarbons and a thick, cold, nitrogen atmosphere, and is a target for future exploration. Critical to the design and operation of vehicles for this environment is knowledge of the amount of dissolved nitrogen gas within the cryogenic liquid methane and ethane seas. This paper rigorously reviews experimental data on the vapor-liquid equilibrium of nitrogen/methane/ethane mixtures, noting the possibility for split liquid phases, and presents simple analytical models for conveniently predicting solubility of nitrogen in pure liquid ethane, pure liquid methane, and a mixture of liquid ethane and methane. Model coefficients are fit to three temperature ranges near the critical point, intermediate range, and near the freezing point to permit accurate predictions across the full range of thermodynamic conditions. The models are validated against the consolidated database of 2356 experimental data points, with mean absolute error between data and model less than 8% for both binary nitrogen/methane and nitrogen/ethane systems, and less than 17% for the ternary nitrogen/methane/ethane system. The model can be used to predict the mole fractions of ethane, methane, and nitrogen as a function of location within the Titan seas.

  3. Variability of ethane on Jupiter

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, Fred; Mumma, Michael J.; Deming, Drake; Zipoy, David

    1987-01-01

    Varying stratospheric temperature profiles and C2H6 altitude distributions furnish contexts for the evaluation of ethane abundances and distributions in the Jupiter stratosphere. Substantial ethane line emission and retrieved mole fraction variability is noted near the footprint of Io's flux tube, as well as within the auroral regions. It is suggested that this and other observed phenomena are due to the modification of local stratospheric chemistry by higher-order effects, which are in turn speculated to be due to the precipitation of charged particles along magnetic field lines.

  4. Ethane abundance on Neptune

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Espenak, Fred; Romani, Paul; Zipoy, David; Goldstein, Jeff

    1990-01-01

    IR spectroscopic measurements of the C2H6 RR (4,5) emission line at 840.9764/cm have been used to infer Neptune's ethane mole fractions; while the resulting value is lower than that obtained by Orton et al. (1987), it lies within their 2-sigma error bounds. The present results are also found to require 2.0-5.8 times more ethane in the 0.02-2 mbar pressure region than predicted by the Romani and Atreya (1989) photochemical model. Better agreement is obtainable through a reduction of eddy mixing in the lower stratosphere and/or an increase of stratospheric temperature by more than 10 K above the 6-mbar level.

  5. Methane, Ethane, and Nitrogen Stability on Titan

    NASA Astrophysics Data System (ADS)

    Hanley, J.; Grundy, W. M.; Thompson, G.; Dustrud, S.; Pearce, L.; Lindberg, G.; Roe, H. G.; Tegler, S.

    2017-12-01

    Many outer solar system bodies are likely to have a combination of methane, ethane and nitrogen. In particular the lakes of Titan are known to consist of these species. Understanding the past and current stability of these lakes requires characterizing the interactions of methane and ethane, along with nitrogen, as both liquids and ices. Our cryogenic laboratory setup allows us to explore ices down to 30 K through imaging, and transmission and Raman spectroscopy. Our recent work has shown that although methane and ethane have similar freezing points, when mixed they can remain liquid down to 72 K. Concurrently with the freezing point measurements we acquire transmission or Raman spectra of these mixtures to understand how the structural features change with concentration and temperature. Any mixing of these two species together will depress the freezing point of the lake below Titan's surface temperature, preventing them from freezing. We will present new results utilizing our recently acquired Raman spectrometer that allow us to explore both the liquid and solid phases of the ternary system of methane, ethane and nitrogen. In particular we will explore the effect of nitrogen on the eutectic of the methane-ethane system. At high pressure we find that the ternary creates two separate liquid phases. Through spectroscopy we determined the bottom layer to be nitrogen rich, and the top layer to be ethane rich. Identifying the eutectic, as well as understanding the liquidus and solidus points of combinations of these species, has implications for not only the lakes on the surface of Titan, but also for the evaporation/condensation/cloud cycle in the atmosphere, as well as the stability of these species on other outer solar system bodies. These results will help interpretation of future observational data, and guide current theoretical models.

  6. Evidence for a polar ethane cloud on Titan

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Rannou, P.; Brown, R.; Boudon, V.; Baines, K.H.; Clark, R.; Drossart, P.; Buratti, B.; Nicholson, P.; McKay, C.P.; Coustenis, A.; Negrao, A.; Jaumann, R.

    2006-01-01

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51?? to 68?? north and all longitudes observed (10?? to 190?? west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  7. Evidence for a polar ethane cloud on Titan.

    PubMed

    Griffith, C A; Penteado, P; Rannou, P; Brown, R; Boudon, V; Baines, K H; Clark, R; Drossart, P; Buratti, B; Nicholson, P; McKay, C P; Coustenis, A; Negrao, A; Jaumann, R

    2006-09-15

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51 degrees to 68 degrees north and all longitudes observed (10 degrees to 190 degrees west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  8. Ethane and acetylene abundances in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Tokunaga, A.; Knacke, R. F.; Owen, T.

    1976-01-01

    The paper reports spectra of Jupiter in the spectral region from 755 to 850 kaysers, which covers the nu-9 fundamental of ethane and contains lines from the R branch of the nu-5 fundamental of acetylene. The monochromatic absorption coefficient of the central Q branch of the nu-9 fundamental of ethane, which was determined in the laboratory, is applied in a radiative-transfer calculation to evaluate the ethane mixing ratio in the Jovian atmosphere; the present data are also used to place an upper limit on the acetylene mixing ratio. For the radiative-transfer calculation, emission intensity is computed for the region above the 0.02-atm level assuming both an isothermal inversion layer and a previously reported temperature profile. The resulting maximum mixing ratios consistent with the observations are 0.00003 for ethane and 7.5 by 10 to the -8th power for acetylene.

  9. Evidence for the existence of supercooled ethane droplets under conditions prevalent in Titan's atmosphere.

    PubMed

    Sigurbjörnsson, Omar F; Signorell, Ruth

    2008-11-07

    Recent evidence for ethane clouds and condensation in Titan's atmosphere raise the question whether liquid ethane condensation nuclei and supercooled liquid ethane droplets exist under the prevalent conditions. We present laboratory studies on the phase behaviour of pure ethane aerosols and ethane aerosols formed in the presence of other ice nuclei under conditions relevant to Titan's atmosphere. Combining bath gas cooling with infrared spectroscopy, we find evidence for the existence of supercooled liquid ethane aerosol droplets. The observed homogeneous freezing rates imply that supercooled ethane could be a long-lived species in ethane-rich regions of Titan's atmosphere similar to supercooled water in the Earth's atmosphere.

  10. Titan's missing ethane: From the atmosphere to the subsurface

    NASA Astrophysics Data System (ADS)

    Gilliam, Ashley E.; Lerman, Abraham

    2016-09-01

    The second most abundant component of the present-day Titan atmosphere, methane (CH4), is known to undergo photolytic conversion to ethane (C2H6) that accumulates as a liquid on Titan's surface. Condensation temperature of ethane is higher than that of methane, so that ethane "rain" may be expected to occur before the liquefaction of methane. At present, the partial pressure of ethane in the atmosphere is 1E-5 bar, much lower than 1E-1 bar of CH4. Estimated 8.46E17 kg or 1.37E6 km3 of C2H6 have been produced on Titan since accretion. The Titan surface reservoirs of ethane are lakes and craters, of estimated volume of 50,000 km3 and 61,000 km3, respectively. As these are smaller than the total volume of liquid ethane produced in the course of Titan's history, the excess may be stored in the subsurface of the crust, made primarily of water ice. The minimum porosity of the crust needed to accommodate all the liquid ethane would be only 0.9% of the uppermost 2 km of the crust. The occurrence of CH4 and liquid C2H6 on Titan has led to much speculation on the possibility of life on that satellite. The aggregation of organic molecules in a "primordial soup or bullion" depends in part on the viscosity of the medium, diffusivity of organic molecules in it, and rates of polymerization reactions. The temperatures on Titan, much lower than on primordial Earth, are less favorable to the "Second Coming of life" on Titan.

  11. Stratospheric ethane on Neptune - Comparison of groundbased and Voyager IRIS retrievals

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Romani, Paul; Espenak, Fred; Bezard, Bruno

    1992-01-01

    Near-simultaneous ground and spacecraft measurements of 12-micron ethane emission spectra during the Voyager encounter with Neptune have furnished bases for the determination of stratospheric ethane abundance and the testing and constraining of Neptune methane-photochemistry models. The ethane retrievals were sensitive to the thermal profile used. Contribution functions for warm thermal profiles peaked at higher altitudes, as expected, with the heterodyne functions covering lower-pressure regions. Both constant- and nonconstant-with-height profiles remain candidate distributions for Neptune's stratospheric ethane.

  12. Modification of Encapsulation Pressure of Reverse Micelles in Liquid Ethane

    PubMed Central

    Peterson, Ronald W.; Nucci, Nathaniel V.; Wand, A. Joshua

    2011-01-01

    Encapsulation of within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5,000 p.s.i. to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. PMID:21764613

  13. Modification of encapsulation pressure of reverse micelles in liquid ethane.

    PubMed

    Peterson, Ronald W; Nucci, Nathaniel V; Wand, A Joshua

    2011-09-01

    Encapsulation within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5000 psi to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. 40 CFR 721.10086 - Ethane, 2-(difluoromethoxy)-1,1,1-trifluoro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethane, 2-(difluoromethoxy)-1,1,1... Specific Chemical Substances § 721.10086 Ethane, 2-(difluoromethoxy)-1,1,1-trifluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 2...

  15. Kinetics of Ethane Clathrate Hydrate Formation under Titan-Like Conditions

    NASA Astrophysics Data System (ADS)

    Vu, T. H.; Munoz Iglesias, V.; Choukroun, M.; Maynard-Casely, H. E.

    2016-12-01

    Clathrate hydrates are inclusion compounds where small guest molecules are trapped inside highly symmetric water cages. These ice-like crystalline solids are an abundant source of hydrocarbons on Earth that primarily exist in the permafrost and marine sediments. Icy celestial bodies whose pressure and temperature conditions are favorable to the formation of gas hydrates are also expected to contain substantial amounts of these materials. One such example is Saturn's moon Titan, where clathrates are conjectured to be a major crustal component. In fact, clathrate dissociation has been suggested to play a significant role in the replenishment of atmospheric methane on this satellite. In addition to having a substantial atmosphere dominated by nitrogen, Titan is the only body in the Solar System aside from Earth that has standing bodies of liquid on its surface. Liquid methane and ethane have been identified as principal components of the hundreds of lakes that have been observed by the Cassini spacecraft on Titan's surface. As lake fluids come into contact with the pre-existing icy crust, stable layers of ethane clathrate hydrates are expected to form. In this work, we provide experimental evidence for the rapid formation of ethane clathrate from direct contact of liquid ethane with water ice at 1 bar using micro-Raman spectroscopy. Conversion of ice into clathrates is confirmed by the emergence of the characteristic peak at 999 cm-1, which represents the C-C stretch of enclathrated ethane. Kinetics experiments in the temperature range 140-173 K yields an activation energy of 6.75 ± 0.88 kJ/mol for the formation of ethane clathrate. Subsequent thermal analysis indicates a clathrate dissociation temperature of 240 K, consistent with extrapolated literature data. Preliminary synchrotron powder X-ray diffraction experiments have also been carried out to examine the formation kinetics of ethane clathrate from ice/gas mixture at 1 bar. The relatively fast timescale and

  16. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Whiticar, Michael J.; Strohmaier, F.E.; Kiene, R.P.

    1988-01-01

    Trace levels of ethane were produced biologically in anoxic sediment slurries from five chemically different aquatic environments. Gases from these locations displayed biogenic characteristics, having 12C-enriched values of ??13CH4 (-62 to -86%.), ??13C2H6 (-35 to -55%.) and high ratios (720 to 140,000) of CH4 [C2H6 + C3H8]. Endogenous production of ethane by slurries was inhibited by autoclaving or by addition of the inhibitor of methanogenic bacteria, 2-bromoethanesulfonic acid (BES). Ethane formation was stimulated markedly by ethanethiol (ESH), and, to a lesser extent, by diethylsulfide (DES). Formation of methane and ethane in ESH- or DES-amended slurries was blocked by BES. Experiments showed that ethionine (or an analogous compound) could be a precursor of ESH. Ethylamine or ethanol additions to slurries caused only a minor stimulation of ethane formation. Similarly, propanethiol additions resulted in only a minor enhancement of propane formation. Cell suspensions of a methyltrophic methanogen produced traces of ethane when incubated in the presence of DES, although the organism did not grow on this compound. These results indicate that methanogenic bacteria produce ethane from the traces of ethylated sulfur compounds present in recent sediments. Preliminary estimates of stable carbon isotope fractionation associated with sediment methane formation from dimethylsulfide was about 40%., while ethane formation from DES and ESH was only 4. 6 and 6.5%., respectively. ?? 1988.

  17. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.

    PubMed

    Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David

    2012-09-12

    Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.

  18. Variability of Neptune's 12.2-micron ethane emission feature

    NASA Technical Reports Server (NTRS)

    Hammel, H. B.; Young, Leslie A.; Hackwell, J.; Lynch, D. K.; Russell, R.; Orton, Glenn S.

    1992-01-01

    It is presently shown that the ratio of ethane emission to methane emission in Neptune's 7-14 micron spectrum increased by a factor of 1.47 +/- 0.11 in the period between 1985 and 1991, and that the 12.2-micron ethan feature (rather than that of methane at 7.7 microns) is implicated in the greater part of that change. It is speculated that this variation is due either to a nonuniform increase in stratospheric temperature, or (more likely) to an increase in the ethane concentration by over 15 percent.

  19. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  20. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural gas...

  1. Prediction of supercritical ethane bulk solvent densities for pyrazine solvation shell average occupancy by 1, 2, 3, and 4 ethanes: combined experimental and ab initio approach.

    PubMed

    Hrnjez, Bruce J; Sultan, Samuel T; Natanov, Georgiy R; Kastner, David B; Rosman, Michael R

    2005-11-17

    We introduce a method that addresses the elusive local density at the solute in the highly compressible regime of a supercritical fluid. Experimentally, the red shift of the pyrazine n-pi electronic transition was measured at infinite dilution in supercritical ethane as a function of pressure from 0 to about 3000 psia at two temperatures, one close (35.0 degrees C) to the critical temperature and the other remote (55.0 degrees C). Computationally, stationary points were located on the potential surfaces for pyrazine and one, two, three, and four ethanes at the MP2/6-311++G(d,p) level. The vertical n-pi ((1)B(3u)) transition energies were computed for each of these geometries with a TDDFT/B3LYP/6-311++G(d,p) method. The combination of experiment and computation allows prediction of supercritical ethane bulk densities at which the pyrazine primary solvation shell contains an average of one, two, three, and four ethane molecules. These density predictions were achieved by graphical superposition of calculated shifts on the experimental shift versus density curves for 35.0 and 55.0 degrees C. Predicted densities are 0.0635, 0.0875, and 0.0915 g cm(-3) for average pyrazine primary solvation shell occupancy by one, two, and three ethanes at both 35.0 and 55.0 degrees C. Predicted densities are 0.129 and 0.150 g cm(-3) for occupancy by four ethanes at 35.0 and 55.0 degrees C, respectively. An alternative approach, designed to "average out" geometry specific shifts, is based on the relationship Deltanu = -23.9n cm(-1), where n = ethane number. Graphical treatment gives alternative predicted densities of 0.0490, 0.0844, and 0.120 g cm(-3) for average pyrazine primary solvation shell occupancy by one, two, and three ethanes at both 35.0 and 55.0 degrees C, and densities of 0.148 and 0.174 g cm(-3) for occupancy by four ethanes at 35.0 and 55.0 degrees C, respectively.

  2. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    PubMed

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  3. Synthesis, spectral characterization, thermal and photoluminescence properties of Zn(II) and Cd(II)-azido/thiocyanato complexes with thiazolylazo dye and 1,2-bis(diphenylphoshino)ethane.

    PubMed

    Yamgar, B A; Sawant, V A; Bharate, B G; Chavan, S S

    2011-01-01

    A series of complexes of the type [M(L)(dppe)X2]; where M=Zn(II) or Cd(II); L=4-(2'-thiazolylazo)chlorobenzene (L1), 4-(2'-thiazolylazo)bromobenzene (L2) and 4-(2'-thiazolylazo) iodobenzene (L3); dppe=1,2-bis(diphenylphosphino)ethane; X=N3- or NCS- have been prepared and characterized on the basis of their microanalysis, molar conductance, thermal, IR, UV-vis and 1H NMR spectral studies. IR spectra show that the ligand L is coordinated to the metal atom in bidentate manner via azo nitrogen and thiazole nitrogen. An octahedral structure is proposed for all the complexes. The thermal behavior of the complexes revealed that the thiocyanato complexes are thermally more stable than the azido complexes. All the complexes exhibit blue-green emission with high quantum yield as the result of the fluorescence from the intraligand emission excited state. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The Formation of Ethane from Carbon Dioxide under Cold Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-ling; Zhang, Lin; Dai, Bin; Gong, Wei-min; Liu, Chang-hou

    2001-04-01

    Pulsed-corona plasma has been used as a new method for ethane dehydrogenation at low temperature and normal pressure using carbon dioxide as an oxidant in this paper. The effect of carbon dioxide content in the feed, power input, and flow rate of the reactants on the ethane dehydrogenation has been investigated. The experimental results show that the conversion of ethane increases with the increase in the amount of carbon dioxide in the feed. The yield of ethylene and acetylene decreases with the increase in the yield of carbon monoxide, indicating that the increased carbon dioxide leads to the part of ethylene and acetylene being oxidized to carbon monoxide. Power input is primarily an electrical parameter in pulsed-corona plasma, which plays an important role in reactant conversion and product formation. When the power input reaches 16 W, ethane conversion is 41.0% and carbon dioxide conversion is 26.3%. The total yield of ethylene and acetylene is 15.6%. The reduced flow rate of feed improves the conversion of ethane, carbon dioxide and the yield of acetylene, and induces carbon deposit as well.

  5. Tropospheric and lower stratospheric vertical profiles of ethane and acetylene

    NASA Technical Reports Server (NTRS)

    Cronn, D.; Robinson, E.

    1979-01-01

    The first known vertical distributions of ethane and acetylene which extend into the lower stratosphere are reported. The average upper tropospheric concentrations, between 20,000 ft and 35,000 ft, near 37 deg N-123 deg W were 1.2 micrograms/cu m (1.0 ppb) for ethane and 0.24 micrograms /cu m (0.23 ppb) for acetylene while the values near 9 N-80 W were 0.95 micrograms/cu m (0.77 ppb) and 0.09 micrograms/cu m (0.09 ppb), respectively. Detectable quantities of both ethane and acetylene are present in the lower stratosphere. There is a sharp decrease in the levels of these two compounds as one crosses the tropopause and ascends into the lower stratosphere. The observed levels of ethane and acetylene may allow some impact on the background chemistry of the troposphere and stratosphere.

  6. Low-Latitude Ethane Rain on Titan

    NASA Technical Reports Server (NTRS)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  7. Detection of (C-13)-ethane in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Wiedemann, Guenter; Bjoraker, Gordon L.; Jennings, Donald E.

    1991-01-01

    High-resolution (C-12)- and (C-13)-ethane spectra of Jupiter were acquired with the Kitt Peak 4 m Fourier spectrometer and the Goddard postdisperser in June 1987. A relative abundance ratio (C-12/C-13) of 94 +/- 12 was derived from the measurements. This nearly terrestrial value indicates little or no fractionation of carbon isotopes when ethane is produced in the photolysis of methane in Jupiter's atmosphere.

  8. The fate of ethane in Titan's hydrocarbon lakes and seas

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Lunine, Jonathan I.; Hayes, Alexander G.; Hofgartner, Jason D.

    2016-05-01

    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.

  9. Observation and simulation of ethane at 23 FTIR sites

    NASA Astrophysics Data System (ADS)

    Bader, W. M. J.; Mahieu, E.; Franco, B.; Pozzer, A.; Taraborrelli, D.; Prignon, M.; Servais, C. P.; De Maziere, M.; Vigouroux, C.; Mengistu Tsidu, G.; Sufa, G.; Mellqvist, J.; Blumenstock, T.; Hase, F.; Schneider, M.; Sussmann, R.; Nagahama, T.; Sudo, K.; Hannigan, J. W.; Ortega, I.; Morino, I.; Nakajima, H.; Smale, D.; Makarova, M.; Poberovsky, A.; Murata, I.; Grutter de la Mora, M.; Guarin, C. A.; Stremme, W.; Té, Y.; Jeseck, P.; Notholt, J.; Palm, M.; Conway, S. A.; Lutsch, E.; Strong, K.; Griffith, D. W. T.; Jones, N. B.; Paton-Walsh, C.; Friedrich, M.; Smeekes, S.

    2017-12-01

    Ethane is the most abundant non-methane hydrocarbon (NMHC) in the Earth atmosphere. Its main sources are of anthropogenic origin, with globally 62% from leakage during production and transport of natural gas, 20% from biofuel combustion and 18% from biomass burning. In the Southern hemisphere, anthropogenic emissions are lower which makes biomass burning emissions a more significant source. The main removal process is oxidation by the hydroxyl radical (OH), leading to a mean atmospheric lifetime of 2 months. Until recently, a prolonged decrease of its abundance has been documented, at rates of -1 to -2.7%/yr, with global emissions dropping from 14 to 11 Tg/yr over 1984-2010 owing to successful measures reducing fugitive emissions from its fossil fuel sources. However, subsequent investigations have reported on an upturn in the ethane trend, characterized by a sharp rise from about 2009 onwards. The ethane increase is attributed to the oil and natural gas production boom in North America, although significant changes in OH could also be at play. In the present contribution, we report the trend of ethane at 23 ground-based Fourier Transform Infrared (FTIR) sites spanning the 80ºN to 79ºS latitude range. Over 2010-2015, a significant ethane rise of 3-5%/yr is determined for most sites in the Northern Hemisphere, while for the Southern hemisphere the rates of changes are not significant at the 2-sigma uncertainty level . Dedicated model simulations by EMAC (ECHAM5/MESSy Atmospheric Chemistry; 1.8×1.8 degrees) implementing various emission scenarios are included in order to support data interpretation. The usual underestimation of the NMHCs emissions in the main inventories is confirmed here for RCP85 (Representative Concentration Pathway Database v8.5). Scaling them by 1.5 is needed to capture the background levels of atmospheric ethane. Moreover, additional and significant emissions ( 7 Tg over 2009-2015) are needed to capture the ethane rise in the Northern

  10. Long-term decline of global atmospheric ethane concentrations and implications for methane.

    PubMed

    Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R

    2012-08-23

    After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.

  11. Preparation of Enteromorpha prolifera-based cetyl trimethyl ammonium bromide-doped activated carbon and its application for nickel(II) removal.

    PubMed

    Wang, Man; Hao, Fang; Li, Gang; Huang, Ji; Bao, Nan; Huang, Lihui

    2014-06-01

    Activated carbon was prepared from Enteromorpha prolifera (EP) by H3PO4 activation in the presence of doped cetyl trimethyl ammonium bromide (CTAB), producing EPAC-CTAB. The thermal decomposition process of the activated carbon substrate was identified by thermo-gravimetric analysis. Scanning electron microscope (SEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the physicochemical properties of native EPAC and EPAC-CTAB. EPAC-CTAB exhibited smaller surface area (689.0m(2)/g) and lower total pore volume (0.361cm(3)/g) than those of EPAC (1045.8m(2)/g and 1.048cm(3)/g), while the number of acidic groups, oxygen and nitrogen groups on the surface of EPAC-CTAB increased through CTAB doping. The batch kinetics and isotherm adsorption studies of nickel(II) onto the adsorbents were examined and agreed well with the pseudo-second-order model and the Langmuir model. The maximum adsorption capacity determined from the Langmuir model was 16.9mg/g for EPAC and 49.8mg/g for EPAC-CTAB. Under acidic condition, the adsorption of nickel(II) onto EPAC and EPAC-CTAB was hindered due to ion competition and electrostatic repulsion. The results indicated that using CTAB as a dopant for EPAC modification could markedly enhance the nickel(II) removal. Copyright © 2014. Published by Elsevier Inc.

  12. Phase diagram and high-pressure boundary of hydrate formation in the ethane-water system.

    PubMed

    Kurnosov, Alexander V; Ogienko, Andrey G; Goryainov, Sergei V; Larionov, Eduard G; Manakov, Andrey Y; Lihacheva, Anna Y; Aladko, Eugeny Y; Zhurko, Fridrikh V; Voronin, Vladimir I; Berger, Ivan F; Ancharov, Aleksei I

    2006-11-02

    Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

  13. Exhaled ethane: an in vivo biomarker of lipid peroxidation in interstitial lung diseases.

    PubMed

    Kanoh, Soichiro; Kobayashi, Hideo; Motoyoshi, Kazuo

    2005-10-01

    Oxidative stress plays a role in the pathogenesis and progression of interstitial lung disease (ILD). Exhaled ethane is a product of lipid peroxidation that has been proposed as a biomarker of oxidative stress in vivo. To determine whether the exhaled ethane level is elevated in patients with ILD and to compare it with other clinical parameters. Breath samples were collected from 34 patients with ILD, including 13 with idiopathic pulmonary fibrosis (IPF), 9 patients with cryptogenic organizing pneumonia, 6 patients with collagen vascular disease-associated interstitial pneumonia, and 6 patients with pulmonary sarcoidosis. Gas samples were obtained at hospital admission and after 3 weeks. After each expired sample was concentrated using a trap-and-purge procedure, the ethane level was analyzed by gas chromatography. Exhaled ethane levels were elevated in ILD patients (n = 34, mean +/- SD, 8.5 +/- 8.0 pmol/dL) compared with healthy volunteers (n = 16, 2.9 +/- 1.0 pmol/dL; p < 0.001). Serial measurements revealed that increase and decrease of ethane levels were largely consistent with the clinical course. Four patients with IPF who had persistently high ethane levels died or deteriorated, whereas those with ethane levels < 5.0 pmol/dL remained stable or improved. Exhaled ethane concentrations were positively correlated with levels of lactate dehydrogenase (Spearman rank correlation coefficient [rs], 0.28, p = 0.026) and C-reactive protein (rs, 0.38, p = 0.025) and were inversely correlated with Pa(O2) (rs, - 0.40, p = 0.0026). Patients showing increased uptake on (67)Ga scintigraphy demonstrated higher ethane levels (n = 19, 7.5 +/- 5.7 pmol/dL) compared with those who did not show increased uptake on scintigraphy (n = 10, 3.0 +/- 2.4 pmol/dL; p < 0.01). Exhaled ethane is elevated in patients with ILD and is correlated with the clinical outcome, suggesting that it provides useful information about ongoing oxidative stress, and thereby disease activity and severity in

  14. 40 CFR 721.10265 - Ethane, 2-bromo-1, 1-difluoro-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10265 Ethane, 2-bromo-1, 1-difluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 2-bromo-1,1-difluoro-. (PMN P-04...

  15. 40 CFR 721.10265 - Ethane, 2-bromo-1, 1-difluoro-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10265 Ethane, 2-bromo-1, 1-difluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethane, 2-bromo-1,1-difluoro-. (PMN P-04...

  16. Laboratory Studies of Ethane Ice Relevant to Outer Solar System Surfaces

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie; Raines, Lily

    2009-01-01

    Oort Cloud comets, as well as TNOs Makemake (2045 FYg), Quaoar, and Pluto, are known to contain ethane. However, even though this molecule is found on several outer Solar System objects relatively little information is available about its amorphous and crystalline phases. In new experiments, we have prepared ethane ices at temperatures applicable to the outer Solar System, and have heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry using mid-IR spectroscopy (2.2 - 16.6 microns). Included in our work is the meta-stable phase that exists at 35 - 55 K. These results, including newly obtained optical constants, are relevant to ground-based observational campaigns, the New Horizons mission, and supporting laboratory work. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer Solar System.

  17. Theoretical analysis of the rotational barrier of ethane.

    PubMed

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  18. NMR study of methane + ethane structure I hydrate decomposition.

    PubMed

    Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy

    2007-05-24

    The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.

  19. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers.

    PubMed Central

    Lettéron, P; Duchatelle, V; Berson, A; Fromenty, B; Fisch, C; Degott, C; Benhamou, J P; Pessayre, D

    1993-01-01

    Ethane exhalation was measured in 42 control subjects, 52 patients with various non-alcoholic liver diseases, and 89 alcohol abusers who had been admitted to hospital for alcohol withdrawal and assessment of liver disease (six with normal liver tests, 10 with steatosis with or without fibrosis, six with alcoholic hepatitis, 29 with cirrhosis, 34 with both cirrhosis and alcoholic hepatitis, and four with both cirrhosis and a hepatocellular carcinoma). Ethane exhalation was similar in control subjects and in patients with non-alcoholic liver diseases, but was five times higher in alcohol abusers. Ethane exhalation in alcohol abusers was significantly, but very weakly, correlated with the daily ethanol intake before hospital admission, and the histological score for steatosis, but not with the inflammation or alcoholic hepatitis scores. Ethane exhalation was inversely correlated with the duration of abstinence before the test. In nine alcoholic patients, the exhalation of ethane was measured repeatedly, and showed slow improvement during abstinence. Ethane exhalation was significantly but weakly correlated with the Pugh's score in patients with alcoholic cirrhosis. It is concluded that the mean ethane exhalation is increased in alcohol abusers. One of the possible mechanisms may be the presence of oxidizable fat in the liver. The weak correlation with the Pugh's score is consistent with the contribution of many other factors in the progression to severe liver disease. PMID:8472992

  20. Quantifying Emissions from the Eagle Ford Shale Using Ethane Enhancement

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2014-12-01

    Emissions from unconventional oil and natural gas exploration in the Eagle Ford Shale have been conjectured as a contributing factor to increasing ozone concentrations in the San Antonio Metropolitan Area, which is on track to be designated as a nonattainment area by the EPA. Primary species found in natural gas emissions are alkanes, with C3 and heavier alkanes acting as short-lived VOCs contributing to regional ozone formation. Methane emissions from the industry are also a forcing mechanism for climate change as methane is a potent greenhouse gas. Recent studies have highlighted a high variability and uncertainties in oil and natural gas emissions estimates in emissions inventories. Thus, accurately quantifying oil and natural gas emissions from the Eagle Ford Shale is necessary to assess the industry's impacts on climate forcing and regional air quality. We estimate oil and natural gas emissions in the Eagle Ford Shale using in situ ethane measurements along southwesterly trajectories from the Gulf of Mexico, dominantly during the summertime. Ethane enhancement within the drilling area is estimated by comparing ethane concentrations upwind of the shale, near the Texas coastline, to downwind measurements in the San Antonio Metropolitan Area, Odessa, and Amarillo. Upwind ethane observations indicate low background levels entering Texas in the Gulf of Mexico air masses. Significant ethane enhancement is observed between the coast and San Antonio, and is attributed to oil and natural gas operations due to the concurrent enhancements of heavier alkanes. Using typical boundary layer depths and presuming homogenous emissions across the Eagle Ford shale area, the observed ethane enhancements are used to extrapolate an estimate of oil and natural gas industry emissions in the Eagle Ford. As oil and natural gas production in the area is projected to grow rapidly over the coming years, the impacts of these emissions on regional air quality will need to be thoroughly

  1. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode.

    PubMed

    Chandra, Sulekh; Hooda, Sunita; Tomar, Praveen Kumar; Malik, Amrita; Kumar, Ankit; Malik, Sakshi; Gautam, Seema

    2016-05-01

    The PVC based-ion selective electrode viz., bis nitrato[4-hydroxyacetophenone semicarbazone] nickel(II) as an ionophore was prepared for the determination of thiocyanate ion. The ionophore was characterized by FT-IR, UV-vis, XRD, magnetic moment and elemental analysis (CHN). On the basis of spectral studies an octahedral geometry has been assigned. The best performance was obtained with a membrane composition of 31% PVC, 63% 2-nitrophenyl octylether, 4.0% ionophore and 2.0% trioctylmethyl ammonium chloride. The electrode exhibited an excellent Nernstian response to SCN(-) ion ranging from 1.0 × 10(-7) to 1.0 × 10(-1)M with a detection limit of 8.6 × 10(-8)M and a slope of -59.4 ± 0.2 mV/decade over a wide pH range (1.8-10.7) with a fast response time (6s) at 25 °C. The proposed electrode showed high selectivity for thiocyanate ion over a number of common inorganic and organic anions. It was successfully applied to direct determination of thiocyanate in biological (urine and saliva) samples in order to distinguish between smokers and non-smokers, environmental samples and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Geodetic data support trapping of ethane in Titan's polar crust

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  3. Kinetic modeling of ethane pyrolysis at high conversion.

    PubMed

    Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M

    2011-09-29

    The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential

  4. Carbonate formation within a nickel dimer: synthesis of a coordinatively unsaturated bis(mu-hydroxo) dinickel complex and its reactivity toward carbon dioxide.

    PubMed

    Wikstrom, Jeffrey P; Filatov, Alexander S; Mikhalyova, Elena A; Shatruk, Michael; Foxman, Bruce M; Rybak-Akimova, Elena V

    2010-03-14

    The tridentate aminopyridine ligand bearing a bulky tert-butyl substituent at the amine nitrogen, tert-butyl-dipicolylamine (tBuDPA), occupies three coordination sites in six-coordinate complexes of nickel(ii), leaving the remaining three sites available for additional ligand binding and activation. New crystallographically characterized complexes include two mononuclear species with 1:1 metal:ligand complexation: a trihydrate solvate (1.3H(2)O) and a monohydrate biacetonitrile solvate (1.H(2)O.2CH(3)CN). Complexation in the presence of sodium hydroxide results in a bis(mu-hydroxo) complex (2), the bridging hydroxide anions of which are labile and become displaced by methoxide anions in methanol solvent, affording bis-methoxo-bridged (4). Nickel(II) centers in 2 are five-coordinate and antiferromagnetically coupled (with J = -31.4(5) cm(-1), H = -2JS(1)S(2), in agreement with Ni-O-Ni angle of 103.7 degrees). Bridging hydroxide or alkoxide anions in coordinatively unsaturated dinuclear nickel(II) complexes with tBuDPA react as active nucleophiles. 2 readily performs carbon dioxide fixation, resulting in the formation of a bis(mu-carbonato) tetrameric complex (3), which features a novel binding geometry in the form of an inverted butterfly-type nickel-carbonate core. Temperature-dependent magnetic measurements of tetranuclear carbonato-bridged revealed relatively weak antiferromagnetic coupling (J(1) = -3.1(2) cm(-1)) between the two nickel centers in the core of the cluster, as well as weak antiferromagnetic pairwise interactions (J(2) = J(3) = -4.54(5) cm(-1)) between central and terminal nickel ions.

  5. Assessing the long-term variability of acetylene and ethane in the stratosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Melin, Henrik; Fletcher, L. N.; Donnelly, P. T.; Greathouse, T. K.; Lacy, J. H.; Orton, G. S.; Giles, R. S.; Sinclair, J. A.; Irwin, P. G. J.

    2018-05-01

    Acetylene (C2H2) and ethane (C2H6) are both produced in the stratosphere of Jupiter via photolysis of methane (CH4). Despite this common source, the latitudinal distribution of the two species is radically different, with acetylene decreasing in abundance towards the pole, and ethane increasing towards the pole. We present six years of NASA IRTF TEXES mid-infrared observations of the zonally-averaged emission of methane, acetylene and ethane. We confirm that the latitudinal distributions of ethane and acetylene are decoupled, and that this is a persistent feature over multiple years. The acetylene distribution falls off towards the pole, peaking at ∼ 30°N with a volume mixing ratio (VMR) of ∼ 0.8 parts per million (ppm) at 1 mbar and still falling off at ± 70° with a VMR of ∼ 0.3 ppm. The acetylene distributions are asymmetric on average, but as we move from 2013 to 2017, the zonally-averaged abundance becomes more symmetric about the equator. We suggest that both the short term changes in acetylene and its latitudinal asymmetry is driven by changes to the vertical stratospheric mixing, potentially related to propagating wave phenomena. Unlike acetylene, ethane has a symmetric distribution about the equator that increases toward the pole, with a peak mole fraction of ∼ 18 ppm at about ± 50° latitude, with a minimum at the equator of ∼ 10 ppm at 1 mbar. The ethane distribution does not appear to respond to mid-latitude stratospheric mixing in the same way as acetylene, potentially as a result of the vertical gradient of ethane being much shallower than that of acetylene. The equator-to-pole distributions of acetylene and ethane are consistent with acetylene having a shorter lifetime than ethane that is not sensitive to longer advective timescales, but is augmented by short-term dynamics, such as vertical mixing. Conversely, the long lifetime of ethane allows it to be transported to higher latitudes faster than it can be chemically depleted.

  6. Synthesis and characterization of heterobimetallic molybdenum and nickel complexes derived from polyfunctional disalicylaldehyde oxaloyldihydrazone

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Borthakur, Rosmita; Koch, Angira; Chanu, Oinam B.; Choudhury, Sanjesh; Lemtur, Aka; Lal, Ram A.

    2011-07-01

    Heterobimetallic nickel and molybdenum complexes of the composition [Ni(L)MoO 2(A) 4]· nH 2O (A = H 2O (1), py (2), 2-pic (3), 3-pic (4), and 4-pic (5); n = 0, 2) and [Ni(L)(MoO 2)(BB) 2](BB = bpy (6) and (phen (7)) have been synthesized from the multidentate ligand disalicylaldehyde oxaloyldihydrazone (H 4L) in methanol. The composition of the complexes has been established based on data obtained from elemental analyses, thermoanalytical, mass spectral and molecular weight studies. The probable structures of the complexes have been discussed in the light of molar conductance, magnetic moment data and electronic, EPR and infrared spectral studies. In all of the complexes, the dihydrazone is present in enol form and coordinates to the metal centre as a tetrabasic hexadentate ligand. All of the complexes are normal paramagnetic to the extent of two unpaired electrons per nickel atom. The μeff values for the complexes lying in the region 2.87-3.07 B.M. are consistent with the octahedral stereochemistry of nickel(II) in the heterobimetallic complexes. The EPR and electronic spectral data also support the distorted octahedral stereochemistry of the nickel(II) centre. Both nickel and molybdenum have octahedral geometry in the complexes.

  7. Portable optical spectroscopy for accurate analysis of ethane in exhaled breath

    NASA Astrophysics Data System (ADS)

    Patterson, Claire S.; McMillan, Lesley C.; Longbottom, Christopher; Gibson, Graham M.; Padgett, Miles J.; Skeldon, Kenneth D.

    2007-05-01

    We report on a maintenance-free, ward-portable, tunable diode laser spectroscopy system for the ultra-sensitive detection of ethane gas. Ethane is produced when cellular lipids are oxidized by free radicals. As a breath biomarker, ethane offers a unique measure of such oxidative stress. The ability to measure real-time breath ethane fluctuations will open up new areas in non-invasive healthcare. Instrumentation for such a purpose must be highly sensitive and specific to the target gas. Our technology has a sensitivity of 70 parts per trillion and a 1 s sampling rate. Based on a cryogenically cooled lead-salt laser, the instrument has a thermally managed closed-loop refrigeration system, eliminating the need for liquid coolants. Custom LabVIEW software allows automatic control by a laptop PC. We have field tested the instrument to ensure that target performance is sustained in a range of environments. We outline the novel applications underway with the instrument based on an in vivo clinical assessment of oxidative stress.

  8. Manganese(II), iron(II), cobalt(II), and copper(II) complexes of an extended inherently chiral tris-bipyridyl cage.

    PubMed

    Perkins, David F; Lindoy, Leonard F; McAuley, Alexander; Meehan, George V; Turner, Peter

    2006-01-17

    Manganese(II), iron(II), cobalt(II), and copper(II) derivatives of two inherently chiral, Tris(bipyridyl) cages (L and L') of type [ML]-(PF(6))(2)(solvent)(n) and [FeL'](ClO(4))(2) are reported, where L is the hexa-tertiary butyl-substituted derivative of L'. These products were obtained by using the free cage and metal template procedures; the latter involved the reductive amination of the respective Tris-dialdehyde precursor complexes of iron(II), cobalt(II), or nickel(II). Electrochemical, EPR, and NMR studies have been used to probe the nature of the individual complexes. X-ray structures of the manganese(II), iron(II), and copper(II) complexes of L and the iron(II) complex of L' are presented; these are compared with the previously reported structures of the corresponding nickel(II) complex and metal-free cage (L). In each complex the metal cation occupies the cage's central cavity and is coordinated to six nitrogens from the three bipyridyl groups. The cations [MnL](2+) and [FeL](2+) are isostructural but both exhibit a different arrangement of the bound cage to that observed in the corresponding nickel(II) and copper(II) complexes. The latter have an exo-exo arrangement of the bridgehead nitrogen lone pairs, with the metal inducing a triple helical twist that extends approximately 22 A along the axial length of each complex. In contrast, [MnL](2+) and [FeL](2+) have their terminal nitrogen lone pairs directed endo, causing a significant change in the configuration of the bound ligand. In [FeL'](2+), the cage has both bridgehead nitrogen lone pairs orientated exo. Semiempirical calculations indicate that the observed endo-endo and exo-exo arrangements are of comparable energy.

  9. C-12/C-13 Ratio in Ethane on Titan and Implications for Methane's Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Romani, Paul N.; Bjoraker, Gordon L.; Sada, Pedro V.; Nixon, Conor A.; Lunsford, Allen W.; Boyle, Robert J.; Hesman, Brigette E.; McCabe, George H.

    2009-01-01

    The C-12/C-13 abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(sup -1) from high spectral resolution ground-based observations. The value 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The C-12/C-13 ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(l), representing an enrichment of C-12 in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same C-12/C-13 ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

  10. A numerical analysis of heat and mass transfer during the steam reforming process of ethane

    NASA Astrophysics Data System (ADS)

    Tomiczek, Marcin; Kaczmarczyk, Robert; Mozdzierz, Marcin; Brus, Grzegorz

    2017-11-01

    This paper presents a numerical analysis of heat and mass transfer during the steam reforming of ethane. From a chemical point of view, the reforming process of heavy hydrocarbons, such as ethane, is complex. One of the main issue is a set of undesired chemical reactions that causes the deposition of solid carbon and consequently blocks the catalytic property of a reactor. In the literature a carbon deposition regime is selected by thermodynamical analysis to design safe operation conditions. In the case of Computational Fluid Dynamic (CFD, hereafter) models each control volume should be investigated to determinate if carbon deposition is thermodynamically favourable. In this paper the authors combine equilibrium and kinetics analysis to simulate the steam reforming of methane-ethane rich fuel. The results of the computations were juxtaposed with experimental data for methane steam reforming, and good agreement was found. An analysis based on the kinetics of reactions was conducted to predict the influence of temperature drop and non-equilibrium composition on solid carbon deposition. It was found that strong non-uniform temperature distribution in the reactor causes conditions favourable for carbon deposition at the inlet of the reformer. It was shown that equilibrium calculations, often used in the literature, are insufficient.

  11. Frequent sampling allows detection of short and rapid surges of exhaled ethane during cardiac surgery.

    PubMed

    Stenseth, R; Nilsen, T; Haaverstad, R; Vitale, N; Dale, O

    2007-11-01

    During cardiopulmonary bypass (CPB), hypoperfusion and reperfusion may cause oxidative stress and lipid peroxidation that generates ethane. The aim of this pilot study was to assess the feasibility of frequent sampling of exhaled ethane during cardiac surgery. After approval of the Research Ethics Committee, 10 patients undergoing combined aortic valve and coronary artery bypass surgery were enrolled. Breath samples were drawn in the perioperative period and analyzed by a rapid, sensitive and validated gas-chromatographic method. Increased exhaled ethane was regularly seen following sternotomy, after the start of CPB and after aortic clamp removal, whereas no change was seen after termination of bypass. In one patient, the maximum increase in exhaled ethane was 30-fold. Peak durations lasted only 2-4 min. This study demonstrates that frequent sampling of breath ethane is feasible in a clinical setting, allowing detection of rapid ethane surges of short duration.

  12. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  13. Complete biological reductive transformation of tetrachloroethene to ethane.

    PubMed Central

    de Bruin, W P; Kotterman, M J; Posthumus, M A; Schraa, G; Zehnder, A J

    1992-01-01

    Reductive dechlorination of tetrachloroethene (perchloroethylene; PCE) was observed at 20 degrees C in a fixed-bed column, filled with a mixture (3:1) of anaerobic sediment from the Rhine river and anaerobic granular sludge. In the presence of lactate (1 mM) as an electron donor, 9 microM PCE was dechlorinated to ethene. Ethene was further reduced to ethane. Mass balances demonstrated an almost complete conversion (95 to 98%), with no chlorinated compounds remaining (less than 0.5 micrograms/liter). When the temperature was lowered to 10 degrees C, an adaptation of 2 weeks was necessary to obtain the same performance as at 20 degrees C. Dechlorination by column material to ethene, followed by a slow ethane production, could also be achieved in batch cultures. Ethane was not formed in the presence of bromoethanesulfonic acid, an inhibitor of methanogenesis. The high dechlorination rate (3.7 mumol.l-1.h-1), even at low temperatures and considerable PCE concentrations, together with the absence of chlorinated end products, makes reductive dechlorination an attractive method for removal of PCE in bioremediation processes. PMID:1622277

  14. Activation of heteroallenes by coordinatively unsaturated nickel(ii) alkyl complexes supported by the hydrotris(3-phenyl-5-methyl)pyrazolyl borate (Tp(Ph,Me)) ligand.

    PubMed

    Abubekerov, Mark; Eymann, Léonard Y M; Gianetti, Thomas L; Arnold, John

    2016-10-07

    Activation of sulfur containing heteroallenes by nickel(ii) alkyl complexes supported by the bulky hydrotris(3-phenyl-5-methylpyrazolyl)borate (Tp(Ph,Me)) ligand is described. Exposure of Tp(Ph,Me)NiCH2Ph (1a) and Tp(Ph,Me)NiCH2Si(CH3)3 (1b) to CS2 resulted in formation of the insertion products Tp(Ph,Me)Ni(η(2)-CS2)CH2Ph (2a) and Tp(Ph,Me)Ni(η(2)-CS2)CH2Si(CH3)3 (2b) in moderate yields. Reaction of 1a and MeNCS produced two species in a 1 : 1 ratio, identified as Tp(Ph,Me)Ni(η(2)-MeNC)CH2Ph (3) and Tp(Ph,Me)Ni(η(2)-MeNCS)SCH2Ph (4). Isolation of the unexpected insertion product (3) prompted an investigation into the activity of 1a-b in the presence of isocyanides (i.e.(t)BuNC), which resulted in isolation of Tp(Ph,Me)Ni(η(2-t)BuNC)CH2Ph (5a) and Tp(Ph,Me)Ni(η(2-t)BuNC)CH2Si(CH3)3 (5b). Similarly, reaction of 1a with OCS led to the isolation of a rare example of a Ni(i) carbonyl species Tp(Ph,Me)NiCO (6). Alternatively, complex 6 was also formed by exposure of 1a-b to an atmosphere of CO. Isolation of the intermediate species (Tp(Ph,Me)Ni(η(2)-CO)CH2TMS (7b) and Tp(Ph,Me)Ni(CO)(C(O)R, (8a-b) with R = Ph, TMS)) shed light on the formation of such species.

  15. Seasonal variations of temperature, acetylene and ethane in Saturn's atmosphere from 2005 to 2010, as observed by Cassini-CIRS

    NASA Astrophysics Data System (ADS)

    Sinclair, J. A.; Irwin, P. G. J.; Fletcher, L. N.; Moses, J. I.; Greathouse, T. K.; Friedson, A. J.; Hesman, B.; Hurley, J.; Merlet, C.

    2013-07-01

    Acetylene (C2H2) and ethane (C2H6) are by-products of complex photochemistry in the stratosphere of Saturn. Both hydrocarbons are important to the thermal balance of Saturn's stratosphere and serve as tracers of vertical motion in the lower stratosphere. Earlier studies of Saturn's hydrocarbons using Cassini-CIRS observations have provided only a snapshot of their behaviour. Following the vernal equinox in August 2009, Saturn's northern and southern hemispheres have entered spring and autumn, respectively, however the response of Saturn's hydrocarbons to this seasonal shift remains to be determined. In this paper, we investigate how the thermal structure and concentrations of acetylene and ethane have evolved with the changing season on Saturn. We retrieve the vertical temperature profiles and acetylene and ethane volume mixing ratios from Δν˜=15.5cm-1 Cassini-CIRS observations. In comparing 2005 (solar longitude, Ls ˜ 308°), 2009 (Ls ˜ 3°) and 2010 (Ls ˜ 15°) results, we observe the disappearance of Saturn's warm southern polar hood with cooling of up to 17.1 K ± 0.8 K at 1.1 mbar at high-southern latitudes. Comparison of the derived temperature trend in this region with a radiative climate model (Section 4 of Fletcher et al., 2010 and Greathouse et al. (2013, in preparation)) indicates that this cooling is radiative although dynamical changes in this region cannot be ruled out. We observe a 21 ± 12% enrichment of acetylene and a 29 ± 11% enrichment of ethane at 25°N from 2005 to 2009, suggesting downwelling at this latitude. At 15°S, both acetylene and ethane exhibit a decrease in concentration of 6 ± 11% and 17 ± 9% from 2005 to 2010, respectively, which suggests upwelling at this latitude (though a statistically significant change is only exhibited by ethane). These implied vertical motions at 15°S and 25°N are consistent with a recently-developed global circulation model of Saturn's tropopause and stratosphere(Friedson and Moses, 2012), which

  16. CFD Modeling of a Laser-Induced Ethane Pyrolysis in a Wall-less Reactor

    NASA Astrophysics Data System (ADS)

    Stadnichenko, Olga; Snytnikov, Valeriy; Yang, Junfeng; Matar, Omar

    2014-11-01

    Ethylene, as the most important feedstock, is widely used in chemical industry to produce various rubbers, plastics and synthetics. A recent study found the IR-laser irradiation induced ethane pyrolysis yields 25% higher ethylene production rates compared to the conventional steam cracking method. Laser induced pyrolysis is initiated by the generation of radicals upon heating of the ethane, then, followed by ethane/ethylene autocatalytic reaction in which ethane is converted into ethylene and other light hydrocarbons. This procedure is governed by micro-mixing of reactants and the feedstock residence time in reactor. Under mild turbulent conditions, the turbulence enhances the micro-mixing process and allows a high yield of ethylene. On the other hand, the high flow rate only allows a short residence time in the reactor which causes incomplete pyrolysis. This work attempts to investigate the interaction between turbulence and ethane pyrolysis process using large eddy simulation method. The modelling results could be applied to optimize the reactor design and operating conditions. Skolkovo Foundation through the UNIHEAT Project.

  17. High-pressure oxidation of ethane

    DOE PAGES

    Hashemi, Hamid; Jacobsen, Jon G.; Rasmussen, Christian T.; ...

    2017-05-02

    Here, ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate constants for reactions on the C 2H 5O 2more » potential energy surface were adopted from the recent theoretical work of Klippenstein. In the present work, the internal H-abstraction in CH 3CH 2OO to form CH 2CH 2OOH was treated in detail. Modeling predictions were in good agreement with data from the present work as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C 2H 5 + O 2 reaction yields ethylperoxyl rather than C 2H 4 + HO 2, the chain branching sequence CH 3CH 2OO → CH 2CH 2OOH → +O2 OOCH 2CH 2OOH → branching is not competitive, because the internal H-atom transfer in CH 3CH 2OO to CH 2CH 2OOH is too slow compared to thermal dissociation to C 2H 4 and HO 2.« less

  18. Online recording of ethane traces in human breath via infrared laser spectroscopy.

    PubMed

    von Basum, Golo; Dahnke, Hannes; Halmer, Daniel; Hering, Peter; Mürtz, Manfred

    2003-12-01

    A method is described for rapidly measuring the ethane concentration in exhaled human breath. Ethane is considered a volatile marker for lipid peroxidation. The breath samples are analyzed in real time during single exhalations by means of infrared cavity leak-out spectroscopy. This is an ultrasensitive laser-based method for the analysis of trace gases on the sub-parts per billion level. We demonstrate that this technique is capable of online quantifying of ethane traces in exhaled human breath down to 500 parts per trillion with a time resolution of better than 800 ms. This study includes what we believe to be the first measured expirograms for trace fractions of ethane. The expirograms were recorded after a controlled inhalation exposure to 1 part per million of ethane. The normalized slope of the alveolar plateau was determined, which shows a linear increase over the first breathing cycles and ends in a mean value between 0.21 and 0.39 liter-1. The washout process was observed for a time period of 30 min and was modelled by a threefold exponential decay function, with decay times ranging from 12 to 24, 341 to 481, and 370 to 1770 s. Our analyzer provides a promising noninvasive tool for online monitoring of the oxidative stress status.

  19. Ethane in Planetary and Cometary Atmospheres: Transmittance and Fluorescence Models of the nu7 Band at 3.3 Micrometers

    NASA Technical Reports Server (NTRS)

    Villanueva, G. L.; Mumma, M. J.; Magee-Sauer, K.

    2011-01-01

    Ethane and other hydrocarbon gases have strong rovibrational transitions in the 3.3 micron spectral region owing to C-H, CH2, and CH3 vibrational modes, making this spectral region prime for searching possible biomarker gases in extraterrestrial atmospheres (e.g., Mars, exoplanets) and organic molecules in comets. However, removing ethane spectral signatures from high-resolution terrestrial transmittance spectra has been imperfect because existing quantum mechanical models have been unable to reproduce the observed spectra with sufficient accuracy. To redress this problem, we constructed a line-by-line model for the n7 band of ethane (C2H6) and applied it to compute telluric transmittances and cometary fluorescence efficiencies. Our model considers accurate spectral parameters, vibration-rotation interactions, and a functional characterization of the torsional hot band. We integrated the new band model into an advanced radiative transfer code for synthesizing the terrestrial atmosphere (LBLRTM), achieving excellent agreement with transmittance data recorded against Mars using three different instruments located in the Northern and Southern hemispheres. The retrieved ethane abundances demonstrate the strong hemispheric asymmetry noted in prior surveys of volatile hydrocarbons. We also retrieved sensitive limits for the abundance of ethane on Mars. The most critical validation of the model was obtained by comparing simulations of C2H6 fluorescent emission with spectra of three hydrocarbon-rich comets: C/2004 Q2 (Machholz), 8P/Tuttle, and C/2007 W1 (Boattini). The new model accurately describes the complex emission morphology of the nu7 band at low rotational temperatures and greatly increases the confidence of the retrieved production rates (and rotational temperatures) with respect to previously available fluorescence models.

  20. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    PubMed

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Origins and trends in ethane and propane in the United Kingdom from 1993 to 2012

    NASA Astrophysics Data System (ADS)

    Derwent, R. G.; Field, R. A.; Dumitrean, P.; Murrells, T. P.; Telling, S. P.

    2017-05-01

    Continuous, high frequency in situ observations of ethane and propane began in the United Kingdom in 1993 and have continued through to the present day at a range of kerbside, urban background and rural locations. Whilst other monitored C2 - C8 hydrocarbons have shown dramatic declines in concentrations by close to or over an order of magnitude, ethane and propane levels have remained at or close to their 1993 values. Urban ethane sources appear to be dominated by natural gas leakage. Background levels of ethane associated with long range transport are rising. However, natural gas leakage is not the sole source of urban propane. Oil and gas operations lead to elevated propane levels in urban centres when important refinery operations are located nearby. Weekend versus weekday average diurnal curves for ethane and propane at an urban background site in London show the importance of natural gas leakage for both ethane and propane, and road traffic sources for propane. The road traffic source of propane was tentatively identified as arising from petrol-engined motor vehicle refuelling and showed a strong downwards trend at the long-running urban background and rural sites. The natural gas leakage source of ethane and propane in the observations exhibits an upwards trend whereas that in the UK emission inventory trends downwards. Also, inventory emissions for natural gas leakage appeared to be significantly underestimated compared with the observations. In addition, the observed ethane to propane ratio found here for natural gas leakage strongly disagreed with the inventory ratio.

  2. Cloudy with a Chance of Ice: The Stratification of Titan's Vernal Ponds and Formation of Ethane Ice

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Steckloff, J. K.

    2017-12-01

    Cassini ISS observations revealed regions on Saturn's moon Titan that become significantly darker (lower albedo) following storm events [1]. These regions are observed to be topographically low [2], indicating that liquid (predominantly methane-ethane-nitrogen) is pooling on Titan after these storm events. These dark ponds, however, are then observed to significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos [2-3]. We interpret these data to indicate ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical and thermochemical phenomena. Initially, the methane in the mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, relatively more methane than nitrogen leaves the fluid, increasing the relative fraction of nitrogen. This increased nitrogen fraction increases the density of the liquid, as nitrogen is significantly denser than methane or ethane (pure ethane's density is intermediate to that of methane and nitrogen). At around 85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond's surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a binary methane-nitrogen liquid mixture remains

  3. Reactions of O/1D/ with methane and ethane.

    NASA Technical Reports Server (NTRS)

    Lin, C.-L.; Demore, W. B.

    1973-01-01

    Mixtures of nitrous oxide and methane and mixtures of nitrous oxide and ethane were photolyzed with 1849-A light. The reaction products were analyzed chromatographically. It was found that the reaction of the excited atomic oxygen with methane gives mainly CH3 and OH radicals as initial products, along with about 9% of formaldehyde and molecular hydrogen. The reaction of the excited atomic oxygen with ethane gives C2H5, OH, CH3 and CH2OH as major initial products, with only a few per cent of molecular hydrogen.

  4. Biological formation of ethane and propane in the deep marine subsurface.

    PubMed

    Hinrichs, Kai-Uwe; Hayes, John M; Bach, Wolfgang; Spivack, Arthur J; Hmelo, Laura R; Holm, Nils G; Johnson, Carl G; Sylva, Sean P

    2006-10-03

    Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in (13)C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H(2). Production of C(2) and C(3) hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material.

  5. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect.

    PubMed

    Gorham, Katrine A; Sulbaek Andersen, Mads P; Meinardi, Simone; Delfino, Ralph J; Staimer, Norbert; Tjoa, Thomas; Rowland, F Sherwood; Blake, Donald R

    2009-02-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO(2) and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these findings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress.

  6. The abundances of ethane and acetylene in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Knacke, R. F.; Tokunaga, A. T.; Lacy, J. H.; Beck, S.

    1986-01-01

    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter.

  7. The abundances of ethane to acetylene in the atmospheres of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Noll, K. S.; Knacke, R. F.; Tokunaga, A. T.; Lacy, J. H.; Beck, S.; Serabyn, E.

    1986-01-01

    The present determination of the stratospheric abundances of ethane and acetylene on Jupiter and Saturn on the basis of IR spectra near 780/cm uses atmospheric models whose thermal and density profiles have constant mixing ratios. The ratio of ethane to acetylene is noted to be insensitive to model atmosphere assumptions; it is 55 + or - 31 for Jupiter and 23 + or - 12 where model mixing ratios are uniform. Atmospheric model density profiles adapted from theoretical photochemical models are noted to also yield a higher ethane/acetylene ratios for Jupiter.

  8. Intercomparison of infrared cavity leak-out spectroscopy and gas chromatography-flame ionization for trace analysis of ethane.

    PubMed

    Thelen, Sven; Miekisch, Wolfram; Halmer, Daniel; Schubert, Jochen; Hering, Peter; Mürtz, Manfred

    2008-04-15

    Comparison of two different methods for the measurement of ethane at the parts-per-billion (ppb) level is reported. We used cavity leak-out spectroscopy (CALOS) in the 3 microm wavelength region and gas chromatography-flame ionization detection (GC-FID) for the analysis of various gas samples containing ethane fractions in synthetic air. Intraday and interday reproducibilities were studied. Intercomparing the results of two series involving seven samples with ethane mixing ratios ranging from 0.5 to 100 ppb, we found a reasonable agreement between both methods. The scatter plot of GC-FID data versus CALOS data yields a linear regression slope of 1.07 +/- 0.03. Furthermore, some of the ethane mixtures were checked over the course of 1 year, which proved the long-term stability of the ethane mixing ratio. We conclude that CALOS shows equivalent ethane analysis precision compared to GC-FID, with the significant advantage of a much higher time resolution (<1 s) since there is no requirement for sample preconcentration. This opens new analytical possibilities, e.g., for real-time monitoring of ethane traces in exhaled human breath.

  9. A reconnaissance study of 13C-13C clumping in ethane from natural gas

    NASA Astrophysics Data System (ADS)

    Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.

    2018-02-01

    Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new

  10. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.

    PubMed

    Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan

    2018-01-01

    Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min -1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    NASA Technical Reports Server (NTRS)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  12. Ethane-xenon mixtures under shock conditions

    DOE PAGES

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; ...

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  13. Extraction of Peace River bitumen using supercritical ethane

    NASA Astrophysics Data System (ADS)

    Rose, Jeffrey Lawrence

    2000-10-01

    As the supply of conventional crude oil continues to decline, petroleum companies are looking for alternative hydrocarbon sources. The vast reserves of heavy oil and bitumen located in northern Alberta are among the alternatives. The challenge facing engineers is to develop a process for recovering this oil which is economic, efficient and environmentally acceptable. Supercritical fluid extraction is one method being investigated which could potentially meet all of these criteria. In this study, Peace River bitumen was extracted using supercritical ethane. The bitumen was mixed with sand and packed into a semi-batch extractor. Ethane contacted the bitumen/sand mixture and the fraction of the bitumen soluble in the ethane was removed and subsequently collected in a two phase separator. The flow of ethane was such that the experiments were governed by equilibrium and not mass transfer. Experimental temperatures and pressures were varied in order to observe the effect of these parameters on the mass and composition of the extracted material. The extraction yields increased as the temperature decreased and pressure increased. Samples were collected at various time intervals to measure changes in the properties of the extracted bitumen over the duration of the process. As the extraction proceeded, the samples became heavier and more viscous. The bitumen feed was characterised and the experimental data was then modelled using the Peng-Robinson equation of state. The characterisation process involved the distillation of the bitumen into five fractions. The distillation curve and density of each fraction was measured and this data was used in conjunction with correlations to determine the critical properties of the bitumen. Interaction parameters in the equation of state were then optimised until the predicted composition of extracted bitumen matched the experimental results.

  14. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene

    DOE PAGES

    Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...

    2016-02-15

    Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less

  15. Ethane and n-pentane in exhaled breath are biomarkers of exposure not effect

    PubMed Central

    Gorham, Katrine A.; Sulbaek Andersen, Mads P.; Meinardi, Simone; Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Rowland, F. Sherwood; Blake, Donald R.

    2013-01-01

    The relationship of exhaled ethane and n-pentane to exhaled NO, carbonylated proteins, and indoor/outdoor atmospheric pollutants were examined in order to evaluate ethane and n-pentane as potential markers of airway inflammation and/or oxidative stress. Exhaled NO and carbonylated proteins were found to have no significant associations with either ethane (p = 0.96 and p = 0.81, respectively) or n-pentane (p = 0.44 and 0.28, respectively) when outliers were included. In the case where outliers were removed n-pentane was found to be inversely associated with carbonylated proteins. Exhaled hydrocarbons adjusted for indoor hydrocarbon concentrations were instead found to be positively associated with air pollutants (NO, NO2 and CO), suggesting pollutant exposure is driving exhaled hydrocarbon concentrations. Given these find-ings, ethane and n-pentane do not appear to be markers of airway inflammation or oxidative stress. PMID:19283520

  16. Biological formation of ethane and propane in the deep marine subsurface

    PubMed Central

    Hinrichs, Kai-Uwe; Hayes, John M.; Bach, Wolfgang; Spivack, Arthur J.; Hmelo, Laura R.; Holm, Nils G.; Johnson, Carl G.; Sylva, Sean P.

    2006-01-01

    Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in 13C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H2. Production of C2 and C3 hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material. PMID:16990430

  17. Application of laser spectroscopy for measurement of exhaled ethane in patients with lung cancer.

    PubMed

    Skeldon, K D; McMillan, L C; Wyse, C A; Monk, S D; Gibson, G; Patterson, C; France, T; Longbottom, C; Padgett, M J

    2006-02-01

    There is increasing interest in ethane (C(2)H(6)) in exhaled breath as a non-invasive marker of oxidative stress (OS) and thereby a potential indicator of disease. However, the lack of real-time measurement techniques has limited progress in the field. Here we report on a novel Tunable Diode Laser Spectrometer (TDLS) applied to the analysis of exhaled ethane in patients with lung cancer. The patient group (n=52) comprised randomly selected patients presenting at a respiratory clinic. Of these, a sub-group (n=12) was subsequently diagnosed with lung cancer. An age-matched group (n=12) corresponding to the lung cancer group was taken from a larger control group of healthy adults (n=58). The concentration of ethane in a single exhaled breath sample collected from all subjects was later measured using the TDLS. This technique is capable of real-time analysis of samples with accuracy 0.1 parts per billion (ppb), over 10 times less than typical ambient levels in the northern hemisphere. After correcting for ambient background, ethane in the control group (26% smokers) ranged from 0 to 10.54 ppb (median of 1.9 ppb) while ethane in the lung cancer patients (42% smokers) ranged from 0 to 7.6 ppb (median of 0.7 ppb). Ethane among the non-lung cancer patients presenting for investigation of respiratory disease ranged from 0 to 25 ppb (median 1.45 ppb). We conclude that, while the TDLS proved effective for accurate and rapid sample analysis, there was no significant difference in exhaled ethane among any of the subject groups. Comments are made on the suitability of the technique for monitoring applications.

  18. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  19. [Synthesis and study on the interaction of rare earth complexes of N', N-bis(2-pyridinecarboxamide)-1, 2-ethane with DNA].

    PubMed

    Lu, Xiao-Hong; Lin, Qiu-Yue; Hu, Rui-Ding; Liu, Wei-Dong; Feng, Jie

    2007-06-01

    Four rare earth complexes of N', N-bis(2-pyridinecarboxamide)-1, 2-ethane were synthesized and characterized by elemental analysis, conductivity measurement, thermal studies, IR and electronic spectra. The composition of the four complexes is [Ln(H2L)(NO3)2](NO3) x 3H2O (Ln=Sm, Eu, Gd, Tb). Results of spectral measurements indicate that the oxygen of carbonyl and the nitrogen of pyridyl coordinate with Ln(III) respectively, and the NO3- shows bidentate coordination. So the four complexes are 1 : 1 chelated complexes. The interaction between [Sm(H2L) (NO3)2](NO3) x 3H2O and DNA was studied by employing UV-Visible (UV-Vis) spectra, fluorescence spectra and SERS spectra. Experimental results show that with the incremental addition of DNA, the bands at 265 nm show hypochromism accompanied by a small red shift and the binding constant Kb Obtained is 1.24 x 10(5). Meanwhile fluorescence spectra show that the addition of [Sm(H2L) (NO3)2] (NO3) x 3H2O to DNA pretreated with EB causes an appreciable reduction in fluorescence intensity, indicating that the complex competes with ethidium bromide in binding to DNA, and free ethidium bromide increases. The addition of DNA causes the SERS signals of the complex to weaken and the band at 1 282 cm(-1) to disappear, which suggests that the planar pyridine molecule of the ligand may partly be inserted into the double-stranded helix plane in DNA, making pi electronic density of aromatic rings in complex change. The above phenomena indicate that [Sm(H2L) (NO3)] (NO3) x 3H2O interacts intensively with DNA.

  20. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  1. Formation of Core-Shell Ethane-Silver Clusters in He Droplets.

    PubMed

    Loginov, Evgeny; Gomez, Luis F; Sartakov, Boris G; Vilesov, Andrey F

    2017-08-17

    Ethane core-silver shell clusters consisting of several thousand particles have been assembled in helium droplets upon capture of ethane molecules followed by Ag atoms. The composite clusters were studied via infrared laser spectroscopy in the range of the C-H stretching vibrations of ethane. The spectra reveal a splitting of the vibrational bands, which is ascribed to interaction with Ag. A rigorous analysis of band intensities for a varying number of trapped ethane molecules and Ag atoms indicates that the composite clusters consist of a core of ethane that is covered by relatively small Ag clusters. This metastable structure is stabilized due to fast dissipation in superfluid helium droplets of the cohesion energy of the clusters.

  2. trans-Bis(azido-kappaN)bis(pyridine-2-carboxamide-kappa2N1,O2)nickel(II).

    PubMed

    Daković, Marijana; Popović, Zora

    2007-11-01

    In the title compound, [Ni(N(3))(2)(C(6)H(6)N(2)O)(2)], the Ni(II) atom lies on an inversion centre. The distorted octahedral nickel(II) coordination environment contains two planar trans-related N,O-chelating picolinamide ligands in one plane and two monodentate azide ligands perpendicular to this plane. Molecules are linked into a three-dimensional framework by N-H...N hydrogen bonds.

  3. Pond Hockey on Whitmore Lacus: the Formation of Ponds and Ethane Ice Deposits Following Storm Events on Titan

    NASA Astrophysics Data System (ADS)

    Steckloff, Jordan; Soderblom, Jason M.

    2017-10-01

    Cassini ISS observations reveled regions, later identified as topographic low spots (Soderblom et al. 2014, DPS) on Saturn’s moon Titan become significantly darker (lower albedo) following storm events (Turtle et al. 2009, GRL; 2011, Science), suggesting pools of liquid hydrocarbon mixtures (predominantly methane-ethane-nitrogen). However, these dark ponds then significantly brighten (higher albedo relative to pre-storm albedo), before fading to their pre-storm albedos (Barnes et al. 2013 Planet. Sci; Soderblom et al. 2014, DPS). We interpret these data to be the result of ethane ice formation, which cools from evaporation of methane. The formation of ethane ices results from a unique sequence of thermophysical processes. Initially, the methane in the ternary mixture evaporates, cooling the pond. Nitrogen, dissolved primarily in the methane, exsolves, further cooling the liquid. However, because nitrogen is significantly more soluble in cooler methane-hydrocarbon mixtures, the relative concentration of nitrogen in the solution increases as it cools. This increased nitrogen fraction increases the density of the pond, as nitrogen is significantly more dense thane methane or ethane (pure ethane’s density is intermediate to that of methane and nitrogen). At around ~85 K the mixture is as dense as pure liquid ethane. Thus, further evaporative methane loss and cooling at the pond’s surface leads to a chemical stratification, with an increasingly ethane rich epilimnion (surface layer) overlying a methane rich hypolimnion (subsurface layer). Further evaporation of methane from the ethane-rich epilimnion drives its temperature and composition toward the methane-ethane-nitrogen liquidus curve, causing pure ethane ice to precipitate out of solution and settle to the bottom of the pool. This settling would obscure the ethane ice from Cassini VIMS and ISS, which would instead continue to appear as a dark pond on the surface. As the ethane precipitates out completely, a

  4. Ethane C-C clumping in natural gas : a proxy for cracking processes ?

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ferreira, A. A.; Santos Neto, E. V.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is the second-most abundant alkane in most natural gas reservoirs, and is used to produce ethylene for petrochemical industries. It is arguably the simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on Δ13C2H6in natural gas: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that undergo thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; diffusive fractionation; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will control isotopic variations among natural ethanes, but we think it likely that addition of this new isotopic proxy will reveal new insights into the natural chemistry of ethane. We have developed a method to measure the abundance of 13C2H6 in natural samples, using high-resolution mass spectrometry. We define Δ13C2H6 as 1000 . ((13C2H6/12C2H6)measured/(13C2H6/12C2H6)stochastic -1). We studied several suites of natural gas samples and experimentally produced or modified ethane. Natural ethanes, including closely related samples from a single natural gas field, exhibit surprisingly large ranges in Δ13C2H6 (4 ‰ overall; up to 3 ‰ in one gas field). Such ranges cannot be explained by thermodynamic equilibrium at a range of different temperatures, or by diffusive fractionation. Kinetic isotope effects associated with 'cracking' reactions, and/or inheritance of non-equilibrium carbon isotope structures from source organics are more likely causes. We observe a correlation between Δ13C2H6 and the concentration of alkanes other than methane in several suites of natural gases, suggesting the causes of clumped isotope variations are tied to the controls on gas wetness. An experiment examining ethane residual to high-temperature pyrolysis

  5. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation.

    PubMed

    Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S

    2012-01-21

    A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the

  6. Breath ethane as a marker of reactive oxygen species during manipulation of diet and oxygen tension in rats.

    PubMed

    Risby, T H; Jiang, L; Stoll, S; Ingram, D; Spangler, E; Heim, J; Cutler, R; Roth, G S; Rifkind, J M

    1999-02-01

    Breath ethane, O2 consumption, and CO2 production were analyzed in 24-mo-old female Fischer 344 rats that had been fed continuously ad libitum (AL) or restricted 30% of AL level (DR) diets since 6 wk of age. Rats were placed in a glass chamber that was first flushed with air, then with a gas mixture containing 12% O2. After equilibration, a sample of the outflow was collected in gas sampling bags for subsequent analyses of ethane and CO2. The O2 and CO2 levels were also directly monitored in the outflow of the chamber. O2 consumption and CO2 production increased for DR rats. Hypoxia decreased O2 consumption and CO2 production for the AL-fed and DR rats. These changes reflect changes in metabolic rate due to diet and PO2. A significant decrease in ethane generation was found in DR rats compared with AL-fed rats. Under normoxic conditions, breath ethane decreased from 2.20 to 1.61 pmol ethane/ml CO2. During hypoxia the levels of ethane generation increased, resulting in a DR-associated decrease in ethane from 2.60 to 1.90 pmol ethane/ml CO2. These results support the hypothesis that DR reduces the level of oxidative stress.

  7. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    DTIC Science & Technology

    2017-12-13

    Leska; P.T. Charles; B.J. Melde; J.R. Taft, "Electrochemical Detection with Preconcentration: Nitroenergetic Contaminants ," Chemosensors 2, 131...monitoring of contaminants in groundwater: Sorbent development; Naval Research Laboratory: 2013. Analysis of Ethane and Diethylbenzene Bridged Sorbents 7...

  8. Measuring ethane and acetylene in Antarctic ice cores to quantify long-term hydrocarbon emissions from tropical fires

    NASA Astrophysics Data System (ADS)

    Nicewonger, M. R.; Aydin, M.; Prather, M. J.; Saltzman, E. S.

    2017-12-01

    This study examines ethane (C2H6) and acetylene (C2H2) in polar ice cores in order to reconstruct variations in the atmospheric levels of these trace gases over the past 2,000 years. Both of these non-methane hydrocarbons are released from fossil fuel, biofuel, and biomass burning. Ethane, but not acetylene, is also emitted from natural geologic outgassing of hydrocarbons. In an earlier study, we reported ethane levels in Greenland and Antarctic ice cores showing roughly equal contributions from biomass burning and geologic emissions to preindustrial atmospheric ethane levels (Nicewonger et al., 2016). Here we introduce acetylene as an additional constraint to better quantify preindustrial variations in the emissions from these natural hydrocarbon sources. Here we present 30 new measurements of ethane and acetylene from the WDC-06A ice core from WAIS Divide and the newly drilled South Pole ice core (SPICECORE). Ethane results display a gradual decline from peak levels of 110 ppt at 1400 CE to a minimum of 60-80 ppt during 1700-1875 CE. Acetylene correlates with ethane (r2 > 0.4), dropping from peak levels of 35 ppt at 1400 CE to 15-20 ppt at 1875 CE. The covariance between the two trace gases implies that the observed changes are likely caused by decreasing emissions from low latitude biomass burning. We will discuss results from chemical transport modeling and sensitivity tests and the implications for the preindustrial ethane and acetylene budgets.

  9. Hierarchical flower-like nickel(II) oxide microspheres with high adsorption capacity of Congo red in water.

    PubMed

    Zheng, Yingqiu; Zhu, Bicheng; Chen, Hua; You, Wei; Jiang, Chuanjia; Yu, Jiaguo

    2017-10-15

    Monodispersed hierarchical flower-like nickel(II) oxide (NiO) microspheres were fabricated by a facile solvothermal reaction with the assistance of ethanolamine and a subsequent calcination process. The as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms, zeta potential measurement and Fourier transform infrared spectroscopy. Flower-like nickel(II) hydroxide microspheres with uniform diameters of approximate 6.3μm were obtained after the solvothermal reaction. After heat treatment at 350°C, the crystal phase transformed to NiO, but the hierarchical porous structure was maintained. The as-prepared microspheres exhibited outstanding performance for the adsorption of Congo red (CR), an anionic organic dye, from aqueous solution at circumneutral pH. The pseudo-second-order model can make a good description of the adsorption kinetics, while Langmuir model could well express the adsorption isotherms, with calculated maximum CR adsorption capacity of 534.8 and 384.6mgg -1 , respectively, for NiO and Ni(OH) 2 . The adsorption mechanism of CR onto the as-synthesized samples can be mainly attributed to electrostatic interaction between the positively charged sample surface and the anionic CR molecules. The as-prepared NiO microspheres are a promising adsorbent for CR removal in water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Exhaled ethane concentration in patients with cancer of the upper gastrointestinal tract - a proof of concept study.

    PubMed

    Abela, Jo Etienne; Skeldon, Kenneth D; Stuart, Robert C; Padgett, Miles J

    2009-06-01

    There has been growing interest in the measurement of breath ethane as an optimal non-invasive marker of oxidative stress. High concentrations of various breath alkanes including ethane have been reported in a number of malignancies. Our aim was to investigate the use of novel laser spectroscopy for rapid reporting of exhaled ethane and to determine whether breath ethane concentration is related to a diagnosis of upper gastrointestinal malignancy. Two groups of patients were recruited. Group A (n = 20) had a histo-pathological diagnosis of either esophageal or gastric malignancy. Group B (n = 10) was made up of healthy controls. Breath samples were collected from these subjects and the ethane concentration in these samples was subsequently measured to an accuracy of 0.2 parts per billion, ppb. Group A patients had a corrected exhaled breath ethane concentration of 2.3 +/- 0.8 (mean +/- SEM) ppb. Group B patients registered a mean of 3.1 +/- 0.5 ppb. There was no statistically significant difference between the two groups (p = 0.39). In conclusion, concentrations of ethane in collected breath samples were not significantly elevated in upper gastrointestinal malignancy. The laser spectroscopy system provided a reliable and rapid turnaround for breath sample analysis.

  11. Reduction of halogenated ethanes by green rust.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Loughlin, E. J.; Burris, D. R.; Environmental Research

    Green rusts, mixed Fe{sup II}/Fe{sup III} hydroxide minerals present in many suboxic environments, have been shown to reduce a number of organic and inorganic contaminants. The reduction of halogenated ethanes was examined in aqueous suspensions of green rust, both alone and with the addition of Ag{sup I} (AgGR) and Cu{sup II} (CuGR). Hexachloroethane (HCA), pentachloroethane (PCA), 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA), 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), and 1,2-dibromoethane were reduced in the presence of green rust alone, AgGR, or CuGR; only 1,2-dichloroethane and chloroethane were nonreactive. The reduction was generally more rapid for more highly substituted ethanes than for ethanesmore » having fewer halogen groups (HCA > PCA > 1,1,1,2-TeCA > 1,1,1-TCA > 1,1,2,2-TeCA > 1,1,2-TCA > 1,1-DCA), and isomers with the more asymmetric distributions of halogen groups were more rapidly reduced than the isomer with greater symmetry (e.g., 1,1,1-TCA > 1,1,2-TCA). The addition of Ag{sup I} or Cu{sup II} to green rust suspensions resulted in a substantial increase in the rate of halogenated ethane reduction as well as significant differences in the product distributions with respect to green rust alone.« less

  12. Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.

    PubMed

    Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo

    2010-09-09

    Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.

  13. Unusual Coexistence of Nickel(II) and Nickel(IV) in the Quadruple Perovskite Ba 4Ni 2Ir 2O 12 Containing Ir 2NiO 12 Mixed-Metal-Cation Trimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Timothy; Heald, Steve M.; Smith, Mark. D.

    In this paper, the crystal chemistry and magnetic properties of two hexagonal nickel(IV)-containing perovskites, Ba 4Ni 1.94Ir 2.06O 12 and BaNiO 3, are reported. The 12R perovskite, Ba 4Ni 1.94Ir 2.06O 12, possesses an unexpected coexistence of nickel(II) and nickel(IV). This quadruple perovskite structure contains Ir 2NiO 12 mixed-metal-cation units in which direct metal–metal bonding between nickel(IV) and iridium(V) is inferred. Finally, X-ray absorption near-edge spectroscopy and X-ray photoelectron spectroscopy measurements were conducted to confirm the simultaneous presence of nickel(II) and nickel(IV).

  14. Unusual Coexistence of Nickel(II) and Nickel(IV) in the Quadruple Perovskite Ba 4Ni 2Ir 2O 12 Containing Ir 2NiO 12 Mixed-Metal-Cation Trimers

    DOE PAGES

    Ferreira, Timothy; Heald, Steve M.; Smith, Mark. D.; ...

    2018-03-02

    In this paper, the crystal chemistry and magnetic properties of two hexagonal nickel(IV)-containing perovskites, Ba 4Ni 1.94Ir 2.06O 12 and BaNiO 3, are reported. The 12R perovskite, Ba 4Ni 1.94Ir 2.06O 12, possesses an unexpected coexistence of nickel(II) and nickel(IV). This quadruple perovskite structure contains Ir 2NiO 12 mixed-metal-cation units in which direct metal–metal bonding between nickel(IV) and iridium(V) is inferred. Finally, X-ray absorption near-edge spectroscopy and X-ray photoelectron spectroscopy measurements were conducted to confirm the simultaneous presence of nickel(II) and nickel(IV).

  15. Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators.

    PubMed

    Lee, Woong Gi; Kim, Do Hyeong; Jeon, Woo Cheol; Kwak, Sang Kyu; Kang, Seok Ju; Kang, Sang Wook

    2017-04-28

    We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO 3 ) 2 ·6H 2 O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.

  16. Synthesis, structural characterization and DFT calculation on a square-planar Ni(II) complex of a compartmental Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Surajit; Dolai, Malay; Dutta, Arpan; Ali, Mahammad

    2016-12-01

    Reaction of a symmetric compartmental Schiff-base ligand, (H2L) with nickel(II) perchlorate hexahydrate in 1:1 M ratio in methanol gives rise to a mononuclear nickel(II) compound, NiL (1). The compound has been characterized by C, H, N microanalyses and UV-Vis spectra. The single crystal X-ray diffraction studies reveal a square planar geometry around the Ni(II) center. The compound crystallizes in monoclinic system with space group C2/c with a = 21.6425(6), b = 9.9481(3), c = 13.1958(4) Å, β = 107.728(2)°, V = 2706.16(14) Å3 and Z = 4. Ground state DFT optimization and TDDFT calculations on the ligand and complex were performed to get their UV-Vis spectral pattern.

  17. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  18. Thermal Vacuum Testing of Swift XRT Ethane Heat Pipes

    NASA Technical Reports Server (NTRS)

    Kobel, Mark; Ku, Jentung

    2003-01-01

    This paper presents the results obtained from a recent ethane heat pipe program. Three identical ethane heat pipes were tested individually, and then two selected heat pipes were tested collectively in their system configuration. Heat transport, thermal conductance, and non-condensable gas tests were performed on each heat pipe. To gain insight into the reflux operation as seen at spacecraft level ground testing, the test fixture was oriented in a vertical configuration. The system level test included a computer-controlled heater designed to emulate the heat load generated at the thermoelectric cooler interface. The system performance was successfully characterized for a wide range of environmental conditions while staying within the operating limits.

  19. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.

    PubMed

    Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N

    2015-03-01

    Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.

  20. Experimental determination of the kinetics of formation of the benzene-ethane co-crystal and implications for Titan

    NASA Astrophysics Data System (ADS)

    Cable, Morgan L.; Vu, Tuan H.; Hodyss, Robert; Choukroun, Mathieu; Malaska, Michael J.; Beauchamp, Patricia

    2014-08-01

    Benzene is found on Titan and is a likely constituent of the putative evaporite deposits formed around the hydrocarbon lakes. We have recently demonstrated the formation of a benzene-ethane co-crystal under Titan-like surface conditions. Here we investigate the kinetics of formation of this new structure as a function of temperature. We show that the formation process would reach completion under Titan surface conditions in ~18 h and that benzene precipitates from liquid ethane as the co-crystal. This suggests that benzene-rich evaporite basins around ethane/methane lakes and seas may not contain pure crystalline benzene, but instead benzene-ethane co-crystals. This co-crystalline form of benzene with ethane represents a new class of materials for Titan's surface, analogous to hydrated minerals on Earth. This new structure may also influence evaporite characteristics such as particle size, dissolution rate, and infrared spectral properties.

  1. A review of acetylene, ethylene and ethane molecular spectroscopy for planetary applications

    NASA Technical Reports Server (NTRS)

    Maguire, W. C.

    1982-01-01

    Spectroscopic work in acetylene, ethylene and ethane, are of particular interest since the Voyager IRIS observations of Jupiter. Acetylene and ethane but not ethylene were observed in the Jovian spectrum. Two fundamental bands of the observed gases are used to determine the spatial distribution of these hydrocarbons on Jupiter and to illuminate the photochemistry of these species. The 100 to 1000 cm region is discussed and selected examples of current laboratory work are given.

  2. Simulation of ethane steam cracking with severity evaluation

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Aziz, N.

    2016-11-01

    Understanding the influence of operating parameters towards cracking severity is paramount in ensuring optimum operation of an ethylene plant. However, changing the parameters in an actual plant for data collection can be dangerous. Thus, a simulation model for ethane steam cracking furnace is developed using ASPEN Plus for the assessment. The process performance is evaluated with cracking severity factors and main product yields. Three severity factors are used for evaluation due to their ease of measurement, which are methane yield (Ymet), Ethylene-Ethane Ratio (EER) and Propylene-Ethylene Ratio (PER). The result shows that cracking severity is primarily influenced by reactor temperature. Operating the furnace with coil outlet temperature ranging between 850°C to 950°C and steam-to-hydrocarbon ratio of 0.3 to 0.5 has led to optimum main product yield.

  3. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  4. Determination of ethane, pentane and isoprene in exhaled air--effects of breath-holding, flow rate and purified air.

    PubMed

    Lärstad, M A E; Torén, K; Bake, B; Olin, A-C

    2007-01-01

    Exhaled ethane, pentane and isoprene have been proposed as biomarkers of oxidative stress. The objectives were to explore whether ethane, pentane and isoprene are produced within the airways and to explore the effect of different sampling parameters on analyte concentrations. The flow dependency of the analyte concentrations, the concentrations in dead-space and alveolar air after breath-holding and the influence of inhaling purified air on analyte concentrations were investigated. The analytical method involved thermal desorption from sorbent tubes and gas chromatography. The studied group comprised 13 subjects with clinically stable asthma and 14 healthy controls. Ethane concentrations decreased slightly, but significantly, at higher flow rates in subjects with asthma (P = 0.0063) but not in healthy controls. Pentane levels were increased at higher flow rates both in healthy and asthmatic subjects (P = 0.022 and 0.0063 respectively). Isoprene levels were increased at higher flow rates, but only significantly in healthy subjects (P = 0.0034). After breath-holding, no significant changes in ethane levels were observed. Pentane and isoprene levels increased significantly after 20 s of breath-holding. Inhalation of purified air before exhalation resulted in a substantial decrease in ethane levels, a moderate decrease in pentane levels and an increase in isoprene levels. The major fractions of exhaled ethane, pentane and isoprene seem to be of systemic origin. There was, however, a tendency for ethane to be flow rate dependent in asthmatic subjects, although to a very limited extent, suggesting that small amounts of ethane may be formed in the airways.

  5. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.

    PubMed

    Hatzinger, Paul B; Banerjee, Rahul; Rezes, Rachael; Streger, Sheryl H; McClay, Kevin; Schaefer, Charles E

    2017-12-01

    The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.

  6. Ethane and Xenon mixing: density functional theory (DFT) simulations and experiments on Sandia's Z machine

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Root, Seth; Mattsson, Thomas; Cochrane, Kyle

    2012-02-01

    The combination of ethane and xenon is one of the simplest binary mixtures in which bond breaking is expected to play a role under shock conditions. At cryogenic conditions, xenon is often understood to mix with alkanes such as Ethane as if it were also an alkane, but this model is expected to break down at higher temperatures and pressures. To investigate the breakdown, we have performed density functional theory (DFT) calculations on several xenon/ethane mixtures. Additionally, we have performed shock compression experiments on Xenon-Ethane using the Sandia Z - accelerator. The DFT and experimental results are compared to hydrodynamic simulations using different mixing models in the equation of state. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Preliminary scattering kernels for ethane and triphenylmethane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Granada, J. R.; Damián, J. I. Márquez

    2017-09-01

    Two potential cold moderator materials were studied: ethane and triphenylmethane. The first one, ethane (C2H6), is an organic compound which is very interesting from the neutronic point of view, in some respects better than liquid methane to produce subthermal neutrons, not only because it remains in liquid phase through a wider temperature range (Tf = 90.4 K, Tb = 184.6 K), but also because of its high protonic density together with its frequency spectrum with a low rotational energy band. Another material, Triphenylmethane is an hydrocarbon with formula C19H16 which has already been proposed as a good candidate for a cold moderator. Following one of the main research topics of the Neutron Physics Department of Centro Atómico Bariloche, we present here two ways to estimate the frequency spectrum which is needed to feed the NJOY nuclear data processing system in order to generate the scattering law of each desired material. For ethane, computer simulations of molecular dynamics were done, while for triphenylmethane existing experimental and calculated data were used to produce a new scattering kernel. With these models, cross section libraries were generated, and applied to neutron spectra calculation.

  8. Zwitterionic metal carboxylate complexes: In solid state

    NASA Astrophysics Data System (ADS)

    Nath, Bhaskar; Kalita, Dipjyoti; Baruah, Jubaraj B.

    2012-07-01

    A flexible dicarboxylic acid having composition [(CH(o-C5H4N)(p-C6H4OCH2CO2H)2] derived from corresponding bis-phenol reacts with various metal(II) acetates such as manganese(II), cobalt(II) and nickel(II) acetate leads to zwtterionic complexes with compositions [CH(o-C5H4N)(p-C6H4OCH2CO2){p-C6H4OCH2CO2M(H2O)5}].6H2O (where M = Mn, Co, Ni). The complexes are characterised by X-ray crystallography. These complexes have chiral center due to unsymmetric structure conferred to the ligand through coordination at only one carboxylate group of the ligand. In solid state these complexes are racemic.

  9. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    PubMed

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation.

    PubMed

    Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna

    2016-12-01

    This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.

  11. Synthesis and coordination chemistry of 1,1,1-tris-(pyrid-2-yl)ethane.

    PubMed

    Santoro, Amedeo; Sambiagio, Carlo; McGowan, Patrick C; Halcrow, Malcolm A

    2015-01-21

    A new synthesis of 1,1,1-tris(pyrid-2-yl)ethane (L), and a survey of its coordination chemistry, are reported. The complexes [ML2](n+) (M(n+) = Fe(2+), Co(2+), Co(3+), Cu(2+) and Ag(+)), [PdCl2L] and [CuI(L)] have all been crystallographically characterised. Noteworthy results include an unusual square planar silver(i) complex [Ag(L)2]X (X(-) = NO3(-) and SbF6(-)); the oxidative fixation of aerobic CO2 by [CuI(L)] to yield [Cu2I(L)2(μ-CO3)]2[CuI3] and [Cu(CO3)(L)]; and, water/carbonato tape and water/iodo layer hydrogen bonding networks in hydrate crystals of two of the copper(ii) complexes. Cyclic voltammetric data on [Fe(L)2](2+) and [Co(L)2](2+/3+) imply that the peripheral methyl substituent has a weak influence on the ligand field exerted by L onto a coordinated metal ion.

  12. Development of a Flight Instrument for in situ Measurements of Ethane and Methane

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. P.; Sayres, D. S.; Anderson, J. G.

    2015-12-01

    Methane emissions data for natural gas and oil fields have high uncertainty. Better quantifying these emissions is crucial to establish an accurate methane budget for the United States. One obstacle is that these emissions often occur in areas near livestock facilities where biogenic methane abounds. Measuring ethane, which has no biogenic source, along with methane can tease these sources apart. However, ethane is typically measured by taking whole-air samples. This tactic has lower spatial resolution than making in situ measurements and requires the measurer to anticipate the location of emission plumes. This leaves unexpected plumes uncharacterized. Using Re-injection Mirror Integrated Cavity Output Spectroscopy (RIM-ICOS), we can measure both methane and ethane in flight, allowing us to establish more accurate fugitive emissions data that can more readily distinguish between different sources of this greenhouse gas.

  13. The Energy of Substituted Ethanes. Asymmetry Orbitals

    PubMed Central

    Salem, Lionel; Hoffmann, Roald; Otto, Peter

    1973-01-01

    The leading terms in the energy of a general substituted ethane are derived in explicit form as a function of the torsional angle θ, the substituent electronegativities, and their mutual overlaps. The energy is found to be the sum of all four overlaps between pairs of asymmetry orbitals, and satisfies the requisite symmetry properties. PMID:16592060

  14. Role of Confinement on Adsorption and Dynamics of Ethane and an Ethane–CO 2 Mixture in Mesoporous CPG Silica

    DOE PAGES

    Patankar, Sumant; Gautam, Siddharth; Rother, Gernot; ...

    2016-02-10

    It was found that ethane is confined to mineral and organic pores in certain shale formations. Effects of confinement on structural and dynamic properties of ethane in mesoporous controlled pore glass (CPG) were studied by gravimetric adsorption and quasi-elastic neutron scattering (QENS) measurements. The obtained isotherms and scattering data complement each other by quantifying the relative strength of the solid–fluid interactions and the transport properties of the fluid under confinement, respectively. We used a magnetic suspension balance to measure the adsorption isotherms at two temperatures and over a range of pressures corresponding to a bulk density range of 0.01–0.35 g/cmmore » 3. Key confinement effects were highlighted through differences between isotherms for the two pore sizes. A comparison was made with previously published isotherms for CO 2 on the same CPG materials. Behavior of ethane in the smaller pore size was probed further using quasi-elastic neutron scattering. By extracting the self-diffusivity and residence time, we were able to study the effect of pressure and transition from gaseous to supercritical densities on the dynamics of confined ethane. Moreover, a temperature variation QENS study was also completed with pure ethane and a CO 2–ethane mixture. Activation energies extracted from the Arrhenius plots show the effects of CO 2 addition on ethane mobility.« less

  15. Study of ethane level in exhaled breath in patients with age-related macular degeneration: preliminary study.

    PubMed

    Cagini, C; Giordanelli, A; Fiore, T; Giardinieri, R; Malici, B; De Medio, G E; Pelli, M A; De Bellis, F; Capodicasa, E

    2011-01-01

    A variety of factors have been implicated in the pathogenesis of age-related macular degeneration (ARMD), and oxidative stress plays an important role in the onset and progression of the disease. Breath ethane is now considered a specific and non-invasive test for determining and monitoring the trend of lipid peroxidation and free radical-induced damage in vivo. This test provides an index of the patients' overall oxidative stress level. We evaluated the breath ethane concentration in exhaled air in patients with advanced ARMD. In this study, we enrolled 13 patients with advanced ARMD and a control group, and a breath analysis was carried out by gas chromatography. The mean ethane level in the ARMD patients was 0.82 ± 0.93 nmol/l (range: 0.01-2.7 nmol/l) and the mean ethane value in the control group was 0.12 ± 0.02 nmol/l (range: 0.08-0.16 nmol/l). The difference between the values of the 2 groups was statistically significant (p < 0.005). Receiver operating characteristic analysis showed an elevated area under the curve (0.831; 95% CI: 0.634-0.948), with a significance level of p < 0.0014 (area = 0.5). These preliminary results seem to indicate that breath ethane levels are higher in most patients with ARMD. The breath ethane test could thus be a useful method for evaluating the level of oxidative stress in patients with ARMD. To our knowledge, there are no data on this type of analysis applied to ARMD. Copyright © 2011 S. Karger AG, Basel.

  16. Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J.D.; Hudson, H.M.

    1982-05-03

    New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less

  17. Global atmospheric concentrations and source strength of ethane

    NASA Technical Reports Server (NTRS)

    Blake, D. R.; Rowland, F. S.

    1986-01-01

    A study of the variation in ethane (C2H6) concentration between northern and southern latitudes over three years is presented together with a new estimate of its source strength. Ethane concentrations vary from 0.07 to 2 p.p.b.v. (parts per billion by volume) in air samples collected in remote surface locations in the Pacific (latitude 71 N-47 S) in all four seasons between September 1984 and June 1985. The variations are consistent with southerly transport from sources located chiefly in the Northern Hemisphere, further modified by seasonal variations in the strength of the reaction of C2H6 with OH radicals. These global data can be combined with concurrent data for CH4 and the laboratory reaction rates of each with OH to provide an estimate of three months as the average atmospheric lifetime for C2H6 and 13 + or - 3 Mtons for its annual atmospheric release.

  18. Methane, Ethane, and Propane Sensor for Real-time Leak Detection and Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roscioli, Joseph R.; Herndon, Scott; Nelson, David D.

    2017-03-24

    The Phase I effort demonstrated the technical viability of a fast, sensitive, mobile hydrocarbon monitor. The instrument will enable the oil and gas industry, researchers, and regulators to rapidly identify and chemically profile leaks from facilities. This capability will allow operators to quickly narrow down and mitigate probable leaking equipment, minimizing product loss and penalties due to regulatory non-compliance. During the initial development phase, we demonstrated operation of a prototype monitor that is capable of measuring methane, ethane, and propane at sub-part-per-billion sensitivities in 1 second, using direct absorption infrared spectroscopy. To our knowledge, this is the first instrument capablemore » of fast propane measurements at atmospheric concentrations. In addition, the electrical requirements of the monitor have been reduced from the 1,200 W typical of a spectrometer, to <500 W, making it capable of being powered by a passenger vehicle, and easily deployed by the industry. The prototype monitor leverages recent advances in laser technology, using high-efficiency interband cascade lasers to access the 3 μm region of the mid-infrared, where the methane, ethane, and propane absorptions are strongest. Combined with established spectrometer technology, we have achieved precisions below 200 ppt for each compound. This allows the monitor to measure fast plumes from oil and gas facilities, as well as ambient background concentrations (typical ambient levels are 2 ppm, 1.5 ppb, and 0.7 ppb for methane, ethane and propane, respectively). Increases in instrument operating pressure were studied in order to allow for a smaller 125 W pump to be used, and passive cooling was explored to reduce the cooling load by almost 90% relative to active (refrigerated) cooling. In addition, the simulated infrared absorption profiles of ethane and propane were modified to minimize crosstalk between species, achieving <1% crosstalk between ethane and propane

  19. A Novel Pentadentate Coordination Mode for the Carbonato Bridge: Synthesis, Crystal Structure, and Magnetic Behavior of (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)], a New Trinuclear Nickel(II) Carbonato-Bridged Complex with Strong Antiferromagnetic Coupling.

    PubMed

    Escuer, Albert; Vicente, Ramon; Kumar, Sujit B.; Solans, Xavier; Font-Bardía, Mercé; Caneschi, Andrea

    1996-05-22

    The trinuclear complex (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] was obtained by reaction of basic solutions of nickel(II), Medpt (bis(3aminopropyl)methylamine) and thiocyanate ligand with atmospheric CO(2) or by simple reaction with carbonate anion. (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] crystallizes in the triclinic system, space group P&onemacr;, with a = 12.107(5) Å, b = 12.535(7) Å, c = 16.169(9) Å, alpha = 102.69(5) degrees, beta = 92.91(5) degrees, gamma = 118.01(4) degrees, Z = 2, and R = 0.043. The three nickel atoms are asymmetrically bridged by one pentadentate carbonato ligand, which shows a novel coordination mode. The (&mgr;(3)-CO(3))[Ni(3)(Medpt)(3)(NCS)(4)] compound shows a very strong antiferromagnetic coupling. Fit as irregular triangular arrangement gave J(1) = -88.4, J(2) = -57.7, and J(3) = -9.6 cm(-)(1), which is the strongest AF coupling observed to date for Ni(3) compounds. The magnetic behavior of the carbonato bridge is discussed.

  20. Estimates of methane and ethane emissions from the Texas Barnett Shale

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Yacovitch, T.; Petron, G.; Wolter, S.; Conley, S. A.; Hardesty, R. M.; Brewer, A.; Kofler, J.; Newberger, T.; Herndon, S.; Miller, B. R.; Montzka, S. A.; Rella, C.; Crosson, E.; Tsai, T.; Tans, P. P.

    2013-12-01

    The recent development of horizontal drilling technology by the oil and gas industry has dramatically increased onshore U.S. natural gas and oil production in the last several years. This production boom has led to wide-spread interest from the policy and scientific communities in quantifying the climate impact of the use of natural gas as a replacement for coal. Because the primary component of natural gas is methane, a powerful greenhouse gas, natural gas leakage into the atmosphere affects its climate impact. Several recent scientific field studies have focused on using atmospheric measurements to estimate this leakage in different producing basins. Methane can be measured precisely with commercial analyzers, and deployment of such analyzers on aircraft, coupled with meteorological measurements, can allow scientists to estimate emissions from regions of concentrated production. Ethane and other light hydrocarbons, also components of raw gas, can be used as tracers for differentiating natural gas emissions from those of other methane sources, such as agriculture or landfills, which do not contain any non-methane hydrocarbons such as ethane. Here we present results from one such field campaign in the Barnett Shale near Fort Worth, Texas, in March 2013. Several 4-hour flights were conducted over the natural gas and oil production region with a small single-engine aircraft instrumented with analyzers for measuring ambient methane, carbon monoxide, carbon dioxide, and ethane at high frequencies (0.3-1Hz). The aircraft also measured horizontal winds, temperature, humidity, and pressure, and collected whole air samples in flasks analyzed later for several light hydrocarbons. In addition to the aircraft, a ground-based High-Resolution Doppler Lidar was deployed in the basin to measure profiles of horizontal winds and estimate the boundary layer height 24 hours a day over the campaign period. The aircraft and lidar measurements are used together to estimate methane and

  1. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  2. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  3. A co-crystal between benzene and ethane: a potential evaporite material for Saturn’s moon Titan

    PubMed Central

    Maynard-Casely, Helen E.; Hodyss, Robert; Cable, Morgan L.; Vu, Tuan Hoang; Rahm, Martin

    2016-01-01

    Using synchrotron X-ray powder diffraction, the structure of a co-crystal between benzene and ethane formed in situ at cryogenic conditions has been determined, and validated using dispersion-corrected density functional theory calculations. The structure comprises a lattice of benzene molecules hosting ethane molecules within channels. Similarity between the intermolecular interactions found in the co-crystal and in pure benzene indicate that the C—H⋯π network of benzene is maintained in the co-crystal, however, this expands to accommodate the guest ethane molecules. The co-crystal has a 3:1 benzene:ethane stoichiometry and is described in the space group with a = 15.977 (1) Å and c = 5.581 (1) Å at 90 K, with a density of 1.067 g cm−3. The conditions under which this co-crystal forms identify it is a potential that forms from evaporation of Saturn’s moon Titan’s lakes, an evaporite material. PMID:27158505

  4. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    NASA Astrophysics Data System (ADS)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  5. On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations.

    PubMed

    Kazansky, V B; Subbotina, I R; Rane, N; van Santen, R A; Hensen, E J M

    2005-08-21

    The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger molecular adsorption of ethane by the acid-base pairs formed by distantly separated cationic Zn2+ and basic oxygen sites results already at room temperature in strong polarizability of adsorbed ethane and subsequent heterolytic dissociative adsorption at moderate temperatures. In contrast, molecular adsorption of ethane on Ga+ cations is weak. At high temperatures dissociative hydrocarbon adsorption takes place, resulting in the formation of ethyl and hydride fragments coordinating to the cationic gallium species. Whereas in the zinc case a Brønsted acid proton is formed upon ethane dissociation, decomposition of the ethyl fragment on gallium results in gallium dihydride species and does not lead to Brønsted acid protons. This difference in alkane activation has direct consequences for hydrocarbon conversions involving dehydrogenation.

  6. Laser-based trace gas detection of ethane as a result of photo-oxidative damage in chilled cucumber leaves (invited)

    NASA Astrophysics Data System (ADS)

    Santosa, I. E.; Laarhoven, L. J. J.; Harbinson, J.; Driscoll, S.; Harren, F. J. M.

    2003-01-01

    At low temperatures, high light intensity induces strong photooxidative lipid peroxidation in chilling sensitive cucumber leaves. A sensitive laser-based photoacoustic detector was employed to monitor on-line the evolution of ethane, one of the end products of lipid peroxidation. The Δv=2 CO laser operated in the 2.62-4.06 μm infrared wavelength region with a maximum intracavity power of 11 W. In combination with an intracavity placed photoacoustic cell the laser was able to detect ethane down to 0.5 part per billion. Cucumber leaf disks chilled in the light produce ethane; the rate of ethane production depends on the applied temperature, light intensity, and period of chilling.

  7. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  8. Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; DelloRusso, N.; Magee-Sauer, K.; Rettig, T. W.

    1999-01-01

    Ethane and carbon monoxide were detected in a short-period comet of probable Kuiper belt origin. Ethane is substantially less abundant compared with Hyakutake and Hale-Bopp, two comets from the giant-planets region of the solar nebula, suggesting a heliocentric gradient in ethane in pre-cometary ices. It is argued that processing by X-rays from the young sun may be responsible.

  9. Detection of CO and Ethane in Comet 21P/Giacobini-Zinner: Evidence for Variable Chemistry in the Outer Solar Nebula.

    PubMed

    Mumma; DiSanti; Dello Russo N; Magee-Sauer; Rettig

    2000-03-10

    Ethane and carbon monoxide were detected in a short-period comet of probable Kuiper Belt origin. Ethane is substantially less abundant compared with Hyakutake and Hale-Bopp, two comets from the giant-planet region of the solar nebula, suggesting a heliocentric gradient in ethane in precometary ices. It is argued that processing by X-rays from the young Sun may be responsible.

  10. Thermal decomposition pathways of ethane

    NASA Astrophysics Data System (ADS)

    Gordon, Mark S.; Truong, Thanh N.; Pople, John A.

    1986-10-01

    The alternate thermal decomposition pathways for ethane in its ground state have been investigated, using ab initio electronic structure calculations. Single-point energies were obtained at the full MP4/6-311 G ∗∗ level, using 6-31 G ∗ geometries for reactant, products, and transition states. The thermodynamically favored products are ethylene and molecular hydrogen, but a very large barrier (130 kcal/mol) is found for the direct 1,2-elimination of hydrogen. When calculated barriers are taken into account, the lowest-energy process is the homolytic cleavage of the C-C bond to form two methyl radicals.

  11. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    PubMed Central

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  12. Estimation of incremental reactivities for multiple day scenarios: an application to ethane and dimethyoxymethane

    NASA Astrophysics Data System (ADS)

    Stockwell, William R.; Geiger, Harald; Becker, Karl H.

    Single-day scenarios are used to calculate incremental reactivities by definition (Carter, J. Air Waste Management Assoc. 44 (1994) 881-899.) but even unreactive organic compounds may have a non-negligible effect on ozone concentrations if multiple-day scenarios are considered. The concentration of unreactive compounds and their products may build up over a multiple-day period and the oxidation products may be highly reactive or highly unreactive affecting the overall incremental reactivity of the organic compound. We have developed a method for calculating incremental reactivities for multiple days based on a standard scenario for polluted European conditions. This method was used to estimate maximum incremental reactivities (MIR) and maximum ozone incremental reactivities (MOIR) for ethane and dimethyoxymethane for scenarios ranging from 1 to 6 days. It was found that the incremental reactivities increased as the length of the simulation period increased. The MIR of ethane increased faster than the value for dimethyoxymethane as the scenarios became longer. The MOIRs of ethane and dimethyoxymethane increased but the change was more modest for scenarios longer than 3 days. MOIRs of both volatile organic compounds were equal within the uncertainties of their chemical mechanisms by the 5 day scenario. These results show that dimethyoxymethane has an ozone forming potential on a per mass basis that is only somewhat greater than ethane if multiple-day scenarios are considered.

  13. 78 FR 62323 - MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. OR14-1-000] MarkWest Liberty Ethane Pipeline L.L.C.; Notice of Petition for Declaratory Order Take notice that on October 3, 2013...), MarkWest Liberty Ethane Pipeline L.L.C. (MarkWest) filed a petition requesting a declaratory order...

  14. Crystal structures of three co-crystals of 1,2-bis-(pyridin-4-yl)ethane with 4-alk-oxy-benzoic acids: 4-eth-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), 4-n-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and 4-n-but-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1).

    PubMed

    Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki

    2015-11-01

    The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.

  15. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    NASA Astrophysics Data System (ADS)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing

  16. Aminopropyl-functionalized ethane-bridged periodic mesoporous organosilica spheres: preparation and application in liquid chromatography.

    PubMed

    Li, Chun; Di, Bin; Hao, Weiqiang; Yan, Fang; Su, Mengxiang

    2011-01-21

    A synthetic approach for synthesizing spherical aminopropyl-functionalized ethane-bridged periodic mesoporous organosilicas (APEPMOs) is reported. The mesoporous material was prepared by a one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) and 3-aminopropyltriethoxysilane (APTES) using cetyltrimethylammonium chlorine (C(18)TACl) as a template with the aid of a co-solvent (methanol) in basic medium. The APEPMOs were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis. It was shown that this material exhibited spherical morphology, ordered cubic mesostructure and good mechanical strength. The APEPMOs were tested as a potential stationary phase for liquid chromatography (LC) because the column exhibited reduced back pressure. Moreover, they exhibited good chemical stability in basic mobile phase, which can be ascribed to the ethane groups in the mesoporous framework. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. 40 CFR 721.1630 - 1,2-Ethanediol bis(4-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis(2,1-ethanediyl oxy)]bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis (2,1-ethane diyloxy)] bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[[1-[(2-propenyloxy) methyl]-1,2-ethanediyl] bis(oxy)]bis-, bis(4-methylbenzene...

  18. 40 CFR 721.1630 - 1,2-Ethanediol bis(4-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis(2,1-ethanediyl oxy)]bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis (2,1-ethane diyloxy)] bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[[1-[(2-propenyloxy) methyl]-1,2-ethanediyl] bis(oxy)]bis-, bis(4-methylbenzene...

  19. 40 CFR 721.1630 - 1,2-Ethanediol bis(4-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-methylbenzenesulfonate); 2,2-oxybis-ethane bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis(2,1-ethanediyl oxy)]bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[oxybis (2,1-ethane diyloxy)] bis-, bis(4-methylbenzenesulfonate); ethanol, 2,2â²-[[1-[(2-propenyloxy) methyl]-1,2-ethanediyl] bis(oxy)]bis-, bis(4-methylbenzene...

  20. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.

    PubMed

    Porosoff, Marc D; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping; Chen, Jingguang G

    2015-12-14

    The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2 ) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2 ). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2 C-based materials preserve the CC bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Identifying different types of catalysts for CO 2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE PAGES

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; ...

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO 2 have created an opportunity for using both raw materials (shale gas and CO 2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO 2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H 2). The second route is oxidative dehydrogenation which produces ethylene using CO 2 as a softmore » oxidant. The results of this study indicate that the Pt/CeO 2 catalyst shows promise for the production of synthesis gas, while Mo 2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  2. Dechlorination of 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    Whole cells or cell-free extracts of Aerobacter aerogenes catalyze the degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in vitro to at least seven metabolites: 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE); 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD); 1-chloro-2,2-bis(p-chlorophenyl)ethylene (DDMU); 1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMS); unsym-bis(p-chlorophenyl)ethylene (DDNU); 2,2-bis(p-chlorophenyl)acetate (DDA); and 4,4′-dichlorobenzophenone (DBP). The use of metabolic inhibitors together with pH and temperature studies indicated that discrete enzymes are involved. By use of the technique of sequential analysis, the metabolic pathway was shown to be: DDT → DDD →DDMU →DDMS → DDNU → DDA → DBP, or DDT → DDE. Dechlorination was marginally enhanced by light-activated flavin mononucleotide.

  3. The Difference Se Makes: A Bio-Inspired Dppf-Supported Nickel Selenolate Complex Boosts Dihydrogen Evolution with High Oxygen Tolerance.

    PubMed

    Pan, Zhong-Hua; Tao, Yun-Wen; He, Quan-Feng; Wu, Qiao-Yu; Cheng, Li-Ping; Wei, Zhan-Hua; Wu, Ji-Huai; Lin, Jin-Qing; Sun, Di; Zhang, Qi-Chun; Tian, Dan; Luo, Geng-Geng

    2018-06-12

    Inspired by the metal active sites of [NiFeSe]-hydrogenases, a dppf-supported nickel(II) selenolate complex (dppf=1,1'-bis(diphenylphosphino)ferrocene) shows high catalytic activity for electrochemical proton reduction with a remarkable enzyme-like H 2 evolution turnover frequency (TOF) of 7838 s -1 under an Ar atmosphere, which markedly surpasses the activity of a dppf-supported nickel(II) thiolate analogue with a low TOF of 600 s -1 . A combined study of electrochemical experiments and DFT calculations shed light on the catalytic process, suggesting that selenium atom as a bio-inspired proton relay plays a key role in proton exchange and enhancing catalytic activity of H 2 production. For the first time, this type of Ni selenolate-containing electrocatalyst displays a high degree of O 2 and H 2 tolerance. Our results should encourage the development of the design of highly efficient oxygen-tolerant Ni selenolate molecular catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Complexation of imidazopyridine-based cations with a 24-crown-8 ether host: [2]pseudorotaxane and partially threaded structures.

    PubMed

    Moreno-Olivares, Surisadai I; Cervantes, Ruy; Tiburcio, Jorge

    2013-11-01

    A new series of linear molecules derived from 1,2-bis(imidazopyridin-2-yl)ethane can fully or partially penetrate the cavity of the dibenzo-24-crown-8 macrocycle to produce a new family of host-guest complexes. Protonation or alkylation of the nitrogen atoms on the pyridine rings led to an increase in the guest total positive charge up to 4+ and simultaneously generated two new recognition sites (pyridinium motifs) that are in competition with the 1,2-bis(benzimidazole)ethane motif for the crown ether. The relative position of the pyridine ring and the chemical nature of the N-substituent determined the preferred motif and the host-guest complex geometry: (i) for linear guests with relatively bulky groups (i.e., a benzyl substituent), the 1,2-bis(benzimidazole)ethane motif is favored, leading to a fully threaded complex with a [2]pseudorotaxane geometry; (ii) for small substituents, such as -H and -CH3 groups, regardless of the guest shape, the pyridinium motifs are preferred, leading to external partially threaded complexes in a 2:1 host to guest stoichiometry.

  5. The rotational barrier in ethane: a molecular orbital study.

    PubMed

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J

    2012-04-20

    The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  6. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.

    PubMed

    Hatzinger, Paul B; Streger, Sheryl H; Begley, James F

    2015-01-01

    1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to <0.02 μg/L, the Massachusetts state Maximum Contaminant Level (MCL), in microcosms that received ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota.

    PubMed

    Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm

    2017-05-02

    Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.

  8. Size-selective separation of polydisperse gold nanoparticles in supercritical ethane.

    PubMed

    Williams, Dylan P; Satherley, John

    2009-04-09

    The aim of this study was to use supercritical ethane to selectively disperse alkanethiol-stabilized gold nanoparticles of one size from a polydisperse sample in order to recover a monodisperse fraction of the nanoparticles. A disperse sample of metal nanoparticles with diameters in the range of 1-5 nm was prepared using established techniques then further purified by Soxhlet extraction. The purified sample was subjected to supercritical ethane at a temperature of 318 K in the pressure range 50-276 bar. Particles were characterized by UV-vis absorption spectroscopy, TEM, and MALDI-TOF mass spectroscopy. The results show that with increasing pressure the dispersibility of the nanoparticles increases, this effect is most pronounced for smaller nanoparticles. At the highest pressure investigated a sample of the particles was effectively stripped of all the smaller particles leaving a monodisperse sample. The relationship between dispersibility and supercritical fluid density for two different size samples of alkanethiol-stabilized gold nanoparticles was considered using the Chrastil chemical equilibrium model.

  9. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    PubMed

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Laboratory spectra of C-13 ethane

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Reuter, Dennis C.; Jennings, Donald E.; Hillman, John J.

    1991-01-01

    The laboratory infrared spectrum of C-13 monosubstituted ethane has been obtained at high resolution (0.0025/cm) using the McMath Fourier transform spectrometer at Kitt Peak National Observatory in May 1990. A preliminary analysis of the nu12 rQ0 branch (substituted species) suggests that its intensity is 1.15 + or - 0.05 times stronger than the equivalent nu9 branch in the normal (C-12)2H6 species. This result leads to a correction of a previously published estimate for the C-12/C-13 ratio in the atmosphere of Jupiter from about 94 to about 106.

  11. Tantallacyclopentadiene as a unique metal-containing diene ligand coordinated to nickel for preparing tantalum-nickel heterobimetallic complexes.

    PubMed

    Laskar, Payel; Yamamoto, Keishi; Srinivas, Anga; Mifleur, Alexis; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi

    2017-10-03

    A mononuclear tantallacyclopentadiene complex, TaCl 3 (C 4 H 2 tBu 2 ) (3), serves as a unique ligand to nickel: the addition of Ni(COD) 2 to 3 selectively afforded heterobimetallic Ta-Ni complex 4. The cyclooctadiene ligand bound to the nickel center in complex 4 was readily substituted by monodentate and bidentate phosphine ligands, such as dimethylphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and 1,2-bis(diethylphosphino)ethane, to give the corresponding phosphine complexes 5, 6a, and 6b. We also examined a ligand substitution reaction with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to produce the corresponding Ta-Ni complex 7. These newly prepared Ta-Ni heterobimetallic complexes were characterized spectroscopically together with the crystal structures of 4, 6a, and 7.

  12. The solubility of ethane in aqueous solutions of sodium 1-pentanesulfonate, sodium 1-hexanesulfonate, sodium 1-heptanesulfonate, and sodium 1-octanesulfonate at 25 degrees C.

    PubMed

    Calhoun, A R; King, A D

    2007-05-15

    Measurements have been made to determine the solubility of ethane, C2H6, in aqueous solutions of four different surfactants of the linear alkanesulfonate class at 25 degrees C. The surfactants, sodium 1-pentanesulfonate, sodium 1-hexanesulfonate, sodium 1-heptanesulfonate, and sodium 1-octanesulfonate, all share a common head group (-SO-3) and counter ion (Na+), and differ only in the length of the alkyl chain attached to the head group. The solubility of ethane has been determined as a function of surfactant concentration for each surfactant. At surfactant concentrations below the critical micelle concentration (CMC), the solubility of ethane is quite low and differs only slightly from the solubility of ethane in pure water. At concentrations greater than the CMC, the solubility of ethane exhibits a gradual increase with surfactant concentration. At high surfactant concentrations, well in excess of the CMC, the solubility of ethane is found to increase as a linear function of surfactant concentration. From this data it becomes possible to determine the fractional population of the surfactant in the free and micellized states. The solubility data measured for ethane is interpreted in terms of the mass-action model for micelle formation.

  13. NTP Renal Toxicity Studies of Selected Halogenated Ethanes Administered by Gavage to F344/N Rats.

    PubMed

    1996-02-01

    The National Cancer Institute and National Toxicology Program have performed 2-year toxicology and carcinogenesis studies with a number of ethanes substituted with chlorine or bromine. A review of the results of studies with these halogenated ethanes has revealed several consistencies between the pattern of halogen substitution and neoplastic responses in some affected organs. One of these consistencies was the finding of a modest increase in the incidence of renal tubule cell neoplasms in male rats administered penta- or hexachloroethane. Certain aspects of the nephropathy also noted in these studies resembled what is now recognized as a distinct hyaline droplet nephropathy typically associated with the accumulation of alpha[alpha]2&mgr;-globulin in renal tubule cells. In an attempt to determine some of the structure activity relationships involved in the induction of hyaline droplet nephropathy by halogenated ethanes, a series of commercially available ethanes substituted with three or more chlorines, four or more bromines, or a combination of chlorines and fluorines was studied in a short-term renal toxicity assessment in male F344/N rats. All chemicals were administered by gavage in corn oil to groups of five male rats once daily for 21 days. The doses selected for study, 0.62 and 1.24 mmol/kg per day, were based on those used in the 2-year pentachloroethane studies. The following chemicals were evaluated: 1,1,1,2- and 1,1,2,2-tetrachloroethane; pentachloroethane; 1,1,2,2-tetrachloro1,2-difluoroethane; 1,1,1-trichloro-2,2,2-trifluoroethane; 1,2-dichloro-1,1-difluoroethane; 1,1,1-trichloroethane; hexachloroethane; 1,1,1,2-and 1,1,2,2-tetrabromoethane; and pentabromoethane. Evaluations included survival, mean body weight gains, clinical signs, organ weights, urinalysis, and histopathologic examination of the right kidney and liver. The kidneys of rats that showed a difference in renal protein droplet accumulation compared to the controls were evaluated for

  14. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    PubMed

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of additives on the volatility of elements in a DC arc during the atomic emission analysis of nickel(II) oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.

    1986-10-20

    The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.

  16. Quadrupole type mass spectrometric study of the abstraction reaction between hydrogen atoms and ethane.

    PubMed

    Bayrakçeken, Fuat

    2008-02-01

    The reactions of photochemically generated deuterium atoms of selected initial translational energy with ethane have been investigated. At each initial energy the relative probability of the atoms undergoing reaction or energy loss on collision with ethane was investigated, and the phenomenological threshold energy was measured as 30+/-5kJmol(-1) for the abstraction from the secondary C-H bonds. The ratio of relative yields per bond, secondary:primary was approximately 3 at the higher energies studied. The correlation of threshold energies with bond dissociation energies, heats of reaction and activation energies is discussed for abstraction reactions with several hydrocarbons.

  17. Crystal structure of 1-meth-oxy-2,2,2-tris-(pyrazol-1-yl)ethane.

    PubMed

    Lyubartseva, Ganna; Parkin, Sean; Coleman, Morgan D; Mallik, Uma Prasad

    2014-09-01

    The title compound, C12H14N6O, consists of three pyrazole rings bound via nitro-gen to the distal ethane carbon of meth-oxy ethane. The dihedral angles between the three pyrazole rings are 67.62 (14), 73.74 (14), and 78.92 (12)°. In the crystal, mol-ecules are linked by bifurcated C-H,H⋯N hydrogen bonds, forming double-stranded chains along [001]. The chains are linked via C-H⋯O hydrogen bonds, forming a three-dimensional framework structure. The crystal was refined as a perfect (0.5:0.5) inversion twin.

  18. THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...

  19. Ethane-1,1,2-trisphosphonic acid hemihydrate.

    PubMed

    Delain-Bioton, Lise; Lohier, Jean François; Villemin, Didier; Sopková-de Oliveira Santos, Jana; Hix, Gary; Jaffrès, Paul Alain

    2008-02-01

    Ethane-1,1,2-trisphosphonic acid crystallizes as a hemihydrate, C(2)H(9)O(9)P(3).0.5H(2)O, in which the water O atom lies on an inversion centre in the space group P2(1)/c. The acid component, which contains a short but noncentred O-H...O hydrogen bond, adopts a gauche conformation. The acid components are linked by an extensive series of O-H...O hydrogen bonds to form layers, which are linked into pairs by the water molecules.

  20. Synthesis and characterization of Ni(II) complex with 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Latifah M.; Yusoff, Siti Fairus M.; Ismail, Wafiuddin

    Nickel(II) complex have been synthesized by treating a 14-membered ring tetraaza macrocyclic compound, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium, bromide (Me{sub 6}N{sub 4}H{sub 4})Br{sub 2} with nickel acetate in metanol. The complex was characterized using elemental analysis, Fourier Transform Infrared (FTIR), Ultraviolet-Visible (UV-Vis), and single crystal diffraction (X-ray). The nickel atom coordinates through four nitrogen atoms in the ligand. Square planar geometry has been proposed for this complex.

  1. In situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA.

    PubMed

    Arzumanov, Sergei S; Gabrienko, Anton A; Freude, Dieter; Stepanov, Alexander G

    2009-04-01

    Ethane conversion into aromatic hydrocarbons over Zn-modified zeolite BEA has been analyzed by high-temperature MAS NMR spectroscopy. Information about intermediates (Zn-ethyl species) and reaction products (mainly toluene and methane), which were formed under the conditions of a batch reactor, was obtained by (13)C MAS NMR. Kinetics of the reaction, which was monitored by (1)H MAS NMR in situ at the temperature of 573K, provided information about the reaction mechanism. Simulation of the experimental kinetics within the frames of the possible kinetic schemes of the reaction demonstrates that a large amount of methane evolved under ethane aromatization arises from the stage of direct ethane hydrogenolysis.

  2. Process for the preparation of methane and/or ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.

    1981-09-22

    According to Shell, methane and ethane can be produced from a C/sub 2/-C/sub 4/ paraffin feed stream (such as the by-product of mineral-oil production) by contacting the stream with certain crystalline silicates at temperatures of 800/sup 0/-1200/sup 0/F and 145 psi pressure. The crystalline silicates must be specially prepared to obtain the required characteristics.

  3. Synthesis and characterization of carbazolide-based iridium PNP pincer complexes. Mechanistic and computational investigation of alkene hydrogenation: evidence for an Ir(III)/Ir(V)/Ir(III) catalytic cycle.

    PubMed

    Cheng, Chen; Kim, Bong Gon; Guironnet, Damien; Brookhart, Maurice; Guan, Changjian; Wang, David Y; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-05-07

    New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.

  4. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2 , Methane, and Ethane

    DOE PAGES

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...

    2016-07-20

    We report here a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2−4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO2, methane, and ethane as well as 0−100% mole ratios of methane/CO2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO2, while methane MMPs were ca. double or triple those with CO2. MMPs with mixed methane/CO2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with

  5. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2, Methane, and Ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu

    Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with

  6. Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO 2, Methane, and Ethane

    DOE PAGES

    Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...

    2016-07-10

    Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with

  7. Understanding oxidative dehydrogenation of ethane on Co 3O 4 nanorods from density functional theory

    DOE PAGES

    Fung, Victor; Tao, Franklin; Jiang, De-en

    2016-05-20

    Co 3O 4 is a metal oxide catalyst with weak, tunable M–O bonds promising for catalysis. Here, density functional theory (DFT) is used to study the oxidative dehydrogenation (ODH) of ethane on Co 3O 4 nanorods based on the preferred surface orientation (111) from the experimental electron-microscopy image. The pathway and energetics of the full catalytic cycle including the first and second C–H bond cleavages, hydroxyl clustering, water formation, and oxygen-site regeneration are determined. We find that both lattice O and Co may participate as active sites in the dehydrogenation, with the lattice-O pathway being favored. Here, we identify themore » best ethane ODH pathway based on the overall energy profiles of several routes. We identify that water formation from the lattice oxygen has the highest energy barrier and is likely a rate-determining step. This work of the complete catalytic cycle of ethane ODH will allow further study into tuning the surface chemistry of Co 3O 4 nanorods for high selectivity of alkane ODH reactions.« less

  8. Effect of maximal dynamic exercise on exhaled ethane and carbon monoxide levels in human, equine, and canine athletes.

    PubMed

    Wyse, Cathy; Cathcart, Andy; Sutherland, Rona; Ward, Susan; McMillan, Lesley; Gibson, Graham; Padgett, Miles; Skeldon, Kenneth

    2005-06-01

    Exercise-induced oxidative stress (EIOS) refers to a condition where the balance of free radical production and antioxidant systems is disturbed during exercise in favour of pro-oxidant free radicals. Breath ethane is a product of free radical-mediated oxidation of cell membrane lipids and is considered to be a reliable marker of oxidative stress. The heatshock protein, haem oxygenase, is induced by oxidative stress and degrades haemoglobin to bilirubin, with concurrent production of carbon monoxide (CO). The aim of this study was to investigate the effect of maximal exercise on exhaled ethane and CO in human, canine, and equine athletes. Human athletes (n = 8) performed a maximal exercise test on a treadmill, and canine (n = 12) and equine (n = 11) athletes exercised at gallop on a sand racetrack. Breath samples were taken at regular intervals during exercise in the human athletes, and immediately before and after exercise in the canine and equine athletes. Breath samples were stored in gas-impermeable bags for analysis of ethane by laser spectroscopy, and CO was measured directly using an electrochemical CO monitor. Maximal exercise was associated with significant increases in exhaled ethane in the human, equine, and canine athletes. Decreased concentrations of exhaled CO were detected after maximal exercise in the human athletes, but CO was rarely detectable in the canine and equine athletes. The ethane breath test allows non-invasive and real-time detection of oxidative stress, and this method will facilitate further investigation of the processes mediating EIOS in human and animal athletes.

  9. Atmospheric pressure ionization of chlorinated ethanes in ion mobility spectrometry and mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, Robert G.; Atkinson, David A.; Benson, Michael T.

    2015-05-16

    This study investigates the APCI mechanisms associated with chlorinated ethanes in an attempt to define conditions under which unique pseudo-molecular adducts, in addition to chloride ion, can be produced for analytical measurements using IMS and MS. The ionization chemistry of chlorinated compounds typically leads to the detection of only the halide ions. Using molecular modeling, which provides insights into the ion formation and relative binding energies, predictions for the formation of pseudo-molecular adducts are postulated. Predicted structures of the chloride ion with multiple hydrogens on the ethane backbone was supported by the observation of specific pseudo-molecular adducts in IMS andmore » MS spectra. With the proper instrumental conditions, such as short reaction times and low temp.« less

  10. Efficient 1.5-μm Raman generation in ethane-filled hollow-core fiber

    NASA Astrophysics Data System (ADS)

    Chen, Yubin; Gu, Bo; Wang, Zefeng; Lu, Qisheng

    2016-11-01

    We demonstrated for the first time a novel and effective method for obtaining both high peak-power and narrow linewidth 1.5 μm fiber sources through gas Raman effect in hollow core fibers. An Ethane-filled ice-cream antiresonance hollow-core fiber is pumped with a high peak-power pulse 1064 nm microchip laser, generating 1552.7 nm Stokes wave by pure vibrational stimulated Raman scattering of ethane molecules. A maximum peak-power of about 400 kW is achieved with 6 meter fiber length at 2 bar pressure, and the linewidth is about 6.3 GHz. The maximum Raman conversion efficiency of 1064 nm to 1552.7 nm is about 38%, and the corresponding laser slope efficiency is about 61.5%.

  11. Ethane ocean on Titan

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Stevenson, D. J.; Yung, Y.L.

    1983-01-01

    Voyager I radio occultation data is employed to develop a qualitative model of an ethane ocean on Titan. It is suggested that the ocean contains 25 percent CH4 and that the ocean is in dynamic equilibrium with an N2 atmosphere. Previous models of a CH4 ocean are discounted due to photolysis rates of CH4 gas. Tidal damping of Titan's orbital eccentricity is taken as evidence for an ocean layer approximately 1 km deep, with the ocean floor being covered with a solid C2H2 layer 100 to 200 m thick. The photolytic process disrupting the CH4, if the estimates of the oceanic content of CH4 are correct, could continue for at least one billion years. Verification of the model is dependent on detecting CH4 clouds in the lower atmosphere, finding C2H6 saturation in the lower troposphere, or obtaining evidence of a global ocean.

  12. Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing.

    PubMed

    Redmond, Molly C; Valentine, David L; Sessions, Alex L

    2010-10-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.

  13. The biological fate of decabromodiphenyl ethane following oral, dermal or intravenous administration

    EPA Science Inventory

    1. The disposition of decabromodiphenyl ethane (DBDPE) was investigated based on concerns over its structural similarities to decaBDE, high potential for environmental persistence & bioaccumulation, and high production volume. 2. In the present study, female Sprague Dawley rats w...

  14. Increased levels of ethane, a non-invasive, quantitative, direct marker of n-3 lipid peroxidation, in the breath of patients with schizophrenia.

    PubMed

    Puri, Basant K; Ross, Brian M; Treasaden, Ian H

    2008-04-01

    This study directly assessed whether there was a change in the level of exhaled ethane, which provides a non-invasive, quantitative, direct measure of n-3 lipid peroxidation, in the breath of patients with schizophrenia. Samples of alveolar air were obtained from 20 subjects with schizophrenia and 23 age- and sex-matched healthy control subjects. The air samples were analyzed for ethane using mass spectrometry. The mean level of ethane in the schizophrenia sample [5.15 (S.E. 0.56) ppb] was significantly higher than that of the healthy controls [2.63 (S.E. 0.31) ppb; p<0.0005]. A further sub-analysis showed that nicotine dependence was unlikely to be the cause of this difference. These results suggest that the measurement of exhaled ethane levels may offer a non-invasive direct biomarker of increased n-3 lipid peroxidation in schizophrenia.

  15. The biological fate of decabromodiphenyl ethane following ...

    EPA Pesticide Factsheets

    1. The disposition of decabromodiphenyl ethane (DBDPE) was investigated based on concerns over its structural similarities to decaBDE, high potential for environmental persistence & bioaccumulation, and high production volume. 2. In the present study, female Sprague Dawley rats were administered a single dose of [14C]-DBDPE by oral, topical, or IV routes. Another set of rats were administered 10 daily oral doses of 14C]-DBDPE. Male B6C3F1/Tac mice were administered a single oral dose.3. DBDPE was poorly absorbed following oral dosing, with 95% of administered [14C]-radioactivity recovered in the feces, 1% recovered in the urine and less than 3% in the tissues at 72 h. DBDPE excretion was similar in male mice and female rats. Accumulation of [14C]-DBDPE was observed in liver and the adrenal gland after 10 daily oral doses.4. The dermis acted as a depot for dermally applied DBDPE; conservative estimates predict approx. 14 ± 8% of DBDPE may be absorbed into human skin in vivo; approx. 7 ± 4% of the parent chemical is expected to reach systemic circulation following continuous exposure (24 h). 5. Following intravenous administration, 6% of the dose was recovered in urine and 28% in the feces, while ~70% of the dose remained in tissues after 72 hours, with the highest concentrations found in the liver (42%) and lung (17%). Decabromodiphenyl ethane (DBDPE) is an additive brominated flame retardant used in a variety commercial products. It has been detected in indo

  16. Photoinduced ethane formation from reaction of ethene with matrix-isolated Ti, V, or Nb atoms.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2005-10-27

    The reactions of matrix-isolated Ti, V, or Nb atoms with ethene (C(2)H(4)) have been studied by FTIR absorption spectroscopy. Under conditions where the ethene dimer forms, metal atoms react with the ethene dimer to yield matrix-isolated ethane (C(2)H(6)) and methane. Under lower ethene concentration conditions ( approximately 1:70 ethene/Ar), hydridic intermediates of the types HMC(2)H(3) and H(2)MC(2)H(2) are also observed, and the relative yield of hydrocarbons is diminished. Reactions of these metals with perdeuterioethene, and equimolar mixtures of C(2)H(4) and C(2)D(4), yield products that are consistent with the production of ethane via a metal atom reaction involving at least two C(2)H(4) molecules. The absence of any other observed products suggests the mechanism also involves production of small, highly symmetric species such as molecular hydrogen and metal carbides. Evidence is presented suggesting that ethane production from the ethene dimer is a general photochemical process for the reaction of excited-state transition-metal atoms with ethene at high concentrations of ethene.

  17. Shock tube measurements of growth constants in the branched-chain ethane-carbon monoxide-oxygen system

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Brabbs, T. A.; Snyder, C. A.

    1985-01-01

    Exponential free radical growth constants have been measured for ethane carbon monoxide oxygen mixtures by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 1700 K. The data were analyzed using an ethane oxidation mechanism involving seven elementary reaction steps. Calculated growth constants were close to experimental values at lower temperatures, up to about 1400 K, but at higher temperatures computed growth constants were considerably smaller than experiment. In attempts to explain these results additional branching reactions were added to the mechanism. However, these additional reactions did not appreciably change calculated growth constants.

  18. Syntheses, solid state and solution structures of the palladium(II) complexes of malonamide-derived open-chain and macrocyclic ligands.

    PubMed

    Gavrish, Sergey P; Lampeka, Yaroslaw D; Pritzkow, Hans; Lightfoot, Philip

    2010-09-07

    The crystal structures of the palladium(II) complexes of the open-chain and macrocyclic ligands PdL(1).3H(2)O, PdL(2).6H(2)O and PdL(3).5H(2)O have been determined (H(2)L(1) = 1,4,8,11-tetraazaundecane-5,7-dione, H(2)L(2) = 1,4,8,11-tetraazacyclotetradecane-5,7-dione, H(2)L(3) = 1,4,8,11-tetraazacyclotridecane-5,7-dione). The coordination polyhedra of the palladium(II) ions in all complexes are formed by two deprotonated amide and two amine donors with Pd-N distances being similar in PdL(1) and PdL(2) and substantially shorter in PdL(3). A detailed analysis of the (1)H NMR spectra of the macrocyclic complexes supports the formation in aqueous solution of only N-meso isomers of both compounds in agreement with the X-ray data. The spectra of the palladium(II) macrocyclic complexes are shifted downfield as a whole as compared to those of the nickel(II) analogues with the shifts being essentially non-uniform. The latter feature can be related to the differences in magnetic anisotropy of the M-N bonds. The maxima of d-d absorption bands of the palladium(II) complexes demonstrate weaker dependence on the macrocycle size as compared to those of the nickel(II) analogues. Both macrocyclic compounds PdL(2).6H(2)O and PdL(3).5H(2)O are characterized by lamellar crystal structures consisting of interleaved layers formed by macrocyclic units and by water molecules with similar metal complex layers and different 2D water sheets. A columnar crystal structure is inherent for PdL(1).3H(2)O with the water molecules present as discrete (H(2)O)(3) clusters.

  19. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan

    2013-05-01

    Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.

  20. N-(2,2-Dimethyl-1-(quinolin-2-yl)propylidene) arylaminonickel Complexes and Their Ethylene Oligomerization.

    PubMed

    Suo, Hongyi; Zhao, Tong; Wang, Yiqing; Ban, Qing; Sun, Wen-Hua

    2017-04-13

    A series of N -(2,2-dimethyl-1-(quinolin-2-yl)propylidene) arylamines was sophisticatedly synthesized and reacted with nickel(II) bromine for the formation of the corresponding nickel complexes. All the organic compounds were characterized by IR, NMR spectra and elemental analysis, while all the nickel complexes were characterized by IR spectra and elemental analysis. On activation with ethylaluminium sesquichloride (EASC) and modified methylaluminoxane (MMAO), all nickel precatalysts exhibited good activities toward ethylene oligomerization, indicating the positive efficiency of gem-dimethyl substitutents; in which major hexenes were obtained with MMAO. The catalytic parameters were verified, and the steric and electronic influences of substituents with ligands were observed, with a slight change of activities under different ethylene pressures.

  1. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance.

    PubMed

    Ross, Brian M; Maxwell, Ross; Glen, Iain

    2011-03-30

    Oxidative stress has been reported to be elevated in mental illness. Preliminary evidence suggests this phenomenon can be assessed non-invasively by determining breath levels of the omega-3 polyunsaturated fatty acid (PUFA) oxidation product ethane. This study compares alkane levels in chronic, medicated, patients with schizophrenia or bipolar disorder with those in healthy controls. Both ethane and butane levels were significantly increased in patients with schizophrenia or bipolar disorder, although elevated butane levels were likely due to increased ambient gas concentrations. Ethane levels were not correlated with symptom severity or with erythrocyte omega-3 PUFA levels. Our results support the hypothesis that oxidative stress is elevated in patients with schizophrenia and bipolar disorder leading to increased breath ethane abundance. This does not appear to be caused by increased abundance of omega-3 PUFA, but rather is likely due to enhanced oxidative damage of these lipids. As such, breath hydrocarbon analysis may represent a simple, non-invasive means to monitor the metabolic processes occurring in these disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Photoabsorption cross sections of methane and ethane, 1380-1600 A, at T equals 295 K and T equals 200 K. [in Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Moos, H. W.

    1978-01-01

    Photoabsorption cross sections of methane and ethane have been determined in the wavelength range from 1380 to 1600 A at room (295 K) and dry-ice (200 K) temperatures. It is found that the room-temperature ethane data are in excellent agreement with the older measurements of Okabe and Becker (1963) rather than with more recent determinations and that a small systematic blueshift occurs at the foot of the molecular absorption edges of both gases as the gases are cooled from room temperature to 200 K, a value close to the actual temperature of the Jovian atmosphere. It is concluded that methane photoabsorption will dominate until its cross section is about 0.01 that of ethane, which occurs at about 1440 A, and that ethane should be the dominant photoabsorber in the Jovian atmosphere in the region from above 1440 A to not farther than 1575 A.

  3. Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.; Kirshtein, J.D.

    2006-01-01

    A study was carried out to develop a culture of microorganisms for bioaugmentation treatment of chlorinated-ethane contaminated groundwater at sites where dechlorination is incomplete or rates are too slow for effective remedation. Mixed cultures capable of dechlorinating chlorinated ethanes and ethenes were enriched from contaminated wetland sediment at Aberdeen Proving Ground (APG) Maryland. The West Branch Consortium (WBC-2) was capable of degrading 1,1,2,2-tetrachloroethane (TeCA), trichloroethylene (TCE), cis and trans 1,2-dichloroethylene (DCE), 1,1,2-trichloroethane (TCA), 1,2-dichloroethane, and vinyl chloride to nonchlorinated end products ethylene and ethane. WBC-2 dechlorinated TeCA, TCA, and cisDCE rapidly and simultaneously. Methanogens in the consortium were members of the class Methanomicrobia, which includes acetoclastic methanogens. The WBC-2 consortium provides opportunities for the in situ bioremediation of sites contaminated with mixtures of chlorinated ethylenes and ethanes.

  4. 3-Amino­benzoic acid–1,2-bis­(4-pyrid­yl)ethane (1/1)

    PubMed Central

    Shen, Fwu Ming; Lush, Shie Fu

    2010-01-01

    The asymmetric unit of the title compound, C12H12N2·C7H7NO2, contains two 3-amino­benzoic acid mol­ecules and two 1,2-bis­(4-pyrid­yl)ethane mol­ecules. In the two 1,2-bis­(4-pyrid­yl)ethane mol­ecules, the dihedral angles between the pyridyl rings are 2.99 (9) and 46.78 (8)°. In the crystal, the mol­ecules associate through amine and carboxyl group N—H⋯O=C inter­actions between one of the 3-amino­benzoic acid mol­ecules and one of the 1,2-bis­(4-pyrid­yl)ethane mol­ecules, generating R 2 2(14) dimers, which are extended head-to-tail via amine and pyridine N—H⋯N hydrogen bonds. Inter­molecular O—H⋯N, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonding are observed in the crystal structure. C—H⋯π and π–π stacking inter­actions [centroid–centroid distance = 3.9985 (10) Å] are also present. PMID:21579186

  5. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    EPA Science Inventory

    Abstract

    The effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  6. Identification of Novel Methane-, Ethane-, and Propane-Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing ▿ †

    PubMed Central

    Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.

    2010-01-01

    Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448

  7. Patterns of peroxidative ethane emission from submerged rice seedlings indicate that damage from reactive oxygen species takes place during submergence and is not necessarily a post-anoxic phenomenon.

    PubMed

    Santosa, I E; Ram, P C; Boamfa, E I; Laarhoven, L J J; Reuss, J; Jackson, M B; Harren, F J M

    2007-06-01

    Using ethane as a marker for peroxidative damage to membranes by reactive oxygen species (ROS) we examined the injury of rice seedlings during submergence in the dark. It is often expressed that membrane injury from ROS is a post-submergence phenomenon occurring when oxygen is re-introduced after submergence-induced anoxia. We found that ethane production, from rice seedlings submerged for 24-72 h, was stimulated to 4-37 nl gFW(-1), indicating underwater membrane peroxidation. When examined a week later the seedlings were damaged or had died. On de-submergence in air, ethane production rates rose sharply, but fell back to less than 0.1 nl gFW(-1) h(-1) after 2 h. We compared submergence-susceptible and submergence-tolerant cultivars, submergence starting in the morning (more damage) and in the afternoon (less damage) and investigated different submergence durations. The seedlings showed extensive fatality whenever total ethane emission exceeded about 15 nl gFW(-1). Smaller amounts of ethane emission were linked to less extensive injury to leaves. Partial oxygen shortage (O(2) levels <1%) imposed for 2 h in gas phase mixtures also stimulated ethane production. In contrast, seedlings under anaerobic gas phase conditions produced no ethane until re-aerated: then a small peak was observed followed by a low, steady ethane production. We conclude that damage during submergence is not associated with extensive anoxia. Instead, injury is linked to membrane peroxidation in seedlings that are partially oxygen deficient while submerged. On return to air, further peroxidation is suppressed within about 2 h indicating effective control of ROS production not evident during submergence itself.

  8. Identification of the flame retardant decabromodiphenyl ethane in the environment.

    PubMed

    Kierkegaard, Amelie; Björklund, Jonas; Fridén, Ulrika

    2004-06-15

    The brominated flame retardant decabromodiphenyl ethane, DeBDethane, is marketed as an alternative to decabromodiphenyl ether, BDE209. There are currently no data available about the presence of DeBDethane in the environment. In this study, DeBDethane was positively identified by high-resolution mass spectrometry and quantified by low-resolution mass spectrometry with electron capture negative ionization in sewage sludge, sediment, and indoor air. It was found in 25 of the 50 Swedish sewage treatment plants investigated, with estimated levels up to about 100 ng/g dry weight. The concentration of DeBDethane in sediment from Western Scheldt in The Netherlands was 24 ng/g dry weight, and in an air sample from a Swedish electronics dismantling facility it was 0.6 ng/m3. DeBDethane was also found together with nonabromodiphenyl ethanes in water piping insulation. All samples contained BDE209 in higher concentrations as compared to DeBDethane (DeBDethane/BDE209 ratios ranging from 0.02 to 0.7), probably reflecting the higher and longer usage of BDE209. There is an ongoing risk assessment within the European Union regarding BDE209. Since DeBDethane has similar applications, it is important to investigate its environmental behavior before using it to replace BDE209.

  9. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS

    EPA Science Inventory

    GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS) ALTERS DEVELOPMENT OF THE MOUSE TESTIS. D.K. Tarka*1,2, J.D. Suarez*2, N.L. Roberts*2, J.M. Rogers*1,2, M.P. Hardy3, and G.R. Klinefelter1,2. 1University of North Carolina, Curriculum in Toxicology, Chapel Hill, NC; 2USEPA,...

  10. Retrievals of ethane from ground-based high-resolution FTIR solar observations with updated line parameters: determination of the optimum strategy for the Jungfraujoch station.

    NASA Astrophysics Data System (ADS)

    Bader, W.; Perrin, A.; Jacquemart, D.; Sudo, K.; Yashiro, H.; Gauss, M.; Demoulin, P.; Servais, C.; Mahieu, E.

    2012-04-01

    Ethane (C2H6) is the most abundant Non-Methane HydroCarbon (NMHC) in the Earth's atmosphere, with a lifetime of approximately 2 months. C2H6 has both anthropogenic and natural emission sources such as biomass burning, natural gas loss and biofuel consumption. Oxidation by the hydroxyl radical is by far the major C2H6 sink as the seasonally changing OH concentration controls the strong modulation of the ethane abundance throughout the year. Ethane lowers Cl atom concentrations in the lower stratosphere and is a major source of peroxyacetyl nitrate (PAN) and carbon monoxide (by reaction with OH). Involved in the formation of tropospheric ozone and in the destruction of atmospheric methane through changes in OH, C2H6 is a non-direct greenhouse gas with a net-global warming potential (100-yr horizon) of 5.5. The retrieval of ethane from ground-based infrared (IR) spectra is challenging. Indeed, the fitting of the ethane features is complicated by numerous interferences by strong water vapor, ozone and methane absorptions. Moreover, ethane has a complicated spectrum with many interacting vibrational modes and the current state of ethane parameters in HITRAN (e.g. : Rothman et al., 2009, see http://www.hitran.com) was rather unsatisfactory in the 3 μm region. In fact, PQ branches outside the 2973-3001 cm-1 range are not included in HITRAN, and most P and R structures are missing. New ethane absorption cross sections recorded at the Molecular Spectroscopy Facility of the Rutherford Appleton Laboratory (Harrison et al., 2010) are used in our retrievals. They were calibrated in intensity by using reference low-resolution spectra from the Pacific Northwest National Laboratory (PNNL) IR database. Pseudoline parameters fitted to these ethane spectra have been combined with HITRAN 2004 line parameters (including all the 2006 updates) for all other species encompassed in the selected microwindows. Also, the improvement brought by the update of the line positions and intensities

  11. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  12. Design of the Williams Field Services Mobile Bay ethane recovery plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, D.C.; McKenzie, D.

    1999-07-01

    ABB Randall designed, procured and constructed a two train expander plant with a base case design capacity of 525 MMscfd and a hydraulic design capacity of 600 MMscfd. Randall has used its Recycle Reflux Process, proven in other installations, resulting in a calculated ethane recovery of 93% at 525 MMscfd (78% at 600 MMscfd) and ethane rejection. Liquids production creates a design challenge due to the presence of acid gas components such as CO{sub 2}, H{sub 2}S, mercaptans and COS, with the latter three causing the product to fail the copper strip test. The challenge is to remove the componentsmore » to the required level with minimum cost and in an operator-friendly manner. The following combinations of processes were reviewed: DGA, MDEA and Merichem, COS Hydrolysis and MDEA, MDEA and KOH, Sulfinol, MDEA and SulfaClean; and MDEA and mol sieve. This paper will give a brief description, an illustration and economic impact information of each one. Lastly, the rationale behind the selection of the COS Hydrolysis bed, MDEA absorber and provisions to add an iron sponge bed is discussed.« less

  13. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    PubMed

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades.

  14. Anti-inflammatory actions of a taurine analogue, ethane β-sultam, in phagocytic cells, in vivo and in vitro.

    PubMed

    Ward, Roberta J; Lallemand, Frederic; de Witte, Philippe; Crichton, Robert R; Piette, Jacques; Tipton, Keith; Hemmings, Karl; Pitard, Arnaud; Page, Mike; Della Corte, Laura; Taylor, Deanna; Dexter, David

    2011-03-15

    The ability of a taurine prodrug, ethane β-sultam, to reduce cellular inflammation has been investigated, in vitro, in primary cultures of alveolar macrophages and an immortilised N9 microglial cell line and in vivo in an animal model of inflammation and control rats. Ethane β-sultam showed enhanced ability to reduce the inflammatory response in alveolar macrophages, as assayed by the lipopolysaccharide-stimulated-nitric oxide release, (LPS stimulated-NO), in comparison to taurine both in vitro (10 nM, 50 nM) and in vivo (0.15 mmol/kg/day by gavage). In addition, ethane β-sultam, (50, 100 and 1000 nM) significantly reduced LPS-stimulated glutamate release from N9 microglial cells to a greater extent than taurine. The anti-inflammatory response of taurine was shown to be mediated via stabilisation of IkBα. The use of a taurine prodrug as therapeutic agents, for the treatment of neurological conditions, such as Parkinson's and Alzheimer's disease and alcoholic brain damage, where activated phagocytic cells contribute to the pathogenesis, may be of great potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Anticancer, antibacterial and antifungal activity of new ni (ii) and cu (ii) complexes of imidazole-phenanthroline derivatives.

    PubMed

    Moghadam, Mahboube Eslami; Divsalar, Adeleh; Zare, Marziye Shahraki; Gholizadeh, Roghayeh; Mahalleh, Doran; Saghatforosh, Lotfali; Sanati, Soheila

    2017-11-02

    Two new nickel(II) and copper(II) complexes of 2-(Furan-2-yl)-1H-Imidazo[4,5-f][1,10]Phenanthroline (FIP) and 2-(thiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (TIP), imidazophen derivatives were synthesized. The structures of the compounds were determined by UV-visible and FT-IR spectroscopic methods and elemental analysis. The biological activities of Ni and Cu complexes, as anticancer agents, were tested against chronic myelogenous leukemia cell line, K562, at micromolar concentration. The MTT studies showed Cc 50 values are 21 and 160 µM for Cu and Ni(II) complexes, respectively; suggesting that Ni (II) complex has Cc 50 almost seven times of that obtained for cisplatin. Biological activity of the Ni(II) and Cu(II) complexes were also assayed against selective microorganisms by disc diffusion method. These results showed that the Cu(II) complex is antifungal agent but Ni(II) complex has antibacterial activity.

  16. The 12 micron band of ethane: A spectral catalog from 765 cm(-1) to 900 cm(-1)

    NASA Technical Reports Server (NTRS)

    Atakan, A. K.; Blass, W. E.; Brault, J. W.; Daunt, S. J.; Halsey, G. W.; Jennings, D. E.; Reuter, D. C.; Susskind, J.

    1983-01-01

    The high resolution laboratory absorption spectrum of the 12 micro band of ethane gas is studied. The data were obtained using the McMath Solar Telescope 1 meter Fourier Transform interferometer at Kitt Peak National Observatory and tunable diode laser spectrometers at the University of Tennessee and NASA/Goddard Space Flight Center. Over 200 individual vibration rotation transitions were analyzed taking into account many higher order effects including torsional splitting. Line positions were reproduced to better than 0.001/cm. Both ground and upper state molecular constants were determined in the analysis. The experimental details, the analysis procedures and the results are addressed. A list of ethane transitions occurring near (14)CO2 laser lines needed for heterodyne searches for C2H6 in extraterrestrial sources is also included. A spectral catalog of the ethane nu sub g fundamental from 765/cm to 900/cm is provided. A high dispersion (1/cm 12 in.) plot of both the Kitt Peak interferometric data and a simulated spectrum with Doppler limited resolution, a table of over 8500 calculated transitions listed quantum number assignments, frequencies and intensities are provided.

  17. GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE PERMANENTLY ALTERS REPRODUCTIVE COMPETENCE IN THE CD-1 MOUSE

    EPA Science Inventory

    While the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 m...

  18. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.

    PubMed

    Greiderer, Andreas; Ligon, S Clark; Huck, Christian W; Bonn, Günther K

    2009-08-01

    Monolithic poly(1,2-bis(p-vinylphenyl)ethane (BVPE)) capillary columns were prepared by thermally initiated free radical polymerisation of 1,2-bis(p-vinylphenyl)ethane in the presence of inert diluents (porogens) and alpha,alpha'-azoisobutyronitrile (AIBN) as initiator. Polymerisations were accomplished in 200 microm ID fused silica capillaries at 65 degrees C and for 60 min. Mercury intrusion porosimetry measurements of the polymeric RP support showed a broad bimodal pore-size-distribution of mesopores and small macropores in the range of 5-400 nm and flow-channels in the mum range. N(2)-adsorption (BET) analysis resulted in a tremendous enhancement of surface area (101 m(2)/g) of BVPE stationary phases compared to typical organic monoliths (approximately 20 m(2)/g), indicating the presence of a considerable amount of mesopores. Consequently, the adequate proportion of both meso- and (small) macropores allowed the rapid and high-resolution separation of low-molecular-weight compounds as well as biomolecules on the same monolithic support. At the same time, the high fraction of flow-channels provided enhanced column permeability. The chromatographic performance of poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for the separation of biomolecules (proteins, oligonucleotides) and small molecules (alkyl benzenes, phenols, phenons) are demonstrated in this article. Additionally, pressure drop versus flow rate measurements of novel poly(1,2-bis(p-vinylphenyl)ethane) capillary columns confirmed high mechanical robustness, low swelling in organic solvents and high permeability. Due to the simplicity of monolith fabrication, comprehensive studies of the retention and separation behaviour of monolithic BVPE columns resulted in high run-to-run and batch-to-batch reproducibilities. All these attributes prove the excellent applicability of monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for micro-HPLC towards a huge range of analytes of different

  19. Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane

    NASA Astrophysics Data System (ADS)

    Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro

    2017-09-01

    In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.

  20. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans.

    PubMed

    Puri, Basant K; Counsell, Serena J; Ross, Brian M; Hamilton, Gavin; Bustos, Marcelo G; Treasaden, Ian H

    2008-04-17

    This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder. Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30). Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 x 70 x 70 mm3 voxel). The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra. The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (rs = 0.714, p < 0.05). Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak.

  1. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans

    PubMed Central

    Puri, Basant K; Counsell, Serena J; Ross, Brian M; Hamilton, Gavin; Bustos, Marcelo G; Treasaden, Ian H

    2008-01-01

    Background This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder. Methods Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30). Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 × 70 × 70 mm3 voxel). The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra. Results The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (rs = 0.714, p < 0.05). Conclusion Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak. PMID:18433512

  2. Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics

    ERIC Educational Resources Information Center

    Ercolani, Gianfranco

    2005-01-01

    The finite-difference boundary-value method is a numerical method suited for the solution of the one-dimensional Schrodinger equation encountered in problems of hindered rotation. Further, the application of the method, in combination with experimental results for the evaluation of the rotational energy barrier in ethane is presented.

  3. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins.

    PubMed

    Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim

    2011-12-14

    Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions.

  4. Quantifying the Loss of Processed Natural Gas Within California's South Coast Air Basin Using Long-term Measurements of Ethane and Methane

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Toon, G. C.; Hedelius, J.; Vizenor, N.; Roehl, C. M.; Saad, K.; Blavier, J. F.; Blake, D. R.; Wennberg, P. O.

    2016-12-01

    In California's South Coast Air Basin (SoCAB), the methane emissions inferred from atmospheric measurements exceed estimates based on inventories. We seek to provide insight into the sources of the discrepancy with two records of atmospheric trace gas total column abundances in the SoCAB: one temporally sparse dataset that began in the late 1980s, and a temporally dense dataset that began in 2012. We use their measurements of ethane and methane to partition the sources of the excess methane. The early few years of the sparse record show a rapid decline in ethane emissions at a much faster rate than decreasing vehicle exhaust or natural gas and crude oil production can explain. Between 2010 and 2015, ethane emissions have grown gradually, which is in contrast to the steady production of natural gas liquids over that time. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing; these ratios are tracked in our atmospheric measurements with about half of the rate of increase. From this, we infer that about half of the excess methane in the SoCAB between 2012-­2015 is attributable to losses from the natural gas infrastructure.

  5. Double differential cross sections of ethane molecule

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev

    2018-05-01

    Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.

  6. Off-axis integrated cavity output spectroscopy with a mid-infrared interband cascade laser for real-time breath ethane measurements.

    PubMed

    Parameswaran, Krishnan R; Rosen, David I; Allen, Mark G; Ganz, Alan M; Risby, Terence H

    2009-02-01

    Cavity-enhanced tunable diode laser absorption spectroscopy is an attractive method for measuring small concentrations of gaseous species. Ethane is a breath biomarker of lipid peroxidation initiated by reactive oxygen species. A noninvasive means of quickly quantifying oxidative stress status has the potential for broad clinical application. We present a simple, compact system using off-axis integrated cavity output spectroscopy with an interband cascade laser and demonstrate its use in real-time measurements of breath ethane. We demonstrate a detection sensitivity of 0.48 ppb/Hz(1/2).

  7. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane.

    PubMed

    Zhu, Haibo; Rosenfeld, Devon C; Anjum, Dalaver H; Caps, Valérie; Basset, Jean-Marie

    2015-04-13

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400 °C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300 °C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90 % of their original intrinsic activity was retained after 50 h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Comparison of experimental and theoretical electron-impact-ionization triple-differential cross sections for ethane

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don

    2015-10-01

    We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O , N H3 , C H4 ). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p -type "peanut" shape. In this work, we examine ethane (C2H6 ) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies.

  9. Elaboration and use of nickel planar macrocyclic complex-based sensors for the direct electrochemical measurement of nitric oxide in biological media.

    PubMed

    Bedioui, F; Trevin, S; Devynck, J; Lantoine, F; Brunet, A; Devynck, M A

    1997-01-01

    We describe here the electrochemical detection of nitric oxide, NO, in biological systems by using chemically modified ultramicro carbon electrodes. In the first part of the paper, the different steps involved in the electrochemical preparation and characterization of the nickel-based sensor are described. This is illustrated by the use of nickel(II) tetrasulfonated phthalocyanine complex. The second part of the paper describes two examples of the direct electrochemical measurement of NO production in human blood platelets and endothelial cells from umbilical cord vein.

  10. Pentamethylcyclopentadienyl-rhodium and iridium complexes containing (N^N and N^O) bound chloroquine analogue ligands: synthesis, characterization and antimalarial properties.

    PubMed

    Ekengard, Erik; Kumar, Kamlesh; Fogeron, Thibault; de Kock, Carmen; Smith, Peter J; Haukka, Matti; Monari, Magda; Nordlander, Ebbe

    2016-03-07

    The synthesis and characterization of twenty new pentamethylcyclopentadienyl-rhodium and iridium complexes containing N^N and N^O-chelating chloroquine analogue ligands are described. The in vitro antimalarial activity of the new ligands as well as the complexes was evaluated against the chloroquine sensitive (CQS) NF54 and the chloroquine resistant (CQR) Dd2 strains of Plasmodium falciparum. The antimalarial activity was found to be good to moderate; although all complexes are less active than artesunate, some of the ligands and complexes showed better activity than chloroquine (CQ). In particular, rhodium complexes were found to be considerably more active than iridium complexes against the CQS NF54 strain. Salicylaldimine Schiff base ligands having electron-withdrawing groups (F, Cl, Br, I and NO2) in para position of the salicyl moiety and their rhodium complexes showed good antiplasmodial activity against both the CQS-NF54 and the CQR-Dd2 strains. The crystal structures of (η(5)-pentamethylcyclopentadienyl){N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)} chlororhodium(III) chloride and (η(5)-pentamethylcyclopentadienyl){(4-chloro-2-(((2-((7-chloroquinolin-4-yl)amino)ethyl)imino)methyl)phenolate)}chlororhodium(III) chloride are reported. The crystallization of the amino-pyridyl complex (η(5)-pentamethylcyclopentadienyl){(N(1)-(7-chloroquinolin-4-yl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine)}chloroiridium(III) chloride in acetone resulted in the formation of the imino-pyridyl derivative (η(5)-pentamethylcyclopentadienyl){(N1-(7-chloroquinolin-4-yl)-N2-(pyridin-2-ylmethylene)ethane-1,2-diamine)}chloroiridium(III) chloride, the crystal structure of which is also reported.

  11. Reactions of gas phase H atoms with ethylene, acetylene and ethane adsorbed on Ni( 1 1 1 )

    NASA Astrophysics Data System (ADS)

    Bürgi, T.; Trautman, T. R.; Gostein, M.; Lahr, D. L.; Haug, K. L.; Ceyer, S. T.

    2002-03-01

    The products of the reaction of the most energetic form of hydrogen, gas phase H atoms, with ethylene, acetylene and ethane adsorbed on a Ni(1 1 1) surface at 60 K are probed. Adsorbed ethylidyne (CCH 3) is identified by high resolution electron energy loss spectroscopy to be the major product (30% yield) in all three cases. Adsorbed acetylene is a minor product (3% yield) and arises as a consequence of a dynamic equilibrium between CCH 3 and C 2H 2 in the presence of gas phase H atoms. The observation of the same product for the reaction of H atoms with all three hydrocarbons implies that CCH 3 is the most stable C 2 species in the presence of coadsorbed hydrogen. The rates of CCH 3 production are measured as a function of the time of exposure of H atoms to each hydrocarbon. A simple kinetic model treating each reaction as a pseudo-first order reaction in the hydrocarbon coverage is fit to these data. A mechanism for the formation of CCH 3 via a CHCH 2 intermediate common to all three reactants is proposed to describe this model. The observed instability of the CH 2CH 3 species relative to C 2H 4 plays a role in the formulation of this mechanism as does the observed stability of CHCH 2 species in the presence of coadsorbed hydrogen. The CH 2CH 3 and the CHCH 2 species are produced by the translational activation of ethane and the dissociative ionization of ethane and ethylene, respectively. In addition, the binding energy and the vibrational spectrum of ethane adsorbed on Ni(1 1 1) are determined and exceptionally high resolution vibrational spectra of adsorbed ethylene and acetylene are presented.

  12. Carbohydrate and ethane release with Erwinia carotovora subspecies betavasculorum--induced necrosis.

    PubMed

    Kuykendall, L David; Hunter, William J

    2008-02-01

    Erwinia carotovora subspecies betavasculorum, also known as E. betavasculorum and Pectobacterium betavasculorum, is a soil bacterium that has the capacity to cause root rot necrosis of sugarbeets. The qualitatively different pathogenicity exhibited by the virulent E. carotovora strain and two avirulent strains, a Citrobacter sp. and an Enterobacter cloacae, was examined using digital analysis of photographic evidence of necrosis as well as for carbohydrate, ethane, and ethylene release compared with uninoculated potato tuber slices. Visual scoring of necrosis was superior to digital analysis of photographs. The release of carbohydrates and ethane from potato tuber slices inoculated with the soft rot necrosis-causing Erwinia was significantly greater than that of potato tuber slices that had not been inoculated or that had been inoculated with the nonpathogenic E. cloacae and Citrobacter sp. strains. Interestingly, ethylene production from potato slices left uninoculated or inoculated with the nonpathogenic Citrobacter strain was 5- to 10-fold higher than with potato slices inoculated with the pathogenic Erwinia strain. These findings suggest that (1) carbohydrate release might be a useful measure of the degree of pathogenesis, or relative virulence; and that (2) bacterial suppression of ethylene formation may be a critical step in root rot disease formation.

  13. Reference Correlation for the Viscosity of Ethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Eckhard, E-mail: eckhard.vogel@uni-rostock.de; Span, Roland; Herrmann, Sebastian

    2015-12-15

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρ{sub c} and of the reciprocal reduced temperature τ = T{sub c}/T (ρ{sub c}—critical density and T{sub c}—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earliermore » viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor–liquid phase boundary, and for the near-critical region.« less

  14. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    PubMed

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  15. Electrosynthesis of Metal-Organic Frameworks (MOFs)Based on Nickel(II) and Benzene 1,3,5-Tri Carboxylic Acid (H3BTC): An Optimization Reaction Condition

    NASA Astrophysics Data System (ADS)

    Lestari, W. W.; Winarni, I. D.; Rahmawati, F.

    2017-02-01

    Electrosynthesis of metal-organic frameworks based on nickel(II) and benzen 1,3,5-tricarboxylic acid (H3BTC) to form [Ni3(BTC)2] has been conducted. This study aims to determine the optimum electro-synthetic conditions of [Ni3(BTC)2] by varying the solvents, electrolytes, as well as the voltages. The optimum condition was determined based on the percent yield of the product which upon washing and drying at room temperature showed pale green precipitate. The materialhas high crystallinityaccording to XRD analysis with the main peak observed at 2θ 19° and 28° and appropriate with [Ni3(BTC)2] pattern (CCDC No. 1274034). The refinement results using Le Bail methods revealed the Rp and Rwp values are 3.29% and 3.47%, respectively. The coordination between nickel(II) and carboxylate moeties of the linker has been characterized using FTIR and showed significant shift from 1723 cm-1 to 1608 cm-1. The compound has thermal stability up to 400 °C according to TG/DTA analysis. The SEM analysis confirmed that compound has morphology nanoplates shape with a thickness of 75 ± 0.023 nm. Another interesting feature of the obtained material is the occupancy of the reversible frameworks, which proved after methanol absorption. The optimum condition of the electro-synthesis of [Ni3(BTC)2] achieved in the methanol with TBATFB (0.1 M) as electrolyte, and the voltage of 15 V at room temperature with a yield of 99.99%.

  16. Enhanced Oxidative Dehydrogenation of Ethane with Facilitated Transport Membranes for Low Cost Production of Ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemser, Stuart; Shangguan, Ning; Pennisi, Kenneth

    This SBIR program has been extremely successful. We have met or exceeded all of the key objectives. We have successfully demonstrated the product and process feasibility. Compact Membrane Systems proposed a membrane separation technology which can efficiently separate ethylene from ethane in the presence of H 2O and CO 2. The CMS ethylene/ethane separation will significantly improve the economics of the Oxidative Dehydrogenation (ODH) process. We have developed membranes with high ethylene flux and high ethylene/ethane selectivity. These membranes have also shown good resistance to high concentration CO 2 and CO. Economic analysis shows at least **% cost savings comparedmore » with conventional distillation used for ethylene/ethane separation. Given our success to date, we have been able to establish key direct partnerships with other collaborators. The primary objective of the Phase I program was to develop a stable membrane that is capable of providing very efficient and cost effective production of ethylene from ethane. The CMS fluorinated membrane developed during this program was found to be able to provide very good C 2H 4/C 2H 6 selectivity and outstanding C 2H 4 permeance. With the development of the fast and highly selective ethylene CMS membrane, we have achieved all our Phase I program objectives. This is especially true of the estimated cost of ethylene production that is projected to be over **% less than the conventional method (distillation) at scale applications (** Nm3/h). The final result is better than the Phase I goal of 30% less. In summary, during the Phase I, we developed a CMS membrane with a high C 2H 4 permeance good C 2H 4/C 2H 6 selectivity. The stability and anti-fouling ability of the CMS membrane was demonstrated by exposing the membrane to a C 2H 4/C 2H 6 mixture gas for 7 weeks. A membrane based ODH production and separation system was designed and the economic and engineering evaluation using the VMGSim models predicted a cost of

  17. Metastable decomposition and hydrogen migration of ethane dication produced in an intense femtosecond near-infrared laser field.

    PubMed

    Hoshina, Kennosuke; Kawamura, Haruna; Tsuge, Masashi; Tamiya, Minoru; Ishiguro, Masaji

    2011-02-14

    We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ∼1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ∼3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that

  18. Mobile Measurement of Methane and Ethane for the Detection and Attribution of Natural Gas Pipeline Leaks Using Off-Axis Integrated Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.

    2015-12-01

    Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides

  19. Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide predicted by brute force molecular dynamics.

    PubMed

    Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans

    2008-04-28

    Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.

  20. The potential offered by real-time, high-sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Skeldon, Kenneth D.; Patterson, Claire; Wyse, Cathy A.; Gibson, Graham M.; Padgett, Miles J.; Longbottom, Chris; McMillan, Lesley C.

    2005-06-01

    Breath analysis applied to biomedical applications has gained much momentum is recent years due to the growing research demonstrating that breath gas can provide clinically useful data. Particularly exciting is the area of real-time breath analysis which, when coupled with appropriately chosen target species, can offer a novel method for non-invasive patient monitoring. Here we describe the role of ethane, a breath gas of universal appeal in assessing in vivo oxidative stress (cell damage). We first present a review of emerging applications where real-time ethane monitoring could yield original new results for healthcare. We then report on results from a portable ethane spectroscopy system (accuracy better then 100 parts per trillion (1 part in 1010) over a 1 s time response) that we have developed to exploit some of these applications. By presenting some initial results from pilot studies in the life sciences, we comment on the requirements that the next stage of optical spectroscopy technology has to meet in order to benefit clinical end-users.

  1. Spectral and quantum chemical studies on 1,3-bis(N(1)-4-amino-6-methoxypyrimidinebenzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane and its erbium complex.

    PubMed

    Al-Mogren, Muneerah M; Alaghaz, Abdel-Nasser M A; El-Gogary, Tarek M

    2014-01-24

    Novel 1,3-bis(N(1)-4-amino-6-methoxypyrimidine-benzenesulfonamide-2,2,4,4-ethane-1,2-dithiol)-2,4-dichlorocyclodiphosph(V)azane (L), was prepared and their coordinating behavior towards the lanthanide ion Er(III) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-VIS., (1)H NMR, (13)C NMR, (31)P NMR, SEM, XRD, mass spectra, effective magnetic susceptibility measurements and thermogravimetric analysis (TGA). Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of L and its binuclear Er(III) complex. Different tautomers of the ligand were optimized at the ab initio DFT level. Keto-form structure is about 17.7 kcal/mol more stable than the enol form (taking zpe correction into account). Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which compared by the measured electronic spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus.

  3. A study of ethane on Saturn in the 3 micron region

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Larson, H. P.; Fink, U.; Smith, H. A.

    1981-01-01

    C2H6 has been detected in absorption on Saturn from 3-micron airborne spectra. Based on comparisons with laboratory spectra of C2H6, the ethane abundance has been estimated at 7.5 plus or minus 3.5 cm-amagat, equivalent to a column abundance of 3.0 plus or minus 1.4 cm-amagat. The results support expectations that CH4 photolysis is a major disequilibrating mechanism in the upper atmosphere of the outer planets and Titan.

  4. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    EPA Science Inventory

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  5. EFFECTS OF GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE IN CD-1 MICE: MICROTIA AND PRELIMINARY HEARING TESTS

    EPA Science Inventory

    Microtia is a reduction in pinna size, usually seen in humans in conjunction with other medical conditions. Here we report microtia in CD-1 mice following gestational exposure to ethane dimethanesulfonate (EDS), an alkylating agent and adult rat Leydig cell toxicant. Methods...

  6. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  7. Stability of coordination compounds of Ni2+ and Co2+ ions with succinic acid anion in water-ethanol solvents

    NASA Astrophysics Data System (ADS)

    Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.

    2017-04-01

    Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).

  8. Mid-Infrared Ethane Emission on Neptune: 2005-2009

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Sitko, M. L.; Russell, R. W.; Lynch, D. K.; Bernstein, L. S.; Perry, R. B.

    2009-09-01

    Hammel et al. (2006, ApJ 644, 1326) reported 8- to 13-micron spectral observations of Neptune spanning more than a decade. Those data indicated a steady increase in Neptune's 12-micron atmospheric ethane emission from 1985 to 2003, followed by a slight decrease in 2004. The simplest explanation for the intensity variation was an increase in stratospheric effective temperature from 155 K in 1985 to 176 K in 2003 (an average rate of 1.2 K/year), and subsequent decrease to 165 K in 2004 (uncertainties +/- 3 K). Later disk-resolved 12-micron images (Hammel et al. 2007, AJ 134, 637; Orton et al. 2007, AA 473, L5) showed Neptune's ethane emission arose mainly from two regions: emission distributed nearly uniformly around the planet's limb and emission near the south pole. Because much of the non-limb emission was confined to the near-polar region, seasonal variation may play some role in the long-term mid-infrared brightness variations: i.e., more of that region was revealed as Neptune neared solstice in 2005. We will report the results of an additional half decade of mid-infrared spectroscopic observations, from 2005 through 2009, using the Broadband Array Spectrograph System on the NASA Infrared Telescope Facility (IRTF). These post-solstice data should elucidate whether the variations are intrinsic, or due to changes in viewing angle. HBH acknowledges support from NASA grants NNX06AD12G and NNA07CN65A. This work was supported at The Aerospace Corporation by the Independent Research and Development Program. LSB acknowledges the support of Spectral Sciences, Inc. IR and D funding. We also gratefully acknowledge D. Kim (The Aerospace Corporation) for BASS technical support, as well as the support of IRTF staff and telescope operators. We recognize the significant cultural role of Mauna Kea within the indigenous Hawaiian community, and we appreciate the opportunity to conduct observations from this revered site.

  9. Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior

    ERIC Educational Resources Information Center

    Martinez, Manuel; Muller, Guillermo; Rocamora, Merce; Rodriguez, Carlos

    2007-01-01

    The series of experiments proposed for advanced undergraduate students deal with both standard organometallic preparative methods in dry anaerobic conditions and with a kinetic study of the mechanisms operating in the substitution of square-planar complexes. The preparation of organometallic compounds is carried out by transmetallation or…

  10. The identification of liquid ethane in Titan's Ontario Lacus

    USGS Publications Warehouse

    Brown, R.H.; Soderblom, L.A.; Soderblom, J.M.; Clark, R.N.; Jaumann, R.; Barnes, J.W.; Sotin, Christophe; Buratti, B.; Baines, K.H.; Nicholson, P.D.

    2008-01-01

    Titan was once thought to have global oceans of light hydrocarbons on its surface, but after 40 close flybys of Titan by the Cassini spacecraft, it has become clear that no such oceans exist. There are, however, features similar to terrestrial lakes and seas, and widespread evidence for fluvial erosion, presumably driven by precipitation of liquid methane from Titan's dense, nitrogen-dominated atmosphere. Here we report infrared spectroscopic data, obtained by the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft, that strongly indicate that ethane, probably in liquid solution with methane, nitrogen and other low-molecular-mass hydrocarbons, is contained within Titan's Ontario Lacus. ??2008 Macmillan Publishers Limited. All rights reserved.

  11. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    NASA Astrophysics Data System (ADS)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  12. Effects of potential models on the adsorption of ethane and ethylene on graphitized thermal carbon black. Study of two-dimensional critical temperature and isosteric heat versus loading.

    PubMed

    Do, D D; Do, H D

    2004-12-07

    Adsorption of ethylene and ethane on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers is studied in detail to investigate the packing efficiency, the two-dimensional critical temperature, and the variation of the isosteric heat of adsorption with loading and temperature. Here we used a Monte Carlo simulation method with a grand canonical Monte Carlo ensemble. A number of two-center Lennard-Jones (LJ) potential models are investigated to study the impact of the choice of potential models in the description of adsorption behavior. We chose two 2C-LJ potential models in our investigation of the (i) UA-TraPPE-LJ model of Martin and Siepmann for ethane and Wick et al. for ethylene and (ii) AUA4-LJ model of Ungerer et al. for ethane and Bourasseau et al. for ethylene. These models are used to study the adsorption of ethane and ethylene on graphitized thermal carbon black. It is found that the solid-fluid binary interaction parameter is a function of adsorbate and temperature, and the adsorption isotherms and heat of adsorption are well described by both the UA-TraPPE and AUA models, although the UA-TraPPE model performs slightly better. However, the local distributions predicted by these two models are slightly different. These two models are used to explore the two-dimensional condensation for the graphitized thermal carbon black, and these values are 110 K for ethylene and 120 K for ethane.

  13. Substitutional impact on biological activity of new water soluble Ni(II) complexes: Preparation, spectral characterization, X-ray crystallography, DNA/protein binding, antibacterial activity and in vitro cytotoxicity.

    PubMed

    Umadevi, C; Kalaivani, P; Puschmann, H; Murugan, S; Mohan, P S; Prabhakaran, R

    2017-02-01

    A series of new water soluble nickel(II) complexes containing triphenylphosphine and 4-methoxysalicylaldehyde-4(N)-substituted thiosemicarbazones were synthesized and characterized. Crystallographic investigations confirmed the structure of the complexes (1-4) having the general structure [Ni(4-Msal-Rtsc)(PPh 3 )] (Where R=H (1); CH 3 (2); C 2 H 5 (3); C 6 H 5 (4)) which showed that thiosemicarbazone ligands coordinated to nickel(II) ion as ONS tridentate bibasic donor. DNA/BSA protein binding ability of the ligands and their new complexes were studied by taking calf-thymus DNA (CT-DNA) and Bovine serum albumin (BSA) through absorption and emission titrations. Ethidium bromide (EB) displacement study showed the intercalative binding trend of the complexes to DNA. From the albumin binding studies, the mechanism of quenching was found as static and the alterations in the secondary structure of BSA by the compounds were confirmed with synchronous spectral studies. The binding affinity of the complexes to CT-DNA and BSA has the order of [Ni(4-Msal-etsc)(PPh 3 )] (3) >[Ni(4-Msal-mtsc)(PPh 3 )] (2) >[Ni(4-Msal-tsc)(PPh 3 )] (1) >[Ni(4-Msal-ptsc)(PPh 3 )] (4). In vitro cytotoxicity of the complexes was tested on human lung cancer cells (A549), human cervical cancer cells (HeLa), human liver carcinoma cells (Hep G2). All the complexes exhibited significant activity against three cancer cells. Among them, complex 4 exhibited almost 2.5 fold activity than cisplatin in A549 and HepG2 cell lines. In HeLa cell line, the complexes exhibited significant activity which is less than cisplatin. While comparing the activity of the complexes in A549 and HepG2 cell lines it falls in the order 4>1>2>3>cisplatin. The results obtained from DNA, protein binding and cytotoxicity studies, it is concluded that the cytotoxicity of the complexes as determined by MTT assay were not unduly influenced by the complexes having different binding efficiency with DNA and protein. The complexes

  14. A two-state computational investigation of methane C--H and ethane C--C oxidative addition to [CpM(PH3)]n+ (M = Co, Rh, Ir; n = 0, 1).

    PubMed

    Petit, Alban; Richard, Philippe; Cacelli, Ivo; Poli, Rinaldo

    2006-01-11

    Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively

  15. Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane

    NASA Technical Reports Server (NTRS)

    Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.

    1988-01-01

    Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.

  16. Evaluation of Environmentally Benign New Chemical Rust Removing Agent- Hydroxy Ethane Diphosphonic Acid (HEDPA)

    DTIC Science & Technology

    2012-12-15

    Removing Agent – Hydroxy Ethane Diphosphonic Acid (HEDPA) 1, A. Sarada Rao, 2, A. Yashodhara Rao, 3, Appajosula S. Rao Naval Surface Warfare...Abstract------------------------------------------------------------ In order to evaluate the adaptability of hydroxyethane diphosphonic acid (HEDPA...function of acid concentration in the range 2-20 vol. % and at different temperatures in the temperature range 23 o C -55°C. The results suggest

  17. Template engineered biopotent macrocyclic complexes involving furan moiety: Molecular modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-08-01

    Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.

  18. Dissipation dynamics of field-free molecular alignment for symmetric-top molecules: Ethane (C2H6)

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Billard, F.; Yu, X.; Faucher, O.; Lavorel, B.

    2018-03-01

    The field-free molecular alignment of symmetric-top molecules, ethane, induced by intense non-resonant linearly polarized femtosecond laser pulses is investigated experimentally in the presence of collisional relaxation. The dissipation dynamics of field-free molecular alignment are measured by the balanced detection of ultrafast molecular birefringence of ethane gas samples at high pressures. By separating the molecular alignment into the permanent alignment and the transient alignment, the decay time-constants of both components are quantified at the same pressure. It is observed that the permanent alignment always decays slower compared to the transient alignment within the measured pressure range. This demonstrates that the propensity of molecules to conserve the orientation of angular momentum during collisions, previously observed for linear species, is also applicable to symmetric-top molecules. The results of this work provide valuable information for further theoretical understanding of collisional relaxation within nonlinear polyatomic molecules, which are expected to present interesting and nontrivial features due to an extra rotational degree of freedom.

  19. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  20. Dichloro-tetrafluoro-ethane as a Freezing Agent

    PubMed Central

    Luikart, Ralph; Ayres, Samuel; Wilson, J. Walter

    1956-01-01

    Surgical skin planing is, in the hands of an experienced operator, a safe and highly effective procedure for treating a number of cutaneous defects, most notably pitted acne scars. The operation is facilitated by the use of a new instrument (jet-spray handpiece) which allows the operator to freeze the skin and plane it almost simultaneously, and by a new freezing agent, dichlorotetrafluoro-ethane, which adds to the safety by eliminating the old hazards of inflammability, explosion, and the toxic inhalation of ethyl chloride. The ability to sharply differentiate between keloid and hypertrophic scar is fundamental to surgical skin planing. A hypertrophic scar results from the removal or destruction of the cutaneous appendages (hair follicles, oil and sweat glands and ducts); whereas a keloid is an idiosyncratic response without regard to damage of the appendages. Properly performed surgical planing does not entirely remove these appendages and therefore healing occurs without scarring. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:13304667

  1. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  2. Numerical study of contaminant effects on combustion of hydrogen, ethane, and methane in air

    NASA Technical Reports Server (NTRS)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NO, H2O, and a combination of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamically effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  3. Using ethane and butane as probes to the molecular structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ionic liquids.

    PubMed

    Costa Gomes, Margarida F; Pison, Laure; Pensado, Alfonso S; Pádua, Agilio A H

    2012-01-01

    In this work, we have studied the solubility and the thermodynamic properties of solvation, between 298 and 343 K and at pressures close to atmospheric, of ethane and n-butane in several ionic liquids based on the bis[(trifluoromethyl) sulfonyl]imide anion and on 1-alkyl-3-methylimidazolium cations, [CnC1Im] [NTf2], with alkyl side-chains varying from two to ten carbon atoms. The solubility of butane is circa one order of magnitude larger than that of ethane with mole fractions as high as 0.15 in [C10C1Im][NTf2] at 300 K. The solubilities of both n-butane and ethane gases are higher for ionic liquids with longer alkyl chains. The behaviour encountered is explained by the preferential solvation of the gases in the non-polar domains of the solvents, the larger solubility of n-butane being attributed to the dispersive contributions to the interaction energy. The rise in solubility with increasing size of the alkyl-side chain is explained by a more favourable entropy of solvation in the ionic liquids with larger cations. These conclusions are corroborated by molecular dynamics simulation studies.

  4. Environmental analysis of higher brominated diphenyl ethers and decabromodiphenyl ethane.

    PubMed

    Kierkegaard, Amelie; Sellström, Ulla; McLachlan, Michael S

    2009-01-16

    Methods for environmental analysis of higher brominated diphenyl ethers (PBDEs), in particular decabromodiphenyl ether (BDE209), and the recently discovered environmental contaminant decabromodiphenyl ethane (deBDethane) are reviewed. The extensive literature on analysis of BDE209 has identified several critical issues, including contamination of the sample, degradation of the analyte during sample preparation and GC analysis, and the selection of appropriate detection methods and surrogate standards. The limited experience with the analysis of deBDethane suggests that there are many commonalities with BDE209. The experience garnered from the analysis of BDE209 over the last 15 years will greatly facilitate progress in the analysis of deBDethane.

  5. Intensity of the /R/Q sub zero branch in the nu-9 fundamental of ethane. [laboratory spectra for Jupiter and Saturn IR observations

    NASA Technical Reports Server (NTRS)

    Tokunaga, A.; Varanasi, P.

    1976-01-01

    Recent observations of Jupiter and Saturn at 12 microns have shown strong emission in the nu-9 fundamental of ethane. In order to derive the abundance of ethane from the planetary observations, the absolute intensity of the (R)Q sub zero branch of the nu-9 fundamental was measured, yielding a value of 0.74 plus or minus 0.09/sq cm/atm at 300 K. In order to study the absorption features of the nu-9 fundamental, the computed rotational structure of the band was compared with the laboratory spectrum.

  6. Physicochemical and biological properties of oxovanadium(IV), cobalt(II) and nickel(II) complexes with oxydiacetate anions.

    PubMed

    Wyrzykowski, Dariusz; Kloska, Anna; Pranczk, Joanna; Szczepańska, Aneta; Tesmar, Aleksandra; Jacewicz, Dagmara; Pilarski, Bogusław; Chmurzyński, Lech

    2015-03-01

    The potentiometric and conductometric titration methods have been used to characterize the stability of series of VO(IV)-, Co(II)- and Ni(II)-oxydiacetato complexes in DMSO-water solutions containing 0-50 % (v/v) DMSO. The influence of DMSO as a co-solvent on the stability of the complexes as well as the oxydiacetic acid was evaluated. Furthermore, the reactivity of the complexes towards superoxide free radicals was assessed by employing the nitro blue tetrazolium (NBT) assay. The biological properties of the complexes were investigated in relation to their cytoprotective activity against the oxidative damage generated exogenously by using hydrogen peroxide in the Human Dermal Fibroblasts adult (HDFa) cell line as well as to their antimicrobial activity against the bacteria (Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis). The relationship between physicochemical and biological properties of the complexes was discussed.

  7. Measured temperature and pressure dependence of Vp and Vs in compacted, polycrystalline sI methane and sII methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2003-01-01

    We report on compressional- and shear-wave-speed measurements made on compacted polycrystalline sI methane and sII methane-ethane hydrate. The gas hydrate samples are synthesized directly in the measurement apparatus by warming granulated ice to 17??C in the presence of a clathrate-forming gas at high pressure (methane for sI, 90.2% methane, 9.8% ethane for sII). Porosity is eliminated after hydrate synthesis by compacting the sample in the synthesis pressure vessel between a hydraulic ram and a fixed end-plug, both containing shear-wave transducers. Wave-speed measurements are made between -20 and 15??C and 0 to 105 MPa applied piston pressure.

  8. Synthesis, characterization and antibacterial activity of new sulfonyl hydrazone derivatives and their nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Özmen, Ümmühan Özdemir; Olgun, Gülçin

    2008-08-01

    Prophane sulfonic acid hydrazide (psh: CH 3CH 2CH 2SO 2NHNH 2) derivatives as salicylaldehydeprophanesulfonylhydrazone (salpsh), 5-methylsalicylaldehydeprophanesulfonylhydrazone (5-msalpsh), 2-hydroxyacetophenoneprophanesulfonylhydrazone (afpsh), 5-methyl-2-hydroxyacetophenoneprophanesulfonylhydrazone (5-mafpsh) and their Ni(II) complexes have been synthesized. The structure of these compounds has been investigated by using elemental analysis, FTIR, 1H NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility and conductivity measurements. The complexes were found to have general compositions [NiL2]. Square-planer structures are proposed for the Ni(II) complexes on the basis of magnetic evidence, electronic spectra and TGA data. Bacterial activities of sulfonyl hydrazone compounds were studied against gram-positive bacteria: Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and gram-negative bacteria: Salmonella enteritidis, Escherichia coli by using minimum inhibitory concentrations (MICs) method.

  9. An ethane-bridged porphyrin dimer as a model of di-heme proteins: inorganic and bioinorganic perspectives and consequences of heme-heme interactions.

    PubMed

    Sil, Debangsu; Rath, Sankar Prasad

    2015-10-07

    Interaction between heme centers has been cleverly implemented by Nature in order to regulate different properties of multiheme cytochromes, thereby allowing them to perform a wide variety of functions. Our broad interest lies in unmasking the roles played by heme-heme interactions in modulating different properties viz., metal spin state, redox potential etc., of the individual heme centers using an ethane-bridged porphyrin dimer as a synthetic model of dihemes. The large differences in the structure and properties of the diheme complexes, as compared to the monoheme analogs, provide unequivocal evidence of the role played by heme-heme interactions in the dihemes. This Perspective provides a brief account of our recent efforts to explore these interesting aspects and the subsequent outcomes.

  10. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  11. Sequential picosecond isomerizations in a photochromic ruthenium sulfoxide complex triggered by pump-repump-probe spectroscopy.

    PubMed

    King, Albert W; Jin, Yuhuan; Engle, James T; Ziegler, Christopher J; Rack, Jeffrey J

    2013-02-18

    The complex [Ru(bpy)(2)(bpSO)](PF(6))(2), where bpy is 2,2'-bipydine and bpSO is 1,2-bis(phenylsulfinyl)ethane, exhibits three distinct isomers which are accessible upon metal-to-ligand charge-transfer (MLCT) irradiation. This complex and its parent, [Ru(bpy)(2)(bpte)](PF(6))(2), where bpte is 1,2-bis(phenylthio)ethane, have been synthesized and characterized by UV-visible spectroscopy, NMR, X-ray crystallography, and femtosecond transient absorption spectroscopy. A novel method of 2-color Pump-Repump-Probe spectroscopy has been employed to investigate all three isomers of the bis-sulfoxide complex. This method allows for observation of the isomerization dynamics of sequential isomerizations of each sulfoxide from MLCT irradiation of the S,S-bonded complex to ultimately form the O,O-bonded metastable complex. One-dimensional (1-D) and two-dimensional (2-D) (COSY, NOESY, and TOCSY) (1)H NMR data show the thioether and ground state S,S-bonded sulfoxide complexes to be rigorously C(2) symmetric and are consistent with the crystal structures. Transient absorption spectroscopy reveals that the S,S to S,O isomerization occurs with an observed time constant of 56.8 (±7.4) ps. The S,O to O,O isomerization time constant was found to be 59 (±4) ps by pump-repump-probe spectroscopy. The composite S,S- to O,O-isomer quantum yield is 0.42.

  12. Continuous spectroscopic measurement of methane isotopes and ethane made on board an aircraft: instrument configuration and characterisation

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Young, Stuart; Hopkins, James; Lee, James; Bauguitte, Stéphane; Dorsey, James; Allen, Grant; Gallagher, Martin; Yacovitch, Tara; Zahniser, Mark; Fisher, Rebecca; Lowry, Dave; Nisbet, Euan

    2017-04-01

    We describe the configuration of two commercially available absorption spectrometers for use on board the UK Facility for Airborne Atmospheric Research (FAAM) aircraft. A dual laser instrument has been used to make continuous measurements of the atmospheric 13CH4:12CH4 ratio and ethane mole fraction, using an interband cascade laser (ICL) and a recently developed type of diode laser respectively. Simultaneous measurements of atmospheric ethane have also been made using a single laser instrument employing an ICL, enabling instrument inter-comparison. Instrument performance is evaluated over a series of test flights, and initial results from the MOYA (Methane Observations and Yearly Assessments) campaign, targeting biomass burning plumes in west Africa, are also presented. We describe the calibration procedure and data analysis approaches for methane isotope measurement, involving calibration over a range of methane isotopic composition and methane mole fraction. We assess the effectiveness of this calibration technique during the first MOYA campaign period using measurements of a target cylinder of known composition.

  13. Crystal structure, spectral and thermal properties of 1,2-bis[2-(4,4,4-trifluoro-1-hydroxy-3-oxobut-1-enyl)phenoxy]-ethane and luminescent properties of its complexes with Al(III) and Eu(III)

    NASA Astrophysics Data System (ADS)

    Khamidullina, Liliya A.; Obydennov, Konstantin L.; Slepukhin, Pavel A.; Puzyrev, Igor S.

    2016-12-01

    Describing the crystal structure, packing, FT-IR, UV-Vis and NMR spectra and thermal properties of new polydentate O-ligand based on aryl-β-diketone moieties connected by ethylene glycol spacer is the subject of this article. The results of IR, UV-Vis and 1H NMR spectroscopy as well X-ray crystallography of 1,2-bis[2-(4,4,4-trifluoro-1-hydroxy-3-oxobut-1-enyl)phenoxy]-ethane (BTFPE) indicate that the compound exists in solution and in solid as enol. The crystal structure analysis shows that BTFPE has C2/c group of the monoclinic system. Typical S(6) intramolecular hydrogen bond occurs in each 1,3-diketo moiety. This bond is asymmetric and the H atom is closest to the O atom adjacent to the phenyl ring. The packing of the crystal is sustained by numerous Csbnd H⋯O, Osbnd H⋯F, Csbnd H⋯F interactions. In the crystal, supramolecular zig-zag chains are formed along the c-axis. Short contacts interconnect the molecules into a two-dimensional layered structure wherein each molecule is node between chains. According to the thermal investigation this compound is stable up to 200 °C in air atmosphere, above this temperature it decomposes. Photoluminescent properties of aluminum(III) and europium(III) complexes of BTFPE were evaluated in chloroform solution and in the solid state. Aluminum complex of BTFPE shows blue luminescence with maximum at 445 nm. Europium complex exhibits intense red color luminescence at 613 nm from central Eu(III) ion through the excitation of the ligand.

  14. A one-dimensional nickel(II) coordination polymer containing 2,6-dipicolinate and dipyrido[3,2-a:2',3'-c]phenazine.

    PubMed

    Ma, Yi; Zhang, Li-Tian; Wang, Xiao-Fang; He, Yong-Ke; Han, Zheng-Bo

    2007-12-01

    A new coordination polymer, catena-poly[[(dipyrido[3,2-a:2',3'-c]phenazine-kappa(2)N,N')nickel(II)]-mu-2,6-dipicolinato-kappa(4)O(2),N,O(6):O(2')], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one-dimensional structure in which 2,6-dipicolinate acts as a bridging ligand interconnecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one Ni(II) center, one dipyrido[3,2-a:2',3'-c]phenazine ligand and one 2,6-dipicolinate ligand. Each Ni(II) center is six-coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2-a:2',3'-c]phenazine ligand and two different 2,6-dipicolinate ligands, leading to a distorted octahedral geometry. Adjacent chains are linked by pi-pi stacking interactions and weak interactions to form a three-dimensional supramolecular network.

  15. Fugitive Emissions Attribution via Simultaneous Measurement of Ethane and Methane Isotopic Signature in Vehicle-based Surveys

    NASA Astrophysics Data System (ADS)

    Marshall, A. D.; Williams, J. P.; Baillie, J.; MacKay, K.; Risk, D. A.; Fleck, D.

    2016-12-01

    Detecting and attributing sub-regulatory fugitive emissions in the energy sector remains a priority for industry and environmental groups alike. Vehicle-based geochemical emission detection and attribution is seeing increasingly widespread use. In order to distinguish between biogenic and thermogenic emission sources, these techniques rely on tracer species like δ13C of methane (δ13CH4). In this study, we assessed the performance of the new Picarro G2210-i, a cavity ring-down spectroscopy (CRDS) analyzer that measures δ13CH4 and ethane (C2H6) simultaneously to provide increased thermogenic tracer power. In the lab, we assessed drift and other performance characteristics relative to a G2201-i (existing isotopic CH4 and carbon dioxide analyzer). We performed model experiments to synthetically assess the new analyzer's utility for oil and gas developments with differing levels of ethane. Lastly, we also conducted survey drives in a high-ethane oilfield using both the G2210-i and G2201-i. Results were very positive. The G2210-i showed minimal drift, as expected. Allan deviation experiments showed that the G2210-i has a precision of 0.482 ppb for CH4 and 3.15 ppb for C2H6 for 1Hz measurements. Computational experiments confirmed that the resolution of C2H6 is sufficient for detecting and attributing thermogenic CH4 at distance in oil and gas settings, which was further validated in the field where we measured simultaneous departures in δ13CH4 and C2H6 within plumes from venting infrastructure. C2:C1 ratios also proved very useful for attribution. As we move to reduce emissions from the energy industry, this analyzer presents new analytical possibilities that will be of high value to industry stakeholders.

  16. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.

    PubMed

    Yen, Ngo Thi Hai; Bogdanović, Xenia; Palm, Gottfried J; Kühl, Olaf; Hinrichs, Winfried

    2010-02-01

    Crystal structures of polypeptide deformylase (PDF) of Escherichia coli with nickel(II) replacing the native iron(II) have been solved with chloride and formate as metal ligands. The chloro complex is a model for the correct protonation state of the hydrolytic hydroxo ligand and the protonated status of the Glu133 side chain as part of the hydrolytic mechanism. The ambiguity that recently some PDFs have been identified with Zn(2+) ion as the active-site centre whereas others are only active with Fe(2+) (or Co(2+), Ni(2+) is discussed with respect to Lewis acid criteria of the metal ion and substrate activation by the CD loop.

  17. Spectroscopic and electrochemical properties of organic framework of macrocylic OONNOO-donor ligand with its metal organic framework: host/guest stability measurements.

    PubMed

    Kumar, Rajiv; Singh, R P; Singh, R P

    2008-11-15

    In this study, we synthesized 1,2-di(o-aminophenoxy)ethane, as the starting material, used in the preparation of a novel hexadentate OONNOO-donor macrocyclic ligand-1,4,11,14-tetraoxo-7,8-diaza-5,6:9,10;15,16:19,20-terabezocyclododeca-8,17-iene. It has twenty membered organic framework (OF), which has been designed, synthesized and characterized. Our main findings of this paper are related to the organic framework of ligand, its capacity to digest the metal ions and the stability of metal organic framework (MOFs) with cobalt(II), nickel(II) and manganese(II). The authenticity of the used organic framework and its metal complexes have been detected and observed in solid state as well as in aqueous solutions. The main observations were made on the basis of physiochemical measurements viz.: elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, 1H NMR, 13C NMR, mass spectroscopy, electronic, ESR spectroscopy. In addition, the magnetic susceptibility and electrochemistry measurements have been made. The 1H NMR spectra suggest stereochemistry and proton movement interaction. Considering the used organic framework there are a lot of carbon atoms in the molecule reflected by the 13C NMR spectrum. All these observations gave a clear view to confirming the encapsulation; arrive at the composition, structure and geometry of encapsulated complexes. In simple words, it confirms the host/guest coordination and its stability. Electrochemical properties of the complexes have been investigated to confirm the various changes in oxidation state of metals with change in potentials with respect to current at different scan rate.

  18. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    PubMed

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  19. An operando Raman study of molecular structure and reactivity of molybdenum(VI) oxide supported on anatase for the oxidative dehydrogenation of ethane.

    PubMed

    Tsilomelekis, George; Boghosian, Soghomon

    2012-02-21

    Supported molybdenum oxide catalysts on TiO(2) (anatase) with surface densities in the range of 1.8-17.0 Mo per nm(2) were studied at temperatures of 410-480 °C for unraveling the configuration and molecular structure of the deposited (MoO(x))(n) species and examining their behavior for the ethane oxidative dehydrogenation (ODH). In situ Raman and in situ FTIR spectra under oxidizing conditions combined with (18)O/(16)O isotope exchange studies provide the first sound evidence for mono-oxo configuration for the deposited (MoO(x))(n) species on anatase. Isolated O=Mo(-O-)(3) tetra-coordinated species in C(3v)-like symmetry prevail at all surface coverages with a low presence of associated (polymeric) species (probably penta-coordinated) evidenced at high coverages, below the approximate monolayer of 6 Mo per nm(2). A mechanistic scenario for (18)O/(16)O isotope exchange and next-nearest-neighbor vibrational isotope effect is proposed at the molecular level to account for the pertinent spectral observations. Catalytic measurements for ethane ODH with simultaneous monitoring of operando Raman spectra were performed. The selectivity to ethylene increases with increasing surface density up to the monolayer coverage, where primary steps of ethane activation follow selective reaction pathways leading to ∼100% C(2)H(4) selectivity. The operando Raman spectra and a quantitative exploitation of the relative normalized Mo=O band intensities for surface densities of 1.8-5.9 Mo per nm(2) and various residence times show that the terminal Mo=O sites are involved in non-selective reaction turnovers. Reaction routes follow primarily non-selective pathways at low coverage and selective pathways at high coverage. Trends in the initial rates of ethane consumption (apparent reactivity per Mo) as a function of Mo surface density are discussed on the basis of several factors.

  20. I. Synthesis, characterization, and base catalysis of novel zeolite supported super-basic materials II. Oxidative dehydrogenation of ethane over reduced heteropolyanion catalysts

    NASA Astrophysics Data System (ADS)

    Galownia, Jonathan M.

    reliable precursor for the formation of zeolite supported super-basic materials. The second part of this thesis describes the oxidative dehydrogenation of ethane over partially reduced heteropolyanions. Niobium and pyridine exchanged salts of phosphomolybdic (NbPMo12Pyr) and phosphovanadomolybdic (NbPMo11VPyr) acids are investigated as catalyst precursors to prepare materials for catalyzing the oxidative dehydrogenation of ethane to ethylene and acetic acid at atmospheric pressure. The effects of feed composition, steam flow, temperature, and precursor composition on catalytic activity and selectivity are presented for both ethane and ethylene oxidation. Production of ethylene and acetic acid from ethane using the catalytic materials exceeds that reported in the literature for Mo-V-Nb-Ox systems under atmospheric or elevated pressure. Production of acetic acid from ethylene is also greater than that observed for Mo-V-Nb-Ox systems. Addition of vanadium reduces catalytic activity and selectivity to both ethylene and acetic acid while niobium is essential for the formation of acetic acid from ethane. Other metals such as antimony, iron, and gallium do not provide the same beneficial effect as niobium. Molybdenum in close proximity to niobium is the active site for ethane activation while niobium is directly involved in the transformation of ethylene to acetic acid. A balance of niobium and protonated pyridine is required to produce an active catalyst. Water is found to aid in desorption of acetic acid, thereby limiting deep oxidation to carbon oxides. A reaction scheme is proposed for the production of acetic acid from ethane over the catalytic materials.

  1. Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates:

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Lorah, Michelle M.; Kirshtein, Julie D.

    2006-01-01

    Mixed cultures capable of dechlorinating chlorinated ethanes and ethenes were enriched from contaminated wetland sediment at Aberdeen Proving Ground (APG) Maryland. The “West Branch Consortium” (WBC-2) was capable of degrading 1,1,2,2-tetrachloroethane (TeCA), trichloroethene (TCE), cis and trans 1,2-dichloroethene (DCE), 1,1,2-trichloroethane (TCA), 1,2-dichloroethane, and vinyl chloride to nonchlorinated end products ethene and ethane. WBC-2 dechlorinated TeCA, TCA, and cisDCE rapidly and simultaneously. A Clostridium sp. phylogenetically closely related to an uncultured member of a TCE-degrading consortium was numerically dominant in the WBC-2 clone library after 11 months of enrichment in culture. Clostridiales, including Acetobacteria, comprised 65% of the bacterial clones in WBC-2, with Bacteroides (14%), and epsilon Proteobacteria (14%) also numerically important. Methanogens identified in the consortium were members of the class Methanomicrobia, which includes acetoclastic methanogens. Dehalococcoidesdid not become dominant in the culture, although it was present at about 1% in the microbial population. The WBC-2 consortium provides opportunities for the in situbioremediation of sites contaminated with mixtures of chlorinated ethenes and ethanes.

  2. Analysis of metolachlor ethane sulfonic acid chirality in groundwater: A tool for dating groundwater movement in agricultural settings

    USDA-ARS?s Scientific Manuscript database

    Chemical chirality of pesticides can be a useful tool for studying environmental processes. The chiral forms of metolachlor ethane sulfonic acid (MESA), an abundant metabolite of metolachlor, and metolachlor were examined over a 6 year period in groundwater and a groundwater-fed stream in a riparia...

  3. The nu sub 9 fundamental of ethane - Integrated intensity and band absorption measurements with application to the atmospheres of the major planets

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Cess, R. D.; Bangaru, B. R. P.

    1974-01-01

    Measurements of the absolute intensity and integrated band absorption have been performed for the nu sub 9 fundamental band of ethane. The intensity is found to be about 34 per sq cm per atm at STP, and this is significantly higher than previous estimates. It is shown that a Gaussian profile provides an empirical representation of the apparent spectral absorption coefficient. Employing this empirical profile, a simple expression is derived for the integrated band absorption, which is in excellent agreement with experimental values. The band model is then employed to investigate the possible role of ethane as a source of thermal infrared opacity within the atmospheres of Jupiter and Saturn, and to interpret qualitatively observed brightness temperatures for Saturn.

  4. Energetic proton generation from intense Coulomb explosion of large-size ethane clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Song; Zhou Zili; Tian Ye

    An experimental investigation is performed on the interaction of intense femtosecond laser pulses at the intensity of 6 Multiplication-Sign 10{sup 17} W/cm{sup 2} (55 fs, 160 mJ at 800 nm) with ethane cluster (C{sub 2}H{sub 6}){sub N} jets prepared under the backing pressure of 30 bars at room temperature (298 K). The experiment results indicate the generation of energetic protons, whose average and maximum kinetic energies are 12.2 and 138.1 keV, respectively, by Coulomb explosion of (C{sub 2}H{sub 6}){sub N} clusters. (C{sub 2}H{sub 6}){sub N} clusters of 5 nm in radius are generated in the experiment, which are 1.7 timesmore » larger than that of (CH{sub 4}){sub N} clusters prepared in the same conditions. Empirical estimation suggests that (C{sub 2}H{sub 6}){sub N} clusters with radius of about 9.6 nm can be prepared at 80-bars backing pressure at 308 K. While (C{sub 2}H{sub 6}){sub N} clusters of so large size are irradiated by sufficiently intense laser pulses, the average energy of protons will be increased up to 50 keV. It is inferred that such large-size deuterated ethane clusters (C{sub 2}D{sub 6}){sub N} will favor more efficient neutron generation due to the significant increase of the D-D nuclear reaction cross section in laser-driven cluster nuclear fusion.« less

  5. Hydrogen-Atom Transfer Oxidation with H2O2 Catalyzed by [FeII(1,2-bis(2,2'-bipyridyl-6-yl)ethane(H2O)2]2+: Likely Involvement of a (μ-Hydroxo)(μ-1,2-peroxo)diiron(III) Intermediate.

    PubMed

    Khenkin, Alexander M; Vedichi, Madhu; Shimon, Linda J W; Cranswick, Matthew A; Klein, Johannes E M N; Que, Lawrence; Neumann, Ronny

    2017-11-01

    The iron(II) triflate complex ( 1 ) of 1,2-bis(2,2'-bipyridyl-6-yl)ethane, with two bipyridine moieties connected by an ethane bridge, was prepared. Addition of aqueous 30% H 2 O 2 to an acetonitrile solution of 1 yielded 2 , a green compound with λ max =710 nm. Moessbauer measurements on 2 showed a doublet with an isomer shift (δ) of 0.35 mm/s and a quadrupole splitting (Δ E Q ) of 0.86 mm/s, indicative of an antiferromagnetically coupled diferric complex. Resonance Raman spectra showed peaks at 883, 556 and 451 cm -1 that downshifted to 832, 540 and 441 cm -1 when 1 was treated with H 2 18 O 2 . All the spectroscopic data support the initial formation of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that oxidizes carbon-hydrogen bonds. At 0°C 2 reacted with cyclohexene to yield allylic oxidation products but not epoxide. Weak benzylic C-H bonds of alkylarenes were also oxidized. A plot of the logarithms of the second order rate constants versus the bond dissociation energies of the cleaved C-H bond showed an excellent linear correlation. Along with the observation that oxidation of the probe substrate 2,2-dimethyl-1-phenylpropan-1-ol yielded the corresponding ketone but no benzaldehyde, and the kinetic isotope effect, k H /k D , of 2.8 found for the oxidation of xanthene, the results support the hypothesis for a metal-based H-atom abstraction mechanism. Complex 2 is a rare example of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that can elicit the oxidation of carbon-hydrogen bonds.

  6. Recent increase of ethane detected in the remote atmosphere of the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Franco, Bruno; Bader, Whitney; Bovy, Benoît; Mahieu, Emmanuel; Fischer, Emily V.; Strong, Kimberly; Conway, Stephanie; Hannigan, James W.; Nussbaumer, Eric; Bernath, Peter F.; Boone, Chris D.; Walker, Kaley A.

    2015-04-01

    Ethane (C2H6) has a large impact on tropospheric composition and air quality because of its involvement in the global VOC (volatile organic compound) - HOx - NOx chemistry responsible for generating and destroying tropospheric ozone. By acting as a major sink for tropospheric OH radicals, the abundance of C2H6 influences the atmospheric content of carbon monoxide and impacts the lifetime of methane. Moreover, it is an important source of PAN, a thermally unstable reservoir for NOx radicals. On a global scale, the main sources of C2H6 are leakage from the production, transport of natural gas loss, biofuel consumption and biomass burning, mainly located in the Northern Hemisphere. Due to its relatively long lifetime of approximately two months, C2H6 is a sensitive indicator of tropospheric pollution and transport. Using an optimized retrieval strategy (see Franco et al., 2014), we present here a 20-year long-term time series of C2H6 column abundance retrieved from ground-based Fourier Transform InfraRed (FTIR) solar spectra recorded from 1994 onwards at the high-altitude station of Jungfraujoch (Swiss Alps, 46.5° N, 3580 m a.s.l.), part of the Network for the Detection of Atmospheric Composition Change (NDACC, see http://www.ndacc.org). After a regular 1994 - 2008 decrease of the C2H6 amounts, which is very consistent with prior major studies (e.g., Aydin et al., 2011; Simpson et al., 2012) and our understanding of global C2H6 emissions, trend analysis using a bootstrap resampling tool reveals a C2H6 upturn and a statistically-significant sharp burden increase from 2009 onwards (Franco et al., 2014). We hypothesize that this observed recent increase in C2H6 could affect the whole Northern Hemisphere and may be related to the recent massive growth in the exploitation of shale gas and tight oil reservoirs. This hypothesis is supported by measurements derived from solar occultation observations performed since 2004 by the Atmospheric Chemistry Experiment - Fourier

  7. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    PubMed

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  8. Analysis of metolachlor ethane sulfonic acid (MESA) chirality in groundwater: A tool for dating groundwater movement in agricultural settings.

    PubMed

    Rice, Clifford P; McCarty, Gregory W; Bialek-Kalinski, Krystyna; Zabetakis, Kara; Torrents, Alba; Hapeman, Cathleen J

    2016-08-01

    To better address how much groundwater contributes to the loadings of pollutants from agriculture we developed a specific dating tool for groundwater residence times. This tool is based on metolachlor ethane sulfonic acid, which is a major soil metabolite of metolachlor. The chiral forms of metolachlor ethane sulfonic acid (MESA) and the chiral forms of metolachlor were examined over a 6-year period in samples of groundwater and water from a groundwater-fed stream in a riparian buffer zone. This buffer zone bordered cropland receiving annual treatments with metolachlor. Racemic (rac) metolachlor was applied for two years in the neighboring field, and subsequently S-metolachlor was used which is enriched by 88% with the S-enantiomer. Chiral analyses of the samples showed an exponential increase in abundance of the S-enantiomeric forms for MESA as a function of time for both the first order riparian buffer stream (R(2)=0.80) and for groundwater within the riparian buffer (R(2)=0.96). However, the S-enrichment values for metolachlor were consistently high indicating different delivery mechanisms for MESA and metolachlor. A mean residence time of 3.8years was determined for depletion of the initially-applied rac-metolachlor. This approach could be useful in dating groundwater and determining the effectiveness of conservation measures. A mean residence time of 3.8years was calculated for groundwater feeding a first-order stream by plotting the timed-decay for the R-enantiomer of metolachlor ethane sulfonic acid. Published by Elsevier B.V.

  9. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  10. Bioaccumulation of polybrominated diphenyl ethers, decabromodiphenyl ethane, and 1,2-bis(2,4,6-tribromophenoxy) ethane flame retardants in kingfishers (Alcedo atthis) from an electronic waste-recycling site in South China.

    PubMed

    Mo, Ling; Wu, Jiang-Ping; Luo, Xiao-Jun; Zou, Fa-Sheng; Mai, Bi-Xian

    2012-09-01

    Brominated flame retardants (BFRs) including polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), were investigated in common kingfishers (Alcedo atthis) and their prey fish from an electronic waste-recycling site in south China. Elevated BFR residues were detected in the kingfishers, with median concentrations of 8,760, 12, and 7.7 ng/g lipid weight for total PBDEs, DBDPE, and BTBPE, respectively. The calculated predator/prey biomagnification factors (BMFs) were greater than unity for most of the investigated PBDE congeners, with relatively higher values for some hexa-, hepta-, and octa-BDEs (e.g., BDEs 153, 183, 196, 197, 202, and 203). The average BMFs ranged 0.10 to 0.77 and 1.90 to 3.60 for DBDPE and BTBPE, respectively. The BMFs for BTBPE were comparable to or even greater than those for some tri- to penta-BDEs in certain predator/prey pairs, indicating potentially high environmental risks of this compound. Significantly higher concentration ratios of BDEs 202 and 207 to BDE 209 were observed in the kingfishers compared with their prey fish, and these ratios were negatively correlated with the logarithm of BDE 209 concentrations in the kingfishers. This may indicate biotransformation of BDE 209 to BDEs 202 and 207 in these birds. This is the first assessment of the biomagnification potentials of DBDPE and BTBPE in a wild piscivorous bird. Copyright © 2012 SETAC.

  11. A Heterobimetallic W-Ni Complex Containing a Redox-Active W[SNS]2 Metalloligand.

    PubMed

    Rosenkoetter, Kyle E; Ziller, Joseph W; Heyduk, Alan F

    2016-07-05

    The tungsten complex W[SNS]2 ([SNS]H3 = bis(2-mercapto-4-methylphenyl)amine) was bound to a Ni(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] fragment to form the new heterobimetallic complex W[SNS]2Ni(dppe). Characterization of the complex by single-crystal X-ray diffraction revealed the presence of a short W-Ni bond, which renders the complex diamagnetic despite formal tungsten(V) and nickel(I) oxidation states. The W[SNS]2 unit acts as a redox-active metalloligand in the bimetallic complex, which displays four one-electron redox processes by cyclic voltammetry. In the presence of the organic acid 4-cyanoanilinium tetrafluoroborate, W[SNS]2Ni(dppe) catalyzes the electrochemical reduction of protons to hydrogen coincident with the first reduction of the complex.

  12. RETENTION OF HALOCARBONS ON A HEXAFLUOROPROPYLENE-EPOXIDE MODIFIED GRAPHITIZED CARBON BLACK, PART 5: HEAVIER ETHANE- AND ETHENE-BASED COMPOUNDS

    EPA Science Inventory

    The paper gives results of a study of the retention characteristics of 13 heavier ethane-based and 8 ethene-based halocarbon fluids related to alternative refrigerant research as a function of temperature on a stationary phase consisting of a 5% (by mass) coating of a low molecul...

  13. Heterobimetallic complexes of palladium and platinum containing a redox-active W[SNS]2 metalloligand.

    PubMed

    Rosenkoetter, Kyle E; Ziller, Joseph W; Heyduk, Alan F

    2017-05-02

    Complexes of the general formula W[SNS] 2 M(dppe) (M = Pd, Pt; [SNS]H 3 = bis(2-mercapto-p-tolyl)amine; dppe = 1,2-bis(diphenylphosphino)ethane) were prepared by combining the corresponding (dppe)MCl 2 synthon with W[SNS] 2 under reducing conditions. X-ray diffraction studies revealed the formation of a heterobimetallic complex supported by a single thiolate bridging ligand and a short metal-metal bond between the tungsten and palladium or platinum. Electrochemical and computational results show that the frontier orbitals lie predominantly on the W[SNS] 2 fragment suggesting that it behaves as a redox-active metalloligand in these complexes.

  14. Photocatalyzed Hydrogen Evolution from Water by a Composite Catalyst of NH2 -MIL-125(Ti) and Surface Nickel(II) Species.

    PubMed

    Meyer, Kim; Bashir, Shahid; Llorca, Jordi; Idriss, Hicham; Ranocchiari, Marco; van Bokhoven, Jeroen A

    2016-09-19

    A composite of the metal-organic framework (MOF) NH 2 -MIL-125(Ti) and molecular and ionic nickel(II) species, catalyzed hydrogen evolution from water under UV light. In 95 v/v % aqueous conditions the composite produced hydrogen in quantities two orders of magnitude higher than that of the virgin framework and an order of magnitude greater than that of the molecular catalyst. In a 2 v/v % water and acetonitrile mixture, the composite demonstrated a TOF of 28 mol H 2  g(Ni) -1  h -1 and remained active for up to 50 h, sustaining catalysis for three times longer and yielding 20-fold the amount of hydrogen. Appraisal of physical mixtures of the MOF and each of the nickel species under identical photocatalytic conditions suggest that similar surface localized light sensitization and proton reduction processes operate in the composite catalyst. Both nickel species contribute to catalytic conversion, although different activation behaviors are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS(4- CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    EPA Science Inventory

    Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the form...

  16. THE EFFECTS OF EQUIVALENCE RATIO ON THE FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOOT IN PREMIXED ETHANE FLAMES. (R825412)

    EPA Science Inventory

    Abstract

    The formation of polycyclic aromatic hydrocarbons (PAH) and soot has been investigated in atmospheric-pressure, laminar, ethane/oxygen/argon premixed flames as a function of mixture equivalence ratio. Mole fraction profiles of major products, trace aromatics, ...

  17. Comparative Study on Oxidative Treatments of NAPL Containing Chlorinated Ethanes and Ethenes using Hydrogen Peroxide and Persulfate in Soils

    EPA Science Inventory

    The goal of this study was to assess the oxidation of NAPL in soil, 30% of which were composed of chlorinated ethanes and ethenes, using catalyzed hydrogen peroxide (CHP), activated persulfate (AP), and H2O2–persulfate (HP) co-amendment systems. Citrate, a buffer and iron ligand,...

  18. cis,cis,cis-(Acetato-κ(2) O,O')bis-[1,2-bis-(diphenyl-phosphan-yl)ethane-κ(2) P,P']ruthenium(II) 0.75-trifluoro-methane-sulfonate 0.25-chloride.

    PubMed

    Figueira, João; Rodrigues, João; Valkonen, Arto

    2013-04-01

    In the title Ru(II) carboxyl-ate compound, [Ru(C2H3O2)(C26H24P2)2](CF3O3S)0.75Cl0.25, the distorted tris-bidentate octa-hedral stereochemistry about the Ru(II) atom in the complex cation comprises four P-atom donors from two 1,2-bis-(diphenyl-phosphan-yl)ethane ligands [Ru-P = 2.2881 (13)-2.3791 (13) Å] and two O-atom donors from the acetate ligand [Ru-O = 2.191 (3) and 2.202 (3) Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoro-methane-sulfonate anions and one chloride anion, with two such formula units in the unit cell.

  19. Sonication-assisted synthesis of a new cationic zinc nitrate complex with a tetradentate Schiff base ligand: Crystal structure, Hirshfeld surface analysis and investigation of different parameters influence on morphological properties.

    PubMed

    Mousavi, S A; Montazerozohori, M; Masoudiasl, A; Mahmoudi, G; White, J M

    2018-09-01

    A nanostructured cationic zinc nitrate complex with a formula of [ZnLNO 3 ]NO 3 (where L = (N 2 E,N 2' E)-N 1 ,N 1' -(ethane-1,2-diyl)bis(N 2 -((E)-3-phenylallylidene)ethane-1,2-diamine)) was prepared by sonochemical process and characterized by single crystal X-ray crystallography, scanning electron microscopy (SEM), FT-IR and NMR spectroscopy and X-ray powder diffraction (XRPD). The X-ray analysis demonstrates the formation of a cationic complex that metal center is five-coordinated by four nitrogen atom from Schiff base ligand and one oxygen atom from nitrate group. The crystal packing analysis demonstrates the essential role of the nitrate groups in the organization of supramolecular structure. The morphology and size of ultrasound-assisted synthesized zinc nitrate complex have been investigated using scanning electron microscopy (SEM) by changing parameters such as the concentration of initial reactants, the sonication power and reaction temperature. In addition the calcination of zinc nitrate complex in air atmosphere led to production of zinc oxide nanoparticles. Copyright © 2018. Published by Elsevier B.V.

  20. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  1. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    PubMed

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  2. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.

    PubMed

    Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F

    2013-06-20

    The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.

  3. Direct observation of surface ethyl to ethane interconversion upon C2H4 hydrogenation over Pt/Al2O3 catalyst by time-resolved FT-IR spectroscopy.

    PubMed

    Wasylenko, Walter; Frei, Heinz

    2005-09-08

    Time-resolved FT-IR spectra of ethylene hydrogenation over alumina-supported Pt catalyst were recorded at 25 ms resolution in the temperature range of 323-473 K using various H2 concentrations (1 atm total gas pressure). Surface ethyl species (2870 and 1200 cm(-1)) were detected at all temperatures along with the gas-phase ethane product (2954 and 2893 cm(-1)). The CH3CH2Pt growth was instantaneous on the time scale of 25 ms under all experimental conditions. At 323 K, the decay time of surface ethyl (122 +/- 10 ms) coincides with the rise time of ethane (144 +/- 14 ms). This establishes direct kinetic evidence for surface ethyl as the relevant reaction intermediate. Such a direct link between the temporal behavior of an unstable surface intermediate and the final product in a heterogeneous catalytic system has not been demonstrated before. A fraction (25%) of the asymptotic ethane growth at 323 K is prompt, indicating that there are surface ethyl species that react much faster than the majority of the CH3CH2Pt intermediates. The dispersive kinetics is attributed to the varying strength of interaction of the ethyl species with the Pt surface caused by heterogeneity of the surface environment. At 473 K, the majority of ethyl intermediates are hydrogenated prior to the recording of the first time slice (24 ms), and a correspondingly large prompt growth of ethane is observed. The yield and kinetics of the surface ethylidyne are in agreement with the known spectator nature of this species.

  4. Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide.

    PubMed

    Sayed, Sameh El; Licchelli, Maurizio; Martínez-Máñez, Ramón; Sancenón, Félix

    2017-10-18

    The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy) 3 ] 2+ , functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 μm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Infrared Spectra and Optical Constants of Astronomical Ices: II. Ethane and Ethylene

    NASA Technical Reports Server (NTRS)

    Hudson, Reggie L.; Gerakines, Perry A.; Moore, M. H.

    2014-01-01

    Infrared spectroscopic observations have established the presence of hydrocarbon ices on Pluto and other TNOs, but the abundances of such molecules cannot be deduced without accurate optical constants (n, k) and reference spectra. In this paper we present our recent measurements of near- and mid-infrared optical constants for ethane (C2H6) and ethylene (C2H4) in multiple ice phases and at multiple temperatures. As in our recent work on acetylene (C2H2), we also report new measurements of the index of refraction of each ice at 670 nm. Comparisons are made to earlier work where possible, and electronic versions of our new results are made available.

  6. Nickel(II) and cobalt(II) complexes of lidocaine: Synthesis, structure and comparative in vitro evaluations of biological perspectives.

    PubMed

    Tabrizi, Leila; McArdle, Patrick; Erxleben, Andrea; Chiniforoshan, Hossein

    2015-10-20

    Metal complexes of the type [Ni(LC)2(X)2], 1 and 2, [Co(LC)2(X)2], 3 and 4 (LC: lidocaine, X = dca (dicyanamide), 1 and 3, X = NCS(-), 2 and 4) have been synthesized and characterized. The geometries of 1-4 were confirmed by single crystal X-ray crystallography. The complexes are water soluble and stable in aqueous solution. The interaction of 1-4 with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated using UV-visible and fluorescence spectrophotometric methods. A gel electrophoresis assay demonstrated that the complexes cleave pUC19 plasmid DNA. The in vitro free radical scavenging, antimicrobial activity and cytotoxic potential of all the complexes were examined. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. C-Cl bond activation and catalytic hydrodechlorination of hexachlorobenzene by cobalt and nickel complexes with sodium formate as a reducing agent.

    PubMed

    Li, Junye; Li, Xiaoyan; Wang, Lin; Hu, Qingping; Sun, Hongjian

    2014-05-14

    A benzyne cobalt complex, Co(η(2)-C6Cl4)(PMe3)3 (2), was generated from the reaction of hexachlorobenzene with 2 equiv. of Co(PMe3)4 through selective activation of two C-Cl bonds of hexachlorobenzene. Meanwhile, the byproduct CoCl2(PMe3)3 was also confirmed by IR spectra. The cobalt(II) complex, CoCl(C6Cl5)(PMe3)3 (1), as an intermediate in the formation of aryne complex 2, was also isolated by the reaction of hexachlorobenzene with the stoichiometric amount of Co(PMe3)4. Complex 2 could be obtained by the reaction of 1 with Co(PMe3)4. Under similar reaction conditions, the reaction of Ni(PMe3)4 with hexachlorobenzene afforded only a mono-(C-Cl) bond activation nickel(II) complex, NiCl(C6H5)(PMe3)2 (5). The expected benzyne nickel complex was not formed. The structures of complexes 2 and 5 were determined by X-ray single crystal diffraction. Successful selective hydrodechlorinations of hexachlorobenzene were studied and in the presence of Co(PMe3)4 or Ni(PMe3)4 as catalysts and sodium formate as a reducing agent pentachlorobenzene and 1,2,4,5-tetrachlorobenzene were obtained. The catalytic hydrodechlorination mechanism is proposed and discussed.

  8. Methane source identification in Boston, Massachusetts using isotopic and ethane measurements

    NASA Astrophysics Data System (ADS)

    Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.

    2012-12-01

    Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.

  9. Self- and foreign-gas broadening of ethane lines determined from diode laser measurements at 12 microns

    NASA Technical Reports Server (NTRS)

    Blass, W. E.; Halsey, G. W.; Jennings, D. E.

    1987-01-01

    Self- and foreign-gas broadening of ethane lines have been measured in the nu9 band at 12 microns. A coefficient of 0.125 per cm atm was determined for self broadening. Foreign-gas broadening coefficients determined are (in per cm atm) 0.090 for N2, 0.069 for He, 0.068 for Ar, 0.108 for H2, and 0.096 for CH4. Results are given for a sample temperature of 296 K.

  10. A density functional theory and quantum theory of atoms-in-molecules analysis of the stability of Ni(II) complexes of some amino alcohol ligands.

    PubMed

    Varadwaj, Pradeep R; Cukrowski, Ignacy; Perry, Christopher B; Marques, Helder M

    2011-06-23

    The structure of the complexes of the type [Ni(L)(H(2)O)(2)](2+), where L is an amino alcohol ligand, L = N,N'-bis(2-hydroxyethyl)-ethane-1,2-diamine (BHEEN), N,N'-bis(2-hydroxycyclohexyl)-ethane-1,2-diamine (Cy(2)EN), and N,N'-bis(2-hydroxycyclopentyl)-ethane-1,2-diamine, (Cyp(2)EN) were investigated at the X3LYP/6-31+G(d,p) level of theory both in the gas phase and in solvent (CPCM model) to gain insight into factors that control the experimental log K(1) values. We find that (i) analyses based on Bader's quantum theory of atoms in molecules (QTAIM) are useful in providing significant insight into the nature of metal-ligand bonding and in clarifying the nature of weak "nonbonded" interactions in these complexes and (ii) the conventional explanation of complex stability in these sorts of complexes (based on considerations of bond lengths, bite angles and H-clashes) could be inadequate and indeed might be misleading. The strength of metal-ligand bonds follows the order Ni-N > Ni-OH ≥ Ni-OH(2); the bonds are predominantly ionic with some covalent character decreasing in the order Ni-N > Ni-OH > Ni-OH(2), with Ni-OH(2) being close to purely ionic. We predict that the cis complexes are preferred over the trans complexes because of (i) stronger bonding to the alcoholic O-donor atoms and (ii) more favorable intramolecular interactions, which appear to be important in determining the conformation of a metal-ligand complex. We show that (i) the flexibility of the ligand, which controls the Ni-OH bond length, and (ii) the ability of the ligand to donate electron density to the metal are likely to be important factors in determining values of log K(1). We find that the electron density at the ring critical point of the cyclopentyl moieties in Cyp(2)EN is much higher than that in the cyclohexyl moieties of Cy(2)EN and interpret this to mean that Cyp(2)EN is a poorer donor of electron density to a Lewis acid than Cy(2)EN.

  11. Reductive dechlorination of trichloroethene mediated by humic-metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Loughlin, E.J.; Burris, D.R.; Delcomyn, C.A.

    1999-04-01

    Experiments were conducted to determine if transition metal-humic acid complexes can act as e{sup {minus}} transfer mediators in the reductive dechlorination of trichloroethene (TCE) using Ti(III) citrate as the bulk reductant. In the presence of Ni-Aldrich humic acid (AHA) complexes, TCE reduction was rapid, with complete removal of TCE in less than 23 h. Cu-AHA complexes were less effective as e{sup {minus}} mediators than Ni-AHA complexes; only 60% of TCE was reduced after 150 h. Partially dechlorinated intermediates were observed during TCE reduction; however, they were transitory, and at no time accounted for more than 2% of the initial TCEmore » mass on a mole C basis. Ethane and ethene were the primary end products of TCE reduction; however, a suite of other non-chlorinated hydrocarbons consisting of methane and C{sub 3} to C{sub 6} alkanes and alkenes were also observed. The results suggest that humic-metal complexes may represent a previously unrecognized class of electron mediators in natural environments.« less

  12. Regional Influences of Marcellus Shale Natural Gas Activity: Back-trajectory Analysis of Baltimore/Washington Ethane Concentrations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Chittams, A.; Dadzie, J.; Deskins, T.; Goncalves, V.; M'Bagui Matsanga, C.; Zakaria, R.; Ehrman, S.; Dickerson, R. R.

    2015-12-01

    Over the past several years, the combined utilization of hydraulic fracturing and horizontal drilling has led to a rapid increase in natural gas production, especially from the Marcellus Shale. To explore the impact of this activity downwind on regions with no natural gas production, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was used to generate 48-hour back-trajectories for summer, daytime hours from the years 2007-2014 in the Baltimore, MD and Washington, D.C. areas where hourly ethane measurements are available from Photochemical Assessment Monitoring Stations (PAMS). For each of the years investigated, unconventional well counts were obtained for counties in the surrounding states of Pennsylvania, Ohio, West Virginia, and Virginia, and counties exceeding a threshold of 0.05 wells/km2 were designated as counties with a high density of wells. The back-trajectories for each year were separated into two groups: those which passed through counties containing a high density of wells, and those which did not. Back-trajectories passing through high-density counties were further screened by applying a height criterion where trajectories beyond 10% above the mixing layer were excluded. Preliminary results indicate that air parcels with back-trajectories passing within the boundary layer of counties with a high density of unconventional natural gas wells correspond to significantly greater concentrations of observed ethane at these downwind monitors.

  13. Hemilability of the 1,2-Bis(dimethylphosphino)ethane (dmpe) Ligand in Cp*Mo(NO)(κ2-dmpe).

    PubMed

    Holmes, Aaron S; Patrick, Brian O; Levesque, Taleah M; Legzdins, Peter

    2017-09-18

    Reaction of Cp*Mo(NO)Cl 2 with 1 equiv of 1,2-bis(dimethylphosphino)ethane (dmpe) in THF at ambient temperature forms [Cp*Mo(NO)(Cl)(κ 2 -dmpe)]Cl (1), which is isolable as an analytically pure yellow powder in 65% yield. Further addition of 2 equiv of Cp 2 Co to 1 in CH 2 Cl 2 affords dark red Cp*Mo(NO)(κ 2 -dmpe) (2), which was isolated in 36% yield by recrystallization from Et 2 O at -30 °C. Reaction of a benzene solution of 2 with an equimolar amount of elemental sulfur results in the immediate production of dark blue (μ-S)[Cp*Mo(NO)(κ 1 -dmpeS)] 2 (3), which is a rare example of a bimetallic transition-metal complex bridged by only a single sulfur atom and involving Mo═S═Mo bonding. In contrast, reaction of 2 with an excess of sulfur in benzene results in the formation of Cp*Mo(NO)(η 2 -S 2 )(κ 1 -dmpeS) (4). Complex 4 can also be formed by the addition of elemental sulfur to 3, thereby indicating that 3 is a precursor to 4. Cp*Mo(NO)(κ 2 -dmpe) (2) also undergoes interesting transformations when treated with organic bromides. For instance, reaction of 2 with 5 equiv benzyl bromide in THF produces the bimetallic complex (μ-dmpe)[Cp*Mo(NO)Br 2 ] 2 (5) and bibenzyl after 4 d at 70 °C probably via radical intermediates. In contrast to its reaction with benzyl bromide, complex 2 forms [Mo(NO)Br 2 (κ 2 -dmpe)] 2 (6), olefin, alkane, and Cp*H when treated with 5 equiv of 1-bromopropane or 1-bromooctane in THF at 70 °C for 72 h. Interestingly, complex 2 does not display any reactivity with bromobenzene or 1-bromoadamantane even after being heated for several days at 70 °C. All new complexes were characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them were established by single-crystal X-ray crystallographic analyses.

  14. Reductive Activation of O2 by Non-Heme Iron(II) Benzilate Complexes of N4 Ligands: Effect of Ligand Topology on the Reactivity of O2-Derived Oxidant.

    PubMed

    Chakraborty, Biswarup; Jana, Rahul Dev; Singh, Reena; Paria, Sayantan; Paine, Tapan Kanti

    2017-01-03

    A series of iron(II) benzilate complexes (1-7) with general formula [(L)Fe II (benzilate)] + have been isolated and characterized to study the effect of supporting ligand (L) on the reactivity of metal-based oxidant generated in the reaction with dioxygen. Five tripodal N 4 ligands (tris(2-pyridylmethyl)amine (TPA in 1), tris(6-methyl-2-pyridylmethyl)amine (6-Me 3 -TPA in 2), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (iso-BPMEN in 3), N 1 ,N 1 -dimethyl-N 2 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -iso-BPMEN in 4), and tris(2-benzimidazolylmethyl)amine (TBimA in 7)) along with two linear tetradentate amine ligands (N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(2-pyridylmethyl)ethane-1,2-diamine (BPMEN in 5) and N 1 ,N 2 -dimethyl-N 1 ,N 2 -bis(6-methyl-2-pyridylmethyl)ethane-1,2-diamine (6-Me 2 -BPMEN in 6)) were employed in the study. Single-crystal X-ray structural studies reveal that each of the complex cations of 1-3 and 5 contains a mononuclear six-coordinate iron(II) center coordinated by a monoanionic benzilate, whereas complex 7 contains a mononuclear five-coordinate iron(II) center. Benzilate binds to the iron center in a monodentate fashion via one of the carboxylate oxygens in 1 and 7, but it coordinates in a bidentate chelating mode through carboxylate oxygen and neutral hydroxy oxygen in 2, 3, and 5. All of the iron(II) complexes react with dioxygen to exhibit quantitative decarboxylation of benzilic acid to benzophenone. In the decarboxylation pathway, dioxygen becomes reduced on the iron center and the resulting iron-oxygen oxidant shows versatile reactivity. The oxidants are nucleophilic in nature and oxidize sulfide to sulfoxide and sulfone. Furthermore, complexes 2 and 4-6 react with alkenes to produce cis-diols in moderate yields with the incorporation of both the oxygen atoms of dioxygen. The oxygen atoms of the nucleophilic oxidants do not exchange with water. On the basis of interception studies, nucleophilic

  15. Synthesis and reactivity of cis-FeH 2(dcpe) 2 (dcpe=1,2-bis(dicyclohexylphosphino)ethane)

    DOE PAGES

    Summerscales, Owen T.; Scott, Brian Lindley; Viswanathan, Hari S.; ...

    2015-12-02

    For this work, a new six-coordinate iron dihydride cis-FeH2(dcpe)2 (1) has been synthesized (dcpe = 1,2-bis(dicyclohexylphosphino)ethane). It has been found to react with either 1,4-cyclohexadiene or tert-butylethylene in toluene to give the respected hydrogenated hydrocarbon and the zero valent species Fe(dcpe)(toluene) (2). When this reaction with acceptor olefins was performed in methylcyclohexane, transfer dehydrogenation was observed to give low-yields of iron-bound toluene in 2.

  16. Complexation of rhodium(II) tetracarboxylates with aliphatic diamines in solution: 1H and 13C NMR and DFT investigations.

    PubMed

    Jaźwiński, Jarosław; Sadlej, Agnieszka

    2013-10-01

    The complexation of rhodium(II) tetraacetate, tetrakistrifluoroaceate and tetrakisoctanoate with a set of diamines (ethane-1,diamine, propane-1,3-diamine and nonane-1,9-diamine) and their N,N'-dimethyl and N,N,N',N'-tetramethyl derivatives in chloroform solution has been investigated by (1) H and (13) C NMR spectroscopy and density functional theory (DFT) modelling. A combination of two bifunctional reagents, diamines and rhodium(II) tetracarboxylates, yielded insoluble coordination polymers as main products of complexation and various adducts in the solution, being in equilibrium with insoluble material. All diamines initially formed the 2 : 1 (blue), (1 : 1)n oligomeric (red) and 1 : 2 (red) axial adducts in solution, depending on the reagents' molar ratio. Adducts of primary and secondary diamines decomposed in the presence of ligand excess, the former via unstable equatorial complexes. The complexation of secondary diamines slowed down the inversion at nitrogen atoms in NH(CH3 ) functional groups and resulted in the formation of nitrogenous stereogenic centres, detectable by NMR. Axial adducts of tertiary diamines appeared to be relatively stable. The presence of long aliphatic chains in molecules (adducts of nonane-1,9-diamines or rhodium(II) tetrakisoctanoate) increased adduct solubility. Hypothetical structures of the equatorial adduct of rhodium(II) tetraacetate with ethane-1,2-diamine and their NMR parameters were explored by means of DFT calculations. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  18. The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.

    PubMed Central

    Dilworth, M J; Eady, R R; Eldridge, M E

    1988-01-01

    1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed. PMID:3162672

  19. The Global Search for Abiogenic GHGs, via Methane Isotopes and Ethane

    NASA Astrophysics Data System (ADS)

    Malina, Edward; Muller, Jan-Peter; Walton, David; Potts, Dale

    2015-04-01

    The importance of Methane as an anthropogenic Green House Gas (GHG) is well recognized in the scientific community, and is second only to Carbon Dioxide in terms of influence on the Earth's radiation budget (Parker, et al, 2011) suggesting that the ability to apportion the source of the methane (whether it is biogenic, abiogenic or thermogenic) has never been more important. It has been proposed (Etiope, 2009) that it may be possible to distinguish between a biogenic methane source (e.g. bacteria fermentation) and an abiogenic source (e.g. gas seepage or fugitive emissions) via the retrieval of the abundances of methane isotopes (12CH4 and 13CH4) and through the ratio of ethane (C2H6) to methane (CH4) concentrations. Using ultra fine spectroscopy (<0.2cm-1 spectral resolution) from Fourier Transform Spectrometers (FTS) based on the SCISAT-1 (ACE-FTS) and GOSAT (TANSO-FTS) we are developing a retrieval scheme to map global emissions of abiogenic and biogenic methane, and provide insight into how these variations in methane might drive atmospheric chemistry, focusing on the lower levels of the atmosphere. Using HiTran2012 simulations, we show that it is possible to distinguish between methane isotopes using the FTS based instruments on ACE and GOSAT, and retrieve the abundances in the Short Wave Infra-red (SWIR) at 1.65μm, 2.3μm, 3.3μm and Thermal IR, 7.8μm wavebands for methane, and the 3.3μm and 7μm wavebands for ethane. Initially we use the spectral line database HITRAN to determine the most appropriate spectral waveband to retrieve methane isotopes (and ethane) with minimal water vapour, CO2 and NO2 impact. Following this, we have evaluated the detectability of these trace gases using the more sophisticated Radiative Transfer Models (RTMs) SCIATRAN, the Oxford RFM and MODTRAN 5 in the SWIR, in order to determine the barriers to retrieving methane isotopes in both ACE (limb profile) and GOSAT (nadir measurements) instruments, including a preliminary

  20. EFFECT OF GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS), BROMOCHLOROACETIC ACID (BCA) AND MOLINATE ON REPRODUCTIVE FUNCTION IN CD-1 MALE MICE

    EPA Science Inventory

    EFFECT OF GESTATIONAL EXPOSURE TO ETHANE DIMETHANESULFONATE (EDS), BROMOCHLOROACETIC ACID (BCA) AND MOLINATE ON REPRODUCTIVE FUNCTION IN CD-1 MALE MICE. D.K. Tarka1,2 , G.R. Klinefelter2, J.C. Rockett2, J.D. Suarez2, N.L. Roberts2 and J.M. Rogers1,2. 1 University of North Carol...

  1. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Synthesis, Characterization, and Theoretical Considerations of 1,2-bis(oxyamino)ethane Salts

    NASA Technical Reports Server (NTRS)

    Crake, Greg; Hawkins, Tom; Hall, Leslie; Tollison, Kerri; Brand, Adam

    2003-01-01

    The synthesis, characterization, theoretical calculations, and safety studies of energetic salts of 1,2- bis(oxyamino) ethane, (H2N-O-CH2-CH2-O-NH2), were carried out. The salts were characterized by vibrational (infrared, Raman), multinuclear nmr studies (1H, 13C), differential scanning calorimetry (DSC); elemental analysis; and initial safety testing (impact and friction sensitivity) . Theoretical calculations on the neutral, monoprotonated, and doubly protonated species of ethylene bisoxyamine were carried out using xxxx level of theory for the lowest energy structure and these theoretical results compared with the experimentally observed bond distances and vibrational (ir, Raman) frequency values. The single crystal X-ray diffraction study was carried out on the mono-perchlorate salt revealing a high degree of hydrogen bonding with an unexpected structure.

  3. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry

    DOE PAGES

    Ruscic, Branko

    2015-03-31

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE 298) and bond dissociation energies at 0 K (D 0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CH n, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C 2H n, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHmore » n, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO 2 and H 2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.« less

  4. Jovian Northern Ethane Aurora and the Solar Cycle

    NASA Technical Reports Server (NTRS)

    Kostiuk,T.; Livengood, T.; Fast, K.; Buhl, D.; Goldstein, J.; Hewagama, T.

    1999-01-01

    Thermal infrared auroral spectra from Jupiter's North polar region have been collected from 1979 to 1998 in a continuing study of long-term variability in the northern thermal IR aurora, using C2H6 emission lines near 12 microns as a probe. Data from Voyager I and 2 IRIS measurements and ground based spectral measurements were analyzed using the same model atmosphere to provide a consistent relative comparison. A retrieved equivalent mole fraction was used to compare the observed integrated emission. Short term (days), medium term (months) and long term (years) variability in the ethane emission was observed. The variability Of C2H6 emission intensities was compared to Jupiter's seasonal cycle and the solar activity cycle. A positive correlation appears to exist, with significantly greater emission and short term variability during solar maxima. Observations on 60 N latitude during increased solar activity in 1979, 1989, and most recently in 1998 show up to 5 times brighter integrated line emission of C2H6 near the north polar "hot spot" (150-210 latitude) than from the north quiescent region. Significantly lower enhancement was observed during periods of lower solar activity in 1982, 1983, 1993, and 1995. Possible sources and mechanisms for the enhancement and variability will be discussed.

  5. Equations of State for Mixtures: Results from DFT Simulations of Xenon/Ethane Mixtures Compared to High Accuracy Validation Experiments on Z

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2013-06-01

    We report a computational and validation study of equation of state (EOS) properties of liquid / dense plasma mixtures of xenon and ethane to explore and to illustrate the physics of the molecular scale mixing of light elements with heavy elements. Accurate EOS models are crucial to achieve high-fidelity hydrodynamics simulations of many high-energy-density phenomena such as inertial confinement fusion and strong shock waves. While the EOS is often tabulated for separate species, the equation of state for arbitrary mixtures is generally not available, requiring properties of the mixture to be approximated by combining physical properties of the pure systems. The main goal of this study is to access how accurate this approximation is under shock conditions. Density functional theory molecular dynamics (DFT-MD) at elevated-temperature and pressure is used to assess the thermodynamics of the xenon-ethane mixture. The simulations are unbiased as to elemental species and therefore provide comparable accuracy when describing total energies, pressures, and other physical properties of mixtures as they do for pure systems. In addition, we have performed shock compression experiments using the Sandia Z-accelerator on pure xenon, ethane, and various mixture ratios thereof. The Hugoniot results are compared to the DFT-MD results and the predictions of different rules for combing EOS tables. The DFT-based simulation results compare well with the experimental points, and it is found that a mixing rule based on pressure equilibration performs reliably well for the mixtures considered. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. A radical pathway in catecholase activity with nickel(II) complexes of phenol based "end-off" compartmental ligands.

    PubMed

    Ghosh, Totan; Adhikary, Jaydeep; Chakraborty, Prateeti; Sukul, Pradip K; Jana, Mahendra Sekhar; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2014-01-14

    Seven dinuclear and one dinuclear based dicyanamide bridged polymeric Ni(II) complexes of phenol based compartmental ligands (HL(1)-HL(4)) have been synthesized with the aim to investigate their catecholase-like activity and to evaluate the most probable mechanistic pathway involved in this process. The complexes have been characterized by routine physicochemical studies as well as by X-ray single crystal structure analyses namely [Ni2(L(2))(SCN)3(H2O)(CH3OH)] (), [Ni2(L(4))(SCN)3(CH3OH)2] (), [Ni2(L(2))(SCN)2(AcO)(H2O)] (), [Ni2(L(4))(SCN)(AcO)2] (), [Ni2(L(2))(N3)3(H2O)2] (), [Ni2(L(4))(N3)3(H2O)2] (), [Ni2(L(1))(AcO)2(N(CN)2)]n () and [Ni2(L(3))(AcO)2(N(CN)2)] (), [SCN = isothiocyanate, AcO = acetate, N3 = azide, and N(CN)2 = dicyanamide anion; L(1-4) = 2,6-bis(R2-iminomethyl)-4-R1-phenolato, where R1 = methyl and tert-butyl, R2 = N,N-dimethyl ethylene for L(1-2) and R1 = methyl and tert-butyl, R2 = 2-(N-ethyl) pyridine for L(3-4)]. A UV-vis spectrophotometric study using 3,5-di-tert butylcatechol (3,5-DTBC) reveals that all the complexes are highly active in catalyzing the aerobic oxidation of (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in methanol medium with the formation of hydrogen peroxide. An EPR study confirms the generation of radicals during the catalysis. Cyclic voltammetric studies of the complexes in the presence and absence of 3,5-DTBC have been performed. Reduction of Ni(II) to Ni(I) and that of the imine bond of the ligand system have been detected at ∼-1.0 V and ∼-1.5 V, respectively. Coulometric separation of the species at -1.5 V followed by the EPR study at 77 K confirms the species as an organic radical and thus most probably reduced imine species. Spectroelectrochemical analysis at -1.5 V clearly indicates the oxidation of 3,5-DTBC and thus suggests that the radical pathway is supposed to be responsible for the catecholase-like activity exhibited by the nickel complexes. The ligand centred radical generation has further been

  7. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallejos, Javier; Brito, Iván, E-mail: ivanbritob@yahoo.com; Cárdenas, Alejandro

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differencesmore » in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.« less

  8. Diethyl 2,2'-(ethane-1,2-diyldi-oxy)di-benzo-ate.

    PubMed

    Shi, Huaduan; Qin, Haisha; Ma, Zhen

    2014-05-01

    The mol-ecular title compound, C20H22O6, was obtained by the reaction of ethyl 2-hy-droxy-benzoate with 1,2-di-chloro-ethane. The mol-ecule lies on a twofold rotation axis which passes through the middle of the central ethyl-ene bridge. This group exhibits a gauche conformation with the corresponding O-C-C-O torsion angle being 73.2 (2)°. The C atoms of the carboxyl group, the aryl and the O-CH2 group are coplanar, with an r.m.s. deviation of 0.01 Å. The two aryl rings form a dihedral angle of 67.94 (4)°. The ester ethyl group is disordered over two sets of sites with an occupancy ratio of 0.59 (2):0.41 (2). The crystal packing is dominated by van der Waals forces.

  9. Understanding methane variability from 1980 - 2015 using inversions of methane, δ13C and ethane

    NASA Astrophysics Data System (ADS)

    Thompson, Rona; Nisbet, Euan

    2017-04-01

    Atmospheric methane (CH4) increased globally during the 20th century, from a pre-industrial value of approximately 722 ppb to 1773 ppb in 1999. The upward trend, however, was interrupted between 1999 and 2006, when the atmospheric growth rate of CH4 was close to zero. From 2007, atmospheric CH4 started to increase again and, in 2014, the growth rate was substantially faster (12.5 ppb/y) than in any other year since 2007. Changes in the atmospheric growth rate indicate changes in the balance of CH4 sources and sinks, however, the cause of the 1999-2006 stabilization and subsequent rise in atmospheric CH4, and its attribution to different sources is still not fully resolved. Various explanations have been proposed for the pause in the growth, including a reduction in fossil fuel and wetland emissions, and for its renewed increase, such as increasing emissions from wetlands, enteric fermentation, and fossil fuels, as well as a decline in the OH sink. To better constrain the sources and sinks of CH4, we have performed an inversion using the AGAGE 12-box model of the atmosphere using atmospheric observations of CH4, δ13C, and of ethane. Using observations of these 3 atmospheric tracers simultaneously, a stronger constraint is placed on the different sources, as well as the principal atmospheric sink via oxidation by OH. In the model, we account for all emissions grouped into microbial, fossil fuel, biomass burning, landfill and ocean sources, as well as the soil oxidation sink. We also account for the atmospheric sink of CH4 and ethane via oxidation by OH and Cl radicals. The modelled lifetimes of CH4 and ethane were 8.2 years and 1.3 months, respectively. Inversions were also performed in which the OH sink was optimized simultaneously with the emissions. We find that fossil fuel emissions were underestimated in the northern mid to high latitudes in the 1980s but were overestimated from the mid 1990s onwards with respect to the prior (EDGAR-4.2), and that there is no

  10. Biodegradation of ddt (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) by the white rot fungus phanerochaete chrysosporium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bumpus, J.A.; Aust, S.D.

    1987-01-01

    Extensive biodegradation of 1,1,1-trichloro-2,2bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of (14C) DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane(DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl) ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that ((14)C) dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate thatmore » the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.« less

  11. Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N2O2 Schiff base ligand derived from 4,6-diacetylresorcinol and benzylamine.

    PubMed

    Shebl, Magdy

    2008-09-01

    A tetradentate N2O2 donor Schiff base ligand, H2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl-, NO3-, AcO-, ClO4- and SO42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO(4)(-) anion as compared to the strongly coordinating power of SO42- and Cl- anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.

  12. New Cu (II), Co(II) and Ni(II) complexes of chalcone derivatives: Synthesis, X-ray crystal structure, electrochemical properties and DFT computational studies

    NASA Astrophysics Data System (ADS)

    Tabti, Salima; Djedouani, Amel; Aggoun, Djouhra; Warad, Ismail; Rahmouni, Samra; Romdhane, Samir; Fouzi, Hosni

    2018-03-01

    The reaction of nickel(II), copper(II) and cobalt(II) with 4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one (HL) leads to a series of new complexes: Ni(L)2(NH3), Cu(L)2(DMF)2 and Co(L)2(H2O). The crystal structure of the Cu(L)2(DMF)2 complex have been determined by X-ray diffraction methods. The Cu(II) lying on an inversion centre is coordinated to six oxygen atoms forming an octahedral elongated. Additionally, the electrochemical behavior of the metal complexes were investigated by cyclic voltammetry at a glassy carbon electrode (GC) in CH3CN solutions, showing the quasi-reversible redox process ascribed to the reduction of the MII/MI couples. The X-ray single crystal structure data of the complex was matched excellently with the optimized monomer structure of the desired compound; Hirschfeld surface analysis supported the packed crystal lattice 3D network intermolecular forces. HOMO/LUMO energy level and the global reactivity descriptors quantum parameters are also calculated. The electrophilic and nucleophilic potions in the complex surface are theoretically evaluated by molecular electrostatic potential and Mulliken atomic charges analysis.

  13. Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, J.D.; Hudson, H.M.

    1982-05-01

    Several new turboexpander gas-plant schemes offer two advantages over conventional processes: they can recover over 85% of the natural gas stream's ethane while handling higher inlet CO/sub 2/ concentrations without freezing - this saves considerable costs by allowing smaller CO/sub 2/ removal units or eliminating the need for them entirely, and the liquids recovery system requires no more external horsepower and in many cases, even less; this maximized the quantity of liquids recovered per unit of energy input, thus further lowering costs. The economic benefits associated with the proved plant designs make the processes attractive even for inlet gas streamsmore » containing little or no CO/sub 2/.« less

  14. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalba, Paul A.; Buratti, Bonnie J.; Baines, Kevin H.

    2012-12-20

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titanmore » exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.« less

  15. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  16. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  17. A series of octanuclear-nickel(II) complexes supported by thiacalix[4]arenes.

    PubMed

    Xiong, Kecai; Jiang, Feilong; Gai, Yanli; Zhou, Youfu; Yuan, Daqiang; Su, Kongzhao; Wang, Xinyi; Hong, Maochun

    2012-03-05

    A series of discrete complexes, [Ni(8)(BTC4A)(2)(μ(6)-CO(3))(2)(μ-CH(3)COO)(4)(dma)(4)]·H(2)O (1), [Ni(8)(BTC4A)(2)(μ(6)-CO(3))(2)(μ-Cl)(2)(μ-HCOO)(2)(dma)(4)]·2DMF·2CH(3)CN (2), [Ni(8)(PTC4A)(2) (μ(6)-CO(3))(2)(μ-CH(3)COO)(4)(dma)(4)]·DMF (3), and [Ni(8)(PTC4A)(2)(μ(6)-CO(3))(2)(μ-OH)(μ-HCOO)(3) (dma)(4)] (4) (p-tert-butylthiacalix[4]arene = H(4)BTC4A, p-phenylthiacalix[4]arene = H(4)PTC4A, dma = dimethylamine, and DMF = N,N'-dimethylformamide), have been prepared under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction analyses, powder XRD, and IR spectroscopy. These four complexes are stacked by dumbbell-like building blocks with one chairlike octanuclear-nickel(II) core, which is capped by two thiacalix[4]arene molecules and connected by two in situ generated carbonato anions and different auxiliary anions. This work implied that not only the solvent molecules but also the upper-rim groups of thiacalix[4]arenes have significant effects on the self-assembly of the dumbbell-like building blocks. The magnetic properties of complexes 1-4 were examined, indicating strong antiferromagnetic interactions between the nickel(II) ions in the temperature range of 50-300 K.

  18. A-site deficient La0.2Sr0.7TiO3-δ anode material for proton conducting ethane fuel cell to cogenerate ethylene and electricity

    NASA Astrophysics Data System (ADS)

    Liu, Subiao; Behnamian, Yashar; Chuang, Karl T.; Liu, Qingxia; Luo, Jing-Li

    2015-12-01

    A site deficient La0.2Sr0.7TiO3-δ (LSTA) and a highly proton conductive electrolyte BaCe0.7Zr0.1Y0.2O3-δ (BCZY) are synthesized by using solid state reaction method. The performance of the electrolyte-supported single cell, comprised of LSTA + Cr2O3 + Cu//BCZY//(La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ (LSCF)+BCZY, is fabricated and investigated. LSTA shows remarkably high electrical performance, with a conductivity as high as 27.78 Scm-1 at 1150 °C in a 10% H2/N2 reducing atmosphere. As a main anode component, it shows good catalytic activity towards the oxidation of ethane, causing the power density to considerably increase from 158.4 mW cm-2 to 320.9 mW cm-2 and the ethane conversion to significantly rise from 12.6% to 30.9%, when the temperature increases from 650 °C to 750 °C. These changes agree well with the polarization resistance which dramatically decreases from 0.346 Ωcm2 to 0.112 Ωcm2. EDX measurement shows that no element diffusion exists (chemical compatibility) between anode (LSTA + Cr2O3+Cu) and electrolyte (BCZY). With these properties, the pure phase LSTA is evaluated as a high electro-catalytic activity anode material for ethane proton conducting solid oxide fuel cell (PC-SOFC).

  19. Synthesis, structural characterization, superoxide dismutase and antimicrobial activities studies of copper (II) complexes with 2-(E)-(2-(2-aminoethylamino) methyl)-4-bromophenol and (19E, 27E)-N1, N2-bis (phenyl (pyridine-2-yl)-methylene)-ethane-1, 2-diamine as ligands

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-07-01

    Three new copper (II) complexes, [Cu(L)(H2O)]ClO4 (1), [Cu(L1)(ClO4)]+ (2) and [Cu(L1)]2+ (3), where HL = 2-(E)-(2-(2-aminoethylamino)methyl)-4-bromophenol, L1 =(19E, 27E)-N1,N2-bis(phenyl(pyridine-2-yl)-methylene)-ethane-1, 2-diamine, have been synthesized and characterized by using various physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The molecular structure of copper complexes showed that the ligands occupies the basal plane of square pyramidal geometry with the H2O of 1 or the ClO4 of 2 occupying the remaining apical position. Complexes 1 and 2 crystallize in the monoclinic system of the space group P21/c, a = 10.5948(6)Å, b = 19.6164(11)Å, c = 8.6517(5)Å, α = 90°, β = 108.213(2)°, γ = 90° and Z = 4 for 1, a = 9.5019(3)Å, b = 11.3 801(3)Å, c = 25.3168(14)Å, α = 90°, β = 100.583(4)°, γ = 90°, and Z = 4 for 2. The synthesized Schiff base (HL/L1) was behaves as tetradentate ON3/N4 ligands with donor groups suitable placed for forming 2 or 3 five membered chelate rings. Copper (II) complexes display X-band EPR spectra in 100% DMSO at 77 K giving g|| > g⊥ > 2.0023 indicating dx2-y2 ground state. The half-wave potential values for Cu (II)/Cu (I) redox couple obtained in the reaction of the copper (II) complexes with molecular oxygen and superoxide radical (O2-) electronegated in DMSO are in agreement with the SOD-like activity of the copper (II) complexes. In vitro antimicrobial activities of the complexes against the two bacteria (Escherichia coli, Salmonella typhi) and the two fungi (Penicillium, Aspergillus sp.) have been investigated comparing with the Schiff base ligands.

  20. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    PubMed

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Gao, Chang-Qing; Gao, Zhi-Yang; Wu, Ben-Lai; Niu, Yun-Yin

    2018-04-01

    Based on a chiral terpyridylaminoacid ligand, a series of homochiral Co(II) and Ni(II) complexes, namely, [Co(H2L)(HL)]·Cl·(PF6)2·2H2O (1), [Ni(H2L)(HL)]·Cl·(PF6)2 (2), [Co2(L)2(CH3OH)(H2O)]·(PF6)2·CH3OH (3), [Ni2(L)2(CH3OH)2]·(PF6)2·2CH3OH (4), [Co2(L)2(N3)2]·3H2O (5), and [Ni2(L)2(SCN)2]·4H2O (6) have been successfully synthesized and characterized by elemental analysis, TGA, spectroscopic methods (IR, CD and electronic absorption spectra) and single-crystal X-ray diffraction structural analysis (HL = (S)-2-((4-([2,2':6‧,2″-terpyridin]-4‧-yl)benzyl)amino)-4-methylpentanoic acid). In the acidic reaction conditions, one protonated (H2L)+ and one zwitterionic HL only used their terpyridyl groups to chelate one metal ion Co(II) or Ni(II), forming chiral mononuclear cationic complexes 1 or 2. But in the basic and hydro(solvo)thermal reaction conditions, deprotonated ligands (L)‒ acting as bridges used their terpyridyl and amino acid groups to link with two Co(II) or Ni(II) ions, fabricating chiral dinuclear metallocyclic complexes 3-6. Those chiral mononuclear and dinuclear complexes whose chirality originates in the homochiral ligand HL further self-assemble into higher-dimensional homochiral supramolecular frameworks through intermolecular hydrogen-bonding and π···π interactions. Notably, the coordination mode, hydrogen-bonding site, and existence form of HL ligand can be controlled by the protonation of its amino group, and the architectural diversity of those supramolecular frameworks is adjusted by pH and counter anions. Very interestingly, the 3D porous supramolecular frameworks built up from the huge chiral mononuclear cationic complexes 1 and 2 have novel helical layers only formed through every right-handed helical chain intertwining with two adjacent same helical chains, and the 2D supramolecular helicate 5 consists of two types of left-handed helical chains.

  2. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  3. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  4. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic beta-diketone with aromatic and aliphatic diamine.

    PubMed

    Surati, Kiran R; Thaker, B T

    2010-01-01

    The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H(2)L(1)), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H(2)L(2)), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H(2)L(3)) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H(2)L(4)) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, (1)H NMR and GC-MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn(3)(mu(3)-O)(OAc)(6)(H(2)O)(3)].3H(2)O with ligands H(2)L(1), H(2)L(2), H(2)L(3) and H(2)L(4). All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion. Copyright 2009. Published by Elsevier B.V.

  5. Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic β-diketone with aromatic and aliphatic diamine

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.; Thaker, B. T.

    2010-01-01

    The Schiff base tetradentate ligands N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H 2L 1), N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-ethane-1,2-diamine (H 2L 2), N,N-bis-(3,5-dimethyl-1-p-tolyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H 2L 3) and N,N-bis-(3,5-dimethyl-1-p-sulfonyl-1H-pyrazol-4-ylmethylene)-benzene-1,2-diamine (H 2L 4) were prepared from the reaction between 5-oxo-3-methyl-1-p-tolyl-1H-pyrazole-4-carbaldehyde or 4-(4-formyl-5-oxo-3-methyl-pyrazol-1-yl)-benzenesulfonic acid and o-phenylenediamine or ethylenediamine. And these are characterized by elemental analysis, FT-IR, 1H NMR and GC-MS. The corresponding Schiff base complexes of Mn(III) were prepared by condensation of [Mn 3(μ 3-O)(OAc) 6(H 2O) 3]·3H 2O with ligands H 2L 1, H 2L 2, H 2L 3 and H 2L 4. All these complexes have been characterized by elemental analysis, magnetic susceptibility, X-ray crystallography, conductometry measurement, FT-IR, electronic spectra and mass (FAB) spectrometry. Thermal behaviour of the complexes has been studied by TGA, DTA and DSC. Electronic spectra and magnetic susceptibility measurements indicate octahedral stereochemistry of manganese (III) complexes, while non-electrolytic behaviour complexes indicate the absence of counter ion.

  6. Synthesis, characterization, and antipathogenic studies of some transition metal complexes with N,O-chelating Schiff's base ligand incorporating azo and sulfonamide Moieties

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Bayoumi, Hoda A.; Ammar, Yousry A.; Aldhlmani, Sharah A.

    2013-03-01

    Chromium(III), Manganese(II), Cobalt(II), nickel(II), copper(II) and cadmium(II) complexes of 4-[4-hydroxy-3-(phenyliminomethyl)-phenylazo]benzenesulfonamide, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Dimeric complexes are obtained with 2:2 molar ratio except chromium(III) complex is monomeric which is obtained with 1:1 molar ratios. The IR spectra of the prepared complexes were suggested that the Schiff base ligand(HL) behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. Thermal studies suggest a mechanism for degradation of HL and its metal complexes as function of temperature supporting the chelation modes. Also, the activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of HL and its metal complexes were calculated. The pathogenic activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024) as Gram positive bacteria, Klebsiella pneumonia (RCMB 010093), Shigella flexneri (RCMB 0100542), as Gram negative bacteria and Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035) as fungus strain, and the results are discussed.

  7. Investigating model deficiencies in the global budget of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa Sosa, Z. A.; Keller, C. A.; Turner, A. J.; Mahieu, E.; Franco, B.; Fischer, E. V.

    2015-12-01

    Many locations in the Northern Hemisphere show a statistically-significant sharp increase in measurements of ethane (C2H6) since 2009. It is hypothesized that the recent massive growth of shale gas exploitation in North America could be the source of this change. However, state-of-the-science chemical transport models are currently unable to reproduce the hemispheric burden of C2H6 or the recent sharp increase, pointing to a potential problem with current emission inventories. To resolve this, we used space-borne CH4 observations from the Greenhouse Gases Observing SATellite (GOSAT) to derive C2H6 emissions. By using known emission ratios to CH4, we estimated emissions of C2H6 from oil and gas activities, biofuels, and biomass burning over North America. The GEOS-Chem global chemical transport model was used to simulate atmospheric abundances of C2H6 with the new emissions estimates. The model is able to reproduce Northern Hemisphere surface concentrations. However, the model significantly under-predicts the amount of C2H6 throughout the column and the observed Northern Hemispheric gradient as diagnosed by comparisons to aircraft observations from the Hiaper Pole-to-Pole (HIPPO) Campaign.

  8. Preparation of a N-Heterocyclic Carbene Nickel(II) Complex: Synthetic Experiments in Current Organic and Organometallic Chemistry

    ERIC Educational Resources Information Center

    Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.

    2008-01-01

    A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…

  9. Simultaneous preconcentration and removal of iron, chromium, nickel with N,N'-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES.

    PubMed

    Karacan, Mehmet Sayim; Aslantaş, Neslihan

    2008-07-15

    In this study, Fe, Cr and Ni have been preconcentrated and removed by using N,N'-ethylenebis (ethane sulfonamide), (ESEN) ligand on activated carbon (AC) in aqueous solution. For this purpose, complexes between these metals and ligands have been investigated and used in preconcentration and removal studies. Factors which have affected adsorption of metals on activated carbon have been optimized. Adsorbed metals have been preconcentrated 10-fold and determined by ICP-OES. Interferences of Ca, Mg and K to this process have been investigated. The proposed method has been applied to the tap water and Ankara Creek water in order to Fe, Cr, and Ni remediation and preconcentration. Determination of metals by ICP-OES has been checked with standard reference material (NIST 1643e). The proposed method provides the recoveries of 87%, 108% and 106% for Fe, Cr and Ni, respectively, in preconcentration. It also provides the removal of Fe, Cr and Ni by 93%, 100% and 100% removal from waters, respectively.

  10. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes.

    PubMed

    Henao-Holguín, Laura Verónica; Basiuk, Vladimir A

    2015-06-01

    Nickel(II) complex of 5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine (NiTMTAA), which can be employed for noncovalent functionalization of carbon nanotubes (CNTs), represents a more complex and interesting case in terms of structure of the resulting nanohybrids, as compared to the related materials functionalized with porphyrins and phthalocyanines. Due to its saddle shape, the NiTMTAA molecule adsorbed can adopt different, energetically non-equivalent orientations with respect to CNT, depending on whether CH3 or C6H4 groups contact the latter. The main goal of the present work was to provide information on the interactions of NiTMTAA with simple single-walled CNT (SWNT) models accessible for dispersion-corrected DFT calculations. For reasons of comparison, we employed three such functionals: M06-2X and LC-BLYP as implemented in Gaussian 09 package, and PBE-G as implemented in Materials Studio 6.0. In order to roughly estimate the effect of nanotube chirality on the interaction strenght, we considered two short closed-end SWNT models (also referred to as 'elongated fullerenes'), one armchair and one zigzag, derived from C60 and C80 hemispheres. In addition, we calculated similar complexes with C60, as well as I h and D 5h isomers of C80. The results were analyzed in terms of optimized geometries, formation energies, HOMO-LUMO gap energies, and intermolecular separations. Graphical Abstract Interaction of Ni(II) tetraazaannulene complex with elongated fullerenes.

  11. Discovery of a 1,2-bis(3-indolyl)ethane that selectively inhibits the pyruvate kinase of methicillin-resistant Staphylococcus aureus over human isoforms.

    PubMed

    Zoraghi, Roya; Campbell, Sara; Kim, Catrina; Dullaghan, Edie M; Blair, Lachlan M; Gillard, Rachel M; Reiner, Neil E; Sperry, Jonathan

    2014-11-01

    Methicillin-resistant Staphylococcus aureus pyruvate kinase (MRSA PK) has recently been identified as a target for development of novel antibacterial agents. Testing a series of 1,2-bis(3-indolyl)ethanes against MRSA PK has led to the discovery of a potent inhibitor that is selective over human isoforms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Fugitive methane emission pinpointing and source attribution using ethane measurements in a portable cavity ring-down analyzer

    NASA Astrophysics Data System (ADS)

    Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze

    2017-04-01

    Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10ppm in a single measurement. Utilizing a second onboard laser allows for a high precision methane only mode used for surveying and pinpointing. This mode measures at a rate faster than 4Hz with a 1-σ precision of <3ppb. Because methane seepages are highly variable due to air turbulence and mixing right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.

  13. Csbnd H⋯Ni and Csbnd H⋯π(chelate) interactions in nickel(II) complexes involving functionalized dithiocarbamates and triphenylphosphine

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, Samuele

    2018-05-01

    New bis(N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)nickel(II) (1-3) and (N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)(isothiocyanato-N)- (triphenylphosphane)nickel(II) (4-6) [where substituted benzyl = 2-HOsbnd C6H4sbnd CH2sbnd (1,4), 3-HOsbnd C6H4sbnd CH2sbnd (2,5), 4-Fsbnd C6H4sbnd CH2sbnd (3,6)] were synthesized and characterized using IR, electronic, and NMR (1H and 13C) spectra. X-ray structural analysis of homoleptic complex (1) and heteroleptic complexes (5 and 6) confirmed the presence of four coordinated nickel in a distorted square planar arrangement with NiS4 and NiS2PN chromophores, respectively. The νC-S stretching vibrations are observed around 990 cm-1 without any splitting supporting the bidentate coordination of the dithiocarbamate ligand. Electronic spectral studies of all the complexes (1-6) indicate that the geometry of the nickel atom is probably square planar. NMR spectra of all homoleptic and heteroleptic complexes (1-6) reveal a weak signal associated with the backbone carbon (N13CS2) in the region 204.0-210.0 ppm with a weak intensity characteristic of the quaternary carbon signals. The greater trans influence of triphenylphosphine in complexes 5 and 6 is supported by the long Nisbnd S distance compared to other Nisbnd S distance which is opposite to the NCS- ligand. In the structure of complex 5, C-H⋯π(chelate) interactions results in polymeric chain. Both structures show intramolecular Ni⋯H interactions but that on 6 is the strongest. C-H⋯π interactions are also found in 1, 5 and 6. Hirshfeld surface analysis and the associated 2D fingerprint plots of 1, 5 and 6 have been studied to evaluate intermolecular interactions. The molecular geometries of complexes 1, 5 and 6 have been optimized by abinitio HF method using LANL2DZ program.

  14. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    PubMed

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe 2 O 4 -NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni 2+ ) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni 2+ ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni 2+ ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni 2+ ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Carbene complexes of rhodium and iridium from tripodal N-heterocyclic carbene ligands: synthesis and catalytic properties.

    PubMed

    Mas-Marzá, Elena; Poyatos, Macarena; Sanaú, Mercedes; Peris, Eduardo

    2004-03-22

    Two tripodal trisimidazolium ligand precursors have been tested in the synthesis of new N-heterocyclic carbene rhodium and iridium complexes. [Tris(3-methylbenzimidazolium-1-yl)]methane sulfate gave products with coordination of the decomposed precursor. [1,1,1-Tris(3-butylimidazolium-1-yl)methyl]ethane trichloride (TIMEH(3)(Bu)) coordinated to the metal in a chelate and bridged-chelate form, depending on the reaction conditions. The crystal structures of two of the products are described. The compounds resulting from the coordination with TIME(Bu) were tested in the catalytic hydrosilylation of terminal alkynes.

  16. Application of Cavity Enhanced Absorption Spectroscopy to the Detection of Nitric Oxide, Carbonyl Sulphide, and Ethane--Breath Biomarkers of Serious Diseases.

    PubMed

    Wojtas, Jacek

    2015-06-17

    The paper presents one of the laser absorption spectroscopy techniques as an effective tool for sensitive analysis of trace gas species in human breath. Characterization of nitric oxide, carbonyl sulphide and ethane, and the selection of their absorption lines are described. Experiments with some biomarkers showed that detection of pathogenic changes at the molecular level is possible using this technique. Thanks to cavity enhanced spectroscopy application, detection limits at the ppb-level and short measurements time (<3 s) were achieved. Absorption lines of reference samples of the selected volatile biomarkers were probed using a distributed feedback quantum cascade laser and a tunable laser system consisting of an optical parametric oscillator and difference frequency generator. Setup using the first source provided a detection limit of 30 ppb for nitric oxide and 250 ppb for carbonyl sulphide. During experiments employing a second laser, detection limits of 0.9 ppb and 0.3 ppb were obtained for carbonyl sulphide and ethane, respectively. The conducted experiments show that this type of diagnosis would significantly increase chances for effective therapy of some diseases. Additionally, it offers non-invasive and real time measurements, high sensitivity and selectivity as well as minimizing discomfort for patients. For that reason, such sensors can be used in screening for early detection of serious diseases.

  17. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham

    2004-03-01

    Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.

  18. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper(II) and nickel(II) complexes with conventional antifungals.

    PubMed

    Ali, Imran; Wani, Waseem A; Khan, Amber; Haque, Ashanul; Ahmad, Aijaz; Saleem, Kishwar; Manzoor, Nikhat

    2012-08-01

    A pyrazoline based ligand; (5-(4-chlorophenyl)-3-phenyl-4, 5-dihydro-1H-pyrazole-1-carbothioamide) has been synthesized by Claisen-Schmidt condensation of acetophenone with p-chlorobenzaldehyde, followed by sodium hydroxide assisted cyclization of the resulting chalcone with thiosemicarbazide. Metal ion complexes of the synthesized ligand were prepared with Cu(II) and Ni(II) metal ions, separately and respectively. Ligand and the metal complexes were characterized by elemental analysis, FT-IR, UV-Vis, (1)HNMR, ESI-MS and (13)CNMR spectroscopic techniques. Molar conductance measurements in DMSO suggested non-electrolytic nature of the complexes. Tetragonally distorted octahedral geometry for copper and octahedral geometry for the nickel complexes was proposed on the basis of UV-Vis spectroscopic studies and magnetic moment measurements. The complexes were investigated for their ability to kill human fungal pathogen Candida by determining MICs (Minimum inhibitory concentrations), inhibition in solid media and ability to produce a possible synergism with conventional most clinically practiced antifungals by disc diffusion assay and FICI (fractional inhibitory concentration index). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. 2-Diazo-1-phenyl-2-((trifluoromethyl)sulfonyl)ethan-1-one: Another Utility for Electrophilic Trifluoromethylthiolation Reactions.

    PubMed

    Huang, Zhongyan; Okuyama, Kenta; Wang, Chen; Tokunaga, Etsuko; Li, Xiaorui; Shibata, Norio

    2016-06-01

    2-Diazo-1-phenyl-2-((trifluoromethyl)sulfonyl)ethan-1-one (diazo-triflone) ( 2 ) is not only a building block but also a reagent. In this study, diazo-triflone, which was originally used for the synthesis of β-lactam triflones as a trifluoromethanesulfonyl (SO 2 CF 3 ) building block under catalyst-free thermal conditions, is redisclosed as an effective electrophilic trifluoromethylthiolation reagent under copper catalysis. A broad set of enamines, indoles, β-keto esters, pyrroles, and anilines were nicely transformed into corresponding trifluoromethylthio (SCF 3 ) compounds in good to high yields by diazo-triflone under copper catalysis via an electrophilic-type reaction. A coupling-type trifluoromethylthiolation reaction of aryl iodides was also realized by diazo-triflone in acceptable yields.

  20. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane.

    PubMed

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    Two new mononuclear cationic complexes in which the Tb III ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H 3 L Et , C 6 H 14 O 3 ) were prepared from Tb(NO 3 ) 3 ·5H 2 O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO 3 ) 2 (H 3 L Et ) 2 ]NO 3 ·0.5C 4 H 10 O 2 , 1 , in which the lanthanide ion is 10-coordinate and adopts an s -bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO 3 )(H 3 L Et ) 2 (H 2 O)](NO 3 ) 2 , 2 , one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1 , di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2 , the methyl group of one of the H 3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  1. High Resolution Investigation of the Ethane Spectrum at 7 μ

    NASA Astrophysics Data System (ADS)

    Brown, Linda R.; Sung, K.; Di Lauro, C.; Lattanzi, F.; Vander Auwera, J.; Mantz, A. W.; Smith, M. A. H.

    2010-10-01

    A new theoretical analysis of the ethane spectrum between 1330 and 1610 cm-1 has been undertaken in order to create the first line-by-line database of molecular parameters for this spectral region. For this, high resolution spectra were obtained at room and cold (130 K) temperatures with two Bruker Fourier transform spectrometers (at 0.002 cm-1 resolution in Brussels and at 0.003 cm-1 resolution in Pasadena). Over 5000 lines were assigned to five bands in the region: v6, v8, v4+v12 and 2v4+v9 cold bands, and one hot band (v4+v8-v4). This new study employed a much improved theoretical Hamiltonian to reproduce the very complicated spectral structures resulting from numerous interactions between these vibrational modes. This advancement has enabled us to provide a quantum mechanical prediction of line positions and intensities of C2H6 at 7 micron long needed for remote sensing of outer planets and Titan. Two manuscripts are in preparation. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley under contract with the National Aeronautics and Space Administration, and with funding from FRS-FNRS in Belgium.

  2. Synthesis, spectral, thermal and antimicrobial studies on cobalt(II), nickel(II), copper(II), zinc(II) and palladium(II) complexes containing thiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    El-Sawaf, Ayman K.; El-Essawy, Farag; Nassar, Amal A.; El-Samanody, El-Sayed A.

    2018-04-01

    The coordination characteristic of new N4-morpholinyl isatin-3-thiosemicarbazone (HL) towards Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) has been studies. The structures of the complexes were described by elemental analyses, molar conductivity, magnetic, thermal and spectral (IR, UV-Vis, 1H and 13C NMR and ESR) studies. On the basis of analytical and spectral studies the ligand behaves as monobasic tridentate ONS donor forming two five membered rings towards cobalt, copper and palladium and afforded complexes of the kind [M(L)X], (Mdbnd Co, Cu or Pd; Xdbnd Cl, Br or OAc). Whereas the ligand bound to NiCl2 as neutral tridentate ONS donor and with ZnCl2 as neutral bidentate NS donor. The newly synthesized thiosemicarbazone ligand and some of its complexes were examined for antimicrobial activity against 2 gram negative bacterial strains (Escherichia coli Pseudomonas and aeruginosa), 2 gram positive bacterial strains (Streptococcus pneumoniae and Staphylococcus aureus)} and two Pathogenic fungi (Aspergillus fumigatus and Candida albicans). All metal complexes possess higher antimicrobial activity comparing with the free thiosemicarbazone ligand. The high potent activities of the complexes may arise from the coordination and chelation, which tends to make metal complexes act as more controlling and potent antimicrobial agents, thus hindering the growing of the microorganisms. The antimicrobial results also show that copper bromide complex is better antimicrobial agent as compared to the Schiff base and its metal complexes.

  3. Q branches of the nu7 fundamental of ethane (C2H6) Integrated intensity measurements for atmospheric measurement applications

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Harvey, G. A.; Levine, J. S.; Smith, M. A. H.; Malathy Devi, V.; Thakur, K. B.

    1986-01-01

    Laboratory spectra covering the nu7 band of ethane (C2H6) have been recorded, and measurements of integrated intensities of selected Q branches from these spectra are reported. The method by which the spectra were obtained is described, and a typical spectrum covering the PQ3 branch at 2976.8/cm is shown along with a plot of equivalent width vs. optical density for this branch. The values of the integrated intensities reported for each branch are the means of five different optical densities.

  4. Triple Differential Cross Sections for single ionization of the Ethane molecule

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don

    2015-09-01

    We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  5. Synthesis of Ternary Borocarbonitrides by High Temperature Pyrolysis of Ethane 1,2-Diamineborane

    PubMed Central

    Leardini, Fabrice; Massimi, Lorenzo; Flores-Cuevas, Eduardo; Fernández, Jose Francisco; Ares, Jose Ramon; Betti, Maria Grazia; Mariani, Carlo

    2015-01-01

    Ethane 1,2-diamineborane (EDAB) is an alkyl-containing amine-borane adduct with improved hydrogen desorption properties as compared to ammonia borane. In this work, it is reported the high temperature thermolytic decomposition of EDAB. Thermolysis of EDAB has been investigated by concomitant thermogravimetry-differential thermal analysis-mass spectrometry experiments. EDAB shows up to four H2 desorption events below 1000 °C. Small fractions of CH4, C2H4 and CO/CO2 are also observed at moderate-high temperatures. The solid-state thermolysis product has been characterized by means of different structural and chemical methods, such as X-ray diffraction, Raman spectroscopy, Scanning electron microscopy, Elemental analysis, and X-ray photoelectron spectroscopy (XPS). The obtained results indicate the formation of a ternary borocarbonitride compound with a poorly-crystalline graphitic-like structure. By contrast, XPS measurements show that the surface is rich in carbon and nitrogen oxides, which is quite different to the bulk of the material. PMID:28793545

  6. A two-dimensional study of ethane and propane oxidation in the troposphere

    NASA Technical Reports Server (NTRS)

    Kanakidou, M.; Valentin, K. M.; Crutzen, P. J.; Singh, H. B.

    1991-01-01

    The chemistry of ethane and propane is studied using a global two-dimensional 'zonally averaged' height- and latitude-dependent tropospheric model. The purpose of the study is to derive theoretical estimates of the seasonal and latitudinal distributions of a variety of intermediate organic compounds formed by the photochemical oxidation of C2H6 and C3H8. It is shown that C2H6 and C3H8 emitted at rates of 16 Tg C2H6/a and 23 Tg C3H8/a do not affect the overall photochemistry of the troposphere significantly. Major global effects on O3 and OH concentrations are suggested to be coming from the formation of peroxyacetyl nitrate by the interactions of NOx with other hydrocarbons with strong and spatially correlated anthropogenic or natural sources at the earth's surface. It is pointed out that attention should be given to organic nitrates produced by the oxidation of NMHC other than C2H6 and C3H8.

  7. Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Eldesoky, A. M.; Morgan, Sh. M.

    2015-01-01

    An interesting azodye heterocyclic ligand of copper(II), cobalt(II), nickel(II) and uranyl(II) complexes have been synthesized by the reaction of metal salts with 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, magnetic moments, spectral (UV-Vis, IR, 1H and 13C NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structures of the ligand tautomers are optimized theoretically and the quantum chemical parameters are calculated. The IR spectra showed that the ligand (HL) act as monobasic tridentate/neutral bidentate through the (sbnd Ndbnd N), enolic (Csbnd O)- and/or oxygen keto moiety groups forming a five/six-membered structures. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The molar conductivities show that all the complexes are non-electrolytes. The ESR spectra indicate that the free electron is in dxy orbital. The calculated bonding parameter indicates that in-plane σ-bonding is more covalent than in-plane π-bonding. The coordination geometry is five/six-coordinated trigonal bipyramidal for complex (1) and octahedral for complexes (2-6). The value of covalency factor β12 and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The synthesized ligand (HL) and its Cu(II) complexes (1, 2 and 4) are screened for their biological activity against bacterial and fungal species. The ligand (HL) showed antimicrobial activities against Escherichia coli. The ligand (HL) and its Cu(II) complexes (2 and 4) have very high antifungal activity against Penicillium italicum. The inhibitive action of ligand (HL), against the corrosion of C-steel in 2 M HCl solution has been investigated using potentiodynamic polarization and electrochemical

  8. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8.

    PubMed

    Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin

    2013-07-09

    Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.

  9. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.

  10. Assessment of potential for natural attenuation of chlorinated ethenes and ethanes in ground water at a petrochemical reclamation site, Harris County, Texas

    USGS Publications Warehouse

    Huff, Glenn F.; Braun, Christopher L.; Lee, Roger W.

    2000-01-01

    indicates potential for natural attenuation of chlorinated ethenes. Reductive dechlorination of chlorinated ethanes apparently occurs to a lesser extent, indicating relatively less potential for natural attenuation of chlorinated ethanes. Additional data are needed on the concentrations and distribution of chlorinated ethenes and ethanes in individual fine sand intervals of the Numerous Sand Channels Zone. This information, combined with lower minimum reporting levels for future chloroethane analyses, might enable a more complete and quantitative assessment of the potential for natural attenuation at the site.

  11. In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides

    NASA Astrophysics Data System (ADS)

    Massimi, Lorenzo; Grazia Betti, Maria; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice

    2016-10-01

    High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.

  12. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.

    PubMed

    Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A

    2014-03-14

    Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.

  13. In-vacuum thermolysis of ethane 1,2-diamineborane for the synthesis of ternary borocarbonitrides.

    PubMed

    Massimi, Lorenzo; Betti, Maria Grazia; Caramazza, Simone; Postorino, Paolo; Mariani, Carlo; Latini, Alessandro; Leardini, Fabrice

    2016-10-28

    High-temperature (1000 °C) thermolytic decomposition of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3) deposited onto a Cu foil has been performed in an ultra-high-vacuum environment. A combined thermolytic, structural (x-ray diffraction), microscopic (scanning electron microscopy) and spectroscopic (Raman, x-ray photoemission spectroscopy) analysis, has identified a ternary borocarbonitride (BCN) compound as a result of the process. The obtained BCN compound is nanocrystalline, surrounded by crystallites of ammonium hydroxide borate hydrate. The ternary compound presents a 0.2:0.6:0.2 B:C:N composition in the bulk and 0.11:0.76:0.13 stoichiometry at the very surface, richer in C-C networks with respect to the bulk. Furthermore, the resulting BCN compound does not show oxidation at the surface due to the in-vacuum thermolysis of the single precursor.

  14. New cobalt(II) and nickel(II) complexes of benzyl carbazate Schiff bases: Syntheses, crystal structures, in vitro DNA and HSA binding studies.

    PubMed

    Nithya, Palanivelu; Helena, Sannasi; Simpson, Jim; Ilanchelian, Malaichamy; Muthusankar, Aathi; Govindarajan, Subbiah

    2016-12-01

    In the present study, new Schiff base complexes with the composition [M(NCS) 2 (L1) 2 ]·nH 2 O, where M=Co (n=0) (1) and Ni (n=2) (2); [M(NCS) 2 (L2) 2 ], M=Co (3) and Ni (4) as well as [M(NCS) 2 (L3) 2 ], M=Co (5) and Ni (6); (L1=benzyl 2-(propan-2-ylidene)hydrazinecarboxylate, L2=benzyl 2-(butan-2-ylidene)hydrazinecarboxylate and L3=benzyl 2-(pentan-3-ylidene)hydrazinecarboxylate) have been synthesized by a template method. The complexes were characterised by analytical methods, spectroscopic studies, thermal and X-ray diffraction techniques. The structures of all the complexes explore that the metal(II) cation has a trans-planar coordination environment, the monomeric units containing a six-coordinated metal center in octahedral geometry with N-bound isothiocyanate anions coordinated as terminal ligands. Furthermore, the binding of the two Schiff base ligands to the metal centers involves the azomethine nitrogen and the carbonyl oxygen in mutually trans configuration. The binding interactions of all the complexes with Calf thymus-deoxyribonucleic acid (CT-DNA) and human serum albumin (HSA) have been investigated using absorption and emission spectral techniques. The CT-DNA binding properties of these complexes reveal that they bind to CT-DNA through a partial intercalation mode and the binding constant values were calculated using the absorption and emission spectral data. The binding constant values (~10×10 6 moldm -3 ) indicate strong binding of metal complexes with CT-DNA. HSA binding interaction studies showed that the cobalt and nickel complexes can quench the intrinsic fluorescence of HSA through static quenching process. Also, molecular docking studies were supported out to apprehend the binding interactions of these complexes with DNA and HSA which offer new understandings into the experimental model observations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Novel Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine): Synthesis, crystal structure and magnetic properties

    NASA Astrophysics Data System (ADS)

    Smolko, Lukáš; Černák, Juraj; Kuchár, Juraj; Miklovič, Jozef; Boča, Roman

    2016-09-01

    Green crystals of Co(III)/Co(II) mixed valence compound [Co(bapen)Br2]2[CoBr4] (bapen = N,N‧-bis(3-aminopropyl)ethane-1,2-diamine) were isolated from the aqueous system CoBr2 - bapen - HBr, crystallographically studied and characterized by elemental analysis and IR spectroscopy. Its ionic crystal structure is built up of [Co(bapen)Br2]+ cations and [CoBr4]2- anions. The Co(III) central atoms within the complex cations are hexacoordinated (donor set trans-N4Br2) with bromido ligands placed in the axial positions. The Co(II) atoms exhibit distorted tetrahedral coordination. Beside ionic forces weak Nsbnd H⋯Br intermolecular hydrogen bonding interactions contribute to the stability of the structure. Temperature variable magnetic measurements confirm the S = 3/2 behavior with the zero-field splitting of an intermediate strength: D/hc = 8.7 cm-1.

  16. Synthesis, characterization, nano-sized binuclear nickel complexes, DFT calculations and antibacterial evaluation of new macrocyclic Schiff base compounds

    NASA Astrophysics Data System (ADS)

    Parsaee, Zohreh; Mohammadi, Khosro

    2017-06-01

    Some new macrocyclic bridged dianilines tetradentate with N4coordination sphere Schiff base ligands and their nickel(II)complexes with general formula [{Ni2LCl4} where L = (C20H14N2X)2, X = SO2, O, CH2] have been synthesized. The compounds have been characterized by FT-IR, 1H and 13C NMR, mass spectroscopy, TGA, elemental analysis, molar conductivity and magnetic moment techniques. Scanning electron microscopy (SEM) shows nano-sized structures under 100 nm for nickel (II) complexes. NiO nanoparticle was achieved via the thermal decomposition method and analyzed by FT-IR, SEM and X-ray powder diffraction which indicates closeaccordance to standard pattern of NiO nanoparticle. All the Schiff bases and their complexes have been detected in vitro both for antibacterial activity against two gram-negative and two gram-positive bacteria. The nickel(II) complexes were found to be more active than the free macrocycle Schiff bases. In addition, computational studies of three ligands have been carried out at the DFT-B3LYP/6-31G+(d,p) level of theory on the spectroscopic properties, including IR, 1HNMR and 13CNMR spectroscopy. The correlation between the theoretical and the experimental vibrational frequencies, 1H NMR and 13C NMR of the ligands were 0.999, 0.930-0.973 and 0.917-0.995, respectively. Also, the energy gap was determined and by using HOMO and LUMO energy values, chemical hardness-softness, electronegativity and electrophilic index were calculated.

  17. Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes.

    PubMed

    Fuertes, Sara; Chueca, Andrés J; Sicilia, Violeta

    2015-10-19

    The synthesis of 1-(4-cyanophenyl)-1H-imidazol (1) has been carried out by an improved method. Then its corresponding imidazolium iodide salt, 2, has been used to prepare the N-heterocyclic carbene (NHC) cycloplatinated compound [{Pt(μ-Cl)(C^C*)}2] (4) (HC^C*-κC* = 1-(4-cyanophenyl)-3-methyl-1H-imidazol-2-ylidene) following a step-by-step protocol. The intermediate complex [PtCl(η(3)-2-Me-C3H4) (HC^C*-κC*)] (3) has also been isolated and characterized. Using 4 as precursor, several heteroleptic complexes of stoicheometry [PtCl(C^C*)L] (L = PPh3 (5), pyridine (py, 6), 2,6-dimethylphenyl isocyanide (CNXyl, 7), and 2-mercapto-1-methylimidazole (MMI, 8)) and [Pt(C^C*)LL']PF6 (L = PPh3, L' = py (9), CNXyl (10), and MMI (11)) have been synthesized. Complexes 6-8 were obtained as a mixture of cis- and trans-(C*,L) isomers, while trans-(C*,L) isomer was the only one observed for complexes 5 and 9-11. Their geometries have been discussed in terms of the degree of transphobia (T) of pairs of trans ligands and supported by theoretical calculations. The trans influence of the two σ Pt-C bonds present in these molecules, Pt-C(Ar) and Pt-C*(NHC), has been compared from the J(Pt-P) values observed in the new complex [Pt(C^C*)(dppe)]PF6 (dppe = 1, 2-bis(diphenylphosphino)ethane, 12).

  18. Mass balance of decabromodiphenyl ethane and decabromodiphenyl ether in a WWTP.

    PubMed

    Ricklund, Niklas; Kierkegaard, Amelie; McLachlan, Michael S; Wahlberg, Cajsa

    2009-01-01

    The additive flame retardant decabromodiphenyl ethane (deBDethane) has been identified in the environment, but little is known about its environmental behaviour. It is structurally similar to decabromodiphenyl ether (decaBDE), making it conceivable that it may also become an environmental contaminant of concern. In this study a mass balance of deBDethane and decaBDE was undertaken in a modern WWTP in Stockholm serving 7.05x10(5) inhabitants. Flow proportional samples of plant influent and effluent as well as daily grab samples of digested sludge were collected during two 7-day periods. All samples were analyzed with GC/HRMS using isotope labelled internal standards. The mean mass flows of deBDethane and decaBDE to the WWTP were 6.0 g per day and 55 g per day, respectively. Of this, less than 1% of both BFRs left the WWTP via the effluent, while the bulk was sequestered into the digested sludge, where the mean concentrations of deBDethane and decaBDE were 81 and 800 ng g(-1)d.wt., respectively. It is concluded that the transfer efficiency of deBDethane from the technosphere to the environment via WWTPs is similar to that of decaBDE.

  19. Efficient purification of ethene by an ethane-trapping metal-organic framework

    PubMed Central

    Liao, Pei-Qin; Zhang, Wei-Xiong; Zhang, Jie-Peng; Chen, Xiao-Ming

    2015-01-01

    Separating ethene (C2H4) from ethane (C2H6) is of paramount importance and difficulty. Here we show that C2H4 can be efficiently purified by trapping the inert C2H6 in a judiciously designed metal-organic framework. Under ambient conditions, passing a typical cracked gas mixture (15:1 C2H4/C2H6) through 1 litre of this C2H6 selective adsorbent directly produces 56 litres of C2H4 with 99.95%+ purity (required by the C2H4 polymerization reactor) at the outlet, with a single breakthrough operation, while other C2H6 selective materials can only produce ca. ⩽ litre, and conventional C2H4 selective adsorbents require at least four adsorption–desorption cycles to achieve the same C2H4 purity. Single-crystal X-ray diffraction and computational simulation studies showed that the exceptional C2H6 selectivity arises from the proper positioning of multiple electronegative and electropositive functional groups on the ultramicroporous pore surface, which form multiple C–H···N hydrogen bonds with C2H6 instead of the more polar competitor C2H4. PMID:26510376

  20. Photoluminescence and Coordination Behaviour of Lanthanide Complexes of Tris (Aminomethyl)Ethane-5-Oxine in Aqueous Solution.

    PubMed

    Akbar, Rifat; Baral, Minati; Kanungo, B K

    2017-01-01

    Photophysical properties of a multidentate tripodal ligand, 5,5'-(2-(((8-hydroxyquinolin-5-yl) methylamino)methyl)-2-methylpropane-1,3-diyl) bis (azanediyl)bis (methylene)diquinolin-8-ol, (TAME5OX), with La 3+ and Er 3+ ions have been examined for photonics applications. The change in behavior in electronic spectra of these complexes reveals the use of TAME5OX as a sensitive optical pH based sensor to detect Ln 3+ ions whereas indication of strong green fluorescence allows simultaneous sensing within the visible region in competitive medium. The intense fluorescence intermittently gets quenched under acidic and basic conditions due to photoinduced intramolecular electron transfer from the excited 8-hydroxyquinoline (8-HQ) moiety to the metal ion. This renders these compounds the OFF-ON-OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and coordination behaviour of the chelator with the said lanthanide ions have also been probed by potentiometric, UV - visible and fluorescence spectrophotometric method. TAME5OX forms protonated complex [Ln (H 4 L)] 4+ below pH ~4.0 which sequentially deprotonates through one proton process with increase of pH. The stability constants of neutral complexes have been determined to be in the range log β 110  = 32-34 and pLn in the range of 14-20, indicating TAME5OX is a good synthetic lanthanide chelator. Theoretical spectra were also calculated by ZINDO/s methodology at single excitations (CIS) level on PM7 as sparkle energy-minimized geometries.

  1. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II)

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Jetley, Umesh K.; Sharma, Rakesh K.; Garg, Bhagwan S.

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML 2 composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  2. Synthesis, characterization and biological activity of complexes of 2-hydroxy-3,5-dimethylacetophenoneoxime (HDMAOX) with copper(II), cobalt(II), nickel(II) and palladium(II).

    PubMed

    Singh, Bibhesh K; Jetley, Umesh K; Sharma, Rakesh K; Garg, Bhagwan S

    2007-09-01

    A new series of complexes of 2-hydroxy-3,5-dimethyl acetophenone oxime (HDMAOX) with Cu(II), Co(II), Ni(II) and Pd(II) have been prepared and characterized by different physical techniques. Infrared spectra of the complexes indicate deprotonation and coordination of the phenolic OH. It also confirms that nitrogen atom of the oximino group contributes to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square planar geometry for Cu(II), Ni(II) and Pd(II) complexes and tetrahedral geometry for Co(II) complex. The elemental analyses and mass spectral data have justified the ML(2) composition of complexes. Kinetic and thermodynamic parameters were computed from the thermal decomposition data using Coats and Redfern method. The geometry of the metal complexes has been optimized with the help of molecular modeling. The free ligand (HDMAOX) and its metal complexes have been tested in vitro against Alternarie alternate, Aspergillus flavus, Aspergillus nidulans and Aspergillus niger fungi and Streptococcus, Staph, Staphylococcus and Escherchia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

  3. The 12 micron band of ethane - High-resolution laboratory analysis with candidate lines for infrared heterodyne searches

    NASA Technical Reports Server (NTRS)

    Atakan, A. K.; Blass, W. E.; Halsey, G. W.; Reuter, D. C.; Susskind, J.; Brault, J. W.; Daunt, S. J.; Jennings, D. E.

    1984-01-01

    Attention is given to the results of a laboratory study of the v9 band of ethane at 12 microns, using both high resolution Fourier transform and diode laser absorption spectroscopy. The analysis to which about 2000 transitions in this band have been subjected includes the normal rotational terms as well as the higher order effects of l-doubling, l-resonance, internal rotation, and a Coriolis resonance with the 3v4 state. A model is presented for the v9 band which is able to reproduce the observed features to an accuracy of better than 0.001/cm, and a list has been compiled for v9 transitions, occurring near C-14O2 laser lines, that are good candidates for laser heterodyne searches.

  4. The Cannabis sativa Versus Cannabis indica Debate: An Interview with Ethan Russo, MD.

    PubMed

    Piomelli, Daniele; Russo, Ethan B

    2016-01-01

    Dr. Ethan Russo, MD, is a board-certified neurologist, psychopharmacology researcher, and Medical Director of PHYTECS, a biotechnology company researching and developing innovative approaches targeting the human endocannabinoid system. Previously, from 2003 to 2014, he served as Senior Medical Advisor and study physician to GW Pharmaceuticals for three Phase III clinical trials of Sativex ® for alleviation of cancer pain unresponsive to optimized opioid treatment and studies of Epidiolex ® for intractable epilepsy. He has held faculty appointments in Pharmaceutical Sciences at the University of Montana, in Medicine at the University of Washington, and as visiting Professor, Chinese Academy of Sciences. He is a past President of the International Cannabinoid Research Society and former Chairman of the International Association for Cannabinoid Medicines. He serves on the Scientific Advisory Board for the American Botanical Council. He is the author of numerous books, book chapters, and articles on Cannabis, ethnobotany, and herbal medicine. His research interests have included correlations of historical uses of Cannabis with modern pharmacological mechanisms, phytopharmaceutical treatment of migraine and chronic pain, and phytocannabinoid/terpenoid/serotonergic/vanilloid interactions.

  5. Crystal structure of tri­hydrogen bis­{[1,1,1-tris­(2-oxido­ethyl­amino­meth­yl)ethane]­cobalt(III)} trinitrate

    PubMed Central

    Sethi, Waqas; Johannesen, Heini V.; Morsing, Thorbjørn J.; Piligkos, Stergios; Weihe, Høgni

    2015-01-01

    The title compound, [Co2(L)2]3+·3NO3 − [where L = CH3C(CH2NHCH2CH2OH1/2)3], has been synthesized from the ligand 1,1,1-tris­(2-hy­droxy­ethyl­amino­meth­yl)ethane. The cobalt(III) dimer has an inter­esting and uncommon O—H⋯O hydrogen-bonding motif with the three bridging hy­droxy H atoms each being equally disordered over two positions. In the dimeric trication, the octa­hedrally coordinated CoIII atoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. N—H⋯O hydrogen bonding between the complex cations and nitrate anions leads to the formation of a three-dimensional network structure. The compound is a racemic conglomerate of crystals containing either d or l mol­ecules. The crystal used for this study is a d crystal. PMID:26870462

  6. Nickel(II) and copper(II) complexes of N,N-dialkyl-N‧-3-chlorobenzoylthiourea: Synthesis, characterization, crystal structures, Hirshfeld surfaces and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Binzet, Gun; Gumus, Ilkay; Dogen, Aylin; Flörke, Ulrich; Kulcu, Nevzat; Arslan, Hakan

    2018-06-01

    We synthesized four new N,N-dialkyl-N‧-3-chlorobenzoylthiourea ligands (Alkyl: Dimethyl, diethyl, di-n-propyl and di-n-butyl) and their metal complexes with copper and nickel atoms. The structure of all synthesized compounds was fully characterized by physicochemical, spectroscopic and single crystal X-ray diffraction analysis techniques. The physical, spectral and analytical data of the newly synthesized metal complexes have shown the formation of 1:2 (metal:ligand) ratio. The benzoylthiourea ligands coordinate with metal atoms through oxygen and sulphur atoms. The metal atoms are in slightly distorted square-planar coordination geometry in Ni(II) or Cu(II) complex. Two oxygen and two sulphur atoms are mutually cis to each other in Ni(II) or Cu(II) complex. The intermolecular contacts in the compounds, which are HL1 and HL3, were examined by Hirshfeld surfaces and fingerprint plots using the data obtained from X-ray single crystal diffraction measurement. Besides these, their antimicrobial activities against Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and anti-yeast activity (Candida glabrata, Candida parapsilosis and Candida albicans) were investigated. This exhibited some promising results towards testing organism. Among all the compounds, Ni(L1)2 complex showed high activity against Bacillus subtilis with MIC values at 7.81 μg/mL.

  7. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives

    NASA Astrophysics Data System (ADS)

    Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj

    2017-09-01

    Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.

  8. 1 : 2 Adducts of copper(I) halides with 1,2-bis(di-2-pyridylphosphino)ethane: solid state and solution structural studies and antitumour activity.

    PubMed

    Bowen, Richard J; Navarro, Maribel; Shearwood, Anne-Marie J; Healy, Peter C; Skelton, Brian W; Filipovska, Aleksandra; Berners-Price, Susan J

    2009-12-28

    The 1 : 2 adducts of copper(I) halides with 1,2-bis(2-pyridylphosphino)ethane (d2pype) have been synthesized and solution properties characterized by variable temperature (1)H, (31)P and (65)Cu NMR spectroscopy. Single-crystal structure determinations for the chloride, bromide and iodide complexes show these to crystallize from acetonitrile in the triclinic space group P1 as isostructural centrosymmetric dimers [(d2pype)Cu(mu-d2pype)(2)Cu(d2pype)]X(2).(solvent) with a approximately 12.6, b approximately 12.7, c approximately 15.3 A, alpha approximately 84, beta approximately 67, gamma approximately 84 degrees. In contrast to the analogous AuCl:2(d2pype) and AgNO(3):2(d2pype) adducts, in solution these CuX:2(d2pype) adducts (where X = Cl, Br and I) exist almost exclusively as bis-chelated monomeric [Cu(d2pype)(2)]X; evidence for an equilibrium between monomeric and dimeric forms is detected only for the CuCl adduct in methanol. Cytotoxicity studies in two human breast cancer lines and two matched liver progenitor cell lines indicate that [Cu(d2pype)(2)]Cl is non selectively toxic to both non-tumourigenic and tumourigenic cells. However, the analogous Au(I) compound [Au(d2pype)(2)]Cl, is toxic to highly tumourigenic cells and more selective in its toxicity to tumourigenic cells compared to non-tumourigenic cells. The significance of these results to the further development of selective, mitochondria-targeted, Au(I) antitumour complexes is discussed.

  9. ION IRRADIATION OF ETHANE AND WATER MIXTURE ICE AT 15 K: IMPLICATIONS FOR THE SOLAR SYSTEM AND THE ISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barros, A. L. F. de; Silveira, E. F da; Fulvio, D.

    2016-06-20

    Solid water has been observed on the surface of many different astronomical objects and is the dominant ice present in the universe, from the solar system (detected on the surface of some asteroids, planets and their satellites, trans-Neptunian objects [TNOs], comets, etc.) to dense cold interstellar clouds (where interstellar dust grains are covered with water-rich ices). Ethane has been detected across the solar system, from the atmosphere of the giant planets and the surface of Saturn’s satellite Titan to various comets and TNOs. To date, there were no experiments focused on icy mixtures of C{sub 2}H{sub 6} and H{sub 2}Omore » exposed to ion irradiation simulating cosmic rays, a case study for many astronomical environments in which C{sub 2}H{sub 6} has been detected. In this work, the radiolysis of a C{sub 2}H{sub 6}:H{sub 2}O (2:3) ice mixture bombarded by a 40 MeV{sup 58}Ni{sup 11+} ion beam is studied. The chemical evolution of the molecular species existing in the sample is monitored by a Fourier transform infrared spectrometer. The analysis of ethane, water, and molecular products in solid phase was performed. Induced chemical reactions in C{sub 2}H{sub 6}:H{sub 2}O ice produce 13 daughter molecular species. Their formation and dissociation cross sections are determined. Furthermore, atomic carbon, oxygen, and hydrogen budgets are determined and used to verify the stoichiometry of the most abundantly formed molecular species. The results are discussed in the view of solar system and interstellar medium chemistry. The study presented here should be regarded as a first step in laboratory works dedicated to simulate the effect of cosmic radiation on multicomponent mixtures involving C{sub 2}H{sub 6} and H{sub 2}O.« less

  10. Bench-Scale Synthetic Optimization of 1,2-bis(2-aminophenylthio)ethane (APO-Link) Used in the Production of APO-BMI Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilary Wheeler; Crystal Densmore

    2007-07-31

    The diamine reagent 1,2-bis(2-aminophenylthio)ethane is no longer commercially available but still required for the synthesis of the bismaleimide resin, APO-BMI, used in syntactic foams. In this work, we examined the hydrolysis of benzothiazole followed the by reaction with dichloroethane or dibromoethane. We also studied the deprotonation of 2-aminothiophenol followed by the reaction with dibromoethane. We optimized the latter for scale-up by scrutinizing all aspects of the reaction conditions, work-up and recrystallization. On bench-scale, our optimized procedure consistently produced a 75-80% overall yield of finely divided, high purity product (>95%).

  11. Hydrogeologic framework and water quality of the Vermont Army National Guard Ethan Allen Firing Range, northern Vermont, October 2002 through December 2003

    USGS Publications Warehouse

    Clark, Stewart F.; Chalmers, Ann; Mack, Thomas J.; Denner, Jon C.

    2005-01-01

    The Ethan Allen Firing Range of the Vermont Army National Guard is a weapons-testing and training facility in a mountainous region of Vermont that has been in operation for about 80 years. The hydrologic framework and water quality of the facility were assessed between October 2002 and December 2003. As part of the study, streamflow was continuously measured in the Lee River and 24 observation wells were installed at 19 locations in the stratified drift and bedrock aquifers to examine the hydrogeology. Chemical analyses of surface water, ground water, streambed sediment, and fish tissue were collected to assess major ions, trace elements, nutrients, and volatile and semivolatile compounds. Sampling included 5 surface-water sites sampled during moderate and low-flow conditions; streambed-sediment samples collected at the 5 surface-water sites; fish-tissue samples collected at 3 of the 5 surface-water sites; macroinvertebrates collected at 4 of the 5 surface-water sites; and ground-water samples collected from 10 observation wells, and samples collected at all surface- and ground-water sites. The hydrogeologic framework at the Ethan Allen Firing Range is dominated by the upland mountain and valley setting of the site. Bedrock wells yield low to moderate amounts of water (0 to 23 liters per minute). In the narrow river valleys, layered stratified-drift deposits of sand and gravel of up to 18 meters thick fill the Lee River and Mill Brook Valleys. In these deposits, the water table is generally within 3 meters below the land surface and overall ground-water flow is from east to west. Streamflow in the Lee River averaged 0.72 cubic meters per second (25.4 cubic feet per second) between December 2002 and December 2003. Streams are highly responsive to precipitation events in this mountainous environment and a comparison with other nearby watersheds shows that Lee River maintains relatively high streamflow during dry periods. Concentrations of trace elements and nutrients

  12. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  13. Diethyl 2,2′-(ethane-1,2-diyldi­oxy)di­benzo­ate

    PubMed Central

    Shi, Huaduan; Qin, Haisha; Ma, Zhen

    2014-01-01

    The mol­ecular title compound, C20H22O6, was obtained by the reaction of ethyl 2-hy­droxy­benzoate with 1,2-di­chloro­ethane. The mol­ecule lies on a twofold rotation axis which passes through the middle of the central ethyl­ene bridge. This group exhibits a gauche conformation with the corresponding O—C—C—O torsion angle being 73.2 (2)°. The C atoms of the carboxyl group, the aryl and the O—CH2 group are coplanar, with an r.m.s. deviation of 0.01 Å. The two aryl rings form a dihedral angle of 67.94 (4)°. The ester ethyl group is disordered over two sets of sites with an occupancy ratio of 0.59 (2):0.41 (2). The crystal packing is dominated by van der Waals forces. PMID:24860360

  14. Molecular structures of the inclusion complexes beta-cyclodextrin-1,2-bis(4-aminophenyl)ethane and beta-cyclodextrin-4,4'-diaminobiphenyl; packing of dimeric beta-cyclodextrin inclusion complexes.

    PubMed

    Giastas, Petros; Yannakopoulou, Konstantina; Mavridis, Irene M

    2003-04-01

    The present investigation is part of an ongoing study on the influence of the long end-functonalized guest molecules DBA and BNZ in the crystal packing of beta-cyclodextrin (betaCD) dimeric complexes. The title compounds are 2:2 host:guest complexes showing limited host-guest hydrogen bonding at the primary faces of the betaCD dimers. Within the betaCD cavity the guests exhibit mutual pi...pi interactions and between betaCD dimers perpendicular NH...pi interactions. The DBA guest molecule exhibits one extended and two bent conformations in the complex. The BNZ guest molecule is not planar inside betaCD, in contrast to the structure of BNZ itself, which indicates that the cavity isolates the molecules and forbids the pi...pi stacking of the aromatic rings. NMR spectroscopy studies show that in aqueous solution both DBA and BNZ form strong complexes that have 1:1 stoichiometry and structures similar to the solid state ones. The relative packing of the dimers is the same in both complexes. The axes of two adjacent dimers form an angle close to 20 degrees and have a lateral displacement approximately 2.45 A, both of which characterize the screw-channel mode of packing. Although the betaCD/BNZ complex indeed crystallizes in a space group characterizing the latter mode, the betaCD/DBA complex crystallizes in a space group with novel dimensions not resembling any of the packing modes reported so far. The new lattice is attributed to the three conformations exhibited by the guest in the crystals. However, this lattice can be transformed into another, which is isostructural to that of the betaCD/BNZ inclusion complex, if the conformation of the guest is not taken into account.

  15. Hexanuclear gold(I) phosphide complexes as platforms for multiple redox-active ferrocenyl units.

    PubMed

    Lee, Terence Kwok-Ming; Cheng, Eddie Chung-Chin; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2014-01-03

    The synthesis, X-ray crystal structures, electrochemical, and spectroscopic studies of a series of hexanuclear gold(I) μ(3)-ferrocenylmethylphosphido complexes stabilized by bridging phosphine ligands, [Au(6)(P-P)(n)(Fc-CH(2)-P)(2)][PF(6)](2) (n=3, P-P=dppm (bis(diphenylphosphino)methane) (1), dppe (1,2-bis(diphenylphosphino)ethane) (2), dppp (1,3-bis(diphenylphosphino)propane) (3), Ph(2)PN(C(3)H(7))-PPh(2) (4), Ph(2)PN(Ph-CH(3)-p)PPh(2) (5), dppf (1,1′-bis(diphenylphosphino)ferrocene) (6); n=2, P-P=dpepp (bis(2-diphenylphosphinoethyl)phenylphosphine) (7)), as platforms for multiple redox-active ferrocenyl units, are reported. The investigation of the structural changes of the clusters has been probed by introducing different bridging phosphine ligands. This class of gold(I) μ(3)-ferrocenylmethylphosphido complexes has been found to exhibit one reversible oxidation couple, suggestive of the absence of electronic communication between the ferrocene units through the Au(6)P(2) cluster core, providing an understanding of the electronic properties of the hexanuclear Au(I) cluster linkage. The present complexes also serve as an ideal system for the design of multi-electron reservoir and molecular battery systems.

  16. An iron( ii ) hydride complex of a ligand with two adjacent β-diketiminate binding sites and its reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehring, Henrike; Metzinger, Ramona; Braun, Beatrice

    2016-01-13

    After lithiation of PYR-H2 (PYR = [(NC(Me)C(H)C(Me)NC6H3(iPr)2)2(C5H3N)]2-) – the precursor of an expanded β-diketiminato ligand system with two binding pockets – with KN(TMS)2 the reaction of the resulting potassium salt with FeBr2 led to a dinuclear iron(II) bromide complex [(PYR)Fe(μ-Br)2Fe] (1). Through treatment with KHBEt3 the bromide ligands could be replaced by hydrides to yield [PYR)Fe2(μ-H)2] (2), a distorted analogue of known β-diketiminato iron hydride complexes, as evidenced by NMR, Mößbauer and X-ray absorption spectroscopy, as well as by its reactivity: for instance, 2 reacts with the proton source lutidinium triflate via protonation of the hydride ligands to form anmore » iron(II) product [(PYR)Fe2(OTf)2] (4), while CO2 inserts into the Fe–H bonds generating the formate complex [(PYR)Fe2(μ-HCOO)2] (5); in the presence of traces of water partial hydrolysis occurs so that [(PYR)Fe2(μ-OH)(μ-HCOO)] (6) is isolated. Altogether, the iron(II) chemistry supported by the PYR2- ligand is distinctly different from the one of nickel(II), where both, the arrangement of the two binding pockets and the additional pyridyl donor led to diverging features as compared with the corresponding system based on the parent β-diketiminato ligand.« less

  17. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad

    2018-02-01

    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  18. Fisher information and steric effect: study of the internal rotation barrier of ethane.

    PubMed

    Esquivel, Rodolfo O; Liu, Shubin; Angulo, Juan Carlos; Dehesa, Jesús S; Antolín, Juan; Molina-Espíritu, Moyocoyani

    2011-05-05

    On the basis of a density-based quantification of the steric effect [Liu, S. B. J. Chem. Phys.2007, 126, 244103], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane is systematically investigated in this work from an information-theoretical point of view by using the Fisher information measure in conjugated spaces. Two kinds of computational approaches are considered in this work: adiabatic (with optimal structure) and vertical (with fixed geometry). The analyses are performed systematically by following, in each case, the conformeric path by changing the dihedral angle from 0 to 180° . This is calculated at the HF, MP2, B3LYP, and CCSD(T) levels of theory and with several basis sets. Selected descriptors of the densities are utilized to support the observations. Our results show that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer, but in the vertical cases the staggered conformer retains a larger steric repulsion. Our results verify the plausibility for defining and computing the steric effect in the post-Hartree-Fock level of theory according to the scheme proposed by Liu.

  19. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  20. Synthesis of New Five Coordinated Copper(II) and Nickel(II) Complexes of L-Valine and Kinetic Study of Copper(II) with Calf Thymus DNA

    PubMed Central

    Tak, Aijaz Ahmad; Arjmand, Farukh

    2002-01-01

    Five coordinated novel complexes of Cu II and Ni II have been synthesized from benzil and 1,3- diaminopropane- Cu II / Ni II complex and characterized by elemental analysis, i.r., n.m.r., e.p.r, molar conductance and u.v-vis, spectroscopy. The complexes are ionic in nature and exhibit pentaeoordinated geometry around the metal ion. The reaction kinetics of C 25 H 36 N 5 O 2 CuCl with calf thymus DNA was studied by u.v-vis, spectroscopy in aqueous medium. The complex after interaction with calf thymus DNA shows shift in the absorption spectrum and hypochromicity indicating an intercalative binding mode. The K obs values have been calculated under pseudo-first order conditions. The redox behaviour of complex C 25 H 36 N 5 O 2 CuCl in the presence and in the absence of calf thymus DNA in the aqueous solution has been investigated by cyclic voltammetry. The cyclic voitammogram exhibits one quasi-reversible redox wave corresponding to Cu II / Cu I redox couple with E 1 / 2 values of -0.377 and -0.237 V respectively at a scan rate of 0.1V s - 1 .On interaction with calf thymus DNA, the complex C 25 H 36 N 5 O 2 CuCl exhibits shifts in both E p as well as in E 1 / 2 values, indicating strong binding of the complex to the calf thymus DNA. PMID:18475428

  1. Mass Spectral Studies of 1-(2-Chloroethoxy)-2-[(2-chloroethyl)thio] Ethane and Related Compounds Using Gas ChromatographyMass Spectrometry and Gas ChromatographyTriple-Quadrupole Mass Spectrometry

    DTIC Science & Technology

    2016-02-01

    NOTES 14. ABSTRACT: The electron impact and collision-induced- dissociation mass spectra of 1-(2-chloroethoxy)-2-[(2-chloroethyl)thio] ethane and 10...Collision-ion dissociation (CID) Triple-quadrupole mass spectrometry (QQQ) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...ratio, 10:1), and a 1.0 µL volume of sample was placed on the column. Nitrogen was used as the collision gas for the collision-induced dissociation (CID

  2. 40 CFR 721.7780 - Poly[oxy(methyl-1,2-ethane-diyl)], α,α′-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[ω-(oxi-rany-me-thoxy)-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...±,αâ²-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[Ï-(oxi-rany-me-thoxy)-. 721.7780 Section 721.7780... Poly[oxy(methyl-1,2-ethane-diyl)], α,α′-(2,2-dimethyl-1,3-pro-pan-ediyl)bis[ω-(oxi-rany-me-thoxy)-. (a... technologies in § 721.90(a)(2)(ii): Oil and grease separation. (b) Specific requirements. The provisions of...

  3. Comparison of physical and photophysical properties of monometallic and bimetallic ruthenium(II) complexes containing structurally altered diimine ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macatangay, A.; Jackman, D.C.; Merkert, J.W.

    1996-11-06

    The physical and photophysical properties of a series of monometallic, [Ru(bpy){sub 2}(dmb)]{sup 2+}, [Ru(bpy){sub 2}(BPY)]{sup 2+}, [Ru(bpy)(Obpy)]{sup 2+} and [Ru(bpy){sub 2}(Obpy)] {sup 2+}, and bimetallic, [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+} and [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+}, complexes are examined, where bpy is 2,2{prime}-bipyridine, dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine, BPY is 1,2-bis(4-methyl-2,2{prime}-bipyridin-4{prime}-yl)ethane, and Obpy is 1,2-bis(2,2{prime}-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nmn region, intraligand {pi}{yields}{pi}* transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at {minus}1.3 Vmore » and ending at {approximately}{minus}1.9 V, and emission from a {sup 3}MLCT state having energy maxima between 598 and 610 nm. The Ru{sup III}/Ru{sup II} oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy){sub 2}(BPY)]{sup 2+}, the Ru{sup III}/Ru{sup II} potential for [Ru-(bpy){sub 2}(Obpy)]{sup 2+} increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [(Ru(bpy){sub 2}){sub 2}(BPY)]{sup 4+}, the Ru{sup III}/Ru{sup II} potential for [(Ru(bpy){sub 2}){sub 2}(Obpy)]{sup 4+} increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26.« less

  4. Synthesis, characterization, antibacterial activities and carbonic anhydrase enzyme inhibitor effects of new arylsulfonylhydrazone and their Ni(II), Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma

    2010-01-01

    Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.

  5. Revisiting global fossil fuel and biofuel emissions of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  6. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane

    PubMed Central

    Gregório, Thaiane; Giese, Siddhartha O. K.; Nunes, Giovana G.; Soares, Jaísa F.; Hughes, David L.

    2017-01-01

    Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane (H3 L Et, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol­ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) nitrate di­meth­oxy­ethane hemisolvate, [Tb(NO3)2(H3 L Et)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti­prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol­ecule of di­meth­oxy­ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua­nitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) dinitrate, [Tb(NO3)(H3 L Et)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol­ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol­ecule was found in either of the crystal structures and, only in the case of 1, di­meth­oxy­ethane acts as a crystallizing solvent. In both mol­ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter­molecular, are found in the crystal structures due to the number of different donor and acceptor groups present. PMID:28217359

  7. New 3D coordination polymers constructed from pillared metal-formate Kagomé layers exhibiting spin canting only in the nickel(II) complex.

    PubMed

    Li, Zuo-Xi; Zhao, Jiong-Peng; Sañudo, E C; Ma, Hong; Pan, Zhong-Da; Zeng, Yong-Fei; Bu, Xian-He

    2009-12-21

    Sparked by the strategy of pillared-layer MOFs, three formate coordination polymers, {[Ni(2)(HCO(2))(3)(L)(2)](NO(3)).2H(2)O}(infinity) (1), {[Co(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (2), and {[Cu(2)(HCO(2))(3)(L)(2)](HCO(2)).2H(2)O}(infinity) (3), have been synthesized by employing the rodlike ligand 4,4'-bis(imidazol-1-yl)biphenyl (L) as the pillar. Structural analysis indicates that the title complexes 1-3 are isostructural compounds, which possess metal-formate 2D layers perpendicularly pillared by the ligand L to afford a 3D open framework. This is an interesting example of a Kagome lattice based on the formate mediator. Moreover, the formate anion of this 2D Kagome layer exhibits various bridging modes: anti-anti, syn-anti, and 3.21 modes. Their magnetic measurements reveals that only complex 1 presents the spin canting phenomenon, while its isostructural Co(II) and Cu(II) complexes are simply paramagnets with antiferromagnetic coupling.

  8. Is the tungsten(IV) complex (NEt4)2[WO(mnt)2] a functional analogue of acetylene hydratase?

    PubMed Central

    Schreyer, Matthias

    2017-01-01

    The tungsten(IV) complex (Et4N)2[W(O)(mnt)2] (1; mnt = maleonitriledithiolate) was proposed (Sarkar et al., J. Am. Chem. Soc. 1997, 119, 4315) to be a functional analogue of the active center of the enzyme acetylene hydratase from Pelobacter acetylenicus, which hydrates acetylene (ethyne; 2) to acetaldehyde (ethanal; 3). In the absence of a satisfactory mechanistic proposal for the hydration reaction, we considered the possibility of a metal–vinylidene type activation mode, as it is well established for ruthenium-based alkyne hydration catalysts with anti-Markovnikov regioselectivity. To validate the hypothesis, the regioselectivity of tungsten-catalyzed alkyne hydration of a terminal, higher alkyne had to be determined. However, complex 1 was not a competent catalyst for the hydration of 1-octyne under the conditions tested. Furthermore, we could not observe the earlier reported hydration activity of complex 1 towards acetylene. A critical assessment of, and a possible explanation for the earlier reported results are offered. The title question is answered with "no". PMID:29181113

  9. Template-directed synthesis of linear porphyrin oligomers: classical, Vernier and mutual Vernier† †Electronic supplementary information (ESI) available: Synthesis and characterization of new compounds, ladder complexes, UV-vis-NIR titrations and binding data for reference compounds and for the formation of linear oligomer complexes, calculation of effective molarities, analytical GPC calibration and molar absorption coefficients. See DOI: 10.1039/c6sc05355f Click here for additional data file.

    PubMed Central

    Kamonsutthipaijit, Nuntaporn

    2017-01-01

    Three different types of template-directed syntheses of linear porphyrin oligomers are presented. In the classical approach the product has the same number of binding sites as the template, whereas in Vernier reactions the product has the lowest common multiple of the numbers of binding sites in the template and the building block. Mutual Vernier templating is like Vernier templating except that both strands of the Vernier complex undergo coupling simultaneously, so that it becomes impossible to say which is the ‘template’ and which is the ‘building block’. The template-directed synthesis of monodisperse linear oligomers is more difficult than that of cyclic oligomers, because the products of linear templating have reactive ends. All three types of templating are demonstrated here, and used to prepare a nickel(ii) porphyrin dodecamer with 4-pyridyl substituents on all twelve porphyrin units. The stabilities and cooperativities of the double-strand complexes involved in these reactions were investigated by UV-vis-NIR titration. The four-rung ladder duplex has a stability constant of about 2 × 1018 M–1 in dichloromethane at 298 K. PMID:28553508

  10. Syn-anti conformational switching in an ethane-bridged Co(II)bisporphyrin induced by external stimuli: effects of inter-macrocyclic interactions, axial ligation and chemical and electrochemical oxidations.

    PubMed

    Dey, Soumyajit; Rath, Sankar Prasad

    2014-02-07

    The syn-anti conformational switching has been demonstrated in the ethane-bridged dicobalt(II)bisporphyrin which is present in the syn-form only. The addition of either perylene or axial ligands to Co(II)(bisporphyrin) completely transforms the syn form into the anti because of strong π-π interaction and axial coordination, respectively. The complex undergoes four 1e-oxidations in CH2Cl2 which are indicative of strong through space interactions between the two cofacial Co-porphyrins at 295 K. The first oxidation is a metal centered one and occurs at a potential much lower than that of the monomeric analog. However, the second oxidation, which is again metal centered, was at a significantly higher potential. The large difference between the first two oxidations, as observed here, is due to much stronger inter-porphyrin interactions. The step-wise oxidations have been performed both chemically and electro-chemically while the progress of the reactions was monitored by UV-visible and (1)H NMR spectroscopy. After 1e-oxidation, a very broad (1)H NMR signal results with increased difference between two meso resonances, which indicates that the two macrocycles are in the syn-form with lesser interplanar separation as also observed by DFT. However, 2e-oxidation results in the stabilization of the anti form. The addition of axial ligands to Co(II)(bisporphyrin) also completely transforms the syn form into the anti form. While additions of THF and I2/I(-) both result in the formation of five-coordinate complexes, Co(II) is oxidized to Co(III) in the case of the latter. However, additions of 1-methylimidazole, pyridine and pyrazine as axial ligands result in the formation of a six-coordinate complex in which Co(II) is spontaneously oxidized to Co(III) in air.

  11. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data.

    PubMed

    Tesmar, Aleksandra; Wyrzykowski, Dariusz; Muñoz, Eva; Pilarski, Bogusław; Pranczk, Joanna; Jacewicz, Dagmara; Chmurzyński, Lech

    2017-04-01

    The influence of the different side chain residues on the thermodynamic and kinetic parameters for complexation reactions of the Co 2 + and Ni 2 + ions has been investigated by using the isothermal titration calorimetry (ITC) technique supported by potentiometric titration data. The study was concerned with the 2 common tripodal aminocarboxylate ligands, namely, nitrilotriacetic acid and N-(2-hydroxyethyl) iminodiacetic acid. Calorimetric measurements (ITC) were run in the 2-(N-morpholino)ethanesulfonic acid hydrate (2-(N-morpholino) ethanesulfonic acid), piperazine-N,N'-bis(2-ethanesulfonic acid), and dimethylarsenic acid buffers (0.1 mol L -1 , pH 6) at 298.15 K. The quantification of the metal-buffer interactions and their incorporation into the ITC data analysis enabled to obtain the pH-independent and buffer-independent thermodynamic parameters (K, ΔG, ΔH, and ΔS) for the reactions under study. Furthermore, the kinITC method was applied to obtain kinetic information on complexation reactions from the ITC data. Correlations, based on kinetic and thermodynamic data, between the kinetics of formation of Co 2 + and Ni 2 + complexes and their thermodynamic stabilities are discussed. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Formation and decomposition of ethane, propane, and carbon dioxide hydrates in silica gel mesopores under high pressure.

    PubMed

    Aladko, E Ya; Dyadin, Yu A; Fenelonov, V B; Larionov, E G; Manakov, A Yu; Mel'gunov, M S; Zhurko, F V

    2006-10-05

    The experimental data on decomposition temperatures for the gas hydrates of ethane, propane, and carbon dioxide dispersed in silica gel mesopores are reported. The studies were performed at pressures up to 1 GPa. It is shown that the experimental dependence of hydrate decomposition temperature on the size of pores that limit the size of hydrate particles can be described on the basis of the Gibbs-Thomson equation only if one takes into account changes in the shape coefficient that is present in the equation; in turn, the value of this coefficient depends on a method of mesopore size determination. A mechanism of hydrate formation in mesoporous medium is proposed. Experimental data providing evidence of the possibility of the formation of hydrate compounds in hydrophobic matrixes under high pressure are reported. Decomposition temperature of those hydrate compounds is higher than that for the bulk hydrates of the corresponding gases.

  13. Antibacterial and antifungal metal based triazole Schiff bases.

    PubMed

    Chohan, Zahid H; Hanif, Muhammad

    2013-10-01

    A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.

  14. Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands.

    PubMed

    Kaeser, Adrien; Mohankumar, Meera; Mohanraj, John; Monti, Filippo; Holler, Michel; Cid, Juan-José; Moudam, Omar; Nierengarten, Iwona; Karmazin-Brelot, Lydia; Duhayon, Carine; Delavaux-Nicot, Béatrice; Armaroli, Nicola; Nierengarten, Jean-François

    2013-10-21

    Preparation of [Cu(NN)(PP)](+) derivatives has been systematically investigated starting from two libraries of phenanthroline (NN) derivatives and bis-phosphine (PP) ligands, namely, (A) 1,10-phenanthroline (phen), neocuproine (2,9-dimethyl-1,10-phenanthroline, dmp), bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, Bphen), 2,9-diphenethyl-1,10-phenanthroline (dpep), and 2,9-diphenyl-1,10-phenanthroline (dpp); (B) bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppFc), and bis[(2-diphenylphosphino)phenyl] ether (POP). Whatever the bis-phosphine ligand, stable heteroleptic [Cu(NN)(PP)](+) complexes are obtained from the 2,9-unsubstituted-1,10-phenanthroline ligands (phen and Bphen). By contrast, heteroleptic complexes obtained from dmp and dpep are stable in the solid state, but a dynamic ligand exchange reaction is systematically observed in solution, and the homoleptic/heteroleptic ratio is highly dependent on the bis-phosphine ligand. Detailed analysis revealed that the dynamic equilibrium resulting from ligand exchange reactions is mainly influenced by the relative thermodynamic stability of the different possible complexes. Finally, in the case of dpp, only homoleptic complexes were obtained whatever the bis-phosphine ligand. Obviously, steric effects resulting from the presence of the bulky phenyl rings on the dpp ligand destabilize the heteroleptic [Cu(NN)(PP)](+) complexes. In addition to the remarkable thermodynamic stability of [Cu(dpp)2]BF4, this negative steric effect drives the dynamic complexation scenario toward almost exclusive formation of homoleptic [Cu(NN)2](+) and [Cu(PP)2](+) complexes. This work provides the definitive rationalization of the stability of [Cu(NN)(PP)](+) complexes, marking the way for future developments in this field.

  15. 1,1,1-tris(hydroxymethyl)ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols.

    PubMed

    Chen, Yao-Jung; Chen, Hsin-Hung

    2006-11-23

    1,1,1-tris(hydroxymethyl)ethane was presented as a new, efficient, and versatile tridentate O-donor ligand suitable for the copper-catalyzed formation of C-N, C-S, and C-O bonds. This inexpensive and commercially available tripod ligand has been demonstrated to facilitate the copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols to afford the corresponding desired products in good to excellent yields. [reaction: see text].

  16. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    NASA Astrophysics Data System (ADS)

    Vallejos, Javier; Brito, Iván; Cárdenas, Alejandro; Llanos, Jaime; Bolte, Michael; López-Rodríguez, Matías

    2015-03-01

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI2 and HgBr2 salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: {[Hg(L)(Br2)]}n(1) and {[Hg(L)(I2)]}n(2). In both compounds, the ligand, (L) acts in a μ2-N:N‧-bidentate fashion to link HgBr2 and HgI2 units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differences in the optical and crystal properties of the two compounds.

  17. Stimulation and Inhibition of Anaerobic Digestion by Nickel and Cobalt: A Rapid Assessment Using the Resazurin Reduction Assay.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2016-10-03

    Stimulation of anaerobic digestion by essential trace metals is beneficial from a practical point of view to enhance the biodegradability and degradation rate of wastes. Hence, a quick method to determine which metal species, and at what concentration, can optimize anaerobic digestion is of great interest to both researchers and operators. In this present study, we investigated the effect of nickel(II), cobalt(II), and their mixture, on the anaerobic digestion of synthetic municipal wastewater. Using a volumetric method, that is, measuring methane production over time, revealed that anaerobic digestion was stimulated by the addition of 5 mg L -1 nickel(II), and cobalt(II), and their mixture in day(s). However, using a novel resazurin reduction assay, and based on its change in rate over time, we evaluated both inhibition at 250 mg L -1 nickel(II) and cobalt(II), and also the stimulatory effect of 5 mg L -1 nickel(II), and cobalt(II), and their mixture, in just 6 h. By investigating the dynamic distribution of these metals in the liquid phase of the anaerobic system and kinetics of resazurin reduction by nickel spiked anaerobic sludge, the concentration of nickel(II) on anaerobic digestion performance was profiled. Three critical concentrations were determined; stimulation starting (around 1 mg L -1 ), stimulation ending (around 100 mg L -1 ) and stimulation maximizing (around 10 mg L -1 ). Hence, we propose that the resazurin reduction assay is a novel and quick protocol for studying the stimulation of anaerobic bioprocesses by bioavailable essential trace metals.

  18. Crystal structure of trans-bis­(ethane-1,2-diamine-κ2 N,N′)bis­(thio­cyanato-κN)chromium(III) perchlorate from synchrotron data

    PubMed Central

    Moon, Dohyun; Choi, Jong-Ha

    2015-01-01

    The structure of the title compound, [Cr(NCS)2(C2H8N2)2]ClO4, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric CrIII complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The CrIII ion is coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound thio­cyanate (NCS−) anions in a trans-axial arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) bond lengths are in the range 2.053 (16)–2.09 (2) Å, while the Cr—N(thio­cyanate) bond length is 1.983 (2) Å. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each ClO4 − anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 groups as donors and perchlorate O and thio­cyanate S atoms as acceptors. PMID:26090142

  19. Multistep Oxidation of Diethynyl Oligophenylamine-Bridged Diruthenium and Diiron Complexes.

    PubMed

    Zhang, Jing; Guo, Shen-Zhen; Dong, Yu-Bao; Rao, Li; Yin, Jun; Yu, Guang-Ao; Hartl, František; Liu, Sheng Hua

    2017-01-17

    Homo-dinuclear nonlinear complexes [{M(dppe)Cp*} 2 {μ-(-C≡C) 2 X}] (dppe = 1,2-bis(diphenylphosphino)ethane; Cp* = η 5 -C 5 Me 5 ; X = triphenylamine (TPA), M = Ru (1a) and Fe (1b); X = N,N,N',N'-tetraphenylphenylene-1,4-diamine (TPPD), M = Ru (2a)) were prepared and characterized by 1 H, 13 C, and 31 P NMR spectroscopy and single-crystal X-ray diffraction (1a, 2a). Attempts to prepare the diiron analogue of 2a were not successful. Experimental data obtained from cyclic voltammetry, square wave voltammetry, UV-vis-NIR (NIR = near-infrared) spectro-electrochemistry, and very informative IR spectro-electrochemistry in the C≡C stretching region, combined with density functional theory calculations, afford to make an emphasizing assessment of the close association between the metal-ethynyl termini and the oligophenylamine bridge core as well as their respective involvement in sequential one-electron oxidations of these complexes. The anodic behavior of the homo-bimetallic complexes depends strongly both on the metal center and the length of the oligophenylamine bridge core. The poorly separated first two oxidations of diiron complex 1b are localized on the electronically nearly independent Fe termini. In contrast, diruthenium complex 1a exhibits a significantly delocalized character and a marked electronic communication between the ruthenium centers through the diethynyl-TPA bridge. The ruthenium-ethynyl halves in 2a, separated by the doubly extended and more flexible TPPD bridge core, show a lower degree of electronic coupling, resulting in close-lying first two anodic waves and the NIR electronic absorption of [2a] + with an indistinctive intervalence charge transfer character. Finally, the third anodic waves in the voltammetric responses of the homo-bimetallic complexes are associated with the concurrent exclusive oxidation of the TPA or TPPD bridge cores.

  20. The cytotoxicity and mechanism of action of new multinuclear Scaffold AuIII, PdII pincer complexes containing a bis(diphenylphosphino) ferrocene/non-ferrocene ligand.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2017-10-24

    New multinuclear gold(iii), palladium(ii) pincer complexes containing bis(diphenylphosphino) ferrocene/non-ferrocene ligands of formula [(L)Au(μ 2 -η 2 -CS 3 )Pd(dppf)](PF 6 ) 2 , 1, and [(L)Au(μ 2 -η 2 -CS 3 )Pd(dppe)](PF 6 ) 2 , 2 (HL = 5-methoxy-1,3-bis (1-methyl-1H-benzo[d]imidazol-2-yl)benzene, dppf = 1,1'-bis(diphenylphosphino)ferrocene, and dppe = bis(diphenylphosphino)ethane) have been synthesized and fully characterized. Both complexes are more cytotoxic to a number of human cancer cell lines than cisplatin. Moreover, complex 1 is more active than auranofin as the reference gold compound against a panel of several human tumor cell lines. Chemosensitivity tests completed on cisplatin sensitive and resistant cell lines have confirmed that both complexes were able to overcome cisplatin resistance. The complexes successfully inhibited the enzymes thioredoxin reductase (TrxR) and glutathione reductase (GR). The cellular uptake of both gold and palladium of the complexes was studied, which indicated a high biological stability of the complexes. The complexes 1 and 2 increase the production of ROS in HCT-15 cells. In addition, these complexes induce major levels of cancer cell death by apoptosis.

  1. A magnetostructural study of linear NiII MnIII NiII, NiII CrIII NiII and triangular Ni(II)3 species containing (pyridine-2-aldoximato)nickel(II) unit as a building block.

    PubMed

    Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni

    2005-08-07

    Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.

  2. Hydrogen scrambling in ethane induced by intense laser fields: statistical analysis of coincidence events.

    PubMed

    Kanya, Reika; Kudou, Tatsuya; Schirmel, Nora; Miura, Shun; Weitzel, Karl-Michael; Hoshina, Kennosuke; Yamanouchi, Kaoru

    2012-05-28

    Two-body Coulomb explosion processes of ethane (CH(3)CH(3)) and its isotopomers (CD(3)CD(3) and CH(3)CD(3)) induced by an intense laser field (800 nm, 1.0 × 10(14) W/cm(2)) with three different pulse durations (40 fs, 80 fs, and 120 fs) are investigated by a coincidence momentum imaging method. On the basis of statistical treatment of the coincidence data, the contributions from false coincidence events are estimated and the relative yields of the decomposition pathways are determined with sufficiently small uncertainties. The branching ratios of the two body decomposition pathways of CH(3)CD(3) from which triatomic hydrogen molecular ions (H(3)(+), H(2)D(+), HD(2)(+), D(3)(+)) are ejected show that protons and deuterons within CH(3)CD(3) are scrambled almost statistically prior to the ejection of a triatomic hydrogen molecular ion. The branching ratios were estimated by statistical Rice-Ramsperger-Kassel-Marcus calculations by assuming a transition state with a hindered-rotation of a diatomic hydrogen moiety. The hydrogen scrambling dynamics followed by the two body decomposition processes are discussed also by using the anisotropies in the ejection directions of the fragment ions and the kinetic energy distribution of the two body decomposition pathways.

  3. Development and composition of a mixed culture for bioremediation of chlorinated ethenes and ethanes

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.

    2005-01-01

    Microbial organisms capable of dechlorinating 1,1,2,2 tetrachloroethane (TeCA) and its chlorinated ethane and ethylene daughter products were enriched in surface sediments collected from the West Branch Canal Creek wetland area, leading to the formation of two mixed cultures using slightly different enrichment methods. Both WBC-1 and WBC-2 were capable of rapid and complete reductive dechlorination of TeCA and its daughter products (1,1,2-trichloroethane, 1,2-dichloroethane, trichloroethylene, 1,2-dichloroethylene, and vinyl chloride) to ethylene, and addition of either culture to wetland sediment and to engineered peat/compost mixtures resulted in significant enhancement of dechlorination. However, the WBC-2 culture supported better sustained activity and was more readily scaled up for application in bioaugmentation treatments, whereas dechlorination activity was gradually lost in WBC-1. The microbial composition of WBC-1 and WBC-2 were determined by cloning and sequencing 500 base pairs of the 16S rDNA gene and the methyl co-reductase. Methanogens identified in the consortia were members of the Order Methanomicrobiales, which includes acetoclastic methanogens. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  4. Terminal NiII-OH/-OH2 complexes in trigonal bipyramidal geometries derived from H2O.

    PubMed

    Lau, Nathanael; Sano, Yohei; Ziller, Joseph W; Borovik, A S

    2017-03-29

    The preparation and characterization of two Ni II complexes are described, a terminal Ni II -OH complex with the tripodal ligand tris[(N)-tertbutylureaylato)-N-ethyl)]aminato ([H 3 buea] 3- ) and a terminal Ni II -OH 2 complex with the tripodal ligand N , N ', N ″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST] 3- ). For both complexes, the source of the -OH and -OH 2 ligand is water. The salts K 2 [Ni II H 3 buea(OH)] and NMe 4 [Ni II MST(OH 2 )] were characterized using perpendicular-mode X-band electronic paramagnetic resonance, Fourier transform infrared, UV-visible spectroscopies, and its electrochemical properties were evaluated using cyclic voltammetry. The solid state structures of these complexes determined by X-ray diffraction methods reveal that they adopt a distorted trigonal bipyramidal geometry, an unusual structure for 5-coordinate Ni II complexes. Moreover, the Ni II -OH and Ni II -OH 2 units form intramolecular hydrogen bonding networks with the [H 3 buea] 3- and [MST] 3- ligands. The oxidation chemistry of these complexes was explored by treating the high-spin Ni II compounds with one-electron oxidants. Species were formed with S = 1/2 spin ground states that are consistent with formation of monomeric Ni III species. While the formation of Ni III -OH complexes cannot be ruled out, the lack of observable O-H vibrations from the putative Ni-OH units suggest the possibility that other high valent Ni species are formed.

  5. Hydrogenation of CO 2 in Water Using a Bis(diphosphine) Ni–H Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Samantha A.; Kendall, Alexander J.; Tyler, David R.

    2017-03-17

    The water soluble Ni bis(diphosphine) complex [NiL2](BF4)2 (L = 1,2- bis(di(methoxypropyl)phosphino)ethane) and the corresponding hydride, [HNiL2]BF4, were synthesized and characterized. For HNiL2+, the hydricity was determined to be 23.2(3) kcal/mol in aqueous solution. Based on the hydricity of formate of 24.1 kcal/mol, the transfer of a hydride from HNiL2 + to CO2 to produce formate is favorable by 1 kcal/mol. Starting from either NiL2 2+ or HNiL2 + in water, catalytic hydrogenation of CO2 was observed with NaHCO3 (0.8 M) as the only additive. A maximum turnover frequency of 3.6(8) h–1 was observed at 80 °C and 51 atm ofmore » a 1:1 mixture of CO2 and H2.« less

  6. Rhodium-complex-catalyzed asymmetric hydrogenation: transformation of precatalysts into active species.

    PubMed

    Preetz, Angelika; Drexler, Hans-Joachim; Fischer, Christian; Dai, Zhenya; Börner, Armin; Baumann, Wolfgang; Spannenberg, Anke; Thede, Richard; Heller, Detlef

    2008-01-01

    The use of diolefin-containing rhodium precatalysts leads to induction periods in asymmetric hydrogenation of prochiral olefins. Consequently, the reaction rate increases in the beginning. The induction period is caused by the fact that some of the catalyst is blocked by the diolefin and thus not available for hydrogenation of the prochiral olefin. Therefore, the maximum reaction rate cannot be reached initially. Due to the relatively slow hydrogenation of cyclooctadiene (cod) the share of active catalysts increases at first, and this leads to typical induction periods. The aim of this work is to quantify the hydrogenation of the diolefins cyclooctadiene (cod) and norborna-2,5-diene (nbd) for cationic complexes of the type [Rh(ligand)(diolefin)]BF(4) for the ligands Binap (1,1'-binaphthalene-2,2'-diylbis(phenylphosphine)), Me-Duphos (1,2-bis(2,5-dimethylphospholano)benzene, and Catasium in the solvents methanol, THF, and propylene carbonate. Furthermore, an approach is presented to determine the desired rate constant and the resulting respective pre-hydrogenation time from stoichiometric hydrogenations of the diolefin complexes via UV/Vis spectroscopy. This method is especially useful for very slow diolefin hydrogenations (e.g., cod hydrogenation with the ligands Me-Duphos, Et-Duphos (1,2-bis(2,5-diethylphospholano)benzene), and dppe (1,2-bis(diphenylphosphino)ethane).

  7. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Synthesis, structure, and electrochemistry of di- and zerovalent nickel, palladium, and platinum monomers and dimers derived from an enantiopure (S,S)-tetra(tertiary phosphine).

    PubMed

    Kitto, Heather J; Rae, A David; Webster, Richard D; Willis, Anthony C; Wild, S Bruce

    2007-09-17

    The ligand (S,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (S,S)-tetraphos, reacts with hexa(aqua)nickel(II) chloride in the presence of trimethylsilyl triflate (TMSOTf) in dichloromethane to give the yellow square-planar complex [Ni{(R,R)-tetraphos}](OTf)2, which has been crystallographically characterized as the square-pyramidal, acetonitrile adduct [Ni(NCMe){(R,R)-tetraphos}]OTf. Cyclic voltammograms of the nickel(II) complex in dichloromethane and acetonitrile at 20 degrees C showed two reduction processes at negative potentials with oxidative (E(p)(ox)) and reductive (E(p)(red)) peak separations similar to those observed for ferrocene/ferrocenium under identical conditions, suggesting two one-electron steps. The cyclic voltammetric data for the divalent nickel complex in acetonitrile at temperatures below -20 degrees C were interpreted according to reversible coordination of acetonitrile to the nickel(I) and nickel(0) complexes. The divalent palladium and platinum complexes [M{(R,R)-tetraphos}](PF6)2 and [M2{(R,R)-tetraphos}2](OTf)4 have been prepared. The reduction potentials for the complexes [M{(R,R)-tetraphos}](PF6)2 increase in the order nickel(II) < palladium(II) < platinum(II). The reaction of (S,S)-tetraphos with bis(cycloocta-1,5-diene)nickel(0) in benzene affords orange [Ni{(R,R)-tetraphos}], which slowly rearranges into the thermodynamically more stable, yellow, double-stranded helicate [Ni2{(R,R)-tetraphos}2]; the crystal structures of both complexes have been determined. The reactions of (S,S)-tetraphos with [M(PPh3)4] in toluene (M = Pd) or benzene (M = Pt) furnish the double-stranded helicates [M2{(R,R)-tetraphos}2]; the palladium complex crystallizes from hot benzene as the 2-benzene solvate and was structurally characterized by X-ray crystallography. In each of the three zerovalent complexes, the coordinated (R,R)-tetraphos stereospecifically generates tetrahedral M(PP)2 stereocenters of M configuration.

  9. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects.

    PubMed

    Wang, Tao; Yin, Zhiwei; Zhang, Zhongxing; Bender, John A; Yang, Zhong; Johnson, Graham; Yang, Zheng; Zadjura, Lisa M; D'Arienzo, Celia J; DiGiugno Parker, Dawn; Gesenberg, Christophe; Yamanaka, Gregory A; Gong, Yi-Fei; Ho, Hsu-Tso; Fang, Hua; Zhou, Nannan; McAuliffe, Brian V; Eggers, Betsy J; Fan, Li; Nowicka-Sans, Beata; Dicker, Ira B; Gao, Qi; Colonno, Richard J; Lin, Pin-Fang; Meanwell, Nicholas A; Kadow, John F

    2009-12-10

    Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.

  10. Effect of ethane-I-hydroxy-I, I-diphosphonate on arterial calcinosis induced by hypervitaminosis D: a morphologic investigation.

    PubMed Central

    Kingma, J. G.; Roy, P. E.

    1990-01-01

    The present study was undertaken to examine changes in vascular ultrastructure of rats subjected to hypervitaminosis D with or without treatment with ethane-I-hydroxy-I, I-diphosphonate (EHDP). Five groups of rats were studied. Untreated rats were given 0.9% NaCl i.p. Sham-treated rats were given vehicle (corn oil). Treated rats were given ergocalciferol (75,000 IU i.p.) dissolved in vehicle with or without EHDP (5 mM/100 g body-weight i.p.). Rats which had been given ergocalciferol without EHDP developed hypercalcemia and demonstrated significant arterial calcinosis. A similar degree of calcinosis was not observed in rats given ergocalciferol with EHDP. EHDP appeared to inhibit arterial calcinosis; however, it did not affect plasma calcium levels. This suggests that EHDP might delay calcium influx into the cell and thereby prevent calcium overload. Our findings support the suggestion that EHDP therapy can be an effective treatment for the inhibition of dystrophic arterial calcinosis. Images Fig. 2 Fig. 3 Fig. 4 PMID:2109995

  11. The synthesis of 1,2-bis(1,5,9-triazacyclododecyl)ethane: a showcase for the importance of the linker length within bis(alkylating) reagents.

    PubMed

    Medina-Molner, Alfredo; Blacque, Olivier; Spingler, Bernhard

    2007-11-08

    The synthesis of 1,2-bis(1,5,9-triazacyclododecyl)ethane (1) showcases how different bis(alkylating) reagents change the reaction from an intra- to an intermolecular pathway. The isolation of the intermediate hexahydro-3a,6a-ethano-1H,4H,7H,9bH-9a-aza-3a,6a-diazoniaphenalene-3a,6a-diium (2) explained why initially the synthesis of 1 was not possible. Both isomers of 2 were found in solution. DFT calculations revealed that isomer 2a is 4.6 kcal/mol lower in energy than 2b. Synthesis of 1 was finally achieved by using oxalyl chloride.

  12. Spectroscopic, structural, electrochemical and computational studies of some new 2-thienyl-containing β-diketonate complexes of cobalt(II), nickel(II) and copper(II)

    NASA Astrophysics Data System (ADS)

    Ahumada, Guillermo; Fuentealba, Mauricio; Roisnel, Thierry; Kahlal, Samia; Córdova, Ricardo; Carrillo, David; Saillard, Jean-Yves; Hamon, Jean-René; Manzur, Carolina

    2017-12-01

    In this work, we present the synthesis of the unsymmetrical β-diketone 1-(2-thienyl)-3-(4-fluorophenyl)-propane-1,3-dione (HL) and its corresponding Co(II), Ni(II) and Cu(II) bis(β-diketonato) complexes 1-3, respectively. The four new compounds were isolated in good yields (65-70%), and characterized by mass spectrometry, elemental analysis, FT-IR and UV-Vis spectroscopy and, in the case of HL, by 1H, 13C and 19F NMR spectroscopy. In addition, the molecular identities and the geometries of the β-diketone HL and complex 3 were confirmed by X-ray diffraction analysis. The dicarbonyl derivative HL does exist as the diketo tautomeric form in DMSO solution and as its keto-enol tautomer in the solid-state with the sbnd OH group adjacent to the 4-fluorophenyl unit. The keto-enol isomer was computed to be more stable by 8.2 kcal/mol in free energy at room temperature. In 3, the Cu(II) center adopts a perfect square-planar geometry. Two reduction processes were observed in the cyclovoltammogram of 3 at -1.30 and -1.80 V vs. Fc/Fc+, with copper deposit on the surface of the electrode. DFT and TD-DFT calculations on HL and complex 3 allow rationalizing their stability, bonding and properties.

  13. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  14. Synthesis, crystal structure, cytotoxic, antileishmanial activities and docking studies on N,N‧-(ethane-1,2-diyl)bis(3-methylbenzamide)

    NASA Astrophysics Data System (ADS)

    Aziz, Hamid; Saeed, Aamer; Jabeen, Farukh; Simpson, Jim; Munawar, Amna; Qasim, Muhammad

    2018-03-01

    Amide derivatives have gained considerable attention because of their extensive range of biological activities and pharmaceutical applications. The current paper presents the synthesis of N, N‧-(ethane-1,2-diyl) bis (3-methylbenzamide), (I), its molecular and crystal structure and an evaluation of its likely biological activity, including cytotoxicity (LD50 = 37.21 μg/ml) and antileishmanial activity (IC50 = 5.77 μg/ml). Moreover, a docking simulation was used to determine the possible interaction sites of the compound (I) with TryR, an enzyme involved in the redox metabolism of the leishmania parasite. Docking computations demonstrate that the compound established prominent binding interactions with the key residues of the TryR and possess the potential to effectively inhibit the catalytic activities of the enzyme. Thus the results suggest that this compound can serve as a potential scaffold for the treatment of leishmaniasis and deserves further development.

  15. Ethane-Bridged Bisporphyrin Conformational Changes As an Effective Analytical Tool for Nonenzymatic Detection of Urea in the Physiological Range.

    PubMed

    Buccolieri, Alessandro; Hasan, Mohammed; Bettini, Simona; Bonfrate, Valentina; Salvatore, Luca; Santino, Angelo; Borovkov, Victor; Giancane, Gabriele

    2018-06-05

    Conformational switching induced in ethane-bridged bisporphyrins was used as a sensitive transduction method for revealing the presence of urea dissolved in water via nonenzymatic approach. Bisporphyrins were deposited on solid quartz slides by means of the spin-coating method. Molecular conformations of Zn and Ni monometalated bis-porphyrins were influenced by water solvated urea molecules and their fluorescence emission was modulated by the urea concentration. Absorption, fluorescence and Raman spectroscopies allowed the identification of supramolecular processes, which are responsible for host-guest interaction between the active layers and urea molecules. A high selectivity of the sensing mechanism was highlighted upon testing the spectroscopic responses of bis-porphyrin films to citrulline and glutamine used as interfering agents. Additionally, potential applicability was demonstrated by quantifying the urea concentration in real physiological samples proposing this new approach as a valuable alternative analytical procedure to the traditionally used enzymatic methods.

  16. Electrophilic-Nucleophilic Dualism of Nickel(II) toward Ni···I Noncovalent Interactions: Semicoordination of Iodine Centers via Electron Belt and Halogen Bonding via σ-Hole.

    PubMed

    Bikbaeva, Zarina M; Ivanov, Daniil M; Novikov, Alexander S; Ananyev, Ivan V; Bokach, Nadezhda A; Kukushkin, Vadim Yu

    2017-11-06

    The nitrosoguanidinate complex [Ni{NH═C(NMe 2 )NN(O)} 2 ] (1) was cocrystallized with I 2 and sym-trifluorotriiodobenzene (FIB) to give associates 1·2I 2 and 1·2FIB. Structures of these solid species were studied by XRD followed by topological analysis of the electron density distribution within the framework of Bader's approach (QTAIM) at the M06/DZP-DKH level of theory and Hirshfeld surface analysis. Our results along with inspection of XRD (CCDC) data, accompanied by the theoretical calculations, allowed the identification of three types of Ni···I contacts. The Ni···I semicoordination of the electrophilic nickel(II) center with electron belt of I 2 was observed in 1·2I 2 , the metal-involving halogen bonding between the nucleophilic nickel(II)-d z 2 center and σ-hole of iodine center was recognized and confirmed theoretically in the structure of [FeNi(CN) 4 (IPz)(H 2 O)] n (IPz = 4-N-coordinated 2-I-pyrazine), whereas the arrangement of FIB in 1·2FIB provides a boundary case between the semicoordination and the halogen Ni···I bondings. In 1·2I 2 and 1·2FIB, noncovalent interactions were studied by variable temperature XRD detecting the expansion of noncovalent contacts with preservation of covalent bond lengths upon the temperature increase from 100 to 300 K. The nature and energies of all identified types of the Ni···I noncovalent interactions in the obtained (1·2I 2 and 1·2FIB) and in the previously reported ([FeNi(CN) 4 (IPz)(H 2 O)] n , [NiL 2 ](I 3 ) 2 ·2I 2 (L = o-phenylene-bis(dimethylphosphine), [NiL]I 2 (L = 1,4,8,11-tetra-azacyclotetradecane), Ni(en) 2 ] n [AgI 2 ] 2n (en = ethylenediamine), and [NiL](ClO 4 ) (L = 4-iodo-2-((2-(2-(2-pyridyl)ethylsulfanyl)ethylimino)methyl)-phenolate)) structures were studied theoretically. The estimated strengths of these Ni···I noncovalent contacts vary from 1.6 to 4.1 kcal/mol and, as expected, become weaker on heating. This work is the first emphasizing electrophilic-nucleophilic dualism

  17. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  18. Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

    PubMed

    Martin, Irene; Dohmen, Christian; Mas-Moruno, Carlos; Troiber, Christina; Kos, Petra; Schaffert, David; Lächelt, Ulrich; Teixidó, Meritxell; Günther, Michael; Kessler, Horst; Giralt, Ernest; Wagner, Ernst

    2012-04-28

    In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and α(v)β(3) integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer. This journal is © The Royal Society of Chemistry 2012

  19. Quantification of Methane and Ethane Emissions from the San Juan Basin

    NASA Astrophysics Data System (ADS)

    Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Gvakharia, A.

    2015-12-01

    Methane (CH4), a potent greenhouse gas, and the primary component of natural gas, is emitted from areas of high fossil fuel production and processing. Recently, persistent and large methane emissions (~0.59 Tg yr-1) from the four corners area of the United States have been identified using satellite (SCIAMACHY) observations taken over the years 2003 to 2009. These emissions appear to be the largest CH4 anomaly (positive deviation above background values) in the contiguous U.S., and exceed bottom-up inventory estimates for the area by 1.8 to 3.5 times. The majority of emissions sources expected to contribute to this anomalous CH4 signal are located in the San Juan basin of New Mexico, and include harvesting and processing of natural gas, coal, and coalbed CH4. The magnitude of CH4 emissions from the San Juan basin have not yet been directly quantified using airborne measurements. Additionally, changing fossil fuel-related activities in the basin may have altered the magnitude of CH4 emissions compared to estimates derived from 2003-2009 satellite measurements. Here, we present in-situ airborne observations of CH4 over the San Juan basin, which allow tight quantification of CH4 fluxes using the mass balance method. Observations over the basin were taken for multiple wind directions on multiple days in April, 2015 to obtain a robust estimate of CH4 emissions. The flux of ethane (C2H6), the second most abundant component of natural gas and a tracer species indicative of fossil-derived CH4, was also quantified. Substantial C2H6 emissions may affect regional air quality and chemistry through its influence on tropospheric ozone production.

  20. Synthetic aspects, spectral, thermal studies and antimicrobial screening on bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) complexes with oxo or thio donor ligands

    NASA Astrophysics Data System (ADS)

    Chauhan, H. P. S.; Carpenter, Jaswant; Joshi, Sapana

    2014-09-01

    The bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) complexes have been obtained by the reaction of chloro bis(N,N-dimethyldithiocarbamato-S,S‧)antimony(III) with corresponding oxo or thio donor ligands such as sodium benzoate 1, sodium thioglycolate 2, phenol 3, sodium 1-propanethiolate 4, potassium thioacetate 5, sodium salicylate 6, ethane-1,2-dithiolate 7 and disodium oxalate 8. These complexes have been characterized by the physicochemical [melting point, molecular weight determination and elemental analysis (C, H, N, S and Sb)], spectral [UV-Visible, FT-IR, far IR, NMR (1H and 13C)], thermogravimetric (TG & DTA) analysis, ESI-Mass and powder X-ray diffraction studies. Thermogravimetric analysis of the complexes confirmed the final decomposition product as highly pure antimony sulfide (Sb2S3) and powder X-ray diffraction studies show that the complexes are in lower symmetry with monoclinic crystal lattice and nano-ranged particle size (11.51-20.82 nm). The complexes have also been screened against some bacterial and fungal strains for their antibacterial and antifungal activities and compared with standard drugs. These show that the complexes have greater activities against some human pathogenic bacteria and fungi than the activities of standard drugs.