Sample records for ethanol ingestion impairs

  1. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witek-Janusek, L.

    1986-08-01

    Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24more » h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.« less

  2. Pediatric ingestions of house hold products containing ethanol: a review.

    PubMed

    Rayar, Praveen; Ratnapalan, Savithiri

    2013-03-01

    Alcohol is present in a number of household items that are readily accessible to children. Ingestion of these household products containing alcohol can lead to significant health risks. To identify reported cases of ingestions of common household items that have led to ethanol intoxication, poisoning, or death in children up to the age of 18 years. The OVID MEDLINE database from 1948 to March 2011, Embase from 1980 to March 2011, and CINAHL (Cumulative Index to Nursing and Allied Health Literature) from 1982 to February 2011 were searched for articles with the following key terms: alcohols(ethanol or ethyl alcohol) and ingest*(ingestion) or intoxic*(intoxication) or poisoning* or death. The search was limited to children (0-18 years). All articles that reported ingestion of household products that contained ethanol were included in the analysis. Results. Many household products, particularly mouthwashes, hand sanitizers, and cosmetics contain quantities of ethanol that are significant enough to induce intoxication and hypoglycemia. There were 17 publications directly reporting on children with alcohol intoxication from household products. Serious adverse events included hypoglycemia, seizures, and death. Child-resistant closures appear to have reduced the incidence of ingestion of ethanol-based products, including mouthwashes, and may be applicable to other products such as hand sanitizers. Ingestion of household substances containing alcohol continues to be a health care problem. Legislature to reduce alcohol content in household products and public education should be instituted to prevent poisonings in children.

  3. Death caused by ingestion of an ethanol-based hand sanitizer.

    PubMed

    Schneir, Aaron B; Clark, Richard F

    2013-09-01

    The use of hand sanitizer is effective in preventing the transmission of disease. Many hand sanitizers are alcohol-based, and significant intoxications have occurred, often in health care facilities, including the emergency department (ED). We present this case to highlight potential toxicity after the ingestion of an ethanol-based hand sanitizer. A 36-year-old man presented to the ED with ethanol intoxication. Ethanol breath analysis was measured at 278 mg/dL. After 4 h, the patient was less intoxicated and left the ED. Thirty minutes later, he was found apneic and pulseless in the ED waiting room bathroom after having ingested an ethanol-based hand sanitizer. Soon after a brief resuscitation, his serum ethanol was 526 mg/dL. He never regained consciousness and died 7 days later. No other cause of death was found. The case highlights the potential for significant toxicity after the ingestion of a product found throughout health care facilities. Balancing the benefit of hand sanitizers for preventing disease transmission and their potential misuse remains a challenge. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Pharmacological effects of ethanol on ingestive behavior of the preweanling rat

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael E.; Varlinskaya, Elena I.; Spear, Norman E.

    2009-01-01

    The present study was designed to test the hypothesis that sensitivity of ingestive behavior of infant rat to the pharmacological effects of ethanol changes between postnatal (P) days 9 and 12. The intake of 0.1% saccharin and water, general motor activity, and myoclonic twitching activity were assessed following administration of three doses of ethanol (0, 0.25, 0.5g/kg) while fluids were free available to the animals. The 0.5g/kg dose of ethanol attenuated saccharin intake in P9 pups and enhanced saccharin intake in P12 rats. On P12 some sex-related differences emerged at 0.5g/kg of ethanol, with saccharin intake being higher in females than in their male counterparts. Taste reactivity probe revealed that 0.5 g/kg of ethanol increased taste responsiveness to saccharin on P12 but only to infusions presented at a high rate. The results of the present study indicate that ontogenetic changes in sensitivity to the effects of ethanol on ingestive behavior occur during the second postnatal week, with P9 animals being more sensitive to the inhibitory (sedative) effects on saccharin intake and P12 rats being more sensitive to the stimulatory effects of ethanol. We suggest that acute ethanol enhanced saccharin intake via sensitization of oral response to appetitive taste stimulation. PMID:19549546

  5. Phosphatidylethanolamine N-methyltransferase activity is increased in rat intestinal brush-border membrane by chronic ethanol ingestion.

    PubMed

    Furtado, Valéria Cristina Soares; Takiya, Christina Maeda; Braulio, Valeria Bender

    2002-01-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) catalyses the synthesis of phosphatidylcholine from phosphatidylethanolamine. The aim of this study was to evaluate the effect of chronic ethanol ingestion on PEMT activity in the jejunal brush-border membrane (BBM) of adequately nourished rats. For this purpose, rats were fed a liquid diet containing ethanol [ethanol-fed group (EFG)] or an isocaloric liquid diet without ethanol [pair-fed group (PFG)] for 4 weeks. Diet ingestion, body weight, nitrogen balance and urinary creatinine excretion were monitored during the experimental period, and serum transferrin levels were determined at the end. BBM was isolated for the determination of PEMT activity. PEMT activity was significantly increased in the jejunal BBM of the EFG. Nutritional parameters, however, did not differ between groups. The increase in PEMT activity may be attributed exclusively to chronic ethanol ingestion, since a major nutritional deficit was excluded.

  6. Ethanol Administration Impairs Pancreatic Repair Following Injury

    PubMed Central

    Mahan Schneider, Katrina J.; Scheer, Marc; Suhr, Mallory; Clemens, Dahn L.

    2012-01-01

    Objectives Alcohol abuse is one of the most common factors associated with acute and chronic pancreatitis. Although it is evident that alcohol abuse can have an important role in the development of pancreatitis, it does not appear that alcohol abuse alone is responsible for this disease. We investigated the involvement of ethanol in impairment of pancreatic repair after induction of pancreatitis. Methods A biologically relevant mouse model of alcoholic pancreatitis, combining chronic ethanol consumption and coxsackievirus infection, was used to investigate the effects of ethanol on pancreatic regeneration. Tissues were harvested and analyzed by RT-PCR and immunoblot. Results These studies demonstrate that chronic ethanol consumption impairs the structural repair of the exocrine pancreas. This is accompanied by a delay in the restitution of lipase expression. Additionally, impaired expression of the critical pancreatic transcription factors, PDX1 and PTF1, and the mediator of Notch signaling, HES1, were observed. Conclusions Chronic ethanol consumption impairs the structural repair and functional restitution of the pancreas after severe injury. These impairments may, in part, be explained by impaired expression of factors important in the development and maintenance of the exocrine pancreas. Impaired pancreatic regeneration may have a role in the pathogenesis of alcoholic pancreatitis. PMID:22617711

  7. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera).

    PubMed

    Maze, Ian S; Wright, Geraldine A; Mustard, Julie A

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses led to hemolymph ethanol levels of approximately 40-100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 h post-ingestion for low doses and at 24-48 h for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior.

  8. The Rising Incidence of Intentional Ingestion of Ethanol-Containing Hand Sanitizers

    PubMed Central

    Gormley, Nicole J.; Bronstein, Alvin C.; Rasimas, Joseph J.; Pao, Maryland; T.Wratney, Angela; Sun, Junfeng; Austin, Howard A.; Suffredini, Anthony F.

    2012-01-01

    Objective To describe a case of intentional ingestion of hand sanitizer in our hospital and to review published cases and those reported to the American Association of Poison Control Centers’ National Poison Data System (NPDS). Design A case report, a literature review of published cases, and a query of the National Poison Data System (NPDS). Measurements Incidence and outcome of reported cases of unintentional and intentional ethanol containing-hand sanitizer ingestion in the United States from 2005 through 2009. Main Results A literature search found 14 detailed case-reports of intentional alcohol-based hand sanitizer ingestions with one death. From 2005 to 2009, NPDS received reports of 68,712 exposures to 96 ethanol-based hand sanitizers. The number of new cases increased by an average of 1894 (95% CI: 1266, 2521) cases per year (p = 0.002). In 2005, the rate of exposures, per year, per million U.S residents was 33.7 (95% CI: 28.4, 39.1); from 2005 to 2009, this rate increased on average by 5.87 per year (95%CI: 3.70, 8.04; p=0.003). In 2005, the rate of intentional exposures, per year, per million U.S residents, was 0.68 (95%CI: 0.17-1.20); from 2005 to 2009, this rate increased on average by 0.32 per year (95%CI: 0.11,0.53; p=0.02). Conclusions The number of new cases per year of intentional hand sanitizer ingestion significantly increased during this five - year period. While the majority of cases of hand sanitizer ingestion have a favorable outcome, 288 moderate and 12 major medical complications were reported in this NPDS cohort. Increased awareness of the risks associated with intentional ingestion is warranted, particularly among healthcare providers caring for persons with a history of substance abuse, risk-taking behavior or suicidal ideation. PMID:21926580

  9. Acute ethanol ingestion produces dose-dependent effects on motor behavior in the honey bee (Apis mellifera)

    PubMed Central

    Maze, Ian S.; Wright, Geraldine A.; Mustard, Julie A.

    2006-01-01

    Ethanol consumption produces characteristic behavioral states in animals that include sedation, disorientation, and disruption of motor function. Using individual honey bees, we assessed the effects of ethanol ingestion on motor function via continuous observations of their behavior. Consumption of 1 M sucrose solutions containing a range of ethanol doses lead to hemolymph ethanol levels of approximately 40 to 100 mM. Using ethanol doses in this range, we observed time and dose-dependent effects of ethanol on the percent of time our subjects spent walking, stopped, or upside down, and on the duration and frequency of bouts of behavior. The effects on grooming and flying behavior were more complex. Behavioral recovery from ethanol treatment was both time and ethanol dose dependent, occurring between 12 and 24 hr post-ingestion for low doses and at 24 to 48 hours for higher doses. Furthermore, the amount of ethanol measured in honey bee hemolymph appeared to correlate with recovery. We predict that the honey bee will prove to be an excellent model system for studying the influence of ethanol on the neural mechanisms underlying behavior. PMID:17070538

  10. The rising incidence of intentional ingestion of ethanol-containing hand sanitizers.

    PubMed

    Gormley, Nicole J; Bronstein, Alvin C; Rasimas, Joseph J; Pao, Maryland; Wratney, Angela T; Sun, Junfeng; Austin, Howard A; Suffredini, Anthony F

    2012-01-01

    To describe a case of intentional ingestion of hand sanitizer in our hospital and to review published cases and those reported to the American Association of Poison Control Centers' National Poison Data System. A case report, a literature review of published cases, and a query of the National Poison Data System. Medical intensive care unit. Seventeen-yr-old male 37-kg with an intentional ingestion of a hand sanitizer product into his gastrostomy tube. Intubation, ventilation, and hemodialysis. Incidence and outcome of reported cases of unintentional and intentional ethanol containing-hand sanitizer ingestion in the United States from 2005 through 2009. A literature search found 14 detailed case reports of intentional alcohol-based hand sanitizer ingestions with one death. From 2005 to 2009, the National Poison Data System received reports of 68,712 exposures to 96 ethanol-based hand sanitizers. The number of new cases increased by an average of 1,894 (95% confidence interval [CI] 1266-2521) cases per year (p =.002). In 2005, the rate of exposures, per year, per million U.S. residents was 33.7 (95% CI 28.4-39.1); from 2005 to 2009, this rate increased on average by 5.87 per year (95% CI 3.70-8.04; p = .003). In 2005, the rate of intentional exposures, per year, per million U.S. residents, was 0.68 (95% CI 0.17-1.20); from 2005 to 2009, this rate increased on average by 0.32 per year (95% CI 0.11-0.53; p = .02). The number of new cases per year of intentional hand sanitizer ingestion significantly increased during this 5-yr period. Although the majority of cases of hand sanitizer ingestion have a favorable outcome, 288 moderate and 12 major medical outcomes were reported in this National Poison Data System cohort. Increased awareness of the risks associated with intentional ingestion is warranted, particularly among healthcare providers caring for persons with a history of substance abuse, risk-taking behavior, or suicidal ideation.

  11. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee

    PubMed Central

    Mustard, Julie A; Wright, Geraldine A; Edgar, Elaina A; Mazade, Reece E.; Wu, Chen; Lillvis, Joshua L

    2008-01-01

    Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5, 5, 10 or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24 h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee. PMID:18723103

  12. Influence of ingested ethanol on Photofrin clearance in mice

    NASA Astrophysics Data System (ADS)

    Montague, Donna; Fink, Louis; Stone, Angie; Flock, Stephen T.

    1993-06-01

    A series of experiments have been undertaken to ascertain the influence of dietary additives on the clearance of Photofrin. Post-treatment cutaneous photosensitivity continues to be a significant side effect of photodynamic therapy (PDT) in humans. Cutaneous photosensitivity in humans is evidenced by erythema and edema in exposed areas. Murine models were chosen to investigate the differences in cutaneous photosensitivity as measured by footpad thickness in the presence or absence of dietary additives. Additionally, radiation induced fibrosarcoma (RIF) cells were implanted into the subcutaneous space on the dorsal aspect of the foot. In this case, the effect of PDT on tumor growth kinetics was assumed to be proportional to Photofrin concentration. Photofrin concentrations in tumors were measured by HPLC. Serum levels for dietary additives were obtained where analytical methods were available. Ingested ethanol increased the clearance rate of Photofrin as demonstrated by measurements of Photofrin tumor concentration and by failure of RIF tumor to respond to PDT in groups treated with ethanol compared to controls.

  13. Brain glucose content in fetuses of ethanol-fed rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullen, G.; Singh, S.P.; Snyder, A.K.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less

  14. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue.

    PubMed

    Hranitz, John M; Abramson, Charles I; Carter, Richard P

    2010-05-01

    Previous research on the honeybee ethanol model established how acute ethanol exposure altered function at different levels of organization: behavior and learning, ecology, and physiology. The purpose of this study was to evaluate whether ethanol doses that affect honeybee behavior also induce a significant stress response, measured by heat shock protein 70 (HSP70) concentrations, in honeybee brain tissues. Experiment 1 examined how pretreatment handling influenced brain HSP70 concentrations in three pretreatment groups of bees; immediately after being collected, after being harnessed and fed, and after 22-24h in a harness. HSP70 concentrations did not differ among pretreatment groups within replicates, although we observed significantly different HSP70 concentrations between the two replicates. Experiment 2 investigated the relationship between ethanol dose and brain HSP70 concentrations. Bees were placed in seven experimental groups, the three pretreatment groups as in Experiment 1 and four ethanol-fed groups. Bees in ethanol treatments were fed 1.5M sucrose (control) and 1.5M sucrose-ethanol solutions containing 2.5, 5, and 10% ethanol, allowed to sit for 4h, and dissected brains were assayed for HSP70. We observed ethanol-induced increases in honeybee brain HSP70 concentrations from the control group through the 5% ethanol group. Only bees in the 5% ethanol group had HSP70 concentrations significantly higher than the control group. The inverted U-shaped ethanol dose-HSP70 concentration response curve indicated that ingestion of 2.5% ethanol and 5% ethanol stimulated the stress response, whereas ingestion of 10% ethanol inhibited the stress response. Doses that show maximum HSP70 concentration (5% ethanol) or HSP70 inhibition (10% ethanol) correspond to those (> or =5% ethanol) that also impaired honeybees in previous studies. We conclude that acute ethanol intoxication by solutions containing > or =5% ethanol causes significant ethanol-induced stress in brain

  15. Ethanol Forensic Toxicology.

    PubMed

    Perry, Paul J; Doroudgar, Shadi; Van Dyke, Priscilla

    2017-12-01

    Ethanol abuse can lead to negative consequences that oftentimes result in criminal charges and civil lawsuits. When an individual is suspected of driving under the influence, law enforcement agents can determine the extent of intoxication by measuring the blood alcohol concentration (BAC) and performing a standardized field sobriety test. The BAC is dependent on rates of absorption, distribution, and elimination, which are influenced mostly by the dose of ethanol ingested and rate of consumption. Other factors contributing to BAC are gender, body mass and composition, food effects, type of alcohol, and chronic alcohol exposure. Because of individual variability in ethanol pharmacology and toxicology, careful extrapolation and interpretation of the BAC is needed, to justify an arrest and assignment of criminal liability. This review provides a summary of the pharmacokinetic properties of ethanol and the clinical effects of acute intoxication as they relate to common forensic questions. Concerns regarding the extrapolation of BAC and the implications of impaired memory caused by alcohol-induced blackouts are discussed. © 2017 American Academy of Psychiatry and the Law.

  16. A Low Concentration of Ethanol Impairs Learning but Not Motor and Sensory Behavior in Drosophila Larvae

    PubMed Central

    Ghezzi, Alfredo; Cady, Amanda M.; Najjar, Kristina; Hatch, Michael M.; Shah, Ruchita R.; Bhat, Amar; Hariri, Omar; Haroun, Kareem B.; Young, Melvin C.; Fife, Kathryn; Hooten, Jeff; Tran, Tuan; Goan, Daniel; Desai, Foram; Husain, Farhan; Godinez, Ryan M.; Sun, Jeffrey C.; Corpuz, Jonathan; Moran, Jacxelyn; Zhong, Allen C.; Chen, William Y.; Atkinson, Nigel S.

    2012-01-01

    Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects. PMID:22624024

  17. Concentrations of alprazolam in blood from impaired drivers and forensic autopsies were not much different but showed a high prevalence of co-ingested illicit drugs.

    PubMed

    Jones, Alan Wayne; Holmgren, Anita

    2013-03-01

    Alprazolam is a benzodiazepine anxiolytic widely prescribed for treatment of panic-disorder and social phobias, although this medication is also subject to abuse. In this paper, the concentrations of alprazolam in venous blood samples from impaired drivers were compared with femoral blood samples from forensic autopsies classified as intoxication or other causes of death (e.g. natural, trauma). After liquid-liquid extraction (n-butyl acetate) alprazolam was determined in blood by capillary gas chromatography with a nitrogen-phosphorous detector. The mean (median) and range of alprazolam concentrations in blood from impaired drivers (n = 773) were 0.08 mg/L (0.05 mg/L) and 0.02-3.9 mg/L, respectively. Many traffic offenders had co-ingested ethanol (13%), amphetamine (46%), cannabis (32%), or heroin (14%), as well as other drugs. In deaths attributed to drug intoxication, the mean (median) and range of alprazolam concentrations in blood (n = 438) were 0.10 mg/L (0.06 mg/L) and 0.02-1.6 mg/L, respectively, which were not much different from other causes of death (n = 278); 0.08 mg/L (0.05 mg/L) and 0.02-0.9 mg/L. Median concentrations of alprazolam in blood from living and deceased persons did not seem to depend on the number of co-ingested substances. The result of this pharmacoepidemiological study suggests that alprazolam is a fairly innocent drug when used as monotherapy, but toxicity problems arise when co-ingested with illicit drugs and/or psychoactive medication.

  18. Forced ethanol ingestion by Wistar rats from a juvenile age increased voluntary alcohol consumption in adulthood, with the involvement of orexin-A.

    PubMed

    Mendoza-Ruiz, Luis-Gabriel; Vázquez-León, Priscila; Martínez-Mota, Lucía; Juan, Eduardo Ramírez San; Miranda-Páez, Abraham

    2018-08-01

    Human adolescents who drink alcohol are more likely to become alcoholics in adulthood. Alcohol administration (intraperitoneally) or drinking (in a 2-bottle free choice paradigm) during the juvenile/adolescent age of rats promotes voluntary alcohol consumption in adulthood. On the other hand, there is growing evidence that the orexinergic system plays a role in several rewarded behaviors, including alcohol ingestion. Since it is unknown what effect is exerted in adulthood by forced oral ethanol intake and/or administration of orexin-A (OX-A) in juvenile rats, the present study aimed to evaluate this question. A group of male Wistar rats was forced to drink ethanol (10% v/v) as the only liquid in the diet from weaning (postnatal day 21) to postnatal day 67 (46 days), followed by a forced withdrawal period. An age-matched group was raised drinking tap water (control). OX-A or its vehicle was microinjected intracerebroventricularly (i.c.v.) (1 nmol/0.6 μL) to explore its effect as well. Locomotor activity and voluntary ethanol consumption were later assessed in all groups. The rats forced to consume ethanol early in life showed an elevated level of ambulation and alcohol ingestion in adulthood. A single injection of OX-A increased locomotor activity and acute ethanol intake in rats with or without prior exposure to alcohol at the juvenile stage. In conclusion, forced ethanol consumption in juvenile rats led to increased voluntary alcohol drinking behavior during adulthood, an effect likely facilitated by OX-A. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effects of antemortem ingestion of ethanol on insect successional patterns and development of Phormia regina (Diptera: Calliphoridae).

    PubMed

    Tabor, Kimberly L; Fell, Richard D; Brewster, Carlyle C; Pelzer, Kevin; Behonick, George S

    2005-05-01

    The effects of antemortem ingestion of ethanol by domestic pigs, Sus scrofa L., on postmortem insect successional patterns and the development of Phormia regina (Meigen) were studied during summer 2003 in Blacksburg, VA. Insect samples were collected from the carcasses of ethanol-treated and untreated pigs for 10 d postmortem during two successional studies. In total, 32 insect taxa were collected during the two studies, with 29 and 27 taxa observed on the carcasses of ethanol-treated and untreated pigs, respectively. The earliest arrivers to both carcass types were dipterans. This group was represented by six families, with P. regina and Phaenicia coeruleiviridis (Macquart) being the most common calliphorids. Beetles in six families were collected on the carcasses of ethanol-treated pigs, but only three of the families were collected on carcasses of the untreated pigs. Permutation analyses to test the null hypothesis of no similarity between successional patterns of insect taxa from carcasses of ethanol-treated and untreated pigs showed that the successional patterns were similar between carcass types in the first (P = 0.003) and the second (P = 0.01) studies. The results of the development study of P. regina maggots in the field show that there was a significant difference between the distributions of length for maggots reared on loin tissue from ethanol-treated and untreated pigs. Maggots that fed on tissue from ethanol-treated pigs took approximately 11.9 h longer to reach the pupal stage than maggots that fed on tissue from untreated pigs. The longer developmental time for maggots on tissue from ethanol-treated pigs was due mainly to the longer postfeeding period of the third instar.

  20. A case of methylene chloride poisoning due to ingestion of home-distilled alcohol and potential new treatment with ethanol infusion.

    PubMed

    Vetro, Joseph; Koutsogiannis, Zeff; Jones, Daryl A; Canestra, Jane

    2012-03-01

    We describe a case of a 51-year-old man who ingested methylene chloride and presented with the classical clinical features. He developed an acute abdomen that required repeated laparotomy. The effect of an ethanol infusion on carboxyhaemoglobin concentrations in this case was also of interest and could potentially be a new treatment modality.

  1. Cholinesterase inhibitors, donepezil and rivastigmine, attenuate spatial memory and cognitive flexibility impairment induced by acute ethanol in the Barnes maze task in rats.

    PubMed

    Gawel, Kinga; Labuz, Krzysztof; Gibula-Bruzda, Ewa; Jenda, Malgorzata; Marszalek-Grabska, Marta; Filarowska, Joanna; Silberring, Jerzy; Kotlinska, Jolanta H

    2016-10-01

    Central cholinergic dysfunction contributes to acute spatial memory deficits produced by ethanol administration. Donepezil and rivastigmine elevate acetylcholine levels in the synaptic cleft through the inhibition of cholinesterases-enzymes involved in acetylcholine degradation. The aim of our study was to reveal whether donepezil (acetylcholinesterase inhibitor) and rivastigmine (also butyrylcholinesterase inhibitor) attenuate spatial memory impairment as induced by acute ethanol administration in the Barnes maze task (primary latency and number of errors in finding the escape box) in rats. Additionally, we compared the influence of these drugs on ethanol-disturbed memory. In the first experiment, the dose of ethanol (1.75 g/kg, i.p.) was selected that impaired spatial memory, but did not induce motor impairment. Next, we studied the influence of donepezil (1 and 3 mg/kg, i.p.), as well as rivastigmine (0.5 and 1 mg/kg, i.p.), given either before the probe trial or the reversal learning on ethanol-induced memory impairment. Our study demonstrated that these drugs, when given before the probe trial, were equally effective in attenuating ethanol-induced impairment in both test situations, whereas rivastigmine, at both doses (0.5 and 1 mg/kg, i.p.), and donepezil only at a higher dose (3 mg/kg, i.p.) given prior the reversal learning, attenuated the ethanol-induced impairment in cognitive flexibility. Thus, rivastigmine appears to exert more beneficial effect than donepezil in reversing ethanol-induced cognitive impairments-probably due to its wider spectrum of activity. In conclusion, the ethanol-induced spatial memory impairment may be attenuated by pharmacological manipulation of central cholinergic neurotransmission.

  2. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    PubMed

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  3. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crestani, Carlos C.; Lopes da Silva, Andréia; Scopinho, América A.

    The aim of the present work was to establish a time-course correlation between vascular and autonomic changes that contribute to the development of hypertension during ethanol ingestion in rats. For this, male Wistar rats were subjected to the intake of increasing ethanol concentrations in their drinking water during four weeks. Ethanol effects were investigated at the end of each week. Mild hypertension was already observed at the first week of treatment, and a progressive blood pressure increase was observed along the evaluation period. Increased pressor response to phenylephrine was observed from first to fourth week. α{sub 1}-adrenoceptor protein in themore » mesenteric bed was enhanced at the first week, whereas β{sub 2}-adrenoceptor protein in the aorta was reduced after the second week. In the third week, ethanol intake facilitated the depressor response to sodium nitroprusside, whereas in the fourth week it reduced nitrate content in aorta and increased it plasma. The bradycardic component of the baroreflex was impaired, whereas baroreflex tachycardia was enhanced at the third and fourth weeks. AT{sub 1A} receptor and C-type natriuretic peptide (CNP) mRNAs in the nucleus tractus solitarius were increased at the fourth week. These findings suggest that increased vascular responsiveness to vasoconstrictor agents is possibly a link factor in the development and maintenance of the progressive hypertension induced by ethanol consumption. Additionally, baroreflex changes are possibly mediated by alterations in angiotensinergic mechanisms and CNP content within the brainstem, which contribute to maintaining the hypertensive state in later phases of ethanol ingestion. Facilitated vascular responsiveness to nitric oxide seems to counteract ethanol-induced hypertension. - Highlights: • Mild hypertension was observed during the entire period of ethanol ingestion. • Ethanol facilitated vascular reactivity to vasoactive agents. • Changes in baroreflex activity

  4. The relation of age to the acute effects of ethanol on acetanilide disposition.

    PubMed

    Wynne, H A; Mutch, E; Williams, F M; James, O F; Rawlins, M D; Woodhouse, K W

    1989-03-01

    The activity of the major drug-metabolizing enzymes, the mono-oxygenases, can be inhibited by an acute dose of ethanol. We set out to determine whether age has any relation to the degree of inhibition produced by ethanol, using acetanilide as a model substrate. Eight healthy young subjects (mean age 26 years) and eight healthy elderly subjects (mean age 72 years) were studied on two occasions, once receiving acetanilide alone and once acetanilide with 75 ml vodka (30 g ethanol). The clearance of acetanilide was significantly lower (p less than 0.05) in the elderly subjects at 27 +/- 3 l/h compared to 38 +/- 2 l/h in young subjects. No age-related differences in peak blood ethanol concentrations or ethanol elimination rates were noted. After ethanol, acetanilide clearance fell 18% to 31 +/- 3 l/h in young subjects (p = 0.05) and by 15% to 23 +/- 2 l/h in elderly subjects (p = 0.08). This suggests that the elderly do not suffer greater impairment of drug oxidation after acute ethanol ingestion than do the young.

  5. Chronic ethanol ingestion, type 2 diabetes mellitus, and brain-derived neurotrophic factor (BDNF) in rats.

    PubMed

    Jung, Kyu-In; Ju, Anes; Lee, Hee-Mi; Lee, Seong-Su; Song, Chan-Hee; Won, Wang-Youn; Jeong, Jae-Seung; Hong, Oak-Kee; Kim, Jae-Hwa; Kim, Dai-Jin

    2011-01-07

    Chronic alcohol consumption contributes to the development of type 2 diabetes mellitus (T2DM) while decreasing the level of brain-derived neurotrophic factor (BDNF). BDNF may be an important regulator of glucose metabolism, so it may be associated with an increased risk for T2DM in alcoholism. We evaluated the association of chronic heavy alcohol exposure, T2DM and BDNF level. Ten week-old type 2 diabetic OLETF rats and non-diabetic LETO rats of similar weight were used. The rats were randomized by weight into four treatment groups: (1) OLETF-Ethanol (O-E, n=13), (2) OLETF-Control (O-C, n=15), (3) LETO-Ethanol (L-E, n=11), and (4) LETO-Control (L-C, n=14). The ethanol groups were fed an isocaloric liquid diet containing ethanol while the control groups were fed with the same diet containing maltose-dextran over a 6-week period using a pair-feeding control model in order to regulate different caloric ingestion. After 6 weeks of feeding, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and BDNF levels were analyzed. Prior to IP-GTT, the mean glucose levels in the O-E, O-C, L-E, and L-C groups were 90.38±12.84, 102.13±5.04, 95.18±6.43, and 102.36±4.43mg/dL, respectively. Thirty minutes after intraperitoneal injection, the mean glucose levels were 262.62±63.77, 229.07±51.30, 163.45±26.63, and 156.64±34.42mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.05). One hundred twenty minutes after intraperitoneal injection, the mean glucose levels were 167.38±45.37, 121.20±18.54, 106.73±6.94, and 104.57±9.49mg/dL, respectively; the increased amount of the mean glucose level in the O-E group was significantly higher than that in the O-C group (p<0.01). The difference in mean glucose levels between the O-E group and O-C group was still significant even after adjusting for time (p<0.05). Mean BDNF levels were 405.95±326.16, 618.23±462.15, 749.18±599.93, and

  6. Ethanol impairs activation of retinoic acid receptors in cerebellar granule cells in a rodent model of fetal alcohol spectrum disorders.

    PubMed

    Kumar, Ambrish; Singh, Chandra K; DiPette, Donald D; Singh, Ugra S

    2010-05-01

    Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. Findings from these studies demonstrated that ethanol exposure reduced the expression of RARalpha/gamma while it increased the expression of RXRalpha/gamma in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects

  7. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    PubMed

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  8. CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation.

    PubMed

    Nagre, Nagaraja N; Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Basavarajappa, Balapal S

    2015-02-01

    The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type-1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol-induced activation of caspase 3. Together, these data demonstrate that ethanol-induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis. Schematic mechanism of action by which ethanol impairs DNA methylation. Studies have demonstrated that ethanol has the capacity to bring epigenetic changes to contribute to the development of fetal alcohol spectrum disorder (FASD). However, the mechanisms are not well studied. P7 ethanol induces the activation of caspase 3 and impairs DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) proteins (→). The inhibition or genetic ablation of cannabinoid receptor type-1 or inhibition of histone

  9. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  10. Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction.

    PubMed

    Siapich, Siarhei A; Akhtar, Isha; Hescheler, Jürgen; Schneider, Toni; Lüke, Matthias

    2015-10-01

    The model of the isolated and superfused retina provides the opportunity to test drugs and toxins. Some chemicals have to be applied using low concentrations of organic solvents as carriers. Recently, E-/R-type (Cav2.3) and T-type (Cav3.2) voltage-gated Ca(2+) channels were identified as participating in reciprocal inhibitory retinal signaling. Their participation is apparent, when low concentrations of NiCl2 (15 μM) are applied during superfusion leading to an increase of the ERG b-wave amplitude, which is explained by a reduction of amacrine GABA-release onto bipolar neurons. During these investigations, differences were observed for the solvent carrier used. Recording of the transretinal receptor potentials from the isolated bovine retina. The pretreatment of bovine retina with 0.01 % (v/v) dimethylsulfoxide did not impair the NiCl2-mediated increase of the b-wave amplitude, which was 1.31-fold ± 0.03 of initial value (n = 4). However, pretreatment of the retina with the same concentration of ethanol impaired reciprocal signaling (0.96-fold ± 0.05, n = 4). Further, the implicit time of the b-wave was increased, suggesting that ethanol itself but not DMSO may antagonize GABA-receptors. Ethanol itself but not DMSO may block GABA receptors and cause an amplitude increase by itself, so that reciprocal signaling is impaired.

  11. Effect of acute beer ingestion on the liver: studies in female mice.

    PubMed

    Kanuri, Giridhar; Wagnerberger, Sabine; Landmann, Marianne; Prigl, Eva; Hellerbrand, Claus; Bischoff, Stephan C; Bergheim, Ina

    2015-04-01

    The aim of the present study was to assess whether the effects of acute consumption of stout or pilsner beer on the liver differ from those of plain ethanol in a mouse model. Seven-week-old female C57BL/6J mice received either ethanol, stout or pilsner beer (ethanol content: 6 g/kg body weight) or isocaloric maltodextrin solution. Plasma alanine transaminase, markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade as well as lipid peroxidation and fibrogenesis in the liver were measured 12 h after acute ethanol or beer intake. Acute alcohol ingestion caused a marked ~11-fold increase in hepatic triglyceride accumulation in comparison to controls, whereas in mice exposed to stout and pilsner beer, hepatic triglyceride levels were increased only by ~6.5- and ~4-fold, respectively. mRNA expression of sterol regulatory element-binding protein 1c and fatty acid synthase in the liver did not differ between alcohol and beer groups. In contrast, expression of myeloid differentiation primary response gene 88, inducible nitric oxide synthases, but also the concentrations of 4-hydroxynonenal protein adducts, nuclear factor κB and plasminogen activator inhibitor-1 were induced in livers of ethanol treated mice but not in those exposed to the two beers. Taken together, our results suggest that acute ingestion of beer and herein especially of pilsner beer is less harmful to the liver than the ingestion of plain ethanol.

  12. Spatial cognition and sexually dimorphic synaptic plasticity balance impairment in rats with chronic prenatal ethanol exposure.

    PubMed

    An, Lei; Zhang, Tao

    2013-11-01

    Prenatal ethanol exposure can lead to long-lasting impairments in the ability of rats to process spatial information, as well as produce long-lasting deficits in long-term potentiation (LTP), a biological model of learning and memory processing. The present study aimed to examine the sexually dimorphic effects of chronic prenatal ethanol exposure (CPEE) on behavior cognition and synaptic plasticity balance (SPB), and tried to understand a possible mechanism by evaluating the alternation of SPB. The animal model was produced by ethanol exposure throughout gestational period with 4 g/kg bodyweight. Offspring of both male and female were selected and studied on postnatal days 36. Subsequently, the data showed that chronic ethanol exposure resulted in birth weight reduction, losing bodyweight gain, microcephaly and hippocampus weight retardation. In Morris water maze (MWM) test, escape latencies were significantly higher in CPEE-treated rats than that in control ones. They also spent much less time in the target quadrant compared to that of control animals in the probe phase. In addition, it was found that there was a more severe impairment in females than that in males after CPEE treatment. Electrophysiological studies showed that CPEE considerably inhibited hippocampal LTP and facilitated depotentiation in males, while significantly enhanced LTP and suppressed depotentiation in females. A novel index, developed by us, showed that the action of CPEE on SPB was more sensitive in females than that in males, suggesting that it might be an effective index to distinguish the difference of SPB impairment between males and females. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Memantine can improve chronic ethanol exposure-induced spatial memory impairment in male C57BL/6 mice by reducing hippocampal apoptosis.

    PubMed

    Wang, Xiaolong; Yu, Hao; You, Jiabin; Wang, Changliang; Feng, Chunmei; Liu, Zhaodi; Li, Ya; Wei, Rucheng; Xu, Siqi; Zhao, Rui; Wu, Xu; Zhang, Guohua

    2018-05-22

    Chronic ethanol intake can induce neuronal apoptosis, leading to dementia. We investigated the protective effects of memantine on spatial memory impairment induced by chronic ethanol exposure in mice. Male C57BL/6 mice were administered 10% (m/V) or 20% (m/V) ethanol as the only choice of drinking water. Mice were treated for 60 d, 90 d, or 180 d. Mice were treated with memantine for the same duration (daily 10 mg/kg oral). The Morris water maze and radial arm maze test were used to measure spatial memory. Mice were sacrificed after the behavioral tests. Brains were removed to prepare for paraffin sections, and hippocampi were isolated for protein and RNA extraction. 4',6-diamidino-2-phenylindole (DAPI) staining and immunohistochemical staining of cleaved caspase-3 were performed. Western blot analysis was used to detect the expression of cleaved caspase-3 and calcium-related proteins, including N-methyl-d-aspartic acid receptor 1 (NR1), 1,4,5-trisphosphate receptor 1 (IP3R1), and sarco/endoplasmic reticulum calcium adenosine triphosphatase 1 (SERCA1). The changes of NR1, IP3R1 and SERCA1 mRNA were detected using quantitative polymerase chain reaction (qPCR). The results revealed that chronic ethanol exposure induced spatial memory impairment in mice, as well as increasing the expression of NR1, IP3R1 and SERCA1, the activation of caspase-3 and apoptosis in hippocampus. The effect was particularly prominent in the 20% ethanol group after 180 d exposure. Memantine decreased ethanol-induced spatial memory impairment, caspase-3 activation and apoptosis in the mouse hippocampus. These results suggest that disruption of intracellular calcium balance by ethanol can induce caspase-3 activation and apoptosis, which underlies subsequent spatial memory impairment in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Postmortem ethanol in the setting of ethanol-containing automotive fuel.

    PubMed

    Garber, Mitchell A; Canfield, Dennis V; Lewis, Russell J; Simmons, Samuel D; Radisch, Deborah L

    2013-03-01

    The pilot of a light aircraft that crashed after a loss of power was found to have ethanol in the vitreous and the blood, but almost none in the urine. The globes of the eyes were intact, and the body was refrigerated after recovery until the autopsy was performed the following morning. The pilot was described as a "nondrinker," and additional specialized toxicology testing results were inconsistent with ethanol ingestion. The pilot's body was extensively exposed to fuel during the prolonged extraction. Investigation determined that the aircraft had been fueled with gasoline that contained 10% ethanol. Although exposure to automotive fuel has not been previously described as a source of ethanol in postmortem specimens, it may represent a source for the ethanol detected during postmortem toxicology testing in this case, and this finding may be relevant to other cases with similar exposure.

  15. Chronic ethanol feeding modulates the synthesis of digestive enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponnappa, B.C.; Hoek, J.B.; Rubin, E.

    1987-05-01

    The effects of chronic ethanol feeding on pancreatic protein synthesis were investigated. Protein synthesis was assessed by studying the rate of incorporation of /sup 3/H-leucine into TCA-precipitable proteins in isolated pancreatic acini from rats. Chronic ethanol ingestion increased the rate of pancreatic protein synthesis by 2-4 fold. The onset of the increase in protein synthesis was detectable two days after ethanol feeding, reached a maximum after 7 days and remained unchanged after 4 months on the ethanol-containing diet. The rate of synthesis of individual digestive enzymes was studied by SDS-PAGE on extracts obtained from purified zymogen granules. Ethanol feeding inducedmore » an increase in the rate of synthesis of most of the digestive enzymes; chymotrypsinogen, trypsinogen and an unidentified protein were increased to a greater extent than other digestive enzymes. By contrast, the synthesis of amylase was selectively decreased after ethanol feeding. These results suggest that chronic ethanol ingestion has specific effects on the rate of synthesis of individual digestive enzymes in the exocrine pancreas.« less

  16. Life-Stage PBPK Models for Multiple Routes of Ethanol Exposure in the Rat

    EPA Science Inventory

    Ethanol is commonly blended with gasoline (10% ethanol) in the US, and higher ethanol concentrations are being considered. While the pharmacokinetics and toxicity of orally-ingested ethanol are widely reported, comparable work is limited for inhalation exposure (IE), particularly...

  17. Chronic ethanol exposure during adolescence in rats induces motor impairments and cerebral cortex damage associated with oxidative stress.

    PubMed

    Teixeira, Francisco Bruno; Santana, Luana Nazaré da Silva; Bezerra, Fernando Romualdo; De Carvalho, Sabrina; Fontes-Júnior, Enéas Andrade; Prediger, Rui Daniel; Crespo-López, Maria Elena; Maia, Cristiane Socorro Ferraz; Lima, Rafael Rodrigues

    2014-01-01

    Binge drinking is common among adolescents, and this type of ethanol exposure may lead to long-term nervous system damage. In the current study, we evaluated motor performance and tissue alterations in the cerebral cortex of rats subjected to intermittent intoxication with ethanol from adolescence to adulthood. Adolescent male Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage to complete 90 days of age. The open field, inclined plane and the rotarod tests were used to assess the spontaneous locomotor activity and motor coordination performance in adult animals. Following completion of behavioral tests, half of animals were submitted to immunohistochemical evaluation of NeuN (marker of neuronal bodies), GFAP (a marker of astrocytes) and Iba1 (microglia marker) in the cerebral cortex while the other half of the animals were subjected to analysis of oxidative stress markers by biochemical assays. Chronic ethanol intoxication in rats from adolescence to adulthood induced significant motor deficits including impaired spontaneous locomotion, coordination and muscle strength. These behavioral impairments were accompanied by marked changes in all cellular populations evaluated as well as increased levels of nitrite and lipid peroxidation in the cerebral cortex. These findings indicate that continuous ethanol intoxication from adolescence to adulthood is able to provide neurobehavioral and neurodegenerative damage to cerebral cortex.

  18. Alcohol levels do not accurately predict physical or mental impairment in ethanol-tolerant subjects: relevance to emergency medicine and dram shop laws.

    PubMed

    Roberts, James R; Dollard, Denis

    2010-12-01

    The human body and the central nervous system can develop tremendous tolerance to ethanol. Mental and physical dysfunctions from ethanol, in an alcohol-tolerant individual, do not consistently correlate with ethanol levels traditionally used to define intoxication, or even lethality, in a nontolerant subject. Attempting to relate observed signs of alcohol intoxication or impairment, or to evaluate sobriety, by quantifying blood alcohol levels can be misleading, if not impossible. We report a case demonstrating the disconnect between alcohol levels and generally assigned parameters of intoxication and impairment. In this case, an alcohol-tolerant man, with a serum ethanol level of 515 mg/dl, appeared neurologically intact and cognitively normal. This individual was without objective signs of impairment or intoxication by repeated evaluations by experienced emergency physicians. In alcohol-tolerant individuals, blood alcohol levels cannot always be predicted by and do not necessarily correlate with outward appearance, overt signs of intoxication, or physical examination. This phenomenon must be acknowledged when analyzing medical decision making in the emergency department or when evaluating the ability of bartenders and party hosts to identify intoxication in dram shop cases.

  19. Ameliorating effects of preadolescent aniracetam treatment on prenatal ethanol-induced impairment in AMPA receptor activity.

    PubMed

    Wijayawardhane, Nayana; Shonesy, Brian C; Vaithianathan, Thirumalini; Pandiella, Noemi; Vaglenova, Julia; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu

    2008-01-01

    Ethanol-induced damage in the developing hippocampus may result in cognitive deficits such as those observed in fetal alcohol spectrum disorder (FASD). Cognitive deficits in FASD are partially mediated by alterations in glutamatergic synaptic transmission. Recently, we reported that synaptic transmission mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is impaired following fetal ethanol exposure. This finding led us to develop a rational approach for the treatment of alcohol-related cognitive deficits using aniracetam, an allosteric AMPAR modulator. In the present study, 28 to 34-day-old rats exposed to ethanol in utero were treated with aniracetam, and subsequently exhibited persistent improvement in mEPSC amplitude, frequency, and decay time. Furthermore, these animals expressed positive changes in synaptic single channel properties, suggesting that aniracetam ameliorates prenatal ethanol-induced deficits through modifications at the single channel level. Specifically, single channel open probability, conductance, mean open and closed times, and the number and burst duration were positively affected. Our findings emphasize the utility of compounds which slow the rate of deactivation and desensitization of AMPARs such as aniracetam.

  20. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    PubMed

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  1. Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration.

    PubMed

    Krank, Marvin D

    2003-10-01

    Conditioned incentive theories of addictive behavior propose that cues signaling a drug's reinforcing effects activate a central motivational state. Incentive motivation enhances drug-taking and drug-seeking behavior. We investigated the behavioral response to cues associated with ethanol and their interaction with operant self-administration of ethanol. In two experiments, rats received operant training to press a lever for a sweetened ethanol solution. After operant training, the animals were given Pavlovian pairings of a brief and localized cue light with the sweetened ethanol solution (no lever present). Lever pressing for ethanol was then re-established, and the behavioral effects of the cue light were tested during an ethanol self-administration session. The conditioned responses resulting from pairing cue lights with the opportunity to ingest ethanol had three main effects: (1) induction of operant behavior reinforced by ethanol, (2) stimulation of ethanol-seeking behavior (magazine entries), and (3) signal-directed behavior (i.e., autoshaping, or sign-tracking). Signal-directed behavior interacted with the other two effects in a manner predicted by the location of the cue light. These conditioned responses interact with operant responding for ethanol reinforcement. These findings demonstrate the importance of Pavlovian conditioning effects on ethanol self-administration and are consistent with conditioned incentive theories of addictive behavior.

  2. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    PubMed

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  3. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid).

    PubMed

    Yamamoto, Tetsuya; Moriwaki, Yuji; Takahashi, Sumio

    2005-06-01

    There are many factors that contribute to hyperuricemia, including obesity, insulin resistance, alcohol consumption, diuretic use, hypertension, renal insufficiency, genetic makeup, etc. Of these, alcohol (ethanol) is the most important. Ethanol enhances adenine nucleotide degradation and increases lactic acid level in blood, leading to hyperuricemia. In beer, purines also contribute to an increase in plasma uric acid. Although rare, dehydration and ketoacidosis (due to ethanol ingestion) are associated with the ethanol-induced increase in serum uric acid levels. Ethanol also increases the plasma concentrations and urinary excretion of hypoxanthine and xanthine via the acceleration of adenine nucleotide degradation and a possible weak inhibition of xanthine dehydrogenase activity. Since many factors such as the ALDH2*1 gene and ADH2*2 gene, daily drinking habits, exercise, and dehydration enhance the increase in plasma concentration of uric acid induced by ethanol, it is important to pay attention to these factors, as well as ingested ethanol volume, type of alcoholic beverage, and the administration of anti-hyperuricemic agents, to prevent and treat ethanol-induced hyperuricemia.

  4. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.

    1981-08-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), andmore » a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS.« less

  5. Ethanol immunosuppression in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.R.

    Ethanol in concentrations equivalent to levels achieved by the ingestion of moderate to large amounts of alcoholic beverages has been shown to inhibit mitogen and anti-CD3 stimulated human T lymphocyte proliferation. This inhibition was monophasic suggesting that ethanol affected a single limiting component of T cell proliferation. In experiments designed to test the effect of ethanol on various aspects of proliferation, it was demonstrated that ethanol inhibited the capacity of exogenously supplied interleukin 2 to stimulate proliferation of T cells that had previously acquired interleukin 2 receptors in a monophasic, dose-dependent manner. Moreover, there was no suppression of interleukin 2more » production or interleukin 2 receptor acquisition. Thus, ethanol was shown to mediate immunosuppression by a mechanism specific to one component of proliferation. Additive inhibition of T cell proliferation was seen with ethanol plus cyclosporin A which inhibits interleukin 2 production. The level of inhibition with 250 ng/ml cyclosporin A alone was equivalent to the level seen with 62 ng/ml cyclosporin A plus 20 mM (94 mg%) ethanol. Ethanol also suppressed an immune effector mechanism. NK cytotoxicity was depressed in a monophasic, dose-dependent manner. Thus, ethanol might be considered as a possible adjunct in immunosuppressive therapy.« less

  6. Ethanol-drug absorption interaction: potential for a significant effect on the plasma pharmacokinetics of ethanol vulnerable formulations.

    PubMed

    Lennernäs, Hans

    2009-01-01

    Generally, gastric emptying of a drug to the small intestine is controlled by gastric motor activity and is the main factor affecting the onset of absorption. Accordingly, the emptying rate from the stomach is mainly affected by the digestive state, the properties of the pharmaceutical formulation and the effect of drugs, posture and circadian rhythm. Variability in the gastric emptying of drugs is reflected in variability in the absorption rate and the shape of the plasma pharmacokinetic profile. When ethanol interacts with an oral controlled release product, such that the mechanism controlling drug release is impaired, the delivery of the dissolved dose into the small intestine and the consequent absorption may result in dangerously high plasma concentrations. For example, the maximal plasma concentration of hydromorphone has individually been shown to be increased as much as 16 times through in vivo testing as a result of this specific pharmacokinetic ethanol-drug formulation interaction. Thus, a pharmacokinetic ethanol-drug interaction is a very serious safety concern when substantially the entire dose from a controlled release product is rapidly emptied into the small intestine (dose dumping), having been largely dissolved in a strong alcoholic beverage in the stomach during a sufficient lag-time in gastric emptying. Based on the literature, a two hour time frame for screening the in vitro dissolution profile of a controlled release product in ethanol concentrations of up to 40% is strongly supported and may be considered as the absolute minimum standard. It is also evident that the dilution, absorption and metabolism of ethanol in the stomach are processes with a minor effect on the local ethanol concentration and that ethanol exposure will be highly dependent on the volume and ethanol concentration of the fluid ingested, together with the rate of intake and gastric emptying. When and in which patients a clinically significant dose dumping will happen is

  7. Impaired Respiratory Function and Heightened Pulmonary Inflammation in Episodic Binge Ethanol Intoxication and Burn Injury

    PubMed Central

    Shults, Jill A.; Curtis, Brenda J.; Chen, Michael M.; O'Halloran, Eileen B.; Ramirez, Luis; Kovacs, Elizabeth J.

    2015-01-01

    Clinical data indicate that cutaneous burn injuries covering greater than ten percent total body surface area are associated with significant morbidity and mortality, where pulmonary complications, including acute respiratory distress syndrome (ARDS), contribute to nearly half of all patient deaths. Approximately 50% of burn patients are intoxicated at the time of hospital admission, which increases days on ventilators by three-fold, and doubles length of hospital admittance, compared to non-intoxicated burn patients. The most common drinking pattern in the United States is binge drinking, where one rapidly consumes alcoholic beverages (4 for women, 5 for men) in 2 hours and an estimated 38 million Americans binge drink, often several times per month. Experimental data demonstrate a single binge ethanol exposure prior to scald injury, impairs innate and adaptive immune responses, thereby enhancing infection susceptibility and amplifying pulmonary inflammation, neutrophil infiltration, and edema, and is associated with increased mortality. Since these characteristics are similar to those observed in ARDS burn patients, our study objective was to determine whether ethanol intoxication and burn injury and the subsequent pulmonary congestion affects physiological parameters of lung function using non-invasive and unrestrained plethysmography in a murine model system. Furthermore, to mirror young adult binge drinking patterns, and to determine the effect of multiple ethanol exposures on pulmonary inflammation, we utilized an episodic binge ethanol exposure regimen, where mice were exposed to ethanol for a total of 6 days (3 days ethanol, 4 days rest, 3 days ethanol) prior to burn injury. Our analyses demonstrate mice exposed to episodic binge ethanol and burn injury have higher mortality, increased pulmonary congestion and neutrophil infiltration, elevated neutrophil chemoattractants, and respiratory dysfunction, compared to burn or ethanol intoxication alone. Overall

  8. A controlled study of the time-course of breath alcohol concentration after moderate ingestion of ethanol following a social drinking session.

    PubMed

    Barquín, Jesús; Luna, Juan de Dios; Hernández, Antonio F

    2008-05-20

    This paper evaluates the breath alcohol concentration (BrAC), nausea (feeling of being slightly intoxicated) and subjective driving performance after ingesting a moderate dose of alcohol in the presence of a light meal, which intends to approach a social drinking setting. 119 healthy individuals (69 males and 50 females, aged 21.7+/-3.0) ingested three glasses of wine (95mL each) and their BrAC was determined by an Alcotest 7410 at 15, 30, 45, 60, 90 and 120min post-drinking. 46% of females and no male subjects exceeded a BrAC of 0.25mg/L, the legal limit for driving fixed by some Western countries. 53% of the study population felt nausea during the experimental session and 20% self-reported impairment of their driving skills. In both cases these subjective effects were more pronounced in females. The major determinants of mean BrAC were time post-drinking, gender (male) and body mass index (BMI), all these variables being inversely associated. Females and individuals with a BMI lower than 22.5kg/m(2) were at an increased risk of exceeding the legal limit of BrAC. The feeling of nausea was significantly associated with gender (females), the ingestion of up to 2 drinks on weekdays, and having exceeded a BrAC of 0.25mg/L during the experimental study. The main predictor of self-perception of impaired driving skills was the feeling of nausea, followed by a BrAC in excess of 0.25mg/L. In conclusion, both females and subjects with lower BMI are at an increased risk of exceeding the legal limit of BrAC after moderate alcohol consumption resembling a social drinking setting.

  9. Acute ethanol poisoning in a 4-year-old as a result of ethanol-based hand-sanitizer ingestion.

    PubMed

    Engel, Jeffrey S; Spiller, Henry A

    2010-07-01

    Alcohol-based hand sanitizers have become widely available because of widespread usage in schools, hospitals, and workplaces and by consumers. We report what we believe is the first unintentional ingestion in a small child producing significant intoxication. A 4-year-old 14-kg girl was brought to the emergency department with altered mental status after a history of ingesting an alcohol-based hand sanitizer. Physical examination revealed an obtunded child with periods of hypoventilation and a hematoma in the central portion of her forehead from a fall at home that occurred after the ingestion. Abnormal vital signs included a heart rate of 139 beats/min and temperature of 96.3 degrees F, decreasing to 93.6 degrees F. Abnormal laboratory values consisted of potassium of 2.6 mEq/L and a serum alcohol of 243 mg/dL. A computed tomography scan of her brain without contrast showed no acute intracranial abnormality. A urine drug screen for common drugs of abuse was reported as negative. The child was intubated, placed on mechanical ventilation, and admitted for medical care. She recovered over the next day without sequelae. As with other potentially toxic products, we would recommend caution and direct supervision of use when this product is available to young children.

  10. Motor impairment: a new ethanol withdrawal phenotype in mice

    PubMed Central

    Philibin, Scott D.; Cameron, Andy J.; Metten, Pamela; Crabbe, John C.

    2015-01-01

    Alcoholism is a complex disorder with genetic and environmental risk factors. The presence of withdrawal symptoms is one criterion for alcohol dependence. Genetic animal models have followed a reductionist approach by quantifying various effects of ethanol withdrawal separately. Different ethanol withdrawal symptoms may have distinct genetic etiologies, and therefore differentiating distinct neurobiological mechanisms related to separate signs of withdrawal would increase our understanding of various aspects of the complex phenotype. This study establishes motor incoordination as a new phenotype of alcohol withdrawal in mice. Mice were made physically dependent on ethanol by exposure to ethanol vapor for 72 h. The effects of ethanol withdrawal in mice from different genetic backgrounds were measured on the accelerating rotarod, a simple motor task. Ethanol withdrawal disrupted accelerating rotarod behavior in mice. The disruptive effects of withdrawal suggest a performance rather than a learning deficit. Inbred strain comparisons suggest genetic differences in magnitude of this withdrawal phenotype. The withdrawal-induced deficits were not correlated with the selection response difference in handling convulsion severity in selectively bred Withdrawal Seizure-Prone and Withdrawal Seizure-Resistant lines. The accelerating rotarod seems to be a simple behavioral measure of ethanol withdrawal that is suitable for comparing genotypes. PMID:18690115

  11. [Plasma clearance of ethanol and its excretion in the milk of rural women who consume pulque].

    PubMed

    Argote-Espinosa, R M; Flores-Huerta, S; Hernández-Montes, H; Villalpando-Hernández, S

    1992-01-01

    Women from rural areas of the central plateau of Mexico drink during pregnancy and lactation a mild alcoholic beverage called pulque as a galactogogue. Ethanol present in milk could have a harmful effect on growth and development of breast-fed children. The purpose of this study was to quantify the ethanol consumed as pulque by eleven lactating rural women as well as its clearance rate in blood and milk. Mothers were separated in two groups depending upon the ethanol ingested in a single dose of pulque 0.21 +/- 0.08 g/kg of body weight (group A) and 0.44 +/- 0.11 g/kg (group B). Maximal concentration of ethanol was reached in milk at 60 minutes and almost equaled that in plasma. Both groups showed a similar clearance pattern regardless of the volume of pulque ingested. Clearance rates between groups were different: ethanol concentration in milk at 60 min were 8.4 +/- 3.0 mg/dL for group A and 26.2 +/- 7.0 mg/dL for group B. Two hours later ethanol levels were 3.6 +/- 3.4 mg/dL and 23.3 +/- 9.4 mg/dL respectively. Clearance rates were slower in mothers showing the highest concentration of ethanol in milk. The present data demonstrate that there is no differential elimination of ethanol in maternal blood and milk following ingestion of a moderate amount of pulque during lactation. The amount of ethanol received by infants through milk is relatively low and therefore it is unlikely to have harmful effects on them. Pulque consumption adds about 350 kcal/day to the customary dietary intake of these lactating women.

  12. Recurrent lactic acidosis secondary to hand sanitizer ingestion.

    PubMed

    Wilson, M E; Guru, P K; Park, J G

    2015-01-01

    Due to their ability to decrease the spread of infection, hand sanitizers are now ubiquitous in health care settings. We present the case of a 50-year-old woman who was admitted with acute alcohol intoxication and had near complete recovery in 12 hrs. Subsequently, she was found unresponsive on the floor of her hospital room on two separate occasions. Evaluations revealed repeatedly elevated levels of ethanol, acetone, and lactate as well as increased anion gap and hypotension, requiring intensive care unit evaluation and intubation for airway protection. During the second episode, she was found next to an empty bottle of ethanol-based hospital hand sanitizer. She confirmed ingesting hand sanitizer in order to become intoxicated.

  13. Recurrent lactic acidosis secondary to hand sanitizer ingestion

    PubMed Central

    Wilson, M. E.; Guru, P. K.; Park, J. G.

    2015-01-01

    Due to their ability to decrease the spread of infection, hand sanitizers are now ubiquitous in health care settings. We present the case of a 50-year-old woman who was admitted with acute alcohol intoxication and had near complete recovery in 12 hrs. Subsequently, she was found unresponsive on the floor of her hospital room on two separate occasions. Evaluations revealed repeatedly elevated levels of ethanol, acetone, and lactate as well as increased anion gap and hypotension, requiring intensive care unit evaluation and intubation for airway protection. During the second episode, she was found next to an empty bottle of ethanol-based hospital hand sanitizer. She confirmed ingesting hand sanitizer in order to become intoxicated. PMID:25684875

  14. Angelica Dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes.

    PubMed

    Zhang, Xiao-Na; Ma, Ze-Jun; Wang, Ying; Sun, Bei; Guo, Xin; Pan, Cong-Qing; Chen, Li-Ming

    2017-01-01

    Abnormal angiogenesis plays an important role in impaired wound healing and development of chronic wounds in diabetes mellitus. Angelica dahurica radix is a common traditional Chinese medicine with wide spectrum medicinal effects. In this study, we analyzed the potential roles of Angelica dahurica ethanolic extract (ADEE) in correcting impaired angiogenesis and delayed wound healing in diabetes by using streptozotocin-induced diabetic rats. ADEE treatment accelerated diabetic wound healing through inducing angiogenesis and granulation tissue formation. The angiogenic property of ADEE was subsequently verified ex vivo using aortic ring assays. Furthermore, we investigated the in vitro angiogenic activity of ADEE and its underlying mechanisms using human umbilical vein endothelial cells. ADEE treatment induced HUVECs proliferation, migration, and tube formation, which are typical phenomena of angiogenesis, in dose-dependent manners. These effects were associated with activation of angiogenic signal modulators, including extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, endothelial nitric oxide synthase (eNOS) as well as increased NO production, and independent of affecting VEGF expression. ADEE-induced angiogenic events were inhibited by the MEK inhibitor PD98059, the PI3K inhibitor Wortmannin, and the eNOS inhibitor L-NAME. Our findings highlight an angiogenic role of ADEE and its ability to protect against impaired wound healing, which may be developed as a promising therapy for impaired angiogenesis and delayed wound healing in diabetes.

  15. Ethanol impedes embryo transport and impairs oviduct epithelium.

    PubMed

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Dose-response effect of black maca (Lepidium meyenii) in mice with memory impairment induced by ethanol.

    PubMed

    Rubio, Julio; Yucra, Sandra; Gasco, Manuel; Gonzales, Gustavo F

    2011-10-01

    Previous studies have shown that black variety of maca has beneficial effects on learning and memory in experimental animal models. The present study aimed to determine whether the hydroalcoholic extract of black maca (BM) showed a dose-response effect in mice treated with ethanol 20% (EtOH) as a model of memory impairment. Mice were divided in the following groups: control, EtOH, ascorbic acid (AA) and 0.125, 0.25, 0.50 and 1.00 g/kg of BM plus EtOH. All treatments were orally administered for 28 days. Open field test was performed to determine locomotor activity and water Morris maze was done to determine spatial memory. Also, total polyphenol content in the hydroalcoholic extract of BM was determined (0.65 g pyrogallol/100 g). Mice treated with EtOH took more time to find the hidden platform than control during escape acquisition trials; meanwhile, AA and BM reversed the effect of EtOH. In addition, AA and BM ameliorated the deleterious effect of EtOH during the probe trial. Correlation analyses showed that the effect of BM a dose-dependent behavior. Finally, BM improved experimental memory impairment induced by ethanol in a dose-response manner due, in part, to its content of polyphenolic compounds.

  17. Acute alcohol intoxication in a child following ingestion of an ethyl-alcohol-based hand sanitizer.

    PubMed

    Hertzog, James H; Radwick, Allison

    2015-07-01

    While uncommon, ingestion of ethanol-based hand sanitizers by children may be associated with significant intoxication. We report the case of a 7-year-old with acute alcohol intoxication following hand sanitizer ingestion. Alcohol elimination in this patient followed zero-order kinetics with a clearance rate of 22.5 mg/kg/h, consistent with the limited pharmacokinetic information available for children who experience alcohol intoxication from more traditional sources.

  18. Ethanol, saccharin, and quinine: early ontogeny of taste responsiveness and intake.

    PubMed

    Kozlov, Andrey P; Varlinskaya, Elena I; Spear, Norman E

    2008-02-01

    Rat pups demonstrate high levels of immediate acceptance of ethanol during the first 2 weeks of postnatal life. Given that the taste of ethanol is most likely perceived by infant rats as a combination of sweet and bitter, high intake of ethanol early in ontogeny may be associated with age-related enhanced responsiveness to the sweet component of ethanol taste, as well as with ontogenetic decreases in sensitivity to its bitter component. Therefore, the present study compared responsiveness to ethanol and solutions with bitter (quinine) and sweet (saccharin) taste in terms of intake and palatability across the first 2 weeks of postnatal life. Characteristic patterns of responsiveness to 10% (v/v) ethanol, 0.1% saccharin, 0.2% quinine, and water in terms of taste reactivity and fluid intake were assessed in rat pups tested on postnatal day (P) 4, 9, or 12 using a new technique of on-line monitoring of fluid flow through a two-channel intraoral cannula. Taste reactivity included analysis of ingestive and aversive responses following six intraoral infusions of the test fluids. This taste reactivity probe was followed by the intake test, in which animals were allowed to voluntarily ingest fluids from an intraoral cannula. Pups of all ages showed more appetitive responses to saccharin and ethanol than to water or quinine. No age-related differences were apparent in taste responsiveness to saccharin and ethanol. However, the age-related pattern of ethanol intake drastically differed from that of saccharin. Intake of saccharin increased from P4 to P9 and decreased substantially by P12, whereas intake of ethanol gradually increased from P4 to P12. Intake of ethanol was significantly lower than intake of saccharin on P9, whereas P12 pups took in more ethanol than saccharin. The findings of the present study indicate ontogenetic dissociations between taste reactivity to ethanol and saccharin and intake of these solutions, and suggest that high acceptance of ethanol early in

  19. Pathophysiology of esophageal impairment due to button battery ingestion.

    PubMed

    Völker, Johannes; Völker, Christine; Schendzielorz, Philipp; Schraven, Sebastian P; Radeloff, Andreas; Mlynski, Robert; Hagen, Rudolf; Rak, Kristen

    2017-09-01

    The increased use of button batteries with high energy densities in devices of daily life presents a high risk of injury, especially for toddlers and young children. If an accidental ingestion of a button battery occurs, this foreign body can become caught in the constrictions of the esophagus and cause serious damage to the adjacent tissue layers. The consequences can be ulcerations, perforations with fistula formation and damage to the surrounding anatomical structures. In order to gain a better understanding of the pathophysiology after ingestion, we carried out systematic studies on fresh preparations of porcine esophagi. The lithium button battery type CR2032, used most frequently in daily life, was exposed in preparations of porcine esophagi and incubated under the addition of artificial saliva at 37 °C. A total of eight esophagi were analysed by different methods. Measurements of the pH value around the battery electrodes and histological studies of the tissue damage were carried out after 0.5-24 h exposure time. In addition, macroscopic time-lapse images were recorded. Measurements of the battery voltage and the course of the electric current supplemented the experiments. The investigations showed that the batteries caused an electrolysis reaction in the moist environment. The positive electrode formed an acidic and the negative electrode a basic medium. Consequently, a coagulation necrosis at the positive pole, and a deep colliquation necrosis at the minus pole occurred. After an exposure time of 12 h, tissue damage caused by the lye corrosion was observed on the side of the negative electrode up to the lamina muscularis. The corrosion progressed up to the final exposure time of 24 h, but the batteries still had sufficient residual voltage, such that further advancing damage would be expected. Button battery ingestion in humans poses an acute life-threatening danger and immediate endoscopic removal of the foreign body is essential. After only 2

  20. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    PubMed

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  1. Previous Ingestion of Lactococcus lactis by Ethanol-Treated Mice Preserves Antigen Presentation Hierarchy in the Gut and Oral Tolerance Susceptibility.

    PubMed

    Alvarenga, Débora M; Perez, Denise A; Gomes-Santos, Ana C; Miyoshi, Anderson; Azevedo, Vasco; Coelho-Dos-Reis, Jordana G A; Martins-Filho, Olindo A; Faria, Ana Maria C; Cara, Denise C; Andrade, Marileia C

    2015-08-01

    Ethanol (EtOH) consumption is able to disturb the ovalbumin (OVA)-oral tolerance induction by interfering on the function of antigen presenting cells (APC), down-regulating dendritic cells (DCs) and macrophages and up-regulating B-lymphocytes and their function, which results in an overall allergic-type immune status. In this study, the potential of a priori administration of Lactococcus lactis (LL) in avoiding loss of oral tolerance in EtOH-treated mice was investigated. Female C57BL/6 mice received, by oral route, ad libitum wild-type (WT) LL or heat-shock protein producer (Hsp65) LL for 4 consecutive days. Seven days later, mice were submitted to short-term high-dose EtOH treatment. After 24 hours, stomach, intestine, spleen, mesenteric lymph nodes (mLN) specimens were collected for biomarkers analysis. Following EtOH-treatment protocol, a group of animals underwent single-gavage OVA-tolerance protocol and sera samples collected for antibody analysis. The ingestion of WT LL or Hsp65 LL is able to restore oral tolerance to OVA in EtOH-treated mice, by reducing local and systemic allergic outcomes such as gastric mast cells and gut-interleukin-4, as well as serum IgE. WT LL treatment prevents the decrease of mLN regulatory T cells induced by the EtOH treatment. Moreover, LL treatment preserves APC hierarchy and antigen presentation commitment in EtOH-treated mice, with conserved DC and macrophage activity over B lymphocytes in mLN and preserved macrophage activity over DC and B-cell subsets in the spleen. The present findings suggest that a priori ingestion of LL preserves essential mechanisms associated with oral tolerance induction that are disturbed by EtOH ingestion. Maintenance of mucosal homeostasis by preserving APC hierarchy and antigen presentation commitment could be associated with T-regulatory subset activities in the gastrointestinal tract. Copyright © 2015 by the Research Society on Alcoholism.

  2. Ethanol exposure during the early first trimester equivalent impairs reflexive motor activity and heightens fearfulness in an avian model.

    PubMed

    Smith, Susan M; Flentke, George R; Kragtorp, Katherine A; Tessmer, Laura

    2011-02-01

    Prenatal alcohol exposure is a leading cause of childhood neurodevelopmental disability. The adverse behavioral effects of alcohol exposure during the second and third trimester are well documented; less clear is whether early first trimester-equivalent exposures also alter behavior. We investigated this question using an established chick model of alcohol exposure. In ovo embryos experienced a single, acute ethanol exposure that spanned gastrulation through neuroectoderm induction and early brain patterning (19-22h incubation). At 7 days posthatch, the chicks were evaluated for reflexive motor function (wingflap extension, righting reflex), fearfulness (tonic immobility [TI]), and fear/social reinstatement (open-field behavior). Chicks exposed to a peak ethanol level of 0.23-0.28% were compared against untreated and saline-treated controls. Birds receiving early ethanol exposure had a normal righting reflex and a significantly reduced wingflap extension in response to a sudden descent. The ethanol-treated chicks also displayed heightened fearfulness, reflected in increased frequency of TI, and they required significantly fewer trials for its induction. In an open-field test, ethanol treatment did not affect latency to move, steps taken, vocalizations, defecations, or escape attempts. The current findings demonstrate that early ethanol exposure can increase fearfulness and impair aspects of motor function. Importantly, the observed dysfunctions resulted from an acute ethanol exposure during the period when the major brain components are induced and patterned. The equivalent period in human development is 3-4 weeks postconception. The current findings emphasize that ethanol exposure during the early first trimester equivalent can produce neurodevelopmental disability in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Prenatal ethanol exposure impairs temporal ordering behaviours in young adult rats.

    PubMed

    Patten, Anna R; Sawchuk, Scott; Wortman, Ryan C; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R

    2016-02-15

    Prenatal ethanol exposure (PNEE) causes significant deficits in functional (i.e., synaptic) plasticity in the dentate gyrus (DG) and cornu ammonis (CA) hippocampal sub-regions of young adult male rats. Previous research has shown that in the DG, these deficits are not apparent in age-matched PNEE females. This study aimed to expand these findings and determine if PNEE induces deficits in hippocampal-dependent behaviours in both male and female young adult rats (PND 60). The metric change behavioural test examines DG-dependent deficits by determining whether an animal can detect a metric change between two identical objects. The temporal order behavioural test is thought to rely in part on the CA sub-region of the hippocampus and determines whether an animal will spend more time exploring an object that it has not seen for a larger temporal window as compared to an object that it has seen more recently. Using the liquid diet model of FASD (where 6.6% (v/v) ethanol is provided through a liquid diet consumed ad libitum throughout the entire gestation), we found that PNEE causes a significant impairment in the temporal order task, while no deficits in the DG-dependent metric change task were observed. There were no significant differences between males and females for either task. These results indicate that behaviours relying partially on the CA-region may be more affected by PNEE than those that rely on the DG. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Chronic Alcohol Ingestion Delays T Cell Activation and Effector Function in Sepsis.

    PubMed

    Margoles, Lindsay M; Mittal, Rohit; Klingensmith, Nathan J; Lyons, John D; Liang, Zhe; Serbanescu, Mara A; Wagener, Maylene E; Coopersmith, Craig M; Ford, Mandy L

    2016-01-01

    Sepsis is the leading cause of death in intensive care units in the US, and it is known that chronic alcohol use is associated with higher incidence of sepsis, longer ICU stays, and higher mortality from sepsis. Both sepsis and chronic alcohol use are associated with immune deficits such as decreased lymphocyte numbers, impaired innate immunity, delayed-type hypersensitivity reactions, and susceptibility to infections; however, understanding of specific pathways of interaction or synergy between these two states of immune dysregulation is lacking. This study therefore sought to elucidate mechanisms underlying the immune dysregulation observed during sepsis in the setting of chronic alcohol exposure. Using a murine model of chronic ethanol ingestion followed by sepsis induction via cecal ligation and puncture, we determined that while CD4+ and CD8+ T cells isolated from alcohol fed mice eventually expressed the same cellular activation markers (CD44, CD69, and CD43) and effector molecules (IFN-γ, TNF) as their water fed counterparts, there was an overall delay in the acquisition of these phenotypes. This early lag in T cell activation was associated with significantly reduced IL-2 production at a later timepoint in both the CD4+ and CD8+ T cell compartments in alcohol sepsis, as well as with a reduced accumulation of CD8dim activated effectors. Taken together, these data suggest that delayed T cell activation may result in qualitative differences in the immune response to sepsis in the setting of chronic alcohol ingestion.

  5. Prenatal ethanol increases ethanol intake throughout adolescence, alters ethanol-mediated aversive learning, and affects μ but not δ or κ opioid receptor mRNA expression.

    PubMed

    Fabio, María Carolina; Macchione, Ana Fabiola; Nizhnikov, Michael E; Pautassi, Ricardo Marcos

    2015-06-01

    Animal models of prenatal ethanol exposure (PEE) have indicated a facilitatory effect of PEE on adolescent ethanol intake, but few studies have assessed the effects of moderate PEE throughout adolescence. The mechanisms underlying this facilitatory effect remain largely unknown. In the present study, we analysed ethanol intake in male and female Wistar rats with or without PEE (2.0 g/kg, gestational days 17-20) from postnatal days 37 to 62. The results revealed greater ethanol consumption in PEE rats than in controls, which persisted throughout adolescence. By the end of testing, ethanol ingestion in PEE rats was nearly 6.0 g/kg. PEE was associated with insensitivity to ethanol-induced aversion. PEE and control rats were further analysed for levels of μ, δ and κ opioid receptor mRNA in the infralimbic cortex, nucleus accumbens shell, and ventral tegmental area. Similar levels of mRNA were observed across most areas and opioid receptors, but μ receptor mRNA in the ventral tegmental area was significantly increased by PEE. Unlike previous studies that assessed the effects of PEE on ethanol intake close to birth, or in only a few sessions during adolescence, the present study observed a facilitatory effect of PEE that lasted throughout adolescence. PEE was associated with insensitivity to the aversive effect of ethanol, and increased levels of μ opioid receptor transcripts. PEE is a prominent vulnerability factor that probably favors the engagement of adolescents in risky trajectories of ethanol use. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    PubMed

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  7. Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers.

    PubMed

    Dumont, G J H; Wezenberg, E; Valkenberg, M M G J; de Jong, C A J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    2008-04-01

    In Western societies, a considerable percentage of young people expose themselves to 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"). Commonly, ecstasy is used in combination with other substances, in particular alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, whereas ethanol is a general central nervous system depressant. The aim of the present study is to assess the acute effects of single and co-administration of MDMA and ethanol on executive, memory, psychomotor, visuomotor, visuospatial and attention function, as well as on subjective experience. We performed a four-way, double-blind, randomised, crossover, placebo-controlled study in 16 healthy volunteers (nine male, seven female) between the ages of 18-29. MDMA was given orally (100 mg) and blood alcohol concentration was maintained at 0.6 per thousand by an ethanol infusion regime. Co-administration of MDMA and ethanol was well tolerated and did not show greater impairment of performance compared to the single-drug conditions. Impaired memory function was consistently observed after all drug conditions, whereas impairment of psychomotor function and attention was less consistent across drug conditions. Co-administration of MDMA and ethanol did not exacerbate the effects of either drug alone. Although the impairment of performance by all drug conditions was relatively moderate, all induced significant impairment of cognitive function.

  8. A retrospective analysis of glycol and toxic alcohol ingestion: utility of anion and osmolal gaps

    PubMed Central

    2012-01-01

    Background Patients ingesting ethylene glycol, isopropanol, methanol, and propylene glycol ('toxic alcohols') often present with non-specific signs and symptoms. Definitive diagnosis of toxic alcohols has traditionally been by gas chromatography (GC), a technique not commonly performed on-site in hospital clinical laboratories. The objectives of this retrospective study were: 1) to assess the diagnostic accuracy of the osmolal gap in screening for toxic alcohol ingestion and 2) to determine the common reasons other than toxic alcohol ingestion for elevated osmolal gaps. Methods Electronic medical records from an academic tertiary care medical center were searched to identify all patients in the time period from January 1, 1996 to September 1, 2010 who had serum/plasma ethanol, glucose, sodium, blood urea nitrogen, and osmolality measured simultaneously, and also all patients who had GC analysis for toxic alcohols. Detailed chart review was performed on all patients with osmolal gap of 9 or greater. Results In the study period, 20,669 patients had determination of serum/plasma ethanol and osmolal gap upon presentation to the hospitals. There were 341 patients with an osmolal gap greater than 14 (including correction for estimated contribution of ethanol) on initial presentation to the medical center. Seventy-seven patients tested positive by GC for one or more toxic alcohols; all had elevated anion gap or osmolal gap or both. Other than toxic alcohols, the most common causes for an elevated osmolal gap were recent heavy ethanol consumption with suspected alcoholic ketoacidosis, renal failure, shock, and recent administration of mannitol. Only 9 patients with osmolal gap greater than 50 and no patients with osmolal gap greater than 100 were found to be negative for toxic alcohols. Conclusions Our study concurs with other investigations that show that osmolal gap can be a useful diagnostic test in conjunction with clinical history and physical examination. PMID

  9. The influence of Adh function on ethanol preference and tolerance in adult Drosophila melanogaster.

    PubMed

    Ogueta, Maite; Cibik, Osman; Eltrop, Rouven; Schneider, Andrea; Scholz, Henrike

    2010-11-01

    Preference determines behavioral choices such as choosing among food sources and mates. One preference-affecting chemical is ethanol, which guides insects to fermenting fruits or leaves. Here, we show that adult Drosophila melanogaster prefer food containing up to 5% ethanol over food without ethanol and avoid food with high levels (23%) of ethanol. Although female and male flies behaved differently at ethanol-containing food sources, there was no sexual dimorphism in the preference for food containing modest ethanol levels. We also investigated whether Drosophila preference, sensitivity and tolerance to ethanol was related to the activity of alcohol dehydrogenase (Adh), the primary ethanol-metabolizing enzyme in D. melanogaster. Impaired Adh function reduced ethanol preference in both D. melanogaster and a related species, D. sechellia. Adh-impaired flies also displayed reduced aversion to high ethanol concentrations, increased sensitivity to the effects of ethanol on postural control, and negative tolerance/sensitization (i.e., a reduction of the increased resistance to ethanol's effects that normally occurs upon repeated exposure). These data strongly indicate a linkage between ethanol-induced behavior and ethanol metabolism in adult fruit flies: Adh deficiency resulted in reduced preference to low ethanol concentrations and reduced aversion to high ones, despite recovery from ethanol being strongly impaired.

  10. Neuroprotective effect of ethanol in acute carbon monoxide intoxication: A retrospective study.

    PubMed

    Kim, Hyuk-Hoon; Choi, Sang Chun; Chae, Minjung Kathy; Min, Young-Gi

    2018-01-01

    In acute carbon monoxide (CO) intoxication, treatment of neurologic injury and prevention of neurological sequelae are primary concerns. Ethanol is the one of the frequent substances which is co-ingested in intentional CO poisoning. Neuroprotective effect of ethanol was highlighted and demonstrated in isolated brain injury recently. We assessed the neuroprotective effect of ethanol in acute CO intoxication using magnetic resonance imaging (MRI).We retrospectively reviewed medical records for patients who visited an emergency medical center of a university-affiliated hospital during a period of 73 months, from March 2009 to April 2015. Enrolled patients were divided into 2 groups, patients with or without abnormal brain lesion in brain MRI. Multivariate logistic regression analysis was performed to assess the factors associated with brain injury in MRI.A total of 109 patients with acute CO intoxication were evaluated of which 66 (60.55%) tested positive in brain MRI. MRI lesion-positive patients were more likely to have electrocardiogram change, elevation of serum troponin I and s100 protein level and lower serum ethanol level. Serum ethanol positivity was an independent factor for prevalence of brain injury in MRI in acute CO poisoning.This study revealed that ethanol which is co-ingested in acute CO intoxication may work the neuroprotective effect and could consequence more favorable neurological outcome in acute CO intoxication. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  11. Hampered long-term depression and thin spine loss in the nucleus accumbens of ethanol-dependent rats.

    PubMed

    Spiga, Saturnino; Talani, Giuseppe; Mulas, Giovanna; Licheri, Valentina; Fois, Giulia R; Muggironi, Giulia; Masala, Nicola; Cannizzaro, Carla; Biggio, Giovanni; Sanna, Enrico; Diana, Marco

    2014-09-02

    Alcoholism involves long-term cognitive deficits, including memory impairment, resulting in substantial cost to society. Neuronal refinement and stabilization are hypothesized to confer resilience to poor decision making and addictive-like behaviors, such as excessive ethanol drinking and dependence. Accordingly, structural abnormalities are likely to contribute to synaptic dysfunctions that occur from suddenly ceasing the use of alcohol after chronic ingestion. Here we show that ethanol-dependent rats display a loss of dendritic spines in medium spiny neurons of the nucleus accumbens (Nacc) shell, accompanied by a reduction of tyrosine hydroxylase immunostaining and postsynaptic density 95-positive elements. Further analysis indicates that "long thin" but not "mushroom" spines are selectively affected. In addition, patch-clamp experiments from Nacc slices reveal that long-term depression (LTD) formation is hampered, with parallel changes in field potential recordings and reductions in NMDA-mediated synaptic currents. These changes are restricted to the withdrawal phase of ethanol dependence, suggesting their relevance in the genesis of signs and/or symptoms affecting ethanol withdrawal and thus the whole addictive cycle. Overall, these results highlight the key role of dynamic alterations in dendritic spines and their presynaptic afferents in the evolution of alcohol dependence. Furthermore, they suggest that the selective loss of long thin spines together with a reduced NMDA receptor function may affect learning. Disruption of this LTD could contribute to the rigid emotional and motivational state observed in alcohol dependence.

  12. Endoscopic management of massive mercury ingestion

    PubMed Central

    Zag, Levente; Berkes, Gábor; Takács, Irma F; Szepes, Attila; Szabó, István

    2017-01-01

    Abstract Rationale: Ingestion of a massive amount of metallic mercury was thought to be harmless until the last century. After that, in a number of cases, mercury ingestion has been associated with appendicitis, impaired liver function, memory deficits, aspiration leading to pneumonitis and acute renal failure. Treatment includes gastric lavage, giving laxatives and chelating agents, but rapid removal of metallic mercury with gastroscopy has not been used. Patient concerns: An 18-year-old man was admitted to our emergency department after drinking 1000 g of metallic mercury as a suicide attempt. Diagnosis: Except from mild umbilical tenderness, he had no other symptoms. Radiography showed a metallic density in the area of the stomach. Intervention: Gastroscopy was performed to remove the mercury. One large pool and several small droplets of mercury were removed from the stomach. Outcomes: Blood and urine mercury levels of the patient remained low during hospitalization. No symptoms of mercury intoxication developed during the follow-up period. Lessons: Massive mercury ingestion may cause several symptoms, which can be prevented with prompt treatment. We used endoscopy to remove the mercury, which shortened the exposure time and minimized the risk of aspiration. This is the first case where endoscopy was used for the management of mercury ingestion. PMID:28562544

  13. Beer Is Less Harmful for the Liver than Plain Ethanol: Studies in Male Mice Using a Binge-Drinking Model.

    PubMed

    Landmann, Marianne; Wagnerberger, Sabine; Kanuri, Giridhar; Ziegenhardt, Doreen; Bergheim, Ina

    2015-09-01

    Mechanisms involved in the less damaging effects of beer in comparison to hard spirits have not yet been fully understood. The aim of the study was to determine if the effect of beer intake on the liver differs from that of plain ethanol and if so to determine mechanisms involved. Male C57BL/6J mice received either ethanol, beer (ethanol content: 6 g/kg body weight) or iso-caloric maltodextrin solution. Markers of steatosis, lipogenesis, activation of the toll-like receptor-4 signaling cascade and lipid export in liver and tight junction proteins in duodenum were measured 6 and 12 h after acute ethanol or beer intake. Alcohol ingestion resulted in a significant increase of hepatic triglyceride accumulation 6 and 12 h after ingestion, respectively, being markedly lower in mice fed beer. Expression of sterol regulatory element-binding protein-1c mRNA was significantly lower 12 h after alcohol or beer exposure, while fatty acid synthase mRNA expression was induced in livers of ethanol-fed mice and to a lesser extent in mice fed beer 6 h after acute alcohol ingestion. Protein levels of tight junction proteins in the small intestine were similar between groups while expression of myeloid differentiation primary response gene 88 in livers was significantly induced in ethanol- but not in beer-fed mice. Concentrations of 4-hydroxynonenal protein adducts and inducible nitric oxide synthase protein were also only induced in livers of mice fed ethanol. Protein levels of apolipoprotein B were induced in livers of beer-fed mice only. Our data suggest that beer is less harmful on the development of acute alcohol-induced liver damage than plain ethanol in male mice. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  14. Increased ethanol consumption after interruption of fat bingeing.

    PubMed

    Blanco-Gandía, M Carmen; Miñarro, José; Aguilar, Maria Asuncion; Rodríguez-Arias, Marta

    2018-01-01

    There is a marked comorbidity between alcohol abuse and eating disorders, especially in the young population. We have previously reported that bingeing on fat during adolescence increases the rewarding effects of ethanol (EtOH). The aim of the present work was to study if vulnerability to EtOH persists after cessation of binge eating. OF1 mice binged on fat (HFB: high-fat binge) during adolescence (PND 25-43) and were tested for 15 days after the last access to HFB (on PND 59) using the self-administration paradigm, the conditioned place preference (CPP) and locomotor sensitization to ethanol. Our results showed that after 15 days of cessation of fat ingestion, mice increased their consumption of ethanol and showed greater motivation to obtain ethanol. On the other hand, no effects were observed in the CPP, while an increased locomotor response to ethanol was detected. The present results confirm and extend our previous study demonstrating that the compulsive intake of fat induces long-lasting effects on the reward system that lead to an increased consumption of EtOH.

  15. Increased ethanol consumption after interruption of fat bingeing

    PubMed Central

    Blanco-Gandía, M. Carmen; Miñarro, José; Aguilar, Maria Asuncion

    2018-01-01

    There is a marked comorbidity between alcohol abuse and eating disorders, especially in the young population. We have previously reported that bingeing on fat during adolescence increases the rewarding effects of ethanol (EtOH). The aim of the present work was to study if vulnerability to EtOH persists after cessation of binge eating. OF1 mice binged on fat (HFB: high-fat binge) during adolescence (PND 25–43) and were tested for 15 days after the last access to HFB (on PND 59) using the self-administration paradigm, the conditioned place preference (CPP) and locomotor sensitization to ethanol. Our results showed that after 15 days of cessation of fat ingestion, mice increased their consumption of ethanol and showed greater motivation to obtain ethanol. On the other hand, no effects were observed in the CPP, while an increased locomotor response to ethanol was detected. The present results confirm and extend our previous study demonstrating that the compulsive intake of fat induces long-lasting effects on the reward system that lead to an increased consumption of EtOH. PMID:29590149

  16. The effects of glucose ingestion and glucose regulation on memory performance in older adults with mild cognitive impairment.

    PubMed

    Riby, L M; Marriott, A; Bullock, R; Hancock, J; Smallwood, J; McLaughlin, J

    2009-04-01

    Previous research investigating the impact of glucose ingestion and/or improvements in glucose regulation has found selective cognitive facilitation on episodic memory tasks in successful ageing and dementia. The present study aimed to extend this research to mild cognitive impairment (MCI). In a repeated-measures design, 24 older adults with and 24 older adults without MCI performed a battery of memory and attention tasks after 25 g of glucose or a sweetness matched placebo. In addition, to assess the impact of individual differences in glucose regulation, blood glucose measurements were taken throughout the testing session. Consistent with previous research, cognitive facilitation was observed for episodic memory tasks only in both successful ageing and MCI. Older adults with MCI had a similar glucose regulatory response as controls but their fasting levels were elevated. Notably, higher levels of blood glucose were associated with impaired memory performance in both the glucose and placebo conditions. Importantly, both blood glucose and memory performance indices were significant predictors of MCI status. The utility of glucose supplementation and the use of glucose regulation as a biological marker are discussed in relation to these data.

  17. Total body water and lean body mass estimated by ethanol dilution

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  18. The effect of thalidomide on ethanol-induced gastric mucosal damage in mice: involvement of inflammatory cytokines and nitric oxide.

    PubMed

    Amirshahrokhi, Keyvan; Khalili, Ali-Reza

    2015-01-05

    Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Central effects of ethanol interact with endogenous mu opioid activity to control isolation-induced analgesia in maternally separated infant rats

    PubMed Central

    Nizhnikov, Michael E.; Kozlov, Andrey P.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.

    2014-01-01

    Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12–day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol–mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu- opioid activity that increases the pup’s sensitivity to appetitive taste

  20. Taurine supplementation improves economy of movement in the cycle test independently of the detrimental effects of ethanol.

    PubMed

    Paulucio, Dailson; Costa, Bruno M; Santos, Caleb G M; Nogueira, Fernando; Koch, Alexander; Machado, Marco; Velasques, Bruna; Ribeiro, Pedro; Pompeu, Fernando Ams

    2017-12-01

    Taurine (TA) ingestion has been touted as blunting the deleterious effects of ethanol (ET) ingestion on motor performance. This study investigated the effects of ingestion of 0.6 mL·kg -1 of ET, 6 grams of TA, and ethanol in combination with taurine (ET+TA) on economy of movement (EM) and heart rate (HR). Nine volunteers, five female (22 ± 3 years) and four male (26 ± 5 years), participated in a study that used a counterbalanced experimental design. EM and HR were measured for 6 min while the subjects were pedalling at a fixed load 10% below the anaerobic threshold. The blood alcohol concentration (BAC) was similar between ET and ET+TA treatments at 30 min after ingestion and after exercise (12.3 mmol·L -1 vs. 13.7 mmol·L -1 , and 9.7 mmol • L -1 vs 10.9 mmol·L -1 , respectively). EM was significantly different among treatments, with lower mL·W -1 following ingestion of TA (-7.1%, p<0.001) than placebo and ET+TA (-2.45%, p=0.001) compared to ET. HR (bpm) was significantly (p<0.05) higher for ET (137 ± 14 bpm) than the other three treatments (placebo = 129 ± 14 bpm; TA = 127 ± 11 bpm; TA+ET = 133 ± 12 and ET = 137 ± 14 bpm). Taurine improved EM when compared to placebo or ET, and reduced HR when compared to ET. The combination of ET+TA also enhanced EM compared to placebo, and reduced HR in comparison to ET alone. Therefore, these findings indicate that taurine improves EM and counteracts ethanol-induced increases in HR during submaximal exercise.

  1. Ethanol modulates cortical activity: direct evidence with combined TMS and EEG.

    PubMed

    Kähkönen, S; Kesäniemi, M; Nikouline, V V; Karhu, J; Ollikainen, M; Holi, M; Ilmoniemi, R J

    2001-08-01

    The motor cortex of 10 healthy subjects was stimulated by transcranial magnetic stimulation (TMS) before and after ethanol challenge (0.8 g/kg resulting in blood concentration of 0.77 +/- 0.14 ml/liter). The electrical brain activity resulting from the brief electromagnetic pulse was recorded with high-resolution electroencephalography (EEG) and located using inversion algorithms. Focal magnetic pulses to the left motor cortex were delivered with a figure-of-eight coil at the random interstimulus interval of 1.5-2.5 s. The stimulation intensity was adjusted to the motor threshold of abductor digiti minimi. Two conditions before and after ethanol ingestion (30 min) were applied: (1) real TMS, with the coil pressed against the scalp; and (2) control condition, with the coil separated from the scalp by a 2-cm-thick piece of plastic. A separate EMG control recording of one subject during TMS was made with two bipolar platinum needle electrodes inserted to the left temporal muscle. In each condition, 120 pulses were delivered. The EEG was recorded from 60 scalp electrodes. A peak in the EEG signals was observed at 43 ms after the TMS pulse in the real-TMS condition but not in the control condition or in the control scalp EMG. Potential maps before and after ethanol ingestion were significantly different from each other (P = 0.01), but no differences were found in the control condition. Ethanol changed the TMS-evoked potentials over right frontal and left parietal areas, the underlying effect appearing to be largest in the right prefrontal area. Our findings suggest that ethanol may have changed the functional connectivity between prefrontal and motor cortices. This new noninvasive method provides direct evidence about the modulation of cortical connectivity after ethanol challenge. Copyright 2001 Academic Press.

  2. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    PubMed Central

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2011-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168

  3. Conditioning to ethanol in the fruit fly-a study using an inhibitor of ADH.

    PubMed

    Cadieu, N; Cadieu, J -C.; El Ghadraoui, L; Grimal, A; Lamboeuf, Y

    1999-06-01

    To identify processes involved in the choice of ethanol by adult Drosophila, flies homozygous Adh(F), reared in the absence of alcohol were placed in contact with: a) an ethanol-free medium, b) a medium containing ethanol, c) a medium supplemented with 4-methylpyrazole (4-MP, an inhibitor of the ADH pathway), d) a medium containing ethanol and 4-MP. The choice of ethanol over a medium without ethanol was evaluated by measuring the duration of extension of the proboscis of the flies in each of the media. A slight preference for the ethanol-supplemented medium was observed in the naive flies, which was enhanced by previous exposure to ethanol. Exposure to ethanol and 4-MP, however, led to an avoidance of ethanol. There was a reduction in ADH activity on treatment of the flies with 4-MP, and signs of malaise (reduced locomotor activity, loss of balance) were observed in the flies who ingested both ethanol and inhibitor. We concluded that the preference for ethanol stems from an associative learning related to ethanol utilization. Inhibition of enzymes of ADH pathway led to a conditioned aversion due to disturbance of ethanol metabolism giving rise to malaise.

  4. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge

    A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases inmore » dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone

  5. Supplemental choline during the periweaning period protects against trace conditioning impairments attributable to post-training ethanol exposure in adolescent rats.

    PubMed

    Hunt, Pamela S

    2012-08-01

    Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of posttraining alcohol administration on trace fear conditioning. Posttraining alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next 3 days animals were administered 2.5 g/kg ethanol or water control, and conditional stimulus (CS)-elicited freezing was measured on PD 34. Results indicated that posttraining alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given posttraining ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development.

  6. Inflammatory PAF Receptor Signaling Initiates Hedgehog Signaling and Kidney Fibrogenesis During Ethanol Consumption

    PubMed Central

    Latchoumycandane, Calivarathan; Hanouneh, Mohamad; Nagy, Laura E.; McIntyre, Thomas M.

    2015-01-01

    Acute inflammation either resolves or proceeds to fibrotic repair that replaces functional tissue. Pro-fibrotic hedgehog signaling and induction of its Gli transcription factor in pericytes induces fibrosis in kidney, but molecular instructions connecting inflammation to fibrosis are opaque. We show acute kidney inflammation resulting from chronic ingestion of the common xenobiotic ethanol initiates Gli1 transcription and hedgehog synthesis in kidney pericytes, and promotes renal fibrosis. Ethanol ingestion stimulated transcription of TGF-ß, collagens I and IV, and alpha-smooth muscle actin with accumulation of these proteins. This was accompanied by deposition of extracellular fibrils. Ethanol catabolism by CYP2E1 in kidney generates local reactive oxygen species that oxidize cellular phospholipids to phospholipid products that activate the Platelet-activating Factor receptor (PTAFR) for inflammatory phospholipids. Genetically deleting this ptafr locus abolished accumulation of mRNA for TGF-ß, collagen IV, and α-smooth muscle actin. Loss of PTAFR also abolished ethanol-stimulated Sonic (Shh) and Indian hedgehog (Ihh) expression, and abolished transcription and accumulation of Gli1. Shh induced in pericytes and Ihh in tubules escaped to urine of ethanol-fed mice. Neutrophil myeloperoxidase (MPO) is required for ethanol-induced kidney inflammation, and Shh was not present in kidney or urine of mpo -/- mice. Shh also was present in urine of patients with acute kidney injury, but not in normal individuals or those with fibrotic liver cirrhosis We conclude neither endogenous PTAFR signaling nor CYP2E1-generated radicals alone are sufficient to initiate hedgehog signaling, but instead PTAFR-dependent neutrophil infiltration with myeloperoxidase activation is necessary to initiate ethanol-induced fibrosis in kidney. We also show fibrogenic mediators escape to urine, defining a new class of urinary mechanistic biomarkers of fibrogenesis for an organ not commonly

  7. Performance of the Hack's Impairment Index Score: A Novel Tool to Assess Impairment from Alcohol in Emergency Department Patients.

    PubMed

    Hack, Jason B; Goldlust, Eric J; Ferrante, Dennis; Zink, Brian J

    2017-10-01

    Over 35 million alcohol-impaired (AI) patients are cared for in emergency departments (EDs) annually. Emergency physicians are charged with ensuring AI patients' safety by identifying resolution of alcohol-induced impairment. The most common standard evaluation is an extemporized clinical examination, as ethanol levels are not reliable or predictive of clinical symptoms. There is no standard assessment of ED AI patients. The objective was to evaluate a novel standardized ED assessment of alcohol impairment, Hack's Impairment Index (HII score), in a busy urban ED. A retrospective chart review was performed for all AI patients seen in our busy urban ED over 24 months. Trained nurses evaluated AI patients with both "usual" and HII score every 2 hours. Patients were stratified by frequency of visits for AI during this time: high (≥ 6), medium (2-5), and low (1). Within each category, comparisons were made between HII scores, measured ethanol levels, and usual nursing assessment of AI. Changes in HII scores over time were also evaluated. A total of 8,074 visits from 3,219 unique patients were eligible for study, including 7,973 (98.7%) with ethanol levels, 5,061 (62.7%) with complete HII scores, and 3,646 (45.2%) with health care provider assessments. Correlations between HII scores and ethanol levels were poor (Pearson's R 2  = 0.09, 0.09, and 0.17 for high-, medium-, and low-frequency strata). HII scores were excellent at discriminating nursing assessment of AI, while ethanol levels were less effective. Omitting extrema, HII scores fell consistently an average 0.062 points per hour, throughout patients' visits. The HII score applied a quantitative, objective assessment of alcohol impairment. HII scores were superior to ethanol levels as an objective clinical measure of impairment. The HII declines in a reasonably predictable manner over time, with serial evaluations corresponding well with health care provider evaluations. © 2017 by the Society for Academic

  8. Influence of chronic ethanol consumption on toxic effects of 1,2-dichloroethane: glycolipoprotein retention and impairment of dolichol concentration in rat liver microsomes and Golgi apparatus.

    PubMed

    Cottalasso, Damiano; Domenicotti, Cinzia; Traverso, Nicola; Pronzato, Maria; Nanni, Giorgio

    2002-09-16

    Our previous investigations demonstrated that 1,2-dichloroethane (DCE) and chronic ethanol treatment separately are able to impair glycoprotein metabolism and secretion, and reduce dolichol concentration in liver membranes. The purpose of this study was to investigate whether chronic ethanol consumption can induce potentiation of rat liver damage due to DCE haloalkane used in several chemical processes and in agriculture. Rats were given 36% of their total energy as ethanol in the Lieber-DeCarli liquid diet for 8 weeks (CH group). The pair-fed control group received an isocaloric amount of dextrine-maltose (PF group). "In vitro" experiments: the DCE (6.5 mM) treatment of isolated hepatocytes from CH rats enhanced glycoprotein retention and further reduced glycoprotein secretion and 14C-glucosamine incorporation compared to the hepatocytes from CH or from PF and DCE treated rats. "In vivo" experiments: a marked decrease of dolichol concentration in microsomes (in which dolichyl phosphate is rate-limiting for the initial glycosylation of protein) and in Golgi membranes (in which total dolichol is very important for membrane permeability, fluidity and vesicle fusion) was observed in CH rats acutely treated with 628 mg/kg bw of DCE (CH+DCE) compared with CH or PF+DCE treated rats. These data suggest that chronic ethanol consumption increases DCE liver toxicity by affecting protein glycosylation processes and impairing glycolipoprotein secretion, with a concomitant retention at the level of the Golgi apparatus.

  9. Initiation and maintenance of oral ethanol self-administration in female Sprague-Dawley rats.

    PubMed

    Neill, J C; Domeney, A M; Costall, B

    1994-01-01

    Group-housed female Sprague-Dawley rats were trained to self-administer 5% ethanol (v/v) in a large self-administration chamber (100 x 40 x 40 cm) following three different initiation methods. The procedures were 1) an ethanol injection procedure, 2) a sucrose substitution procedure, and 3) a prandial drinking technique. Only the prandial drinking method served to maintain responding for ethanol in the absence of water deprivation or sweetening of the alcohol solution. Rats trained using this technique showed a large preference for 5% ethanol over water and a significant increase in locomotor activity while responding for 5% ethanol but not while responding for water. When the concentration of ethanol was increased from 1% to 32%, the amount of ethanol ingested increased up to a maximum of 1.233 +/- 0.3 g/kg of 32% ethanol, and response rates and number of ethanol deliveries followed an inverted U-shaped curve. Appreciable blood ethanol levels were detected immediately following self-administration of 8% ethanol. These results show that, in female Sprague-Dawley rats under the experimental conditions described, the prandial drinking technique was the most effective in inducing stable oral ethanol self-administration and suggest that under these conditions and in these subjects ethanol was acting as a positive reinforcer.

  10. Acute chloroform ingestion successfully treated with intravenously administered N-acetylcysteine.

    PubMed

    Dell'Aglio, Damon M; Sutter, Mark E; Schwartz, Michael D; Koch, David D; Algren, D A; Morgan, Brent W

    2010-06-01

    Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabilization was complete. His vital signs were normal. Admission laboratory values revealed normal serum electrolytes, AST, ALT, PT, BUN, creatinine, and bilirubin. Serum ethanol level was 15 mg/dL, and aspirin and acetaminophen were undetectable. The patient was extubated but developed liver function abnormalities with a peak AST of 224 IU/L, ALT of 583 IU/L, and bilirubin level reaching 16.3 mg/dL. NAC was continued through hospital day 6. Serum chloroform level obtained on admission was 91 μg/mL. The patient was discharged to psychiatry without known sequelae and normal liver function tests. The average serum chloroform level in fatal cases of inhalational chloroform poisoning was 64 μg/mL, significantly lower than our patient. The toxicity is believed to be similar in both inhalation and ingestion routes of exposure, with mortality predominantly resulting from anoxia secondary to central nervous system depression. Hepatocellular toxicity is thought to result from free radical-induced oxidative damage. Previous reports describe survival after treatment with orally administered NAC, we report the first use of intravenously administered NAC for chloroform ingestion. Acute oral ingestion of chloroform is extremely rare. Our case illustrates that with appropriate supportive care, patients can recover from chloroform ingestion, and intravenously administered NAC may be of benefit in such cases.

  11. Fishing for Fetal Alcohol Spectrum Disorders: Zebrafish as a Model for Ethanol Teratogenesis.

    PubMed

    Lovely, Charles Ben; Fernandes, Yohaan; Eberhart, Johann K

    2016-10-01

    Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of ethanol-induced developmental defects, including craniofacial dysmorphology and cognitive impairments. It affects ∼1 in 100 children born in the United States each year. Due to the pleiotropic effects of ethanol, animal models have proven critical in characterizing the mechanisms of ethanol teratogenesis. In this review, we focus on the utility of zebrafish in characterizing ethanol-induced developmental defects. A growing number of laboratories have focused on using zebrafish to examine ethanol-induced defects in craniofacial, cardiac, ocular, and neural development, as well as cognitive and behavioral impairments. Growing evidence supports that genetic predisposition plays a role in these ethanol-induced defects, yet little is understood about these gene-ethanol interactions. With a high degree of genetic amenability, zebrafish is at the forefront of identifying and characterizing the gene-ethanol interactions that underlie FASD. Because of the conservation of gene function between zebrafish and humans, these studies will directly translate to studies of candidate genes in human populations and allow for better diagnosis and treatment of FASD.

  12. SUPPLEMENTAL CHOLINE DURING THE PERIWEANING PERIOD PROTECTS AGAINST TRACE CONDITIONING IMPAIRMENTS DUE TO POST-TRAINING ETHANOL EXPOSURE IN ADOLESCENT RATS

    PubMed Central

    Hunt, Pamela S.

    2012-01-01

    Supplemental choline during early stages of development can result in long-lasting improvements to memory function. In addition, pre- or postnatal choline has been shown to be protective against some of the adverse effects of early alcohol exposure. The present experiment examined whether supplemental choline given to rats would protect against the effects of post-training alcohol administration on trace fear conditioning. Post-training alcohol exposure in adolescent rats results in poor performance in this hippocampus-dependent task, although delay conditioning is unaffected. Here, rats were given an s.c. injection of either saline or choline chloride daily on postnatal days (PD) 15-26. On PD 30 subjects were trained in a trace fear conditioning procedure. For the next three days animals were administered 2.5 g/kg ethanol or water control, and CS-elicited freezing was measured on PD 34. Results indicated that post-training alcohol disrupted the expression of trace conditioning and that supplemental choline on PD 15-26 was protective against this effect. That is, choline-treated animals subsequently given post-training ethanol performed as well as animals not given ethanol. These results indicate that supplemental choline given during the periweaning period protects against ethanol-induced impairments in a hippocampus-dependent learning task. Findings contribute to the growing literature showing improvements in learning and memory in subjects given extra dietary choline during critical periods of brain development. PMID:22687150

  13. Blood alcohol analysis alone versus comprehensive toxicological analysis - Systematic investigation of missed co-ingested other drugs in suspected alcohol-impaired drivers.

    PubMed

    Steuer, Andrea E; Eisenbeiss, Lisa; Kraemer, Thomas

    2016-10-01

    Driving under the influence of alcohol and/or drugs (DUID) is a safety issue of increasing public concern. When a police officer has reasonable grounds to classify a driver as impaired, he may arrange for a blood sample to be taken. In many countries, alcohol analysis only is ordered if impairment is suspected to be exclusively due to alcohol while comprehensive toxicological screening will be performed if additional suspicion for other illegal drugs of abuse (DoA) or medicinal drugs is on hand. The aim of the present study was firstly to evaluate whether signs of impairment can be differentiated to be caused by alcohol alone or a combination of alcohol and other driving-impairing drugs and secondly to which extent additional drugs are missed in suspected alcohol-impaired drivers. A total of 293 DUID cases (negative n=41; alcohol positive only, n=131; alcohol+active drug positive, n=121) analyzed in 2015 in the Canton of Zurich were evaluated for their documented impairment symptoms by translating these into a severity score and comparing them applying principle component analysis (PCA). Additional 500 cases suspected for alcohol-impaired driving only were reanalyzed using comprehensive LC-MS/MS screening methods covering about 1500 compounds. Drugs detected were classified for severity of driving impairment using the classification system established in the DRUID study of the European Commission. As partly expected from the pharmacological and toxicological point of view, PCA analysis revealed no differences between signs of impairment caused by alcohol alone and those caused by alcohol plus at least one active drug. Breaking it down to different blood alcohol concentration ranges, only between 0.3 and 0.5g/kg trends could be observed in terms of more severe impairment for combined alcohol and drug intake. In the 500 blood samples retrospectively analyzed in this study, a total of 330 additional drugs could be detected; in some cases up to 9 co-ingested ones. In

  14. Effect of fluid ingestion on orthostatic responses following acute exercise

    NASA Technical Reports Server (NTRS)

    Davis, J. E.; Fortney, S. M.

    1997-01-01

    Orthostatic tolerance is impaired following an acute bout of exercise. This study examined the effect of fluid ingestion following treadmill exercise in restoring the cardiovascular responses to an orthostatic stress. Five men (age, 29.6 +/- 3.4 yrs) were exposed to a graded lower body negative (LBNP) pressure protocol (0 to -50 mmHg) during euhydration without exercise (C), 20 minutes after exercise dehydration (D), 20 minutes after exercise and fluid ingestion (FI20), and 60 minutes after exercise and fluid ingestion (FI60). Fluid ingestion (mean +/- SE) consisted of water-ingestion equivalent to 50% of the body weight lost during exercise (520 +/- 15 ml). Exercise dehydration resulted in significantly higher heart rates (119 +/- 8 vs 82 +/- 7 bpm), lower systolic blood pressures (95 +/- 1.7 vs 108 +/- 2.3 mmHg), a smaller increase in leg circumference (3.7 +/- 4 vs 6.9 +/- 1.0 mm), and an attenuated increase in total peripheral resistance (2.58 +/- 1.2 vs 4.28 +/- 0.9 mmHg/L/min) at -50 mmHg LBNP compared to the C condition. Fluid ingestion (both 20 and 60), partially restored the heart rate, systolic blood pressure, and total peripheral resistance responses to LBNP, but did not influence the change in leg circumference during LBNP (4 +/- 0.3 for R20 and 2.8 +/- 0.4 mm for R60). These data illustrate the effectiveness of fluid ingestion on improving orthostatic responses following exercise, and suggest that dehydration is a contributing factor to orthostatic intolerance following exercise.

  15. Effects of caffeine and Bombesin on ethanol and food intake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietze, M.A.; Kulkosky, P.J.

    1991-01-01

    The methylxanthine caffeine and ethyl alcohol are widely used and powerful psychotropic drugs, but their interactions are not well understood. Bombesin is a brain-gut neuropeptide which is thought to function as a neurochemical factor in the inhibitory control of voluntary alcohol ingestion. We assessed the effects of combinations of intraperitoneal doses of caffeine and bombesin on 5% w/v ethanol solution and food intake in deprived rats. Deprived male and female Wistar rats received access to 5% ethanol or Purina chow for 30 minutes after i.p. injections. In single doses, CAF and BBS significantly decreased both ethanol and food consumption, atmore » 50 mg/kg and 10 {mu}g/kg, respectively. CAF and BBS combinations produced infra-additive, or less-than-expected inhibitory effects on ethanol intake, but simple additive inhibitory effects on food intake. This experimental evidence suggests a reciprocal blocking of effects of CAF and BBS on ethanol intake but not food intake. Caffeine, when interacting and bombesin, increases alcohol consumption beyond expected values. Caffeine could affect the operation of endogenous satisfy signals for alcohol consumption.« less

  16. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Huang, Huimin; Niu, Xiaofeng, E-mail: niuxf@mail.xjtu.edu.cn

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increasedmore » pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue.« less

  17. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE.

    PubMed

    McCarthy, Ellen T; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J; Sharma, Mukut

    2015-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. Published by Elsevier Inc.

  18. Ethanol at Low Concentrations Protects Glomerular Podocytes through Alcohol Dehydrogenase and 20-HETE

    PubMed Central

    McCarthy, Ellen T.; Zhou, Jianping; Eckert, Ryan; Genochio, David; Sharma, Rishi; Oni, Olurinde; De, Alok; Srivastava, Tarak; Sharma, Ram; Savin, Virginia J.; Sharma, Mukut

    2014-01-01

    Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol. PMID:25447342

  19. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance.

    PubMed

    Bhandari, Poonam; Kendler, Kenneth S; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Mike

    2009-10-01

    Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the

  20. Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice

    PubMed Central

    Badanich, Kimberly A.; Becker, Howard C.; Woodward, John J.

    2011-01-01

    In humans, stroke or trauma-induced damage to the orbitofrontal cortex (OFC) or medial prefrontal cortex (mPFC) results in impaired cognitive flexibility. Alcoholics also exhibit similar deficits in cognitive flexibility suggesting that the OFC and mPFC are susceptible to alcohol-induced dysfunction. The present experiments investigated this issue using an attention set-shifting assay in ethanol dependent adult male C57BL/6J mice. Ethanol dependence was induced by exposing mice to repeated cycles of chronic intermittent ethanol (CIE) vapor inhalation. Behavioral testing was conducted 72 hours or 10 days following CIE exposure to determine whether ethanol-induced changes in OFC-dependent (reversal learning) and mPFC-dependent (set-shifting) behaviors are long-lasting. During early ethanol abstinence (72 hrs), CIE mice showed reduced reversal learning performance as compared to controls. Reversal learning deficits were revealed as greater number of trials to criterion, more errors made and a greater difficulty in performing a reversal learning task relative to baseline performance. Furthermore, the magnitude of the impairment was greater during reversal of a simple discrimination rather than reversal of an intradimensional shift. Reversal learning deficits were no longer present when mice were tested 10 days after CIE exposure suggesting that ethanol-induced changes in OFC function can recover. Unexpectedly, performance on the set-shifting task was not impaired during abstinence from ethanol. These data suggest reversal learning, but not attention set-shifting, is transiently disrupted during short-term abstinence from CIE. Given that reversal learning requires an intact OFC, these findings support the idea that the OFC may be vulnerable to the cognitive impairing actions of ethanol. PMID:22122149

  1. Acute Ethanol Withdrawal Impairs Contextual Learning and Enhances Cued Learning

    PubMed Central

    Tipps, Megan E.; Raybuck, Jonathan D.; Buck, Kari J.; Lattal, K. Matthew

    2014-01-01

    Background Alcohol affects many of the brain regions and neural processes that support learning and memory, and these effects are thought to underlie, at least in part, the development of addiction. Although much work has been done regarding the effects of alcohol intoxication on learning and memory, little is known about the effects of acute withdrawal from a single alcohol exposure. Methods We assess the effects of acute ethanol withdrawal (6 h post-injection with 4 g/kg ethanol) on two forms of fear conditioning (delay and trace fear conditioning) in C57BL/6J and DBA/2J mice. The influence of a number of experimental parameters (pre- and post-training withdrawal exposure; foreground/background processing; training strength; non-associative effects) is also investigated. Results Acute ethanol withdrawal during training had a bidirectional effect on fear conditioned responses, decreasing contextual responses and increasing cued responses. These effects were apparent for both trace and delay conditioning in DBA/2J mice and for trace conditioning in C57BL/6J mice; however, C57BL/6J mice were selectively resistant to the effects of acute withdrawal on delay cued responses. Conclusions Our results show that acute withdrawal from a single, initial ethanol exposure is sufficient to alter long-term learning in mice. In addition, the differences between the strains and conditioning paradigms used suggest that specific learning processes can be differentially affected by acute withdrawal in a manner that is distinct from the reported effects of both alcohol intoxication and withdrawal following chronic alcohol exposure. Thus, our results suggest a unique effect of acute alcohol withdrawal on learning and memory processes. PMID:25684050

  2. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    PubMed

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Interaction of biogenic amines with ethanol.

    PubMed

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  4. The effect of trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57BL mouse.

    PubMed

    Chotimarkorn, Chatchawan; Ushio, Hideki

    2008-11-01

    The effects of the oral administration of trans-ferulic acid and gamma-oryzanol (mixture of steryl ferulates) with ethanol (5.0 g per kg) for 30 days to c57BL mice on ethanol-induced liver injury were investigated. Preventions of ethanol-induced liver injury by trans-ferulic acid and gamma-oryzanol were reflected by markedly decreased serum activities of plasma aspartate aminotransferase, alanine aminotransferase and significant decreases in hepatic lipid hydroperoxide and TBARS levels. Furthermore, the trans-ferulic acid- and gamma-oryzanol-treated mice recovered ethanol-induced decrease in hepatic glutathione level together with enhancing superoxide dismutase activity. These results demonstrate that both trans-ferulic acid and gamma-oryzanol exert a protective action on liver injury induced by chronic ethanol ingestion.

  5. Antioxidant and Antilipid Peroxidation Potential of Supercritical Fluid Extract and Ethanol Extract of Leaves of Vitex Negundo Linn.

    PubMed Central

    Nagarsekar, K. S.; Nagarsenker, M. S.; Kulkarni, S. R.

    2011-01-01

    Supercritical fluid extract and ethanol extract of Vitex negundo Linn. were subjected to the chromatographic evaluation for identification of their constituents. Free radical scavenging activity of both extracts was studied by subjecting them to DPPH assay. IC50 values of ethanol and supercritical fluid extract of Vitex negundo indicate that ethanol extract has stronger reducing potential and ability to scavenge free radicals as compared to the supercritical fluid extract. The in vivo effect of extracts on lipid peroxidation was studied using ethanol induced oxidative stress model in rat. Ingestion of extracts for 14 days exhibited significant reduction in plasma MDA level of stressed animals. Ethanol extract exhibited higher in vivo antilipid peroxidation potential as compared to supercritical fluid extract which correlated well with radical scavenging potential of extract. PMID:22707827

  6. Honeybees show adaptive reactions to ethanol exposure.

    PubMed

    Miler, Krzysztof; Kuszewska, Karolina; Privalova, Valeriya; Woyciechowski, Michal

    2018-06-07

    The honeybee is being developed as a simple invertebrate model for alcohol-related studies. To date, several effects of ethanol consumption have been demonstrated in honeybees, but the tolerance effect, one of the hallmarks of alcohol overuse, has never been shown. Here, we confirm our hypothesis that the response to ethanol (in terms of motor impairment) is lower in bees that have previously experienced intoxication than in bees encountering ethanol for the first time, indicating that the chronic tolerance effect occurs in honeybees. Furthermore, we investigated the basis of this effect and found that it likely results from conditioned compensatory responses to cues associated with ethanol delivery. Our findings significantly improve our understanding of the suitability of honeybees as models for alcoholism-related research and underline the first and foremost function of all conditioned reactions - their adaptive value.

  7. Inactivation of the Prelimbic Cortex Impairs the Context-Induced Reinstatement of Ethanol Seeking.

    PubMed

    Palombo, Paola; Leao, Rodrigo M; Bianchi, Paula C; de Oliveira, Paulo E C; Planeta, Cleopatra da Silva; Cruz, Fábio C

    2017-01-01

    Evidence indicates that drug relapse in humans is often provoked by exposure to the self-administered drug-associated context. An animal model called "ABA renewal procedure" has been used to study the context-induced relapse to drug seeking. Here, we reported a new and feasible training procedure for the ABA renewal method to explore the role of the prelimbic cortex in context-induced relapse to ethanol seeking. By using a saccharin fading technique, we trained rats to self-administer ethanol (10%). The drug delivery was paired with a discrete tone-light cue. Lever pressing was subsequently extinguished in a non-drug-associated context in the presence of the discrete cue. Rats were subsequently tested for reinstatement in contexts A or B, under extinction conditions. Ethanol-associated context induced the reinstatement of ethanol seeking and increased the expression of Fos in the prelimbic cortex. The rate of neural activation in the prelimbic cortex was 3.4% in the extinction context B and 7.7% in the drug-associated context A, as evidenced by double-labeling of Fos and the neuron-specific protein NeuN. The reversible inactivation of the neural activity in the prelimbic cortex with gamma-Aminobutyric acid (GABA) receptor agonists (muscimol + baclofen) attenuated the context-induced reinstatement of ethanol self-administration. These results demonstrated that the neuronal activation of the prelimbic cortex is involved in the context-induced reinstatement of ethanol seeking.

  8. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    PubMed

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  9. Selective cognitive deficits in adult rats after prenatal exposure to inhaled ethanol.

    PubMed

    Oshiro, W M; Beasley, T E; McDaniel, K L; Taylor, M M; Evansky, P; Moser, V C; Gilbert, M E; Bushnell, P J

    2014-01-01

    Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by inhalation, the most likely route of exposure from gasoline-ethanol fuel blends. We evaluated the potential cognitive consequences of ethanol inhalation by exposing pregnant Long Evans rats to clean air or ethanol vapor from gestational days 9-20, a critical period of neuronal development. Concentrations of inhaled ethanol (5000, 10,000, or 21,000 ppm for 6.5h/day) produced modeled peak blood ethanol concentrations (BECs) in exposed dams of 2.3, 6.8, and 192 mg/dL, respectively. In offspring, no dose-related impairments were observed on spatial learning or working memory in the Morris water maze or in operant delayed match-to-position tests. Two measures showed significant effects in female offspring at all ethanol doses: 1) impaired cue learning after trace fear conditioning, and 2) an absence of bias for the correct quadrant after place training during a reference memory probe in the Morris water maze. In choice reaction time tests, male offspring (females were not tested) from the 5000 and 10,000 ppm groups showed a transient increase in decision times. Also, male offspring from the 21,000 ppm group made more anticipatory responses during a preparatory hold period, suggesting a deficit in response inhibition. The increase in anticipatory responding during the choice reaction time test shows that inhaled ethanol yielding a peak BEC of ~200mg/dL can produce lasting effects in the offspring. The lack of a dose-related decrement in the effects observed in females on cue learning and a reference memory probe may reflect confounding influences in the exposed offspring possibly related to maternal care or altered anxiety levels in females. The surprising lack of more pervasive cognitive deficits

  10. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    PubMed

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Developmental ethanol exposure impairs locomotor movement in Japanese medaka (Oryzias latipes) larvae targeting epigenome.

    PubMed

    Dasmahapatra, Asok K; Carty, Dennis R; Khan, Ikhlas A

    2017-11-01

    Evidence indicated ethanol exposure during development disrupts brain functions that induces fetal alcohol spectrum disorder (FASD) phenotypes with behavioral abnormalities. We aimed to investigate whether prenatal ethanol exposure has any potential impact on behavior of a FASD fish model. Fertilized Japanese medaka (Oryzias latipes) eggs were exposed to 100-300 mM ethanol or 2 mM 5-azacytidine (5-azaC), 0-2 day post fertilization (dpf), in embryo-rearing medium (ERM). Survived embryos were maintained in clean ERM and used either for gene expression analysis on 2- and 6-dpf or allowed to hatch for behavioral study. Photomotor response of 3-4 day post hatch larvae were tracked for 3 h with light-dark transitions. It was observed that larval swimming was phototactic; enhanced in presence of light, declined in dark. Phototactic response was also observed in larvae prenatally exposed to ethanol or 5-azaC; however, the total distance swum by these larvae compared to controls declined. Further analysis indicated that, in light phases, total swimming activity and average swimming speed were reduced in larvae prenatally exposed to ethanol (300 mM) or 5-azaC. Expression analysis of baz1a and baz2a in embryos indicated developmental regulation. Ethanol (100-300 mM) or 5-azaC (2 mM) were able to modulate downregulation of both baz1a and baz2a mRNAs only in 6 dpf embryos of 300 mM ethanol and 5-azaC (2 mM) groups. These studies indicated that prenatal exposure to ethanol or 5-azaC was able to disrupt movements and thus swimming behavior in FASD phenotypes probably due to delayed remodeling of genome and epigenome. Published by Elsevier Ltd.

  12. Effect of chronic ethanol consumption on the response of parathyroid hormone to hypocalcemia in the pregnant rat.

    PubMed

    Duggal, Shalu; Simpson, Mary Elizabeth; Keiver, Kathy

    2007-01-01

    Chronic alcohol (ethanol) consumption during pregnancy results in maternal/fetal hypocalcemia, which may underlie some of ethanol's adverse effects on maternal and fetal bone, and fetal/neonatal health. Ethanol appears to alter the relationship between parathyroid hormone (PTH) and blood calcium (Ca) level, and PTH does not increase in response to ethanol-induced hypocalcemia. However, it is not known whether ethanol actually prevents PTH from responding, or whether the ability to regulate blood Ca is intact, but ethanol lowers the level of Ca maintained. The objective of this study was to determine whether chronic ethanol consumption impairs the ability of the pregnant female to increase PTH in response to acute hypocalcemia. Rats were fed isocaloric diets with ethanol (36% ethanol-derived calories, E group) or without ethanol [pair-fed (PF) and control (C) groups], before and throughout 21 days of gestation. On day 21 gestation, rats received an intraperitoneal injection of ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) (300 or 500 mumol/kg body weight) or saline (saline group), or no injection (baseline group). Blood was collected from the baseline group, and at 30 or 60 minutes postinjection (saline and EGTA groups), and analyzed for ionized Ca (iCa), pH, and PTH. Consistent with previous studies, ethanol consumption decreased blood iCa levels at baseline, but PTH levels did not differ among groups. Administration of EGTA significantly decreased blood iCa levels by 30 minutes, but ethanol did not prevent PTH from increasing in response to the hypocalcemia. In all diet groups, PTH levels were significantly increased by 30 minutes. Ethanol did, however, appear to decrease the maximum PTH level achievable in blood. These data suggest that chronic ethanol consumption does not impair the ability of the pregnant rat to raise serum PTH levels in response to acute hypocalcemia, but ethanol's effect on maximal PTH secretion could impair

  13. Prophylactic tributyrin treatment mitigates chronic-binge ethanol-induced intestinal barrier and liver injury.

    PubMed

    Cresci, Gail A; Glueck, Bryan; McMullen, Megan R; Xin, Wei; Allende, Daniella; Nagy, Laura E

    2017-09-01

    Impaired gut-liver axis is a potential factor contributing to alcoholic liver disease. Ethanol depletes intestinal integrity and causes gut dysbiosis. Butyrate, a fermentation byproduct of gut microbiota, is altered negatively following chronic ethanol exposure. This study aimed to determine whether prophylactic tributyrin could protect the intestinal barrier and liver in mice during combined chronic-binge ethanol exposure. C57BL/6J mice exposed to 5% v/v ethanol-containing diet for 10 days received a single ethanol gavage (5 g/kg) 9 h before euthanasia. Control mice were isocalorically pair-fed maltose dextrin for ethanol. Diets were supplemented (5 mM) with tributyrin or glycerol. Intestine and liver disease activity was assessed histologically. Protein and mRNA expression of tight junction (TJ) proteins, toll-like receptors, and tumor necrosis factor-alpha were assessed. Caco-2 monolayers with or without ethanol exposure and/or sodium butyrate were used to test butyrate's direct effects on intestinal integrity. Chronic-binge ethanol feeding impaired intestinal TJ protein co-localization staining; however, tributyrin co-treatment mitigated these effects. Ethanol depleted TJ and transepithelial electrical resistance in Caco-2 monolayers, but butyrate co-treatment reduced these effects. Hepatic toll-like receptor mRNA expression and tumor necrosis factor-alpha protein expression was induced by ethanol; however, the response was significantly dampened in mice co-treated with tributyrin. Tributyrin altered localization of both neutrophils and single hepatocyte death: Leukocytes and apoptotic hepatocytes localized predominantly around the portal tract in ethanol-only treated mice, whereas localization predominated around the central vein in ethanol-tributyrin mice. Prophylactic tributyrin supplementation mitigated effects of combined chronic-binge ethanol exposure on disruption of intestinal TJ localization and intestinal permeability and liver injury. © 2017

  14. Effect of bromocriptine on acute ethanol tolerance in UChB rats.

    PubMed

    Tampier, L; Prado, C; Quintanilla, M E; Mardones, J

    1999-07-01

    It has been suggested that a higher capacity to develop acute tolerance during a single dose of ethanol may promote higher ethanol consumption in alcohol-preferring rodents. Several studies have shown that the dopaminergic system may be involved in voluntary ethanol consumption. In the present paper we studied the effect of bromocriptine, a dopaminergic agonist drug, that is known to reduce voluntary consumption of ethanol, on acute tolerance in high (UChB) ethanol consumer rats. Acute tolerance was evaluated in bromocriptine and saline-treated rats by motor impairment induced by a subnarcotic dose of ethanol of 2.3 g/kg IP using a modified tilting plane test. Results showed a highly significant positive correlation between acute tolerance and the voluntary ethanol consumption by the rat. Bromocriptine treatment decreased ethanol consumption and also decreased acute tolerance development. This adds further support to the postulate that the acquisition of acute tolerance to ethanol may promote increased alcohol consumption. Moreover, these results also suggest that dopaminergic receptors involved in ethanol voluntary consumption may also be in acute tolerance development.

  15. Acute Ethanol Inhibition of γ Oscillations Is Mediated by Akt and GSK3β

    PubMed Central

    Wang, JianGang; Zhao, JingXi; Liu, ZhiHua; Guo, FangLi; Wang, Yali; Wang, Xiaofang; Zhang, RuiLing; Vreugdenhil, Martin; Lu, Chengbiao

    2016-01-01

    Hippocampal network oscillations at gamma band frequency (γ, 30–80 Hz) are closely associated with higher brain functions such as learning and memory. Acute ethanol exposure at intoxicating concentrations (≥50 mM) impairs cognitive function. This study aimed to determine the effects and the mechanisms of acute ethanol exposure on γ oscillations in an in vitro model. Ethanol (25–100 mM) suppressed kainate-induced γ oscillations in CA3 area of the rat hippocampal slices, in a concentration-dependent, reversible manner. The ethanol-induced suppression was reduced by the D1R antagonist SCH23390 or the PKA inhibitor H89, was prevented by the Akt inhibitor triciribine or the GSk3β inhibitor SB415286, was enhanced by the NMDA receptor antagonist D-AP5, but was not affected by the MAPK inhibitor U0126 or PI3K inhibitor wortmanin. Our results indicate that the intracellular kinases Akt and GSk3β play a critical role in the ethanol-induced suppression of γ oscillations and reveal new cellular pathways involved in the ethanol-induced cognitive impairment. PMID:27582689

  16. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats

    PubMed Central

    da Silva, Fernando B. R.; Cunha, Polyane A.; Ribera, Paula C.; Barros, Mayara A.; Cartágenes, Sabrina C.; Fernandes, Luanna M. P.; Teixeira, Francisco B.; Fontes-Júnior, Enéas A.; Prediger, Rui D.; Lima, Rafael R.; Maia, Cristiane S. F.

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures’ morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  17. Heavy Chronic Ethanol Exposure From Adolescence to Adulthood Induces Cerebellar Neuronal Loss and Motor Function Damage in Female Rats.

    PubMed

    da Silva, Fernando B R; Cunha, Polyane A; Ribera, Paula C; Barros, Mayara A; Cartágenes, Sabrina C; Fernandes, Luanna M P; Teixeira, Francisco B; Fontes-Júnior, Enéas A; Prediger, Rui D; Lima, Rafael R; Maia, Cristiane S F

    2018-01-01

    Over the last years, heavy ethanol consumption by teenagers/younger adults has increased considerably among females. However, few studies have addressed the long-term impact on brain structures' morphology and function of chronic exposure to high ethanol doses from adolescence to adulthood in females. In line with this idea, in the current study we investigated whether heavy chronic ethanol exposure during adolescence to adulthood may induce motor impairments and morphological and cellular alterations in the cerebellum of female rats. Adolescent female Wistar rats (35 days old) were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) during 55 days by gavage. At 90 days of age, motor function of animals was assessed using open field (OF), pole, beam walking and rotarod tests. Following completion of behavioral tests, morphological and immunohistochemical analyses of the cerebellum were performed. Chronic ethanol exposure impaired significantly motor performance of female rats, inducing spontaneous locomotor activity deficits, bradykinesia, incoordination and motor learning disruption. Moreover, histological analysis revealed that ethanol exposure induced atrophy and neuronal loss in the cerebellum. These findings indicate that heavy ethanol exposure during adolescence is associated with long-lasting cerebellar degeneration and motor impairments in female rats.

  18. The role of social isolation in ethanol effects on the preweanling rat

    PubMed Central

    Kozlov, Andrey P.; Nizhnikov, Michael; Varlinskaya, Elena I.; Spear, Norman E.

    2011-01-01

    The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in twelve–day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5 g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5 g/kg ethanol dose further reduced IIA. The 1.0 g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5 g/kg ethanol in females. The 0.5 g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5 hours after maternal separation or 20 minutes after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5–2 hours before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age. PMID:22051944

  19. Toxicological outcomes in rats exposed to inhaled ethanol during gestation.

    PubMed

    Beasley, Tracey E; Evansky, Paul A; Martin, Sheppard A; McDaniel, Katherine L; Moser, Virginia C; Luebke, Robert W; Norwood, Joel; Rogers, John M; Copeland, Carey B; Bushnell, Philip J

    2014-01-01

    Recent legislation has encouraged replacing petroleum-based fuels with renewable alternatives including ethanol, which is typically blended with gasoline in the United States at concentrations up to 10%, with allowances for concentrations up to 85% for some vehicles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol, and the lack of information about its toxicity by inhalation prompted the present work on its potential developmental effects in a rat model. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or ethanol vapor at concentrations of 5000, 10,000, or 21,000 ppm, which resulted in estimated peak blood ethanol concentrations (BECs) of 2.3, 6.7, and 192 mg/dL, respectively. No overt toxicity in the dams was observed. Ethanol did not affect litter size or weight, or postnatal weight gain in the pups. Motor activity was normal in offspring through postnatal day (PND) 29. On PND 62, the 5000 and 21,000 ppm groups were more active than controls. On PND 29 and 62, offspring were tested with a functional observational battery, which revealed small changes in the neuromuscular and sensorimotor domains that were not systematically related to dose. Cell-mediated and humoral immunity were not affected by ethanol exposure in 6-week-old offspring. Systolic blood pressure was increased by 10,000 ppm ethanol in males at PND 90 but not at PND 180. No differences in lipoprotein profile, liver function, or kidney function were observed. In summary, prenatal exposure to inhaled ethanol caused some mild changes in physiological and behavioral development in offspring that were not clearly related to inhaled concentration or BEC, and did not produce detectable changes in immune function. This low toxicity of inhaled ethanol may result from the slow

  20. Gastroprotective effect of esculin on ethanol-induced gastric lesion in mice.

    PubMed

    Li, Weifeng; Wang, Yu; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Niu, Xiaofeng

    2017-04-01

    The gastroprotective effect of esculin was investigated in a mouse model of ethanol-induced gastric lesion. Administration of esculin at doses of 5, 10, and 20 mg/kg body weight prior to ethanol ingestion led to significant gastroprotection compared with untreated mice. Gastric mucosal lesions were evaluated by macroscopic and histopathological alterations, lesion index, and myeloperoxidase (MPO) activity. Pretreatment with esculin significantly reduced macroscopic and histopathological damage, gastric lesion index, and MPO activity in a dose-dependent manner. Moreover, esculin significantly reduced nitric oxide (NO) production, inducible NO synthase (iNOS) levels, and nuclear factor-kappa B (NF-κB) p65 protein expression in gastric tissues after ethanol challenge. Analysis of inflammatory cytokines indicated that esculin pretreatment markedly suppressed the increased expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in ethanol-treated mice. The results demonstrate a protective effect of esculin against gastric injury and suggest that the underlying mechanism might be associated with inhibition of NF-κB activation, which subsequently reduces expression of iNOS, TNF-α, and IL-6. © 2016 Société Française de Pharmacologie et de Thérapeutique.

  1. Metabolic effects of feeding ethanol or propanol to postpartum transition Holstein cows.

    PubMed

    Raun, B M L; Kristensen, N B

    2011-05-01

    Eight lactating Holstein cows implanted with a ruminal cannula and permanent indwelling catheters in major splanchnic blood vessels were used to investigate metabolism of propanol and ethanol in the postpartum transition period. Cows were randomly allocated to 1 of 4 treatments in a randomized design with a 2 by 2 factorial arrangement of treatments. Factor 1 was 2.6g of calcium carbonate/kg of dry matter (DM) versus 1.5 g of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester/kg of DM. Factor 2 was supplementation with 14 g of propanol/kg of DM (propanol treatment; PT) versus 14 g of ethanol/kg of DM (ethanol treatment; ET). Only factor 2 data are presented in the present paper. Treatments were administered in silage-based total mixed rations and cows were fed the experimental total mixed ration from the day of parturition. Daily rations were fed in 3 equally sized portions at 8-h intervals. Eight hourly sets of ruminal fluid, arterial, and hepatic portal and hepatic vein samples were collected at day -15 ± 5, 4, 15, and 29 relative to parturition. Dry matter intake and milk yield increased with days in milk (DIM), but were not affected by treatment. From prepartum to 4 DIM ruminal concentrations of propanol and ethanol increased with PT and ET, respectively. Postpartum, alcohol intake increased 49% in PT and 34% in ET from 4 to 29 d in milk, respectively. Ruminal concentrations of the alcohols remained unaffected by DIM. Treatments did not affect total ruminal volatile fatty acid concentrations, but the molar proportion of acetate increased in ET and the molar proportion of propionate increased in PT compared with the contrasting treatment. Propanol treatment decreased milk fat content at 15 to 29 DIM compared with ET. The net portal release of propanol and ethanol increased with increasing ruminal concentration of the respective alcohol. The portal release of alcohol accounted for 43 to 85% of ingested propanol and 36 to 57% of ingested ethanol. Hepatic

  2. Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells.

    PubMed

    Nielsen, Jens Christian; Senne de Oliveira Lino, Felipe; Rasmussen, Thomas Gundelund; Thykær, Jette; Workman, Christopher T; Basso, Thiago Olitta

    2017-11-01

    The Brazilian sugarcane industry constitutes one of the biggest and most efficient ethanol production processes in the world. Brazilian ethanol production utilizes a unique process, which includes cell recycling, acid wash, and non-aseptic conditions. Process characteristics, such as extensive CO 2 generation, poor quality of raw materials, and frequent contaminations, all lead to excessive foam formation during fermentations, which is treated with antifoam agents (AFA). In this study, we have investigated the impact of industrial AFA treatments on the physiology and transcriptome of the industrial ethanol strain Saccharomyces cerevisiae CAT-1. The investigated AFA included industrially used AFA acquired from Brazilian ethanol plants and commercially available AFA commonly used in the fermentation literature. In batch fermentations, it was shown that industrial AFA compromised growth rates and glucose uptake rates, while commercial AFA had no effect in concentrations relevant for defoaming purposes. Industrial AFA were further tested in laboratory scale simulations of the Brazilian ethanol production process and proved to decrease cell viability compared to the control, and the effects were intensified with increasing AFA concentrations and exposure time. Transcriptome analysis showed that AFA treatments induced additional stress responses in yeast cells compared to the control, shown by an up-regulation of stress-specific genes and a down-regulation of lipid biosynthesis, especially ergosterol. By documenting the detrimental effects associated with chemical AFA, we highlight the importance of developing innocuous systems for foam control in industrial fermentation processes.

  3. Model of voluntary ethanol intake in zebrafish: Effect on behavior and hypothalamic orexigenic peptides

    PubMed Central

    Sterling, M.E.; Karatayev, O.; Chang, G.-Q.; Algava, D.B.; Leibowitz, S.F

    2014-01-01

    Recent studies in zebrafish have shown that exposure to ethanol in tank water affects various behaviors, including locomotion, anxiety and aggression, and produces changes in brain neurotransmitters, such as serotonin and dopamine. Building on these investigations, the present study had two goals: first, to develop a method for inducing voluntary ethanol intake in individual zebrafish, which can be used as a model in future studies to examine how this behavior is affected by various manipulations, and second, to characterize the effects of this ethanol intake on different behaviors and the expression of hypothalamic orexigenic peptides, galanin (GAL) and orexin (OX), which are known in rodents to stimulate consumption of ethanol and alter behaviors associated with alcohol abuse. Thus, we first developed a new model of voluntary intake of ethanol in fish by presenting this ethanol mixed with gelatin, which they readily consume. Using this model, we found that individual zebrafish can be trained in a short period of time to consume stable levels of 10% or 20% ethanol (v/v) mixed with gelatin and that their intake of this ethanol-gelatin mixture leads to pharmacologically-relevant blood ethanol concentrations which are strongly, positively correlated with the amount ingested. Intake of this ethanol-gelatin mixture increased locomotion, reduced anxiety, and stimulated aggressive behavior, while increasing expression of GAL and OX in specific hypothalamic areas. These findings, confirming results in rats, provide a method in zebrafish for investigating with forward genetics and pharmacological techniques the role of different brain mechanisms in controlling ethanol intake. PMID:25257106

  4. Acute and Chronic Effects of Ethanol on Learning-Related Synaptic Plasticity

    PubMed Central

    Zorumski, Charles F.; Mennerick, Steven; Izumi, Yukitoshi

    2014-01-01

    Alcoholism is associated with acute and long-term cognitive dysfunction including memory impairment, resulting in substantial disability and cost to society. Thus, understanding how ethanol impairs cognition is essential for developing treatment strategies to dampen its adverse impact. Memory processing is thought to involve persistent, use-dependent changes in synaptic transmission, and ethanol alters the activity of multiple signaling molecules involved in synaptic processing, including modulation of the glutamate and gamma-aminobutyric acid (GABA) transmitter systems that mediate most fast excitatory and inhibitory transmission in the brain. Effects on glutamate and GABA receptors contribute to ethanol-induced changes in long-term potentiation (LTP) and long-term depression (LTD), forms of synaptic plasticity thought to underlie memory acquisition. In this paper, we review the effects of ethanol on learning-related forms of synaptic plasticity with emphasis on changes observed in the hippocampus, a brain region that is critical for encoding contextual and episodic memories. We also include studies in other brain regions as they pertain to altered cognitive and mental function. Comparison of effects in the hippocampus to other brain regions is instructive for understanding the complexities of ethanol’s acute and long-term pharmacological consequences. PMID:24447472

  5. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation.

    PubMed

    Yang, Baode; Li, Chenxing; Sun, Junyi; Wang, Xinghui; Liu, Xinling; Yang, Chun; Chen, Lina; Zhou, Jun; Hu, Hao

    2017-05-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5-50.0mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I Kv1.5 ) were markedly inhibited by 12.5-50.0mM ethanol in a concentration-dependent manner. Ethanol with 50.0mM could inhibit rapid delayed rectifier potassium currents (I hERG ). Ethanol under 6.25-50.0mM did not affect on inward rectifier potassium currents (I Kir2.1 ). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I Kv1.5 and I hERG , which contributed to preventing the development and duration of AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Influence of ethanol on stiffness, toughness, and ductility of femurs of rats.

    PubMed

    Kusy, R P; Hirsch, P F; Peng, T C

    1989-04-01

    Recently, we reported that the ingestion of alcohol in rats reduced the mechanical strength of femurs. Our results showed that, as the dose exceeded 0.012 g of ethanol per gram of body weight, a significant (p less than 0.001) loss of "strength" occurred that was independent of sex according to the relationship, Strength (N) = 140.4 - 6003 dose (g/g). In the present effort, the same flexure tests were reevaluated to include the parameters of stiffness, toughness, and ductility. These latest results confirm that the femurs of rats fed an ethanol liquid diet for 4 weeks are not only weaker but also more compliant and less energy absorbing. Although the femurs of rats fed ethanol are more ductile, the bones are more prone to fracture in fatigue and impact circumstances as well as under simple loading situations. The rat may be an appropriate model to study the mechanisms that lead to the higher incidence of fractures in the alcoholic human.

  7. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Baode; Li, Chenxing

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I{submore » Kv1.5}) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I{sub hERG}). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I{sub Kir2.1}). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I{sub Kv1.5} and I{sub hERG}, which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.« less

  8. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats.

    PubMed

    Lindquist, Derick H; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E

    2013-09-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. Published by Elsevier Inc.

  9. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats

    PubMed Central

    Lindquist, Derick H.; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E.

    2013-01-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4–9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 msec) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 msec) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. PMID:23871534

  10. Reported Adverse Health Effects in Children from Ingestion of Alcohol-Based Hand Sanitizers - United States, 2011-2014.

    PubMed

    Santos, Cynthia; Kieszak, Stephanie; Wang, Alice; Law, Royal; Schier, Joshua; Wolkin, Amy

    2017-03-03

    Hand sanitizers are effective and inexpensive products that can reduce microorganisms on the skin, but ingestion or improper use can be associated with health risks. Many hand sanitizers contain up to 60%-95% ethanol or isopropyl alcohol by volume, and are often combined with scents that might be appealing to young children. Recent reports have identified serious consequences, including apnea, acidosis, and coma in young children who swallowed alcohol-based (alcohol) hand sanitizer (1-3). Poison control centers collect data on intentional and unintentional exposures to hand sanitizer solutions resulting from various routes of exposure, including ingestion, inhalation, and dermal and ocular exposures. To characterize exposures of children aged ≤12 years to alcohol hand sanitizers, CDC analyzed data reported to the National Poison Data System (NPDS).* The major route of exposure to both alcohol and nonalcohol-based (nonalcohol) hand sanitizers was ingestion. The majority of intentional exposures to alcohol hand sanitizers occurred in children aged 6-12 years. Alcohol hand sanitizer exposures were associated with worse outcomes than were nonalcohol hand sanitizer exposures. Caregivers and health care providers should be aware of the potential dangers associated with hand sanitizer ingestion. Children using alcohol hand sanitizers should be supervised and these products should be kept out of reach from children when not in use.

  11. Foreign-body ingestion: characteristics and outcomes in a lower socioeconomic population with predominantly intentional ingestion.

    PubMed

    Palta, Renee; Sahota, Amandeep; Bemarki, Ali; Salama, Paul; Simpson, Nicole; Laine, Loren

    2009-03-01

    Previous reports of foreign-body ingestions focused primarily on accidental ingestions. To describe the characteristics and management of foreign-body ingestions, with predominantly intentional ingestion, in a lower socioeconomic status population. A retrospective case series. An urban county hospital. Patients >/=17 years old, with foreign-body ingestions between 2000 and 2006. Characteristics of ingestion cases, endoscopic extraction, need for surgery, and complications. Among 262 cases, 92% were intentional, 85% involved psychiatric patients, and 84% occurred in patients with prior ingestions. The time from ingestion to presentation was >48 hours in 168 cases (64%). The overall success rate for endoscopic extraction was 90% (165/183 cases). Surgery was performed in 30 cases (11%) and was more common for objects beyond the pylorus versus objects above the pylorus (16/43 [37%] vs 10/151 [7%], respectively) and in cases with a greater delay from ingestion to presentation (25/168 [15%] if >48 hours vs 4/77 [5%] if 48 hours vs 14/165 [8%] if ingestions in an urban county hospital occurred primarily in psychiatric patients who had repeated episodes of intentional ingestions. Endoscopic extraction was unsuccessful in 10% of cases. Long delays from ingestion to presentation and intervention may account for relatively high rates of surgery and perforation. Strategies to prevent ingestions and delays in endoscopic management are needed in this population.

  12. KCNQ Channels Regulate Age-Related Memory Impairment

    PubMed Central

    Cavaliere, Sonia; Malik, Bilal R.; Hodge, James J. L.

    2013-01-01

    In humans KCNQ2/3 heteromeric channels form an M-current that acts as a brake on neuronal excitability, with mutations causing a form of epilepsy. The M-current has been shown to be a key regulator of neuronal plasticity underlying associative memory and ethanol response in mammals. Previous work has shown that many of the molecules and plasticity mechanisms underlying changes in alcohol behaviour and addiction are shared with those of memory. We show that the single KCNQ channel in Drosophila (dKCNQ) when mutated show decrements in associative short- and long-term memory, with KCNQ function in the mushroom body α/βneurons being required for short-term memory. Ethanol disrupts memory in wildtype flies, but not in a KCNQ null mutant background suggesting KCNQ maybe a direct target of ethanol, the blockade of which interferes with the plasticity machinery required for memory formation. We show that as in humans, Drosophila display age-related memory impairment with the KCNQ mutant memory defect mimicking the effect of age on memory. Expression of KCNQ normally decreases in aging brains and KCNQ overexpression in the mushroom body neurons of KCNQ mutants restores age-related memory impairment. Therefore KCNQ is a central plasticity molecule that regulates age dependent memory impairment. PMID:23638087

  13. Acute ethanol poisoning in a 6-year-old girl following ingestion of alcohol-based hand sanitizer at school.

    PubMed

    Joseph, Madeline Matar; Zeretzke, Cristina; Reader, Sara; Sollee, Dawn R

    2011-01-01

    Alcohol-based hand sanitizers (ABHSs) have been widely used in homes, workplaces and schools to prevent the spread of infectious diseases. We report a young child unintentionally ingested ABHS at a school, resulting in intoxication. The child was a 6-year-old girl who had been brought to the emergency department (ED) for hypothermia, altered mental status (AMS), periods of hypoventilation, hypothermia and vomiting. Computed tomography of her head revealed nothing abnormal in intracranial pathology. Urine drug screening was negative. Alcohol level was 205 mg/dL on admission. Other abnormal values included potassium of 2.8 mEq/L, osmolality of 340 mOsm/kg and no hypoglycemia. Further investigation revealed that the patient had gone frequently to the class restroom for ingestion of unknown quantities of ABHSs during the day. The patient was admitted for one day for intravenous fluid hydration and close observation of her mental status. The patient was discharged from the hospital the next day without any complications. Despite the large safety margin of ABHSs, emergency physicians need to be aware of the potential risk of ingestion of a large amount of such products in children and consider it in the assessment and management of school-age children with acute AMS.

  14. Role of adenosine and wake-promoting basal forebrain in insomnia and associated sleep disruptions caused by ethanol dependence.

    PubMed

    Sharma, Rishi; Engemann, Samuel; Sahota, Pradeep; Thakkar, Mahesh M

    2010-11-01

    Insomnia is a severe symptom of alcohol withdrawal; however, the underlying neuronal mechanism is yet unknown. We hypothesized that chronic ethanol exposure will impair basal forebrain (BF) adenosinergic mechanism resulting in insomnia-like symptoms. We performed a series of experiments in Sprague-Dawley rats to test our hypothesis. We used Majchrowicz's chronic binge ethanol protocol to induce ethanol dependency. Our first experiment verified the effects of ethanol withdrawal on sleep-wakefulness. Significant increase in wakefulness was observed during ethanol withdrawal. Next, we examined c-Fos expression (marker of neuronal activation) in BF wake-promoting neurons during ethanol withdrawal. There was a significant increase in the number of BF wake-promoting neurons with c-Fos immunoreactivity. Our third experiment examined the effects of ethanol withdrawal on sleep deprivation induced increase in BF adenosine levels. Sleep deprivation did not increase BF adenosine levels in ethanol dependent rats. Our last experiment examined the effects of ethanol withdrawal on equilibrative nucleoside transporter 1 and A1 receptor expression in the BF. There was a significant reduction in A1 receptor and equilibrative nucleoside transporter 1 expression in the BF of ethanol dependent rats. Based on these results, we suggest that insomnia observed during ethanol withdrawal is caused because of impaired adenosinergic mechanism in the BF. © 2010 The Authors. Journal of Neurochemistry © 2010 International Society for Neurochemistry.

  15. Effect of ethanol on psychomotor performance and on risk taking behaviour.

    PubMed

    Farquhar, K; Lambert, K; Drummond, G B; Tiplady, B; Wright, P

    2002-12-01

    Ethanol may increase the willingness to take risks, but this issue remains controversial. We used a risk-taking paradigm in which volunteers answered a series of general knowledge questions with numerical answers and were asked to judge the length of a line that would just fit into a given gap. A maximum score was given for an exactly correct answer. For answers that were less than the correct value, the score was reduced gradually to zero, while answers even slightly over the correct value were penalized considerably. Total points were rewarded by cash payments, so volunteers were taking real risks when making their responses. Performance was assessed in a two-period, double-blind crossover study, comparing ethanol (0.7 g/kg) with placebo in 20 female volunteers aged 19-20 years. Tests were carried out before and at 45 min after dosing. Mean (SD) ethanol blood alcohol concentrations were 65 (10.5) mg/100 ml. Ethanol impaired the skill/ability measure of the length estimation test (SD of difference between length of line and gap), which increased from 5.9 to 6.6 (p < 0.05), indicating a reduced accuracy of estimation. The risk measures in both tasks were not significantly affected. The skill/ability measure in the general knowledge task was not significantly affected. Other performance tests showed that ethanol produced the expected impairment of both speed and accuracy. These results suggest that risk-taking is not increased by ethanol at doses approaching the UK legal limit for driving.

  16. Adapting to alcohol: Dwarf hamster (Phodopus campbelli) ethanol consumption, sensitivity, and hoard fermentation.

    PubMed

    Lupfer, Gwen; Murphy, Eric S; Merculieff, Zoe; Radcliffe, Kori; Duddleston, Khrystyne N

    2015-06-01

    Ethanol consumption and sensitivity in many species are influenced by the frequency with which ethanol is encountered in their niches. In Experiment 1, dwarf hamsters (Phodopus campbelli) with ad libitum access to food and water consumed high amounts of unsweetened alcohol solutions. Their consumption of 15%, but not 30%, ethanol was reduced when they were fed a high-fat diet; a high carbohydrate diet did not affect ethanol consumption. In Experiment 2, intraperitoneal injections of ethanol caused significant dose-related motor impairment. Much larger doses administered orally, however, had no effect. In Experiment 3, ryegrass seeds, a common food source for wild dwarf hamsters, supported ethanol fermentation. Results of these experiments suggest that dwarf hamsters may have adapted to consume foods in which ethanol production naturally occurs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss®) on ethanol impaired osteoblasts.

    PubMed

    Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh

    2017-11-01

    Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Effects of ethanol on red blood cell rheological behavior.

    PubMed

    Rabai, M; Detterich, J A; Wenby, R B; Toth, K; Meiselman, H J

    2014-01-01

    Consumption of red wine is associated with a decreased risk of several cardiovascular diseases (e.g., coronary artery disease, stroke), but unfortunately literature reports regarding ethanol's effects on hemorheological parameters are not concordant. In the present study, red blood cell (RBC) deformability was tested via laser ektacytometry (LORCA, 0.3-30 Pa) using two approaches: 1) addition of ethanol to whole blood at 0.25%-2% followed by incubation and testing in ethanol-free LORCA medium; 2) addition of ethanol to the LORCA medium at 0.25%-6% then testing untreated native RBC in these media. The effects of ethanol on deformability for oxidatively stressed RBC were investigated as were changes of RBC aggregation (Myrenne Aggregometer) for cells in autologous plasma or 3% 70 kDa dextran. Significant dose-related increases of RBC deformability were observed at 0.25% (p < 0.05) and higher concentrations only if ethanol was in the LORCA medium; no changes occurred for cells previously incubated with ethanol then tested in ethanol-free medium. The impaired deformability of cells pre-exposed to oxidative stress was improved only if ethanol was in the LORCA medium. RBC aggregation decreased with concentration at 0.25% and higher for cells in both autologous plasma and dextran 70. Our results indicate that ethanol reversibly improves erythrocyte deformability and irreversibly decreases erythrocyte aggregation; the relevance of these results to the health benefits of moderate wine consumption require further investigation.

  19. Soil ingestion by dairy cattle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darwin, R.

    1990-02-15

    Ingested soil may be a source of minerals to grazing cattle; it may also be a source of radionuclides, heavy metals, and organic toxins. The importance of soil ingestion in the milk pathway depends on the amount of soil ingested, the ratio of the mineral concentration in soil to that in herbage, and the ability of the cattle to solubilize and absorb the soil-derived minerals. The amount of soil ingested by cattle on pasture, in turn, depends upon the stocking level, the quantity of forage available, and the soil ingesting propensity of individual cows. The objective of this note ismore » to summarize some of the information about soil ingestion by dairy cattle and to suggest methods for incorporating soil ingestion into the Hanford Environmental Dose Reconstruction (HEDR) Phase I milk model. 5 refs., 4 tabs.« less

  20. Aloe vera gel extract attenuates ethanol-induced hepatic lipid accumulation by suppressing the expression of lipogenic genes in mice.

    PubMed

    Saito, Marie; Tanaka, Miyuki; Misawa, Eriko; Yamada, Muneo; Yamauchi, Kouji; Iwatsuki, Keiji

    2012-01-01

    We have previously reported that Aloe vera gel had hypoglycemic activity and anti-obesity effects, although the effect on alcoholic fatty liver was unclear. We examined in this present study the effect of an Aloe vera gel extract (AVGE) on hepatic lipid metabolism by using an ethanol-induced transient fatty liver mouse model. Ethanol (3 g/kg of mouse weight) was orally administered to induce an accumulation of triglyceride (TG) and increase the mRNA expression of such lipogenic genes as sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FASN) in the liver. Although ethanol ingestion caused a 5.4-fold increase in liver TG, pre-treating with AVGE (1 mg/kg/d) for 1 week significantly suppressed this elevation of the ethanol-induced liver TG level. The expression of lipogenic genes was also lower in the AVGE pre-treatment group than in the control group. This inhibitory effect on the ethanol-induced accumulation of TG was attributed to a reduction in the expression of lipogenic genes that were increased by ethanol.

  1. What proof is in your Christmas pudding? Is caring under the influence possible?

    PubMed

    Brieger, Daniel G; Amir, Amaleena B; Punch, Gratian J; Lim, Christopher S H; Toh, James

    2014-12-11

    To determine the ethanol concentration of commonly available Christmas puddings, and to extrapolate the blood alcohol content (BAC) of typical health care professionals after Christmas lunch at the hospital. We conducted fractional distillation of Christmas puddings and analysed the distillate for ethanol content. We then applied standard pharmacological and physiological assumptions to assess predicted BAC in typical male and female health care professionals at our hospital. Ethanol concentration of each pudding; estimated BAC of health care professionals after ingestion and at the end of a 30-minute lunch break. The concentration of ethanol in common Christmas puddings ranged from 0.260 to 1.685 g per 125 mg slice. The concentration of ethanol per pudding was not greater than the stipulated specifications on the packaging, where shown. After pudding ingestion, the theoretical BAC of a typical 70 kg male and 60 kg female health care professional ranged from 0.001 to 0.004 g/dL and from 0.001 to 0.006 g/dL, respectively. Neither male nor female staff had a predicted BAC > 0.000 g/dL by the end of the lunch break. Christmas puddings contain ethanol that does not all evaporate during the cooking process. However, the rise in BAC after ingestion of a typical slice of Christmas pudding was negligible and unlikely to affect work performance or safety or impair a health care worker's ability to make complex decisions.

  2. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    PubMed

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  3. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats ( Rousettus aegyptiacus)

    NASA Astrophysics Data System (ADS)

    Sánchez, Francisco; Korine, Carmi; Kotler, Burt P.; Pinshow, Berry

    2008-06-01

    Ethanol occurs in fleshy fruit as a result of sugar fermentation by both microorganisms and the plant itself; its concentration [EtOH] increases as fruit ripens. At low concentrations, ethanol is a nutrient, whereas at high concentrations, it is toxic. We hypothesized that the effects of ethanol on the foraging behavior of frugivorous vertebrates depend on its concentration in food and the body condition of the forager. We predicted that ethanol stimulates food consumption when its concentration is similar to that found in ripe fruit, whereas [EtOH] below or above that of ripe fruit has either no effect, or else deters foragers, respectively. Moreover, we expected that the amount of food ingested on a particular day of feeding influences the toxic effects of ethanol on a forager, and consequently shapes its feeding decisions on the following day. We therefore predicted that for a food-restricted forager, ethanol-rich food is of lower value than ethanol-free food. We used Egyptian fruit bats ( Rousettus aegyptiacus) as a model to test our hypotheses, and found that ethanol did not increase the value of food for the bats. High [EtOH] reduced the value of food for well-fed bats. However, for food-restricted bats, there was no difference between the value of ethanol-rich and ethanol-free food. Thus, microorganisms, via their production of ethanol, may affect the patterns of feeding of seed-dispersing frugivores. However, these patterns could be modified by the body condition of the animals because they might trade-off the costs of intoxication against the value of nutrients acquired.

  4. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotidemore » (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to

  5. Low doses of methylmercury intoxication solely or associated to ethanol binge drinking induce psychiatric-like disorders in adolescent female rats.

    PubMed

    Belém-Filho, Ivaldo Jesus Almeida; Ribera, Paula Cardoso; Nascimento, Aline Lima; Gomes, Antônio Rafael Quadros; Lima, Rafael Rodrigues; Crespo-Lopez, Maria Elena; Monteiro, Marta Chagas; Fontes-Júnior, Enéas Andrade; Lima, Marcelo Oliveira; Maia, Cristiane Socorro Ferraz

    2018-04-30

    Methylmercury (MeHg) is an environmental contaminant that provokes damage to developing brain. Simultaneously, the consumption of ethanol among adolescents has increased. Evidence concerning the effects of MeHg low doses per se or associated with ethanol during adolescence are scarce. Thus, we investigate behavioral disorders resulted from exposure to MeHg low doses and co-intoxicated with ethanol in adolescent rats. Wistar rats received chronic exposure to low doses of MeHg (40 μg/kg/day for 5 weeks) and/or ethanol binge drinking (3 g/kg/day at 3 days per week for 5 weeks). Animals were submitted to behavioral assays to assess emotionality and cognitive function. Total mercury content was evaluated in the brain and hair. Oxidative parameters were analyzed in blood samples. MeHg at low doses or associated to ethanol binge drinking produced psychiatric-like disorders and cognitive impairment. Peripherally, MeHg altered oxidative parameters when associated to ethanol. Ethanol administration reduced brain mercury deposit. We proposed that ethanol reduces the necessity of mercury tissue levels to display psychiatric-like disorders/cognitive impairment. Copyright © 2018. Published by Elsevier B.V.

  6. Ingestions considered nontoxic.

    PubMed

    Mofenson, H C; Greensher, J; Caraccio, T R

    1984-09-01

    The authors have compiled a list of common household products and drugs that are frequently ingested by children and may be considered nontoxic unless taken deliberately or in large amounts. An understanding of the nontoxic ingestion should prevent overtreatment and decrease emergency room visits.

  7. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5′-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5′-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  8. Chronic ethanol consumption inhibits glucokinase transcriptional activity by Atf3 and triggers metabolic syndrome in vivo.

    PubMed

    Kim, Ji Yeon; Hwang, Joo-Yeon; Lee, Dae Yeon; Song, Eun Hyun; Park, Keon Jae; Kim, Gyu Hee; Jeong, Eun Ae; Lee, Yoo Jeong; Go, Min Jin; Kim, Dae Jin; Lee, Seong Su; Kim, Bong-Jo; Song, Jihyun; Roh, Gu Seob; Gao, Bin; Kim, Won-Ho

    2014-09-26

    Chronic ethanol consumption induces pancreatic β-cell dysfunction through glucokinase (Gck) nitration and down-regulation, leading to impaired glucose tolerance and insulin resistance, but the underlying mechanism remains largely unknown. Here, we demonstrate that Gck gene expression and promoter activity in pancreatic β-cells were suppressed by chronic ethanol exposure in vivo and in vitro, whereas expression of activating transcription factor 3 (Atf3) and its binding to the putative Atf/Creb site (from -287 to -158 bp) on the Gck promoter were up-regulated. Furthermore, in vitro ethanol-induced Atf3 inhibited the positive effect of Pdx-1 on Gck transcriptional regulation, enhanced recruitment of Hdac1/2 and histone H3 deacetylation, and subsequently augmented the interaction of Hdac1/Pdx-1 on the Gck promoter, which were diminished by Atf3 siRNA. In vivo Atf3-silencing reversed ethanol-mediated Gck down-regulation and β-cell dysfunction, followed by the amelioration of impaired glucose tolerance and insulin resistance. Together, we identified that ethanol-induced Atf3 fosters β-cell dysfunction via Gck down-regulation and that its loss ameliorates metabolic syndrome and could be a potential therapeutic target in treating type 2 diabetes. The Atf3 gene is associated with the induction of type 2 diabetes and alcohol consumption-induced metabolic impairment and thus may be the major negative regulator for glucose homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. [Ethanol changes sensitivity of Kupffer cells to endotoxin].

    PubMed

    Yamashina, Shunhei; Ikejima, Kenichi; Enomoto, Nobuyuki; Takei, Yoshiyuki; Sato, Nobuhiro

    2003-10-01

    early after ethanol exhibited tolerance to LPS, whereas sensitization was observed later. In conclusion, acute ethanol alters the expression of endotoxin receptors and intracellular signaling molecules, and causes both tolerance and sensitization of Kupffer cells to endotoxin. It is postulated that tolerance of Kupffer cells contributes to the impairment of innate immune system in alcoholism, while sensitization to endotoxin enhances progression of alcoholic liver injury.

  10. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats

    PubMed Central

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus

    2010-01-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966

  11. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    PubMed

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  12. Chronic ethanol consumption induces erectile dysfunction: Role of oxidative stress.

    PubMed

    Muniz, Jaqueline J; Leite, Letícia N; De Martinis, Bruno S; Carneiro, Fernando S; Tirapelli, Carlos R

    2015-11-15

    Investigate the effects of chronic ethanol consumption on erectile function and on the corpus cavernosum (CC) reactivity to endothelin-1 (ET-1). Male Wistar rats were treated with ethanol (20% v/v) for six weeks. Ethanol-treated rats showed impaired erectile function represented by decreased intracavernosal pressure/mean arterial pressure (ICP/MAP) responses. Ethanol consumption increased the contractile response induced by ET-1 in the isolated CC. Tiron increased ET-1-induced contraction in CC from control and ethanol-treated rats. No differences in the maximal contraction to ET-1 were observed after incubation of CC with PEG-catalase. SC560 and SC236 increased ET-1-induced contraction in CC from ethanol-treated rats. Y27632 reduced the contraction induced by ET-1 in CC from control and ethanol-treated rats. Ethanol increased plasma TBARS, superoxide anion (O2(-)) levels and intracellular reactive oxygen species (ROS) generation in the rat CC. Reduced hydrogen peroxide (H2O2) levels in CC and increased catalase (CAT) activity in plasma and CC were detected after treatment with ethanol. Ethanol decreased superoxide dismutase (SOD) activity in the rat CC. Increased expression of COX-1 was observed in CC from ethanol-treated rats. Treatment with ethanol decreased COX-2 expression but did not alter the expression of Nox1, RhoA and p-RhoA (ser(188)) in the rat CC. The major new findings of our study are that ethanol consumption induces erectile dysfunction (ED) and increases the contraction induced by ET-1 in the rat CC by a mechanism that involves decreased generation of H2O2 and vasodilator prostanoids as well as increased activation of the RhoA/Rho-kinase pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Is elevated creatinine a reliable marker for methanol toxicity in nitromethane-containing model fuel ingestions in children?

    PubMed

    Padmanabhan, Pradeep; Spiller, Henry A; Ross, Mitchell P; Bosse, George M

    2011-01-01

    In the absence of a rapid serum methanol level estimation, it is difficult to assess the risk from unintentional childhood ingestion of model fuels containing methanol and nitromethane (MFNM). Previous reports have documented false elevations of serum creatinine from the nitromethane in these fuels, suggesting its utility as a readily available marker of significant methanol ingestion. We performed a 2-year retrospective chart review of cases of ingestion of MFNM in children, with both a methanol level and measured creatinine level. Seven children, ages 19 months to 3 years, ingested MFNM. All seven children were seen in a hospital and had measured methanol and creatinine levels. All blood samples for methanol and creatinine were drawn within 3 hours of ingestion with methanol estimation delayed up to 24 hours. Creatinine ranged from 0.39 (0.034 mmol/l) to 10.7 mg/dl (0.95 mmol/l). All methanol levels were <10 mg/dl (0.31 mmol/l) or reported as negative. Fomepizole was initiated empirically in two patients due to delay in obtaining methanol analysis results. Transient elevations of creatinine occurred in five of the seven children. Blood urea nitrogen was within normal limits, and there was no history of renal impairment in these children, suggesting the elevated creatinine was mostly related to nitromethane ingestion. No child had a significantly elevated methanol level. Elevated creatinine level, as measured by Jaffe colorimetric method, is not a reliable marker for elevated methanol levels after unintentional ingestion of MFNM.

  14. Daily estimates of soil ingestion in children.

    PubMed Central

    Stanek, E J; Calabrese, E J

    1995-01-01

    Soil ingestion estimates play an important role in risk assessment of contaminated sites, and estimates of soil ingestion in children are of special interest. Current estimates of soil ingestion are trace-element specific and vary widely among elements. Although expressed as daily estimates, the actual estimates have been constructed by averaging soil ingestion over a study period of several days. The wide variability has resulted in uncertainty as to which method of estimation of soil ingestion is best. We developed a methodology for calculating a single estimate of soil ingestion for each subject for each day. Because the daily soil ingestion estimate represents the median estimate of eligible daily trace-element-specific soil ingestion estimates for each child, this median estimate is not trace-element specific. Summary estimates for individuals and weeks are calculated using these daily estimates. Using this methodology, the median daily soil ingestion estimate for 64 children participating in the 1989 Amherst soil ingestion study is 13 mg/day or less for 50% of the children and 138 mg/day or less for 95% of the children. Mean soil ingestion estimates (for up to an 8-day period) were 45 mg/day or less for 50% of the children, whereas 95% of the children reported a mean soil ingestion of 208 mg/day or less. Daily soil ingestion estimates were used subsequently to estimate the mean and variance in soil ingestion for each child and to extrapolate a soil ingestion distribution over a year, assuming that soil ingestion followed a log-normal distribution. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:7768230

  15. Postnatal aniracetam treatment improves prenatal ethanol induced attenuation of AMPA receptor-mediated synaptic transmission.

    PubMed

    Wijayawardhane, Nayana; Shonesy, Brian C; Vaglenova, Julia; Vaithianathan, Thirumalini; Carpenter, Mark; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu

    2007-06-01

    Aniracetam is a nootropic compound and an allosteric modulator of AMPA receptors (AMPARs) which mediate synaptic mechanisms of learning and memory. Here we analyzed impairments in AMPAR-mediated synaptic transmission caused by moderate prenatal ethanol exposure and investigated the effects of postnatal aniracetam treatment on these abnormalities. Pregnant Sprague-Dawley rats were gavaged with ethanol or isocaloric sucrose throughout pregnancy, and subsequently the offspring were treated with aniracetam on postnatal days (PND) 18 to 27. Hippocampal slices prepared from these pups on PND 28 to 34 were used for the whole-cell patch-clamp recordings of AMPAR-mediated spontaneous and miniature excitatory postsynaptic currents in CA1 pyramidal cells. Our results indicate that moderate ethanol exposure during pregnancy results in impaired hippocampal AMPAR-mediated neurotransmission, and critically timed aniracetam treatment can abrogate this deficiency. These results highlight the possibility that aniracetam treatment can restore synaptic transmission and ameliorate cognitive deficits associated with the fetal alcohol syndrome.

  16. Effects of Chronic Ethanol Consumption on Rat GABAA and Strychnine-sensitive Glycine Receptors Expressed by Lateral/Basolateral Amygdala Neurons

    PubMed Central

    McCool, Brian A.; Frye, Gerald D.; Pulido, Marisa D.; Botting, Shaleen K.

    2010-01-01

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABAA and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABAA receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor’s response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABAA receptors composed of unique α subunits were differentially sensitive to acute ethanol. Likewise, the presence of the β subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the α2 subunit. Our results suggest that the facilitation of GABAA receptors during chronic ethanol exposure may help explain the maintenance of ethanol’s anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABAA and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure. PMID:12560122

  17. Mitigation of postnatal ethanol-induced neuroinflammation ameliorates trace fear memory deficits in juvenile rats.

    PubMed

    Goodfellow, Molly J; Shin, Youn Ju; Lindquist, Derick H

    2018-02-15

    Impairments in behavior and cognition are common in individuals diagnosed with fetal alcohol spectrum disorders (FASD). In this study, FASD model rats were intragastrically intubated with ethanol (5g/kg/day; 5E), sham-intubated (SI), or maintained as naïve controls (NC) over postnatal days (PD) 4-9. Ethanol exposure during this human third trimester-equivalent period induces persistent impairments in hippocampus-dependent learning and memory. The ability of ibuprofen (IBU), a non-steroidal anti-inflammatory drug, to diminish ethanol-induced neuroinflammation and rescue deficits in hippocampus-dependent trace fear conditioning (TFC) was investigated in 5E rats. Phosphate buffered saline vehicle (VEH) or IBU was injected 2h following ethanol exposure over PD4-9, followed by quantification of inflammation-related genes in the dorsal hippocampus of PD10 rats. The 5E-VEH rats exhibited significant increases in Il1b and Tnf, but not Itgam or Gfap, relative to NC, SI-VEH, and 5E-IBU rats. In separate groups of PD31-33 rats, conditioned fear (freezing) was significantly reduced in 5E-VEH rats during TFC testing, but not acquisition, compared to SI-VEH and, critically, 5E-IBU rats. Results suggest neuroimmune activation in response to ethanol within the neonate hippocampus contributes to later-life cognitive dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Esophageal button battery ingestion in children.

    PubMed

    Şencan, Arzu; Genişol, İncinur; Hoşgör, Münevver

    2017-07-01

    Button battery lodged in the esophagus carries a high risk of morbidity and mortality. The purpose of this study was to present cases of patients with esophageal button battery ingestion treated at our clinic and to emphasize the importance of early diagnosis and treatment. Records of patients admitted to our hospital for foreign body ingestion between January 2010 and May 2015 were retrospectively reviewed. Cases with button battery lodged in the esophagus were included in the study. Patient data regarding age, sex, length of time after ingestion until admission, presenting clinical symptoms, type and localization of the battery, management, and prognosis were analyzed. Among 1891 foreign body ingestions, 71 were localized in the esophagus, and 8 of those (11.2%) were cases of button battery ingestion. Mean age was 1.7 years. Admission was within 6 hours of ingestion in 5 cases, after 24 hours had elapsed in 2, and 1 month after ingestion in 1 case. All patients but 1 knew the history of ingestion. Prompt endoscopic removal was performed for all patients. Three patients developed esophageal stricture, which responded to dilatation. Early recognition and timely endoscopic removal is mandatory in esophageal button battery ingestion. It should be suspected in the differential diagnosis of patients with persistent respiratory and gastrointestinal symptoms.

  19. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats.

    PubMed

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus

    2010-11-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Effects of chronic ethanol consumption on rat GABA(A) and strychnine-sensitive glycine receptors expressed by lateral/basolateral amygdala neurons.

    PubMed

    McCool, Brian A; Frye, Gerald D; Pulido, Marisa D; Botting, Shaleen K

    2003-02-14

    It is well known that the anxiolytic potential of ethanol is maintained during chronic exposure. We have confirmed this using a light-dark box paradigm following chronic ethanol ingestion via a liquid diet. However, cessation from chronic ethanol exposure is known to cause severe withdrawal anxiety. These opposing effects on anxiety likely result from neuro-adaptations of neurotransmitter systems within the brain regions regulating anxiety. Recent work highlights the importance of amygdala ligand-gated chloride channels in the expression of anxiety. We have therefore examined the effects of chronic ethanol exposure on GABA(A) and strychnine-sensitive glycine receptors expressed by acutely isolated adult rat lateral/basolateral amygdala neurons. Chronic ethanol exposure increased the functional expression of GABA(A) receptors in acutely isolated basolateral amygdala neurons without altering strychnine-sensitive glycine receptors. Neither the acute ethanol nor benzodiazepine sensitivity of either receptor system was affected. We explored the likelihood that subunit composition might influence each receptor's response to chronic ethanol. Importantly, when expressed in a mammalian heterologous system, GABA(A) receptors composed of unique alpha subunits were differentially sensitive to acute ethanol. Likewise, the presence of the beta subunit appeared to influence the acute ethanol sensitivity of glycine receptors containing the alpha(2) subunit. Our results suggest that the facilitation of GABA(A) receptors during chronic ethanol exposure may help explain the maintenance of ethanol's anti-anxiety effects during chronic ethanol exposure. Furthermore, the subunit composition of GABA(A) and strychnine-sensitive glycine receptors may ultimately influence the response of each system to chronic ethanol exposure.

  1. Fetal Alcohol Syndrome, Chemo-Biology and OMICS: Ethanol Effects on Vitamin Metabolism During Neurodevelopment as Measured by Systems Biology Analysis

    PubMed Central

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães

    2014-01-01

    Abstract Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment. PMID:24816220

  2. Fetal alcohol syndrome, chemo-biology and OMICS: ethanol effects on vitamin metabolism during neurodevelopment as measured by systems biology analysis.

    PubMed

    Feltes, Bruno César; de Faria Poloni, Joice; Nunes, Itamar José Guimarães; Bonatto, Diego

    2014-06-01

    Fetal alcohol syndrome (FAS) is a prenatal disease characterized by fetal morphological and neurological abnormalities originating from exposure to alcohol. Although FAS is a well-described pathology, the molecular mechanisms underlying its progression are virtually unknown. Moreover, alcohol abuse can affect vitamin metabolism and absorption, although how alcohol impairs such biochemical pathways remains to be elucidated. We employed a variety of systems chemo-biology tools to understand the interplay between ethanol metabolism and vitamins during mouse neurodevelopment. For this purpose, we designed interactomes and employed transcriptomic data analysis approaches to study the neural tissue of Mus musculus exposed to ethanol prenatally and postnatally, simulating conditions that could lead to FAS development at different life stages. Our results showed that FAS can promote early changes in neurotransmitter release and glutamate equilibrium, as well as an abnormal calcium influx that can lead to neuroinflammation and impaired neurodifferentiation, both extensively connected with vitamin action and metabolism. Genes related to retinoic acid, niacin, vitamin D, and folate metabolism were underexpressed during neurodevelopment and appear to contribute to neuroinflammation progression and impaired synapsis. Our results also indicate that genes coding for tubulin, tubulin-associated proteins, synapse plasticity proteins, and proteins related to neurodifferentiation are extensively affected by ethanol exposure. Finally, we developed a molecular model of how ethanol can affect vitamin metabolism and impair neurodevelopment.

  3. Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome

    PubMed Central

    Kharbanda, Kusum K.; Todero, Sandra L.; King, Adrienne L.; Osna, Natalia A.; McVicker, Benita L.; Tuma, Dean J.; Wisecarver, James L.; Bailey, Shannon M.

    2012-01-01

    Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10 mg/mL) for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE) revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAM : S-adenosylhomocysteine (SAH) ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection. PMID:22187660

  4. The novel gene tank, a tumor suppressor homolog, regulates ethanol sensitivity in Drosophila.

    PubMed

    Devineni, Anita V; Eddison, Mark; Heberlein, Ulrike

    2013-05-08

    In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila.

  5. The Novel Gene tank, a Tumor Suppressor Homolog, Regulates Ethanol Sensitivity in Drosophila

    PubMed Central

    Eddison, Mark; Heberlein, Ulrike

    2013-01-01

    In both mammalian and insect models of ethanol intoxication, high doses of ethanol induce motor impairment and eventually sedation. Sensitivity to the sedative effects of ethanol is inversely correlated with risk for alcoholism. However, the genes regulating ethanol sensitivity are largely unknown. Based on a previous genetic screen in Drosophila for ethanol sedation mutants, we identified a novel gene, tank (CG15626), the homolog of the mammalian tumor suppressor EI24/PIG8, which has a strong role in regulating ethanol sedation sensitivity. Genetic and behavioral analyses revealed that tank acts in the adult nervous system to promote ethanol sensitivity. We localized the function of tank in regulating ethanol sensitivity to neurons within the pars intercerebralis that have not been implicated previously in ethanol responses. We show that acutely manipulating the activity of all tank-expressing neurons, or of pars intercerebralis neurons in particular, alters ethanol sensitivity in a sexually dimorphic manner, since neuronal activation enhanced ethanol sedation in males, but not females. Finally, we provide anatomical evidence that tank-expressing neurons form likely synaptic connections with neurons expressing the neural sex determination factor fruitless (fru), which have been implicated recently in the regulation of ethanol sensitivity. We suggest that a functional interaction with fru neurons, many of which are sexually dimorphic, may account for the sex-specific effect induced by activating tank neurons. Overall, we have characterized a novel gene and corresponding set of neurons that regulate ethanol sensitivity in Drosophila. PMID:23658154

  6. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function.

    PubMed

    Groebner, Jennifer L; Fernandez, David J; Tuma, Dean J; Tuma, Pamela L

    2014-12-01

    Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to microtubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease.

  7. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function

    PubMed Central

    Groebner, Jennifer L.; Fernandez, David J.; Tuma, Dean J.; Tuma, Pamela L.

    2016-01-01

    Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to micro-tubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease. PMID:25148871

  8. PKCε plays a causal role in acute ethanol-induced steatosis

    PubMed Central

    Kaiser, J. Phillip; Beier, Juliane I.; Zhang, Jun; Hoetker, J. David; von Montfort, Claudia; Guo, Luping; Zheng, Yuting; Monia, Brett P.; Bhatnagar, Aruni; Arteel, Gavin E.

    2009-01-01

    Steatosis is a critical stage in the pathology of alcoholic liver disease (ALD), and preventing steatosis could protect against later stages of ALD. PKCε has been shown to contribute to hepatic steatosis in experimental non-alcoholic fatty liver disease (NAFLD); however, the role of PKCε in ethanol-induced steatosis has not been determined. The purpose of this study was to therefore test the hypothesis that PKCε contributes to ethanol-induced steatosis. Accordingly, the effect of acute ethanol on indices of hepatic steatosis and insulin signaling were determined in PKCε knockout mice and in wild-type mice that received an antisense oligonucleotide (ASO) to knockdown PKCε expression. Acute ethanol (6 g/kg i.g.) caused a robust increase in hepatic non-esterified free fatty acids (NEFA), which peaked 1 h after ethanol exposure. This increase in NEFA was followed by elevated diacylglycerols (DAG), as well as by the concomitant activation of PKCε. Acute ethanol also changed the expression of insulin-responsive genes (i.e. increased G6Pase, downregulated GK), in a pattern indicative of impaired insulin signaling. Acute ethanol exposure subsequently caused a robust increase in hepatic triglycerides. The accumulation of triglycerides caused by ethanol was blunted in ASO-treated or in PKCε−/− mice. Taken together, these data suggest that the increase in NEFA caused by hepatic ethanol metabolism leads to an increase in DAG production via the triacylglycerol pathway. DAG then subsequently activates PKCε, which then exacerbates hepatic lipid accumulation by inducing insulin resistance. These data also suggest that PKCε plays a causal role in at least the early phases of ethanol-induced liver injury. PMID:19022218

  9. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032; Zhu, Bo

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid andmore » glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.« less

  10. Physiologic effects of prolonged conducted electrical weapon discharge in ethanol-intoxicated adults.

    PubMed

    Moscati, Ronald; Ho, Jeffrey D; Dawes, Donald M; Miner, James R

    2010-06-01

    This study examines the physiologic effects of prolonged conducted electrical weapon (CEW) exposure on alcohol-intoxicated adult subjects. Adult volunteers were recruited at a TASER International training conference. All subjects ingested mixed drinks until clinical intoxication or until a minimum breath alcohol level of 0.08 mg/dL was achieved. Blood samples for venous pH, Pco(2), bicarbonate, and lactate were measured in all subjects at baseline, immediately after alcohol ingestion, immediately after exposure to a 15-second TASER X26 discharge (Taser International Inc, Scottsdale, AZ), and 24 hours post-alcohol ingestion. Laboratory values were compared at sampling times using repeated-measure analysis of variance. A focused analysis comparing time points within groups was then performed using paired t tests. Twenty-two subjects were enrolled into the study. There was a decrease in pH and bicarbonate and an increase in lactate after alcohol ingestion. There was a further increase in lactate and drop in pH after CEW exposure. No subject experienced a significant adverse event. All values had returned to baseline levels at 24 hours except lactate, which demonstrated a small but clinically insignificant increase. Prolonged continuous CEW exposure in the setting of acute alcohol intoxication has no clinically significant effect on subjects in terms of markers of metabolic acidosis. The acidosis seen is consistent with what occurs with ethanol intoxication or moderate exertion. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Effect of starch ingestion on plasma glutamate concentrations in humans ingesting monosodium L-glutamate in soup.

    PubMed

    Stegink, L D; Filer, L J; Baker, G L

    1985-02-01

    Plasma glutamate concentrations in human subjects are markedly lower when monosodium L-glutamate is ingested in a water solution containing partially hydrolyzed starch than when ingested in water alone. This study was carried out to investigate whether starch ingested as crackers had a similar effect. Eight normal adult subjects (four male, four female) ingested three servings of a beef consommé providing 50 mg/kg body weight monosodium L-glutamate. One serving was consommé alone, the other two were accompanied by sufficient crackers to provide 0.25 or 0.5 g starch per kilogram body weight, respectively. Ingestion of consommé containing glutamate significantly increased the mean plasma glutamate concentration above baseline to a mean peak value 30 min later. The peak after consumption of 0.5 g starch per kilogram body weight, but not 0.25 g/kg body weight, was significantly lower than when consommé alone was ingested. These data indicate that simultaneous ingestion of metabolizable carbohydrate with glutamate has a marked effect on the plasma glutamate response and indicate that the threshold value for carbohydrate is greater than 0.25 g/kg body weight.

  12. Effects of ethanol on food consumption and skin temperature in the Egyptian fruit bat (Rousettus aegyptiacus).

    PubMed

    Korine, Carmi; Sánchez, Francisco; Pinshow, Berry

    2011-09-01

    Since mammalian frugivores generally choose to eat ripe fruit in which ethanol concentration ([EtOH]) increases as the fruit ripens, we asked whether ethanol acts as an appetitive stimulant in the Egyptian fruit bat, Rousettus aegyptiacus, and also studied the effects of ethanol on their skin temperature (T(s)). We hypothesized that the responses of fruit bats to dietary ethanol are concentration dependent and tested the predictions that the bats' response is positive, i.e., they eat more when [EtOH] in the food is in the range found in naturally ripe fruit, while it negatively affects them at higher concentrations. We also tested the prediction that in winter, even when availability of fruit is low and thermoregulatory costs are high, ingestion of ethanol by fruit bats is low because assimilated ethanol reduces shivering thermogenesis and peripheral vasodilation; these, alone or together, are detrimental to the maintenance of body temperature (T(b)). In summer, captive bats offered food containing 0.1% ethanol significantly increased consumption over food with no ethanol; they did not change consumption when food contained 0.01, 0.3, or 0.5% ethanol; but significantly decreased consumption at higher levels of ethanol [EtOH], i.e., 1 and 2%. In winter, captive bats ate significantly less when their food contained 0.1% ethanol than when it contained 0, 0.3, or 0.5%. During summer, freshly caught bats ate significantly more ethanol-containing food than freshly caught bats in winter. Skin temperature (T(s)) in Egyptian fruit bats decreased significantly at an ambient temperature (T(a)) of 12 °C (winter conditions) after gavage with liquid food containing 1% ethanol. The effect was clearly temperature-dependent, since ethanol did not have the same effect on bats gavaged with food containing 1% or no ethanol at a T(a) of 25 °C (summer conditions). In conclusion, ethanol may act as an appetitive stimulant for Egyptian fruit bats at low concentrations, but only in

  13. Regulation of Motivation to Self-Administer Ethanol by mGluR5 in Alcohol-Preferring (P) Rats

    PubMed Central

    Besheer, Joyce; Faccidomo, Sara; Grondin, Julie J. M.; Hodge, Clyde W.

    2008-01-01

    Background Emerging evidence indicates that Group I metabotropic glutamate receptors (mGluR1 and mGluR5) differentially regulates ethanol self-administration in several rodent behavioral models. The purpose of this work was to further characterize involvement of Group I mGluRs in the reinforcing effects of ethanol using a progressive ratio schedule of reinforcement. Methods Alcohol-preferring (P) rats were trained to self-administer ethanol (15% v/v) versus water on a concurrent schedule of reinforcement, and the effects of the Group I mGluR antagonists were evaluated on progressive ratio performance. The rats were then trained to self-administer sucrose (0.4% w/v) versus water, and the effects of the antagonists were tested on progressive ratio performance. Results The mGluR1 antagonist, 3,4-dihydro-2H-pyrano[2,3]b quinolin-7-yl (cis-4-methoxy-cyclohexyl) methanone (JNJ 16259685; 0 to 1 mg/kg) and the mGluR5 antagonist, 6-methyl-2-(phenylethynyl) pyridine (MPEP; 0 to 10 mg/kg) dose-dependently reduced ethanol break point. In separate locomotor activity assessments, the lowest effective dose of JNJ 16259685 (0.3 mg/kg) produced a motor impairment, whereas the lowest effective dose of MPEP (3 mg/kg) did not. Thus, the reduction in ethanol break point by mGluR1 antagonism was probably a result of a motor impairment. JNJ 16259685 (0.3 mg/kg) and MPEP (10 mg/kg) reduced sucrose break point and produced motor impairments. Thus, the reductions in sucrose break point produced by both Group I antagonists were probably because of nonspecific effects on motor activity. Conclusions Together, these results suggest that glutamate activity at mGluR5 regulates motivation to self-administer ethanol. PMID:18162077

  14. Consistent, high-level ethanol consumption in pig-tailed macaques via a multiple-session, limited-intake, oral self-dosing procedure.

    PubMed

    Weed, Michael R; Wilcox, Kristin M; Ator, Nancy A; Hienz, Robert D

    2008-06-01

    Alcohol abuse is a major public health burden that can lead to many adverse health effects such as impaired hepatic, gastrointestinal, central nervous system and immune system function. Preclinical animal models of alcohol abuse allow for experimental control over variables often difficult to control in human clinical studies (e.g., ethanol exposure before or during the study, history of other drug use, access to medical care, nutritional status, etc). Nonhuman primate models in particular provide increased genetic, anatomic and physiologic similarity to humans, relative to rodent models. A small percentage of macaques will spontaneously consume large quantities of ethanol; however, most nonhuman primate models of "voluntary" ethanol intake produce relatively low daily ethanol intake in the majority of monkeys. To facilitate study of chronic exposure to high levels of ethanol intake, a macaque model has been developed that induces consistent, daily high-level ethanol consumption. This multiple-session procedure employed 4 drinking sessions per day, with sessions occurring once every 6 hours. The group average alcohol consumption was 4.6 g/kg/d (SEM 0.4), roughly twice the group average consumption of previous reports. Ethanol drinking sessions produced group mean blood ethanol levels of 95 mg/dl after 60 minutes, and fine motor control was impaired up to 90 minutes after a drinking session. This model of multiple-session, limited access, oral ethanol self-dosing produced consistent, high-level ethanol consumption with each session qualifying as a "binge" drinking session using the definition of "binge" provided by the NIAAA (>80 mg/dl/session). This model of ethanol drinking in macaques will be of great utility in the study of immunological, physiological and behavioral effects of ethanol in nonhuman primates.

  15. Hemodialysis clearance of glyphosate following a life-threatening ingestion of glyphosate-surfactant herbicide.

    PubMed

    Garlich, F M; Goldman, M; Pepe, J; Nelson, L S; Allan, M J; Goldstein, D A; Goldfarb, D S; Hoffman, R S

    2014-01-01

    Ingestion of glyphosate-surfactant herbicides (GlySH) can result in acute kidney injury, electrolyte abnormalities, acidosis, cardiovascular collapse, and death. In severe toxicity, the use of hemodialysis is reported, but largely unsupported by kinetic analysis. We report the dialysis clearance of glyphosate following a suicidal ingestion of a glyphosate-containing herbicide. A 62-year-old man was brought to the emergency department (ED) 8.5 h after drinking a bottle of commercial herbicide containing a 41% solution of glyphosate isopropylamine, in polyoxyethyleneamine (POEA) surfactant and water. He was bradycardic and obtunded with respiratory depression necessitating intubation and mechanical ventilation. Initial laboratory results were significant for the following: pH, 7.11; PCO2, 64 mmHg; PO2, 48 mmHg; potassium, 7.8 mEq/L; Cr 3.3, mg/dL; bicarbonate, 22 mEq/L; anion gap, 18 mEq/L; and lactate, 7.5 mmol/L. Acidosis and hyperkalemia persisted despite ventilation and fluid resuscitation. The patient underwent hemodialysis 16 h post ingestion, after which he demonstrated resolution of acidosis and hyperkalemia, and improvement in clinical status. Serum glyphosate concentrations were drawn prior to, during, and after hemodialysis. The extraction ratio and hemodialysis clearance were calculated to be 91.8% and 97.5 mL/min, respectively. We demonstrate the successful clearance of glyphosate using hemodialysis, with corresponding clinical improvement in a patient with several poor prognostic factors (advanced age, large volume ingested, and impaired consciousness). The effects of hemodialysis on the surfactant compound are unknown. Hemodialysis can be considered when severe acidosis and acute kidney injury complicate ingestion of glyphosate-containing products.

  16. Transcriptome analysis of the thermotolerant yeast Kluyveromyces marxianus CCT 7735 under ethanol stress.

    PubMed

    Diniz, Raphael Hermano Santos; Villada, Juan C; Alvim, Mariana Caroline Tocantins; Vidigal, Pedro Marcus Pereira; Vieira, Nívea Moreira; Lamas-Maceiras, Mónica; Cerdán, María Esperanza; González-Siso, María-Isabel; Lahtvee, Petri-Jaan; da Silveira, Wendel Batista

    2017-09-01

    The thermotolerant yeast Kluyveromyces marxianus displays a potential to be used for ethanol production from both whey and lignocellulosic biomass at elevated temperatures, which is highly alluring to reduce the cost of the bioprocess. Nevertheless, contrary to Saccharomyces cerevisiae, K. marxianus cannot tolerate high ethanol concentrations. We report the transcriptional profile alterations in K. marxianus under ethanol stress in order to gain insights about mechanisms involved with ethanol response. Time-dependent changes have been characterized under the exposure of 6% ethanol and compared with the unstressed cells prior to the ethanol addition. Our results reveal that the metabolic flow through the central metabolic pathways is impaired under the applied ethanol stress. Consistent with these results, we also observe that genes involved with ribosome biogenesis are downregulated and gene-encoding heat shock proteins are upregulated. Remarkably, the expression of some gene-encoding enzymes related to unsaturated fatty acid and ergosterol biosynthesis decreases upon ethanol exposure, and free fatty acid and ergosterol measurements demonstrate that their content in K. marxianus does not change under this stress. These results are in contrast to the increase previously reported with S. cerevisiae subjected to ethanol stress and suggest that the restructuration of K. marxianus membrane composition differs in the two yeasts which gives important clues to understand the low ethanol tolerance of K. marxianus compared to S. cerevisiae.

  17. Ethanol enhances arsenic-induced cyclooxygenase-2 expression via both NFAT and NF-κB signalings in colorectal cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Hitron, John Andrew; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536

    Arsenic is a known carcinogen to humans, and chronic exposure to environmental arsenic is a worldwide health concern. As a dietary factor, ethanol carries a well-established risk for malignancies, but the effects of co-exposure to arsenic and ethanol on tumor development are not well understood. In the present study, we hypothesized that ethanol would enhance the function of an environmental carcinogen such as arsenic through increase in COX-2 expression. Our in vitro results show that ethanol enhanced arsenic-induced COX-2 expression. We also show that the increased COX-2 expression associates with intracellular ROS generation, up-regulated AKT signaling, with activation of bothmore » NFAT and NF-κB pathways. We demonstrate that antioxidant enzymes have an inhibitory effect on arsenic/ethanol-induced COX-2 expression, indicating that the responsive signaling pathways from co-exposure to arsenic and ethanol relate to ROS generation. In vivo results also show that co-exposure to arsenic and ethanol increased COX-2 expression in mice. We conclude that ethanol enhances arsenic-induced COX-2 expression in colorectal cancer cells via both the NFAT and NF-κB pathways. These results imply that, as a common dietary factor, ethanol ingestion may be a compounding risk factor for arsenic-induced carcinogenesis/cancer development. - Highlights: • Arsenic is able to induce Cox-2 expression in colorectal cancer cells. • Ethanol, a diet nutritional factor, could enhance arsenic-induced Cox-2. • The up-regulation of Cox-2 via both NFAT and NF-κB activities.« less

  18. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  19. Cholera toxin-induced ADP-ribosylation of a 46 kDa protein is decreased in brains of ethanol-fed mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nhamburo, P.T.; Hoffman, P.L.; Tabakoff, B.

    1988-01-01

    The acute in vitro effects of ethanol on cerebral cortical adenylate cyclase activity and beta-adrenergic receptor characteristics suggested a site of action of ethanol at Gs, the stimulatory guanine nucleotide binding protein. After chronic ethanol ingestion, the beta-adrenergic receptor appeared to be uncoupled (i.e., the form of the receptor with high affinity for agonist was undetectable), and stimulation of adenylate cyclase activity by isoproterenol or guanine nucleotides was reduced, suggesting an alteration in the properties of Gs. To further characterize this change, cholera and pertussis toxin-mediated /sup 32/P-ADP-ribosylation of mouse cortical membranes was assessed in mice that had chronically ingestedmore » ethanol in a liquid diet. /sup 32/P-labeled proteins were separated by SDS-PAGE and quantitated by autoradiography. There was a selective 30-50% decrease in cholera toxin-induced labeling of 46 kDa protein band in membranes of ethanol-fed mice, with no apparent change in pertussis toxin-induced labeling. The 46 kDa protein has a molecular weight similar to that of the alpha subunit of Gs, suggesting a reduced amount of this protein or a change in its characteristics as a substrate for cholera toxin-induced ADP-ribosylation in cortical membranes of ethanol-fed mice.« less

  20. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    PubMed

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the

  1. Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced liver injury.

    PubMed

    Osna, Natalia A; Feng, Dan; Ganesan, Murali; Maillacheruvu, Priya F; Orlicky, David J; French, Samuel W; Tuma, Dean J; Kharbanda, Kusum K

    2016-10-14

    To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage. Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted. Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol. To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage.

  2. Prolonged feeding with guanidinoacetate, a methyl group consumer, exacerbates ethanol-induced liver injury

    PubMed Central

    Osna, Natalia A; Feng, Dan; Ganesan, Murali; Maillacheruvu, Priya F; Orlicky, David J; French, Samuel W; Tuma, Dean J; Kharbanda, Kusum K

    2016-01-01

    AIM To investigate the hypothesis that exposure to guanidinoacetate (GAA, a potent methyl-group consumer) either alone or combined with ethanol intake for a prolonged period of time would cause more advanced liver pathology thus identifying methylation defects as the initiator and stimulator for progressive liver damage. METHODS Adult male Wistar rats were fed the control or ethanol Lieber DeCarli diet in the absence or presence of GAA supplementation. At the end of 6 wk of the feeding regimen, various biochemical and histological analyses were conducted. RESULTS Contrary to our expectations, we observed that GAA treatment alone resulted in a histologically normal liver without evidence of hepatosteatosis despite persistence of some abnormal biochemical parameters. This protection could result from the generation of creatine from the ingested GAA. Ethanol treatment for 6 wk exhibited changes in liver methionine metabolism and persistence of histological and biochemical defects as reported before. Further, when the rats were fed the GAA-supplemented ethanol diet, similar histological and biochemical changes as observed after 2 wk of combined treatment, including inflammation, macro- and micro-vesicular steatosis and a marked decrease in the methylation index were noted. In addition, rats on the combined treatment exhibited increased liver toxicity and even early fibrotic changes in a subset of animals in this group. The worsening liver pathology could be related to the profound reduction in the hepatic methylation index, an increased accumulation of GAA and the inability of creatine generated to exert its hepato-protective effects in the setting of ethanol. CONCLUSION To conclude, prolonged exposure to a methyl consumer superimposed on chronic ethanol consumption causes persistent and pronounced liver damage. PMID:27784962

  3. “Drinking in the Dark” (DID) Procedures: A Model of Binge-Like Ethanol Drinking in Non-Dependent Mice

    PubMed Central

    Thiele, Todd E.; Navarro, Montserrat

    2013-01-01

    This review provides an overview of an animal model of binge-like ethanol drinking that has come to be called “drinking in the dark” (DID), a procedure that promotes high levels of ethanol drinking and pharmacologically relevant blood ethanol concentrations (BECs) in ethanol-preferring strains of mice. Originally described by Rhodes et al. (2005), the most common variation of the DID procedure, using singly housed mice, involves replacing the water bottle with a bottle containing 20% ethanol for 2 to 4 hours, beginning 3 hours into the dark cycle. Using this procedure, high ethanol drinking strains of mice (e.g., C57BL/6J) typically consume enough ethanol to achieve BECs greater than 100 mg/dL and to exhibit behavioral evidence of intoxication. This limited access procedure takes advantage of the time in the animal’s dark cycle in which the levels of ingestive behaviors are high, yet high ethanol intake does not appear to stem from caloric need. Mice have the choice of drinking or avoiding the ethanol solution, eliminating the stressful conditions that are inherent in other models of binge-like ethanol exposure in which ethanol is administered by the experimenter, and in some cases, potentially painful. The DID procedure is a high throughput approach that does not require extensive training or the inclusion of sweet compounds to motivate high levels of ethanol intake. The high throughput nature of the DID procedure makes it useful for rapid screening of pharmacological targets that are protective against binge-like drinking and for identifying strains of mice that exhibit binge-like drinking behavior. Additionally, the simplicity of DID procedures allows for easy integration into other paradigms, such as prenatal ethanol exposure and adolescent ethanol drinking. It is suggested that the DID model is a useful tool for studying the neurobiology and genetics underlying binge-like ethanol drinking, and may be useful for studying the transition to ethanol

  4. Study of ethanol-induced Golgi disorganization reveals the potential mechanism of alcohol-impaired N-glycosylation

    PubMed Central

    Casey, Carol A.; Bhat, Ganapati; Holzapfel, Melissa S.; Petrosyan, Armen

    2016-01-01

    Background It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi, however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. Methods HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM ethanol for 72 h. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I) and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by 3D Structured Illumination Microscopy (SIM). Results First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor, however the high mannose-type N-glycans are increased. Further analysis by 3D SIM microscopy revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of Arf1 GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (a) EtOH specifically blocks activation of Arf1, and (b) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man

  5. The relationship between observed signs of impairment and THC concentration in oral fluid.

    PubMed

    Fierro, Inmaculada; González-Luque, Juan Carlos; Alvarez, F Javier

    2014-11-01

    Studies have shown that cannabis intake increases the risk of traffic accidents. Controlled experiments support these findings and have shown a positive dose-effect relationship. In this retrospective cross-sectional study of data from a roadside survey, we investigated whether a police officer's judgment regarding signs of impairment is related to the concentration of delta-9-tetrahydrocannabinol (THC) in the oral fluid (OF). We investigated 2,632 cases from a representative sample of 3,302 Spanish drivers: 253 drivers positive for THC only, 32 positive for THC and ethanol, 201 with only ethanol detected in their breath, and 2,146 drivers who tested negative for ethanol in breath and drugs in OF. Recorded data comprised breath alcohol concentrations, THC concentrations in the OF, and the 31 observed signs of impairment. Subject groups were compared using the chi-square test, and logistic regression was used to examine the risk of being categorized as exhibiting signs of impairment. A relationship was found between the OF THC concentration and some observed signs of impairment. Eye signs were noticeable from a THC concentration >3.0 ng/ml in OF, and >25 ng/ml was related to behavior, facial expression, and speech signs. Alcohol and THC contribute to impairment independently and, when taken simultaneously, the effects are comparable to the sum of the effects when consumed separately. The observation of signs of impairment due to cannabis occurs in an OF concentration-related manner but, as a clinical test, OF has low sensitivity and specificity in a random roadside survey. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Changes in the female arcuate nucleus morphology and neurochemistry after chronic ethanol consumption and long-term withdrawal.

    PubMed

    Rebouças, Elce C C; Leal, Sandra; Silva, Susana M; Sá, Susana I

    2016-11-01

    Ethanol is a macronutrient whose intake is a form of ingestive behavior, sharing physiological mechanisms with food intake. Chronic ethanol consumption is detrimental to the brain, inducing gender-dependent neuronal damage. The hypothalamic arcuate nucleus (ARN) is a modulator of food intake that expresses feeding-regulatory neuropeptides, such as alpha melanocyte-stimulating hormone (α-MSH) and neuropeptide Y (NPY). Despite its involvement in pathways associated with eating disorders and ethanol abuse, the impact of ethanol consumption and withdrawal in the ARN structure and neurochemistry in females is unknown. We used female rat models of 20% ethanol consumption for six months and of subsequent ethanol withdrawal for two months. Food intake and body weights were measured. ARN morphology was stereologically analyzed to estimate its volume, total number of neurons and total number of neurons expressing NPY, α-MSH, tyrosine hydroxylase (TH) and estrogen receptor alpha (ERα). Ethanol decreased energy intake and body weights. However, it did not change the ARN morphology or the expression of NPY, α-MSH and TH, while increasing ERα expression. Withdrawal induced a significant volume and neuron loss that was accompanied by an increase in NPY expression without affecting α-MSH and TH expression. These findings indicate that the female ARN is more vulnerable to withdrawal than to excess alcohol. The data also support the hypothesis that the same pathways that regulate the expression of NPY and α-MSH in long-term ethanol intake may regulate food intake. The present model of long-term ethanol intake and withdrawal induces new physiological conditions with adaptive responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Parabrachial gustatory lesions impair taste aversion learning in rats.

    PubMed

    Spector, A C; Norgren, R; Grill, H J

    1992-02-01

    Lesions in the gustatory zone of the parabrachial nuclei (PBN) severely impair acquisition of a conditioned taste aversion (CTA) in rats. To test whether this deficit has a memorial basis, intact rats (n = 15) and rats with PBN lesions (PBNX; n = 10) received seven intraoral taste stimulus infusions (30 s, 0.5 ml) distributed over a 30.5-min period after either LiCl or NaCl injection. This task measures the rapid formation of a CTA and has minimum demands on memory. LiCl-injected intact rats progressively changed their oromotor response profile from one of ingestion to one of aversion. NaCl-injected intact rats did not change their ingestive pattern of responding. In contrast, there was no difference between LiCl- and NaCl-injected PBNX rats. These same PBNX rats failed to avoid licking the taste stimulus when tested in a different paradigm. A simple impairment in a memorial process is not likely the basis for the CTA deficit.

  8. Supplemental choline does not attenuate the effects of neonatal ethanol administration on habituation of the heart rate orienting response in rats

    PubMed Central

    Hunt, Pamela S.; Jacobson, Sarah E.; Kim, Sarah

    2014-01-01

    Several studies using rodent subjects have now shown that extra dietary choline may prevent or even reverse the deleterious effects of pre- and early post-natal ethanol administration. Choline supplementation has been shown to attenuate many, although not all, of ethanol’s effects on brain development and behavior. Our laboratory has consistently reported impaired habituation of the heart rate orienting response to a novel olfactory stimulus in animals exposed to ethanol on postnatal days (PD) 4–9. Here we examine whether supplemental choline given both during and after ethanol administration could alleviate these ethanol-induced deficits. Subjects were given 5 g/kg/day ethanol or sham intubations on PD 4–9. Half of the subjects in each group were given a single daily s.c. injection of choline chloride on PD 4–20, while the other half were injected daily with saline. Pups were tested for heart rate orienting and response habituation in a single test session on PD 23. Results replicated the ethanol-induced impairment in response habituation. However, choline supplementation had no effect on orienting or habituation in either neonatal treatment group. These findings indicate that habituation deficits induced by ethanol are not alleviated by extra dietary choline using these parameters. Choline holds great promise as a treatment for some fetal alcohol effects, but is not an effective treatment for all ethanol-related deficits. PMID:24907459

  9. Ethanol suppresses carbamylcholine-induced intracellular calcium oscillation in mouse pancreatic acinar cells.

    PubMed

    Yoon, Mi Na; Kim, Min Jae; Koong, Hwa Soo; Kim, Dong Kwan; Kim, Se Hoon; Park, Hyung Seo

    2017-09-01

    Oscillation of intracellular calcium levels is closely linked to initiating secretion of digestive enzymes from pancreatic acinar cells. Excessive alcohol consumption is known to relate to a variety of disorders in the digestive system, including the exocrine pancreas. In this study, we have investigated the role and mechanism of ethanol on carbamylcholine (CCh)-induced intracellular calcium oscillation in murine pancreatic acinar cells. Ethanol at concentrations of 30 and 100 mM reversibly suppressed CCh-induced Ca 2+ oscillation in a dose-dependent manner. Pretreatment of ethanol has no effect on the store-operated calcium entry induced by 10 μM of CCh. Ethanol significantly reduced the initial calcium peak induced by low concentrations of CCh and therefore, the CCh-induced dose-response curve of the initial calcium peak was shifted to the right by ethanol pretreatment. Furthermore, ethanol significantly dose-dependently reduced inositol 1,4,5-trisphosphate-induced calcium release from the internal stores in permeabilized acinar cells. These results provide evidence that excessive alcohol intake could impair cytosolic calcium oscillation through inhibiting calcium release from intracellular stores in mouse pancreatic acinar cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Pharmacokinetics of blackberry anthocyanins consumed with or without ethanol: A randomized and crossover trial.

    PubMed

    Marques, Cláudia; Fernandes, Iva; Norberto, Sónia; Sá, Carla; Teixeira, Diana; de Freitas, Victor; Mateus, Nuno; Calhau, Conceição; Faria, Ana

    2016-11-01

    This study was designed to evaluate the influence of ethanol on the bioavailability of blackberry anthocyanins. A total of 18 participants were recruited to consume 250 mL of a blackberry puree (650 mg of anthocyanins) without (BBP) or with 12% ethanol (BBP 12%). Venous blood was collected from participants at baseline and at 15, 30, 60, and 120 min after puree ingestion. Urine samples were collected at baseline and at 120 min. Plasma and urine concentration of anthocyanins and anthocyanin conjugates were quantified by HPLC-DAD. Methyl-cyanidin-glucuronide (Me-Cy-Glucr) and 3'-methyl-cyanidin-3-glucoside (3'-Me-Cy3glc) were the main anthocyanin conjugates detected in all plasma and urine samples. Urinary concentration of these anthocyanin conjugates were positively correlated with their plasma concentration. Ethanol increased plasma C max of Me-Cy-Glucr and 3'-Me-Cy3glc. Participants were then stratified according to their body mass index (BMI) and body fat mass. After BBP consumption, plasma C max of Me-Cy-Glucr and 3'-Me-Cy3glc tended to be decreased in overweight/obese participants, in comparison to normal weight participants. The increase on plasma C max of Me-Cy-Glucr and 3'-Me-Cy3glc induced by ethanol was more pronounced in the group of overweight/obese participants. Ethanol seems to enhance Cy3glc metabolism that appears to be compromised in overweight and obese individuals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hormonal responses and tolerance to cold of female quail following parathion ingestion

    USGS Publications Warehouse

    Rattner, B.A.; Sileo, L.; Scanes, C.G.

    1982-01-01

    Thirty-week-old female bobwhite quail (Colinus virginianus), maintained at 26 + 1?C, were provided diets containing 0,25, or 100 ppm parathion ad libitum. After 10 days, birds were exposed to mild cold (6 + 1?C) for 4,8, 12, 24, or 48 hr. Brain acetylcholinesterase activity was inhibited in a dose-dependent manner in birds receiving 25 and 100 ppm parathion. Body weight, egg production, and plasma luteinizing hormone and progesterone concentrations were reduced in birds receiving 100 ppm parathion compared with other groups. Cold exposure did not alter plasma corticosterone levels in the 0- and 25-ppm parathion groups, but a two- to five fold elevation of plasma corticosterone was observed in birds fed 100 ppm parathion. These findings indicate that (i) short-term ingestion of parathion can impair reproduction possibly by altering gonadotropin or steroid secretion, and (ii) tolerance to cold may be reduced following ingestion of this organophosphate.

  12. Chronic ethanol administration inhibits calmodulin-dependent Ca++ uptake in synaptosomal membranes.

    PubMed

    Ross, D H

    1986-06-01

    Chronic ethanol administration inhibits ATP-dependent Ca++ uptake in a preparation of synaptic membranes prepared from mice following 1, 4 and 7 days of ethanol exposure in a liquid diet. Addition of calmodulin (2.5 micrograms) to membranes from mice receiving the control diet produced a slight stimulation of ATP dependent Ca++ uptake. Membranes from ETOH treated mice exhibited reduced capacity to take up Ca++ in ATP-dependent fashion. When calmodulin was added to membranes isolated from mice receiving ETOH on Days 1, 4 and 7 ATP-dependent Ca++ uptake was significantly stimulated (p less than 0.01) compared to (1) ETOH treated membranes in absence of calmodulin, and (2) control membranes. Behavioral tolerance as estimated by bar holding technique was found to be 25, 65 and 91 percent complete for Days 1, 4 and 7 respectively. These studies demonstrate that continued exposure of mice to ethanol via consumption of an ethanol containing liquid diet inhibits one of the mechanisms involving the cytosolic buffering of intracellular Ca++ in nerve terminals. This biochemical effect seen in parallel with the development of tolerance to ethanol impairment of bar holding suggests that increased cytosolic Ca++ may aid in central nervous system adaptation to ethanol.

  13. Supplemental choline does not attenuate the effects of neonatal ethanol administration on habituation of the heart rate orienting response in rats.

    PubMed

    Hunt, Pamela S; Jacobson, Sarah E; Kim, Sarah

    2014-01-01

    Several studies using rodent subjects have now shown that extra dietary choline may prevent or even reverse the deleterious effects of pre- and early post-natal ethanol administration. Choline supplementation has been shown to attenuate many, although not all, of ethanol's effects on brain development and behavior. Our laboratory has consistently reported impaired habituation of the heart rate orienting response to a novel olfactory stimulus in animals exposed to ethanol on postnatal days (PD) 4-9. Here we examine whether supplemental choline given both during and after ethanol administration could alleviate these ethanol-induced deficits. Subjects were given 5g/kg/day ethanol or sham intubations on PD 4-9. Half of the subjects in each group were given a single daily s.c. injection of choline chloride on PD 4-20, while the other half were injected daily with saline. Pups were tested for heart rate orienting and response habituation in a single test session on PD 23. Results replicated the ethanol-induced impairment in response habituation. However, choline supplementation had no effect on orienting or habituation in either neonatal treatment group. These findings indicate that habituation deficits induced by ethanol are not alleviated by extra dietary choline using these parameters. Choline holds great promise as a treatment for some fetal alcohol effects, but is not an effective treatment for all ethanol-related deficits. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Resveratrol protects the loss of connexin 43 induced by ethanol exposure in neonatal mouse cardiomyocytes.

    PubMed

    Tu, Su; Cao, Fu-Tao; Fan, Xiao-Chun; Yang, Cheng-Jian

    2017-06-01

    Excessive alcohol consumption provides risk to cardiomyopathy with unknown mechanisms. Resveratrol, a plant polyphenol, is widely reported for its cardiovascular benefits, while its effect on alcohol-induced impairments in cardiomyocytes largely remains unknown. Effects of resveratrol on the cardiomyocytes under ethanol insult were studied in vitro. Ethanol exposure in mouse neonatal cardiomyocytes increased cell death and induced a specific loss of tight junction protein, connexin 43. In spite of adverse effects at higher concentrations, resveratrol at 10 μM improved cell viability of cardiomyocytes in the presence of a deleterious dose of ethanol. Importantly, the co-treatment of resveratrol with ethanol exhibited the restoration of connexin 43 protein. Further assays showed that these effects were likely associated with the antioxidative actions of resveratrol, and correlated with the alleviation of MAP kinase activation in cultured cardiomyocytes in response to ethanol. Our data suggests a novel mechanism of cardiomyocyte cell loss under ethanol exposure and provides new evidence of protective effects of resveratrol in the cardiomyocytes.

  15. Toxicity following laundry detergent pod ingestion.

    PubMed

    Schneir, Aaron B; Rentmeester, Landen; Clark, Richard F; Cantrell, F Lee

    2013-06-01

    Laundry detergent pods (LDPs) have only recently become available in the United States, and there has been increasing concern regarding pediatric ingestions of them. We describe a 15-month-old female infant who ingested an LDP and had a depressed level of consciousness, metabolic acidosis, pulmonary toxicity, and swallowing difficulties. It is currently unclear what the exact etiologic agent(s) is responsible for the toxicity associated with LDPs. The case demonstrates the potential for significant toxicity following the ingestion of an LDP. Clearly, measures should be taken to avoid ingestions of these products.

  16. Protective effect of δ-amyrone against ethanol-induced gastric ulcer in mice.

    PubMed

    Li, Weifeng; Yao, Huan; Niu, Xiaofeng; Wang, Yu; Zhang, Hailin; Li, Huani; Mu, Qingli

    2015-06-01

    The purpose of this study is to examine the protective effect of δ-amyrone on ethanol-induced gastric ulcer in mice. The mice intragastric administration 75% (0.5 mL/100g) ethanol was pretreated with δ-amyrone (4 and 8 mg/kg) and cimetidine (100 mg/kg) or vehicles in different experimental groups for a continuous three-day, and animals were euthanized 3h after ethanol ingestion. The gastric lesions were significantly attenuated by δ-amyrone (4 and 8 mg/kg) as compared to the ulcer control group. Pre-treatment with δ-amyrone prevented the myeloperoxidase (MPO) activity, production of nitric oxide (NO) in serum, expression of inducible nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-κB) p65 protein expression. Analysis of cytokines in gastric tissue and serum of ethanol-induced mice showed the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were decreased by δ-amyrone in response to NF-κB p65. These results suggested that δ-amyrone exerts its protective effect on experimental gastric ulcer by inhibiting NF-κB signaling pathways, which subsequently reduces overproduction of the inducible enzymes iNOS and suppresses the release of the inflammatory factors TNF-α, IL-6 and NO. Thus, δ-amyrone shows promise as a therapeutic agent in experimental gastric ulcer. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. ARM Climate Research Facility Quarterly Ingest Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koontz, A.; Sivaraman, C.

    2016-10-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.

  18. ARM Climate Research Facility Quarterly Ingest Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koontz, A.; Sivaraman, C.

    2016-07-01

    The purpose of this report is to provide a concise status update for ingests maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. The report is divided into the following sections: (1) new ingests for which development has begun, (2) progress on existing ingests, (3) future ingests that have been recently approved, (4) other work that leads to an ingest, and (5) top requested ingests from the ARM Data Archive. New information is highlighted in blue text.

  19. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    PubMed Central

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  20. Alcohol-related amnesia and dementia: Animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment

    PubMed Central

    Vetreno, Ryan P.; Hall, Joseph M.; Savage, Lisa M.

    2011-01-01

    Chronic alcoholism is associated with impaired cognitive functioning. Over 75% of autopsied chronic alcoholics have significant brain damage and over 50% of detoxified alcoholics display some degree of learning and memory impairment. However, the relative contributions of different etiological factors to the development of alcohol-related neuropathology and cognitive impairment are questioned. One reason for this quandary is that both alcohol toxicity and thiamine deficiency result in brain damage and cognitive problems. Two alcohol-related neurological disorders, alcohol-associated dementia and Wernicke-Korsakoff syndrome have been modeled in rodents. These pre-clinical models have elucidated the relative contributions of ethanol toxicity and thiamine deficiency to the development of dementia and amnesia. What is observed in these models—from repeated and chronic ethanol exposure to thiamine deficiency—is a progression of both neural and cognitive dysregulation. Repeated binge exposure to ethanol leads to changes in neural plasticity by reducing GABAergic inhibition and facilitating glutamatergic excitation, long-term chronic ethanol exposure results in hippocampal and cortical cell loss as well as reduced hippocampal neurotrophin protein content critical for neural survival, and thiamine deficiency results in gross pathological lesions in the diencephalon, reduced neurotrophic protein levels, and neurotransmitters levels in the hippocampus and cortex. Behaviorally, after recovery from repeated or chronic ethanol exposure there is impairment in working or episodic memory that can recover with prolonged abstinence. In contrast, after thiamine deficiency there is severe and persistent spatial memory impairments and increased perseverative behavior. The interaction between ethanol and thiamine deficiency does not produce more behavioral or neural pathology, with the exception of reduction of white matter, than long-term thiamine deficiency alone. PMID:21256970

  1. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    PubMed Central

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (i.c.) administrations of 100 mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with i.c. administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was employed as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats. PMID:17980789

  2. Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations.

    PubMed

    Ceccato-Antonini, Sandra Regina

    2018-05-25

    Ethanol bio-production in Brazil has some unique characteristics that inevitably lead to bacterial contamination, which results in the production of organic acids and biofilms and flocculation that impair the fermentation yield by affecting yeast viability and diverting sugars to metabolites other than ethanol. The ethanol-producing units commonly give an acid treatment to the cells after each fermentative cycle to decrease the bacterial number, which is not always effective. An alternative strategy must be employed to avoid bacterial multiplication but must be compatible with economic, health and environmental aspects. This review analyzes the issue of bacterial contamination in sugarcane-based fuel ethanol fermentation, and the potential strategies that may be utilized to control bacterial growth besides acid treatment and antibiotics. We have emphasized the efficiency and suitability of chemical products other than acids and those derived from natural sources in industrial conditions. In addition, we have also presented bacteriocins, bacteriophages, and beneficial bacteria as non-conventional antimicrobial agents to mitigate bacterial contamination in the bioethanol industry.

  3. Foreign body ingestion in children

    PubMed Central

    Dereci, Selim; Koca, Tuğba; Serdaroğlu, Filiz; Akçam, Mustafa

    2015-01-01

    Aim: Foreign bodies ingested by the oral route enter into the gastrointestinal tract and are considered a significant health problem in the childhood. In this study, we evaluated the pediatric patients who presented to our hospital with the complaint of ingestion of foreign body. Material and Methods: The hospital records of all children who presented to our clinic because of ingestion of foreign body between January 2008 and January 2015 were examined retrospectively. The complaints at admission, the types of foreign bodies ingested, the localization of the foreign body in the gastrointestinal tract and the approaches and treatment methods used were examined. Results: Thirty-six (56%) of 64 patients included in the study were male and 28 (44%) were female and the mean age was 5.7±4.6 years (10 months–17 years). Thirty eight (59%) of 64 children who were included in the assessment were below the age of five years. The most common complaint at presentation was parental recognition of the ingested object and dysphagia. The most commonly ingested foreign bodies included coins, sewing pins, safety pins and hairclips. Nail clipper detected in the stomach, sewing pin which penetrated through the duodenal wall and stuck to hepatic parenchyma were the first pediatric cases in the literature. Upper esophagus was the most common location for foreign bodies. Endoscopic examinations were performed in 55 of 64 children. Conclusions: Early detection and treatment of ingested foreign bodies in the upper gastrointestinal system is important in terms of preventing possible complications. In our study, the most frequent foreign bodies detected in the upper digestive tract were coins and they were most frequently detected in the upper esophagus. Most of our patients were below the age of five years. Flexible endoscopic method was used commonly for treatment. PMID:26884693

  4. Chronic Intermittent Ethanol Exposure Enhances the Excitability and Synaptic Plasticity of Lateral Orbitofrontal Cortex Neurons and Induces a Tolerance to the Acute Inhibitory Actions of Ethanol

    PubMed Central

    Nimitvilai, Sudarat; Lopez, Marcelo F; Mulholland, Patrick J; Woodward, John J

    2016-01-01

    Alcoholism is associated with changes in brain reward and control systems, including the prefrontal cortex. In prefrontal areas, the orbitofrontal cortex (OFC) has been suggested to have an important role in the development of alcohol-abuse disorders and studies from this laboratory demonstrate that OFC-mediated behaviors are impaired in alcohol-dependent animals. However, it is not known whether chronic alcohol (ethanol) exposure alters the fundamental properties of OFC neurons. In this study, mice were exposed to repeated cycles of chronic intermittent ethanol (CIE) exposure to induce dependence and whole-cell patch-clamp electrophysiology was used to examine the effects of CIE treatment on lateral OFC (lOFC) neuron excitability, synaptic transmission, and plasticity. Repeated cycles of CIE exposure and withdrawal enhanced current-evoked action potential (AP) spiking and this was accompanied by a reduction in the after-hyperpolarization and a decrease in the functional activity of SK channels. CIE mice also showed an increase in the AMPA/NMDA ratio, and this was associated with an increase in GluA1/GluA2 AMPA receptor expression and a decrease in GluN2B NMDA receptor subunits. Following CIE treatment, lOFC neurons displayed a persistent long-term potentiation of glutamatergic synaptic transmission following a spike-timing-dependent protocol. Lastly, CIE treatment diminished the inhibitory effect of acute ethanol on AP spiking of lOFC neurons and reduced expression of the GlyT1 transporter. Taken together, these results suggest that chronic exposure to ethanol leads to enhanced intrinsic excitability and glutamatergic synaptic signaling of lOFC neurons. These alterations may contribute to the impairment of OFC-dependent behaviors in alcohol-dependent individuals. PMID:26286839

  5. Role of acute ethanol exposure and TLR4 in early events of sepsis in a mouse model

    PubMed Central

    Bhatty, Minny; Jan, Basit L; Tan, Wei; Pruett, Stephen B; Nanduri, Bindu

    2011-01-01

    Sepsis is a major cause of death worldwide. The associated risks and mortality are known to significantly increase on exposure to alcohol (chronic or acute). The underlying mechanisms of the association of acute ethanol ingestion and poor prognosis of sepsis are largely unknown. The study described here was designed to determine in detail the role of ethanol and TLR4 in the pathogenesis of the sepsis syndrome. The effects of acute ethanol exposure and TLR4 on bacterial clearance, spleen cell numbers, peritoneal macrophage numbers, and cytokine production were evaluated using wild type and TLR4 hypo-responsive mice treated with ethanol and then challenged with a non pathogenic strain of Escherichia. coli (E. coli). Ethanol treated mice exhibited a decreased clearance of bacteria and produced lesser amounts of most pro-inflammatory cytokines in both strains of mice at two hours after challenge. Neither ethanol treatment nor a hypo-responsive TLR4 had significant effects on the cell numbers in the peritoneal cavity and spleen 2 hours post infection. The suppressive effect of acute ethanol exposure on cytokine and chemokine production was more pronounced in the wild type mice, but the untreated hyporesponsive mice produced less of most cytokines than untreated wild type mice. The major conclusion of this study is that acute ethanol exposure suppresses pro-inflammatory cytokine production and that a hypo-responsive TLR4 (in C3H/HeJ mice) decreases pro-inflammatory cytokine levels but the cytokines and other mediators induced through other receptors are sufficient to ultimately clear the infection but not enough to induce lethal septic shock. In addition, results reported here demonstrate previously unknown effects of acute ethanol exposure on LIF (leukemia inhibitory factor) and eotaxin and provide the first evidence that IL-9 is induced through TLR4 in vivo. PMID:21872420

  6. Developmental ethanol exposure alters the morphology of mouse prefrontal neurons in a layer-specific manner.

    PubMed

    Louth, Emma L; Luctkar, Hanna D; Heney, Kayla A; Bailey, Craig D C

    2018-01-01

    Chronic developmental exposure to ethanol can lead to a wide variety of teratogenic effects, which in humans are known as fetal alcohol spectrum disorders (FASD). Individuals affected by FASD may exhibit persistent impairments to cognitive functions such as learning, memory, and attention, which are highly dependent on medial prefrontal cortex (mPFC) circuitry. The objective of this study was to determine long-term effects of chronic developmental ethanol exposure on mPFC neuron morphology, in order to better-understand potential neuronal mechanisms underlying cognitive impairments associated with FASD. C57BL/6-strain mice were exposed to ethanol or an isocaloric/isovolumetric amount of sucrose (control) via oral gavage, administered both to the dam from gestational day 10-18 and directly to pups from postnatal day 4-14. Brains from male mice were collected at postnatal day 90 and neurons were stained using a modified Golgi-Cox method. Pyramidal neurons within layers II/III, V and VI of the mPFC were imaged, traced in three dimensions, and assessed using Sholl and branch structure analyses. Developmental ethanol exposure differentially impacted adult pyramidal neuron morphology depending on mPFC cortical layer. Neurons in layer II/III exhibited increased size and diameter of dendrite trees, whereas neurons in layer V were not affected. Layer VI neurons with long apical dendrites had trees with decreased diameter that extended farther from the soma, and layer VI neurons with short apical dendrite trees exhibited decreased tree size overall. These layer-specific alterations to mPFC neuron morphology may form a novel morphological mechanism underlying long-term mPFC dysfunction and resulting cognitive impairments in FASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Estimates of soil ingestion by wildlife

    USGS Publications Warehouse

    Beyer, W.N.; Connor, E.E.; Gerould, S.

    1994-01-01

    Many wildlife species ingest soil while feeding, but ingestion rates are known for only a few species. Knowing ingestion rates may be important for studies of environmental contaminants. Wildlife may ingest soil deliberately, or incidentally, when they ingest soil-laden forage or animals that contain soil. We fed white-footed mice (Peromyscus leucopus) diets containing 0-15% soil to relate the dietary soil content to the acid-insoluble ash content of scat collected from the mice. The relation was described by an equation that required estimates of the percent acid-insoluble ash content of the diet, digestibility of the diet, and mineral content of soil. We collected scat from 28 wildlife species by capturing animals, searching appropriate habitats for scat, or removing material from the intestines of animals collected for other purposes. We measured the acid-insoluble ash content of the scat and estimated the soil content of the diets by using the soil-ingestion equation. Soil ingestion estimates should be considered only approximate because they depend on estimated rather than measured digestibility values and because animals collected from local populations at one time of the year may not represent the species as a whole. Sandpipers (Calidris spp.), which probe or peck for invertebrates in mud or shallow water, consumed sediments at a rate of 7-30% of their diets. Nine-banded armadillo (Dasypus novemcinctus, soil = 17% of diet), American woodcock (Scolopax minor, 10%), and raccoon (Procyon lotor, 9%) had high rates of soil ingestion, presumably because they ate soil organisms. Bison (Bison bison, 7%), black-tailed prairie dog (Cynomys ludovicianus, 8%), and Canada geese (Branta canadensis, 8%) consumed soil at the highest rates among the herbivores studied, and various browsers studied consumed little soil. Box turtle (Terrapene carolina, 4%), opossum (Didelphis virginiana, 5%), red fox (Vulpes vulpes, 3%), and wild turkey (Meleagris gallopavo, 9%) consumed soil

  8. Management of ingested magnets in children.

    PubMed

    Hussain, Sunny Z; Bousvaros, Athos; Gilger, Mark; Mamula, Petar; Gupta, Sandeep; Kramer, Robert; Noel, R Adam

    2012-09-01

    We describe a comprehensive algorithm for the management of ingested rare-earth magnets in children. These newer and smaller neodymium magnets sold as adult toys are much stronger than the traditional magnets, and can attract each other with formidable forces. If >1 magnet is swallowed at the same time, or a magnet is co-ingested with another metallic object, the loops of intestine can be squeezed between them resulting in bowel damage including perforations. An algorithm that uses the number of magnets ingested, location of magnets, and the timing of ingestion before intervention helps to delineate the roles of the pediatric gastroenterologists and surgeons in the management of these cases.

  9. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca2+-Activated K+ Channels In Vitro.

    PubMed

    Su, Fang; Guo, An-Chen; Li, Wei-Wei; Zhao, Yi-Long; Qu, Zheng-Yi; Wang, Yong-Jun; Wang, Qun; Zhu, Yu-Lan

    2017-02-01

    Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca 2+ -activated K + channel (BK Ca ) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca 2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BK Ca channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BK Ca channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca 2+ and preventing neuronal apoptosis, and this is mediated by BK Ca channel activation.

  10. Impact of adolescent alcohol use across the lifespan: Long-lasting tolerance to high-dose alcohol coupled with potentiated spatial memory impairments to moderate-dose alcohol.

    PubMed

    Matthews, Douglas B; Novier, Adelle; Diaz-Granados, Jaime L; Van Skike, Candice E; Ornelas, Laura; Mittleman, G

    2017-06-01

    Understanding how alcohol exposure during adolescence affects aging is a critical but understudied area. In the present study, male rats were exposed to either alcohol or saline during adolescence, then tested every 4 months following either an ethanol or saline challenge; animals were tested until postnatal day (PD) 532. It was found that long-lasting tolerance to high-dose ethanol exists through the test period, as measured by loss of righting reflex, while tolerance to lower doses of ethanol is not found. In addition, alcohol exposure during adolescence facilitated spatial memory impairments to acute ethanol challenges later in life. The current work demonstrates that exposure to ethanol during adolescent development can produce long-lasting detrimental impairments. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Behavioural and neuroinflammatory effects of the combination of binge ethanol and MDMA in mice.

    PubMed

    Ros-Simó, Clara; Ruiz-Medina, Jessica; Valverde, Olga

    2012-06-01

    Binge drinking is a common pattern of alcohol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular, 3,4-methylendioxymethamphetamine (MDMA). To evaluate the behavioural consequences of voluntary binge ethanol consumption, alone and in combination to MDMA. Also, to elucidate the effects of the combined consumption of these two drugs on neuroinflammation. Adolescent mice received MDMA (MDMA-treated mice), ethanol (ethanol-treated mice group) or both (ethanol plus MDMA-treated mice). Drinking in the dark (DID) procedure was used as a model of binge. Body temperature, locomotor activity, motor coordination, anxiety-like and despair behaviour in adolescent mice were evaluated 48 h, 72 h, and 7 days after the treatments. Also, neuroinflammatory response to these treatments was measured in the striatum. The hyperthermia observed in MDMA-treated mice was abolished by pre-exposition to ethanol. Ethanol plus MDMA-treated mice showed lower locomotor activity. Ethanol-treated mice showed motor coordination impairment and increased despair behaviour. Anxiety-like behaviour was only seen in animals that were treated with both drugs. Contrarily, neuroinflammation was mostly seen in animals treated only with MDMA. Ethanol and MDMA co-administration increases the neurobehavioural changes induced by the consumption of each one of these drugs. However, as ethanol consumption did not increase neuroinflammatory responses induced by MDMA, other mechanisms, mediated by ethanol, are likely to account for this effect and need to be evaluated.

  12. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  13. Operant ethanol self-administration in ethanol dependent mice.

    PubMed

    Lopez, Marcelo F; Becker, Howard C

    2014-05-01

    While rats have been predominantly used to study operant ethanol self-administration behavior in the context of dependence, several studies have employed operant conditioning procedures to examine changes in ethanol self-administration behavior as a function of chronic ethanol exposure and withdrawal experience in mice. This review highlights some of the advantages of using operant conditioning procedures for examining the motivational effects of ethanol in animals with a history of dependence. As reported in rats, studies using various operant conditioning procedures in mice have demonstrated significant escalation of ethanol self-administration behavior in mice rendered dependent via forced chronic ethanol exposure in comparison to nondependent mice. This paper also presents a summary of these findings, as well as suggestions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Two Year Old With Water Bead Ingestion.

    PubMed

    Jackson, Jami; Randell, Kimberly A; Knapp, Jane F

    2015-08-01

    Foreign body ingestion is a common pediatric complaint. Two case reports describe intestinal obstruction in children from an ingestion of a single superabsorbent water ball, requiring surgical removal. We describe nonsurgical management of an asymptomatic child who ingested approximately 100 superabsorbent water beads.Because of the risk for subsequent intestinal obstruction, the patient was admitted for whole bowel irrigation. This case report is the first describing use of whole bowel irrigation in the management of an asymptomatic patient with multiple water beads ingestion.

  15. Ingested hyaluronan moisturizes dry skin.

    PubMed

    Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Matsuoka, Ryosuke; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu

    2014-07-11

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body's HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action.

  16. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    PubMed

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus. © The Author(s) 2015.

  17. Hippocampal-dependent Pavlovian conditioning in adult rats exposed to binge-like doses of ethanol as neonates.

    PubMed

    Lindquist, Derick H

    2013-04-01

    Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986

  19. Hops (Humulus lupulus) Content in Beer Modulates Effects of Beer on the Liver After Acute Ingestion in Female Mice.

    PubMed

    Landmann, Marianne; Sellmann, Cathrin; Engstler, Anna Janina; Ziegenhardt, Doreen; Jung, Finn; Brombach, Christine; Bergheim, Ina

    2017-01-01

    Using a binge-drinking mouse model, we aimed to determine whether hops (Humulus lupulus) in beer is involved in the less damaging effects of acute beer consumption on the liver in comparison with ethanol. Female C57BL/6 J mice were either fed one iso-alcoholic and iso-caloric bolus dose of ethanol, beer, beer without hops (6 g ethanol/kg body weight) or an iso-caloric bolus of maltodextrin control solution. Markers of steatosis, intestinal barrier function, activation of toll-like receptor 4 signaling cascades, lipid peroxidation and lipogenesis were determined in liver, small intestine and plasma 2 h and 12 h after acute alcohol ingestion. Alcohol-induced hepatic fat accumulation was significantly attenuated in mice fed beer whereas in those fed beer without hops, hepatic fat accumulation was similar to that found in ethanol-fed mice. While markers of intestinal barrier function e.g. portal endotoxin levels and lipogenesis only differed slightly between groups, hepatic concentrations of myeloid differentiation primary response gene 88, inducible nitric oxide synthase (iNOS) and plasminogen-activator inhibitor 1 protein as well as of 4-hydroxynonenal and 3-nitrotyrosine protein adducts were similarly elevated in livers of mice fed ethanol or beer without hops when compared with controls. Induction of these markers was markedly attenuated in mice fed hops-containing beer. Taken together, our data suggest that hops in beer markedly attenuated acute alcohol-induced liver steatosis in female mice through mechanisms involving a suppression of iNOS induction in the liver. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  20. ADX-47273, a mGlu5 receptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from 'binge-like' ethanol exposure in rats.

    PubMed

    Marszalek-Grabska, Marta; Gibula-Bruzda, Ewa; Bodzon-Kulakowska, Anna; Suder, Piotr; Gawel, Kinga; Talarek, Sylwia; Listos, Joanna; Kedzierska, Ewa; Danysz, Wojciech; Kotlinska, Jolanta H

    2018-02-15

    Repeated exposure to and withdrawal from ethanol induces deficits in spatial reversal learning. Data indicate that metabotropic glutamate 5 (mGlu5) receptors are implicated in synaptic plasticity and learning and memory. These receptors functionally interact with N-methyl-d-aspartate (NMDA) receptors, and activation of one type results in the activation of the other. We examined whether (S)-(4-fluorophenyl)(3-(3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)-piperidin-1-yl (ADX-47273), a positive allosteric modulator (PAM) of mGlu5 receptor, attenuates deficits in reversal learning induced by withdrawal (11-13days) from 'binge-like' ethanol input (5.0g/kg, i.g. for 5days) in the Barnes maze (a spatial learning) task in rats. We additionally examined the effects of ADX-47273 on the expression of the NMDA receptors subunit, GluN2B, in the hippocampus and prefrontal cortex, on the 13th day of ethanol withdrawal. Herein, withdrawal from repeated ethanol administration impaired reversal learning, but not the probe trial. Moreover, ADX-47273 (30mg/kg, i.p.) given prior to the first reversal learning trial for 3days in the Barnes maze, significantly enhanced performance in the ethanol-treated group. The 13th day of ethanol abstinence decreased the expression of the GluN2B subunit in the selected brain regions, but ADX-47273 administration increased it. In conclusion, positive allosteric modulation of mGlu5 receptors recovered spatial reversal learning impairment induced by withdrawal from 'binge-like' ethanol exposure. Such effect seems to be correlated with the mGlu5 receptors mediated potentiation of GluN2B-NMDA receptor mediated responses in the hippocampus and prefrontal cortex. Thus, our results emphasize the role of mGlu5 receptor PAM in the adaptive learning impaired by ethanol exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preventing battery ingestions: an analysis of 8648 cases.

    PubMed

    Litovitz, Toby; Whitaker, Nicole; Clark, Lynn

    2010-06-01

    Outcomes of pediatric button battery ingestions have worsened substantially, predominantly related to the emergence of the 20-mm-diameter lithium cell as a common power source for household products. Button batteries lodged in the esophagus can cause severe tissue damage in just 2 hours, with delayed complications such as esophageal perforation, tracheoesophageal fistulas, exsanguination after fistulization into a major blood vessel, esophageal strictures, and vocal cord paralysis. Thirteen deaths have been reported. The objective of this study was to explore button battery ingestion scenarios to formulate prevention strategies. A total of 8648 battery ingestions that were reported to the National Battery Ingestion Hotline were analyzed. Batteries that were ingested by children who were younger than 6 years were most often obtained directly from a product (61.8%), were loose (29.8%), or were obtained from battery packaging (8.2%). Of young children who ingested the most hazardous battery, the 20-mm lithium cell, 37.3% were intended for remote controls. Adults most often ingested batteries that were sitting out, loose, or discarded (80.8%); obtained directly from a product (4.2%); obtained from battery packaging (3.0%); or swallowed within a hearing aid (12.1%). Batteries that were intended for hearing aids were implicated in 36.3% of ingestions. Batteries were mistaken for pills in 15.5% of ingestions, mostly by older adults. Parents and child care providers should be taught to prevent battery ingestions. Because 61.8% of batteries that were ingested by children were obtained from products, manufacturers should redesign household products to secure the battery compartment, possibly requiring a tool to open it.

  2. Vapor ingestion in Centaur liquid-hydrogen tank

    NASA Technical Reports Server (NTRS)

    Symons, E. P.

    1977-01-01

    Vapor ingestion phenomena were investigated using scale models of the Centaur liquid hydrogen tank to determine the height of the free surface of the liquid when vapor is intially ingested into the tank outlet. Data are compared with an analysin and, is general the agreement is very good. Predictions are presented for minimum liquid levels required in the Centaur liquid hydrogen tank in order to prevent vapor ingestion when restarting the engines in space and the quantities of liquid remaining in the tank at vapor ingestion during main engine firing.

  3. Gasoline ingestion: a rare cause of pancytopenia.

    PubMed

    Rahman, Ifad; Narasimhan, Kanakasabai; Aziz, Shahid; Owens, William

    2009-11-01

    The majority of reported cases of gasoline intoxication involves inhalation or percutaneous absorption. Data are scarce on complications and outcomes after gasoline poisoning by oral ingestion. The major cause of mortality and morbidity associated with the ingestion of gasoline is related to pulmonary aspiration. Despite the high frequency of the ingestions, there is little documentation of nonpulmonary toxic effects of gasoline. After ingestion, the principal toxicity is aspiration pneumonia, but any documented extra pulmonary manifestations of this condition may be important in the overall management of these patients. We are reporting a rare case of pancytopenia along with aspiration pneumonia and multisystem organ failure in a 58-year-old male after prolonged intentional ingestion of gasoline. To our knowledge, this is the only reported case of gasoline toxicity causing pancytopenia.

  4. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  5. Acute exogenous lipoid pneumonia caused by accidental kerosene ingestion in an elderly patient with dementia: a case report.

    PubMed

    Gotanda, Hiroshi; Kameyama, Yumi; Yamaguchi, Yasuhiro; Ishii, Masaki; Hanaoka, Yoko; Yamamoto, Hiroshi; Ogawa, Sumito; Iijima, Katsuya; Akishita, Masahiro; Ouchi, Yasuyoshi

    2013-01-01

    Acute exogenous lipoid pneumonia is an uncommon condition caused by aspiration of oil-based substances, occurring mainly in children. Here, we report the case of an 83-year-old patient with Alzheimer's disease who presented with coughing and hypoxia. The diagnosis of acute exogenous lipoid pneumonia caused by accidental kerosene ingestion was made on the basis of the patient's clinical history, and typical radiological and cytological findings. The patient's cognitive impairment and an unsafe environment, in which the patient's 91-year-old husband stored kerosene in an old shochu bottle, were responsible for the accidental ingestion. Acute exogenous lipoid pneumonia should be considered in the differential diagnosis for acute respiratory disorders in the rapidly aging population. © 2013 Japan Geriatrics Society.

  6. Osmoregulatory function in ducks following ingestion of the organophosphorus insecticide fenthion

    USGS Publications Warehouse

    Rattner, B.A.; Fleming, W.J.; Murray, H.C.

    1983-01-01

    Salt gland function and osmoregulation in aquatic birds drinking hyperosmotic water has been suggested to be impaired by organophosphorus insecticides. To test this hypothesis, adult black ducks (Anas rubripes) were provided various regimens of fresh or salt (1.5% NaCl) water before, during, and after ingestion of mash containing 21 ppm fenthion. Ducks were bled by jugular venipuncture after I, 7. and 12 days of treatment, and were then killed. Brain and salt gland acetylcholinesterase activities were substantially inhibited (44-61% and 14-36%) by fenthion. However, salt gland weight and Na + -K + -ATPase activity, and plasma Na + , CI- , and osmolality, were uniformly elevated in all groups receiving salt water including those ingesting fenthion. In a second study, salt gland Na + -K + -ATPase activity in mallards (A. platyrhynchos) was not affected after in vitro incubation with either fenthion or fenthion oxon at concentrations ranging from 0.04 to 400 ?M, but was reduced in the presence of 40 and 400 ?M DDE (positive control). These findings suggest that environmentally realistic concentrations of organophosphorus insecticides do not markedly affect osmoregulatory function in adult black ducks.

  7. Gluten-induced cognitive impairment ("brain fog") in coeliac disease.

    PubMed

    Yelland, Gregory W

    2017-03-01

    Much is known about the serious neurological effects of gluten ingestion in coeliac disease patients, such as sporadic ataxia and peripheral neuropathy, although the causal links to gluten are still under debate. However, such disorders are observed in only a small percentage of coeliac patients. Much less is known about the transient cognitive impairments to memory, attention, executive function, and the speed of cognitive processing reported by the majority of patients with coeliac disease. These mild degradations of cognitive functions, referred to as "brain fog," are yet to be formally recognized as a medical or psychological condition. However, subtle tests of cognitive function are measurable in untreated patients with coeliac disease and improve over the first 12 months' therapy with a gluten-free diet. Such deficits also occur in patients with Crohn's disease, particularly in association with systemic inflammatory activity. Thus, cognitive impairments associated with brain fog are psychologically and neurologically real and improve with adherence to a gluten-free diet. There is not yet sufficient evidence to provide a definitive account of the mechanism by which gluten ingestion causes the impairments to cognitive function associated with brain fog, but current evidence suggests that it is more likely that the causal factor is not directly related to exposure to gluten. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  8. Ingested hyaluronan moisturizes dry skin

    PubMed Central

    2014-01-01

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

  9. Chronic ethanol feeding causes depression of mitochondrial elongation factor Tu in the rat liver: implications for the mitochondrial ribosome.

    PubMed

    Weiser, Brian; Gonye, Gregory; Sykora, Peter; Crumm, Sara; Cahill, Alan

    2011-05-01

    Chronic ethanol feeding is known to negatively impact hepatic energy metabolism. Previous studies have indicated that the underlying lesion responsible for this may lie at the level of the mitoribosome. The aim of this study was to characterize the structure of the hepatic mitoribosome in alcoholic male rats and their isocalorically paired controls. Our experiments revealed that chronic ethanol feeding resulted in a significant depletion of both structural (death-associated protein 3) and functional [elongation factor thermo unstable (EF-Tu)] mitoribosomal proteins. In addition, significant increases were found in nucleotide elongation factor thermo stable (EF-Ts) and structural mitochondrial ribosomal protein L12 (MRPL12). The increase in MRPL12 was found to correlate with an increase in the levels of the 39S large mitoribosomal subunit. These changes were accompanied by decreased levels of nuclear- and mitochondrially encoded respiratory subunits, decreased amounts of intact respiratory complexes, decreased hepatic ATP levels, and depressed mitochondrial translation. Mathematical modeling of ethanol-mediated changes in EF-Tu and EF-Ts using prederived kinetic data predicted that the ethanol-mediated decrease in EF-Tu levels could completely account for the impaired mitochondrial protein synthesis. In conclusion, chronic ethanol feeding results in a depletion of mitochondrial EF-Tu levels within the liver that is mathematically predicted to be responsible for the impaired mitochondrial protein synthesis seen in alcoholic animals.

  10. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access.

    PubMed

    Rosenwasser, Alan M; McCulley, Walter D; Fecteau, Matthew

    2014-11-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  11. Circadian Activity Rhythms and Voluntary Ethanol Intake in Male and Female Ethanol-Preferring Rats: Effects of Long-Term Ethanol Access

    PubMed Central

    Rosenwasser, Alan M.; McCulley, Walter D.; Fecteau, Matthew

    2014-01-01

    Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian

  12. Ingestion of Fireworks: Rare Cause of Poisoning in Children.

    PubMed

    Yuksekkaya, Hasan; Gumus, Meltem; Yucel, Aylin; Energin, Meltem; Demirci, Serafettin

    2018-03-12

    Mistaken ingestion of all manner of toxic matter is common in childhood, but poisoning with fireworks and matchsticks is rare. Fireworks usually contain 10% yellow phosphorus and 50% potassium chlorate. Potassium chlorate is an extremely reactive and toxic agent that is used in fireworks and matchstick heads. Eleven cases (7 females and 5 males; median age, 36 months [ranging from 24 to 48 months]) of poisoning after ingestion of fireworks and matchstick(s), between February 2008 and June 2014, were reviewed. The most common initial symptom was vomiting except for 2 cases in this group. Biochemical tests indicated that hyperphosphatemia was present in all patients, 8 patients (72.7%) had subclinical hepatic injury, 1 (9%) had acute hepatic failure, and 2 patients had no clinical or biochemical evidence of hepatic damage. Three patients had renal impairment, but none of them required dialysis. All of the patients recovered with supportive therapy except for 2 cases. One patient underwent cadaveric liver transplantation, whereas the other died because of circulatory dysfunction and respiratory failure due to pulmonary alveolar hemorrhage. Without prompt intervention, poisoning with fireworks carries high morbidity and mortality in children. It can cause pulmonary hemorrhage, in addition to other organ damage, including liver and kidney. Hyperphosphatemia is common, as it was seen in all of the study patients.

  13. Learning impairment in honey bees caused by agricultural spray adjuvants.

    PubMed

    Ciarlo, Timothy J; Mullin, Christopher A; Frazier, James L; Schmehl, Daniel R

    2012-01-01

    Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions. Organosilicone spray adjuvants may therefore contribute to the

  14. Learning Impairment in Honey Bees Caused by Agricultural Spray Adjuvants

    PubMed Central

    Ciarlo, Timothy J.; Mullin, Christopher A.; Frazier, James L.; Schmehl, Daniel R.

    2012-01-01

    Background Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. Methodology/Principal Findings An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. Conclusions/Significance A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions

  15. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    PubMed

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  16. Concentrations of zolpidem and zopiclone in venous blood samples from impaired drivers compared with femoral blood from forensic autopsies.

    PubMed

    Jones, Alan Wayne; Holmgren, Anita

    2012-10-10

    The concentrations of zolpidem and zopiclone were determined in peripheral blood samples in two forensic materials collected over a 10-year period (2001-2010). The z-hypnotics were determined in venous blood from living subjects (impaired drivers) and in femoral blood from deceased persons (forensic autopsies), with the latter classified as intoxication or other causes of death. The z-hypnotics were determined in blood by capillary column gas chromatography (GC) with a nitrogen-phosphorous (N-P) detector after solvent extraction with n-butyl acetate. The analytical limit of quantitation (LOQ) was 0.02 mg/L for zopiclone and 0.05 mg/L for zolpidem and these have remained unchanged throughout the study. When death was attributed to drug intoxication (N=918), the median concentration of zopiclone in blood was 0.20 mg/L compared with 0.06 mg/L for other causes of death (N=1215) and 0.07 mg/L in traffic offenders (N=691) (p<0.001). Likewise, a higher median concentration (0.30 mg/L) was found in intoxication deaths involving zolpidem (N=357) compared with 0.13 mg/L for other causes of death (N=397) or 0.19 mg/L in impaired drivers (N=837) (p<0.001). Median concentration in blood of both z-hypnotics were appreciably higher in intoxication deaths when no other substances were identified; 0 70 mg/L (N=12) for zopiclone and 1.35 mg/L (N=12) for zolpidem. The median concentrations of z-hypnotics in blood decreased as the number of co-ingested substances increased for intoxication deaths but not other causes of death. The most prevalent co-ingested substances were ethanol in autopsy cases and diazepam in the motorists. This large compilation of forensic cases should prove useful when toxicologists are required to interpret concentrations of z-hypnotics in blood samples in relation to cause of death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    PubMed

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  19. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Maga, Murat; Mallitt, Kylie-Ann; Fahey, Paul; Cox, Timothy C; Whitelaw, Emma; Chong, Suyinn

    2010-01-15

    Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5-8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (A(vy)), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at A(vy). This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the A(vy) mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than A(vy), a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the A(vy) allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.

  20. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Examining the Role of Membrane Lipid Composition in Determining the Ethanol Tolerance of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.

    2014-01-01

    Yeast (Saccharomyces cerevisiae) has an innate ability to withstand high levels of ethanol that would prove lethal to or severely impair the physiology of other organisms. Significant efforts have been undertaken to elucidate the biochemical and biophysical mechanisms of how ethanol interacts with lipid bilayers and cellular membranes. This research has implicated the yeast cellular membrane as the primary target of the toxic effects of ethanol. Analysis of model membrane systems exposed to ethanol has demonstrated ethanol's perturbing effect on lipid bilayers, and altering the lipid composition of these model bilayers can mitigate the effect of ethanol. In addition, cell membrane composition has been correlated with the ethanol tolerance of yeast cells. However, the physical phenomena behind this correlation are likely to be complex. Previous work based on often divergent experimental conditions and time-consuming low-resolution methodologies that limit large-scale analysis of yeast fermentations has fallen short of revealing shared mechanisms of alcohol tolerance in Saccharomyces cerevisiae. Lipidomics, a modern mass spectrometry-based approach to analyze the complex physiological regulation of lipid composition in yeast and other organisms, has helped to uncover potential mechanisms for alcohol tolerance in yeast. Recent experimental work utilizing lipidomics methodologies has provided a more detailed molecular picture of the relationship between lipid composition and ethanol tolerance. While it has become clear that the yeast cell membrane composition affects its ability to tolerate ethanol, the molecular mechanisms of yeast alcohol tolerance remain to be elucidated. PMID:24610851

  2. Developmental Ethanol Exposure Causes Reduced Feeding and Reveals a Critical Role for Neuropeptide F in Survival

    PubMed Central

    Guevara, Amanda; Gates, Hillary; Urbina, Brianna; French, Rachael

    2018-01-01

    Food intake is necessary for survival, and natural reward circuitry has evolved to help ensure that animals ingest sufficient food to maintain development, growth, and survival. Drugs of abuse, including alcohol, co-opt the natural reward circuitry in the brain, and this is a major factor in the reinforcement of drug behaviors leading to addiction. At the junction of these two aspects of reward are alterations in feeding behavior due to alcohol consumption. In particular, developmental alcohol exposure (DAE) results in a collection of physical and neurobehavioral disorders collectively referred to as Fetal Alcohol Spectrum Disorder (FASD). The deleterious effects of DAE include intellectual disabilities and other neurobehavioral changes, including altered feeding behaviors. Here we use Drosophila melanogaster as a genetic model organism to study the effects of DAE on feeding behavior and the expression and function of Neuropeptide F. We show that addition of a defined concentration of ethanol to food leads to reduced feeding at all stages of development. Further, genetic conditions that reduce or eliminate NPF signaling combine with ethanol exposure to further reduce feeding, and the distribution of NPF is altered in the brains of ethanol-supplemented larvae. Most strikingly, we find that the vast majority of flies with a null mutation in the NPF receptor die early in larval development when reared in ethanol, and provide evidence that this lethality is due to voluntary starvation. Collectively, we find a critical role for NPF signaling in protecting against altered feeding behavior induced by developmental ethanol exposure. PMID:29623043

  3. Predictors of recurrent ingestion of gastrointestinal foreign bodies.

    PubMed

    Grimes, Ian C; Spier, Bret J; Swize, Lisa R; Lindstrom, Mary J; Pfau, Patrick R

    2013-01-01

    Gastrointestinal foreign bodies are commonly encountered; however, little knowledge exists as to the causes of foreign body ingestions and why they occur repeatedly in some patients. To identify and define patients at high risk for recurrent foreign body ingestion. A retrospective chart review of foreign body ingestion was conducted at a tertiary care medical centre over an 11-year period. Variables analyzed included age, sex, incarceration status, Diagnostic and Statistical Manual of Mental Disorders-IV diagnosis, success of endoscopy, type of sedation used, method of extraction, complications, presence of gastrointestinal pathology, and incidence of recurrent food impaction or foreign body. A total of 159 patients with a foreign body ingestion were identified. One hundred fourteen (77%) experienced a single episode of ingestion and 45 (23%) experienced multiple ingestions. Of the patients with multiple ingestions, 27 (60%) had recurrent food impactions while 18 (40%) ingested foreign objects. In the recurrent ingestor group, a psychiatric disorder had been diagnosed in 16 patients (35.6%) and there were 13 incarcerated individuals (28.9%). The average number of recurrences was 2.6 per patient (117 total recurrences). Individuals with a psychiatric disorder experienced 3.9 recurrences per patient, while prisoners averaged 4.1 recurrences per patient. The combination of a psychiatric disorder and being incarcerated was associated with the highest recurrence rate (4.33 per patient). Multivariable logistic regression revealed that male sex (OR 2.9; P=0.022), being incarcerated (OR 3.0; P=0.024) and the presence of a psychiatric disorder (OR 2.5; P=0.03) were risk factors for recurrent ingestion. Risk factors for recurrent ingestion of foreign bodies were male sex, being incarcerated and the presence of a psychiatric disorder.

  4. Predictors of recurrent ingestion of gastrointestinal foreign bodies

    PubMed Central

    Grimes, Ian C; Spier, Bret J; Swize, Lisa R; Lindstrom, Mary J; Pfau, Patrick R

    2013-01-01

    BACKGROUND: Gastrointestinal foreign bodies are commonly encountered; however, little knowledge exists as to the causes of foreign body ingestions and why they occur repeatedly in some patients. OBJECTIVE: To identify and define patients at high risk for recurrent foreign body ingestion. METHODS: A retrospective chart review of foreign body ingestion was conducted at a tertiary care medical centre over an 11-year period. Variables analyzed included age, sex, incarceration status, Diagnostic and Statistical Manual of Mental Disorders-IV diagnosis, success of endoscopy, type of sedation used, method of extraction, complications, presence of gastrointestinal pathology, and incidence of recurrent food impaction or foreign body. RESULTS: A total of 159 patients with a foreign body ingestion were identified. One hundred fourteen (77%) experienced a single episode of ingestion and 45 (23%) experienced multiple ingestions. Of the patients with multiple ingestions, 27 (60%) had recurrent food impactions while 18 (40%) ingested foreign objects. In the recurrent ingestor group, a psychiatric disorder had been diagnosed in 16 patients (35.6%) and there were 13 incarcerated individuals (28.9%). The average number of recurrences was 2.6 per patient (117 total recurrences). Individuals with a psychiatric disorder experienced 3.9 recurrences per patient, while prisoners averaged 4.1 recurrences per patient. The combination of a psychiatric disorder and being incarcerated was associated with the highest recurrence rate (4.33 per patient). Multivariable logistic regression revealed that male sex (OR 2.9; P=0.022), being incarcerated (OR 3.0; P=0.024) and the presence of a psychiatric disorder (OR 2.5; P=0.03) were risk factors for recurrent ingestion. CONCLUSION: Risk factors for recurrent ingestion of foreign bodies were male sex, being incarcerated and the presence of a psychiatric disorder. PMID:23378983

  5. Long term ethanol consumption promotes hepatic tumorigenesis but impairs normal hepatocyte proliferation in rats

    USDA-ARS?s Scientific Manuscript database

    Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcoh...

  6. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Vidal, Rebeca

    2017-04-01

    The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

  7. Can Ingestion of Lead Shot and Poisons Change Population Trends of Three European Birds: Grey Partridge, Common Buzzard, and Red Kite?

    PubMed Central

    Meyer, Carolyn B.; Meyer, Joseph S.; Francisco, Alex B.; Holder, Jennifer; Verdonck, Frederik

    2016-01-01

    Little is known about the magnitude of the effects of lead shot ingestion alone or combined with poisons (e.g., in bait or seeds/granules containing pesticides) on population size, growth, and extinction of non-waterbird avian species that ingest these substances. We used population models to create example scenarios demonstrating how changes in these parameters might affect three susceptible species: grey partridge (Perdix perdix), common buzzard (Buteo buteo), and red kite (Milvus milvus). We added or subtracted estimates of mortality due to lead shot ingestion (4–16% of mortality, depending on species) and poisons (4–46% of mortality) reported in the UK or France to observed mortality of studied populations after models were calibrated to observed population trends. Observed trends were decreasing for partridge (in continental Europe), stable for buzzard (in Germany), and increasing for red kite (in Wales). Although lead shot ingestion and poison at modeled levels did not change the trend direction for the three species, they reduced population size and slowed population growth. Lead shot ingestion at modeled rates reduced population size of partridges by 10%, and when combined with bait and pesticide poisons, by 18%. For buzzards, decrease in mean population size by lead shot and poisons combined was much smaller (≤ 1%). The red kite population has been recovering; however, modeled lead shot ingestion reduced its annual growth rate from 6.5% to 4%, slowing recovery. If mortality from poisoned baits could be removed, the kite population could potentially increase at a rapid annual rate of 12%. The effects are somewhat higher if ingestion of these substances additionally causes sublethal reproductive impairment. These results have uncertainty but suggest that declining or recovering populations are most sensitive to lead shot or poison ingestion, and removal of poisoned baits can have a positive impact on recovering raptor populations that frequently feed

  8. Can Ingestion of Lead Shot and Poisons Change Population Trends of Three European Birds: Grey Partridge, Common Buzzard, and Red Kite?

    PubMed

    Meyer, Carolyn B; Meyer, Joseph S; Francisco, Alex B; Holder, Jennifer; Verdonck, Frederik

    2016-01-01

    Little is known about the magnitude of the effects of lead shot ingestion alone or combined with poisons (e.g., in bait or seeds/granules containing pesticides) on population size, growth, and extinction of non-waterbird avian species that ingest these substances. We used population models to create example scenarios demonstrating how changes in these parameters might affect three susceptible species: grey partridge (Perdix perdix), common buzzard (Buteo buteo), and red kite (Milvus milvus). We added or subtracted estimates of mortality due to lead shot ingestion (4-16% of mortality, depending on species) and poisons (4-46% of mortality) reported in the UK or France to observed mortality of studied populations after models were calibrated to observed population trends. Observed trends were decreasing for partridge (in continental Europe), stable for buzzard (in Germany), and increasing for red kite (in Wales). Although lead shot ingestion and poison at modeled levels did not change the trend direction for the three species, they reduced population size and slowed population growth. Lead shot ingestion at modeled rates reduced population size of partridges by 10%, and when combined with bait and pesticide poisons, by 18%. For buzzards, decrease in mean population size by lead shot and poisons combined was much smaller (≤ 1%). The red kite population has been recovering; however, modeled lead shot ingestion reduced its annual growth rate from 6.5% to 4%, slowing recovery. If mortality from poisoned baits could be removed, the kite population could potentially increase at a rapid annual rate of 12%. The effects are somewhat higher if ingestion of these substances additionally causes sublethal reproductive impairment. These results have uncertainty but suggest that declining or recovering populations are most sensitive to lead shot or poison ingestion, and removal of poisoned baits can have a positive impact on recovering raptor populations that frequently feed on

  9. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays

    PubMed Central

    Chan, Robin F.; Lewellyn, Lara; DeLoyht, Jacqueline M.; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C.; Warrick, John M.; Grotewiel, Mike

    2014-01-01

    Background The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol exposure in flies has not been systematically investigated. Methods We manipulated mini-white and white expression via (i) transposons marked with mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of ethanol) and an assay based on ethanol-induced sedation. Results In eRING assays, ethanol-induced impairment of climbing correlated inversely with expression of the mini-white marker from a series of transposon insertions. Additionally, flies harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were significantly more sensitive to ethanol in eRING assays than controls expressing endogenous white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the ethanol sedation assay were not affected by decreased expression of mini-white or endogenous white in flies. Conclusions Ethanol sensitivity measured in the eRING assay is noticeably influenced by white and mini-white, making eRING problematic for studies on ethanol-related behavior in Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-white. PMID:24890118

  10. The effect of hemoperfusion on patients with toxic encephalopathy induced by silkworm chrysalis ingestion.

    PubMed

    Hu, Haixia; Wang, Xu; Lv, Jiaqi; Sun, Jing; Xing, Jihong; Liu, Xiaoliang

    2016-08-01

    This study aims to determine therapeutic effect of hemoperfusion on patients with acute toxic encephalopathy induced by silkworm chrysalis ingestion. Three patients who developed toxic encephalopathy after chrysalis ingestion were analysed. Two patients lost their consciousness, while two patients had typical extrapyramidal tremor symptoms. Further neurological examination revealed various degrees of muscle strength impairment in these patients. All of them received treatments of omeprazole (40 mg/day), furosemide (one dose of 20 mg), vitamin C (2.0 g/day), calcium gluconate (2.0 g/day) and rehydration with glucose and sodium chloride (1500 ml/day). In addition, they received hemoperfusion treatment for 1.5 h. All patients recovered well after hemoperfusion. Two patients with loss of consciousness significantly recovered at 45 min and 65 min after hemoperfusion, respectively. All tremor symptoms were completely resolved in these patients at 30 min, 50 min, and 70 min following treatment, respectively. After the hemoperfusion treatment, encephalopathy symptoms of two patients had completely disappeared. All patients were followed up for one month and did not report any abnormalities. Our study indicates that hemoperfusion could be a useful and efficient treatment strategy for patients with acute encephalopathy after silkworm chrysalis ingestion. Larger clinical trials with longer follow-up are warranted to confirm the clinical benefit of hemoperfusion. © The Author(s) 2015.

  11. Retrospective study of mistletoe ingestion.

    PubMed

    Spiller, H A; Willias, D B; Gorman, S E; Sanftleban, J

    1996-01-01

    There are limited data concerning accidental exposure to Phoradendron flavescens (Phoradendron serotinum, American Mistletoe). The only published reports include a review of 14 cases which revealed no symptoms and a single fatality from an intentional ingestion of an unknown amount of an elixir brewed from the berries. The risk of serious toxicity from accidental exposure to this plant appears to be minimal, yet it continues to be regarded as a dangerous plant. We reviewed charts for four years (1990-1993) from three poison centers where Phoradendron flavescens is indigenous. Ninety-two human cases were located. Age ranged from four months to 42 years, with a mean of six years (SD 8.8) and median of two years. There were 14 symptomatic cases of which 11 were determined to be related to mistletoe exposure. There were six gastrointestinal upset, two mild drowsiness, one eye irritation, one ataxia (21 months), one seizure (13 months). Treatments included gastrointestinal decontamination in 54 patients (59%), ocular irrigation in one and IV benzodiazepine in one. Decontamination did not appear to affect outcome. Amount ingested ranged from one berry or leaf to more than 20 berries or five leaves. In cases with a known amount ingested, eight of ten cases with > or = 5 berries remained symptom free. In the 11 cases with leaf-only ingestion (range 1-5 leaves), three patients had gastrointestinal upset. The one case with five leaves ingested remained asymptomatic. The infant with seizures was an unwitnessed exposure, found with both berries and leaves in the crib. No arrhythmias or cardiovascular changes were reported in any case. All symptomatic cases had onset of symptoms in < or = 6 hours. Symptoms are infrequent and in all but one case would not require direct medical supervision. Seizures have not previously been reported with Phoradendron flavescens exposure. Symptoms from Phoradendron flavescens exposure are infrequent, even with ingestion of 5-20 berries or 1

  12. Pediatric magnet ingestions: the dark side of the force.

    PubMed

    Brown, Julie C; Otjen, Jeffrey P; Drugas, George T

    2014-05-01

    Pediatric magnet ingestions are increasing. Commercial availability of rare-earth magnets poses a serious health risk. This study defines incidence, characteristics, and management of ingestions over time. Cases were identified by searching radiology reports from June 2002 to December 2012 at a children's hospital and verified by chart and imaging review. Relative risk (RR) regressions determined changes in incidence and interventions over time. In all, 98% of ingestions occurred since 2006; 57% involved multiple magnets. Median age was 8 years (range 0 to 18); 0% of single and 56% of multiple ingestions required intervention. Compared with 2007 to 2009, ingestions increased from 2010 to 2012 (RR = 1.9, 95% confidence interval 1.2 to 3.0). Intervention proportion was unchanged (RR = .94, 95% confidence interval .4 to 2.2). Small spherical magnets comprised 26.8% of ingestions since 2010; 86% involved multiple magnets and 47% required intervention. Pediatric magnet ingestions and interventions have increased. Multiple ingestions prompt more imaging and surgical interventions. Magnet safety standards are needed to decrease risk to children. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Ethanol-induced alcohol dehydrogenase E (AdhE) potentiates pneumolysin in Streptococcus pneumoniae.

    PubMed

    Luong, Truc Thanh; Kim, Eun-Hye; Bak, Jong Phil; Nguyen, Cuong Thach; Choi, Sangdun; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2015-01-01

    Alcohol impairs the host immune system, rendering the host more vulnerable to infection. Therefore, alcoholics are at increased risk of acquiring serious bacterial infections caused by Streptococcus pneumoniae, including pneumonia. Nevertheless, how alcohol affects pneumococcal virulence remains unclear. Here, we showed that the S. pneumoniae type 2 D39 strain is ethanol tolerant and that alcohol upregulates alcohol dehydrogenase E (AdhE) and potentiates pneumolysin (Ply). Hemolytic activity, colonization, and virulence of S. pneumoniae, as well as host cell myeloperoxidase activity, proinflammatory cytokine secretion, and inflammation, were significantly attenuated in adhE mutant bacteria (ΔadhE strain) compared to D39 wild-type bacteria. Therefore, AdhE might act as a pneumococcal virulence factor. Moreover, in the presence of ethanol, S. pneumoniae AdhE produced acetaldehyde and NADH, which subsequently led Rex (redox-sensing transcriptional repressor) to dissociate from the adhE promoter. An increase in AdhE level under the ethanol condition conferred an increase in Ply and H2O2 levels. Consistently, S. pneumoniae D39 caused higher cytotoxicity to RAW 264.7 cells than the ΔadhE strain under the ethanol stress condition, and ethanol-fed mice (alcoholic mice) were more susceptible to infection with the D39 wild-type bacteria than with the ΔadhE strain. Taken together, these data indicate that AdhE increases Ply under the ethanol stress condition, thus potentiating pneumococcal virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Ethanol Basics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  15. Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.

    PubMed

    Fuchs, Cas J; Gonzalez, Javier T; Beelen, Milou; Cermak, Naomi M; Smith, Fiona E; Thelwall, Pete E; Taylor, Roy; Trenell, Michael I; Stevenson, Emma J; van Loon, Luc J C

    2016-06-01

    The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg(-1)·h(-1) sucrose or glucose. Blood was sampled frequently and (13)C magnetic resonance spectroscopy and imaging were employed 0, 120, and 300 min postexercise to determine liver and muscle glycogen concentrations and liver volume. Results were as follows: Postexercise muscle glycogen concentrations increased significantly from 85 ± 27 (SD) vs. 86 ± 35 mmol/l to 140 ± 23 vs. 136 ± 26 mmol/l following sucrose and glucose ingestion, respectively (no differences between treatments: P = 0.673). Postexercise liver glycogen concentrations increased significantly from 183 ± 47 vs. 167 ± 65 mmol/l to 280 ± 72 vs. 234 ± 81 mmol/l following sucrose and glucose ingestion, respectively (time × treatment, P = 0.051). Liver volume increased significantly over the 300-min period after sucrose ingestion only (time × treatment, P = 0.001). As a result, total liver glycogen content increased during postexercise recovery to a greater extent in the sucrose treatment (from 53.6 ± 16.2 to 86.8 ± 29.0 g) compared with the glucose treatment (49.3 ± 25.5 to 65.7 ± 27.1 g; time × treatment, P < 0.001), equating to a 3.4 g/h (95% confidence interval: 1.6-5.1 g/h) greater repletion rate with sucrose vs. glucose ingestion. In conclusion, sucrose ingestion (1.5 g·kg(-1)·h(-1)) further accelerates postexercise liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. Copyright © 2016 the American Physiological Society.

  16. Acute Ethanol Has Biphasic Effects on Short- and Long-Term Memory in Both Foreground and Background Contextual Fear Conditioning in C57BL/6 Mice

    PubMed Central

    Gulick, Danielle; Gould, Thomas J.

    2009-01-01

    Background Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/ or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. Methods This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)–foot shock (US; 2 seconds, 0.57 mA) pairings. Results For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). Conclusions These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context. PMID:17760787

  17. Laundry detergent "pod" ingestions: a case series and discussion of recent literature.

    PubMed

    Beuhler, Michael C; Gala, Payal K; Wolfe, Heather A; Meaney, Peter A; Henretig, Fred M

    2013-06-01

    The objectives of this study were to present and explore the clinical presentation of the increasingly common pediatric exposure to the widely available single-use laundry packets or "laundry pods." This is a case report of 4 pediatric patients with significant toxicity due to laundry pod detergent exposure and a review of the available literature including abstract-only publications. An unexpectedly severe clinical pattern was noted; 3 of the 4 children required intubation for management, airway injury was noted in 1 of them, and 2 of them had hospital courses of at least 1 week. The literature suggests that laundry pod exposures are associated with increased morbidity compared to traditional laundry detergent exposures. To date, no specific contaminant or component has been identified as being responsible for the injury, although some evidence points to the surfactant component. A different approach to the triage and management of pediatric exposures to laundry detergent pod ingestions is required compared with nonpod ingestions. Although the exact cause is not known, practitioners should be vigilant for rapid onset of neurological impairment and inability to protect the airway in addition to its caustic effects.

  18. Chronic intermittent ethanol exposure leads to alterations in brain-derived neurotrophic factor within the frontal cortex and impaired behavioral flexibility in both adolescent and adult rats

    PubMed Central

    Fernandez, Gina M.; Lew, Brandon J.; Vedder, Lindsey C.; Savage, Lisa M

    2017-01-01

    Chronic intermittent exposure to ethanol (EtOH; CIE) that produces binge-like levels of intoxication has been associated with age-dependent deficits in cognitive functioning. Male Sprague-Dawley rats were exposed to CIE (5 g/kg, 25% EtOH, 13 intragastric gavages) beginning at three ages: early adolescence (postnatal day [PD] 28), mid-adolescence (PD35) and adulthood (PD72). In experiment 1, rats were behaviorally tested following CIE. Spatial memory was not affected by CIE, but adult CIE rats were impaired at acquiring a non-spatial discrimination task and subsequent reversal tasks. Rats exposed to CIE during early or mid-adolescence were impaired on the first reversal, demonstrating transient impairment in behavioral flexibility. Blood EtOH concentrations negatively correlated with performance on reversal tasks. Experiment 2 examined changes in brain derived neurotrophic factor (BNDF) levels within the frontal cortex (FC) and hippocampus (HPC) at four time points: during intoxication, 24-hrs after the final EtOH exposure (acute abstinence), 3-weeks following abstinence (recovery) and after behavioral testing. HPC BDNF levels were not affected by CIE at any time point. During intoxication, BDNF was suppressed in the FC, regardless of the age of exposure. However, during acute abstinence, reduced FC BDNF levels persisted in early adolescent CIE rats, whereas adult CIE rats displayed an increase in BDNF levels. Following recovery, neurotrophin levels in all CIE rats recovered. Our results indicate that intermittent binge-like EtOH exposure leads to acute disruptions in FC BDNF levels and long-lasting behavioral deficits. However, the type of cognitive impairment and its duration differ depending on the age of exposure. PMID:28257889

  19. 14 CFR 33.77 - Foreign object ingestion-ice.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Foreign object ingestion-ice. 33.77 Section... object ingestion—ice. (a)-(b) [Reserved] (c) Ingestion of ice under the conditions of paragraph (e) of... by engine test under the following ingestion conditions: (1) Ice quantity will be the maximum...

  20. 14 CFR 33.77 - Foreign object ingestion-ice.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Foreign object ingestion-ice. 33.77 Section... object ingestion—ice. (a)-(b) [Reserved] (c) Ingestion of ice under the conditions of paragraph (e) of... by engine test under the following ingestion conditions: (1) Ice quantity will be the maximum...

  1. 14 CFR 33.77 - Foreign object ingestion-ice.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Foreign object ingestion-ice. 33.77 Section... object ingestion—ice. (a)-(b) [Reserved] (c) Ingestion of ice under the conditions of paragraph (e) of... by engine test under the following ingestion conditions: (1) Ice quantity will be the maximum...

  2. TLR4 response mediates ethanol-induced neurodevelopment alterations in a model of fetal alcohol spectrum disorders.

    PubMed

    Pascual, María; Montesinos, Jorge; Montagud-Romero, Sandra; Forteza, Jerónimo; Rodríguez-Arias, Marta; Miñarro, José; Guerri, Consuelo

    2017-07-24

    Inflammation during brain development participates in the pathogenesis of early brain injury and cognitive dysfunctions. Prenatal ethanol exposure affects the developing brain and causes neural impairment, cognitive and behavioral effects, collectively known as fetal alcohol spectrum disorders (FASD). Our previous studies demonstrate that ethanol activates the innate immune response and TLR4 receptor and causes neuroinflammation, brain damage, and cognitive defects in the developmental brain stage of adolescents. We hypothesize that by activating the TLR4 response, maternal alcohol consumption during pregnancy triggers the release of cytokines and chemokines in both the maternal sera and brains of fetuses/offspring, which impairs brain ontogeny and causes cognitive dysfunction. WT and TLR4-KO female mice treated with or without 10% ethanol in the drinking water during gestation and lactation were used. Cytokine/chemokine levels were determined by ELISA in the amniotic fluid, maternal serum, and cerebral cortex, as well as in the offspring cerebral cortex. Microglial and neuronal markers (evaluated by western blotting), myelin proteins (immunohistochemical and western blotting) and synaptic parameters (western blotting and electron microscopy) were assessed in the cortices of the WT and TLR4-KO pups on PND 0, 20, and 66. Behavioral tests (elevated plus maze and passive avoidance) were performed in the WT and TLR4-KO mice on PND 66 exposed or not to ethanol. We show that alcohol intake during gestation and lactation increases the levels of several cytokines/chemokines (IL-1β, IL-17, MIP-1α, and fractalkine) in the maternal sera, amniotic fluid, and brains of fetuses and offspring. The upregulation of cytokines/chemokines is associated with an increase in activated microglia markers (CD11b and MHC-II), and with a reduction in some synaptic (synaptotagmin, synapsin IIa) and myelin (MBP, PLP) proteins in the brains of offspring on days 0, 20, and 66 (long-term effects

  3. ACRF Ingest Software Status: New, Current, and Future - April 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AS Koontz; S Choudhury; BD Ermold

    2008-04-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  4. ACRF Ingest Software Status: New, Current, and Future (September 2007)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koontz, AS; Choudhury, S; Ermold, BD

    2007-04-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  5. ACRF Ingest Software Status: New, Current, and Future - May 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AS Koontz; S Choudhury; BD Ermold

    2008-05-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  6. Ethanol exposure induces oxidative stress and impairs nitric oxide availability in the human placental villi: a possible mechanism of toxicity.

    PubMed

    Kay, H H; Grindle, K M; Magness, R R

    2000-03-01

    We undertook this investigation to explore the effects of ethanol exposure on nitric oxide synthase levels and nitric oxide release. Our hypothesis was that ethanol exposure modifies nitric oxide activity within the placenta as a result of oxidative stress. Four 10-g samples of term normal human placental villous tissue were perifused with nonrecirculating Dulbecco's modified Eagle's medium and 25-mmol/L N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid] with 0-, 50-, 100-, or 200-mmol/L ethanol. After 2 hours of exposure, tissue was removed, fixed, and frozen for analysis. Immunohistochemical analysis was performed for subtype I or neuronal nitric oxide synthase (nNOS), subtype II or inducible nitric oxide synthase (iNOS), and subtype III or endothelial nitric oxide synthase (eNOS) localization. Western blot analysis was performed for eNOS quantitation. Cyclic guanosine monophosphate and copper-zinc superoxide dismutase levels were measured by electroimmunoassay and kinetic assay, respectively. Nitric oxide release was analyzed by a Sievers nitric oxide analyzer. Immunohistochemical examination confirmed that only eNOS was localized to the syncytiotrophoblasts. After ethanol exposure, eNOS protein expression increased 2.5- to 3.0-fold over that of the control. Tissue cyclic guanosine monophosphate content and nitric oxide release into the effluent were decreased, whereas superoxide dismutase levels were increased at higher ethanol levels (P <.05). Ethanol exposure appears to induce oxidative stress, which may account for the decreased nitric oxide release, because nitric oxide may be shunted toward scavenging free radicals. Increased eNOS protein expression may be a response to the increased demand for nitric oxide. Decreased nitric oxide availability could adversely affect placental blood flow regulation, which could, in turn, account for the growth restriction seen in ethanol-exposed fetuses.

  7. Chronic ethanol exposure changes dopamine D2 receptor splicing during retinoic acid-induced differentiation of human SH-SY5Y cells.

    PubMed

    Wernicke, Catrin; Hellmann, Julian; Finckh, Ulrich; Rommelspacher, Hans

    2010-01-01

    There is evidence for ethanol-induced impairment of the dopaminergic system in the brain during development. The dopamine D2 receptor (DRD2) and the dopamine transporter (DAT) are decisively involved in dopaminergic signaling. Two splice variants of DRD2 are known, with the short one (DRD2s) representing the autoreceptor and the long one (DRD2l) the postsynaptic receptor. We searched for a model to investigate the impact of chronic ethanol exposure and withdrawal on the expression of these proteins during neuronal differentiation. RA-induced differentiation of human neuroblastoma SH-SY5Y cells seems to represent such a model. Our real-time RT-PCR, Western blot, and immunocytochemistry analyses of undifferentiated and RA-differentiated cells have demonstrated the enhanced expression of both splice variants of DRD2, with the short one being stronger enhanced than the long one under RA-treatment, and the DRD2 distribution on cell bodies and neurites under both conditions. In contrast, DAT was down-regulated by RA. The DAT is functional both in undifferentiated and RA-differentiated cells as demonstrated by [(3)H]dopamine uptake. Chronic ethanol exposure during differentiation for up to 4 weeks resulted in a delayed up-regulation of DRD2s. Ethanol withdrawal caused an increased expression of DRD2l and a normalization of DRD2s. Thus the DRD2s/DRD2l ratio was still disturbed. The dopamine level was increased by RA-differentiation compared to controls and was diminished under RA/ethanol treatment and ethanol withdrawal compared to RA-only treated cells. In conclusion, chronic ethanol exposure impairs differentiation-dependent adaptation of dopaminergic proteins, specifically of DRD2s. RA-differentiating SH-SY5Y cells are suited to study the impact of chronic ethanol exposure and withdrawal on expression of dopaminergic proteins during neuronal differentiation.

  8. Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.

    PubMed

    Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A

    2012-08-01

    Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice

    PubMed Central

    King, Adrienne L.; Swain, Telisha M.; Mao, Zhengkuan; Udoh, Uduak S.; Oliva, Claudia R.; Betancourt, Angela M.; Griguer, Corrine E.; Crowe, David R.; Lesort, Mathieu

    2013-01-01

    Chronic ethanol consumption increases sensitivity of the mitochondrial permeability transition (MPT) pore induction in liver. Ca2+ promotes MPT pore opening, and genetic ablation of cyclophilin D (CypD) increases the Ca2+ threshold for the MPT. We used wild-type (WT) and CypD-null (CypD−/−) mice fed a control or an ethanol-containing diet to investigate the role of the MPT in ethanol-mediated liver injury. Ca2+-mediated induction of the MPT and mitochondrial respiration were measured in isolated liver mitochondria. Steatosis was present in WT and CypD−/− mice fed ethanol and accompanied by increased terminal deoxynucleotidyl transferase dUTP-mediated nick-end label-positive nuclei. Autophagy was increased in ethanol-fed WT mice compared with ethanol-fed CypD−/− mice, as reflected by an increase in the ratio of microtubule protein 1 light chain 3B II to microtubule protein 1 light chain 3B I. Higher levels of p62 were measured in CypD−/− than WT mice. Ethanol decreased mitochondrial respiratory control ratios and select complex activities in WT and CypD−/− mice. Ethanol also increased CypD protein in liver of WT mice. Mitochondria from control- and ethanol-fed WT mice were more sensitive to Ca2+-mediated MPT pore induction than mitochondria from their CypD−/− counterparts. Mitochondria from ethanol-fed CypD−/− mice were also more sensitive to Ca2+-induced swelling than mitochondria from control-fed CypD−/− mice but were less sensitive than mitochondria from ethanol-fed WT mice. In summary, CypD deficiency was associated with impaired autophagy and did not prevent ethanol-mediated steatosis. Furthermore, increased MPT sensitivity was observed in mitochondria from ethanol-fed WT and CypD−/− mice. We conclude that chronic ethanol consumption likely lowers the threshold for CypD-regulated and -independent characteristics of the ethanol-mediated MPT pore in liver mitochondria. PMID:24356880

  10. Liquid nitrogen ingestion followed by gastric perforation.

    PubMed

    Berrizbeitia, Luis D; Calello, Diane P; Dhir, Nisha; O'Reilly, Colin; Marcus, Steven

    2010-01-01

    Ingestion of liquid nitrogen is rare but carries catastrophic complications related to barotrauma to the gastrointestinal tract. We describe a case of ingestion of liquid nitrogen followed by gastric perforation and respiratory insufficiency and discuss the mechanism of injury and management of this condition. Liquid nitrogen is widely available and is frequently used in classroom settings, in gastronomy, and for recreational purposes. Given the potentially lethal complications of ingestion, regulation of its use, acquisition, and storage may be appropriate.

  11. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    PubMed

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  12. Brain plasticity and cognitive functions after ethanol consumption in C57BL/6J mice.

    PubMed

    Stragier, E; Martin, V; Davenas, E; Poilbout, C; Mongeau, R; Corradetti, R; Lanfumey, L

    2015-12-15

    Acute or chronic administrations of high doses of ethanol in mice are known to produce severe cognitive deficits linked to hippocampal damage. However, we recently reported that chronic and moderate ethanol intake in C57BL/6J mice induced chromatin remodeling within the Bdnf promoters, leading to both enhanced brain-derived neurotrophic factor (BDNF) expression and hippocampal neurogenesis under free-choice protocol. We performed here a series of cellular and behavioral studies to analyze the consequences of these modifications. We showed that a 3-week chronic free-choice ethanol consumption in C57BL/6J mice led to a decrease in DNA methylation of the Bdnf gene within the CA1 and CA3 subfields of the hippocampus, and upregulated hippocampal BDNF signaling pathways mediated by ERK, AKT and CREB. However, this activation did not affect long-term potentiation in the CA1. Conversely, ethanol intake impaired learning and memory capacities analyzed in the contextual fear conditioning test and the novel object recognition task. In addition, ethanol increased behavioral perseveration in the Barnes maze test but did not alter the mouse overall spatial capacities. These data suggested that in conditions of chronic and moderate ethanol intake, the chromatin remodeling leading to BDNF signaling upregulation is probably an adaptive process, engaged via epigenetic regulations, to counteract the cognitive deficits induced by ethanol.

  13. Drinking typography established by scheduled induction predicts chronic heavy drinking in a monkey model of ethanol self-administration.

    PubMed

    Grant, Kathleen A; Leng, Xiaoyan; Green, Heather L; Szeliga, Kendall T; Rogers, Laura S M; Gonzales, Steven W

    2008-10-01

    We have developed an animal model of alcohol self-administration that initially employs schedule-induced polydipsia (SIP) to establish reliable ethanol consumption under open access (22 h/d) conditions with food and water concurrently available. SIP is an adjunctive behavior that is generated by constraining access to an important commodity (e.g., flavored food). The induction schedule and ethanol polydipsia generated under these conditions affords the opportunity to investigate the development of drinking typologies that lead to chronic, excessive alcohol consumption. Adult male cynomolgus monkeys (Macaca fascicularis) were induced to drink water and 4% (w/v in water) ethanol by a Fixed-Time 300 seconds (FT-300 seconds) schedule of banana-flavored pellet delivery. The FT-300 seconds schedule was in effect for 120 consecutive sessions, with daily induction doses increasing from 0.0 to 0.5 g/kg to 1.0 g/kg to 1.5 g/kg every 30 days. Following induction, the monkeys were allowed concurrent access to 4% (w/v) ethanol and water for 22 h/day for 12 months. Drinking typographies during the induction of drinking 1.5 g/kg ethanol emerged that were highly predictive of the daily ethanol intake over the next 12 months. Specifically, the frequency in which monkeys ingested 1.5 g/kg ethanol without a 5-minute lapse in drinking (defined as a bout of drinking) during induction strongly predicted (correlation 0.91) subsequent ethanol intake over the next 12 months of open access to ethanol. Blood ethanol during induction were highly correlated with intake and with drinking typography and ranged from 100 to 160 mg% when the monkeys drank their 1.5 g/kg dose in a single bout. Forty percent of the population became heavy drinkers (mean daily intakes >3.0 g/kg for 12 months) characterized by frequent "spree" drinking (intakes >4.0 g/kg/d). This model of ethanol self-administration identifies early alcohol drinking typographies (gulping the equivalent of 6 drinks) that evolve into

  14. Drinking Typography Established by Scheduled Induction Predicts Chronic Heavy Drinking in a Monkey Model of Ethanol Self-Administration

    PubMed Central

    Grant, Kathleen A.; Leng, Xiaoyan; Green, Heather L.; Szeliga, Kendall T.; Rogers, Laura S. M.; Gonzales, Steven W.

    2010-01-01

    Background We have developed an animal model of alcohol self-administration that initially employs schedule-induced polydipsia (SIP) to establish reliable ethanol consumption under open access (22 h/d) conditions with food and water concurrently available. SIP is an adjunctive behavior that is generated by constraining access to an important commodity (e.g., flavored food). The induction schedule and ethanol polydipsia generated under these conditions affords the opportunity to investigate the development of drinking typologies that lead to chronic, excessive alcohol consumption. Methods Adult male cynomolgus monkeys (Macaca fascicularis) were induced to drink water and 4% (w/v in water) ethanol by a Fixed-Time 300 seconds (FT-300 seconds) schedule of banana-flavored pellet delivery. The FT-300 seconds schedule was in effect for 120 consecutive sessions, with daily induction doses increasing from 0.0 to 0.5 g/kg to 1.0 g/kg to 1.5 g/kg every 30 days. Following induction, the monkeys were allowed concurrent access to 4% (w/v) ethanol and water for 22 h/day for 12 months. Results Drinking typographies during the induction of drinking 1.5 g/kg ethanol emerged that were highly predictive of the daily ethanol intake over the next 12 months. Specifically, the frequency in which monkeys ingested 1.5 g/kg ethanol without a 5-minute lapse in drinking (defined as a bout of drinking) during induction strongly predicted (correlation 0.91) subsequent ethanol intake over the next 12 months of open access to ethanol. Blood ethanol during induction were highly correlated with intake and with drinking typography and ranged from 100 to 160 mg% when the monkeys drank their 1.5 g/kg dose in a single bout. Forty percent of the population became heavy drinkers (mean daily intakes >3.0 g/kg for 12 months) characterized by frequent “spree” drinking (intakes >4.0 g/kg/d). Conclusion This model of ethanol self-administration identifies early alcohol drinking typographies (gulping the

  15. Fetal ethanol exposure increases ethanol intake by making it smell and taste better

    PubMed Central

    Youngentob, Steven L.; Glendinning, John I.

    2009-01-01

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability. PMID:19273846

  16. Fetal ethanol exposure increases ethanol intake by making it smell and taste better.

    PubMed

    Youngentob, Steven L; Glendinning, John I

    2009-03-31

    Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability.

  17. Gastrobronchial fistula after toothbrush ingestion.

    PubMed

    Karcher, Jan Christoph; von Buch, Christoph; Waag, Karl-Ludwig; Reinshagen, Konrad

    2006-10-01

    Gastrobronchial fistulous communications are uncommon complications of disease processes with only 36 previously reported cases. Described as complication of a number of conditions, such as previous gastroesophageal surgery, subphrenic abscess, and gastric ulcers (Jha P, Deiraniya A, Keeling-Robert C, et al. Gastrobronchial fistula--a recent series. Interact Cardiovasc Thorac Sur 2003;2:6-8), we report a case of fistulization caused by ingestion of a foreign body. A patient with mental retardation, admitted for the treatment of osteomyelitis, presented during hospitalization symptoms of high fever, vomiting, and respiratory distress. Endoscopy showed the presence of a gastrobronchial fistula, which developed after ingestion of a toothbrush. The toothbrush was extracted endoscopically, and the fistula was subsequently closed by surgery. The patient recovered completely. We report the first case of a gastrobronchial fistula as a complication of foreign body ingestion.

  18. Eggshell ultrastructure and delivery of pharmacological inhibitors to the early embryo of R. prolixus by ethanol permeabilization of the extraembryonic layers.

    PubMed

    Bomfim, Larissa; Vieira, Priscila; Fonseca, Ariene; Ramos, Isabela

    2017-01-01

    Most vectors of arthropod-borne diseases produce large eggs with hard and opaque eggshells. In several species, it is still not possible to induce molecular perturbations to the embryo by delivery of molecules using microinjections or eggshell permeabilization without losing embryo viability, which impairs basic studies regarding development and population control. Here we tested the properties and permeability of the eggshell of R. prolixus, a Chagas disease vector, with the aim to deliver pharmacological inhibitors to the egg cytoplasm and allow controlled molecular changes to the embryo. Using field emission scanning and transmission electron microscopy we found that R. prolixus egg is coated by three main layers: exochorion, vitelline layer and the plasma membrane, and that the pores that allow gas exchange (aeropiles) have an average diameter of 10 μm and are found in the rim of the operculum at the anterior pole of the egg. We tested if different solvents could permeate through the aeropiles and reach the egg cytoplasm/embryo and found that immersions of the eggs in ethanol lead to its prompt penetration through the aeropiles. A single five minute-immersion of the eggs/embryos in pharmacological inhibitors, such as azide, cyanide and cycloheximide, solubilized in ethanol resulted in impairment of embryogenesis in a dose dependent manner and DAPI-ethanol solutions were also able to label the embryo cells, showing that ethanol penetration was able to deliver those molecules to the embryo cells. Multiple immersions of the embryo in the same solutions increased the effect and tests using bafilomycin A1 and Pepstatin A, known inhibitors of the yolk proteolysis, were also able to impair embryogenesis and the yolk protein degradation. Additionally, we found that ethanol pre-treatments of the egg make the aeropiles more permeable to aqueous solutions, so drugs diluted in water can be carried after the eggs are pre-treated with ethanol. Thus, we found that delivery

  19. Clinical evaluation of disc battery ingestion in children.

    PubMed

    Mirshemirani, AliReza; Khaleghnejad-Tabari, Ahmad; Kouranloo, Jaefar; Sadeghian, Naser; Rouzrokh, Mohsen; Roshanzamir, Fatolah; Razavi, Sajad; Sayary, Ali Akbar; Imanzadeh, Farid

    2012-04-01

    BACKGROUND The purpose of this study was to evaluate the characteristics, management, and outcomes of disc battery ingestion in children. METHODS We reviewed the medical records of children admitted to Mofid Children's Hospital due to disc battery ingestion from January 2006 to January 2010. Clear history, clinical symptoms and results of imaging studies revealed diagnosis of disc battery ingestion in suspected patients. The clinical data reviewed included age, gender, clinical manifestation, radiologic findings, location of disc battery, duration of ingestion, endoscopic results and surgical treatment. RESULTS We found 22 cases (11 males and 11 females) of disc battery ingestion with a mean age of 4.3 years (range: 9 months to 12 years). Common symptoms were vomiting, cough, dysphagia, and dyspnea. The mean duration of ingestion was 2.7 days (4 hours to 1.5 months). A total of 19 patients had histories of disc battery ingestion, but three cases referred with the above symptoms, and the batteries were accidentally found by x-ray. Only three cases had batteries impacted in the esophagus. Twelve batteries were removed endoscopically, 6 batteries spontaneously passed through the gastrointestinal (GI) tract within 5 to 7 days, and 4 patients underwent surgery due to complications: 3 due to tracheo-esophageal fistula (TEF) and 1 due to intestinal perforation. There was no mortality in our study. CONCLUSION Most cases of disc battery ingestion run uneventful courses, but some may be complicated. If the battery lodges in the esophagus, emergency endoscopic management is necessary. However, once in the stomach, it will usually pass through the GI tract.

  20. Autoshaping of ethanol drinking in rats: effects of ethanol concentration and trial spacing.

    PubMed

    Tomie, Arthur; Wong, Karlvin; Apor, Khristine; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A

    2003-11-01

    In two studies, we evaluated the effects of ethanol concentration and trial spacing on Pavlovian autoshaping of ethanol drinking in rats. In these studies, the brief insertion of an ethanol sipper conditioned stimulus (CS) was followed by the response-independent presentation of food unconditioned stimulus (US), inducing sipper CS-directed drinking conditioned responses (CRs) in all rats. In Experiment 1, the ethanol concentration in the sipper CS [0%-16% volume/volume (vol./vol.), in increments of 1%] was systematically increased within subjects across autoshaping sessions. Groups of rats received sipper CS-food US pairings (Paired/Ethanol), a CS-US random procedure (Random/Ethanol), or water sipper CS paired with food US (Paired/Water). In Experiment 2, saccharin-fading procedures were used to initiate, in the Ethanol group, drinking of 6% (vol./vol.) ethanol in 0.1% saccharin or, in the Water group, drinking of tap water in 0.1% saccharin. After elimination of saccharin, and across days, the duration of access to the sipper CS during each autoshaping trial was increased (5, 10, 12.5, 15, 17.5, and 20 s), and subsequently, across days, the duration of the mean intertrial interval (ITI) was increased (60, 90, 120, and 150 s). In Experiment 1, Paired/Ethanol and Random/Ethanol groups showed higher intake of ethanol, in terms of grams per kilogram of body weight, at higher ethanol concentrations, with more ethanol intake recorded in the Paired/Ethanol group. In Experiment 2, the Ethanol group drank more than was consumed by the Water group, and, for both groups, fluid intake increased with longer ITIs. Results support the suggestion that autoshaping contributes to sipper CS-directed ethanol drinking.

  1. Incidence of ingested lead shot in sora rails

    USGS Publications Warehouse

    Artmann, J.W.; Martin, E.M.

    1975-01-01

    Gizzards of 934 sora rails (Porzana carolina) collected in Maryland (767) and Missouri (167) were examined for ingested shot. Ingested shot were found in 12.3 percent of the Maryland sample and 1.8 percent of the Missouri birds. Individual Maryland birds had ingested up to 28 pellets. None of the lead pellets examined was larger than a No. 7 1/2 shot. Maryland ingestion rates did not differ by age or sex, but significant differences between collection areas, groups of years, and collection periods within years were indicated. This exploratory work points out a potential lead poisoning problem among sora rails.

  2. Development and Validation of an Instrument to Evaluate Perceived Wellbeing Associated with the Ingestion of Water: The Water Ingestion-Related Wellbeing Instrument (WIRWI).

    PubMed

    Espinosa-Montero, Juan; Monterrubio-Flores, Eric A; Sanchez-Estrada, Marcela; Buendia-Jimenez, Inmaculada; Lieberman, Harris R; Allaert, François-Andre; Barquera, Simon

    2016-01-01

    Ingestion of water has been associated with general wellbeing. When water intake is insufficient, symptoms such as thirst, fatigue and impaired memory result. Currently there are no instruments to assess water consumption associated with wellbeing. The objective of our study was to develop and validate such an instrument in urban, low socioeconomic, adult Mexican population. To construct the Water Ingestion-Related Wellbeing Instrument (WIRWI), a qualitative study in which wellbeing related to everyday practices and experiences in water consumption were investigated. To validate the WIRWI a formal, five-process procedure was used. Face and content validation were addressed, consistency was assessed by exploratory and confirmatory psychometric factor analyses, repeatability, reproducibility and concurrent validity were assessed by conducting correlation tests with other measures of wellbeing such as a quality of life instrument, the SF-36, and objective parameters such as urine osmolality, 24-hour urine total volume and others. The final WIRWI is composed of 17 items assessing physical and mental dimensions. Items were selected based on their content and face validity. Exploratory and confirmatory factor analyses yielded Cronbach's alpha of 0.87 and 0.86, respectively. The final confirmatory factor analysis demonstrated that the model estimates were satisfactory for the constructs. Statistically significant correlations with the SF-36, total liquid consumption and simple water consumption were observed. The resulting WIRWI is a reliable tool for assessing wellbeing associated with consumption of plain water in Mexican adults and could be useful for similar groups.

  3. Imaging pediatric magnet ingestion with surgical-pathological correlation.

    PubMed

    Otjen, Jeffrey P; Rohrmann, Charles A; Iyer, Ramesh S

    2013-07-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented.

  4. Changes in oral ethanol self-administration patterns resulting from ethanol concentration manipulations.

    PubMed

    Slawecki, C J; Samson, H H

    1997-09-01

    A variety of initiation procedures have been used to develop oral ethanol consumption. Using the sucrose-substitution procedure, oral self-administration of ethanol-water solutions with ethanol concentrations as high as 40% can be initiated in food- and fluid-sated rats. An important question for these models is the relationship between ethanol concentration and self-administration patterns after initiation. This study examined the differential patterns of ethanol self-administration maintained by a range of ethanol solutions (10 to 30%) over a 5-week period, compared with rats maintained on 10% ethanol for 5 weeks. In 43 male Long Evans rats, the sucrose-substitution procedure was used to initiate responding maintained by 10% ethanol on a Fixed Ratio 4 schedule of reinforcement. The ethanol concentration presented was then increased to 30% in stepwise fashion and then returned to 10% [Ethanol Concentration Manipulation (ECM) group, n = 32], or 10% ethanol was maintained as the reinforcer for 5 weeks [Control (Con) group, n = 11]. Significant increases in ethanol intake and decreases in responding were associated with increased ethanol concentration. Although no overall differences in total session responding were observed in either group between week 1 and week 5 (10E vs. 10E), examination of changes in initial low responders of the ECM group revealed significant increases in responding that were not observed in the initial low responders of the Con group. Significant increases in momentary response rates were observed on both the ECM and Con groups, independent of the ethanol concentration presented. Increases in response rate in the ECM group were the result of increases in initial low rate and high rate responders; however, the increased response rates in the Con group were the result of increases only in the initial low rate responders. These data suggest that the ECM procedure can aid in the initiation of ethanol self-administration and may be particularly

  5. Surgical management and morbidity of pediatric magnet ingestions.

    PubMed

    Waters, Alicia M; Teitelbaum, Daniel H; Thorne, Vivian; Bousvaros, Athos; Noel, R Adam; Beierle, Elizabeth A

    2015-11-01

    Foreign body ingestion remains a common reason for emergency room visits and operative interventions in the pediatric population. Rare earth magnet ingestion represents a low percentage of all foreign bodies swallowed by children; however, magnets swallowed in multiplicity can result in severe injuries. Pediatric surgeons with membership in the Surgical Section of the American Academy of Pediatrics were surveyed to determine the magnitude and consequences of magnet ingestions in the pediatric population. About 100 (16%) participant responses reported on 99 magnet ingestions. The median age at ingestion was 3.7 y, and the majority of ingestions (71%) occurred after year 2010. Thirty-two children underwent endoscopy with successful removal in 70% of cases, and multiple magnets were found in 65% of these patients. Seventy-three children required either laparotomy (51) or laparoscopy (22) for magnet removal, and 90% of these children were discovered to have ingested more than one magnet. In addition, 17% of the children were found to have at least one perforation or fistula, and 34% of the children had multiple perforations or fistulae. Nine children required long-term care for their injuries including repeat endoscopies. One child died after hemorrhage from an esophago-aortic fistula. These results demonstrated the increasing need for magnet regulations and public awareness to prevent potentially serious complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Fuel ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the currentmore » local feedstock requirement.« less

  7. Angiotensin (1-7) contributes to nitric oxide tonic inhibition of vasopressin release during hemorrhagic shock in acute ethanol intoxicated rodents

    PubMed Central

    Whitaker, Annie M.; Molina, Patricia E.

    2013-01-01

    Aims Acute ethanol intoxication (AEI) attenuates the arginine vasopressin (AVP) response to hemorrhage leading to impaired hemodynamic counter-regulation and accentuated hemodynamic stability. Previously we identified that the ethanol-induced impairment of circulating AVP concentrations in response to hemorrhage was the result of augmented central nitric oxide (NO) inhibition. The aim of the current study was to examine the mechanisms underlying ethanol-induced up-regulation of paraventricular nucleus (PVN) NO concentration. Angiotensin (ANG) (1-7) is an important mediator of NO production through activation of the Mas receptor. We hypothesized that Mas receptor inhibition would decrease central NO concentration and thus restore the rise in circulating AVP levels during hemorrhagic shock in AEI rats. Main Methods Conscious male Sprague Dawley rats (300-325 g) received a 15h intra-gastric infusion of ethanol (2.5g/kg + 300mg/kg/h) or dextrose prior to a fixed-pressure (~40mmHg) 60 minute hemorrhage. The Mas receptor antagonist A-779 was injected through an intracerebroventricular (ICV) cannula 15 min prior to hemorrhage. Key Findings PVN NOS activity and NO were significantly higher in AEI compared to DEX-treated controls at the completion of hemorrhage. ICV A-779 administration decreased NOS activity and NO concentration, partially restoring the rise in circulating AVP levels completion of hemorrhage in AEI rats. Significance These results suggest that Mas receptor activation contributes to the NO-mediated inhibitory tone of AVP release in the ethanol-intoxicated hemorrhaged host. PMID:24002017

  8. Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults.

    PubMed

    Jones, Emma K; Sünram-Lea, Sandra I; Wesnes, Keith A

    2012-02-01

    The role of carbohydrates on mood and cognition is fairly well established, however research examining the behavioural effects of the other macronutrients is limited. The current study compared the effects of a 25 g glucose drink to energetically matched protein and fat drinks and an inert placebo. Following a blind, placebo-controlled, randomised crossover design, 18 healthy young adults consumed drinks containing fat, glucose, protein and placebo. Cognitive performance was examined at baseline and again 15- and 60 min post drink. Mood was assessed at baseline and then 10-, 35- and 80 min post drink. Attention and speed were enhanced 15 min following fat or glucose ingestion and working memory was enhanced 15 min following protein ingestion. Sixty minutes post drink memory enhancements were observed after protein and memory impairment was observed following glucose. All drinks increased ratings of alertness. The findings suggest that macronutrients: (i) have different windows of opportunity for effects (ii) target different cognitive domains. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Altered spatial learning and delay discounting in a rat model of human third trimester binge ethanol exposure

    PubMed Central

    Bañuelos, Cristina; Gilbert, Ryan J.; Montgomery, Karienn S.; Fincher, Annette S.; Wang, Haiying; Frye, Gerald D.; Setlow, Barry; Bizon, Jennifer L.

    2012-01-01

    Ethanol exposure during perinatal development can cause cognitive abnormalities including difficulties in learning, attention, and memory, as well as heightened impulsivity. The purpose of this study was to assess performance in spatial learning and impulsive choice tasks in rats subjected to an intragastric intubation model of binge ethanol exposure during human third trimester-equivalent brain development. Male and female Sprague–Dawley rat pups were intubated with ethanol (5.25 g/kg/day) on postnatal days 4–9. At adolescence (between postnatal days 35–38), these rats and sham intubated within-litter controls were trained in both spatial and cued versions of the Morris water maze. A subset of the male rats was subsequently tested on a delay-discounting task to assess impulsive choice. Ethanol-exposed rats were spatially impaired relative to controls, but performed comparably to controls on the cued version of the water maze. Ethanol-exposed rats also showed greater preference for large delayed rewards on the delay discounting task, but no evidence for altered reward sensitivity or perseverative behavior. These data demonstrate that early postnatal intermittent binge-like ethanol exposure has prolonged, detrimental, but selective effects on cognition, suggesting that even relatively brief ethanol exposure late in human pregnancy can be deleterious for cognitive function. PMID:22129556

  10. The Interaction of Ethanol Ingestion and Social Interaction with an Intoxicated Peer on the Odor-Mediated Response to the Drug in Adolescent Rats.

    PubMed

    Eade, Amber M; Youngentob, Lisa M; Youngentob, Steven L

    2016-04-01

    Using a social transmission of food preference paradigm in rats, we previously demonstrated that ethanol (EtOH) exposure during adolescence, as either an observer (interaction with an intoxicated conspecific) or demonstrator (intragastric infusion with EtOH), altered the reflexive odor-mediated responses to the drug. The 2 modes of exposure were equivalent in the magnitude of their effects. Human adolescents, however, are likely to experience the drug in a social setting as both an EtOH observer and demonstrator. That is, both interacting with an intoxicated peer and experiencing EtOH's postingestive consequences in conjunction with hematogenic olfaction. Therefore, we tested whether combined adolescent exposure as both an observer and demonstrator differed from either form of individual experience. Beginning on postnatal day (P) 29, naïve rats received EtOH or water exposures in a social interaction paradigm as either an observer, a demonstrator, or combined experience (where each animal in the interaction was, itself, an observer and demonstrator). Exposures occurred 4 times, once every 48 hours. On P37, the reflexive behavioral response to EtOH odor was tested, using whole-body plethysmography. The odor-mediated responses of adolescent EtOH observers, demonstrators, and combined exposure animals all significantly differed from controls. Compared to controls, however, the magnitude of the behavioral effect was greatest in the combined exposure animals. Moreover, combined exposure as both an EtOH observer and demonstrator significantly differed from either form of individual EtOH experience. EtOH's component chemosensory qualities are known to be central contributors to its acceptance and increases in the acceptability of EtOH's odor, resulting from a social transmission experience, are predictive of enhanced EtOH avidity in adolescence. Our findings demonstrate that combined exposure as an observer and demonstrator, within a socially relevant framework, may

  11. Extrasynaptic GABAA receptors in the crosshairs of hormones and ethanol

    PubMed Central

    Mody, Istvan

    2008-01-01

    Gamma-aminobutyric acid (GABA) is the main chemical inhibitory neurotransmitter in the brain. In the central nervous system (CNS) it acts on two distinct types of receptor: an ion channel, i.e., an “ionotropic” receptor permeable to Cl− and HCO3− (GABAA receptors) and a G-protein coupled “metabotropic” receptor that is linked to various effector mechanisms (GABAB receptors). This review will summarize novel developments in the physiology and pharmacology of GABAA receptors (GABAARs), specifically those found outside synapses. The focus will be on a particular combination of GABAAR subunits sensitive to ovarian and adrenal cortical steroid hormone metabolites that are synthesized in the brain (neurosteroids) and to sobriety impairing concentrations of ethanol. These receptors may be the final common pathway for interactions between ethanol and ovarian and stress-related neurosteroids. PMID:17714830

  12. Aging of microplastics promotes their ingestion by marine zooplankton.

    PubMed

    Vroom, Renske J E; Koelmans, Albert A; Besseling, Ellen; Halsband, Claudia

    2017-12-01

    Microplastics (<5 mm) are ubiquitous in the marine environment and are ingested by zooplankton with possible negative effects on survival, feeding, and fecundity. The majority of laboratory studies has used new and pristine microplastics to test their impacts, while aging processes such as weathering and biofouling alter the characteristics of plastic particles in the marine environment. We investigated zooplankton ingestion of polystyrene beads (15 and 30 μm) and fragments (≤30 μm), and tested the hypothesis that microplastics previously exposed to marine conditions (aged) are ingested at higher rates than pristine microplastics. Polystyrene beads were aged by soaking in natural local seawater for three weeks. Three zooplankton taxa ingested microplastics, excluding the copepod Pseudocalanus spp., but the proportions of individuals ingesting plastic and the number of particles ingested were taxon and life stage specific and dependent on plastic size. All stages of Calanus finmarchicus ingested polystyrene fragments. Aged microbeads were preferred over pristine ones by females of Acartia longiremis as well as juvenile copepodites CV and adults of Calanus finmarchicus. The preference for aged microplastics may be attributed to the formation of a biofilm. Such a coating, made up of natural microbes, may contain similar prey as the copepods feed on in the water column and secrete chemical exudates that aid chemodetection and thus increase the attractiveness of the particles as food items. Much of the ingested plastic was, however, egested within a short time period (2-4 h) and the survival of adult Calanus females was not affected in an 11-day exposure. Negative effects of microplastics ingestion were thus limited. Our findings emphasize, however, that aging plays an important role in the transformation of microplastics at sea and ingestion by grazers, and should thus be considered in future microplastics ingestion studies and estimates of microplastics

  13. Vascular ring complicates accidental button battery ingestion.

    PubMed

    Mercer, Ronald W; Schwartz, Matthew C; Stephany, Joshua; Donnelly, Lane F; Franciosi, James P; Epelman, Monica

    2015-01-01

    Button battery ingestion can lead to dangerous complications, including vasculoesophageal fistula formation. The presence of a vascular ring may complicate battery ingestion if the battery lodges at the level of the ring and its important vascular structures. We report a 4-year-old boy with trisomy 21 who was diagnosed with a vascular ring at the time of button battery ingestion and died 9 days after presentation due to massive upper gastrointestinal bleeding from esophageal erosion and vasculoesophageal fistula formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Running increases ethanol preference.

    PubMed

    Werme, Martin; Lindholm, Sara; Thorén, Peter; Franck, Johan; Brené, Stefan

    2002-07-18

    Wheel running performed by rats is reinforcing, rewarding and possibly addictive. In this study we analyzed if wheel running could affect ethanol preference. Lewis rats, known to be both addiction-prone and to develop an excessive wheel running behavior, were given access to ethanol in a two-bottle free-choice paradigm. The animals reached a high and stable ethanol intake after 5 weeks. In the next phase, rats were subjected to ethanol withdrawal for 1, 2 or 4 weeks with or without access to running wheels. Finally animals were again given access to ethanol in the same two-bottle free-choice paradigm, combined with access to running wheels. The rats that ran in running wheels during 1 or 2, but not 4, weeks of ethanol withdrawal increased both ethanol intake and preference as compared with the control group that did not have access to the wheels. Previous studies have demonstrated that low doses of morphine increases ethanol preference. Here we show that also running potentiates ethanol intake and preference. Thus, running which shares many of the reinforcing properties with addictive drugs appears to potentiate rats to an increased preference for ethanol. Our results describe a behavioral interaction where running increases ethanol consumption.

  15. ALDH2 genotype has no effect on salivary acetaldehyde without the presence of ethanol in the systemic circulation.

    PubMed

    Helminen, Andreas; Väkeväinen, Satu; Salaspuro, Mikko

    2013-01-01

    Acetaldehyde associated with alcoholic beverages was recently classified as carcinogenic (Group 1) to humans based on uniform epidemiological and biochemical evidence. ALDH2 (aldehyde dehydrogenase 2) deficient alcohol consumers are exposed to high concentrations of salivary acetaldehyde and have an increased risk of upper digestive tract cancer. However, this interaction is not seen among ALDH2 deficient non-drinkers or rare drinkers, regardless of their smoking status or consumption of edibles containing ethanol or acetaldehyde. Therefore, the aim of this study was to examine the effect of the ALDH2 genotype on the exposure to locally formed acetaldehyde via the saliva without ethanol ingestion. The ALDH2 genotypes of 17 subjects were determined by PCR-RFLP. The subjects rinsed out their mouths with 5 ml of 40 vol% alcohol for 5 seconds. Salivary ethanol and acetaldehyde levels were measured by gas chromatography. Acetaldehyde reached mutagenic levels rapidly and the exposure continued for up to 20 minutes. The mean salivary acetaldehyde concentrations did not differ between ALDH2 genotypes. For ALDH2 deficient subjects, an elevated exposure to endogenously formed acetaldehyde requires the presence of ethanol in the systemic circulation. Our findings provide a logical explanation for how there is an increased incidence of upper digestive tract cancers among ALDH2 deficient alcohol drinkers, but not among those ALDH2 deficient subjects who are locally exposed to acetaldehyde without bloodborne ethanol being delivered to the saliva. Thus, ALDH2 deficient alcohol drinkers provide a human model for increased local exposure to acetaldehyde derived from the salivary glands.

  16. Toxicological significance of soil ingestion by wild and domestic animals

    USGS Publications Warehouse

    Beyer, W. Nelson; Fries, George F.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    2003-01-01

    Most wild and domestic animals ingest some soil or sediment, and some species may routinely, or under special circumstances, ingest considerable amounts. Ingested soil supplies nutrients, exposes animals to parasites and pathogens, and may play a role in developing immune systems.1 Soil ingestion is also sometimes the principal route of exposure to various environmental contaminants.2-7 Ingestion of soil and earthy material is defined as geophagy and may be either intentional or unintentional, occurring as an animal eats or grooms.

  17. Coffee Ingestion Suppresses Hyperglycemia in Streptozotocin-Induced Diabetic Mice.

    PubMed

    Kobayashi, Misato; Kurata, Takao; Hamana, Yoshiki; Hiramitsu, Masanori; Inoue, Takashi; Murai, Atsushi; Horio, Fumihiko

    2017-01-01

    Coffee consumption reduces the risk of type 2 diabetes in humans, but the mechanism remains unclear. In this study, we investigated the effect of coffee on pancreatic β-cells in the induction of diabetes by streptozotocin (STZ) treatment in mice. We examined the effect of coffee, caffeine, or decaffeinated coffee ingestion on STZ-induced hyperglycemia. After STZ injection in Exp. 1 and 2, serum glucose concentration and water intake in coffee ingestion (Coffee group) tended to be lowered or was significantly lowered compared to those in water ingestion (Water group) instead of coffee. In Exp. 1, the values for water intake and serum glucose concentration in caffeine ingestion (Caffeine group) were similar to those in the Water group. In Exp. 2, serum glucose concentrations in the decaffeinated coffee ingestion (Decaf group) tended to be lower than those in the Water group. Pancreatic insulin contents tended to be higher in the Coffee and Decaf groups than in the Water group (Exp. 1 and 2). In Exp. 3, subsequently, we showed that coffee ingestion also suppressed the deterioration of hyperglycemia in diabetic mice which had been already injected with STZ. This study showed that coffee ingestion prevented the development of STZ-induced diabetes and suppressed hyperglycemia in STZ-diabetic mice. Caffeine or decaffeinated coffee ingestion did not significantly suppress STZ-induced hyperglycemia. These results suggest that the combination of caffeine and other components of decaffeinated coffee are needed for the preventive effect on pancreatic β-cell destruction. Coffee ingestion may contribute to the maintenance of pancreatic insulin contents.

  18. Serious complications after button battery ingestion in children.

    PubMed

    Krom, Hilde; Visser, Margot; Hulst, Jessie M; Wolters, Victorien M; Van den Neucker, Anita M; de Meij, Tim; van der Doef, Hubert P J; Norbruis, Obbe F; Benninga, Marc A; Smit, Margot J M; Kindermann, Angelika

    2018-07-01

    Serious and fatal complications after button battery ingestion are increasing worldwide. The aim of this study is to describe serious complications after battery ingestion in children in the Netherlands.All pediatric gastroenterologists in the Netherlands performing upper endoscopies were asked to report all serious complications after battery ingestion in children (0-18 years) between 2008 and 2016 retrospectively.Sixteen serious complications were reported: death after massive bleeding through esophageal-aortal fistula (n = 1), esophageal-tracheal fistula (n = 5), stenosis after (suspected) perforation and mediastinitis (n = 5), (suspected) perforation and mediastinitis (n = 3), vocal cord paralysis (n = 1), and required reintubation for dyspnea and stridor (n = 1). The median time interval between ingestion and presentation was 5 (IQR 2-258) h. All children were ≤ 5 (median 1.4; IQR 0.9-2.1) years. Vomiting (31.3%), swallowing/feeding problems (31.3%), and fever (31.3%) were the most common presenting symptoms; however, 18.8% of the patients were asymptomatic (n = 1 missing). All batteries were button batteries (75% ≥ 20 mm; 18.8% < 20 mm; n = 1 missing). The batteries were removed by esophagogastroduodenoscopy (50%) and rigid endoscopy (37.5%) or surgically (12.5%). Sixteen serious complications occurred after small and large button batteries ingestion between 2008 and 2016 in both symptomatic and asymptomatic children in the Netherlands. Therefore, immediate intervention after (suspected) button battery ingestion is required. What is Known: • Button battery ingestion may result in serious and fatal complications. • Serious and fatal complications after button battery ingestion are increasing worldwide. What is New: • Sixteen serious complications after button battery ingestion occurred during 2008-2016 in children in the Netherlands. • Serious complications were also caused by small batteries (< 20 mm) in

  19. Piracetam inhibits ethanol (EtOH)-induced memory deficit by mediating multiple pathways.

    PubMed

    Yang, Yifan; Feng, Jian; Xu, Fangyuan; Wang, Jianglin

    2017-12-01

    Excessive ethanol (EtOH) intake, especially to prenatal exposure, can significantly affect cognitive function and cause permanent learning and memory injures in children. As a result, how to protect children from EtOH neurotoxicity has gained increasing attention in recent years. Piracetam (Pir) is a nootropic drug derived from c-aminobutyric acid and can manage cognition impairments in multiple neurological disorders. Studies have shown that Pir can exert therapeutic effects on EtOH-induced memory impairments, but the underlying mechanism is still unknown. In this study, we found that Pir inhibited ethanol-induced memory deficit by mediating multiple pathways. Treatment with EtOH could cause cognitive deficit in juvenile rats, and triggered the alteration of synaptic plasticity. Administration with Pir significantly increased long-term potentiation and protected hippocampus neurons from EtOH neurotoxicity. Pir intervention ameliorated EtOH-induced cell apoptosis and inhibited the activation of Caspase-3 in vitro, suggesting that Pir protected neurons by anti-apoptotic effects. Pir could decrease the expression of LC3-II and Beclin-1 induced by EtOH, and increase the phosphorylation of mTOR and reduce the phosphorylation of Akt, which suggested that the protective effect of Pir was involved in regulation of autophagic process and mTOR/Akt pathways. In conclusion, we speculate that Pir reduces EtOH-induced neuronal damage by regulation of apoptotic action and autophagic action, and our research offers preclinical evidence for the application of Pir in ethanol toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pediatric Toxicology: Household Product Ingestions.

    PubMed

    O'Donnell, Katherine A

    2017-12-01

    Nonpharmaceutical household products are the most common substances involved in exploratory ingestions in young children. Fortunately, most of these products are not toxic if ingested in small volumes. However, there are several household products that have the potential to cause significant toxicity and, rarely, fatalities in young children. Key products reviewed in this article include alcohols, button batteries, corrosive cleaning products, laundry detergent pods, hydrocarbons, and magnets. [Pediatr Ann. 2017;46(12):e449-e453.]. Copyright 2017, SLACK Incorporated.

  1. The anesthetic management of button battery ingestion in children.

    PubMed

    Ing, Richard J; Hoagland, Monica; Mayes, Lena; Twite, Mark

    2018-03-01

    Injuries related to button battery ingestion are common in children. This review provides an outline of the epidemiology, pathophysiology, management, and anesthetic implications in children who have ingested a button battery. A literature search was conducted in the United States National Library of Medicine PubMed database using the terms "button battery ingestion" and "children' and "removal" and "surgery" and "anesthesia". Ninety-six articles published in English were found from 1983-2017, and 62 of these articles were incorporated into this review. Additionally, the Internet was searched with the terms "button battery ingestion and children" to identify further entities, organizations, and resources affiliated with button battery ingestion in children. These additional sources were studied and included in this review. Button batteries are ubiquitous in homes and electronic devices. Since 2006, larger-diameter and higher-voltage batteries have become available. These are more likely to become impacted in the esophagus after ingestion and lead to an increase in severe morbidity and mortality due to caustic tissue injury. Children at the highest risk for complications are those under six years of age who have ingested batteries > 20 mm in diameter and sustain prolonged esophageal impaction at the level of the aortic arch with the negative pole oriented anteriorly. Anesthesiologists need to know about the epidemiology, pathophysiology, complications, and anesthetic management of children who have ingested button batteries.

  2. Too attractive: the growing problem of magnet ingestions in children.

    PubMed

    Brown, Julie C; Otjen, Jeffrey P; Drugas, George T

    2013-11-01

    Small, powerful magnets are increasingly available in toys and other products and pose a health risk. Small spherical neodymium magnets marketed since 2008 are of particular concern. The objective of this study was to determine the incidence, characteristics, and management of single and multiple-magnet ingestions over time. Magnet ingestion cases at a tertiary children's hospital were identified using radiology reports from June 2002 to December 2012. Cases were verified by chart and imaging review. Relative risk regressions were used to determine changes in the incidence of ingestions and interventions over time. Of 56 cases of magnet ingestion, 98% occurred in 2006 or later, and 57% involved multiple magnets. Median age was 8 years (range, 0-18 years). Overall, 21% of single and 88% of multiple ingestions had 2 or more imaging series obtained, whereas no single and 56.3% of multiple ingestions required intervention (25.0% endoscopy, 18.8% surgery, 12.5% both). Magnet ingestions increased in 2010 to 2012 compared with 2007 to 2009 (relative risk, 1.9; 95% confidence interval, 1.2-3.0). Small, spherical magnets likely from magnet sets comprised 27% of ingestions, all ingested 2010 or later: 86% involved multiple magnets, 50% of which required intervention. Excluding these cases, ingestions of other magnets did not increase in 2010 to 2012 compared with 2007 to 2009 (relative risk, 0.94; 95% confidence interval, 0.6-1.4). The incidence of pediatric magnet ingestions and subsequent interventions has increased over time. Multiple-magnet ingestions result in high utilization of radiological imaging and surgical interventions. Recent increases parallel the increased availability of small, spherical magnet sets. Young and at-risk children should not have access to these and other small magnets. Improved regulation and magnet safety standards are needed.

  3. Lead toxicity and endoscopic removal of ingested firearm cartridges.

    PubMed

    Hatten, B W; Bueso, A; Craven, P; Hendrickson, R G; Horowitz, B Z

    2013-06-01

    Lead toxicity from the ingestion of a lead foreign body has been described in several case reports. Management of ingested live ammunition presents its own challenges due to the risk of accidental discharge. A safe and effective method of retrieving a live cartridge must be considered. We present two cases of lead toxicity due to intact firearm cartridge ingestion with the removal of the cartridges via endoscopy. The first case is of severe pediatric lead toxicity due to the ingestion of 30-mm rifle cartridges. The second case is an adult ingestion of .22 caliber cartridges resulting in mild lead toxicity. These cases illustrate a diagnostic dilemma in both the diagnosis of lead toxicity and the removal of live ammunition from the stomach.

  4. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    PubMed Central

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent

  5. Ethanol poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002644.htm Ethanol poisoning To use the sharing features on this page, please enable JavaScript. Ethanol poisoning is caused by drinking too much alcohol. ...

  6. Preclinical Evaluation of Riluzole: Assessments of Ethanol Self-Administration and Ethanol Withdrawal Symptoms

    PubMed Central

    Besheer, Joyce; Lepoutre, Veronique; Hodge, Clyde W.

    2010-01-01

    Background Many of the neurobehavioral effects of ethanol are mediated by inhibition of excitatory N-methyl-d-aspartate (NMDA) and enhancement of inhibitory γ-amino-butyric-acid (GABA) receptor systems. There is growing interest in drugs that alter these systems as potential medications for problems associated with alcoholism. The drug riluzole, approved for treatment of amyotrophic lateral sclerosis (ALS), inhibits NMDA and enhances GABAA receptor system activity. This study was designed to determine the preclinical efficacy of riluzole to modulate ethanol self-administration and withdrawal. Methods Male C57BL/6J mice were trained to lever press on a concurrent fixed-ratio 1 schedule of ethanol (10% v/v) versus water reinforcement during daily 16-hour sessions. Riluzole (1 to 40 mg/kg, IP) was evaluated on ethanol self-administration after acute and chronic (2 week) treatment. To determine if riluzole influences ethanol withdrawal-associated seizures, mice were fed an ethanol-containing or control liquid diet for 18 days. The effects of a single injection of riluzole (30 mg/kg) were examined on handling-induced convulsions after ethanol withdrawal. Results Acute riluzole (30 and 40 mg/kg) reduced ethanol self-administration during the first 4 hours of the session, which corresponds to the known pharmacokinetics of this drug. Ethanol self-administration was also reduced by riluzole after chronic treatment. Riluzole (30 mg/kg) significantly decreased the severity of ethanol-induced convulsions 2 hours after ethanol withdrawal. Conclusions These results demonstrate that riluzole decreases ethanol self-administration and may reduce ethanol withdrawal severity in mice. Thus, riluzole may have utility in the treatment of problems associated with alcoholism. PMID:19426166

  7. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum

    DOE PAGES

    Hon, Shuen; Olson, Daniel G.; Holwerda, Evert K.; ...

    2017-06-27

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields andmore » titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. Here, this suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.« less

  8. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hon, Shuen; Olson, Daniel G.; Holwerda, Evert K.

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields andmore » titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. Here, this suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.« less

  9. Foreign bodies ingestion: what responsibility?

    PubMed

    Ricci, Serafino; Massoni, Francesco; Schiffino, Luigi; Pelosi, Marcello; Salesi, Marialucia

    2014-03-01

    The ingestion of foreign bodies is one of the most important and difficult emergencies for a physician to diagnose. Accidental ingestion is more common in children, in patients with dental implants, in individuals with mental disability and in drug users. Voluntary ingestion is found in patients who are psychologically unstable, in prisoners or those who attempt suicide. Foreign bodies may be divided into food as fish bones, chicken bones, food bolus, meat, etc. or real foreign bodies such as orthodontic implants, needles, pins, glass, coins, etc. The authors present a case of management, from the medicolegal point of view, of a female patient age 80, who complained, for some weeks of modest pain in the left iliac fossa, and afterwards the endoscopy showed a toothpick into the wall of the sigmoid colon. Assessed of the clinical status of the patient presented severe cardiac comorbidities so that before processing the patient to a second resolutive endoscopy, it was necessary to obtain the hemodynamic stability. However the management of cases of accidental ingestion of foreign bodies is particularly difficult. Medical errors can arise from the very first contact with the patient resulting in delays in appropriate treatment. The doctor to avoid compromising its position on medical liability, must use all the knowledge and diligence known by the art and science of medicine. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  10. Risk factors for hazardous events in olfactory-impaired patients.

    PubMed

    Pence, Taylor S; Reiter, Evan R; DiNardo, Laurence J; Costanzo, Richard M

    2014-10-01

    Normal olfaction provides essential cues to allow early detection and avoidance of potentially hazardous situations. Thus, patients with impaired olfaction may be at increased risk of experiencing certain hazardous events such as cooking or house fires, delayed detection of gas leaks, and exposure to or ingestion of toxic substances. To identify risk factors and potential trends over time in olfactory-related hazardous events in patients with impaired olfactory function. Retrospective cohort study of 1047 patients presenting to a university smell and taste clinic between 1983 and 2013. A total of 704 patients had both clinical olfactory testing and a hazard interview and were studied. On the basis of olfactory function testing results, patients were categorized as normosmic (n = 161), mildly hyposmic (n = 99), moderately hyposmic (n = 93), severely hyposmic (n = 142), and anosmic (n = 209). Patient evaluation including interview, examination, and olfactory testing. Incidence of specific olfaction-related hazardous events (ie, burning pots and/or pans, starting a fire while cooking, inability to detect gas leaks, inability to detect smoke, and ingestion of toxic substances or spoiled foods) by degree of olfactory impairment. The incidence of having experienced any hazardous event progressively increased with degree of impairment: normosmic (18.0%), mildly hyposmic (22.2%), moderately hyposmic (31.2%), severely hyposmic (32.4%), and anosmic (39.2%). Over 3 decades there was no significant change in the overall incidence of hazardous events. Analysis of demographic data (age, sex, race, smoking status, and etiology) revealed significant differences in the incidence of hazardous events based on age (among 397 patients <65 years, 148 [37.3%] with hazardous event, vs 31 of 146 patients ≥65 years [21.3%]; P < .001), sex (among 278 women, 106 [38.1%] with hazardous event, vs 73 of 265 men [27.6%]; P = .009), and race (among 98 African

  11. Toxicological assessments of rats exposed prenatally to inhaled vapors of gasoline and gasoline-ethanol blends.

    PubMed

    Bushnell, Philip J; Beasley, Tracey E; Evansky, Paul A; Martin, Sheppard A; McDaniel, Katherine L; Moser, Virginia C; Luebke, Robert W; Norwood, Joel; Copeland, Carey B; Kleindienst, Tadeusz E; Lonneman, William A; Rogers, John M

    2015-01-01

    The primary alternative to petroleum-based fuels is ethanol, which may be blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ethanol vapors from these fuels. The well-known sensitivity of the developing nervous and immune systems to ingested ethanol and the lack of information about the neurodevelopmental toxicity of ethanol-blended fuels prompted the present work. Pregnant Long-Evans rats were exposed for 6.5h/day on days 9-20 of gestation to clean air or vapors of gasoline containing no ethanol (E0) or gasoline blended with 15% ethanol (E15) or 85% ethanol (E85) at nominal concentrations of 3000, 6000, or 9000 ppm. Estimated maternal peak blood ethanol concentrations were less than 5mg/dL for all exposures. No overt toxicity in the dams was observed, although pregnant dams exposed to 9000 ppm of E0 or E85 gained more weight per gram of food consumed during the 12 days of exposure than did controls. Fuel vapors did not affect litter size or weight, or postnatal weight gain in the offspring. Tests of motor activity and a functional observational battery (FOB) administered to the offspring between post-natal day (PND) 27-29 and PND 56-63 revealed an increase in vertical activity counts in the 3000- and 9000-ppm groups in the E85 experiment on PND 63 and a few small changes in sensorimotor responses in the FOB that were not monotonically related to exposure concentration in any experiment. Neither cell-mediated nor humoral immunity were affected in a concentration-related manner by exposure to any of the vapors in 6-week-old male or female offspring. Systematic concentration-related differences in systolic blood pressure were not observed in rats tested at 3 and 6 months of age in any experiment. No systematic differences were observed in serum glucose or glycated hemoglobin A1c (a marker of long-term glucose

  12. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum.

    PubMed

    Hon, Shuen; Olson, Daniel G; Holwerda, Evert K; Lanahan, Anthony A; Murphy, Sean J L; Maloney, Marybeth I; Zheng, Tianyong; Papanek, Beth; Guss, Adam M; Lynd, Lee R

    2017-07-01

    Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Effect of carbohydrate or sodium bicarbonate ingestion on performance during a validated basketball simulation test.

    PubMed

    Afman, Gregg; Garside, Richard M; Dinan, Neal; Gant, Nicholas; Betts, James A; Williams, Clyde

    2014-12-01

    Current recommendations for nutritional interventions in basketball are largely extrapolated from laboratory-based studies that are not sport-specific. We therefore adapted and validated a basketball simulation test relative to competitive basketball games using well-trained basketball players (n = 10), then employed this test to evaluate the effects of two common preexercise nutritional interventions on basketball-specific physical and skilled performance. Specifically, in a randomized and counterbalanced order, participants ingested solutions providing either 75 g carbohydrate (sucrose) 45 min before exercise (Study A; n = 10) or 2 × 0.2 g · kg(-1) sodium bicarbonate (NaHCO3) 90 and 20 min before exercise (Study B; n = 7), each relative to appropriate placebos (H2O and 2 × 0.14 g · kg(-1) NaCl, respectively). Heart rate, sweat rate, pedometer count, and perceived exertion did not systematically differ between the 60-min basketball simulation test and competitive basketball, with a strong positive correlation in heart rate response (r = .9, p < .001). Preexercise carbohydrate ingestion resulted in marked hypoglycemia (< 3.5 mmol · l(-1)) throughout the first quarter, coincident with impaired sprinting (+0.08 ± 0.05 second; p = .01) and layup shooting performance (8.5/11 versus 10.3/11 baskets; p < .01). However, ingestion of either carbohydrate or sodium bicarbonate before exercise offset fatigue such that sprinting performance was maintained into the final quarter relative to placebo (Study A: -0.07 ± 0.04 second; p < .01 and Study B: -0.08 ± 0.05 second; p = .02), although neither translated into improved skilled (layup shooting) performance. This basketball simulation test provides a valid reflection of physiological demands in competitive basketball and is sufficiently sensitive to detect meaningful changes in physical and skilled performance. While there are benefits of preexercise carbohydrate or sodium bicarbonate ingestion, these should be balanced

  14. Prevalence, clinical features and management of pediatric magnetic foreign body ingestions.

    PubMed

    Tavarez, Melissa M; Saladino, Richard A; Gaines, Barbara A; Manole, Mioara D

    2013-01-01

    Foreign body (FB) ingestions are frequent in children. Whereas the majority of FBs pass spontaneously through the gastrointestinal tract, ingestion of magnetic FBs pose a particular risk for obstruction due to proximate attraction through the intestinal wall. We aimed to identify the prevalence, clinical presentation, and management of magnetic FB ingestions at our tertiary care institution. We performed a retrospective chart review of medical records of patients presenting to the pediatric Emergency Department (ED) or admitted to the hospital with FB ingestions from June 2003-July 2009. From those cases, patients with magnetic FB ingestions were identified. During the study period, 337,839 patients presented to the ED; 38 cases of magnetic FB ingestion were identified (prevalence 0.01%). Abdominal radiography was obtained in all cases. Ingestion of a single magnet occurred in 30 of 38 cases (79%). Of those, 4 patients underwent endoscopic removal due to signs of FB impaction in the esophagus or pylorus; no complications were noted. Ingestion of multiple magnets (range 2-6) occurred in 8 of 38 cases. Four of the 8 patients with multiple magnetic FBs (50%) presented with signs of peritonitis and required operative repair of multiple intestinal perforations. No deaths were identified. Although ingestion of a single magnetic FB may, in most cases, be managed as a simple FB ingestion, the ingestion of multiple magnetic FB is associated with a high risk of complication and requires aggressive management. We propose an algorithm for management of children with magnetic FB ingestions. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. An ingestible temperature-transmitter

    NASA Technical Reports Server (NTRS)

    Pope, J. M.; Fryer, T. B.; Sandler, H.

    1972-01-01

    Pill-sized transmitter measures deep body temperature in studies of circadian rhythm and indicates general health. Ingestible device is a compromise between accuracy, circuit complexity, size and transmission range.

  16. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat.

    PubMed

    Gamella, M; Campuzano, S; Manso, J; González de Rivera, G; López-Colino, F; Reviejo, A J; Pingarrón, J M

    2014-01-02

    A non-invasive, passive and simple to use skin surface based sensing device for determining the blood's ethanol content (BAC) by monitoring transdermal alcohol concentration (TAC) is designed and developed. The proposed prototype is based on bienzyme amperometric composite biosensors that are sensitive to the variation of ethanol concentration. The prototype correlates, through previous calibration set-up, the amperometric signal generated from ethanol in sweat with its content in blood in a short period of time. The characteristics of this sensor device permit determination of the ethanol concentration in isolated and in continuous form, giving information of the BAC of a subject either in a given moment or its evolution during long periods of time (8h). Moreover, as the measurements are performed in a biological fluid, the evaluated individual is not able to alter the result of the analysis. The maximum limit of ethanol in blood allowed by legislation is included within the linear range of the device (0.0005-0.6 g L(-1)). Moreover, the device shows higher sensitivity than the breathalyzers marketed at the moment, allowing the monitoring of the ethanol content in blood to be obtained just 5 min after ingestion of the alcoholic drink. The comparison of the obtained results using the proposed device in the analysis of 40 volunteers with those provided by the gas chromatographic reference method for determination of BAC pointed out that there were no significant differences between both methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Development and Validation of an Instrument to Evaluate Perceived Wellbeing Associated with the Ingestion of Water: The Water Ingestion-Related Wellbeing Instrument (WIRWI)

    PubMed Central

    Espinosa-Montero, Juan; Monterrubio-Flores, Eric A.; Sanchez-Estrada, Marcela; Buendia-Jimenez, Inmaculada; Lieberman, Harris R.; Allaert, François-Andre; Barquera, Simon

    2016-01-01

    Background Ingestion of water has been associated with general wellbeing. When water intake is insufficient, symptoms such as thirst, fatigue and impaired memory result. Currently there are no instruments to assess water consumption associated with wellbeing. The objective of our study was to develop and validate such an instrument in urban, low socioeconomic, adult Mexican population. Methods To construct the Water Ingestion-Related Wellbeing Instrument (WIRWI), a qualitative study in which wellbeing related to everyday practices and experiences in water consumption were investigated. To validate the WIRWI a formal, five-process procedure was used. Face and content validation were addressed, consistency was assessed by exploratory and confirmatory psychometric factor analyses, repeatability, reproducibility and concurrent validity were assessed by conducting correlation tests with other measures of wellbeing such as a quality of life instrument, the SF-36, and objective parameters such as urine osmolality, 24-hour urine total volume and others. Results The final WIRWI is composed of 17 items assessing physical and mental dimensions. Items were selected based on their content and face validity. Exploratory and confirmatory factor analyses yielded Cronbach's alpha of 0.87 and 0.86, respectively. The final confirmatory factor analysis demonstrated that the model estimates were satisfactory for the constructs. Statistically significant correlations with the SF-36, total liquid consumption and simple water consumption were observed. Conclusion The resulting WIRWI is a reliable tool for assessing wellbeing associated with consumption of plain water in Mexican adults and could be useful for similar groups. PMID:27388902

  18. Neonatal ethanol exposure from ethanol-based hand sanitisers in isolettes.

    PubMed

    Hsieh, Shizuka; Sapkota, Amir; Wood, Rebecca; Bearer, Cynthia; Kapoor, Shiv

    2018-01-01

    The aims of this study is to measure the ethanol vapours in the isolette after use of hands cleaned with ethanol-based hand sanitiser (EBHS). Two squirts (1.5 mL) of hand sanitiser were rubbed on hands for 10 or 20 s before inserting the hands in the isolette for 5 min. Ethanol vapours were measured in the isolette with photoionisation detector and alcohol breathalyser for 30 min. Peak ethanol concentration in the isolette was considerably higher with a 10 s hand rub (381±192 ppm) compared with a 20 s hand rub (99±50 ppm), and dissipated to ≤5 ppm within 30 min. Under routine care, EBHS use by care providers exposes neonates in isolettes to 3.7-7.3 or 1.4-2.8 mg/kg ethanol per day with 10 or 20 s hand rubs, respectively. The expected blood level from average single exposure is 0.036 mg/dL with 10 s hand rub and may increase further with multiple exposures in a short period. Preterm neonates in the isolette are at risk of inadvertent exposure to ethanol. The expected blood alcohol level from this exposure is small and below 1 mg/dL level recommended by European Medicines Agency to limit the ethanol exposure in children. The unintended ethanol exposure can be avoided by rubbing hands for at least 20 s after applying EBHS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice.

    PubMed

    Li, Wei-Feng; Hao, Ding-Jun; Fan, Ting; Huang, Hui-Min; Yao, Huan; Niu, Xiao-Feng

    2014-02-05

    The quaternary benzo[c]phenanthridine alkaloid, chelerythrine (CHE), is of great practical and research interest because of its pronounced, widespread physiological effects, primarily antimicrobial and anti-inflammatory, arising from its ability to interact with proteins and DNA. Although CHE was originally shown to possess anti-inflammatory properties, its effects on acute gastric ulcer have not been previously explored. The aim of the present study is to evaluate the protective effect of CHE on ethanol induced gastric ulcer in mice. Administration of CHE at doses of 1, 5 and 10mg/kg bodyweight prior to ethanol ingestion dose-dependently inhibited gastric ulcer. The gastric mucosal lesion was assessed by ulcer area, gastric juice acidity, myeloperoxidase (MPO) activities, macroscopic and histopathological examinations. CHE significantly reduced the gastric ulcer index, myeloperoxidase activities, macroscopic and histological score in a dose-dependent manner. In addition, CHE also significantly inhibited nitric oxide (NO) concentration, pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) level in serum and gastric mucosal in the mice exposed to ethanol induced ulceration in a dose-dependent manner. In addition, immunohistochemical analysis revealed that CHE markedly attenuated the overexpression of nuclear factor-κB in gastric mucosa of mice. It was concluded that CHE represents a potential therapeutic option to reduce the risk of gastric ulceration. In addition, acute toxicity study revealed no abnormal sign to the mice treated with CHE (15mg/kg). These findings suggest that the gastroprotective activity of CHE might contribute in adjusting the inflammatory cytokine by regulating the NF-κB signalling pathway. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Influence of the menstrual cycle on flight simulator performance after alcohol ingestion.

    PubMed

    Mumenthaler, M S; O'Hara, R; Taylor, J L; Friedman, L; Yesavage, J A

    2001-07-01

    Previous studies investigating the influence of the menstrual cycle on cognitive functioning of women after alcohol ingestion have obtained inconsistent results. The present study tested the hypothesis that flight simulator performance during acute alcohol intoxication and 8 hours after drinking differs between the menstrual and the luteal phase of the menstrual cycle. White female pilots (N = 24) were tested during the menstrual and the luteal phases of their menstrual cycles. On each test day they performed a baseline simulator flight, consumed 0.67 g/kg ethanol, and performed an acute-intoxication and an 8-hour-carryover simulator flight. Subjects reached highly significant increases in estradiol (E2) as well as progesterone (P) levels during the luteal test day. Yet, there were no significant differences in overall flight performance after alcohol ingestion between the menstrual and luteal phases during acute intoxication or at 8-hour carryover. We found no correlations between E, or P levels and overall flight performance. However, there was a statistically significant Phase x Order interaction: Pilots who started the experiment with their menstrual day were less susceptible to the effects of alcohol during the second test day than were pilots who started with their luteal day. The tested menstrual cycle phases and varying E2 and P levels did not significantly influence postdrink flight performance. Because the present study included a comparatively large sample size and because it involved complex "real world" tasks (piloting an aircraft), we believe that the present findings are important. We hope that our failure to detect menstrual cycle effects will encourage researchers to include women in their investigations of alcohol effects and human performance.

  1. Radiofrequency Ablation Followed by Percutaneous Ethanol Ablation Leading to Long-Term Remission of Hyperparathyroidism

    PubMed Central

    Menon, Arun S.; Nazar, P. K.; Moorthy, Srikanth; Kumar, Harish; Nair, Vasantha; Pavithran, Praveen Valiyaparambil; Bhavani, Nisha; Menon, Vadayath Usha; Abraham, Nithya; Jayakumar, R. Vasukutty

    2017-01-01

    A 30-year-old male with cerebral palsy and motor impairment presented with right femur fracture. He had gradually worsening mobility and contractures of all extremities for the preceding 5 years. Evaluation showed multiple vertebral and femoral fractures, severe osteoporosis, a large parathyroid adenoma, and parathormone (PTH) exceeding 2500 pg/mL. Because of poor general health and high anesthetic risk, parathyroidectomy was deemed impractical. Ultrasound-guided radiofrequency ablation (RFA) helped achieve 50% size reduction and PTH levels with better control of hypercalcemia. Later, as calcium and PTH remained elevated, percutaneous ethanol ablation was performed with resultant normalization of PTH and substantial symptomatic improvement. Two years later, he still remains normocalcaemic with normal PTH levels. We propose that RFA and percutaneous ethanol ablation be considered as effective short-term options for surgically difficult cases, which could even help achieve long-term remission. Although not previously reported, our case illustrates that both RFA and percutaneous ethanol ablation could be safely performed successively achieving long-term remission. PMID:29264521

  2. Transient performance of fan engine with water ingestion

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Mullican, A.

    1993-01-01

    In a continuing investigation on developing and applying codes for prediction of performance of a turbine jet engine and its components with water ingestion during flight operation, including power settings, and flight altitudes and speed changes, an attempt was made to establish the effects of water ingestion through simulation of a generic high bypass ratio engine with a generic control. In view of the large effects arising in the air compression system and the prediffuser-combustor unit during water ingestion, attention was focused on those effects and the resulting changes in engine performance. Under all conditions of operation, whether ingestion is steady or not, it became evident that water ingestion causes a fan-compressor unit to operate in a time-dependent fashion with periodic features, particularly with respect to the state of water in the span and the film in the casing clearance space, at the exit of the machine. On the other hand, the aerodynamic performance of the unit may be considered as quasi-steady once the distribution of water has attained an equilibrium state with respect to its distribution and motion. For purposes of engine simulation, the performance maps for the generic fan-compressor unit were generated based on the attainment of a quasi-steady state (meaning steady except for long-period variations in performance) during ingestion and operation over a wide enough range of rotational speeds.

  3. Concentrated liquid detergent pod ingestion in children.

    PubMed

    Sidhu, Natasha; Jaeger, Matthew W

    2014-12-01

    Concentrated liquid detergent pods are an emerging public health hazard, especially in pediatric patients. Ingestion is a more common route of exposure for liquid detergent pods compared with non-pod detergents and it tends to be associated with more severe adverse effects. We present 3 cases that demonstrate the varied clinical symptoms resulting from detergent pod ingestion. These cases not only demonstrate findings such as gastrointestinal and respiratory symptoms but also show more rare neurological symptoms. The cases highlight the dangers of concentrated liquid detergent pod ingestion. To help prevent further life-threatening injuries, there is a need for more consumer information and provider knowledge about the potential adverse complications.

  4. Suicidal ingestion of potassium permanganate crystals: a rare encounter.

    PubMed

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A C; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8(th) day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion.

  5. Suicidal Ingestion of Potassium Permanganate Crystals: A Rare Encounter

    PubMed Central

    Karthik, Ravikanti; Veerendranath, Hari Prasad Kanakapura; Wali, Siddraj; Mohan, Murali N T; Kumar, Praveen A. C.; Trimurty, Gaganam

    2014-01-01

    Potassium permanganate poisoning is not common. Although Symptoms of potassium permanganate ingestion are gastrointestinal and Complications due to ingestion of potassium permanganate include cardiovascular depression, hepatic and renal damage, upper airway obstruction, bleeding tendency and methemoglobinemia. Gastric damage due to potassium permanganate has rarely been reported previously. We are reporting a 34-year old female patient who presented to our Emergency Department after suicidal ingestion of potassium permanganate crystals. After treatment, the patient was discharged home on the 8th day after admission. So we conclude that Emergency endoscopy has a significant role in diagnosis and management of potassium permanganate ingestion. PMID:25948978

  6. ACUTE EFFECT OF ETHANOL ON HEPATIC RETICULAR G6Pase AND Ca2+ POOL

    PubMed Central

    Jacobs-Harper, Amy; Crumbly, Ashlee; Romani, Andrea

    2012-01-01

    Background Hydrolysis of glucose 6-phosphate via glucose 6-phosphatase enlarges the reticular Ca2+ pool of the hepatocyte. Exposure of liver cells to ethanol impairs reticular Ca2+ homeostasis. The present study investigated the effect of acute ethanol administration on glucose 6-phosphate supported Ca2+ accumulation in liver cells. Methods Total microsomes were isolated from rat livers acutely perfused with varying doses of ethanol (0.01%, 0.1%, or 1% v/v) for 8 minutes. Calcium uptake was assessed by 45Ca redistribution. Inorganic phosphate (Pi) formation was measured as an indicator of glucose 6-phosphatase hydrolytic activity. Results Glucose 6-phosphate-supported Ca2+ uptake decreased in a manner directly proportional to the dose of ethanol infused in the liver whereas Ca2+ uptake via SERCA pumps was decreased by ~25% only at the highest dose of alcohol administered. The reduced accumulation of Ca2+ within the microsomes resulted in a smaller IP3-induced Ca2+ release. Kinetic assessment of IP3 and passive Ca2+ release indicated a faster mobilization in microsomes from ethanol-treated livers, suggesting alcohol-induced alteration of Ca2+ releasing mechanisms. Pre-treatment of livers with chloromethiazole or dithio-threitol, but not 4-methyl-pyrazole prevented the inhibitory effect of ethanol on glucose 6-phosphatase activity and Ca2+ homeostasis. Conclusions Liver glucose 6-phosphatase activity and IP3-mediated Ca2+ release are rapidly inhibited following acute (8 min) exposure to ethanol, thus compromising the ability of the endoplasmic reticulum to dynamically modulate Ca2+ homeostasis in the hepatocyte. The protective effect of chloromethiazole and di-thio-threitol suggests that the inhibitory effect of ethanol is mediated through its metabolism via reticular cyP4502E1 and consequent free radicals formation. PMID:22958133

  7. Ingestion of microplastics by commercial fish off the Portuguese coast.

    PubMed

    Neves, Diogo; Sobral, Paula; Ferreira, Joana Lia; Pereira, Tânia

    2015-12-15

    The digestive tract contents of 263 individuals from 26 species of commercial fish were examined for microplastics. These were found in 17 species, corresponding to 19.8% of the fish of which 32.7% had ingested more than one microplastic. Of all the fish that ingested microplastics, 63.5% was benthic and 36.5% pelagic species. A total of 73 microplastics were recorded, 48 (65.8%) being fibres and 25 (34.2%) being fragments. Polymers were polypropylene, polyethylene, alkyd resin, rayon, polyester, nylon and acrylic. The mean of ingested microplastics was 0.27 ± 0.63 per fish, (n=263). Pelagic fish ingested more particles and benthic fish ingested more fibres, but no significant differences were found. Fish with the highest number of microplastics were from the mouth of the Tagus river. Scomber japonicus registered the highest mean of ingested microplastics, suggesting its potential as indicator species to monitor and investigate trends in ingested litter, in the MSFD marine regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw.

    PubMed

    Bondesson, Pia-Maria; Galbe, Mats

    2016-01-01

    Pretreatment is an important step in the production of ethanol from lignocellulosic material. Using acetic acid together with steam pretreatment allows the positive effects of an acid catalyst to be retained, while avoiding the negative environmental effects associated with sulphuric acid. Acetic acid is also formed during the pretreatment and hydrolysis of hemicellulose, and is a known inhibitor that may impair fermentation at high concentrations. The purpose of this study was to improve ethanol production from glucose and xylose in steam-pretreated, acetic-acid-impregnated wheat straw by process design of simultaneous saccharification and co-fermentation (SSCF), using a genetically modified pentose fermenting yeast strain Saccharomyces cerevisiae . Ethanol was produced from glucose and xylose using both the liquid fraction and the whole slurry from pretreated materials. The highest ethanol concentration achieved was 37.5 g/L, corresponding to an overall ethanol yield of 0.32 g/g based on the glucose and xylose available in the pretreated material. To obtain this concentration, a slurry with a water-insoluble solids (WIS) content of 11.7 % was used, using a fed-batch SSCF strategy. A higher overall ethanol yield (0.36 g/g) was obtained at 10 % WIS. Ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw through SSCF with a pentose fermenting S. cerevisiae strain was successfully demonstrated. However, the ethanol concentration was too low and the residence time too long to be suitable for large-scale applications. It is hoped that further process design focusing on the enzymatic conversion of cellulose to glucose will allow the combination of acetic acid pretreatment and co-fermentation of glucose and xylose.

  9. Rhabdomyolysis After LSD Ingestion.

    PubMed

    Berrens, Zachary; Lammers, Jessica; White, Christopher

    2010-01-01

    Rhabdomyolysis involves the release of intracellular contents secondary to muscle cell injury; it generally presents with muscle pain and weakness. Illicit drugs, including phencyclidine, MDMA ("ecstasy"), and cocaine, are frequently documented as a cause of rhabdomyolysis. The authors review the literature on LSD-associated rhabdomyolysis. The authors provide a new case report of a previously health patient who suffered rhabdomyolysis after LSD ingestion. Although frequently listed as a cause of rhabdomyolysis, there are only limited reports of rhabdomyolysis in patients who have ingested LSD. The discussion outlines potential mechanisms and management of LSD-associated rhabdomyolysis. Consultation psychiatrists may be called to assist in management of acute mental-status changes or agitation associated with LSD intoxication in addition to facilitating subsequent chemical-dependency treatment.

  10. Measuring water ingestion from spray exposures.

    PubMed

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Estimating freshwater turtle mortality rates and population declines following hook ingestion.

    PubMed

    Steen, David A; Robinson, Orin J

    2017-12-01

    Freshwater turtle populations are susceptible to declines following small increases in the mortality of adults, making it essential to identify and understand potential threats. Freshwater turtles ingest fish hooks associated with recreational angling, and this is likely a problem because hook ingestion is a source of additive mortality for sea turtles. We used a Bayesian-modeling framework, observed rates of hook ingestion by freshwater turtles, and mortality of sea turtles from hook ingestion to examine the probability that a freshwater turtle in a given population ingests a hook and subsequently dies from it. We used the results of these analyses and previously published life-history data to simulate the effects of hook ingestion on population growth for 3 species of freshwater turtle. In our simulation, the probability that an individual turtle ingests a hook and dies as a result was 1.2-11%. Our simulation results suggest that this rate of mortality from hook ingestion is sufficient to cause population declines. We believe we have identified fish-hook ingestion as a serious yet generally overlooked threat to the viability of freshwater turtle populations. © 2017 Society for Conservation Biology.

  12. Long-term changes in the type, but not amount, of ingested plastic particles in short-tailed shearwaters in the southeastern Bering Sea.

    PubMed

    Vlietstra, Lucy S; Parga, Joyce A

    2002-09-01

    We report the current (1997-1999, 2001) incidence and amount of ingested plastic in short-tailed shearwaters (Puffinus tenuirostris) in the southeastern Bering Sea and compare our results with plastic reported in shearwaters during 1970-1978. We also examine correlations between plastic loads and shearwater body mass. We found that 84% (N = 330) of shearwaters sampled in 1997-1999 and 2001 contained plastic. The incidence and amount of ingested plastic have not significantly changed since the 1970s. In contrast, the predominant type of plastic has changed over time, from industrial plastic to user plastic. S,asonal patterns in the incidence and amount of ingested plastic also changed from peak levels during early and late summer in the 1970s to mid summer in the late 1990s and 2001. We suggest that the availability of neuston plastic to seabirds in the Bering Sea has undergone a shift in composition since the 1970s. Shearwater body mass appears little if at all impaired by plastic, at least at present levels of consumption.

  13. Ethanol stimulates glucose uptake and translocation of GLUT-4 in H9c2 myotubes via a Ca(2+)-dependent mechanism.

    PubMed

    Yu, B; Schroeder, A; Nagy, L E

    2000-12-01

    Short-term exposure to ethanol impairs glucose homeostasis, but the effects of ethanol on individual components of the glucose disposal pathway are not known. To understand the mechanisms by which ethanol disrupts glucose homeostasis, we have investigated the direct effects of ethanol on glucose uptake and translocation of GLUT-4 in H9c2 myotubes. Short-term treatment with 12.5-50 mM ethanol increased uptake of 2-deoxyglucose by 1.8-fold in differentiated myotubes. Pretreatment of H9c2 myotubes with 100 nM wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had no effect on ethanol-induced increases in 2-deoxyglucose uptake. In contrast, preincubation with 25 microM dantrolene, an inhibitor of Ca(2+) release from the sarcoplasmic reticulum, blocked the stimulation of 2-deoxyglucose uptake by ethanol. Increased 2-deoxyglucose uptake after ethanol treatment was associated with a decrease in small intracellular GLUT-4 vesicles and an increase in GLUT-4 localized at the cell surface. In contrast, ethanol had no effect on the quantity of GLUT-1 and GLUT-3 at the plasma membrane. These data demonstrate that physiologically relevant concentrations of ethanol disrupt the trafficking of GLUT-4 in H9c2 myotubes resulting in translocation of GLUT-4 to the plasma membrane and increased glucose uptake.

  14. Carbon dioxide and ethanol release from champagne glasses, under standard tasting conditions.

    PubMed

    Liger-Belair, Gérard; Beaumont, Fabien; Bourget, Marielle; Pron, Hervé; Parvitte, Bertrand; Zéninari, Virginie; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    A simple glass of champagne or sparkling wine may seem like the acme of frivolity to most people, but in fact, it may rather be considered as a fantastic playground for any fluid physicist or physicochemist. In this chapter, results obtained concerning various steps where the CO₂ molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO₂ impact champagne and sparkling wine science. Some recent investigations, conducted through laser tomography techniques, on ascending bubbles and ascending-bubble-driven flow patterns found in champagne glasses are reported, which illustrate the fine interplay between ascending bubbles and the fluid around under standard tasting conditions. The simultaneous monitoring of gaseous CO₂ and ethanol in the headspace of both a flute and a coupe filled with champagne was reported, depending on whether or not the glass shows effervescence. Both gaseous CO₂ and ethanol were found to be enhanced by the presence of ascending bubbles, thus confirming the close link between ascending bubbles, ascending-bubble-driven flow patterns, and the release of gaseous CO₂ and volatile organic compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Repeated Binge-Like Ethanol Drinking Alters Ethanol Drinking Patterns and Depresses Striatal GABAergic Transmission

    PubMed Central

    Wilcox, Mark V; Carlson, Verginia C Cuzon; Sherazee, Nyssa; Sprow, Gretchen M; Bock, Roland; Thiele, Todd E; Lovinger, David M; Alvarez, Veronica A

    2014-01-01

    Repeated cycles of binge alcohol drinking and abstinence are key components in the development of dependence. However, the precise behavioral mechanisms underlying binge-like drinking and its consequences on striatal synaptic physiology remain unclear. In the present study, ethanol and water drinking patterns were recorded with high temporal resolution over 6 weeks of binge-like ethanol drinking using the ‘drinking in the dark' (DID) protocol. The bottle exchange occurring at the beginning of each session prompted a transient increase in the drinking rate that might facilitate the acquisition of ethanol binge-like drinking. Ethanol drinking mice also displayed a ‘front-loading' behavior, in which the highest rate of drinking was recorded during the first 15 min. This rate increased over weeks and paralleled the mild escalation of blood ethanol concentrations. GABAergic and glutamatergic transmission in the dorsal striatum were examined following DID. Spontaneous glutamatergic transmission and the density of dendritic spines were unchanged after ethanol drinking. However, the frequency of GABAA receptor-mediated inhibitory postsynaptic currents was depressed in medium spiny neurons of ethanol drinking mice. A history of ethanol drinking also increased ethanol preference and altered the acute ethanol effects on GABAergic transmission differentially in dorsolateral and dorsomedial striatum. Together, the study shows that the bottle exchange during DID promotes fast, voluntary ethanol drinking and that this intermittent pattern of ethanol drinking causes a depression of GABAergic transmission in the dorsal striatum. PMID:23995582

  16. Soil ingestion rates for children under 3 years old in Taiwan.

    PubMed

    Chien, Ling-Chu; Tsou, Ming-Chien; Hsi, Hsing-Cheng; Beamer, Paloma; Bradham, Karen; Hseu, Zeng-Yei; Jien, Shih-Hao; Jiang, Chuen-Bin; Dang, Winston; Özkaynak, Halûk

    2017-01-01

    Soil and dust ingestion rates by children are among the most critical exposure factors in determining risks to children from exposures to environmental contaminants in soil and dust. We believe this is the first published soil ingestion study for children in Taiwan using tracer element methodology. In this study, 66 children under 3 years of age were enrolled from Taiwan. Three days of fecal samples and a 24-h duplicate food sample were collected. The soil and household dust samples were also collected from children's homes. Soil ingestion rates were estimated based on silicon (Si) and titanium (Ti). The average soil ingestion rates were 9.6±19.2 mg/day based on Si as a tracer. The estimated soil ingestion rates based on Si did not have statistically significant differences by children's age and gender, although the average soil ingestion rates clearly increased as a function of children's age category. The estimated soil ingestion rates based on Si was significantly and positively correlated with the sum of indoor and outdoor hand-to-mouth frequency rates. The average soil ingestion rates based on Si were generally lower than the results from previous studies for the US children. Ti may not be a suitable tracer for estimating soil ingestion rates in Taiwan because the Ti dioxide is a common additive in food. To the best of our knowledge, this is the first study that investigated the correlations between soil ingestion rates and mouthing behaviors in Taiwan or other parts of Asia. It is also the first study that could compare available soil ingestion data from different countries and/or different cultures. The hand-to-mouth frequency and health habits are important to estimate the soil ingestion exposure for children. The results in this study are particularly important when assessing children's exposure and potential health risk from nearby contaminated soils in Taiwan.

  17. Severe Coagulopathy after Ingestion of "Snake Wine".

    PubMed

    Moon, Jeong Mi; Chun, Byeong Jo

    2016-06-01

    This report describes a patient who developed coagulopathy after ingesting snake wine, which is an alcoholic libation containing an entire venomous snake. A 68-year-old man was admitted to the hospital 19 h after ingesting snake wine. The laboratory features upon admission included unmeasurable activated partial thromboplastin (aPTT) values, prolonged prothrombin time (PT) values, increased fibrinogen levels, modestly elevated fibrin degradation product and D-dimer values, uncorrected aPTT and PT values after a mixing test, and normal levels of aspartate transaminase and alanine transaminase. No pesticides, warfarin, or superwarfarin in the patient's blood or urine were detected. His coagulation profile normalized on the 6(th) day after admission after antivenom treatment. He was discharged 10 days later without sequelae. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: The physician should be aware that ingesting snake wine may lead to systemic envenomation. As for coagulopathy, which may develop by ingesting snake venom, related laboratory findings may differ from the features observed after direct envenomation by snakebite. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Pediatric zolpidem ingestion demonstrating zero-order kinetics treated with flumazenil.

    PubMed

    Thornton, Stephen L; Negus, Elezer; Carstairs, Shaun D

    2013-11-01

    Zolpidem is a widely prescribed anti-insomnia agent. Although most pediatric zolpidem ingestions are benign, large ingestions can cause significant central nervous system (CNS) depression. Flumazenil has been reported to reverse the CNS effects of zolpidem. We describe a case of a large pediatric zolpidem ingestion resulting in profound CNS depression that responded to flumazenil administration. Serial zolpidem serum levels confirmed the ingestion. A 10-year-old boy with trisomy 21 presented to the emergency department 1 hour after he was found sedate with several zolpidem 5-mg tablets in his mouth. Seventeen tables (85 mg) were unaccounted for from a prescription bottle. He became unarousable approximately 2 hours after his ingestion. Flumazenil 0.2 mg intravenously was given with rapid return to his baseline mental status. He became resedate 1 hour later but was arousable. Sixteen hours after his presentation, he was asymptomatic. Serial zolpidem serum levels were obtained, showed an initial level of 310 ng/mL, and demonstrated zero-order kinetics. Zolpidem is an imidazopyridine, which binds to the benzodiazepine receptor. It is rapidly absorbed and has a short-half life. Unintentional pediatric ingestions of zolpidem are typically well tolerated. However, this case demonstrates that large ingestions may cause significant and prolonged CNS depression. Flumazenil, a benzodiazepine receptor antagonist, has been described to reverse the effects of zolpidem in adult ingestions. There are few published reports describing flumazenil use in pediatric ingestion patients. This case suggests that flumazenil may be an effective treatment for zolpidem-induced CNS depression in the pediatric patient.

  19. Physiological stress and ethanol accumulation in tree stems and woody tissues at sublethal temperatures from fire

    Treesearch

    Rick G. Kelsey; Douglas J. Westlind

    2017-01-01

    The lethal temperature limit is 60 degrees Celsius (°C) for plant tissues, including trees, with lower temperatures causing heat stress. As fire injury increases on tree stems, there is an accompanying rise in tissue ethanol concentrations, physiologically linked to impaired mitochondrial oxidative phosphorylation energy production. We theorize that sublethal tissue...

  20. Ingestion of Laundry Detergent Packets in Children.

    PubMed

    Shah, Lindsey Wilson

    2016-08-01

    Ingestion of laundry detergent packets is an important threat to young children. Because of their developmental stage, toddlers are prone to place these small, colorful packets in their mouths. The packets can easily burst, sending a large volume of viscous, alkaline liquid throughout the oropharynx. Ingestion causes major toxic effects, including depression of the central nervous system, metabolic acidosis, respiratory distress, and dysphagia. Critical care nurses should anticipate these clinical effects and facilitate prompt intervention. Increased understanding of the risks and clinical effects of ingestion of laundry detergent packets will better prepare critical care nurses to provide care for these children. (Critical Care Nurse 2016; 36[4]:70-75). ©2016 American Association of Critical-Care Nurses.

  1. Polyuria, acidosis, and coma following massive ibuprofen ingestion.

    PubMed

    Levine, Michael; Khurana, Amandeep; Ruha, Anne-Michelle

    2010-09-01

    Ibuprofen was the first over-the-counter nonsteroidal anti-inflammatory drug available in the United States. Despite being a common agent of ingestion, significant toxicity in overdose is rare. We report a case of a massive ibuprofen ingestion who developed polyuria, acidosis, and coma but survived, despite having a serum ibuprofen concentration greater than previous fatal cases. A 19-year-old man ingested 90 g (1,200 mg/kg) ibuprofen. He was initially awake and alert, but his level of consciousness deteriorated over several hours. Seven hours following the ingestion, he was intubated and mechanically ventilated secondary to loss of airway reflexes. He developed a lactic acidosis and polyuria, which lasted for nearly 24 h. His serum creatinine peaked at 1.12 mg/dL. An ibuprofen level drawn 7 h postingestion was 739.2 mg/L (therapeutic 5-49 mg/L). We describe a case of a massive ibuprofen overdose characterized by metabolic acidosis, coma, and a state of high urine output who survived with aggressive supportive care. This case is unique in several ways. First, ibuprofen levels this high have only rarely been described. Second, polyuria is very poorly described following ibuprofen ingestions.

  2. [Magnet ingestions in children: a French multicenter study].

    PubMed

    Talvard, M; Mouttalib, S; Flaum, V; Viala, J; Galinier, P; Olives, J-P; Mas, E

    2015-01-01

    Digestive complications related to the ingestion of magnetic foreign bodies in children are increasing, especially in Asia and North America. In France, several case reports have been reported since 2008. We conducted a retrospective multicentric study to evaluate the frequency of ingestion of magnet foreign bodies and to describe the complicated cases that have occurred in France over the last 5 years. We report 40 cases of which 60% were multiple magnet ingestions. Eighty-eight percent of the children of the group who had swallowed multiple magnets needed interventional management by endoscopy (33%) or surgery (58%). Only two children (12.5%) of the group who swallowed one magnet required removal. This problem is not uncommon in France (2% of the 1132 foreign bodies investigated in the Toulouse center over 5 years), which justifies clear information for healthcare professionals and caregivers in order to avoid potential intestinal complications. We suggest interventional management or very close monitoring in the cases of multiple magnet ingestion. Meanwhile, in the majority of confirmed cases of simple magnet ingestions, we propose home monitoring. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Effects of Ethanol on Phosphorylation Site Mutants of Recombinant NMDA Receptors

    PubMed Central

    Xu, Minfu; Smothers, Corigan T.; Woodward, John J.

    2010-01-01

    N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by the neurotransmitter glutamate. These channels are highly expressed by brain neurons and are critically involved in excitatory synaptic transmission. Results from previous studies show that both native and recombinant NMDA receptors are inhibited by ethanol at concentrations associated with signs of behavioral impairment and intoxication. Given the important role that NMDA receptors play in synaptic transmission and brain function, it is important to understand the factors that regulate the ethanol inhibition of these receptors. One dynamic mechanism for regulating ethanol action may be via phosphorylation of NMDA subunits by serine-threonine and tyrosine kinases. Both NR1 and NR2 subunits contain multiple sites of phosphorylation and in the NR1 subunit, most of these are contained within the C1 domain, a carboxy-terminal cassette that is subject to alternative splicing. While results from our previous studies suggest that single phosphorylation sites do not greatly affect ethanol sensitivity of NMDA receptors, it is likely that in vivo, these subunits are phosphorylated at multiple sites by different kinases. In the present study, we constructed a series of NMDA receptor mutants at serine (S) or threonine (T) residues proposed to be sites of phosphorylation by PKA and various isoforms of PKC. Ethanol (100 mM) inhibited currents from wild-type NR1/2A and NR1/2B receptors expressed in HEK293 cells by approximately 25% and 30% respectively. This inhibition was not different in single site mutants expressing alanine (A) or aspartate/glutamate (D/E) at positions T879, S896 or T900. The mutant NR1(S890D) showed greater ethanol inhibition than NR1(890A) containing receptors although this was only observed when it was combined with the NR2A subunit. Ethanol inhibition was not altered by aspartate substitution at four serines (positions 889, 890, 896, 897) or when T879D was added to the four

  4. Ingestion of microplastic has limited impact on a marine larva.

    PubMed

    Kaposi, Katrina L; Mos, Benjamin; Kelaher, Brendan P; Dworjanyn, Symon A

    2014-01-01

    There is increasing concern about the impacts of microplastics (<1 mm) on marine biota. Microplastics may be mistaken for food items and ingested by a wide variety of organisms. While the effects of ingesting microplastic have been explored for some adult organisms, there is poor understanding of the effects of microplastic ingestion on marine larvae. Here, we investigated the ingestion of polyethylene microspheres by larvae of the sea urchin, Tripneustes gratilla. Ingestion rates scaled with the concentration of microspheres. Ingestion rates were, however, reduced by biological fouling of microplastic and in the presence of phytoplankton food. T. gratilla larvae were able to egest microspheres from their stomach within hours of ingestion. A microsphere concentration far exceeding those recorded in the marine environment had a small nondose dependent effect on larval growth, but there was no significant effect on survival. In contrast, environmentally realistic concentrations appeared to have little effect. Overall, these results suggest that current levels of microplastic pollution in the oceans only pose a limited threat to T. gratilla and other marine invertebrate larvae, but further research is required on a broad range of species, trophic levels, and polymer types.

  5. Polymorphism of ethanol-metabolism genes and alcoholism: correlation of allelic variations with the pharmacokinetic and pharmacodynamic consequences.

    PubMed

    Chen, Yi-Chyan; Peng, Giia-Sheun; Wang, Ming-Fang; Tsao, Tien-Ping; Yin, Shih-Jiun

    2009-03-16

    Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the principal enzymes responsible for metabolism of ethanol. Both ADH and ALDH exhibit genetic polymorphisms among racial populations. Functional variant alleles ADH1B*2 and ALDH2*2 have been consistently replicated to show protection against developing alcohol dependence. Multiple logistic regression analyses suggest that ADH1B*2 and ALDH2*2 may independently influence the risk for alcoholism. It has been well documented that homozygosity of ALDH2*2 almost fully protects against developing alcoholism and that the heterozygosity only affords a partial protection to varying degrees. Correlations of blood ethanol and acetaldehyde concentrations, cardiovascular hemodynamic responses, and subjective perceptions have been investigated in men with different combinatorial ADH1B and ALDH2 genotypes following challenge with ethanol for a period of 130 min. The pharmacokinetic and pharmacodynamic consequences indicate that acetaldehyde, rather than ethanol, is primarily responsible for the observed alcohol sensitivity reactions, suggesting that the full protection by ALDH2*2/*2 can be ascribed to the intense unpleasant physiological and psychological reactions caused by persistently elevated blood acetaldehyde after ingesting a small amount of alcohol and that the partial protection by ALDH2*1/*2 can be attributed to a faster elimination of acetaldehyde and the lower accumulation in circulation. ADH1B polymorphism does not significantly contribute to buildup of the blood acetaldehyde. Physiological tolerance or innate insensitivity to acetaldehyde may be crucial for development of alcohol dependence in alcoholics carrying ALDH2*2.

  6. Anti-ulcerogenic effect of cavidine against ethanol-induced acute gastric ulcer in mice and possible underlying mechanism.

    PubMed

    Li, Weifeng; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Wang, Yu; Niu, Xiaofeng

    2016-09-01

    Cavidine, a major alkaloid compound isolated from Corydalis impatiens, has various pharmacological effects but its effect on gastric ulcer has not been previously explored. The current study aimed to investigate the possible anti-ulcerogenic potential of cavidine in the model of ethanol-induced gastric ulcer. Mice received cavidine (1, 5 or 10mg/kg, ig), cimetidine (CMD, 100mg/kg, ig) or vehicle at 12h and 1h before absolute ethanol administration (0.5mL/100g), and animals were euthanized 3h after ethanol ingestion. Gross and histological gastric lesions, biochemical, immunological and Western blot parameters were taken into consideration. The results showed that ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas cavidine pre-treatment reduced the gastric injuries. Cavidine pre-treatment also ameliorated the contents of malonaldehyde (MDA) and myeloperoxidase (MPO) activity, and increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and prostaglandin E2 (PGE2), relative to the model group. Also cavidine was able to decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), inhibit the up-regulation of cyclo-oxygenase-2 (COX-2) expression and activation of Nuclear factor-kappa B (NF-κB) pathway. Taken together, these results indicated that cavidine exerts a gastroprotective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, reduction of oxidative stress, suppression of NF-κB expression and subsequent reduced COX-2 and pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Integrated bioethanol production to boost low-concentrated cellulosic ethanol without sacrificing ethanol yield.

    PubMed

    Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai

    2018-02-01

    Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice.

    PubMed

    Summers, Brooke L; Rofe, Allan M; Coyle, Peter

    2009-04-01

    We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.

  9. Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12.

    PubMed

    Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B

    2015-12-01

    Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.

  10. Global Analysis of Anthropogenic Debris Ingestion by Sea Turtles

    PubMed Central

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-01-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. Análisis Global de la Ingesta de Residuos Antropogénicos por Tortugas Marinas La ingesta de residuos marinos puede tener efectos letales y subletales sobre las tortugas marinas y otros animales. Aunque hay investigadores que han reportado la ingesta de residuos antropogénicos por tortugas marinas y la incidencia de la ingesta de residuos ha incrementado con el tiempo, no ha habido una síntesis global del fenómeno desde 1985. Por esto analizamos 37 estudios publicados, desde

  11. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria

    PubMed Central

    Haft, Rembrandt J. F.; Keating, David H.; Schwaegler, Tyler; Schwalbach, Michael S.; Vinokur, Jeffrey; Tremaine, Mary; Peters, Jason M.; Kotlajich, Matthew V.; Pohlmann, Edward L.; Ong, Irene M.; Grass, Jeffrey A.; Kiley, Patricia J.; Landick, Robert

    2014-01-01

    The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol. PMID:24927582

  12. Intermittent high-dose ethanol exposures increase motivation for operant ethanol self-administration: possible neurochemical mechanism.

    PubMed

    Li, Zhimin; Zharikova, Alevtina; Vaughan, Cheryl H; Bastian, Jaime; Zandy, Shannon; Esperon, Leonardo; Axman, Elyssia; Rowland, Neil E; Peris, Joanna

    2010-01-15

    We investigated the neurochemical mechanism of how high-dose ethanol exposure may increase motivation for ethanol consumption. First, we developed an animal model of increased motivation for ethanol using a progressive ratio (PR) schedule. Sprague-Dawley rats were trained to administer 10% ethanol-containing gelatin or plain gelatin (on alternate weeks) in daily 30-min sessions under different fixed ratio (FR) and PR schedules. During FR schedules, rats self-administered about 1 g/kg ethanol, which was decreased to 0.4+/-0.03 g/kg under PR10. Rats then received four pairs of either 3 g/kg ethanol or saline injections during the weeks when the reinforcer was plain gelatin. During subsequent ethanol gel sessions, breakpoints and ethanol consumption rose 40% in the high-dose ethanol group by the fourth set of injections with no change in plain gel responding. Alterations in amino acids in the ventral striatum (VS) during PR10 responding for 10% ethanol gelatin and plain gelatin were measured using microdialysis sampling coupled with capillary electrophoresis and laser-induced fluorescence detection. There was greater release of taurine, glycine and glutamate in the NAC of the high-dose ethanol rats during 10% ethanol-containing gelatin responding, compared to the control rats or during plain gel responding. An increase in the release of glycine in this same brain region has recently been shown to be involved with anticipation of a reward. Thus, it appears that intermittent high-dose ethanol exposure not only increases motivation for ethanol responding but may also change neurotransmitter release that mediates anticipation of reinforcement, which may play a key role in the development of alcoholism. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala

    PubMed Central

    Varodayan, Florence P.; Soni, Neeraj; Bajo, Michal; Luu, George; Madamba, Samuel G.; Schweitzer, Paul; Parsons, Loren H.; Roberto, Marisa

    2015-01-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA release, and GABAergic dysregulation in the central nucleus of the amygdala (CeA) is critical in the transition to alcohol dependence. We investigated possible disruptions in CB1 signaling of rat CeA GABAergic transmission following intermittent ethanol exposure. In the CeA of alcohol-naïve rats, CB1 agonist WIN 55,212-2 (WIN) decreased the frequency of spontaneous and miniature GABAA receptor-mediated inhibitory postsynaptic currents (s/mIPSCs). This effect was prevented by CB1 antagonism, but not type 2 cannabinoid receptor (CB2) antagonism. After 2–3 weeks of intermittent ethanol exposure, these WIN inhibitory effects were attenuated, suggesting ethanol-induced impairments in CB1 function. The CB1 antagonist AM251 revealed a tonic eCB/CB1 control of GABAergic transmission in the alcohol-naïve CeA that was occluded by calcium chelation in the postsynaptic cell. Chronic ethanol exposure abolished this tonic CB1 influence on mIPSC, but not sIPSC, frequency. Finally, acute ethanol increased CeA GABA release in both naïve and ethanol exposed rats. Although CB1 activation prevented this effect, the AM251- and ethanol-induced GABA release were additive, ruling out a direct participation of CB1 signaling in the ethanol effect. Collectively, these observations demonstrate an important CB1 influence on CeA GABAergic transmission and indicate that the CeA is particularly sensitive to alcohol-induced disruptions of CB1 signaling. PMID:25940135

  14. Acute ethanol intoxication suppresses pentraxin 3 expression in a mouse sepsis model involving cecal ligation and puncture.

    PubMed

    Kasuda, Shogo; Kudo, Risa; Yuui, Katsuya; Sakurai, Yoshihiko; Hatake, Katsuhiko

    2017-11-01

    Acute ethanol intoxication impairs immunological reactions and increases the risk of sepsis; however, the underlying mechanism remains unclear. Pentraxin (PTX) 3 is a humoral pattern recognition receptor whose levels rapidly increase in response to inflammation. PTX3 production is triggered by tumor necrosis factor (TNF)-α and is mediated by c-Jun N-terminal kinase (JNK). As PTX3 exerts protective effects against sepsis as well as acute lung injury, we investigated whether acute ethanol exposure exacerbates sepsis by altering PTX3 expression. Sepsis was induced in C57/BL6 mice by cecal ligation and puncture (CLP) after ethanol/saline administration. Survival rates were significantly lower in ethanol-treated than in saline-treated mice. Increased vascular permeability and attenuation of PTX3 expression were observed in the lungs of ethanol-treated mice 4 h after CLP. Concomitant with a delayed increase of plasma TNF-α in ethanol-treated mice, plasma PTX3 was also suppressed in the early phase of sepsis. Although TNF-α level in ethanol-treated mice exceeded that in saline-treated mice 16 h after CLP, PTX3 levels were still suppressed in the former group. JNK phosphorylation in lung tissue was suppressed in both groups 4 and 16 h after CLP. Furthermore, JNK phosphorylation in ethanol-treated human umbilical vein endothelial cells was suppressed even in the presence of exogenous TNF-α, resulting in inhibition of PTX3 mRNA and protein expression. Our results suggest that ethanol suppresses de novo PTX3 synthesis via two mechanisms - i.e., suppression of TNF-α production and inhibition of JNK phosphorylation. PTX3 suppression may therefore contribute to exacerbation of sepsis in acute ethanol intoxication. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Oxycodone Ingestion Patterns in Acute Fracture Pain With Digital Pills.

    PubMed

    Chai, Peter R; Carreiro, Stephanie; Innes, Brendan J; Chapman, Brittany; Schreiber, Kristin L; Edwards, Robert R; Carrico, Adam W; Boyer, Edward W

    2017-12-01

    Opioid analgesics are commonly prescribed on an as-needed (PRN) basis for acute painful conditions. Uncertainty of how patients actually take PRN opioids, coupled with a desire to completely cover pain, leads to variable and overly generous opioid prescribing practices, resulting in a surplus of opioids. This opioid surplus becomes a source for diversion and nonmedical opioid use. Understanding patterns of actual opioid ingestion after acute painful conditions can help clinicians counsel patients on safe opioid use, and allow timely recognition and intervention when escalating opioid self-dosing occurs, to prevent tolerance and addiction. We used a novel oxycodone digital pill system (ingestible biosensor within a standard gelatin capsule combined with 5-mg oxycodone) that when ingested, is activated by the chloride ion gradient in the stomach thereby emitting a radiofrequency signal captured by a wearable reader. The reader relays ingestion data to a cloud-based server that displays ingestion events to the study team. We deployed the oxycodone digital pill among opioid-naive individuals discharged from the emergency department with acute fracture pain. Participants were trained on digital pill operation and discharged with twenty-one 5-mg oxycodone digital pills. They were instructed to take digital pills PRN for pain on discharge. We conducted a brief interview 7 days after study enrollment, at which point participants returned the digital pill system. We identified oxycodone ingestion events in real time by data from the digital pill system and performed pill counts at the return visit to validate digital pill reporting of medication ingestion. In this study, 26 individuals were approached; 16 enrolled with 15 completing the study. Participants ingested a median of 6 (3-9.5) oxycodone digital pills over the course of 7 days, with 82% of the oxycodone dose ingested in the first 3 days. In individuals who required operative repair, 86% (N = 6) continued to ingest

  16. ARGININOSUCCINATE SYNTHASE CONDITIONS THE RESPONSE TO ACUTE AND CHRONIC ETHANOL-INDUCED LIVER INJURY IN MICE

    PubMed Central

    Yan, Wei; Morón-Concepción, Jose A.; Ward, Stephen C.; Ge, Xiaodong; de la Rosa, Laura Conde; Nieto, Natalia

    2012-01-01

    Background and Aim Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the l-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels and NO· generation (1-2). Since a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as co-induced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhotic patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. Methods To investigate the contribution of ASS to the pathophysiology of ALD, wild-type (WT) and Ass+/− mice (Ass−/− are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Results Compared with WT, Ass+/− mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress via the l-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol treated Ass+/− mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase (pAMPKα) to total AMPKα ratio, decreased sirtuin (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) mRNAs, lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Conclusion Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. PMID:22213272

  17. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice.

    PubMed

    Leung, Tung Ming; Lu, Yongke; Yan, Wei; Morón-Concepción, Jose A; Ward, Stephen C; Ge, Xiaodong; Conde de la Rosa, Laura; Nieto, Natalia

    2012-05-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the L-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels, and NO· generation. Because a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as coinduced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhosis patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. To investigate the contribution of ASS to the pathophysiology of ALD, wildtype (WT) and Ass(+/-) mice (Ass(-/-) are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Compared with WT, Ass(+/-) mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction, and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress by way of the L-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol-treated Ass(+/-) mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase alpha (pAMPKα) to total AMPKα ratio, decreased sirtuin-1 (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) messenger RNAs (mRNAs), lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense, and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. Copyright © 2011 American Association for the Study of Liver Diseases.

  18. Possible biochemical effects following inhibition of ethanol-induced gastric mucosa damage by Gymnema sylvestre in male Wistar albino rats.

    PubMed

    Al-Rejaie, Salim S; Abuohashish, Hatem M; Ahmed, Mohammed M; Aleisa, Abdulaziz M; Alkhamees, Osama

    2012-12-01

    Gymnema sylvestre (GS) R. Br. (Gymnema) (Asclepiadaceae) has been used from ancient times as a folk medicine for the treatment of diabetes, obesity, urinary disorder, and stomach stimulation. The present study was designed to investigate the effects of G. sylvestre leaves ethanol extract on gastric mucosal injury in rats. Gastric mucosal damage was induced by 80% ethanol in 36 h fasted rats. The effect of G. sylvestre on gastric secretions induced in Shay rats was estimated. In stomach, wall mucus, non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), total proteins and nucleic acids levels were estimated. Histopathological changes were observed. G. sylvestre pretreatment at doses of 100, 200 and 400 mg/kg provided 27, 49, and 63% protection against the ulcerogenic effect of ethanol, respectively. Pylorus ligation accumulated 10.24 mL gastric secretions with 66.56 mEq of acidity in control rats. Pretreatment with G. sylvestre significantly inhibited the secretions volume and acidity in dose-dependent manner. Ethanol caused significant depletion in stomach-wall mucus (p < 0.001), total proteins (p < 0.01), nucleic acids (p < 0.001), and NP-SH (p < 0.001) levels. Pretreatment with G. sylvestre showed protection against these depleted levels in dose-dependent manner. The MDA levels increased from 19.02 to 29.22 nmol/g by ethanol ingestion and decreased with G. sylvestre pretreatments in dose-dependent manner. The protective effect of G. sylvestre observed in the present study is attributed to its effect on mucus production, increase in nucleic acid and NP-SH levels, which appears to be mediated through its free radical scavenging ability and/or possible cytoprotective properties.

  19. Lesions of the Lateral Habenula Increase Voluntary Ethanol Consumption and Operant Self-Administration, Block Yohimbine-Induced Reinstatement of Ethanol Seeking, and Attenuate Ethanol-Induced Conditioned Taste Aversion

    PubMed Central

    Schwager, Andrea L.; Sinclair, Michael S.; Tandon, Shashank; Taha, Sharif A.

    2014-01-01

    The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug. PMID:24695107

  20. Lesions of the lateral habenula increase voluntary ethanol consumption and operant self-administration, block yohimbine-induced reinstatement of ethanol seeking, and attenuate ethanol-induced conditioned taste aversion.

    PubMed

    Haack, Andrew K; Sheth, Chandni; Schwager, Andrea L; Sinclair, Michael S; Tandon, Shashank; Taha, Sharif A

    2014-01-01

    The lateral habenula (LHb) plays an important role in learning driven by negative outcomes. Many drugs of abuse, including ethanol, have dose-dependent aversive effects that act to limit intake of the drug. However, the role of the LHb in regulating ethanol intake is unknown. In the present study, we compared voluntary ethanol consumption and self-administration, yohimbine-induced reinstatement of ethanol seeking, and ethanol-induced conditioned taste aversion in rats with sham or LHb lesions. In rats given home cage access to 20% ethanol in an intermittent access two bottle choice paradigm, lesioned animals escalated their voluntary ethanol consumption more rapidly than sham-lesioned control animals and maintained higher stable rates of voluntary ethanol intake. Similarly, lesioned animals exhibited higher rates of responding for ethanol in operant self-administration sessions. In addition, LHb lesion blocked yohimbine-induced reinstatement of ethanol seeking after extinction. Finally, LHb lesion significantly attenuated an ethanol-induced conditioned taste aversion. Our results demonstrate an important role for the LHb in multiple facets of ethanol-directed behavior, and further suggest that the LHb may contribute to ethanol-directed behaviors by mediating learning driven by the aversive effects of the drug.

  1. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: possible role of disrupted noradrenergic signaling

    PubMed Central

    Skelly, M. J.; Chappell, A. E.; Carter, E.; Weiner, J. L.

    2015-01-01

    Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. PMID:26044636

  2. Characteristics of hand sanitizer ingestions by adolescents reported to poison centers.

    PubMed

    Forrester, Mathias B

    2015-02-01

    There had been reports of adolescents using hand sanitizers to obtain alcohol and ending up in emergency departments with alcohol poisoning. This study aimed to describe the pattern of adolescent ingestions of hand sanitizers reported to a statewide poison center system. Our study subjects included patients aged 13-19 years who reported hand sanitizer ingestions as reported to Texas poison centers during 2000-2013. The distribution of the ingestions was determined for various demographic and clinical factors. Of 385 total cases, 61% of the patients were male, and the mean age was 15.3 years. The ingestion reason was unintentional (61%), intentional abuse/misuse (18%), and malicious (10%). Ingestion site was most frequently reported to be the patient's own residence (53%), followed by school (35%). About 77% of the patients were managed on site. The medical outcome was serious (moderate effect or unable to follow-potentially toxic) in 5% of the cases. The most frequently reported adverse clinical effects were vomiting (5%), abdominal pain (4%), nausea (4%), throat irritation (4%), and drowsiness (2%). Adolescents who ingested hand sanitizers were more likely to be male and younger. One-third of the ingestions occurred at school, suggesting that school personnel might be made aware of the potential problem of hand sanitizer ingestions by adolescents. Nevertheless, despite the potential for serious outcomes from adolescent hand sanitizer ingestion, most of the ingestions reported to poison centers are not likely to be serious and can be successfully managed outside of a healthcare facility.

  3. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  4. Impaired heart rate variability and altered cardiac sympathovagal balance after antidepressant overdose.

    PubMed

    Waring, W S; Rhee, J Y; Bateman, D N; Leggett, G E; Jamie, H

    2008-11-01

    Antidepressant overdose may be associated with significant cardiotoxicity, and recent data have shown that acute toxic effects are associated with impaired heart rate variability. This study was designed to examine the feasibility of non-invasive heart rate variability recording in patients that present to hospital after deliberate antidepressant ingestion. This was a prospective study of 72 consecutive patients attending the Emergency Department after deliberate antidepressant overdose and 72 age-matched patients that ingested paracetamol, as a control group. Single time-point continuous electrocardiographic recordings were used to allow spectral analyses of heart rate variability determined in low-frequency (LF) and high-frequency (HF) domains. The LF:HF ratio was used to represent overall sympathovagal cardiac activity. Antidepressant overdose was associated with reduced overall heart rate variability: 1329 vs. 2018 ms(2) (P = 0.0239 by Mann-Whitney test). Variability in the LF domain was higher (64.8 vs. 49.8, P = 0.0006), whereas that in the HF domain was lower (24.3 vs. 36.4, P = 0.0001), and the LF:HF ratio was higher in the antidepressant group (2.4 vs. 1.2, P = 0.0003). Antidepressant overdose is associated with impaired heart rate variability in a pattern consistent with excess cardiac sympathetic activity. Further work is required to establish the significance of these findings and to explore whether the impairment of heart rate variability may be used to predict the development of arrhythmia in this patient group.

  5. Effects of Vigabatrin, an Irreversible GABA Transaminase Inhibitor, on Ethanol Reinforcement and Ethanol Discriminative Stimuli in Mice

    PubMed Central

    Griffin, William C.; Nguyen, Shaun A.; Deleon, Christopher P.; Middaugh, Lawrence D.

    2012-01-01

    We tested the hypothesis that the irreversible gamma-amino butyric acid (GABA) transaminase inhibitor, γ-vinyl GABA (Vigabatrin; VGB) would reduce ethanol reinforcement and enhance the discriminative stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity and ethanol discrimination procedures, to examine comprehensively the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol as well as ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering intake of food or water reinforcement. Higher VGB doses (>200 mg/kg) still reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. While not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative stimulus effects of ethanol as evidenced by significant left-ward and up-ward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol. PMID:22336593

  6. Unilateral blindness with third cranial nerve palsy and abnormal enhancement of extraocular muscles on magnetic resonance imaging of orbit after the ingestion of methanol.

    PubMed

    Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol

    2010-05-01

    Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.

  7. Protective effects of friedelin isolated from Azima tetracantha Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms.

    PubMed

    Antonisamy, Paulrayer; Duraipandiyan, Veeramuthu; Aravinthan, Adithan; Al-Dhabi, Naif Abdullah; Ignacimuthu, Savarimuthu; Choi, Ki Choon; Kim, Jong-Hoon

    2015-03-05

    The current study was aimed to investigate the gastroprotective effects of friedelin isolated from the hexane extract of leaves of Azima tetracantha. Ethanol-induced gastric ulcer model was used to investigate the gastroprotective effects of friedelin. Antioxidant enzymes, lipid peroxidation, nitric oxide, gastric vascular permeability, pro and anti-inflammatory cytokines and apoptosis level have been investigated. Ethanol caused severe gastric damage and friedelin pretreatment protected against its deleterious role. Antioxidant enzyme activities, anti-inflammatory cytokines, prostaglandin E2 (PGE2), constitutive nitric oxide synthase (cNOS) and mucus weight have been increased significantly. However, the vascular permeability, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), caspase-3 and apoptosis level have significantly been decreased after friedelin ingestion. The present study has clearly demonstrated the anti-ulcer potential of friedelin, these findings suggested that friedelin could be a new useful natural gastroprotective tool against gastric ulcer. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake

  9. The effect of cool water ingestion on gastrointestinal pill temperature.

    PubMed

    Wilkinson, David M; Carter, James M; Richmond, Victoria L; Blacker, Sam D; Rayson, Mark P

    2008-03-01

    Telemetric gastrointestinal (GI) temperature pills are now commonly used to measure core body temperature and could minimize the risk of heat illness while maximizing operational effectiveness in workers subject to high levels of thermal strain. To quantify the effect of repeated cool water ingestion on the accuracy of GI pill temperature. Ten operational firefighters ingested a pill to measure GI temperature (T1int) before overnight sleep. Two hours following breakfast and 11.5 h after ingesting T1int, the firefighters ingested a second pill (T2int) before performing 8.5 h of intermittent activity (repetitive cycles of 30 min of seated rest followed by 30 min of general firefighter duties). During the first 2 min of each 30-min rest period, the firefighters consumed 250 mL of chilled water (5-8 degrees C). Water ingestion had a highly variable effect both within and between subjects in transiently (32 +/- 10 min) reducing the temperature of T2int in comparison with T1int. In general, this transient reduction in T2int became progressively smaller as time following ingestion increased. In some firefighters, the difference between T1int and T2int became negligible (+/- 0.1 degrees C) after 3 h, whereas in two others, large differences (peaking at 2.0 degrees C and 6.3 degrees C) were still observed when water was consumed 8 h after pill ingestion. These results show that a GI pill ingested immediately prior to physical activity cannot be used to measure core body temperature accurately in all individuals during the following 8 h when cool fluids are regularly ingested. This makes GI temperature measurement unsuitable for workers who respond to emergency deployments when regular fluid consumption is recommended operational practice.

  10. Prenatal Ethanol Increases Sucrose Reinforcement, an Effect Strengthened by Postnatal Association of Ethanol and Sucrose

    PubMed Central

    Culleré, Marcela Elena; Spear, Norman E.; Molina, Juan Carlos

    2014-01-01

    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14–17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy. PMID:24398347

  11. RAB GTPASES ASSOCIATE WITH ISOLATED LIPID DROPLETS (LDS) AND SHOW ALTERED CONTENT AFTER ETHANOL ADMINISTRATION: POTENTIAL ROLE IN ALCOHOL-IMPAIRED LD METABOLISM

    PubMed Central

    Rasineni, Karuna; McVicker, Benita L.; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2013-01-01

    Background Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g. Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol damaged hepatocytes. Since these Rab GTPases are crucial regulators of protein trafficking, we examined the effect ethanol administration has on hepatic Rab protein content and association with LDs. Methods Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. Results Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in ethanol-fed rats. Rabs 1, 2, 3d, 5, 7 and 18 were analyzed in post-nuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5 and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed ethanol-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an ethanol-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in ethanol-fed rat sections. Conclusion Chronic ethanol feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease. PMID:24117505

  12. Observation of Trans-Ethanol and Gauche-Ethanol Complexes with Benzene Using Matrix Isolation Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Amicangelo, Jay; Silbaugh, Matthew J.

    2016-06-01

    Ethanol can exist in two conformers, one in which the OH group is trans to the methyl group (trans-ethanol) and the other in which the OH group is gauche to the methyl group (gauche-ethanol). Matrix isolation infrared spectra of ethanol deposited in 20 K argon matrices display distinct infrared peaks that can be assigned to the trans-ethanol and gauche-ethanol conformers, particularly with the O-H stretching vibrations. Given this, matrix isolation experiments were performed in which ethanol (C_2H_5OH) and benzene (C_6H_6) were co-deposited in argon matrices at 20 K in order to determine if conformer specific ethanol complexes with benzene could be observed in the infrared spectra. New infrared peaks that can be attributed to the trans-ethanol and gauche-ethanol complexes with benzene have been observed near the O-H stretching vibrations of ethanol. The initial identification of the new infrared peaks as being due to the ethanol-benzene complexes was established by performing a concentration study (1:200 to 1:1600 S/M ratios), by comparing the co-deposition spectra with the spectra of the individual monomers, by matrix annealing experiments (35 K), and by performing experiments using isotopically labeled ethanol (C_2D_5OD) and benzene (C_6D_6). Quantum chemical calculations were also performed for the C_2H_5OH-C_6H_6 complexes using density functional theory (B3LYP) and ab initio (MP2) methods. Stable minima were found for the both the trans-ethanol and gauche-ethanol complexes with benzene at both levels of theory and were predicted to have similar interaction energies. Both complexes can be characterized as H-π complexes, in which the ethanol is above the benzene ring with the hydroxyl hydrogen interacting with the π cloud of the ring. The theoretical O-H stretching frequencies for the complexes were predicted to be shifted from the monomer frequencies and from each other and these results were used to make the conformer specific infrared peak assignments

  13. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  14. Chronic intermittent ethanol exposure and withdrawal leads to adaptations in nucleus accumbens core postsynaptic density proteome and dendritic spines.

    PubMed

    Uys, Joachim D; McGuier, Natalie S; Gass, Justin T; Griffin, William C; Ball, Lauren E; Mulholland, Patrick J

    2016-05-01

    Alcohol use disorder is a chronic relapsing brain disease characterized by the loss of ability to control alcohol (ethanol) intake despite knowledge of detrimental health or personal consequences. Clinical and pre-clinical models provide strong evidence for chronic ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the nucleus accumbens (NAc). However, the neural mechanisms that contribute to aberrant glutamatergic signaling in ethanol-dependent individuals in this critical brain structure remain unknown. Using an unbiased proteomic approach, we investigated the effects of chronic intermittent ethanol (CIE) exposure on neuroadaptations in postsynaptic density (PSD)-enriched proteins in the NAc of ethanol-dependent mice. Compared with controls, CIE exposure significantly changed expression levels of 50 proteins in the PSD-enriched fraction. Systems biology and functional annotation analyses demonstrated that the dysregulated proteins are expressed at tetrapartite synapses and critically regulate cellular morphology. To confirm this latter finding, the density and morphology of dendritic spines were examined in the NAc core of ethanol-dependent mice. We found that CIE exposure and withdrawal differentially altered dendrite diameter and dendritic spine density and morphology. Through the use of quantitative proteomics and functional annotation, these series of experiments demonstrate that ethanol dependence produces neuroadaptations in proteins that modify dendritic spine morphology. In addition, these studies identified novel PSD-related proteins that contribute to the neurobiological mechanisms of ethanol dependence that drive maladaptive structural plasticity of NAc neurons. © 2015 Society for the Study of Addiction.

  15. Linking plastic ingestion research with marine wildlife conservation.

    PubMed

    Avery-Gomm, Stephanie; Borrelle, Stephanie B; Provencher, Jennifer F

    2018-05-16

    Plastic is an increasingly pervasive marine pollutant. Concomitantly, the number of studies documenting plastic ingestion in wildlife is accelerating. Many of these studies aim to provide a baseline against which future levels of plastic ingestion can be compared, and are motivated by an underlying interest in the conservation of their study species and ecosystems. Although this research has helped to raise the profile of plastic as a pollutant of emerging concern, there is a disconnect between research examining plastic pollution and wildlife conservation. We present ideas to further discussion about how plastic ingestion research could benefit wildlife conservation by prioritising studies that elucidates the significance of plastic pollution as a population-level threat, identifies vulnerable populations, and evaluates strategies for mitigating impacts. The benefit of plastic ingestion research to marine wildlife can be improved by establishing a clearer understanding of how discoveries will be integrated into conservation and policy actions. Copyright © 2018. Published by Elsevier B.V.

  16. Autoshaping induces ethanol drinking in nondeprived rats: evidence of long-term retention but no induction of ethanol preference.

    PubMed

    Tomie, Arthur; Kuo, Teresa; Apor, Khristine R; Salomon, Kimberly E; Pohorecky, Larissa A

    2004-04-01

    The effects of autoshaping procedures (paired vs. random) and sipper fluid (ethanol vs. water) on sipper-directed drinking were evaluated in male Long-Evans rats maintained with free access to food and water. For the paired/ethanol group (n=16), autoshaping procedures consisted of presenting the ethanol sipper (containing 0% to 28% unsweetened ethanol) conditioned stimulus (CS) followed by the response-independent presentation of food unconditioned stimulus (US). The random/ethanol group (n=8) received the sipper CS and food US randomly with respect to one another. The paired/water group (n=8) received only water in the sipper CS. The paired/ethanol group showed higher grams per kilogram ethanol intake than the random/ethanol group did at ethanol concentrations of 8% to 28%. The paired/ethanol group showed higher sipper CS-directed milliliter fluid consumption than the paired/water group did at ethanol concentrations of 1% to 6%, and 15%, 16%, 18%, and 20%. Following a 42-day retention interval, the paired/ethanol group showed superior retention of CS-directed drinking of 18% ethanol, relative to the random/ethanol group, and superior retention of CS-directed milliliter fluid drinking relative to the paired/water group. When tested for home cage ethanol preference using limited access two-bottle (28% ethanol vs. water) procedures, the paired/ethanol and random/ethanol groups did not differ on any drinking measures.

  17. Water-induced ethanol dewetting transition.

    PubMed

    Ren, Xiuping; Zhou, Bo; Wang, Chunlei

    2012-07-14

    The dewetting transitions of two hydrophobic plates immersed in pure water, aqueous ethanol solutions with concentrations from 25% to 90%, and pure ethanol were investigated by molecular dynamics simulations, where the dewetting transition was analogous to a first-order phase transition from liquid to vapor. It was found that the dewetting transitions occurred except that in the pure ethanol system. Although the ethanol molecules prefer to locate in the vicinity of the two plates, the inter-plate region is unfavorable for water molecules, due to losing more than one hydrogen bond. Moreover, each inter-plate water molecule forms hydrogen bonds on average with about two ethanol molecules. These intermolecular hydrogen bonds cause water and ethanol to cooperatively fill or exit the inter-plate region. Thus, water molecules play a more important role in the inter-plate filling/empty process, and induce the ethanol dewetting transition. Our results provide insight into the effect of water on the ethanol dewetting phenomena.

  18. GM1 ganglioside reduces the motor incoordination and loss of righting reflex caused by acute ethanol in C57BL/6J mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallis, C.; Rezazadeh, S.M.; Forster, M.J.

    1992-02-26

    Ethanol produces its intoxicating effects by modifying neuronal membranes. Gangliosides stabilize neuronal membranes and promote their recovery from a variety of insults. In this experiment, the efficacy of GM1(i.p.) to reverse ethanol intoxication was evaluated in male mice trained to run on a constantly accelerating rotorod. When mice were tested 15-min following saline or ethanol GM1 pre-treatment reduced rotorod performance by 15% but was ineffective in modifying the ethanol-impaired performance. However, when mice were tested at 15, 35, 55, 75, and 95 min intervals following ethanol, GM1 pre-treatments dose-dependently reduced the efficacy and duration of ethanol in producing motor incoordination.more » Further, GM1 given prior to ethanol significantly prolonged the time to onset of the loss of righting reflex from 1.4 to 1.9 min, and reduced the duration of the righting-reflex loss from 94 to 77 min. This GM1 effect was seen at 24 h, but not at 48 or 72 h after its administration. The blood ethanol concentration at awakening was significantly higher in 24h GM1-treated animals than in controls suggesting that the GM1 effect was not due to an alteration in ethanol clearance. These findings support the hypothesis that GM1 promotes recovery from ethanol intoxication via a neuroprotective mechanism.« less

  19. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling.

    PubMed

    Skelly, M J; Chappell, A E; Carter, E; Weiner, J L

    2015-10-01

    Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance.

    PubMed

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania M; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert S; Cline, Gary; Caprio, Sonia

    2015-03-01

    Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. © 2015 The Obesity Society.

  1. Blunted Suppression of Acyl-Ghrelin in Response to Fructose Ingestion in Obese Adolescents: the Role of Insulin Resistance

    PubMed Central

    Van Name, Michelle; Giannini, Cosimo; Santoro, Nicola; Jastreboff, Ania; Kubat, Jessica; Li, Fangyong; Kursawe, Romy; Savoye, Mary; Duran, Elvira; Dziura, James; Sinha, Rajita; Sherwin, Robert; Cline, Gary; Caprio, Sonia

    2015-01-01

    Objective Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared to glucose ingestion. We evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. Methods Adolescents were divided into lean (n=14), obese insulin sensitive (n=12) (OIS), and obese insulin resistant (n=15) (OIR). In a double-blind, cross-over design, subjects drank 75g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. Results Baseline acyl-ghrelin was highest in lean and lowest in OIR (p=0.02). After glucose ingestion acyl-ghrelin decreased similarly in lean and OIS, but appeared lower in OIR (vs lean p=0.03). Suppression differences were more pronounced after fructose (lean vs. OIS p=0.008, lean vs. OIR p<0.001). OIS became significantly hungrier after fructose (p=0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. Conclusion Compared to lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating. PMID:25645909

  2. Magnet foreign body ingestion: rare occurrence but big consequences.

    PubMed

    Sola, Richard; Rosenfeld, Eric H; Yu, Yangyang R; St Peter, Shawn D; Shah, Sohail R

    2017-08-24

    To review the outcomes of magnet ingestions from two children's hospitals and develop a clinical management pathway. Children <18years old who ingested a magnet were reviewed from 1/2011 to 6/2016 from two tertiary center children's hospitals. Demographics, symptoms, management and outcomes were analyzed. From 2011 to 2016, there were 89 magnet ingestions (50 from hospital 1 and 39 from hospital 2); 50 (56%) were males. Median age was 7.9 (4.0-12.0) years; 60 (67%) presented with multiple magnets or a magnet and a second metallic co-ingestion. Suspected locations found on imaging were: stomach (53%), small bowel (38%), colon (23%) and esophagus (3%). Only 35 patients (39%) presented with symptoms and the most common symptom was abdominal pain (33%). 42 (47%) patients underwent an intervention, in which 20 (23%) had an abdominal operation. For those undergoing abdominal surgery, an exact logistic regression model identified multiple magnets or a magnet and a second metallic object co-ingestion (OR 12.9; 95% CI, 2.4 - Infinity) and abdominal pain (OR 13.0; 95% CI, 3.2-67.8) as independent risk factors. Magnets have a high risk of requiring surgical intervention for removal. Therefore, we developed a management algorithm for magnet ingestion. Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Ethanol Pharmacokinetics in Neonates and Infants

    PubMed Central

    Marek, Elizabeth; Kraft, Walter K.

    2014-01-01

    Introduction Ethanol has been used for years in neonatal and infant liquid medications, yet the pharmacokinetics, pharmacodynamics, and safety of ethanol in this vulnerable population have not been well characterized. The purpose of this review is to raise awareness of ethanol use as an excipient in neonatal and infant medications and to provide insight, based on the available evidence, into clearance rates of ethanol in babies. We also discuss ethanol pharmacokinetics in adults, theoretical pharmacokinetic changes in neonates and infants as it may apply to ethanol disposition, and case reports involving ethanol exposure in neonates and infants. Materials and methods This study was a narrative review in which relevant papers were selected using databases and scientific search engines such as PubMed with the key words ethanol, infant, and newborninfant. Results It remains unclear what ethanol exposure is safe for neonates and infants. The Food and Drug Administration and American Academy of Pediatrics have both taken action, by either setting limits of ethanol content in over-the-counter medications or by recommending restricted exposure to ethanol-containing pediatric formulations. Conclusions Until the short- and long-term health effects of chronic ethanol administration can be further characterized, ethanol-containing medications should be used with caution. PMID:25379066

  4. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    EPA Science Inventory

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  5. Missense Gamma-Aminobutyric Acid Receptor Polymorphisms Are Associated with Reaction Time, Motor Time, and Ethanol Effects in Vivo.

    PubMed

    García-Martín, Elena; Ramos, María I; Cornejo-García, José A; Galván, Segismundo; Perkins, James R; Rodríguez-Santos, Laura; Alonso-Navarro, Hortensia; Jiménez-Jiménez, Félix J; Agúndez, José A G

    2018-01-01

    Background: The Gamma-aminobutyric acid type A receptor (GABA-A receptor) is affected by ethanol concentrations equivalent to those reached during social drinking. At these concentrations, ethanol usually causes impairment in reaction and motor times in most, but not all, individuals. Objectives: To study the effect of GABA-A receptor variability in motor and reaction times, and the effect of low ethanol doses. Methods: Two hundred and fifty healthy subjects received one single dose of 0.5 g/Kg ethanol per os . Reaction and motor times were determined before ethanol challenge (basal), and when participants reached peak ethanol concentrations. We analyzed all common missense polymorphisms described in the 19 genes coding for the GABA-A receptor subunits by using TaqMan probes. Results: The GABRA6 rs4454083 T/C polymorphisms were related to motor times, with individuals carrying the C/C genotype having faster motor times, both, at basal and at peak ethanol concentrations. The GABRA4 rs2229940 T/T genotype was associated to faster reaction times and with lower ethanol effects, determined as the difference between basal reaction time and reaction time at peak concentrations. All these associations remained significant after correction for multiple comparisons. No significant associations were observed for the common missense SNPs GABRB3 rs12910925, GABRG2 rs211035, GABRE rs1139916, GABRP rs1063310, GABRQ rs3810651, GABRR1 rs12200969 or rs1186902, GABRR2 rs282129, and GABRR3 rs832032. Conclusions: This study provides novel information supporting a role of missense GABA-A receptor polymorphisms in reaction time, motor time and effects of low ethanol doses in vivo .

  6. Maximizing cellulosic ethanol potentials by minimizing wastewater generation and energy consumption: Competing with corn ethanol.

    PubMed

    Liu, Gang; Bao, Jie

    2017-12-01

    Energy consumption and wastewater generation in cellulosic ethanol production are among the determinant factors on overall cost and technology penetration into fuel ethanol industry. This study analyzed the energy consumption and wastewater generation by the new biorefining process technology, dry acid pretreatment and biodetoxification (DryPB), as well as by the current mainstream technologies. DryPB minimizes the steam consumption to 8.63GJ and wastewater generation to 7.71tons in the core steps of biorefining process for production of one metric ton of ethanol, close to 7.83GJ and 8.33tons in corn ethanol production, respectively. The relatively higher electricity consumption is compensated by large electricity surplus from lignin residue combustion. The minimum ethanol selling price (MESP) by DryPB is below $2/gal and falls into the range of corn ethanol production cost. The work indicates that the technical and economical gap between cellulosic ethanol and corn ethanol has been almost filled up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ethanol Basics (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  8. Time dependent effect of chronic embryonic exposure to ethanol on zebrafish: Morphology, biochemical and anxiety alterations.

    PubMed

    Ramlan, Nurul Farhana; Sata, Nurul Syafida Asma Mohd; Hassan, Siti Norhidayah; Bakar, Noraini Abu; Ahmad, Syahida; Zulkifli, Syaizwan Zahmir; Abdullah, Che Azurahanim Che; Ibrahim, Wan Norhamidah Wan

    2017-08-14

    Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system. Copyright © 2017

  9. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean.

    PubMed

    Desforges, Jean-Pierre W; Galbraith, Moira; Ross, Peter S

    2015-10-01

    Microplastics are increasingly recognized as being widespread in the world's oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 μm) than in copepods (556 ± 149 μm) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r (2) = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2-7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults.

  10. The lateral neostriatum is necessary for compensatory ingestive behaviour after intravascular dehydration in female rats.

    PubMed

    Lelos, M J; Harrison, D J; Rosser, A E; Dunnett, S B

    2013-12-01

    Aberrant striatal function results in an array of physiological symptoms, including impaired consummatory and regulatory behaviours, which can lead to weight loss and dehydration. It was hypothesised, therefore, that cell loss in the neostriatum may contribute to altered fluid intake by regulating physiological signals related to dehydration status. To test this theory, rats with lesions of the lateral neostriatum and sham controls underwent a series of physiological challenges, including the experimental induction of intracellular and intravascular dehydration. No baseline differences in prandial or non-prandial drinking were observed, nor were differences in locomotor activity evident between groups. Furthermore, intracellular dehydration increased water intake in lesion rats in a manner comparable to sham rats. Interestingly, a specific impairment was evident in lesion rats after subcutaneous injection of poly-ethylene glycol was used to induce intravascular dehydration, such that lesion rats failed to adapt their water intake to this physiological change. The results suggest that the striatal lesions resulted in regulatory dysfunction by impairing motivational control over compensatory ingestive behaviour after intravascular hydration, while the physiological signals related to dehydration remain intact. Loss of these cells in neurodegenerative disorders, such Huntington's disease, may contribute to regulatory changes evident in the course of the disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Strain differences in the neural, behavioral, and molecular correlates of sweet and salty taste in naive, ethanol- and sucrose-exposed P and NP rats

    PubMed Central

    Coleman, Jamison; Williams, Ashley; Phan, Tam-Hao T.; Mummalaneni, Shobha; Melone, Pamela; Ren, ZuoJun; Zhou, Huiping; Mahavadi, Sunila; Murthy, Karnam S.; Katsumata, Tadayoshi; DeSimone, John A.

    2011-01-01

    Strain differences between naive, sucrose- and ethanol-exposed alcohol-preferring (P) and alcohol-nonpreferring (NP) rats were investigated in their consumption of ethanol, sucrose, and NaCl; chorda tympani (CT) nerve responses to sweet and salty stimuli; and gene expression in the anterior tongue of T1R3 and TRPV1/TRPV1t. Preference for 5% ethanol and 10% sucrose, CT responses to sweet stimuli, and T1R3 expression were greater in naive P rats than NP rats. The enhancement of the CT response to 0.5 M sucrose in the presence of varying ethanol concentrations (0.5–40%) in naive P rats was higher and shifted to lower ethanol concentrations than NP rats. Chronic ingestion of 5% sucrose or 5% ethanol decreased T1R3 mRNA in NP and P rats. Naive P rats also demonstrated bigger CT responses to NaCl+benzamil and greater TRPV1/TRPV1t expression. TRPV1t agonists produced biphasic effects on NaCl+benzamil CT responses, enhancing the response at low concentrations and inhibiting it at high concentrations. The concentration of a TRPV1/TRPV1t agonist (Maillard reacted peptides conjugated with galacturonic acid) that produced a maximum enhancement in the NaCl+benzamil CT response induced a decrease in NaCl intake and preference in P rats. In naive P rats and NP rats exposed to 5% ethanol in a no-choice paradigm, the biphasic TRPV1t agonist vs. NaCl+benzamil CT response profiles were higher and shifted to lower agonist concentrations than in naive NP rats. TRPV1/TRPV1t mRNA expression increased in NP rats but not in P rats exposed to 5% ethanol in a no-choice paradigm. We conclude that P and NP rats differ in T1R3 and TRPV1/TRPV1t expression and neural and behavioral responses to sweet and salty stimuli and to chronic sucrose and ethanol exposure. PMID:21849614

  12. Strain differences in the neural, behavioral, and molecular correlates of sweet and salty taste in naive, ethanol- and sucrose-exposed P and NP rats.

    PubMed

    Coleman, Jamison; Williams, Ashley; Phan, Tam-Hao T; Mummalaneni, Shobha; Melone, Pamela; Ren, Zuojun; Zhou, Huiping; Mahavadi, Sunila; Murthy, Karnam S; Katsumata, Tadayoshi; DeSimone, John A; Lyall, Vijay

    2011-11-01

    Strain differences between naive, sucrose- and ethanol-exposed alcohol-preferring (P) and alcohol-nonpreferring (NP) rats were investigated in their consumption of ethanol, sucrose, and NaCl; chorda tympani (CT) nerve responses to sweet and salty stimuli; and gene expression in the anterior tongue of T1R3 and TRPV1/TRPV1t. Preference for 5% ethanol and 10% sucrose, CT responses to sweet stimuli, and T1R3 expression were greater in naive P rats than NP rats. The enhancement of the CT response to 0.5 M sucrose in the presence of varying ethanol concentrations (0.5-40%) in naive P rats was higher and shifted to lower ethanol concentrations than NP rats. Chronic ingestion of 5% sucrose or 5% ethanol decreased T1R3 mRNA in NP and P rats. Naive P rats also demonstrated bigger CT responses to NaCl+benzamil and greater TRPV1/TRPV1t expression. TRPV1t agonists produced biphasic effects on NaCl+benzamil CT responses, enhancing the response at low concentrations and inhibiting it at high concentrations. The concentration of a TRPV1/TRPV1t agonist (Maillard reacted peptides conjugated with galacturonic acid) that produced a maximum enhancement in the NaCl+benzamil CT response induced a decrease in NaCl intake and preference in P rats. In naive P rats and NP rats exposed to 5% ethanol in a no-choice paradigm, the biphasic TRPV1t agonist vs. NaCl+benzamil CT response profiles were higher and shifted to lower agonist concentrations than in naive NP rats. TRPV1/TRPV1t mRNA expression increased in NP rats but not in P rats exposed to 5% ethanol in a no-choice paradigm. We conclude that P and NP rats differ in T1R3 and TRPV1/TRPV1t expression and neural and behavioral responses to sweet and salty stimuli and to chronic sucrose and ethanol exposure.

  13. Estimating Children's Soil/Dust Ingestion Rates through ...

    EPA Pesticide Factsheets

    Background: Soil/dust ingestion rates are important variables in assessing children’s health risks in contaminated environments. Current estimates are based largely on soil tracer methodology, which is limited by analytical uncertainty, small sample size, and short study duration. Objectives: The objective was to estimate site-specific soil/dust ingestion rates through reevaluation of the lead absorption dose–response relationship using new bioavailability data from the Bunker Hill Mining and Metallurgical Complex Superfund Site (BHSS) in Idaho, USA. Methods: The U.S. Environmental Protection Agency (EPA) in vitro bioavailability methodology was applied to archived BHSS soil and dust samples. Using age-specific biokinetic slope factors, we related bioavailable lead from these sources to children’s blood lead levels (BLLs) monitored during cleanup from 1988 through 2002. Quantitative regression analyses and exposure assessment guidance were used to develop candidate soil/dust source partition scenarios estimating lead intake, allowing estimation of age-specific soil/dust ingestion rates. These ingestion rate and bioavailability estimates were simultaneously applied to the U.S. EPA Integrated Exposure Uptake Biokinetic Model for Lead in Children to determine those combinations best approximating observed BLLs. Results: Absolute soil and house dust bioavailability averaged 33% (SD ± 4%) and 28% (SD ± 6%), respectively. Estimated BHSS age-specific soil/du

  14. Acute Inactivity Impairs Glycemic Control but Not Blood Flow to Glucose Ingestion

    PubMed Central

    Reynolds, Leryn J; Credeur, Daniel P; Holwerda, Seth W; Leidy, Heather J; Fadel, Paul J; Thyfault, John P

    2014-01-01

    Purpose Insulin-stimulated increases in skeletal muscle blood flow play a role in glucose disposal. Indeed, 7 days of aerobic exercise in type 2 diabetes patients increased blood flow responses to an oral glucose tolerance test (OGTT) and improved glucose tolerance. More recent work suggests that reduced daily physical activity impairs glycemic control (GC) in healthy individuals. Herein, we sought to determine if an acute reduction in daily activity (from >10,000 to <5,000 steps/day) for 5 days (RA5) in healthy individuals reduced insulin-stimulated blood flow and GC in parallel and if a 1 day return to activity (RTA1) improved these outcomes. Methods OGTTs were performed as a stimulus to increase insulin in 14 healthy, recreationally active men (24±1.1 yrs) at baseline, RA5, and RTA1. Measures of insulin sensitivity (Matsuda index) and femoral and brachial artery blood flow were made during the OGTT. Free living measures of GC including peak postprandial glucose (peak PPG) were also made via continuous glucose monitoring. Results Femoral and brachial artery blood flow increased during the OGTT but neither was significantly impacted by changes in physical activity (p>0.05). However, insulin sensitivity was decreased by RA5 (11.3±1.5 to 8.0±1.0; p<0.05). Likewise, free living GC measures of peak post prandial blood glucose (113±3 to 123±5 mg/dL; p<0.05) was significantly increased at RA5. Interestingly, insulin sensitivity and GC as assessed by peak PPG were not restored after RTA1 (p>0.05). Conclusions Thus, acute reductions in physical activity impaired GC and insulin sensitivity; however blood flow responses to an OGTT were not affected. Further, a 1 day return to activity was not sufficient to normalize GC following 5 days of reduced daily physical activity. PMID:25207931

  15. Neuroprotective effect of acute ethanol intoxication in TBI is associated to the hierarchical modulation of early transcriptional responses.

    PubMed

    Chandrasekar, Akila; Aksan, Bahar; Heuvel, Florian Olde; Förstner, Philip; Sinske, Daniela; Rehman, Rida; Palmer, Annette; Ludolph, Albert; Huber-Lang, Markus; Böckers, Tobias; Mauceri, Daniela; Knöll, Bernd; Roselli, Francesco

    2018-04-01

    Ethanol intoxication is a risk factor for traumatic brain injury (TBI) but clinical evidence suggests that it may actually improve the prognosis of intoxicated TBI patients. We have employed a closed, weight-drop TBI model of different severity (2cm or 3cm falling height), preceded (-30min) or followed (+20min) by ethanol administration (5g/Kg). This protocol allows us to study the interaction of binge ethanol intoxication in TBI, monitoring behavioral changes, histological responses and the transcriptional regulation of a series of activity-regulated genes (immediate early genes, IEGs). We demonstrate that ethanol pretreatment before moderate TBI (2cm) significantly reduces neurological impairment and accelerates recovery. In addition, better preservation of neuronal numbers and cFos+cells was observed 7days after TBI. At transcriptional level, ethanol reduced the upregulation of a subset of IEGs encoding for transcription factors such as Atf3, c-Fos, FosB, Egr1, Egr3 and Npas4 but did not affect the upregulation of others (e.g. Gadd45b and Gadd45c). While a subset of IEGs encoding for effector proteins (such as Bdnf, InhbA and Dusp5) were downregulated by ethanol, others (such as Il-6) were unaffected. Notably, the majority of genes were sensitive to ethanol only when administered before TBI and not afterwards (the exceptions being c-Fos, Egr1 and Dusp5). Furthermore, while severe TBI (3cm) induced a qualitatively similar (but quantitatively larger) transcriptional response to moderate TBI, it was no longer sensitive to ethanol pretreatment. Thus, we have shown that a subset of the TBI-induced transcriptional responses were sensitive to ethanol intoxication at the instance of trauma (ultimately resulting in beneficial outcomes) and that the effect of ethanol was restricted to a certain time window (pre TBI treatment) and to TBI severity (moderate). This information could be critical for the translational value of ethanol in TBI and for the design of clinical

  16. Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults.

    PubMed

    Beals, Joseph W; Sukiennik, Richard A; Nallabelli, Julian; Emmons, Russell S; van Vliet, Stephan; Young, Justin R; Ulanov, Alexander V; Li, Zhong; Paluska, Scott A; De Lisio, Michael; Burd, Nicholas A

    2016-10-01

    Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. Ten healthy-weight [HW; BMI (in kg/m 2 ): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring- 13 C 6 ]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P < 0.05). Basal myofibrillar protein synthetic responses were similar between groups (P = 0.43). However, myofibrillar protein synthetic responses (0-300 min) were greater in the HW group (1.6-fold; P = 0.005) after pork ingestion than in the OW and OB groups. There is a diminished myofibrillar protein synthetic response to the ingestion of protein-dense food in overweight and obese adults compared with healthy-weight controls. These data indicate that impaired postprandial myofibrillar protein synthetic response may be an early defect with increasing fat mass, potentially dependent on altered anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered

  17. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lesion of the rostromedial tegmental nucleus increases voluntary ethanol consumption and accelerates extinction of ethanol-induced conditioned taste aversion.

    PubMed

    Sheth, Chandni; Furlong, Teri M; Keefe, Kristen A; Taha, Sharif A

    2016-10-01

    Ethanol has rewarding and aversive properties, and the balance of these properties influences voluntary ethanol consumption. Preclinical and clinical evidence show that the aversive properties of ethanol limit intake. The neural circuits underlying ethanol-induced aversion learning are not fully understood. We have previously shown that the lateral habenula (LHb), a region critical for aversive conditioning, plays an important role in ethanol-directed behaviors. However, the neurocircuitry through which LHb exerts its actions is unknown. In the present study, we investigate a role for the rostromedial tegmental nucleus (RMTg), a major LHb projection target, in regulating ethanol-directed behaviors. Rats received either sham or RMTg lesions and were studied during voluntary ethanol consumption; operant ethanol self-administration, extinction, and yohimbine-induced reinstatement of ethanol-seeking; and ethanol-induced conditioned taste aversion (CTA). RMTg lesions increased voluntary ethanol consumption and accelerated extinction of ethanol-induced CTA. The RMTg plays an important role in regulating voluntary ethanol consumption, possibly by mediating ethanol-induced aversive conditioning.

  19. Ethanol-induced locomotor activity in adolescent rats and the relationship with ethanol-induced conditioned place preference and conditioned taste aversion.

    PubMed

    Acevedo, María Belén; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C; Pautassi, Ricardo M

    2013-05-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol's motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference (CPP) by ethanol at this age. The present study assessed age-related differences in ethanol's motor stimulating effects and analyzed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced CPP and conditioned taste aversion (CTA) in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol's aversive reinforcement, but they also exhibited CPP. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. Copyright © 2012 Wiley Periodicals, Inc.

  20. Characteristics of ethanol-induced behavioral sensitization in rats: Molecular mediators and cross-sensitization between ethanol and cocaine.

    PubMed

    Xu, Shijie; Kang, Ung Gu

    2017-09-01

    Repeated exposure to drugs of abuse can induce a progressive increase in locomotor activity, known as behavioral sensitization. However, little is known about behavioral sensitization to ethanol. We examined whether ethanol could induce behavioral sensitization and investigated several molecular changes accompanying sensitization. We also assessed whether "cross-sensitization" occurred between ethanol and cocaine, another abused drug. Ethanol-induced sensitization was examined in rats after ethanol treatment (0.5 or 2g/kg) for 15days. The biochemical effects of low- or high-dose ethanol were examined in terms of N-methyl-d-aspartate (NMDA) receptor subunit phosphorylation or expression. Neuronal activity after ethanol treatment was assessed by measuring the level of early growth response (Egr-1) expression. Ethanol-induced behavioral sensitization was observed at the low dose (0.5g/kg) but not the high dose (2g/kg). Although acute treatment with the sensitizing dose of ethanol robustly increased Egr-1 protein and mRNA levels, the expression and phosphorylation of NMDA receptor subunits were not affected. The biochemical responses to ethanol seemed to be enhanced in ethanol-sensitized animals. Cross-sensitization between ethanol and cocaine was observed, which supports the hypothesis that there are commonalities among substances in the pathophysiology of substance dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. An Ingested Orthodontic Wire Fragment: A Case Report.

    PubMed

    Puryer, James; McNamara, Catherine; Sandy, Jonathan; Ireland, Tony

    2016-08-01

    Accidental ingestion or inhalation of foreign bodies has been widely documented, including incidents which occur whilst undertaking dental treatment. Most ingested objects pass through the gastrointestinal tract (GIT) spontaneously, but approximately 10%-20% need to be removed endoscopically and 1% require surgery. This case reports a complication arising from the accidental loss of an archwire fragment during maxillary archwire placement. It describes the immediate and subsequent management, including the use of radiographs to track the passage of the fragment through the gastro-intestinal tract. This case stresses the vigilance that dentists must take to prevent inhalation or ingestion of foreign bodies and the consequences of time-delays when management decisions are needed.

  2. An Ingested Orthodontic Wire Fragment: A Case Report

    PubMed Central

    Puryer, James; McNamara, Catherine; Sandy, Jonathan; Ireland, Tony

    2016-01-01

    Accidental ingestion or inhalation of foreign bodies has been widely documented, including incidents which occur whilst undertaking dental treatment. Most ingested objects pass through the gastrointestinal tract (GIT) spontaneously, but approximately 10%–20% need to be removed endoscopically and 1% require surgery. This case reports a complication arising from the accidental loss of an archwire fragment during maxillary archwire placement. It describes the immediate and subsequent management, including the use of radiographs to track the passage of the fragment through the gastro-intestinal tract. This case stresses the vigilance that dentists must take to prevent inhalation or ingestion of foreign bodies and the consequences of time-delays when management decisions are needed. PMID:29563466

  3. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats

    PubMed Central

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-01-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p<0.05) weight reduction, abnormal haematological parameters, high serum lipids (except high density lipoprotein) concentrations, increased creatinine, bilirubin and urea levels with decreased in albumin level when compared with non-diabetic control rats. All these alterations were reverted to normal after administered with different doses of ethanol extract of Artocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients. PMID:29670849

  4. Ameliorative Activity of Ethanolic Extract of Artocarpus heterophyllus Stem Bark on Alloxan-induced Diabetic Rats.

    PubMed

    Ajiboye, Basiru Olaitan; Adeleke Ojo, Oluwafemi; Adeyonu, Oluwatosin; Imiere, Oluwatosin; Emmanuel Oyinloye, Babatunji; Ogunmodede, Oluwafemi

    2018-03-01

    Purpose: Diabetes mellitus is one of the major endocrine disorders, characterized by impaired insulin action and deficiency. Traditionally, Artocarpus heterophyllus stem bark has been reputably used in the management of diabetes mellitus and its complications. The present study evaluates the ameliorative activity of ethanol extract of Artocarpus heterophyllus stem bark in alloxan-induced diabetic rats. Methods: Diabetes mellitus was induced by single intraperitoneal injection of 150 mg/kg body weight of alloxan and the animals were orally administered with 50, 100 and 150 mg/kg body weight ethanol extract of Artocarpus heterophyllus stem bark once daily for 21 days. Results: At the end of the intervention, diabetic control rats showed significant (p<0.05) weight reduction, abnormal haematological parameters, high serum lipids (except high density lipoprotein) concentrations, increased creatinine, bilirubin and urea levels with decreased in albumin level when compared with non-diabetic control rats. All these alterations were reverted to normal after administered with different doses of ethanol extract of Artocarpus heterophyllus stem bark most especially at 150 mg/kg body weight which exhibited no significant (p>0.05) different with non-diabetic rats. Conclusion: The results suggest that ethanol extract of Artocarpus heterophyllus stem bark may be useful in ameliorating complications associated with diabetes mellitus patients.

  5. Agile based "Semi-"Automated Data ingest process : ORNL DAAC example

    NASA Astrophysics Data System (ADS)

    Santhana Vannan, S. K.; Beaty, T.; Cook, R. B.; Devarakonda, R.; Hook, L.; Wei, Y.; Wright, D.

    2015-12-01

    The ORNL DAAC archives and publishes data and information relevant to biogeochemical, ecological, and environmental processes. The data archived at the ORNL DAAC must be well formatted, self-descriptive, and documented, as well as referenced in a peer-reviewed publication. The ORNL DAAC ingest team curates diverse data sets from multiple data providers simultaneously. To streamline the ingest process, the data set submission process at the ORNL DAAC has been recently updated to use an agile process and a semi-automated workflow system has been developed to provide a consistent data provider experience and to create a uniform data product. The goals of semi-automated agile ingest process are to: 1.Provide the ability to track a data set from acceptance to publication 2. Automate steps that can be automated to improve efficiencies and reduce redundancy 3.Update legacy ingest infrastructure 4.Provide a centralized system to manage the various aspects of ingest. This talk will cover the agile methodology, workflow, and tools developed through this system.

  6. Rare-earth magnet ingestion-related injuries among children, 2000-2012.

    PubMed

    De Roo, Ana C; Thompson, Meghan C; Chounthirath, Thiphalak; Xiang, Huiyun; Cowles, Nancy A; Shmuylovskaya, Liliya; Smith, Gary A

    2013-11-01

    This study describes the epidemiology of rare-earth magnet ingestion by children by retrospectively analyzing 72 cases of magnet ingestion collected from Saferproducts.gov and the US Consumer Product Safety Commission from 2000 through 2012. The mean child age was 6.4 years. Patients ingested between 1 and 40 magnets, most often 1 to 4 magnets. Unique circumstances of ingestion included faux piercing (19.4%) and mistaking magnets for candy (6.9%). Surgery was required in 69.7% of cases where treatment was reported. Fifty-three patients were hospitalized (73.6%), and the length of hospital stay was reported in 58.5% of those cases, ranging from 1 to 54 days. Approximately half (50.7%) of the magnets causing injury were products intended for use by adults. Study findings demonstrate that pediatric ingestion of rare-earth magnets can cause serious gastrointestinal injury. Establishing a performance standard that limits the attraction force of these magnets offers the best prevention solution to this important pediatric public health problem.

  7. Ethanol production by engineered thermophiles.

    PubMed

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    PubMed Central

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  9. Pavlovian conditioning and ethanol tolerance.

    PubMed

    Siegel, S

    1987-01-01

    Results of considerable amount of research indicate that Pavlovian conditional pharmacological responses, resulting from repeated pairings of ethanol-associated environmental cues with the systemic effects of ethanol, importantly contribute to ethanol tolerance.

  10. After the Recall: Reexamining Multiple Magnet Ingestion at a Large Pediatric Hospital.

    PubMed

    Rosenfield, Daniel; Strickland, Matt; Hepburn, Charlotte Moore

    2017-07-01

    To evaluate the effectiveness of a mandatory product recall on the frequency of multiple mini-magnet ingestion at a large tertiary pediatric hospital, and to examine the morbidity and mortality associated with these ingestions. In this retrospective chart review, we searched our institution's electronic patient record for patients aged <18 years who had been diagnosed with ingested magnetic foreign bodies between 2002 and 2015, a period that included the mandatory product recall. We compared the frequency and character of ingestions before and after the recall. Comparing the postrecall years (January 1, 2014, to December 31, 2015) with the 2 years immediately preceding the recall year (January 1, 2011, to December 31, 2012) yields an incidence rate ratio of 0.34 (95% CI, 0.18-0.64) for all magnet ingestions and 0.20 (95% CI, 0.08-0.53) for ingestion of multiple magnets. Based on the Fisher exact test, the incidence of both magnet ingestion (P < .001) and multiple magnet ingestion (P < .001) decreased, and the morbidity associated with magnet ingestion decreased. There were no deaths in either study period. There was a significant decrease in multiple mini-magnet ingestion following a mandatory product recall. This study supports the effectiveness of the recall, which should bolster efforts to keep it in place in jurisdictions where it is being appealed. More broadly, the result provides general evidence of a recall helping decrease further harm from a product that carries a potential hazard. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Alternative Fuels Data Center: Ethanol

    Science.gov Websites

    ... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices of a scale. Benefits and Considerations Explore the benefits and considerations of using ethanol as a

  12. Gestational naltrexone ameliorates fetal ethanol exposures enhancing effect on the postnatal behavioral and neural response to ethanol

    PubMed Central

    Youngentob, Steven L; Kent, Paul F; Youngentob, Lisa M

    2012-01-01

    The association between gestational exposure to ethanol and adolescent ethanol abuse is well established. Recent animal studies support the role of fetal ethanol experience-induced chemosensory plasticity as contributing to this observation. Previously, we established that fetal ethanol exposure, delivered through a dam’s diet throughout gestation, tuned the neural response of the peripheral olfactory system of early postnatal rats to the odor of ethanol. This occurred in conjunction with a loss of responsiveness to other odorants. The instinctive behavioral response to the odor of ethanol was also enhanced. Importantly, there was a significant contributory link between the altered response to the odor of ethanol and increased ethanol avidity when assessed in the same animals. Here, we tested whether the neural and behavioral olfactory plasticity, and their relationship to enhanced ethanol intake, is a result of the mere exposure to ethanol or whether it requires the animal to associate ethanol’s reinforcing properties with its odor attributes. In this later respect, the opioid system is important in the mediation (or modulation) of the reinforcing aspects of ethanol. To block endogenous opiates during prenatal life, pregnant rats received daily intraperitoneal administration of the opiate antagonist naltrexone from gestational day 6–21 jointly with ethanol delivered via diet. Relative to control progeny, we found that gestational exposure to naltrexone ameliorated the enhanced postnatal behavioral response to the odor of ethanol and postnatal drug avidity. Our findings support the proposition that in utero ethanol-induced olfactory plasticity (and its relationship to postnatal intake) requires, at least in part, the associative pairing between ethanol’s odor quality and its reinforcing aspects. We also found suggestive evidence that fetal naltrexone ameliorated the untoward effects of gestational ethanol exposure on the neural response to non

  13. A green tea-containing starch confection increases plasma catechins without protecting against postprandial impairments in vascular function in normoglycemic adults.

    PubMed

    Sapper, Teryn N; Mah, Eunice; Ahn-Jarvis, Jennifer; McDonald, Joshua D; Chitchumroonchokchai, Chureeporn; Reverri, Elizabeth J; Vodovotz, Yael; Bruno, Richard S

    2016-09-14

    Postprandial hyperglycemia (PPH) increases cardiovascular disease risk regardless of glucose intolerance by transiently impairing vascular endothelial function (VEF) by limiting nitric oxide bioavailability in an oxidative stress-dependent manner. Preclinical studies show that green tea catechins attenuate PPH by inhibiting starch digestion. We hypothesized that a starch-based confection containing catechin-rich green tea extract (GTE) would limit PPH-mediated impairments in VEF in normoglycemic adults. We formulated a unique GTE confection and then conducted a double-blind, randomized, controlled, crossover study in healthy men (n = 15; 25.3 ± 1.0 years; 22.4 ± 1.8 kg m(-2)) in which they ingested starch confections (50 g carbohydrate) formulated with or without GTE (1 g) prior to evaluating sensory characteristics of confections and plasma glucose, biomarkers of lipid peroxidation and nitric oxide homeostasis, and brachial artery flow-mediated dilation (FMD) at 30 min intervals for 3 h. Sensory evaluation of confections indicated acceptable consumer appeal and an inability to distinguish between confections regardless of GTE. Plasma catechins concentrations increased following ingestion of the GTE confection. However, plasma glucose peaked at 60 min (P < 0.05) following confection ingestion and was unaffected throughout the postprandial period by the GTE confection (P > 0.05). FMD was significantly decreased only at 60 min regardless of confections containing GTE. Also at 60 min, both confections similarly increased plasma malondialdehyde while decreasing arginine and increasing asymmetric dimethylarginine/arginine. The successfully formulated GTE-containing confection effectively delivered catechins, but without mitigating PPH-mediated impairments in VEF in association with oxidative stress that likely limits nitric oxide bioavailability.

  14. Heartburn and regurgitation in pregnancy: the effect of fat ingestion.

    PubMed

    Dall'Alba, Valesca; Fornari, Fernando; Krahe, Cláudio; Callegari-Jacques, Sidia Maria; Silva de Barros, Sérgio Gabriel

    2010-06-01

    Reflux symptoms are common in pregnancy, but their association with fat ingestion is unclear. To investigate an association of dietary fats with heartburn and regurgitation in pregnancy. This is a prospective study in which 89 pregnant women (gestational age 34 +/- 4 weeks) attending a low-risk prenatal outpatient clinic were asked to provide information on the frequency they experienced heartburn and regurgitation. Fat ingestion was estimated by means of a 24-h diet record. Symptomatic patients were compared with those with no reflux symptoms (n = 20). Heartburn once a week or more often occurred in 56 of the 89 patients (63%). The ingested amount of polyunsaturated fatty acids was higher in patients with heartburn (11.2 +/- 6.4 vs. 7.7 +/- 3.5 mg; P = 0.022) than in controls after adjusting for age, gain weight during pregnancy, ingestion of caffeine and vitamin C, and total energetic intake. The ingestion of monounsaturated fatty acids was higher in patients with heartburn, but with a borderline statistical significance (16.1 +/- 11 vs. 11.8 +/- 6.5 mg; P = 0.061). No association was observed between the consumption of fats and regurgitation. This study suggests that heartburn in the third trimester of pregnancy is associated with the ingestion of polyunsaturated fatty acids.

  15. The Ethanol-Induced Stimulation of Rat Duodenal Mucosal Bicarbonate Secretion In Vivo Is Critically Dependent on Luminal Cl–

    PubMed Central

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl− from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl− and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms. PMID:25033198

  16. The ethanol-induced stimulation of rat duodenal mucosal bicarbonate secretion in vivo is critically dependent on luminal Cl-.

    PubMed

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjöblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ∼30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl- from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl- and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms.

  17. Rare-earth magnet ingestion: a childhood danger reaches adolescence.

    PubMed

    Agha, Beesan Shalabi; Sturm, Jesse J; Costello, Brian E

    2013-10-01

    Ingestion of multiple magnets may cause serious gastrointestinal morbidity, such as pressure necrosis, perforation, fistula formation, or intestinal obstruction due to forceful attraction across bowel wall. Although the consequences of multiple magnet ingestion are well documented in young children, the current popularity of small, powerful rare-earth magnets marketed as "desk toys" has heightened this safety concern in all pediatric age groups. A recent US Consumer Product Safety Commission product-wide warning additionally reports the adolescent practice of using toy high-powered, ball-bearing magnets to simulate tongue and lip piercings, a behavior that may increase risk of inadvertent ingestion. We describe 2 cases of older children (male; aged 10 and 13 years, respectively) with unintentional ingestion of multiple rare-earth magnets. Health care providers should be alerted to the potential for misuse of these high-powered, ball-bearing magnets among older children and adolescents.

  18. Soil Ingestion Colloquium (2005)

    EPA Science Inventory

    On May 24-25, 2005, the U.S. EPA Colloquium on Soil/Dust Ingestion Rates and Mouthing Behavior for Children and Adults (Colloquium) was held at the Holiday Inn National Airport in Crystal City, Virginia. The purpose of the Colloquium was to convene an expert panel to assess the...

  19. Intermittent Voluntary Ethanol Drinking during Periadolescence Impairs Adult Spatial Learning after a Long Abstinence Period in Rats

    ERIC Educational Resources Information Center

    Diaz, Ana; Garcia-Burgos, David; Manrique, Tatiana; Gonzalez, Felisa; Gallo, Milagros

    2011-01-01

    Although previous findings point to the long-term impact of ethanol exposure during periadolescence on hippocampal-dependent learning tasks, comparisons considering different onset and exposure periods during this developmental range of ages are still needed. The aim of this experiment was to determine whether intermittent voluntary chronic…

  20. Tunable optical limiting optofluidic device filled with graphene oxide dispersion in ethanol

    PubMed Central

    Fang, Chaolong; Dai, Bo; Hong, Ruijin; Tao, Chunxian; Wang, Qi; Wang, Xu; Zhang, Dawei; Zhuang, Songlin

    2015-01-01

    An optofluidic device with tunable optical limiting property is proposed and demonstrated. The optofluidic device is designed for adjusting the concentration of graphene oxide (GO) in the ethanol solution and fabricated by photolithography technique. By controlling the flow rate ratio of the injection, the concentration of GO can be precisely adjusted so that the optical nonlinearity can be changed. The nonlinear optical properties and dynamic excitation relaxation of the GO/ethanol solution are investigated by using Z-scan and pump-probe measurements in the femtosecond regime within the 1.5 μm telecom band. The GO/ethanol solution presents ultrafast recovery time. Besides, the optical limiting property is in proportion to the concentration of the solution. Thus, the threshold power and the saturated power of the optical limiting property can be simply and efficiently manipulated by controlling the flow rate ratio of the injection. Furthermore, the amplitude regeneration is demonstrated by employing the proposed optofluidic device. The signal quality of intensity-impaired femtosecond pulse is significantly improved. The optofluidic device is compact and has long interaction length of optical field and nonlinear material. Heat can be dissipated in the solution and nonlinear material is isolated from other optical components, efficiently avoiding thermal damage and mechanical damage. PMID:26477662

  1. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    PubMed

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  2. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  3. A preliminary study on the effects of acute ethanol ingestion on default mode network and temporal fractal properties of the brain.

    PubMed

    Weber, Alexander M; Soreni, Noam; Noseworthy, Michael D

    2014-08-01

    To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain. Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) (1)H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia. Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01). The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.

  4. The Safety of Ingested Caffeine: A Comprehensive Review

    PubMed Central

    Temple, Jennifer L.; Bernard, Christophe; Lipshultz, Steven E.; Czachor, Jason D.; Westphal, Joslyn A.; Mestre, Miriam A.

    2017-01-01

    Caffeine is the most widely consumed psychoactive drug in the world. Natural sources of caffeine include coffee, tea, and chocolate. Synthetic caffeine is also added to products to promote arousal, alertness, energy, and elevated mood. Over the past decade, the introduction of new caffeine-containing food products, as well as changes in consumption patterns of the more traditional sources of caffeine, has increased scrutiny by health authorities and regulatory bodies about the overall consumption of caffeine and its potential cumulative effects on behavior and physiology. Of particular concern is the rate of caffeine intake among populations potentially vulnerable to the negative effects of caffeine consumption: pregnant and lactating women, children and adolescents, young adults, and people with underlying heart or other health conditions, such as mental illness. Here, we review the research into the safety and safe doses of ingested caffeine in healthy and in vulnerable populations. We report that, for healthy adults, caffeine consumption is relatively safe, but that for some vulnerable populations, caffeine consumption could be harmful, including impairments in cardiovascular function, sleep, and substance use. We also identified several gaps in the literature on which we based recommendations for the future of caffeine research. PMID:28603504

  5. Long-lasting effect of NMDA receptor antagonist memantine on ethanol-cue association and relapse.

    PubMed

    Vengeliene, Valentina; Olevska, Anastasia; Spanagel, Rainer

    2015-12-01

    It is well known that the glutamatergic system plays a crucial role in alcohol addiction and especially in relapse-like behaviour. However, results of clinical studies on compounds that influence the activity of the glutamatergic system have been disappointing so far. The aim of our study was to establish treatment conditions under which the N-methyl-d-aspartate receptor (NMDAR) antagonist memantine may produce more reliable treatment effect with respect to alcohol relapse-like behaviour. For this purpose, male Wistar rats were trained to associate several discrete stimuli with ethanol delivery. Thereafter, half of the animals received a brief memory reactivation session followed by two administrations of 20 mg/kg of memantine, while the other half received the same treatment without memory reactivation. Afterwards, a cue-induced ethanol-seeking behaviour test was performed followed by repeated extinction sessions and a reacquisition test. Our data show that administration of memantine reduced responding on the ethanol-associated lever in a cue-induced ethanol-seeking test. This reduction did not depend on whether or not a memory reactivation session was introduced prior to memantine administration. Following extinction, however, reacquisition of ethanol self-administration was only impaired in the group where memantine was given after a short memory reactivation session, showing that this schedule of drug administration produced a long-lasting disruption of the association between the conditioned stimuli and the delivery of ethanol. In conclusion, we show that memantine disrupted the drug-cue association, which consequently interfered with relapse-like behaviour supporting the possibility that memantine is a treatment option for alcoholism. Our data supports the possibility that memantine is a treatment option for alcoholism. However, the effectiveness of this drug seems to lie in its ability to disrupt conditioned behaviours and should be given in conjunction

  6. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol

    PubMed Central

    Lopez, M. F.; Becker, H. C.; Chandler, L. J.

    2014-01-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. PMID:25266936

  7. Predictors of ethanol consumption in adult Sprague-Dawley rats: relation to hypothalamic peptides that stimulate ethanol intake.

    PubMed

    Karatayev, Olga; Barson, Jessica R; Carr, Ambrose J; Baylan, Jessica; Chen, Yu-Wei; Leibowitz, Sarah F

    2010-06-01

    To investigate mechanisms in outbred animals that increase the propensity to consume ethanol, it is important to identify and characterize these animals before or at early stages in their exposure to ethanol. In the present study, different measures were examined in adult Sprague-Dawley rats to determine whether they can predict long-term propensity to overconsume ethanol. Before consuming 9% ethanol with a two-bottle choice paradigm, rats were examined with the commonly used behavioral measures of novelty-induced locomotor activity and anxiety, as assessed during 15 min in an open-field activity chamber. Two additional measures, intake of a low 2% ethanol concentration or circulating triglyceride (TG) levels after a meal, were also examined with respect to their ability to predict chronic 9% ethanol consumption. The results revealed significant positive correlations across individual rats between the amount of 9% ethanol ultimately consumed and three of these different measures, with high scores for activity, 2% ethanol intake, and TGs identifying rats that consume 150% more ethanol than rats with low scores. Measurements of hypothalamic peptides that stimulate ethanol intake suggest that they contribute early to the greater ethanol consumption predicted by these high scores. Rats with high 2% ethanol intake or high TGs, two measures found to be closely related, had significantly elevated expression of enkephalin (ENK) and galanin (GAL) in the hypothalamic paraventricular nucleus (PVN) but no change in neuropeptide Y (NPY) in the arcuate nucleus (ARC). This is in contrast to rats with high activity scores, which in addition to elevated PVN ENK expression showed enhanced NPY in the ARC but no change in GAL. Elevated ENK is a common characteristic related to all three predictors of chronic ethanol intake, whereas the other peptides differentiate these predictors, with GAL enhanced with high 2% ethanol intake and TG measures but NPY related to activity. 2010 Elsevier

  8. Influences of casein hydrolysate ingestion on cerebral activity, autonomic nerve activity, and anxiety.

    PubMed

    Nakamura, Hirohiko; Iwamoto, Mario; Washida, Kenji; Sekine, Kazunori; Takase, Mitsunori; Park, Bum-Jin; Morikawa, Takeshi; Miyazaki, Yoshifumi

    2010-01-01

    This study examined the influences of the oral ingestion of casein hydrolysate from bovine milk at rest physiologically and psychologically. Eleven male university students were given a casein hydrolysate drink (H) or a maltitol drink as a control (C) in a crossover study. Just before and one hour after ingestion of each drink, the total-hemoglobin (tHb) concentrations at ten points of the prefrontal cortex to evaluate cerebral activity, and heart rate variability (HRV) to evaluate autonomic nerve activity through spectral analysis were measured as physiological indicators. The Japanese version of the State--Trait Anxiety Inventory--state anxiety (STAI-s) score was also used, as a psychological indicator. In comparison between H and C ingestion, a significant difference is observed only in tHb concentrations at one of ten points. At this point, the change in tHb concentration was lower after H ingestion compared to C ingestion. And in comparison between before and after ingestion of each drink, a significant increase in tHb concentration at two points after C ingestion, a significant increase in parasympathetic activity and decrease in sympathetic activity after H ingestion, and a significant decrease in STAI-s score in H ingestion were observed. These results suggest that ingestion of the casein hydrolysate may keep prefrontal cortex activity stable while maltitol ingestion partially increases the activity. Moreover, there is a possibility that casein hydrolysate might decrease sympathetic activity, increase parasympathetic activity, and lower anxiety. We conclude that the bovine milk casein hydrolysate may have more relaxing effects than maltitol.

  9. Boric acid ingestion clinically mimicking toxic epidermal necrolysis.

    PubMed

    Webb, David V; Stowman, Anne M; Patterson, James W

    2013-11-01

    The ingestion of large amounts of boric acid, a component of household insecticides, is a rare occurrence, characterized by a diffuse desquamative skin eruption, neutropenia, thrombocytopenia, delirium, acute renal failure and prolonged ileus. A 56-year-old male with a history of multiple previous suicide attempts was witnessed ingesting household roach killer and 4 days later presented to the hospital with lethargy, stiffness and a diffuse erythematous and desquamative eruption with bullous formation. He subsequently developed erythema of both palms as well as alopecia totalis. Histopathology from a right arm shave biopsy revealed a mostly intact epidermis with subtle vacuolar alteration of the basal layer, scattered intraepidermal apoptotic keratinocytes, parakeratosis with alternating layers of orthokeratosis and considerable superficial exfoliation; accompanying dermal changes included vasodilatation and mild perivascular inflammation. This report describes the cutaneous and systemic complications in a rare case of boric acid ingestion. There is little published material on the symptoms and histopathology following boric acid ingestion, but knowledge of this entity is important, both to differentiate it from other causes of desquamative skin rashes and to allow the initiation of appropriate clinical care. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Severe neurotoxicity following ingestion of tetraethyl lead.

    PubMed

    Wills, Brandon K; Christensen, Jason; Mazzoncini, Joe; Miller, Michael

    2010-03-01

    Organic lead compounds are potent neurotoxins which can result in death even from small exposures. Traditionally, these compounds are found in fuel stabilizers, anti-knock agents, and leaded gasoline. Cases of acute organic lead intoxication have not been reported for several decades. We report a case of a 13-year-old Iraqi male who unintentionally ingested a fuel stabilizer containing 80-90% tetraethyl lead, managed at our combat support hospital. The patient developed severe neurologic symptoms including agitation, hallucinations, weakness, and tremor. These symptoms were refractory to escalating doses of benzodiazepines and ultimately required endotracheal intubation and a propofol infusion. Adjunctive therapies included chelation, baclofen, and nutrition provided through a gastrostomy tube. The patient slowly recovered and was discharged in a wheelchair 20 days after ingestion, still requiring tube feeding. Follow-up at 62 days post-ingestion revealed near-resolution of symptoms with residual slurred speech and slight limp. This case highlights the profound neurotoxic manifestations of acute organic lead compounds.

  11. The effects of continuous and intermittent ethanol exposure in adolesence on the aversive properties of ethanol during adulthood.

    PubMed

    Diaz-Granados, Jaime L; Graham, Danielle L

    2007-12-01

    Alcohol abuse among adolescents is prevalent. Epidemiological studies suggest that alcohol abuse during the adolescent developmental period may result in long-term changes such as an increased susceptibility to alcohol-related problems in adulthood. Laboratory findings suggest that alcohol exposure during the adolescent developmental period, as compared with adulthood, may differentially impact subsequent neurobehavioral responses to alcohol. The present study was designed to examine whether ethanol exposure, continuous versus intermittent, during the adolescent developmental period would alter the aversive properties of ethanol in adult C3H mice. Periadolescent (PD28) male C3H mice were exposed to 64 hours of continuous or intermittent ethanol vapor. As a comparison, adult (PD70) C3H mice were also exposed to 64 hours of continuous or intermittent ethanol vapor. Six weeks after ethanol exposure, taste aversion conditioning was carried out on both ethanol pre-exposed and ethanol-naive animals using a 1-trial, 1-flavor taste-conditioning procedure. Ethanol exposure during the periadolescent period significantly attenuated a subsequent ethanol-induced conditioned taste aversion, as compared with control animals. Adult animals exposed to chronic ethanol vapor during adolescence showed less of an aversion to an ethanol-paired flavor than ethanol-naive adults. Intermittent exposure to ethanol vapor during periadolescence produced a greater attenuation. It is suggested that ethanol exposure during the periadolescent period results in long-term neurobehavioral changes, which lessen a conditioned aversion to ethanol in adulthood. It is suggested that this age-related effect may underlie the increased susceptibility to alcohol-related problems which is negatively correlated with the age of onset for alcohol abuse.

  12. CD24 Expression Identifies Teratogen-Sensitive Fetal Neural Stem Cell Subpopulations: Evidence from Developmental Ethanol Exposure and Orthotopic Cell Transfer Models

    PubMed Central

    Tingling, Joseph D.; Bake, Shameena; Holgate, Rhonda; Rawlings, Jeremy; Nagsuk, Phillips P.; Chandrasekharan, Jayashree; Schneider, Sarah L.; Miranda, Rajesh C.

    2013-01-01

    Background Ethanol is a potent teratogen. Its adverse neural effects are partly mediated by disrupting fetal neurogenesis. The teratogenic process is poorly understood, and vulnerable neurogenic stages have not been identified. Identifying these is a prerequisite for therapeutic interventions to mitigate effects of teratogen exposures. Methods We used flow cytometry and qRT-PCR to screen fetal mouse-derived neurosphere cultures for ethanol-sensitive neural stem cell (NSC) subpopulations, to study NSC renewal and differentiation. The identity of vulnerable NSC populations was validated in vivo, using a maternal ethanol exposure model. Finally, the effect of ethanol exposure on the ability of vulnerable NSC subpopulations to integrate into the fetal neurogenic environment was assessed following ultrasound guided, adoptive transfer. Results Ethanol decreased NSC mRNAs for c-kit, Musashi-1and GFAP. The CD24+ NSC population, specifically the CD24+CD15+ double-positive subpopulation, was selectively decreased by ethanol. Maternal ethanol exposure also resulted in decreased fetal forebrain CD24 expression. Ethanol pre-exposed CD24+ cells exhibited increased proliferation, and deficits in cell-autonomous and cue-directed neuronal differentiation, and following orthotopic transplantation into naïve fetuses, were unable to integrate into neurogenic niches. CD24depleted cells retained neurosphere regeneration capacity, but following ethanol exposure, generated increased numbers of CD24+ cells relative to controls. Conclusions Neuronal lineage committed CD24+ cells exhibit specific vulnerability, and ethanol exposure persistently impairs this population’s cell-autonomous differentiation capacity. CD24+ cells may additionally serve as quorum sensors within neurogenic niches; their loss, leading to compensatory NSC activation, perhaps depleting renewal capacity. These data collectively advance a mechanistic hypothesis for teratogenesis leading to microencephaly. PMID:23894503

  13. Increasing frequency of plastic particles ingested by seabirds in the subarctic North Pacific

    USGS Publications Warehouse

    Robards, Martin D.; Piatt, John F.; Wohl, Kenton D.

    1995-01-01

    We examined gut contents of 1799 seabirds comprising 24 species collected in 1988-1990 to assess the types and quantities of plastic particles ingested by seabirds in the subarctic waters of Alaska. Of the 15 species found to ingest plastic, most were surface-feeders (shearwaters, petrels, gulls) or plankton-feeding divers (auklets, puffins). Of 4417 plastic particles examined, 76% were industrial pellets and 21% were fragments of ‘user’ plastic. Ingestion rates varied geographically, but no trends were evident and rates of plastic ingestion varied far more among species within areas than within species among areas. Comparison with similar data from 1968 seabirds comprising 37 species collected in 1969-1977 revealed that plastic ingestion by seabirds has increased significantly during the 10–15-year interval between studies. This was demonstrated by: (i) an increase in the total number of species ingesting plastic; (ii) an increase in the frequency of occurrence of plastic particles within species that ingested plastic; and, (iii) an increase in the mean number of plastic particles ingested by individuals of those species.

  14. Reliability of history of acetaminophen ingestion in intentional drug overdose patients.

    PubMed

    Bentur, Yedidia; Lurie, Yael; Tamir, Ada; Keyes, Daniel C; Basis, Fuad

    2011-01-01

    The objective of this study was to determine the reliability of denial of acetaminophen ingestion in intentional drug overdose patients. All intentional drug overdose patients admitted to an emergency department who were able to provide a history were included. A detailed history was obtained on names, timing and number of medications ingested, and serum acetaminophen was assayed. Multidrug ingestion was defined as the reporting of ≥2 medications. Patients were considered 'reliable' if they reported acetaminophen ingestion and had detectable acetaminophen levels or the other way around. Validity parameters of acetaminophen history were assessed by sensitivity, specificity and positive and negative predictive values. A total of 154 patients were included. History was significantly more reliable in patients who denied ingestion of acetaminophen (n = 107) compared with patients who reported it (n = 47; 95.3% vs 65.9%, respectively; p < 0.0001, 95% CI of the difference 17.5%-41.2%). No suicidal patient who denied both acetaminophen and multidrug ingestions had a detectable acetaminophen level (negative predictive value 1, 95% CI 0.93-1.0). It is suggested that denial of both acetaminophen and multidrug ingestions by intentional drug overdose patients after a thorough history taking can be considered reliable for acetaminophen history. In facilities with limited resources, these patients may not require routine acetaminophen screening.

  15. Postmortem computed tomography and magnetic resonance imaging facilitates forensic autopsy in a fatal case of poisoning with formic acid, diphenhydramine, and ethanol.

    PubMed

    Berger, Florian; Steuer, Andrea E; Rentsch, Katharina; Gascho, Dominic; Stamou, Stamatios; Schärli, Sarah; Thali, Michael J; Krämer, Thomas; Flach, Patricia M

    2016-09-01

    A case of fatal poisoning by ingesting formic acid, diphenhydramine, and ethanol by a 25-year-old woman who committed suicide is presented. Prior to autopsy, postmortem computed tomography and postmortem magnetic resonance tomography were performed and revealed severe damage to the stomach, the left thoracic wall, and parts of the liver. Imaging detected acid-induced fluid-fluid level within the thoracic cavity (fat-equivalent fluid and necrotic pleural effusion). This case report illustrates that postmortem cross-sectional imaging may facilitate dissection of severely damaged or complex regions, and may provide additional information compared to autopsy and toxicological examinations alone.

  16. Social opportunity and ethanol drinking in rats.

    PubMed

    Tomie, Arthur; Burger, Kelly M; Di Poce, Jason; Pohorecky, Larissa A

    2004-11-01

    Two experiments were designed to evaluate the effects of pairings of ethanol sipper conditioned stimulus (CS) with social opportunity unconditioned stimulus (US) on ethanol sipper CS-directed drinking in rats. In both experiments, rats were deprived of neither food nor water, and initiation of drinking of unsweetened 3% ethanol was evaluated, as were the effects of increasing the concentration of unsweetened ethanol (3-10%) across sessions. In Experiment 1, Group Paired (n=8) received 35 trials per session wherein the ethanol sipper CS was presented for 10 s immediately prior to 15 s of social opportunity US. All rats initiated sipper CS-directed drinking of 3% ethanol. Increasing the concentration of ethanol in the sipper CS [(3%, 4%, 6%, 8%, 10% (vol./vol.)] across sessions induced escalation of daily g/kg ethanol intake. To evaluate the hypothesis that the drinking in Group Paired was due to autoshaping, Experiment 2 included a pseudoconditioning control that received sipper CS and social opportunity US randomly with respect to one another. All rats in Group Paired (n=6) and in Group Random (n=6) initiated sipper CS-directed drinking of 3% ethanol and daily mean g/kg ethanol intake in the two groups was comparable. Also comparable was daily g/kg ethanol intake, which increased for both groups with the availability of higher concentrations of ethanol in the sipper CS, up to a maximum of approximately 0.8 g/kg ethanol intake of 10% ethanol. Results indicate that random presentations of ethanol sipper CS and social opportunity US induced reliable initiation and escalation of ethanol intake, and close temporally contiguous presentations of CS and US did not induce still additional ethanol intake. This may indicate that autoshaping CR performance is not induced by these procedures, or that high levels of ethanol intake induced by factors related to pseudoconditioning produces a ceiling effect. Implications for ethanol drinking in humans are discussed.

  17. Intestinal volvulus and perforation caused by multiple magnet ingestion: report of a case.

    PubMed

    Ilçe, Zekeriya; Samsum, Hakan; Mammadov, Emil; Celayir, Sinan

    2007-01-01

    Ingested magnets can cause intestinal fistulas, perforation, and obstruction. There have been reports of magnet ingestion causing intestinal volvulus, but multiple magnet ingestion causing perforation and intestinal volvulus in a child is very unusual. We report the case of a 4-year-old girl, who ingested four magnets she acquired as toys, which caused intestinal volvulus and perforation as a result of pressure necrosis, several days after ingestion. At surgery we repaired two perforations, but additional bowel resection was not required. The patient was discharged on postoperative day 10. If multiple magnet ingestion is suspected in a child, the child must be monitored carefully. If there are signs of obstruction, emergency surgery is mandatory.

  18. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  19. Argyria secondary to ingestion of homemade silver solution.

    PubMed

    Brandt, Douglas; Park, Betty; Hoang, Mai; Jacobe, Heidi T

    2005-08-01

    Argyria is a rare skin disease caused by cutaneous deposition of silver granules in the skin as a result of exposure to silver substrate or ingestion of silver salt. This report describes a patient with generalized argyria caused by ingestion of homemade colloidal silver solution. The patient learned about the uses of the silver solution and its preparation at a convention for "natural medicine."

  20. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2017-05-01

    Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Incubation of ethanol reinstatement depends on test conditions and how ethanol consumption is reduced.

    PubMed

    Ginsburg, Brett C; Lamb, R J

    2015-04-01

    In reinstatement studies (a common preclinical procedure for studying relapse), incubation occurs (longer abstinence periods result in more responding). This finding is discordant with the clinical literature. Identifying determinants of incubation could aid in interpreting reinstatement and identifying processes involved in relapse. Reinstated responding was examined in rats trained to respond for ethanol and food under a multiple concurrent schedule (Component 1: ethanol FR5, food FR150; Component 2: ethanol FR5, food FR5-alternating across the 30-min session). Ethanol consumption was then reduced for 1 or 16 sessions either by suspending training (rats remained in home cage) or by providing alternative reinforcement (only Component 2 stimuli and contingencies were presented throughout the session). In the next session, stimuli associated with Component 1 were presented and responses recorded but ethanol and food were never delivered. Two test conditions were studied: fixed-ratio completion either produced ethanol- or food-associated stimuli (signaled) or had no programmed consequence (unsignaled). Incubation of ethanol responding was observed only after suspended training during signaled test sessions. Incubation of food responding was also observed after suspended training. These results are most consistent with incubation resulting from a degradation of feedback functions limiting extinction responding, rather than from increased motivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol.

    PubMed

    Lopez, M F; Becker, H C; Chandler, L J

    2014-11-01

    Studies in animal models have shown that repeated episodes of alcohol dependence and withdrawal promote escalation of drinking that is presumably associated with alterations in the addiction neurocircuitry. Using a lithium chloride-ethanol pairing procedure to devalue the reinforcing properties of ethanol, the present study determined whether multiple cycles of chronic intermittent ethanol (CIE) exposure by vapor inhalation also alters the sensitivity of drinking behavior to the devaluation of ethanol's reinforcing effects. The effect of devaluation on operant ethanol self-administration and extinction was examined in mice prior to initiation of CIE (short drinking history) and after repeated cycles of CIE or air control exposure (long drinking history). Devaluation significantly attenuated the recovery of baseline ethanol self-administration when tested either prior to CIE or in the air-exposed controls that had experienced repeated bouts of drinking but no CIE. In contrast, in mice that had undergone repeated cycles of CIE exposure that promoted escalation of ethanol drinking, self-administration was completely resistant to the effect of devaluation. Devaluation had no effect on the time course of extinction training in either pre-CIE or post-CIE mice. Taken together, these results are consistent with the suggestion that repeated cycles of ethanol dependence and withdrawal produce escalation of ethanol self-administration that is associated with a change in sensitivity to devaluation of the reinforcing properties of ethanol. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. ETHANOL-INDUCED LOCOMOTOR ACTIVITY IN ADOLESCENT RATS AND THE RELATIONSHIP WITH ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE AND CONDITIONED TASTE AVERSION

    PubMed Central

    Acevedo, María Belén; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.; Pautassi, Ricardo Marcos

    2012-01-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol’s motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference by ethanol at this age. The present study assessed age-related differences in ethanol’s motor stimulating effects and analysed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced conditioned place preference and conditioned taste aversion in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol’s aversive reinforcement, but they also exhibited conditioned place preference. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. PMID:22592597

  4. Effect of Carbohydrate and Caffeine Ingestion on Badminton Performance.

    PubMed

    Clarke, Neil D; Duncan, Michael J

    2016-01-01

    To investigate the effect of ingesting carbohydrate and caffeine solutions on measures that are central to success in badminton. Twelve male badminton players performed a badminton serve-accuracy test, coincidence-anticipation timing (CAT), and a choice reaction-time sprint test 60 min before exercise. Participants then consumed 7 mL/kg body mass of either water (PLA), 6.4% carbohydrate solution (CHO), a solution containing a caffeine dose of 4 mg/kg, or 6.4% carbohydrate and 4 mg/kg caffeine (C+C). All solutions were flavored with orange-flavored concentrate. During the 33-min fatigue protocol, participants were provided with an additional 3 mL/kg body mass of solution, which was ingested before the end of the protocol. As soon as the 33-min fatigue protocol was completed, all measures were recorded again. Short-serve accuracy was improved after the ingestion of CHO and C+C compared with PLA (P = .001, η(p)(2) = .50). Long-serve accuracy was improved after the ingestion of C+C compared with PLA (P < .001, η(p)(2) = .53). Absolute error in CAT demonstrated smaller deteriorations after the ingestion of C+C compared with PLA (P < .05; slow, η(p)(2) = .41; fast, η(p)(2) = .31). Choice reaction time improved in all trials with the exception of PLA, which demonstrated a reduction (P < .001, η(p)(2) = .85), although C+C was faster than all trials (P < .001, η(p)(2) = .76). These findings suggest that the ingestion of a caffeinated carbohydrate solution before and during a badminton match can maintain serve accuracy, anticipation timing, and sprinting actions around the court.

  5. Soil ingestion: a concern for acute toxicity in children.

    PubMed Central

    Calabrese, E J; Stanek, E J; James, R C; Roberts, S M

    1997-01-01

    Several soil ingestion studies have indicated that some children ingest substantial amounts of soil on given days. Although the EPA has assumed that 95% of children ingest 200 mg soil/day or less for exposure assessment purposes, some children have been observed to ingest up to 25-60 g soil during a single day. In light of the potential for children to ingest such large amounts of soil, an assessment was made of the possibility for soil pica episodes to result in acute intoxication from contaminant concentrations the EPA regards as representing conservative screening values (i.e., EPA soil screening levels and EPA Region III risk-based concentrations for residential soils). For a set of 13 chemicals included in the analysis, contaminant doses resulting from a one-time soil pica episode (5-50 g of soil ingested) were compared with acute dosages shown to produce toxicity in humans in clinical studies or case reports. For four of these chemicals, a soil pica episode was found to result in a contaminant dose approximating or exceeding the acute human lethal dose. For five of the remaining chemicals, the contaminant dose from a soil pica episode was well within the reported dose range in humans for toxicity other than lethality. Because both the exposure episodes and the toxicological response information are derived from observations in humans, these findings are regarded as particularly relevant for human health risk assessment. They suggest that, for some chemicals, ostensibly conservative soil criteria based on chronic exposure using current EPA methodology may not be protective of children during acute soil pica episodes. PMID:9405323

  6. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  7. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats.

    PubMed

    Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit

    2015-01-01

    Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg(-1)BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.

  8. Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of ΔFosB in mice.

    PubMed

    Sajja, Ravi Kiran; Rahman, Shafiqur

    2013-06-01

    Chronic administration of ethanol induces persistent accumulation of ΔFosB, an important transcription factor, in the midbrain dopamine system. This process underlies the progression to addiction. Previously, we have shown that cytisine, a neuronal nicotinic acetylcholine receptor (nAChR) partial agonist, reduces various ethanol-drinking behaviors and ethanol-induced striatal dopamine function. However, the effects of cytisine on chronic ethanol drinking and ethanol-induced up-regulation of striatal ΔFosB are not known. Therefore, we examined the effects of cytisine on chronic voluntary ethanol consumption and associated striatal ΔFosB up-regulation in C57BL/6J mice using behavioral and biochemical methods. Following the chronic voluntary consumption of 15% (v/v) ethanol under a 24-h two-bottle choice intermittent access (IA; 3 sessions/week) or continuous access (CA; 24 h/d and 7 d/week) paradigm, mice received repeated intraperitoneal injections of saline or cytisine (0.5 or 3.0 mg/kg). Ethanol and water intake were monitored for 24 h post-treatment. Pretreatment with cytisine (0.5 or 1.5 mg/kg) significantly reduced ethanol consumption and preference in both paradigms at 2 h and 24 h post-treatment. The ΔFosB levels in the ventral and dorsal striatum were determined by Western blotting 18-24 h after the last point of ethanol access. In addition, cytisine (0.5 mg/kg) significantly attenuated up-regulation of ΔFosB in the ventral and dorsal striatum following chronic ethanol consumption in IA and CA paradigms. The results indicate that cytisine modulates chronic voluntary ethanol consumption and reduces ethanol-induced up-regulation of striatal ΔFosB. Further, the data suggest a critical role of nAChRs in chronic ethanol-induced neurochemical adaptations associated with ethanol addiction. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. POST-RETRIEVAL PROPRANOLOL TREATMENT DOES NOT MODULATE RECONSOLIDATION OR EXTINCTION OF ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE

    PubMed Central

    Font, Laura; Cunningham, Christopher L.

    2012-01-01

    The reconsolidation hypothesis posits that established emotional memories, when reactivated, become labile and susceptible to disruption. Post-retrieval injection of propranolol (PRO), a nonspecific β-adrenergic receptor antagonist, impairs subsequent retention performance of a cocaine- and a morphine-induced conditioned place preference (CPP), implicating the noradrenergic system in the reconsolidation processes of drug-seeking behavior. An important question is whether post-retrieval PRO disrupts memory for the drug-cue associations, or instead interferes with extinction. In the present study, we evaluated the role of the β-adrenergic system on the reconsolidation and extinction of ethanol-induced CPP. Male DBA/2J mice were trained using a weak or a strong conditioning procedure, achieved by varying the ethanol conditioning dose (1 or 2 g/kg) and the number of ethanol trials (2 or 4). After acquisition of ethanol CPP, animals were given a single post-retrieval injection of PRO (0, 10 or 30 mg/kg) and tested for memory reconsolidation 24 h later. Also, after the first reconsolidation test, mice received 18 additional 15-min choice extinction tests in which PRO was injected immediately after every test. Contrary to the prediction of the reconsolidation hypothesis, a single PRO injection after the retrieval test did not modify subsequent memory retention. In addition, repeated post-retrieval administration of PRO did not interfere with extinction of CPP in mice. Overall, our data suggest that the β-adrenergic receptor does not modulate the associative processes underlying ethanol CPP. PMID:22285323

  10. Adolescent and Adult Rats Differ in the Amnesic Effects of Acute Ethanol in Two Hippocampus-Dependent Tasks: Trace and Contextual Fear Conditioning

    PubMed Central

    Hunt, Pamela S.; Barnet, Robert C.

    2015-01-01

    Experience-produced deficits in trace conditioning and context conditioning have been useful tools for examining the role of the hippocampus in learning. It has also been suggested that learning in these tasks is especially vulnerable to neurotoxic effects of alcohol during key developmental periods such as adolescence. In five experiments we systematically examined the presence and source of age-dependent vulnerability to the memory-disrupting effects of acute ethanol in trace conditioning and contextual fear conditioning. In Experiment 1a pre-training ethanol disrupted trace conditioning more strongly in adolescent (postnatal day, PD30-35) than adult rats (PD65-75). In Experiment 1b when pre-training ethanol was accompanied by pre-test ethanol no deficit in trace conditioning was observed in adolescents, suggesting that state-dependent retrieval failure mediated ethanol's disruption of trace conditioning at this age. Experiments 2a and 2b examined the effect of ethanol pretreatment on context conditioning. Here, adult but not adolescent rats were impaired in conditioned freezing to context cues. Experiment 2c explored state-dependency of this effect. Pre-training ethanol continued to disrupt context conditioning in adults even when ethanol was also administered prior to test. Collectively these findings reveal clear age-dependent and task-dependent vulnerabilities in ethanol's disruptive effects on hippocampus-dependent memory. Adolescents were more disrupted by ethanol in trace conditioning than adults, and adults were more disrupted by ethanol in context conditioning than adolescents. We suggest that adolescents may be more susceptible to changes in internal state (state-dependent retrieval failure) than adults and that ethanol disrupted performance in trace and context conditioning through different mechanisms. Relevance of these findings to theories of hippocampus function is discussed. PMID:26192910

  11. Agmatine Reduces Balance Deficits In a Rat Model Of Third Trimester Binge-Like Ethanol Exposure

    PubMed Central

    Lewis, B.; Wellman, K.A.; Barron, S.

    2007-01-01

    This study examined the effects of binge-like ethanol (ETOH) exposure in neonatal rats on a cerebellar-mediated balance task, and the ability of agmatine, an n-methyl-d-aspartate receptor (NMDAR) modulator, to reverse such effects. Five neonatal treatments groups were used, including ETOH (6.0 g/kg/day), AG (20 mg/kg), ETOH plus AG (6.0 g/kg/day and 20 mg/kg), a maltose control, and a non-treated control. Ethanol was administered via oral intubation twice daily for eight days, (AG was administered with the last ETOH intubation only). Two exposure periods were used; PND 1–8 or PND 8–15. On PND 31–33, balance performance on a single dowel was tested. Treatment with AG during withdrawal in ETOH exposed animals improved performance relative to ETOH alone among the PND 1–8 exposure period. ETOH exposure during the 2nd postnatal week did not impair balance. These findings provide further support that exposure to ETOH during critical developmental periods can impair performance on a cerebellar-dependent balance task. Of perhaps greater significance, co-administration of agmatine reduced these deficits suggesting that NMDA modulation via polyamine blockade may provide a novel approach to attenuating damage associated with binge-like ETOH consumption. PMID:17714770

  12. Marine debris ingestion and Thayer's law - The importance of plastic color.

    PubMed

    Santos, Robson G; Andrades, Ryan; Fardim, Lorena M; Martins, Agnaldo Silva

    2016-07-01

    In recent years marine plastic pollution has gained considerable attention as a significant threat to marine animals. Despite the abundant literature related to marine debris ingestion, only a few studies attempted to understand the factors involved in debris ingestion. Plastic ingestion is commonly attributed to visual similarities of plastic fragments to animal's prey items, such as plastic bags and jellyfish. However, this simple explanation is not always coherent with the variety of debris items ingested and with the species' main prey items. We assess differences in the conspicuousness of plastic debris related to their color using Thayer's law to infer the likelihood that visual foragers detect plastic fragments. We hypothesize that marine animals that perceive floating plastic from below should preferentially ingest dark plastic fragments, whereas animals that perceive floating plastic from above should select for paler plastic fragments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparison of the antimicrobial efficacy of povidone-iodine, povidone-iodine-ethanol and chlorhexidine gluconate-ethanol surgical scrubs.

    PubMed

    Nishimura, Chieko

    2006-01-01

    Scrubbing of the hands and forearms with a brush and antiseptic agents has been the standard for surgical practice. However, it has been increasingly recognized that brush scrubbing may provoke side effects and that an alcohol-based hand antiseptic used in conjunction with a scrub agent enhances the effectiveness. In this study, two types of alcohol-based agents were used after a povidone-iodine (PVP-I) scrub and compared for their effectiveness. The study was conducted as a crossover trial with 20 volunteers. After hand rubbing with PVP-I, either PVP-I-ethanol rubbing or chlorhexidine gluconate-ethanol (CHG-ethanol) rubbing was used for surgical hand cleansing. Samples were collected by the modified glove juice method to count bacteria on hands. In both groups, the bacterial count was significantly reduced after handwashing (p < 0.001), and the reduction was still significant after 2 h (p < 0.001 for PVP-I-ethanol and p < 0.002 for CHG-ethanol). The log(10) reduction factor (RF) in the PVP-I-ethanol group was significantly higher than that in the CHG-ethanol group immediately after handwashing (p < 0.001) but significantly lowered after 2 h (p < 0.01) to the level similar to that of CHG-ethanol. Although RF was lower in the CHG-ethanol group immediately after and 2 h after handwashing compared to the PVP-I-ethanol group, it did not decrease with time. Brushless surgical scrubbing with PVP-I-ethanol or CHG-ethanol in conjunction with PVP-I showed antiseptic effects immediately after and 2 h after handwashing. RF immediately after handwashing was significantly higher with PVP-I-ethanol compared to CHG-ethanol, but it was similar in both groups after 2 h. These results suggest that when used in combination with a PVP-I scrub, an alcohol-based hand antiseptic containing the same active agent (PVP-I in this study) has a powerful antiseptic effect; however, when it contains different antiseptic agents (i.e. CHG in this study), it should be selected carefully based on

  14. Marine Neurotoxins: Ingestible Toxins.

    PubMed

    Stommel, Elijah W.; Watters, Michael R.

    2004-03-01

    Fish and shellfish account for a significant portion of food-borne illnesses throughout the world. In general, three classes of diseases result from seafood consumption--intoxication, allergies, and infections. In this review, the authors discuss several seafood-borne toxins, including domoic acid, which acts on the central nervous system. In addition, the authors discuss ciguatoxin-, brevetoxin-, saxitoxin-, tetrodotoxin-, and scombroid-related histamine toxicity, all of which act primarily on the peripheral nervous system. Fish has become a very popular food in the US mostly related to its potential health benefits. Fish is consumed to such a degree that fishing stocks are reportedly at an all time low from what seemed like an endless supply even 30 years ago. One of the most significant threats to human intoxication is the recreational harvest of shellfish, often times located in remote locations where the harvesters are subsistent on fishery resources and have no monitoring in place. The hazard to intoxication is not as common in purchased seafood, which is more stringently regulated, yet still is a serious problem. Most ingestible toxins are thermo-stable and therefore unaffected by cooking, freezing, or salting. Air transport of consumable products throughout the world makes it easy to obtain exotic edibles from far away countries. A seemingly unusual toxin can be more commonly encountered than previously thought and it is important to consider this when evaluating patients. Recognition and treatment of various neurologic symptoms related to seafood ingestion is paramount in today's mobile, gastronomic world. Specific treatments vary with each individual toxin and with the individual's specific reaction to the toxin. Generally, some degree of medical care is required with all ingestible toxin exposure, ranging from simple administration of medication and hydration to ventilatory and cardiovascular support.

  15. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity

    PubMed Central

    Manley, Sharon; Ni, Hong-Min; Williams, Jessica A.; Kong, Bo; DiTacchio, Luciano; Guo, Grace; Ding, Wen-Xing

    2014-01-01

    Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16 h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. PMID:25460735

  16. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  17. Abolition of lemniscal barrellette patterning in Prrxl1 knockout mice: Effects upon ingestive behavior.

    PubMed

    Bakalar, Dana; Tamaiev, Jonathan; Zeigler, H Philip; Feinstein, Paul

    2015-01-01

    Ingestive behaviors in mice are dependent on orosensory cues transmitted via the trigeminal nerve, as confirmed by transection studies. However, these studies cannot differentiate between deficits caused by the loss of the lemniscal pathway vs. the parallel paralemniscal pathway. The paired-like homeodomain protein Prrxl1 is expressed widely in the brain and spinal cord, including the trigeminal system. A knockout of Prrxl1 abolishes somatotopic barrellette patterning in the lemniscal brainstem nucleus, but not in the parallel paralemniscal nucleus. Null animals are significantly smaller than littermates by postnatal day 5, but reach developmental landmarks at appropriate times, and survive to adulthood on liquid diet. A careful analysis of infant and adult ingestive behavior reveals subtle impairments in suckling, increases in time spent feeding and the duration of feeding bouts, feeding during inappropriate times of the day, and difficulties in the mechanics of feeding. During liquid diet feeding, null mice display abnormal behaviors including extensive use of the paws to move food into the mouth, submerging the snout in the diet, changes in licking, and also have difficulty consuming solid chow pellets. We suggest that our Prrxl1(-/-) animal is a valuable model system for examining the genetic assembly and functional role of trigeminal lemniscal circuits in the normal control of eating in mammals and for understanding feeding abnormalities in humans resulting from the abnormal development of these circuits.

  18. Acute cyanide toxicity caused by apricot kernel ingestion.

    PubMed

    Suchard, J R; Wallace, K L; Gerkin, R D

    1998-12-01

    A 41-year-old woman ingested apricot kernels purchased at a health food store and became weak and dyspneic within 20 minutes. The patient was comatose and hypothermic on presentation but responded promptly to antidotal therapy for cyanide poisoning. She was later treated with a continuous thiosulfate infusion for persistent metabolic acidosis. This is the first reported case of cyanide toxicity from apricot kernel ingestion in the United States since 1979.

  19. Rates of Ethanol Metabolism Decrease in Sons of Alcoholics Following a Priming Dose of Ethanol

    PubMed Central

    Bradford, Blair U.; Jackson, Jennifer K.; Powell, Linda L.; Garbutt, James C.

    2007-01-01

    Rapid changes in rates of ethanol metabolism in response to acute ethanol administration have been observed in animals and humans. To examine whether this phenomenon might vary by risk for alcoholism, 23 young men with a positive family history of alcoholism (FHP) were compared to 15 young men without a family history of alcoholism (FHN). Rates of ethanol metabolism were measured in all subjects first after an initial ethanol dose (0.85 g/kg) and then, several hours later, a second dose (0.3 g/kg), and the two rates were compared. The two groups of subjects were similar in their histories of ethanol consumption. FHP subjects demonstrated faster initial rates of ethanol metabolism, 148 ± 36 mg/kg/hr, compared to FHN subjects, 124 ± 18 mg/kg/hr, p=.01. However, FHN subjects increased their rate of metabolism by 10 ± 27 percent compared to a decrease of -15 ± 24 percent in FHP subjects, p =.007. Fifty-two percent of the FHP and none of the FHN subjects exhibited a decline in metabolic rate of 20% or more, p=.0008. Since a significant proportion of FHP subjects exhibited a decrease in the second rate of ethanol metabolism, these preliminary data might help to partly explain why FHP individuals differ in their sensitivity to ethanol and are more likely to develop alcohol dependence. PMID:17521843

  20. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae.

    PubMed

    Bátori, Veronika; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m(3) of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m(3) ethanol/year.

  1. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    PubMed

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Alterations in Ethanol-Induced Behaviors and Consumption in Knock-In Mice Expressing Ethanol-Resistant NMDA Receptors

    PubMed Central

    den Hartog, Carolina R.; Beckley, Jacob T.; Smothers, Thetford C.; Lench, Daniel H.; Holseberg, Zack L.; Fedarovich, Hleb; Gilstrap, Meghin J.; Homanics, Gregg E.; Woodward, John J.

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75–2.0 g/kg; IP) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol. PMID:24244696

  3. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    PubMed

    den Hartog, Carolina R; Beckley, Jacob T; Smothers, Thetford C; Lench, Daniel H; Holseberg, Zack L; Fedarovich, Hleb; Gilstrap, Meghin J; Homanics, Gregg E; Woodward, John J

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  4. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  5. Magnet ingestions in children presenting to US emergency departments, 2002-2011.

    PubMed

    Abbas, Mazen I; Oliva-Hemker, Maria; Choi, Joon; Lustik, Michael; Gilger, Mark A; Noel, R Adam; Schwarz, Kathleen; Nylund, Cade M

    2013-07-01

    In the last 10 years, there have been an increasing number of case reports concerning gastrointestinal injury related to magnet ingestions; however, the magnitude of the problem remains to be clearly defined. The aim of the study was to examine the epidemiology of magnet ingestion-related emergency department (ED) visits among children in the United States. We performed a trend analysis using a nationally representative sample from the US Consumer Product Safety Commission, National Electronic Injury Surveillance System (NEISS) database for ED visits involving magnet ingestion in children younger than 18 years from 2002 to 2011. A national estimate of 16,386 (95% CI 12,175-20,598) children younger than 18 years presented to EDs in the United States during the 10-year study period with possible magnet ingestion. The incidence of visits increased 8.5-fold (from 0.45/100,000 to 3.75/100,000) from 2002 to 2011 with a 75% average annual increase per year. The majority of patients reported to have ingested magnets were younger than 5 years (54.7%). From 2009 to 2011 there was an increase in older children ingesting multiple small and/or round magnets, with a mean average age of 7.1 ± 0.56 years during the study period. There has been an alarming increase in ED visits for magnet ingestion in children. Increased public education and prevention efforts are needed.

  6. Fetal death of dogs after the ingestion of a soil conditioner.

    PubMed

    Hong, Il-Hwa; Kwon, Tae-Eog; Lee, Seung-Keun; Park, Jin-Kyu; Ki, Mi-Ran; Park, Se-Il; Jeong, Kyu-Shik

    2011-01-01

    Castor beans (Ricinus communis) contain ricin, which is one of the most toxic substances of plant origin. Ricin toxicosis has been reported in different countries with usually ingestion of castor beans or plants in both animals and humans. However, ricin toxicosis by ingestion of some products containing castor oil cake has rarely been reported. This paper describes outbreaks of dog death by ricin toxicosis after accidental ingestion of the same soil conditioner. Fifteen dogs showed toxic symptoms such as severe vomiting, abdominal pain and hemorrhagic diarrhea, and then thirteen dogs died in a few days. The soil conditioner dogs ingested consisted of 10% castor oil cake containing ricin. On the basis of clinical signs, laboratory and pathologic findings, a diagnosis of ricin toxicosis was established in the present case. In comparison with previous cases by ingestion of castor beans, the dogs' morbidity was very high in the present case. The ingestion of castor oil cake may be more dangerous to life than the castor beans. It is because mortality by ingestion of castor beans depends on the degree of mastication of the beans, whereas ricin in oil cake is easily absorbed from the stomach and the intestines. As ricin is a heat-labile toxin, products containing ricin or oil cake should be properly treated with heat and have written caution sentences about toxicosis, and be kept out of reach of domestic animals and children. Copyright © 2009 Elsevier GmbH. All rights reserved.

  7. Maternal ethanol consumption reduces Se antioxidant function in placenta and liver of embryos and breastfeeding pups.

    PubMed

    Nogales, Fátima; Ojeda, M Luisa; Jotty, Karick; Murillo, M Luisa; Carreras, Olimpia

    2017-12-01

    The fetal alcohol exposition during pregnancy leads to different disorders in offspring, related to the oxidative stress generated by alcohol. It is well-documented that there is an impairment of the antioxidant selenoprotein Glutathione peroxidase (GPx) activity in ethanol offspring during the embryo period, although no-one has described Selenium (Se) status. The aim is to analyze for the first time Se deposits in vivo and Se's biological implication in embryos and placenta after alcohol exposure and in offspring whose mothers continued to drink ethanol during lactation. Se deposits, GPx and glutathione reductase (GR) activity, lipid and protein oxidation and the expression of GPx1 were measured in placenta and liver of both embryos (E-19) and breastfeeding pups (L-21) in control and ethanol groups (20% v/v). Ethanol consumption decreased Se deposits, GPx activity and GPx1 expression, while increasing biomolecular oxidation in placenta and in the liver of E-19 and L-21. The GR/GPx ratio decreased in placenta and in E-19, together with an increase in lipid oxidation, while increased in the liver of L-21 pups with protein oxidation. Ethanol also decreased the GPx1 expression/GPx activity ratio in the liver of E-19 and L-21, indicating that alcohol decreases GPx activity by both depleting Se deposits and promoting GPx inactivation. In placenta GPx activity is proportional to the GPx1 expression found, so the ethanol affects GPx activity in offspring more than in dams. Therefore, Se supplementation therapy in dams could contribute as an interesting antioxidant that prevents fetal alcohol syndrome. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Urinary nandrolone metabolite detection after ingestion of a nandrolone precursor.

    PubMed

    Watson, Phillip; Judkins, Catherine; Houghton, Ed; Russell, Caroline; Maughan, Ronald J

    2009-04-01

    Quantities of various anabolic/androgenic steroids have been found in dietary supplements without their presence being disclosed on the label. The aim of this study was to quantify the excretion patterns of the diagnostic metabolites, 19-norandrosterone (19-NA), and 19-noretiocholanolone (19-NE) after ingestion of small doses of 19-nor-4-androstene-3,17-dione (19-norandrostenedione). Eleven males and nine females entered the laboratory in the morning after an overnight fast. An initial urine sample was collected, and volunteers then ingested 500 mL of water containing 5 g of creatine monohydrate and 1.0, 2.5, or 5.0 microg of 19-norandrostenedione. The volume of each urine void was measured, and an aliquot was taken. Samples were analyzed for the metabolites 19-NA and 19-NE by GCMS. Baseline urinary 19-NA concentrations were 0.19 +/- 0.14 ng x mL. Ingestion of the supplement resulted in peak mean urinary 19-NA concentrations of 0.68 +/- 0.36, 1.56 +/- 0.86, and 3.89 +/- 3.11 ng.mL in the 1.0-, 2.5-, or 5.0-microg trials, respectively. Under current WADA regulations, ingestion of the 1.0-microg dose produced 0 positive doping tests, 5 subjects (20%) tested positive in the 2.5-microg trial, and 15 subjects (75%) had urinary 19-NA concentrations exceeding 2 ng x mL after ingesting creatine containing 5.0 microg of the steroid. The recovery of the ingested dose was highly variable between individuals, with values ranging from 11% to 84% (mean +/- SD = 47% +/- 18%). Ingestion of trace amounts of 19-norandrostenedione can result in transient elevations of urinary 19-NA and 19-NE concentrations. The addition of as little as 2.5 microg of 19-norandrostenedione to a supplement (0.00005% contamination) appears sufficient to result in a doping violation in some individuals.

  9. Improved ethanol tolerance and ethanol production from glycerol in a streptomycin-resistant Klebsiella variicola mutant obtained by ribosome engineering.

    PubMed

    Suzuki, Toshihiro; Seta, Kohei; Nishikawa, Chiaki; Hara, Eri; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2015-01-01

    To improve the ethanol tolerance of the Klebsiella variicola strain TB-83, we obtained the streptomycin-resistant, ethanol-tolerant mutant strain TB-83D by a ribosome engineering approach. Strain TB-83D was able to grow in the presence of 7% (v/v) ethanol and it showed higher ethanol production than strain TB-83. Examination of various culture conditions revealed that yeast extract was essential for ethanol production and bacterial growth. In addition, ethanol production was elevated to 32g/L by the addition of yeast extract; however, ethanol production was inhibited by formate accumulation. With regard to cost reduction, the use of corn steep liquor (CSL) markedly decreased the formate concentration, and 34g/L ethanol was produced by combining yeast extract with CSL. Our study is the first to improve ethanol tolerance and productivity by a ribosome engineering approach, and we found that strain TB-83D is effective for ethanol production from glycerol. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Microplastic ingestion in fish larvae in the western English Channel.

    PubMed

    Steer, Madeleine; Cole, Matthew; Thompson, Richard C; Lindeque, Penelope K

    2017-07-01

    Microplastics have been documented in marine environments worldwide, where they pose a potential risk to biota. Environmental interactions between microplastics and lower trophic organisms are poorly understood. Coastal shelf seas are rich in productivity but also experience high levels of microplastic pollution. In these habitats, fish have an important ecological and economic role. In their early life stages, planktonic fish larvae are vulnerable to pollution, environmental stress and predation. Here we assess the occurrence of microplastic ingestion in wild fish larvae. Fish larvae and water samples were taken across three sites (10, 19 and 35 km from shore) in the western English Channel from April to June 2016. We identified 2.9% of fish larvae (n = 347) had ingested microplastics, of which 66% were blue fibres; ingested microfibers closely resembled those identified within water samples. With distance from the coast, larval fish density increased significantly (P < 0.05), while waterborne microplastic concentrations (P < 0.01) and incidence of ingestion decreased. This study provides baseline ecological data illustrating the correlation between waterborne microplastics and the incidence of ingestion in fish larvae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Caffeine ingestion enhances Wingate performance: a meta-analysis.

    PubMed

    Grgic, Jozo

    2018-03-01

    The positive effects of caffeine ingestion on aerobic performance are well-established; however, recent findings are suggesting that caffeine ingestion might also enhance components of anaerobic performance. A commonly used test of anaerobic performance and power output is the 30-second Wingate test. Several studies explored the effects of caffeine ingestion on Wingate performance, with equivocal findings. To elucidate this topic, this paper aims to determine the effects of caffeine ingestion on Wingate performance using meta-analytic statistical techniques. Following a search through PubMed/MEDLINE, Scopus, and SportDiscus ® , 16 studies were found meeting the inclusion criteria (pooled number of participants = 246). Random-effects meta-analysis of standardized mean differences (SMD) for peak power output and mean power output was performed. Study quality was assessed using the modified version of the PEDro checklist. Results of the meta-analysis indicated a significant difference (p = .005) between the placebo and caffeine trials on mean power output with SMD values of small magnitude (0.18; 95% confidence interval: 0.05, 0.31; +3%). The meta-analysis performed for peak power output indicated a significant difference (p = .006) between the placebo and caffeine trials (SMD = 0.27; 95% confidence interval: 0.08, 0.47 [moderate magnitude]; +4%). The results from the PEDro checklist indicated that, in general, studies are of good and excellent methodological quality. This meta-analysis adds on to the current body of evidence showing that caffeine ingestion can also enhance components of anaerobic performance. The results presented herein may be helpful for developing more efficient evidence-based recommendations regarding caffeine supplementation.

  12. Caffeine antagonism of alcohol-induced driving impairment.

    PubMed

    Liguori, A; Robinson, J H

    2001-07-01

    The extent to which caffeine antagonizes alcohol-induced impairment of simulated automobile driving at the current lowest legal American limit (0.08% BrAC) was the focus of this study. Fifteen adults swallowed a capsule (0, 200, or 400 mg caffeine) then drank a beverage (0.0 or 0.6 g/kg ethanol) in a within-subject, double-blind, randomized procedure. Forty-five minutes later, participants completed a test battery of subjective effects scales, dynamic posturography, critical flicker fusion (CFF), choice reaction time (CRT), divided attention (Stroop test), and simulated driving. Alcohol alone increased ratings of 'dizzy', 'drug effect', and 'high', slowed CRT and brake latency, and increased body sway. Caffeine alone increased ratings of 'alert' and 'jittery', but did not significantly affect body sway or psychomotor performance. Both caffeine doses comparably counteracted alcohol impairment of brake latency but not CRT or body sway. Brake latency with either alcohol-caffeine combination remained significantly longer than that with placebo. Stroop and CFF performance were unaffected by any drug condition. The results suggest that caffeine may increase alertness and improve reaction time after alcohol use but will not completely counteract alcohol impairment in a driver.

  13. Hyperbaric oxygen therapy for systemic gas embolism after hydrogen peroxide ingestion.

    PubMed

    Byrne, Brendan; Sherwin, Robert; Courage, Cheryl; Baylor, Alfred; Dolcourt, Bram; Brudzewski, Jacek R; Mosteller, Jeffrey; Wilson, Robert F

    2014-02-01

    Hydrogen peroxide is a commonly available product and its ingestion has been demonstrated to produce in vivo gas bubbles, which can embolize to devastating effect. We report two cases of hydrogen peroxide ingestion with resultant gas embolization, one to the portal system and one cerebral embolus, which were successfully treated with hyperbaric oxygen therapy (HBO), and review the literature. Two individuals presented to our center after unintentional ingestion of concentrated hydrogen peroxide solutions. Symptoms were consistent with portal gas emboli (Patient A) and cerebral gas emboli (Patient B), which were demonstrated on imaging. They were successfully treated with HBO and recovered without event. As demonstrated by both our experience as well as the current literature, HBO has been used to successfully treat gas emboli associated with hydrogen peroxide ingestion. We recommend consideration of HBO in any cases of significant hydrogen peroxide ingestion with a clinical picture compatible with gas emboli. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Handheld Metal Detector for Metallic Foreign Body Ingestion in Pediatric Emergency.

    PubMed

    Hamzah, Hazwani Binte; James, Vigil; Manickam, Suraj; Ganapathy, Sashikumar

    2018-01-04

    Foreign body ingestion is a common problem for which children present to the emergency department. The most common ingested foreign bodies among children are coins. Metal detector is an equipment, which measures a change in inductance of a coil when an electroconductive material is placed near it and produces an audio-visual signal. The present study was conducted to determine the effectiveness and feasibility of HMD in the local Pediatric population. This was a prospective study conducted in the pediatric emergency department among children presenting with history of foreign body ingestion. The outcome measured was presence or absence of metallic foreign body detected on handheld metal detector examination. During the study period, 36 patients with history of foreign body ingestion presented to the emergency department. Among these, 28 were metallic foreign body ingestions. Coins were the most common type of foreign body ingested. Among the metallic foreign bodies ingested, all the coins were accurately identified by the handheld metal detector. Non-coin metallic foreign bodies like metallic screw, needle and stapler pin were not identified by the handheld metal detector. The study demonstrates that handheld metal detector can be safely and reliably used as a screening tool in the process of detecting ingested coins. The plain radiograph still appears to be superior as it accurately localizes sharp metallic objects as well as cell batteries (button batteries) which need to be detected early and removed in order to prevent complications. Handheld metal detector is an effective tool that can be used in the follow up of patients to confirm whether the coin like metallic foreign body has been expelled. Handheld metal detector examination is more sensitive than traditional X-ray examination to detect radiolucent metallic foreign bodies like aluminium.

  15. Microplastics ingestion by a common tropical freshwater fishing resource.

    PubMed

    Silva-Cavalcanti, Jacqueline Santos; Silva, José Diego B; França, Elton José de; Araújo, Maria Christina Barbosa de; Gusmão, Felipe

    2017-02-01

    Microplastics pollution is widespread in marine ecosystems and a major threat to biodiversity. Nevertheless, our knowledge of the impacts of microplastics in freshwater environments and biota is still very limited. The interaction of microplastics with freshwater organisms and the risks associated with the human consumption of organisms that ingested microplastics remain major knowledge gaps. In this study, we assessed the ingestion of microplastics by Hoplosternum littorale, a common freshwater fish heavily consumed by humans in semi-arid regions of South America. We assessed the abundance and diversity of both plastic debris and other food items found in the gut of fishes caught by local fishermen. We observed that 83% of the fish had plastic debris inside the gut, the highest frequency reported for a fish species so far. Most of the plastic debris (88.6%) recovered from the guts of fish were microplastics (<5 mm), fibres being the most frequent type (46.6%). We observed that fish consumed more microplastics at the urbanized sections of the river, and that the ingestion of microplastics was negatively correlated with the diversity of other food items in the gut of individual fish. Nevertheless, microplastics ingestion appears to have a limited impact on H. littorale, and the consequences of human consumption of this fish were not assessed. Our results suggest freshwater biota are vulnerable to microplastics pollution and that urbanization is a major factor contributing to the pollution of freshwater environments with microplastics. We suggest the gut content of fish could be used as a tool for the qualitative assessment of microplastics pollution in freshwater ecosystems. Further research is needed to determine the processes responsible for the high incidence of microplastics ingestion by H. littorale, and to evaluate the risk posed to humans by the consumption of freshwater fish that ingested microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of chronic ingestion of No. 2 fuel oil on mallard ducklings

    USGS Publications Warehouse

    Szaro, Robert C.; Hensler, G.L.; Heinz, G.H.

    1981-01-01

    No. 2 fuel oil was fed to mallard (Anas platyrhynchos) ducklings in concentrations of 0.5 and 5.0% of the diet from hatching to 18 wk of age to assess the effects of chronic oil ingestion during early development. Five growth parameters (body weight, wing length, ninth primary length, tarsal length, and bill length) were depressed in birds receiving a diet containing 5% fuel oil. There was no oil-related mortality. The 5% fuel oil diet impaired avoidance behavior of 9-d-old mallard ducklings compared with controls or ducklings fed 0.5% oil. Open-field activity was greatly increased in 16-wk-old ducklings fed 5.0% oil. Liver hypertrophy and splenic atrophy were gross evidences of pathological effects in birds on the 5.0% oil diet. More subtle effects included biochemical lesions that resulted in the elevation of plasma alanine aminotransferase and ornithine carbamoyltransferase activity.

  17. Thyroxine administration prevents matrilineal intergenerational consequences of in utero ethanol exposure in rats

    PubMed Central

    Tunc-Ozcan, Elif; Harper, Kathryn M.; Graf, Evan N.; Redei, Eva E.

    2016-01-01

    The neurodevelopmental fetal alcohol spectrum disorder (FASD) is characterized by cognitive and behavioral deficits in the offspring. Conferring the deficits to the next generation would increase overall FASD disease burden and prevention of this transmission could be highly significant. Prior studies showed the reversal of these behavioral deficits by low dose thyroxine (T4) supplementation to the ethanol-consuming mothers. Here we aim to identify whether prenatal ethanol (PE) exposure impairs hippocampus-dependent learning and memory in the second-generation (F2) progeny, and whether T4 administration to the ethanol-consuming dam can prevent it. Sprague-Dawley (S) dams received control diets (ad libitum and nutritional control) or ethanol containing liquid diet with and without simultaneous T4 (0.3mg/l diet) administration. Their offspring (SS F1) were mated with naïve Brown Norway (B) males and females generating the SB F2 and BS F2 progeny. Hippocampus-dependent contextual fear memory and hippocampal expression of the thyroid hormone-regulated type 3 deiodinase, (Dio3) and neurogranin (Nrgn) were assessed. SS F1 PE-exposed females and their SB F2 progeny exhibited fear memory deficits. T4 administration to the mothers of F1 females reversed these deficits. Although SS F1 PE-exposed males also experienced fear memory deficit, this was neither transmitted to their BS F2 offspring nor reversed by prenatal T4 treatment. Hippocampal Dio3 and Nrgn expression showed similar pattern of changes. Grandmaternal ethanol consumption during pregnancy affects fear memory of the matrilineal second-generation progeny. Low dose T4 supplementation prevents this process likely via altering allele-specific and total expression of Dio3 in the hippocampus. PMID:27090562

  18. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

    PubMed Central

    Wilson, David M.; Brasser, Susan M.

    2011-01-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002

  19. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    PubMed

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  20. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ranjita; Prabhu, Sandeep; Lynd, Lee R

    2014-01-01

    Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP) is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA) in order to allow use of previouslymore » developed gene deletion tools, then deleted lactate dehydrogenase (ldh) to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA) ldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA) ldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.« less

  1. Long-term effects of chronic intermittent ethanol exposure in adolescent and adult rats: radial-arm maze performance and operant food reinforced responding.

    PubMed

    Risher, Mary-Louise; Fleming, Rebekah L; Boutros, Nathalie; Semenova, Svetlana; Wilson, Wilkie A; Levin, Edward D; Markou, Athina; Swartzwelder, H Scott; Acheson, Shawn K

    2013-01-01

    Adolescence is not only a critical period of late-stage neurological development in humans, but is also a period in which ethanol consumption is often at its highest. Given the prevalence of ethanol use during this vulnerable developmental period we assessed the long-term effects of chronic intermittent ethanol (CIE) exposure during adolescence, compared to adulthood, on performance in the radial-arm maze (RAM) and operant food-reinforced responding in male rats. Male Sprague Dawley rats were exposed to CIE (or saline) and then allowed to recover. Animals were then trained in either the RAM task or an operant task using fixed- and progressive- ratio schedules. After baseline testing was completed all animals received an acute ethanol challenge while blood ethanol levels (BECs) were monitored in a subset of animals. CIE exposure during adolescence, but not adulthood decreased the amount of time that animals spent in the open portions of the RAM arms (reminiscent of deficits in risk-reward integration) and rendered animals more susceptible to the acute effects of an ethanol challenge on working memory tasks. The operant food reinforced task showed that these effects were not due to altered food motivation or to differential sensitivity to the nonspecific performance-disrupting effects of ethanol. However, CIE pre-treated animals had lower BEC levels than controls during the acute ethanol challenges indicating persistent pharmacokinetic tolerance to ethanol after the CIE treatment. There was little evidence of enduring effects of CIE alone on traditional measures of spatial and working memory. These effects indicate that adolescence is a time of selective vulnerability to the long-term effects of repeated ethanol exposure on neurobehavioral function and acute ethanol sensitivity. The positive and negative findings reported here help to further define the nature and extent of the impairments observed after adolescent CIE and provide direction for future research.

  2. Radiolysis of ethanol and ethanol-water solutions: A tool for studying bioradical reactions

    NASA Astrophysics Data System (ADS)

    Jore, D.; Champion, B.; Kaouadji, N.; Jay-Gerin, J.-P.; Ferradini, C.

    Radiolysis of pure ethanol and ethanol-water solutions is examined in view of its relevance to the study of biological radical mechanisms. On the basis of earlier studies, a consistent reaction scheme is adopted. New data on radical yields are obtained from the radiolysis of dilute solutions of vitamins E and C in these solvents. It is shown that the radiolysis of ethanolic solutions provide an efficient tool to study radical reactions of water-insoluble biomolecules.

  3. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae

    PubMed Central

    Bátori, Veronika; Ferreira, Jorge A.; Taherzadeh, Mohammad J.; Lennartsson, Patrik R.

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m3 of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m3 ethanol/year. PMID:26682213

  4. Ingested and Aspirated Foreign Bodies.

    PubMed

    Green, S Sarah

    2015-10-01

    Esophageal and aspirated foreign bodies have important clinical significance, and both should be considered carefully when the history or physical examination findings raise sufficient suspicion. The published evidence regarding the diagnosis and management of foreign body ingestion or aspiration is weighted disproportionately with observational studies, case controls, expert opinion, and systematic reviews. Most of the publications would receive a categorization of C (observational studies including case-control and cohort design) and D (expert opinion, case reports, and clinical reasoning). One of the few prospective studies examining the diagnostic evaluation of foreign body aspiration in children could be considered level B evidence (randomized clinical trials, systematic reviews, or diagnostic studies with minor limitations). This study found that the medical history is the most important predictive part of the evaluation. There is evidence for considering bronchoscopy if there is significant history suggestive of foreign body aspiration, even in the setting of normal physical examination findings. (28). Most ingested foreign bodies spontaneously pass without incident. However, special attention should be paid to objects in the esophagus as well as to batteries and magnets. Based on a systematic review of the literature (level B evidence) and the potential for rapid and life-threatening damage, batteries in the esophagus should be removed immediately. (10) Other objects, such as coins, may be observed for passage in an asymptomatic patient. In addition, given the high risk of significant complications, ingestion of high-powered magnets should be quickly and carefully evaluated. Although single magnets are likely to pass without complication, multiple magnets or magnets ingested with other metal objects can cause significant damage and should be removed if there is any concern for mural entrapment, bowel perforation, or failure to progress. (10

  5. Oral operant ethanol self-administration in the absence of explicit cues, food restriction, water restriction and ethanol fading in C57BL/6J mice.

    PubMed

    Stafford, Alexandra M; Anderson, Shawn M; Shelton, Keith L; Brunzell, Darlene H

    2015-10-01

    Mouse models of ethanol (EtOH) self-administration are useful to identify genetic and biological underpinnings of alcohol use disorder. These experiments developed a novel method of oral operant EtOH self-administration in mice without explicitly paired cues, food/water restriction, or EtOH fading. Following magazine and lever training for 0.2 % saccharin (SAC), mice underwent nine weekly overnight sessions with lever pressing maintained by dipper presentation of 0, 3, 10, or 15 % EtOH in SAC or water vehicle. Ad libitum water was available from a bottle. Water vehicle mice ingested most fluid from the water bottle in contrast to SAC vehicle mice, which despite lever pressing demands, drank most of their fluid from the liquid dipper. Although EtOH in SAC vehicle mice showed concentration-dependent increases of g/kg EtOH intake, lever pressing decreased with increasing EtOH concentration and did not exceed that of SAC vehicle alone at any EtOH concentration. Mice reinforced with EtOH in water ingested less EtOH than mice reinforced with EtOH in SAC. EtOH in water mice, however, showed concentration-dependent increases in g/kg EtOH intake and lever presses. Fifteen percent EtOH in water mice showed significantly greater levels of lever pressing than water vehicle mice and a significant escalation of responding across weeks of exposure. Naltrexone pretreatment reduced EtOH self-administration and intake in these mice without altering responding in the vehicle control condition during the first hour of the session. SAC facilitated EtOH intake but prevented observation of EtOH reinforcement. Water vehicle unmasked EtOH's reinforcing effects.

  6. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    PubMed

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  7. Alternative Fuels Data Center: Ethanol Fuel Basics

    Science.gov Websites

    ethanol. Ethanol Energy Balance In the United States, 95% of ethanol is produced from the starch in corn demonstrates a positive energy balance, meaning that the process of producing ethanol fuel does not require energy balance of ethanol because the feedstocks are either waste, co-products of another industry (wood

  8. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    PubMed

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  9. Physiological Responses to Cola Ingestion

    ERIC Educational Resources Information Center

    Van Handel, Peter J.; And Others

    1977-01-01

    Data from testing suggest that the ingestion of caffeine in the amount typically found in a single bottle of commercially available cola drink does not increase factors associated with coronary risk nor will it have an enhancing effect upon athletic performance. (MB)

  10. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure.

    PubMed

    Bird, Clark W; Taylor, Devin H; Pinkowski, Natalie J; Chavez, G Jill; Valenzuela, C Fernando

    2018-07-15

    Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Understanding scleractinian coral microplastic ingestion: calcification, size limits, and retention

    EPA Science Inventory

    The prevalence of microplastics (<5mm) in the marine environment has been of increasing concern in the past decade. Microplastics have been shown to be ingested by aquatic organisms, however the physical and toxic effects of microplastic ingestion in marine organisms, includin...

  12. Re-engineering bacteria for ethanol production

    DOEpatents

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  13. Risk for ingestion of toxic substances in children with Prader-Willi syndrome.

    PubMed

    McCandless, Shawn E; Powell, Karen Potter; Sandberg, Ulrika

    2012-11-01

    Individuals with Prader-Willi syndrome (PWS) have several common findings that may predispose to ingestion of potentially dangerous items. This study examined whether individuals with PWS have an increased prevalence of toxic ingestions. A survey regarding history of ingestions in PWS individuals and sibling controls was designed, piloted, and distributed on-line. The subjects were individuals with PWS (N = 129). The subjects' non-PWS siblings served as controls (N = 134). Participants who completed the anonymous online survey were either the parents or the primary caretaker of individuals with PWS. Responses were submitted by 141 participants, providing information about 130 PWS subjects (M/F: 66:64) and 134 sibling controls. Subjects and controls ranged in age from 2 to 18 years at the time of the survey. Eleven participants did not answer the questions regarding ingestions. History of toxic ingestion was more prevalent in PWS subjects (20% vs. 2% of controls). Several features of PWS, including history of searching for food and eating unusual objects, along with decreased cognitive ability, appeared to associate with increased prevalence of toxic ingestion in PWS individuals. PWS children appear to have an ∼12-fold increased risk of ingesting toxins compared to the general population. Geneticists should include this information in counseling and in recommendations to primary care providers. Also, poison control centers need to be aware of this association and of the physiological and behavioral aspects of PWS that may complicate the diagnosis and management of a toxic ingestion. Copyright © 2012 Wiley Periodicals, Inc.

  14. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.

    PubMed

    Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M

    2013-06-04

    Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or

  15. GNSS derived TEC data ingestion into IRI 2012

    NASA Astrophysics Data System (ADS)

    Migoya-Orué, Yenca; Nava, Bruno; Radicella, Sandro; Alazo-Cuartas, Katy

    2015-04-01

    Experimental vertical total electron content (VTEC) data given by Global Ionospheric Maps (GIM) has been ingested into the IRI version 2012, aiming to obtain grids of effective input parameter values that allow to minimize the difference between the experimental and modeled vertical TEC. Making use of the experience gained with the technique of model adaptation applied to NeQuick (Nava et al., 2005), it has been found possible to compute IRI world grids of effective ionosphere index parameters (IG). The IG grids thus obtained can be interpolated in space and time to calculate with IRI the 3D electron density at any location and also the TEC along any ground-to-satellite ray-path for a given epoch. In this study, the ingestion technique is presented and a posteriori validation, along with an assessment of the capability of the 'ingested' IRI to reproduce the ionosphere day-to-day foF2 variability during disturbed and quiet periods. The foF2 values retrieved are compared with data from about 20 worldwide ionosondes for selected periods of high (year 2000) and moderate to low solar activity (year 2006). It was found that the use of the ingestion scheme enhances the performance of the model when compared with its standard use based on solar activity drivers (R12 and F10.7), especially for high solar activity. As an example, the mean and standard deviation of the differences between experimental and reconstructed F2-peak values for April of year 2000 is 0.09 and 1.28 MHz for ingested IRI, compared to -0.81 and 1.27 MHz (IRI with R12 input) and -0.02 and 1.46 MHz (IRI with F10.7 input).

  16. Kansas Ethanol Lyons Approval

    EPA Pesticide Factsheets

    This update August 9, 2016 letter from EPA approves, with modifications, the petition from Kansas Ethanol, LLC, Lyons facility, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  17. Silver sub-nanoclusters electrocatalyze ethanol oxidation and provide protection against ethanol toxicity in cultured mammalian cells.

    PubMed

    Selva, Javier; Martínez, Susana E; Buceta, David; Rodríguez-Vázquez, María J; Blanco, M Carmen; López-Quintela, M Arturo; Egea, Gustavo

    2010-05-26

    Silver atomic quantum clusters (AgAQCs), with two or three silver atoms, show electrocatalytic activities that are not found in nanoparticles or in bulk silver. AgAQCs supported on glassy carbon electrodes oxidize ethanol and other alcohols in macroscopic electrochemical cells in acidic and basic media. This electrocatalysis occurs at very low potentials (from approximately +200 mV vs RHE), at physiological pH, and at ethanol concentrations that are found in alcoholic patients. When mammalian cells are co-exposed to ethanol and AgAQCs, alcohol-induced alterations such as rounded cell morphology, disorganization of the actin cytoskeleton, and activation of caspase-3 are all prevented. This cytoprotective effect of AgAQCs is also observed in primary cultures of newborn rat astrocytes exposed to ethanol, which is a cellular model of fetal alcohol syndrome. AgAQCs oxidize ethanol from the culture medium only when ethanol and AgAQCs are added to cells simultaneously, which suggests that cytoprotection by AgAQCs is provided by the ethanol electro-oxidation mediated by the combined action of AgAQCs and cells. Overall, these findings not only show that AgAQCs are efficient electrocatalysts at physiological pH and prevent ethanol toxicity in cultured mammalian cells, but also suggest that AgAQCs could be used to modify redox reactions and in this way promote or inhibit biological reactions.

  18. Glycemic, insulinemic and incretin responses after oral trehalose ingestion in healthy subjects.

    PubMed

    Yoshizane, Chiyo; Mizote, Akiko; Yamada, Mika; Arai, Norie; Arai, Shigeyuki; Maruta, Kazuhiko; Mitsuzumi, Hitoshi; Ariyasu, Toshio; Ushio, Shimpei; Fukuda, Shigeharu

    2017-02-06

    Trehalose is hydrolyzed by a specific intestinal brush-border disaccharidase (trehalase) into two glucose molecules. In animal studies, trehalose has been shown to prevent adipocyte hypertrophy and mitigate insulin resistance in mice fed a high-fat diet. Recently, we found that trehalose improved glucose tolerance in human subjects. However, the underlying metabolic responses after trehalose ingestion in humans are not well understood. Therefore, we examined the glycemic, insulinemic and incretin responses after trehalose ingestion in healthy Japanese volunteers. In a crossover study, 20 fasted healthy volunteers consumed 25 g trehalose or glucose in 100 mL water. Blood samples were taken frequently over the following 3 h, and blood glucose, insulin, active gastric inhibitory polypeptide (GIP) and active glucagon-like peptide-1 (GLP-1) levels were measured. Trehalose ingestion did not evoke rapid increases in blood glucose levels, and had a lower stimulatory potency of insulin and active GIP secretion compared with glucose ingestion. Conversely, active GLP-1 showed higher levels from 45 to 180 min after trehalose ingestion as compared with glucose ingestion. Specifically, active GIP secretion, which induces fat accumulation, was markedly lower after trehalose ingestion. Our findings indicate that trehalose may be a useful saccharide for good health because of properties that do not stimulate rapid increases in blood glucose and excessive secretion of insulin and GIP promoting fat accumulation.

  19. Accentuating effects of nicotine on ethanol response in mice with high genetic predisposition to ethanol-induced locomotor stimulation.

    PubMed

    Gubner, N R; McKinnon, C S; Reed, C; Phillips, T J

    2013-01-01

    Co-morbid use of nicotine-containing tobacco products and alcohol is prevalent in alcohol dependent individuals. Common genetic factors could influence initial sensitivity to the independent or interactive effects of these drugs and play a role in their co-abuse. Locomotor sensitivity to nicotine and ethanol, alone and in combination, was assessed in mice bred for high (FAST) and low (SLOW) sensitivity to the locomotor stimulant effects of ethanol and in an inbred strain of mouse (DBA/2J) that has been shown to have extreme sensitivity to ethanol-induced stimulation in comparison to other strains. The effects of nicotine and ethanol, alone and in combination, were dependent on genotype. In FAST and DBA/2J mice that show high sensitivity to ethanol-induced stimulation, nicotine accentuated the locomotor stimulant response to ethanol. This effect was not found in SLOW mice that are not stimulated by ethanol alone. These data indicate that genes underlying differential sensitivity to the stimulant effects of ethanol alone also influence sensitivity to nicotine in combination with ethanol. Sensitivity to the stimulant effects of nicotine alone does not appear to predict the response to the drug combination, as FAST mice are sensitive to nicotine-induced stimulation, whereas SLOW and DBA/2J mice are not. The combination of nicotine and ethanol may have genotype-dependent effects that could impact co-abuse liability. Published by Elsevier Ireland Ltd.

  20. Ingestion and transfer of microplastics in the planktonic food web.

    PubMed

    Setälä, Outi; Fleming-Lehtinen, Vivi; Lehtiniemi, Maiju

    2014-02-01

    Experiments were carried out with different Baltic Sea zooplankton taxa to scan their potential to ingest plastics. Mysid shrimps, copepods, cladocerans, rotifers, polychaete larvae and ciliates were exposed to 10 μm fluorescent polystyrene microspheres. These experiments showed ingestion of microspheres in all taxa studied. The highest percentage of individuals with ingested spheres was found in pelagic polychaete larvae, Marenzelleria spp. Experiments with the copepod Eurytemora affinis and the mysid shrimp Neomysis integer showed egestion of microspheres within 12 h. Food web transfer experiments were done by offering zooplankton labelled with ingested microspheres to mysid shrimps. Microscopy observations of mysid intestine showed the presence of zooplankton prey and microspheres after 3 h incubation. This study shows for the first time the potential of plastic microparticle transfer via planktonic organisms from one trophic level (mesozooplankton) to a higher level (macrozooplankton). The impacts of plastic transfer and possible accumulation in the food web need further investigations. Copyright © 2013 Elsevier Ltd. All rights reserved.