Science.gov

Sample records for ethanol-diesel fuel blends

  1. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends. PMID:15474927

  2. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  3. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs). PMID:18574958

  4. Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

    SciTech Connect

    Merritt, P. M.; Ulmet, V.; McCormick, R. L.; Mitchell, W. E.; Baumgard, K. J.

    2005-11-01

    Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent). Benzene emissions were reduced by up to 50 percent with the ethanol-blended fuels. Emissions of 1,3-butadiene were also substantially decreased, with reductions ranging from 24 to 82 percent. Isolated trends were noted for certain PAHs. There was a decrease in 1-nitropyrene with use of ethanol in all cases. Particulate phase 1-nitropyrene was reduced from 18 to 62 percent. There was also a general increase in the proportion of heavy PAHs in the particulate phase with ethanol use, and although less pronounced, a general decrease in light PAHs in the particulate phase.

  5. Assessment of bio-fuel options for solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  6. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  7. Fuel blending with PRB coal

    SciTech Connect

    McCartney, R.H.; Williams, R.L. Jr.

    2009-03-15

    Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

  8. Refining and blending of aviation turbine fuels.

    PubMed

    White, R D

    1999-02-01

    Aviation turbine fuels (jet fuels) are similar to other petroleum products that have a boiling range of approximately 300F to 550F. Kerosene and No.1 grades of fuel oil, diesel fuel, and gas turbine oil share many similar physical and chemical properties with jet fuel. The similarity among these products should allow toxicology data on one material to be extrapolated to the others. Refineries in the USA manufacture jet fuel to meet industry standard specifications. Civilian aircraft primarily use Jet A or Jet A-1 fuel as defined by ASTM D 1655. Military aircraft use JP-5 or JP-8 fuel as defined by MIL-T-5624R or MIL-T-83133D respectively. The freezing point and flash point are the principle differences between the finished fuels. Common refinery processes that produce jet fuel include distillation, caustic treatment, hydrotreating, and hydrocracking. Each of these refining processes may be the final step to produce jet fuel. Sometimes blending of two or more of these refinery process streams are needed to produce jet fuel that meets the desired specifications. Chemical additives allowed for use in jet fuel are also defined in the product specifications. In many cases, the customer rather than the refinery will put additives into the fuel to meet their specific storage or flight condition requirements. PMID:10189575

  9. Blend Concepts for Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Kerres, Jochen

    Differently cross-linked blend membranes were prepared from commercial arylene main-chain polymers from the classes of poly(ether-ketones) and poly(ethersulfones) modified with sulfonate groups, sulfinate cross-linking groups and basic N-groups. The following membrane types have been prepared: (a) van-der Waals/dipole-dipole blends by mixing a polysulfonate with unmodified PSU. This membrane type showed a heterogeneous morphology, leading to extreme swelling and even dissolution of the sulfonated component at elevated temperatures. (b) Hydrogen bridge blends by mixing a polysulfonate with a polyamide or polyetherimide. This membrane type showed a partially heterogeneous morphology, also leading to extreme swelling/dissolution of the sulfonated blend component at elevated temperatures. (c) Acid-base blends by mixing a polysulfonate with a polymeric N-base (self-developed/commercial). With this membrane type, we could reach a wide variability of properties by variation of different parameters. Membranes showing excellent stability and good fuel cell performance up to 100°C (PEFC) and 130°C (DMFC) were obtained. (d) Covalently cross-linked (blend) membranes by either mixing of a polysulfonate with a polysulfinate or by preparation of a polysulfinatesulfonate, followed by reaction of the sulfinate groups in solution with a dihalogeno compound under S-alkylation. Membranes were prepared that showed effective suppression of swelling without H+-conductivity loss. The membranes showed good PEFC (up to 100°C) and DMFC (up to 130°C) performance. (e) Covalent-ionically cross-linked blend membranes by mixing polysulfonates with polysulfinates and polybases or by mixing a polysulfonate with a polymer carrying both sulfinate and basic N-groups. The covalent-ionically cross-linked membranes were tested in DMFC up to 110°C and showed a good performance. (f) Differently cross-linked organic-inorganic blend composite membranes via different procedures. The best results were

  10. Tests of blending and correlation of distillate fuel properties

    NASA Technical Reports Server (NTRS)

    Erwin, J.; Bowden, J. N.

    1982-01-01

    The development of a fuel test matrix, results from tests of several blends of distillate aircraft fuels, and the use of correlations in formulation determination during a NASA-sponsored program to identify new aircraft fuels are described. The program was initiated in order to characterize fuel blends which are appropriate for different types of combustors in use and under development. The fuels were required to feature a specified range of properties. Attention is given to fuel volatility, hydrogen content, aromatic content, freezing point, kinematic viscosity, and naphthalene content. Paraffinic and naphtenic base stocks were employed, using alkyl benzene, naphthene benzenes, and naphthalenes to adjust the blend properties. Categories for the test fuels comprised source-controlled and composition controlled fuels. Test results and compositions of various fuels are provided.

  11. OXIDATIVE STABILITY OF BIODIESEL/JET FUEL BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, an alternative fuel made from transesterification of vegetable oil with methanol, is becoming more readily available for use in blends with conventional diesel fuel for transportation applications. Biodiesel has fuel properties comparable to those of conventional diesel fuel and is known...

  12. Certification of alternative aviation fuels and blend components

    SciTech Connect

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  13. Characterization of an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel and ERBS fuel blends

    NASA Technical Reports Server (NTRS)

    Seng, G. T.

    1982-01-01

    Characterization data and comparisons of these data are presented for three individual lots of a research test fuel designated as an Experimental Referee Broadened Specification (ERBS) aviation turbine fuel. This research fuel, which is a blend of kerosene and hydrotreated catalytic gas oil, is a representation of a kerojet fuel with broadened properties. To lower the hydrogen content of the ERBS fuel, a blending stock, composed of xylene bottoms and hydrotreated catalytic gas oil, was developed and employed to produce two different ERBS fuel blends. The ERBS fuel blends and the blending stock were also characterized and the results for the blends are compared to those of the original ERBS fuel. The characterization results indicate that with the exception of the freezing point for ERBS lot 2, which was slightly high, the three lots, produced over a 2 year period, met all general fuel requirements. However, although the properties of the fuels were found to be fairly consistent, there were differences in composition. Similarly, all major requirements for the ERBS fuel blends were met or closely approached, and the properties of the blended fuels were found to generally reflect those expected for the proportions of ERBS fuel and blending stock used in their production.

  14. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Chia-Fon; Fang, Tiegang

    Biodiesels are promoted as alternative fuels and their applications in diesel engines have been investigated by many researchers. However, the particle size distribution emitted from heavy-duty diesel engines fueled with palm-biodiesel blended with premium diesel fuel and paraffinic fuel blended with palm-biodiesel has seldom been addressed. Thus, five test fuels were used in this work to study the particle size distribution: D100 (premium diesel fuel), B100 (100% palm-biodiesel), B20 (20 vol% palm-biodiesel+80 vol% D100), BP9505 (95 vol% paraffinic fuel+5 vol% palm-biodiesel) and BP8020 (80 vol% paraffinic fuel+20 vol% palm-biodiesel). A Micro-Orifice Uniform Deposit Impactor (MOUDI) equipped with aluminum filters was used to collect size-resolved samples. Experimental results indicated that palm-biodiesel blends and paraffinic fuel blends could improve combustion efficiency in diesel engines, but pure palm-biodiesel could cause incomplete combustion. Adding palm-biodiesel to diesel fuel would slightly increase particles with diameter <0.31 μm but paraffinic fuel blends could decrease particles with diameter <1 μm. The mass median diameter of overall particles (MMD o) and σg,o are 0.439 μm and 3.88 for D100; 0.380 μm and 3.24 for B20; 0.465 μm and 4.22 for B100; 1.40 μm and 4.92 for BP9505; 1.46 μm and 2.25 for BP8020. There are more particles with low aerodynamic diameters (diameter <0.31 μm) in the exhaust of D100, B20 and B100 fuels. On the other hand, a greater fraction of particulate matter of BP9505 and BP8020 existed in coarse particles (diameter: 2.5-10 μm). Energy efficiency also increases significantly by 12.3-15.1% with the introduction of paraffinic fuel blends into the engine. Nevertheless, paraffinic fuel blends also reduce the emission of particulate matters by 36.0-38.4%. Carbon monoxide was decreased by 36.8-48.5%. Total hydrocarbon is 39.6-41.7% less than diesel fuel combustion. Nitrogen oxides emission is about 5% lower for paraffinic

  15. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  16. Antimisting kerosene: Base fuel effects, blending and quality control techniques

    NASA Technical Reports Server (NTRS)

    Yavrouian, A. H.; Ernest, J.; Sarohia, V.

    1984-01-01

    The problems associated with blending of the AMK additive with Jet A, and the base fuel effects on AMK properties are addressed. The results from the evaluation of some of the quality control techniques for AMK are presented. The principal conclusions of this investigation are: significant compositional differences for base fuel (Jet A) within the ASTM specification DI655; higher aromatic content of the base fuel was found to be beneficial for the polymer dissolution at ambient (20 C) temperature; using static mixer technology, the antimisting additive (FM-9) is in-line blended with Jet A, producing AMK which has adequate fire-protection properties 15 to 20 minutes after blending; degradability of freshly blended and equilibrated AMK indicated that maximum degradability is reached after adequate fire protection is obtained; the results of AMK degradability as measured by filter ratio, confirmed previous RAE data that power requirements to decade freshly blended AMK are significantly higher than equilibrated AMK; blending of the additive by using FM-9 concentrate in Jet A produces equilibrated AMK almost instantly; nephelometry offers a simple continuous monitoring capability and is used as a real time quality control device for AMK; and trajectory (jet thurst) and pressure drop tests are useful laboratory techniques for evaluating AMK quality.

  17. 76 FR 78290 - Cooperative Research and Development Agreement: Usage of Biodiesel Fuel Blends Within Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Register (73 FR 3316). Cooperative Research and Development Agreements Cooperative Research and Development... SECURITY Coast Guard Cooperative Research and Development Agreement: Usage of Biodiesel Fuel Blends Within... technology enhancements, performance, costs, and other issues associated with using biodiesel fuel blends...

  18. Effect of oxygenates blending with gasoline to improve fuel properties

    NASA Astrophysics Data System (ADS)

    Babazadeh Shayan, Soheil; Seyedpour, Seyed Morteza; Ommi, Fathollah

    2012-07-01

    The purpose of this paper is to study the effect of oxygenate additives into gasoline for the improvement of physicochemical properties of blends. Methyl Tertiary Butyl Ether (MTBE), Methanol, Tertiary butyl alcohol (TBA), and Tertiary amyl alcohol (TAA) blend into unleaded gasoline with various blended rates of 2.5%, 5%, 7.5%, 10%, 15%, and 20%. Physicochemical properties of blends are analyzed by the standard American Society of Testing and Materials (ASTM) methods. Methanol, TBA, and TAA increase density of the mixtures, but MTBE decreases density. The addition of oxygenates lead to a distortion of the base gasoline's distillation curves. The Reid vapor pressure (RVP) of gasoline is found to increase with the addition of the oxygenated compounds. All oxygenates improve both motor and research octane numbers. Among these four additives, TBA shows the best fuel properties.

  19. Biodiesel/ULSD blend ratios by analysis of fuel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel that is made from vegetable oil or animal fat. Biodiesel is often blended with ultra low sulfur diesel (ULSD; 15 mg/kg maximum sulfur content) in volumetric ratios (VBD) of up to 20 vol% (B20). Government tax credits and other regulatory requirements may depend on ac...

  20. An alternative fuel for urban buses-biodiesel blends

    SciTech Connect

    Schumacher, L.G.; Weber, J.A.; Russell, M.D.

    1995-11-01

    Qualitative and quantitative biodiesel fueling performance and operational data have been collected from urban mass transit buses at Bi-State Development Agency in St. Louis Missouri. A total of 10 vehicles were selected for fueling; 5-6V92 TA Detroit Diesel engines have been fueled with a 20/80 biodiesel/diesel fuel blend and 5-6V92 TA Detroit Diesel control vehicles have been fueled on petroleum based low sulfur diesel fuel (LSD). The real-world impact of a biodiesel blend on maintenance, reliability, cost, fuel economy and safety compared to LSD will be presented. In addition, engine exhaust emissions data collected by the University of West Virginia Department of Energy (DOE) sponsored mobile emissions laboratory will be presented. Operational data from Bi-State Development Agency is collected by the University of Missouri and quality control procedures are performed prior to placing the data in the Alternative Fuels Data Center (AFDC). The AFDC is maintained by the National Renewable Energy Laboratory in Golden, Colorado. This effort, which enables transit operators to review a real-world comparison of biodiesel and LSD, has been funded by the National Biodiesel Board with funds provided by the United Soybean Board with national checkoff dollars and the National Renewable Energy Laboratory.

  1. INVESTIGATION ON THE FLAME EXTINCTION LIMIT OF FUEL BLENDS

    SciTech Connect

    Ahsan R. Choudhuri

    2005-02-01

    Lean flame extinction limits of binary fuel mixtures of methane (CH{sub 4}), propane (C{sub 3}H{sub 8}), and ethane (C{sub 2}H{sub 6}) were measured using a twin-flame counter-flow burner. Experiments were conducted to generate an extinction equivalence ratio vs. global stretch rate plot and an extrapolation method was used to calculate the equivalence ratio corresponding to an experimentally unattainable zero-stretch condition. The foregoing gases were selected because they are the primary constitutes of natural gas, which is the primary focus of the present study. To validate the experimental setup and methodology, the flame extinction limit of pure fuels at zero stretch conditions were also estimated and compared with published values. The lean flame extinction limits of methane (f{sub ext} = 4.6%) and propane (f{sub ext} = 2.25%) flames measured in the present study agreed with the values reported in the literature. It was observed that the flame extinction limit of fuel blends have a polynomial relation with the concentration of component fuels in the mixture. This behavior contradicts with the commonly used linear Le Chatelier's approximation. The experimentally determined polynomial relations between the flame extinction limits of fuel blends (i.e. methane-propane and methane-ethane) and methane concentration are as follows: (1) Methane-Propane--%f{sub ext} = (1.05 x 10{sup -9}) f{sup 5}-(1.3644 x 10{sup -7}) f{sup 4}+(6.40299 x 10{sup -6}) f{sup 3}-(1.2108459 x 10{sup -4}) f{sup 2}+(2.87305329 x 10{sup -3}) f+2.2483; (2) Methane-Ethane--%f{sub ext} = (2.1 x 10{sup -9})f{sup 5}-(3.5752 x 10{sup -7}) f{sup 4}+(2.095425 x 10{sup -5}) f{sup 3}-(5.037353 x 10{sup -4}) f{sup 2} + 6.08980409 f + 2.8923. Where f{sub ext} is the extinction limits of methane-propane and methane-ethane fuel blends, and f is the concentration (% volume) of methane in the fuel mixture. The relations were obtained by fitting fifth order curve (polynomial regression) to experimentally

  2. Effects of fuel evaporation on the octane number of methanol-gasoline blended fuels

    SciTech Connect

    Moran, D.P.

    1994-10-01

    A procedure is described to estimate the influence of end-gas temperature on Octane Number. Blending methanol with gasoline is known to cause a disproportionate increase in Research Octane Number, and this is found to correlate well with the evaporative cooling characteristics of these blends. The Motor Octane Number test eliminates evaporative effects, and the difference between the two test methods is evaluated in terms of evaporative cooling. It is concluded that the high heat of vaporization of methanol is largely responsible for the excellent RON performance of methanol-gasoline blended fuels. 17 refs., 11 refs., 2 tabs.

  3. Long term performance of a sunflower oil/diesel fuel blend

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-05-01

    The purpose of this project was to study the effects of a 50 percent blend by volume of sunflower oil in No. 2 diesel fuel used in a diesel test engine of current design. Specifically, this investigation covered the effect of the fuel blend on engine durability and the functioning of the different fuels in the diesel engine injection system.

  4. OXIDATIVE STABILITY OF BIODIESEL/JET FUEL BLENDS BY OIL STABILITY INDEX (OSI) ANALYSIS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel, an alternative fuel made by transesterification of vegetable oil with methanol, is becoming more readily available for use in blends with conventional diesel fuel for transportation and other "off-road" applications. One such off-road application is in blends with aviation fuels to impro...

  5. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  6. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  7. Fuel property enhancement of biodiesel fuels from common and alternative feedstocks via complementary blending

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl esters (biodiesel) prepared from field pennycress and meadowfoam seed oils were blended with methyl esters from camelina, cottonseed, palm, and soybean oils in an effort to ameliorate technical deficiencies inherent to these biodiesel fuels. For instance, camelina, cottonseed, and ...

  8. Thermal Stability Testing of Fischer-Tropsch Fuel and Various Blends with Jet A, as Well as Aromatic Blend Additives

    NASA Technical Reports Server (NTRS)

    Klettlinger, J.; Rich, R.; Yen, C.; Surgenor, A.

    2011-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  9. 76 FR 25362 - Cooperative Research and Development Agreement: Butanol Fuel Blend Usage With Marine Outboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316... SECURITY Coast Guard Cooperative Research and Development Agreement: Butanol Fuel Blend Usage With Marine... Agreement (CRADA) to identify and investigate the use of butanol fuel blends within marine outboard...

  10. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  11. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  12. Emissions from ethanol-blended fossil fuel flames

    SciTech Connect

    Akcayoglu, Azize

    2011-01-15

    A fundamental study to investigate the emission characteristics of ethanol-blended fossil fuels is presented. Employing a heterogeneous experimental setup, emissions are measured from diffusion flames around spherical porous particles. Using an infusion pump, ethanol-fossil fuel blend is transpired into a porous sphere kept in an upward flowing air stream. A typical probe of portable digital exhaust gas analyzer is placed in and around the flame with the help of a multi-direction traversing mechanism to measure emissions such as un-burnt hydrocarbons, carbon monoxide and carbon dioxide. Since ethanol readily mixes with water, emission characteristics of ethanol-water blends are also studied. For comparison purpose, emissions from pure ethanol diffusion flames are also presented. A simplified theoretical analysis has been carried out to determine equilibrium surface temperature, composition of the fuel components in vapor-phase and heat of reaction of each blend. These theoretical predictions are used in explaining the emission characteristics of flames from ethanol blends. (author) This paper presents the results of an experimental study of flow structure in horizontal equilateral triangular ducts having double rows of half delta-wing type vortex generators mounted on the duct's slant surfaces. The test ducts have the same axial length and hydraulic diameter of 4 m and 58.3 mm, respectively. Each duct consists of double rows of half delta wing pairs arranged either in common flow-up or common flow-down configurations. Flow field measurements were performed using a Particle Image Velocimetry Technique for hydraulic diameter based Reynolds numbers in the range of 1000-8000. The secondary flow field differences generated by two different vortex generator configurations were examined in detail. The secondary flow is found stronger behind the second vortex generator pair than behind the first pair but becomes weaker far from the second pair in the case of Duct1. However

  13. Characteristic of blended fuel properties and engine cycle-to-cycle variations with butanol additive

    NASA Astrophysics Data System (ADS)

    Ali, Obed M.; Mamat, Rizalman; Abdullah, Nik R.; Abdullah, Abdul Adam

    2015-05-01

    Biodiesel fuel characteristics are one of the most important parameters that limited their application in diesel engines. Though biodiesel-diesel blended fuel can replace diesel satisfactorily at low blending ratios up to 20%, problems related to fuel property persist at high blending ratio. Hence, in the present study, the feasibility of biodiesel-diesel blended fuel B30 was investigated with respect to its properties and engine cyclic variations with increasing butanol additive. The blended fuel with additive were tested experimentally in a diesel engine and the in-cylinder pressure data were collected and analyzed using the coefficient of variation and wavelet power spectrum to evaluate the engine cyclic variations compared to diesel fuel engine test results. The fuel property test results showed slight improvement in density and acid value with significant reduction in viscosity when increasing butanol additive. Furthermore, the blended fuel pour point was reduced to -6 °C at 8% butanol additive. On the other hand, the energy content slightly affected with increasing butanol additive in the blend. From the wavelet power spectrum, it is observed that the short-period oscillations appear intermittently in pure blended fuel, while the long and intermediate-term periodicities tends to appear with increasing additive ratio. Moreover, the spectral power increased with an increase in the additive ratio indicating that the additive has a noticeable effect on increasing the cycle to cycle variation. The coefficient of variation of indicated mean effective pressure for B30 were found to be the lowest and increases with increasing additive ratios. Both the wavelet analysis and coefficient of variation results reveals that blended fuel B30 has engine cyclic variations comparable to diesel fuel with increasing butanol additive up to 4%.

  14. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels

    NASA Astrophysics Data System (ADS)

    Hsieh, Wei-Dong; Chen, Rong-Hong; Wu, Tsung-Lin; Lin, Ta-Hui

    The purpose of this study is to experimentally investigate the engine performance and pollutant emission of a commercial SI engine using ethanol-gasoline blended fuels with various blended rates (0%, 5%, 10%, 20%, 30%). Fuel properties of ethanol-gasoline blended fuels were first examined by the standard ASTM methods. Results showed that with increasing the ethanol content, the heating value of the blended fuels is decreased, while the octane number of the blended fuels increases. It was also found that with increasing the ethanol content, the Reid vapor pressure of the blended fuels initially increases to a maximum at 10% ethanol addition, and then decreases. Results of the engine test indicated that using ethanol-gasoline blended fuels, torque output and fuel consumption of the engine slightly increase; CO and HC emissions decrease dramatically as a result of the leaning effect caused by the ethanol addition; and CO 2 emission increases because of the improved combustion. Finally, it was noted that NO x emission depends on the engine operating condition rather than the ethanol content.

  15. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  16. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  17. Blends of Fischer-Tropsch crude: A lower cost route to diesel fuel

    SciTech Connect

    Suppes, G.J.; Terry, J.; Burkhart, M.; Cupps, M.P.

    1998-12-31

    Fischer-Tropsch conversion of gasification products to liquid hydrocarbon fuel typically includes Fischer-Tropsch synthesis followed by refining (hydrocracking and distillation) of the syncrude into mostly diesel or kerosene with some naphtha (a feedstock for gasoline production). Refining is assumed necessary, possibly overlooking the exceptional fuel qualities of syncrude for more direct utilization as a compression-ignition (CI) fuel. This paper evaluates cetane number, viscosity, cloud point, and pour point properties of syncrude and blends of syncrude with blend stocks such as ethanol and diethyl ether. The results show that blends comprised primarily of syncrude are potentially good CI fuels with pour-point temperature depression being the largest development obstacle. The resulting blends may provide an alternative CI fuel which costs less than petroleum based diesel, depending on the feedstock and feedstock preparation costs. Particularly good market opportunities exist with Energy Policy Act (EPACT) applications.

  18. Combustion parameters of spark ignition engine using waste potato bioethanol and gasoline blended fuels

    NASA Astrophysics Data System (ADS)

    Ghobadian, B.; Najafi, G.; Abasian, M.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the combustion parameters of a SI engine operating on bioethanol-gasoline blends (E0-E20: 20% bioethanol and 80% gasoline by volume). A reactor was designed, fabricated and evaluated for bioethanol production from potato wastes. The results showed that increasing the bioethanol content in the blend fuel will decrease the heating value of the blended fuel and increase the octane number. Combustion parameters were evaluated and analyzed at different engine speeds and loads (1000-5000 rpm). The results revealed that using bioethanol-gasoline blended fuels will increase the cylinder pressure and its 1st and 2nd derivatives (P(θ), P•(θ) and P••(θ)). Moreover, using bioethanol- gasoline blends will increase the heat release (Q•(θ)) and worked of the cycle. This improvement was due to the high oxygen percentage in the ethanol.

  19. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    NASA Astrophysics Data System (ADS)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-03-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  20. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    NASA Astrophysics Data System (ADS)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  1. Compatibility Studies of Hydrogen Peroxide and a New Hypergolic Fuel Blend

    NASA Technical Reports Server (NTRS)

    Baldridge, Jennifer; Villegas, Yvonne

    2002-01-01

    Several preliminary materials compatibility studies have been conducted to determine the practicality of a new hypergolic fuel system. Hypergolic fuel ignites spontaneously as the oxidizer decomposes and releases energy in the presence of the fuel. The bipropellant system tested consists of high-test hydrogen peroxide (HTP) and a liquid fuel blend consisting of a hydrocarbon fuel, an ignition enhancer and a transition metal catalyst. In order for further testing of the new fuel blend to take place, some basic materials compatibility and HTP decomposition studies must be accomplished. The thermal decomposition rate of HTP was tested using gas evolution and isothermal microcalorimetry (IMC). Materials were analyzed for compatibility with hydrogen peroxide including a study of the affect welding has on stainless steel elemental composition and its relation to HTP decomposition. Compatibility studies of valve materials in the fuel blend were performed to determine the corrosion resistance of the materials.

  2. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua

    The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.

  3. CHARACTERIZATION OF EMISSIONS FROM VEHICLES USING METHANOL AND METHANOL-GASOLINE BLENDED FUELS

    EPA Science Inventory

    Exhaust and evaporative emissions were examined from vehicles fueled with methanol or a gasoline-methanol blend. Regulated automobile pollutants, as well as detailed hydrocarbons, methanol, and aldehydes were measured, and exhaust emission trends were obtained for vehicle operati...

  4. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  5. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    PubMed

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. PMID:24632362

  6. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  7. Properties and performance testing with blends of biomass alcohols, vegetable oils and diesel fuel

    SciTech Connect

    Vinyard, S.; Hawkins, L.; Renoll, E.S.; Bunt, R.C.; Goodling, J.S.

    1982-01-01

    This paper is a presentation of results from three related efforts to determine the technical feasibility of using alcohols and vegetable oils blended with Diesel oil as fuel for unmodified compression ignition engines. Several different vegetable oils were successfully tested in a single cylinder engine. Sunflower oil was blended from 50% to 80% by volume with Diesel fuel and used in a multicylinder engine. Thermophysical property data were gathered on pure and blended fuels and are reported. A spray parameter, epsilon, was found which would predict the necessary change in valve opening pressure to render the atomization of the new fuel similar to that for which the injection system was designed. Engine testing showed that fuel consumption was substantially reduced upon setting the injectors at the new VOP. 2 figures, 1 table.

  8. Identification and Quantification of Processes Affecting the Fate of Ethanol-Blended Fuel in the Subsurface

    NASA Astrophysics Data System (ADS)

    Devries, J. M.; Mayer, K. U.

    2015-12-01

    At present, the oil and gas industry distributes gasoline with an ethanol content of up to 10% (E10) to the consumer. However, ethanol advocates are promoting gasoline blends with higher ethanol content to be introduced into the market (e.g., E20, corresponding to an ethanol content of 20%). The likelihood of unintended fuel releases with elevated ethanol concentrations through surficial spills or from underground storage systems will therefore increase. A particular concern is the increased rate of CH4 and CO2 production as the spill biodegrades, which is believed to be associated with the increased ethanol content in the fuel. Consequently, high gas generation rates associated with ethanol-blended fuels may amplify the risk of vapor intrusion of CH4 and BTEX into basements or other subsurface structures that may be nearby. A comprehensive and comparative study on the fate of higher concentration ethanol-blended fuels in the subsurface has not been conducted to date. The present study focuses on determining the fate of ethanol blended fuels in the subsurface through a series of controlled and instrumented laboratory column experiments. The experiments compare the behavior of pure gasoline with that of ethanol-blended fuels for different soil types (sand and silt) in columns 2 meters tall and 30cm in diameter. The column experiments focus on the quantification of gas generation by volatilization and biodegradation and 1-D vertical fate and transport of CO2, CH4, benzene and toluene through the vadose zone. The fuel blends have been injected into the lower third of the columns and gas composition and fluxes within the column are being monitored over time. The goal of this study is to contribute to the scientific foundation that will allow gauging the level of risk and the need for remediation at fuel spill sites with higher ethanol blends.

  9. Exhaust Emissions and Fuel Properties of Partially Hydrogenated Soybean Oil Methyl Esters Blended with Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Important fuel properties and emissions characteristics of blends (20 vol%) of soybean oil methyl esters (SME) and partially hydrogenated SME (PHSME) in ultra low sulfur diesel fuel (ULSD) were determined and compared with neat ULSD. The following changes in physical properties were noticed for B20...

  10. Flight Investigation of the Knock-Limited Performance of a Triptane Blend, a Toluene Blend, and 28-R Fuel in an R-1830-75 Engine

    NASA Technical Reports Server (NTRS)

    Blackman, Calvin C.

    1946-01-01

    Knock-limited performance data were obtained for three fuels on an R-1830-75 engine in a B-24D airplane at engine speeds of 1800, 2250, and 2600 rpm, a spark advance of 25 degrees B.T.C., and carburetor-air temperatures of 85 F for 1800 and 2250 rpm and 100 F for 2600 rpm. The test fuels were a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), a blend of 80 percent 28-R plus 15 percent toluene (leaded to 4.5 ml TEL / gal), and 28-R fuel. The knock-limited manifold pressure of the toluene blend depreciated more in the lean region than the triptane blend or 28-R fuel. The knock-limited brake horsepower for the triptane blend varied from 16 to 25 percent higher than 28-R in the lean region and 18 to 30 percent higher in the rich region. The knock-limited brake horsepower of the toluene blend was approximately 15 percent higher than that of 28-R in the rich region and varied from 2 to 10 percent higher in the lean region. Knock limits of the triptane blend and 28-R fuel tested in the R-1830-75 engine agreed with limits for the same fuels determined with the R-1830-94 engine for engine speeds of 1800 and 2250 rpm.

  11. Low-temperature Flow Properties of Biodiesel/Jet Fuel (BioJet) Blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is a renewable fuel that is made from transesterification of vegetable oil, animal fat or other lipid feedstocks with a simple alcohol such as methanol. Biodiesel may be blended with jet fuel (JP-8) to reduce dependence on petroleum imports and improve ground-level emissions. Biodiesel i...

  12. Methylesters of plant oils as diesel fuels, either straight or in blends

    SciTech Connect

    Pischinger, G.H.; Siekmann, R.W.; Falcon, A.M.; Fernandes, F.R.

    1982-01-01

    Engine and vehicle tests were carried out with three alternative Diesel fuels: straight methylester of soybean oil (MESO), 75 to 25 gasoil-MESO blend, and 68-23-9 gasoil-MESO-ethanol (anhydrous) blend. Fuel-relevant characteristics of the three Diesel alternatives are given, together with the phase diagram of the ternary blend. Power, torque and volumetric brake specific fuel consumption in an unmodified IDI Diesel engine reflect mainly the net volumetric heating values. Smoke decreases with the presence of oxygenate compounds as does the emission of CO, as measured on the chassis dynamometer. A rigorous durability bench test on straight MESO shows results entirely within VW specifications. Analyses have indicated that, for IDI engines, no lube-oil problems are anticipated. Investigation of compatibility of MESO with fuel system material reveals considerable similarity to gasoil, but some items may require adaptation or even substitution. 3 figures, 9 tables.

  13. Thermal Stability Testing of a Fischer-Tropsch Fuel and Various Blends with Jet A

    NASA Technical Reports Server (NTRS)

    Klettlinger, Jennifer Suder; Surgenor, Angela; Yen, Chia

    2010-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. Fischer-Tropsch fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal parafins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline conventional Jet A, a commercial grade F-T jet fuel, and various blends of this F-T fuel in Jet A. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonics Fixed Wing Project.

  14. Thermal Stability Results of a Fischer-Tropsch Fuel With Various Blends of Aromatic Solution

    NASA Technical Reports Server (NTRS)

    Lindsey, Jennifer; Klettlinger, Suder

    2013-01-01

    Fischer-Tropsch (F-T) jet fuel composition differs from petroleum-based, conventional commercial jet fuel because of differences in feedstock and production methodology. F-T fuel typically has a lower aromatic and sulfur content and consists primarily of iso and normal paraffins. The ASTM D3241 specification for Jet Fuel Thermal Oxidation Test (JFTOT) break point testing method was used to test the breakpoint of a baseline commercial grade F-T jet fuel, and various blends of this F-T fuel with an aromatic solution. The goal of this research is to determine the effect of aromatic content on the thermal stability of F-T fuel. The testing completed in this report was supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing Project. Two different aromatic content fuels from Rentech, as well as these fuels with added aromatic blend were analyzed for thermal stability using the JFTOT method. Preliminary results indicate a reduction in thermal stability occurs upon increasing the aromatic content to 10% by adding an aromatic blend to the neat fuel. These results do not specify a failure based on pressure drop, but only on tube color. It is unclear whether tube color correlates to more deposition on the tube surface or not. Further research is necessary in order to determine if these failures are true failures based on tube color. Research using ellipsometry to determine tube deposit thickness rather than color will be continued in follow-up of this study.

  15. Guanidinium based blend anion exchange membranes for direct methanol alkaline fuel cells (DMAFCs)

    NASA Astrophysics Data System (ADS)

    Sajjad, Syed D.; Liu, Dong; Wei, Zi; Sakri, Shambhavi; Shen, Yi; Hong, Yi; Liu, Fuqiang

    2015-12-01

    Guanidinium based blend anion exchange membranes (AEMs) for direct methanol alkaline fuel cells have been fabricated and studied. The guanidinium prepolymer is first synthesized through a simple polycondensation process with the ion exchange moieties incorporated directly into the polymer backbone, and then is used to make guanidinium - chitosan (Gu-Chi) blend membranes. Besides, a lipophilic guanidinium prepolymer, synthesized by means of a precipitation reaction between sodium stearate and guanidinium salt, is adopted to tune solubility and mechanical properties of the blend AEMs. Results show that both ionic conductivity and methanol permeability of the AEMs can be tuned by blend composition and chemistry of the guanidinium based prepolymer. The selectivity (ratio of ionic conductivity to methanol permeability) of the fabricated membranes is superior to that of commercial membranes. Under fuel cell tests using 3 M methanol, the open circuit voltage (OCV) value for the blend AEM with 72 wt% of the guanidinium polymer (0.69 V) is much higher than that of the commercial Tokuyama A201 (0.47 V) at room temperature, while the blend AEMs with 50 wt% guanidinium content still show comparable values. Overall, the developed membranes demonstrate superior performance and therefore pose great promise for direct methanol anion exchange fuel cell (DMAFC) applications.

  16. Measuring the Effect of Fuel Structures and Blend Distribution on Diesel Emissions Using Isotope Tracing

    SciTech Connect

    Cheng, A S; Mueller, C J; Buchholz, B A; Dibble, R W

    2004-02-10

    Carbon atoms occupying specific positions within fuel molecules can be labeled and followed in emissions. Renewable bio-derived fuels possess a natural uniform carbon-14 ({sup 14}C) tracer several orders of magnitude above petroleum-derived fuels. These fuels can be used to specify sources of carbon in particulate matter (PM) or other emissions. Differences in emissions from variations in the distribution of a fuel component within a blend can also be measured. Using Accelerator Mass Spectrometry (AMS), we traced fuel components with biological {sup 14}C/C levels of 1 part in 10{sup 12} against a {sup 14}C-free petroleum background in PM and CO{sub 2}. Different carbon atoms in the ester structure of the diesel oxygenate dibutyl maleate displayed far different propensities to produce PM. Homogeneous cosolvent and heterogeneous emulsified ethanol-in-diesel blends produced significantly different PM despite having the same oxygen content in the fuel. Emulsified blends produced PM with significantly more volatile species. Although ethanol-derived carbon was less likely to produce PM than diesel fuel, it formed non-volatile structures when it resided in PM. The contribution of lubrication oil to PM was determined by measuring an isotopic difference between 100% bio-diesel and the PM it produced. Data produced by the experiments provides validation for combustion models.

  17. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  18. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. PMID:19913283

  19. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    PubMed Central

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  20. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  1. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Ethanol Fuel Blends

    EPA Science Inventory

    Air pollution is among the many environmental and public health concerns associated with increased ethanol use in vehicles. Jacobson [2007] showed for the U.S. market that full conversion to e85 ([85% ethanol, 15% gasoline]—the maximum standard blend used in modern dual fuel veh...

  2. Carbonaceous Aerosols Emitted from Light-Duty Vehicles Operating on Gasoline and Ethanol Fuel Blends

    EPA Science Inventory

    This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the t...

  3. Effects of Ethanol-Gasoline Blended Fuels on Learning and Memory

    EPA Science Inventory

    The potential toxicity of ethanol-gasoline blended fuels to the developing nervous system is of concern. We previously reported an absence of effect on learning and memory as seen in a trace fear conditioning task and water maze task in offspring of dams exposed prenatally to the...

  4. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    NASA Astrophysics Data System (ADS)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  5. Estimation of F-3 and F-4 knock-limited performance ratings for ternary and quaternary blends containing triptane or other high-antiknock aviation-fuel blending agents

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C

    1948-01-01

    Charts are presented that permit the estimation of F-3 and F-4 knock-limited performance ratings for certain ternary and quaternary fuel blends. Ratings for various ternary and quaternary blends estimated from these charts compare favorably with experimental F-3 and F-4 ratings. Because of the unusual behavior of some of the aromatic blends in the F-3 engine, the charts for aromatic-paraffinic blends are probably less accurate than the charts for purely paraffinic blends.

  6. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  7. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    SciTech Connect

    Putri, Zufira E-mail: arcana@chem.itb.ac.id; Arcana, I Made E-mail: arcana@chem.itb.ac.id

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  8. Fuel Properties of Biodiesel/Ultra-low Sulfur Diesel Blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel and fuel extender made from transesterification of vegetable oils or animal fats with methanol or ethanol. The National Biodiesel Board estimated that biodiesel production in the United States increased from 250 million gal in 2006 to 450 million gal in 2007. In 20...

  9. NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect

    Sluder, Scott; West, Brian H

    2012-01-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were

  10. NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels

    SciTech Connect

    Sluder, Scott; West, Brian H

    2011-10-01

    Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were

  11. Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2014-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  12. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil.

    PubMed

    Mushrush, G; Beal, E J; Spencer, G; Wynne, J H; Lloyd, C L; Hughes, J M; Walls, C L; Hardy, D R

    2001-05-01

    The use of bio-derived materials both as fuels and/or as blending stocks becomes more attractive as the price of middle distillate fuels, especially home heating oil, continues to rise. Historically, many biomass and agricultural derived materials have been suggested. One of the most difficult problems encountered with home heating oil is that of storage stability. High maintenance costs associated with home heating oil are, in large part, because of this stability problem. In the present research, Soygold, a soybean derived fuel, was added in concentrations of 10%-20% to both a stable middle distillate fuel and an unstable home heating oil. Fuel instability in this article will be further related to the organo-nitrogen compounds present. The soy-fuel mixtures proved stable, and the addition of the soy liquid enhanced both the combustion properties, and dramatically improved the stability of the unstable home heating oil. PMID:11460320

  13. Low-temperature pyrolysis of coal to produce diesel-fuel blends

    SciTech Connect

    Shafer, T.B.; Jett, O.J.; Wu, J.S.

    1982-10-01

    Low-temperature (623 to 773/sup 0/K) coal pyrolysis was investigated in a bench-scale retort. Factorially designed experiments were conducted to determine the effects of temperature, coal-particle size, and nitrogen flow rate on the yield of liquid products. Yield of condensable organic products relative to the proximate coal volatile matter increased by 3.1 and 6.4 wt % after increasing nitrogen purge flow rate from 0.465 to 1.68 L/min and retort temperature from 623 to 723/sup 0/K, respectively. The liquid product may be suitable for blending with diesel fuel. The viscosity and density of coal liquids produced at 723/sup 0/K were compared with those of diesel fuel. The coal liquids had a higher carbon-to-hydrogen ratio and a lower aliphatic-to-aromatic ratio than premium quality No. 2 diesel fuel. It was recommended that liquids from coal pyrolysis be blended with diesel fuel to determine stability of the mixture and performance of the blend in internal combustion engines.

  14. Effects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends.

    PubMed

    Zhao, Hong; Ge, Yunshan; Tan, Jianwei; Yin, Hang; Guo, Jiadong; Zhao, Wei; Dai, Peipei

    2011-01-01

    Regulated and unregulated emissions from four passenger cars fueled with methanol/gasoline blends at different mixing ratios (M15, M20, M30, M50, M85 and M100) were tested over the New European Driving Cycle (NEDC). Volatile organic compounds (VOCs) were sampled by Tenax TA and analyzed by thermal desorption-gas chromatograph/mass spectrometer (TD-GC/MS). Carbonyls were trapped on dinitrophenylhydrazine (DNPH) cartridges and analyzed by high performance liquid chromatography (HPLC). The results showed that total emissions of VOCs and BTEX (benzene, toluene, ethylbenzene, p, m, o-xylene) from all vehicles fueled with methanol/gasoline blends were lower than those from vehicles fueled with only gasoline. Compared to the baseline, the use of M85 decreased BTEX emissions by 97.4%, while the use of M15 decreased it by 19.7%. At low-to-middle mixing ratios (M15, M20, M30 and M50), formaldehyde emissions showed a slight increase while those of high mixing ratios (M85 and M100) were three times compared with the baseline gasoline only. When the vehicles were retrofitted with new three-way catalytic converters (TWC), emissions of carbon monoxide (CO), total hydrocarbon (THC), and nitrogen oxides (NO(x)) were decreased by 24%-50%, 10%-35%, and 24%-58% respectively, compared with the cars using the original equipment manufacture (OEM) TWC. Using the new TWC, emissions of formaldehyde and BTEX were decreased, while those of other carbonyl increased. It is necessary that vehicles fueled with methanol/gasoline blends be retrofitted with a new TWC. In addition, the specific reactivity of emissions of vehicles fueled with M15 and retrofitted with the new TWC was reduced from 4.51 to 4.08 compared to the baseline vehicle. This indicates that the use of methanol/gasoline blend at a low mixing ratio may have lower effect on environment than gasoline. PMID:22432307

  15. Site Characterization of Ethanol-Blended Fuel Releases

    EPA Science Inventory

    There has been an increasing use of biofuels (ethanol in particular) in the fuel supply nationwide, and an increase in the number of stations that sell gasoline that contains more than 10% ethanol. The U.S. EPA needs to understand the fate of these materials if they are released ...

  16. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  17. Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine

    NASA Astrophysics Data System (ADS)

    Rifal, Mohamad; Sinaga, Nazaruddin

    2016-04-01

    In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.

  18. Chemical Processing of Non-Crop Plants for Jet Fuel Blends Production

    NASA Technical Reports Server (NTRS)

    Kulis, M. J.; Hepp, A. F.; McDowell, M.; Ribita, D.

    2009-01-01

    The use of Biofuels has been gaining in popularity over the past few years due to their ability to reduce the dependence on fossil fuels. Biofuels as a renewable energy source can be a viable option for sustaining long-term energy needs if they are managed efficiently. We describe our initial efforts to exploit algae, halophytes and other non-crop plants to produce synthetics for fuel blends that can potentially be used as fuels for aviation and non-aerospace applications. Our efforts have been dedicated to crafting efficient extraction and refining processes in order to extract constituents from the plant materials with the ultimate goal of determining the feasibility of producing biomass-based jet fuel from the refined extract. Two extraction methods have been developed based on communition processes, and liquid-solid extraction techniques. Refining procedures such as chlorophyll removal and transesterification of triglycerides have been performed. Gas chromatography in tandem with mass spectroscopy is currently being utilized in order to qualitatively determine the individual components of the refined extract. We also briefly discuss and compare alternative methods to extract fuel-blending agents from alternative biofuels sources.

  19. Finding synergies in fuels properties for the design of renewable fuels--hydroxylated biodiesel effects on butanol-diesel blends.

    PubMed

    Sukjit, E; Herreros, J M; Piaszyk, J; Dearn, K D; Tsolakis, A

    2013-04-01

    This article describes the effects of hydroxylated biodiesel (castor oil methyl ester - COME) on the properties, combustion, and emissions of butanol-diesel blends used within compression ignition engines. The study was conducted to investigate the influence of COME as a means of increasing the butanol concentration in a stable butanol-diesel blend. Tests were compared with baseline experiments using rapeseed methyl esters (RME). A clear benefit in terms of the trade-off between NOX and soot emissions with respect to ULSD and biodiesel-diesel blends with the same oxygen content was obtained from the combination of biodiesel and butanol, while there was no penalty in regulated gaseous carbonaceous emissions. From the comparison between the biodiesel fuels used in this work, COME improved some of the properties (for example lubricity, density and viscosity) of butanol-diesel blends with respect to RME. The existence of hydroxyl group in COME also reduced further soot emissions and decreased soot activation energy. PMID:23452309

  20. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    PubMed

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. PMID:21081245

  1. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    DOE PAGESBeta

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allowmore » a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.« less

  2. Consumer Choice of E85 Denatured Ethanol Fuel Blend: Price Sensitivity and Cost of Limited Fuel Availability

    SciTech Connect

    Liu, Changzheng; Greene, David

    2014-12-01

    The promotion of greater use of E85, a fuel blend of 85% denatured ethanol, by flex-fuel vehicle owners is an important means of complying with the Renewable Fuel Standard 2. A good understanding of factors affecting E85 demand is necessary for effective policies that promote E85 and for developing models that forecast E85 sales in the United States. In this paper, the sensitivity of aggregate E85 demand to E85 and gasoline prices is estimated, as is the relative availability of E85 versus gasoline. The econometric analysis uses recent data from Minnesota, North Dakota, and Iowa. The more recent data allow a better estimate of nonfleet demand and indicate that the market price elasticity of E85 choice is substantially higher than previously estimated.

  3. Preliminary report on blending strategies for inert-matrix fuel recycling in LWRs.

    SciTech Connect

    Hoffman, E. A.; Nuclear Engineering Division

    2005-04-29

    Various recycle strategies have been proposed to manage the inventory of transuranics in commercial spent nuclear fuel (CSNF), with a particular goal of increasing the loading capacity of spent fuel and reprocessing wastes in the Yucca Mountain repository. Transuranic recycling in commercial LWRs can be seen as a viable means of slowing the accumulation of transuranics in the nationwide CSNF stockpile. Furthermore, this type of approach is an important first step in demonstrating the benefits of a nuclear fuel cycle which incorporates recycling, such as envisioned for Generation-IV reactor systems under development. Recycling strategies of this sort are not proposed as an attempt to eliminate the need of a geologic nuclear waste repository, but as a means to enhance the usefulness of the repository currently under construction in the U.S., perhaps circumventing the need for a second facility. A US-DOE Secretarial recommendation on the need for the construction of a second geologic repository is required by 2010. The Advanced Fuel Cycle Initiative (AFCI) has supported a breadth of work to evaluate the ideal transuranic separation and recycle strategy. Previous AFCI studies of LWR-based transmutation have considered the benefits of homogeneously recycling plutonium, plutonium and neptunium, and all transuranic (TRU) species. A study of a wide range of hypothetical separation schemes (Pu, Pu+Np, Pu+Np+Am, etc.) with multi-recycling has also been performed, focusing on the proliferation resistance of the various fuel cycles and fuel handling issues. The direct recycle of the recovered TRU from spent inert-matrix fuel (IMF) into new IMF was found to be quite limited due to the rapid burndown of the fissile plutonium. The IMF is very effective at destroying the fissile fraction of the TRU with destruction rates in excess of 80% of the fissile material without recycling the IMF. Blending strategies have been proposed to mitigate the rapid burndown of the fissile plutonium

  4. Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol

    SciTech Connect

    Thomson, Jeffery K; Pawel, Steven J; Wilson, Dane F

    2013-01-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  5. Diesel engine endurance tests using JP-8 fuel blended with used engine oil. Interim report November 1996--December 1997

    SciTech Connect

    Frame, E.A.; Yost, D.M.; Palacios, C.F.

    1998-07-01

    Tests were done to examine the feasibility of disposing of used engine oil from military vehicles by blending it with JP-8 engine fuel to be used in diesel vehicles. Two Army diesel engines were evaluated in cyclic endurance dynamometer test procedures using JP-8 fuel blended with 7.5% vol used oil. Results were compared to baseline performance using neat JP-8 fuel. The following major differences were observed when using blended fuel: Significant ashy deposits were found in the pre-combustion chamber of the 4-cycle diesel engine; indications of imminent exhaust valve burning (streaking) were found on the exhaust valves in the 2-cycle diesel engine. For both engines, condition was such that continuous use of 7.5 %vol blend would not be recommended. Considering it would take between 19--68 years for an Army engine to reach the end of endurance test condition, use of blended fuel 1 or 2 times per year is judged acceptable from an endurance standpoint.

  6. Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes

    NASA Astrophysics Data System (ADS)

    El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.

    2015-07-01

    The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ibd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.

  7. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance

  8. Fuel miles and the blend wall: costs and emissions from ethanol distribution in the United States.

    PubMed

    Strogen, Bret; Horvath, Arpad; McKone, Thomas E

    2012-05-15

    From 1991 to 2009, U.S. production of ethanol increased 10-fold, largely due to government programs motivated by climate change, energy security, and economic development goals. As low-level ethanol-gasoline blends have not consistently outperformed ethanol-free gasoline in vehicle performance or tailpipe emissions, national-level economic and environmental goals could be accomplished more efficiently by concentrating consumption of gasoline containing 10% ethanol (i.e., E10) near producers to minimize freight activity. As the domestic transportation of ethanol increased 10-fold in metric ton-kilometers (t-km) from 2000 to 2009, the portion of t-km potentially justified by the E10 blend wall increased from less than 40% to 80%. However, we estimate 10 billion t-km took place annually from 2004 to 2009 for reasons other than the blend wall. This "unnecessary" transportation resulted in more than $240 million in freight costs, 90 million L of diesel consumption, 300,000 metric tons of CO(2)-e emissions, and 440 g of human intake of PM(2.5). By 2009, the marginal savings from enabling Iowa to surpass E10 would have exceeded 2.5 g CO(2)-e/MJ and $0.12/gallon of ethanol, as the next-closest customer was 1600 km away. The use of a national network model enables estimation of marginal transportation impacts from subnational policies, and benefits from policies encouraging concentrated consumption of renewable fuels. PMID:22506875

  9. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  10. Evaluation of fuel additives for reduction of material imcompatibilities in methanol-gasoline blends

    NASA Technical Reports Server (NTRS)

    Rodriguez, C. F.; Barbee, J. G.; Knutson, W. K.; Cuellar, J. P., Jr.

    1983-01-01

    Screening tests determined the efficacy of six commercially available additives as modifiers of methanol's corrosivity toward metals and its weakening of tensile properties of nonmetals in automotive fuel systems. From the screening phase, three additives which seemed to protect some of the metals were tested in higher concentrations and binary combinations in search of optimal application conditions. Results indicate that two of the additives have protective properties and combining them increases the protection of the metals corroded by methanol-gasoline blends. Half of the metals in the tests were not corroded. Testing at recommended concentrations and then at higher concentrations and in combinations shows that the additives would have no protective or harmful effects on the nonmetals. Two additives emerged as candidates for application to the protection of metals in automotive methanol-gasoline fuel systems. The additives tested were assigned letter codes to protect their proprietary nature.

  11. Ignition of blended-fuel droplet in high-temperature atmosphere

    SciTech Connect

    Takei, M.; Tsukamoto, T.; Niioka, T. )

    1993-04-01

    Ignition time of a suspended fuel droplet is obtained experimentally with high ambient temperature. A stationary fuel droplet suspended by a fine silica fiber is taken into a furnace moving on rail and is quickly exposed to high ambient temperature. Blended fuels of n-heptane and n-hexadecane are used, and the effects of fuel mixture ratio, initial droplet diameter, and ambient air temperature on ignition time are observed. For pure hexadecane droplets, ignition time increases with the increase in initial droplet diameter. On the other hand, it decreases for pure heptane, especially under lower ambient temperatures. For the case of mixed fuel, the variation of ignition time with the initial droplet diameter has a characteristic feature, namely the results show that an initial droplet diameter exists at which the ignition time has the maximum value and that this diameter increases with a decrease of the heptane concentration or the ambient temperature. The maximum ignition time is also confirmed by the combination of ethylalcohol and decylalcohol.

  12. Size distributions of PM, carbons and PAHs emitted from a generator using blended fuels containing water.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Hsieh, Lien-Te; Lin, Chih-Chung; Tsai, Chin-Cheng

    2015-12-01

    This investigation studied the size distributions of particulate matter (PM), particulate carbon, and polycyclic aromatic hydrocarbons (PAHs) that are emitted from a generator that is fueled by diesel that is blended with waste-edible-oil-biodiesel and water-containing acetone. PM samples were collected using a micro-orifice uniform deposit impactor (MOUDI) and a Nano-MOUDI (with aerodynamic diameters of 0.01-18 μm). The results reveal that waste-edible biodiesel blended with water-containing acetone (W5WA3 or W20WA3) at a load of 3 kW emitted lower ΣPM, ΣPM-EC, ΣPM-OC, ΣT-PAHs or ΣT-BaPeq concentrations than did D100, in all 13 particle size ranges, and these reductions of emissions of submicron particles exceeded 85%. Furthermore, W20WA3 emitted significantly lower concentrations of Total-PAHs and Total-BaPeq in four nano/ultrafine particle size ranges. Therefore, water-containing acetone biodieselhols can be utilized as alternatives to petroleum diesel as fuel to reduce the dangers to human health that are posed by emissions from diesel engines. PMID:26218564

  13. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  14. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  15. Carbonaceous PM2.5 emitted from light-duty vehicles operating on low-level ethanol fuel blends.

    EPA Science Inventory

    This study aims to examine carbonaceous aerosol emissions from three Tier 2-certified 2008 model year LDVs burning e0, e10, and e85 fuel blends at -7°C and 24°C. The LDVs were tested on an electric chasis dynamometer using the LA-92 Urban Driving Cycle (UDC). Exhaust was ...

  16. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  17. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  18. Autoignition response of n-butanol and its blend with primary reference fuel constituents of gasoline.

    DOE PAGESBeta

    Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; Pitz, William J.

    2015-04-13

    We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less

  19. Assessment of Mexico's program to use ethanol as transportation fuel: impact of 6% ethanol-blended fuel on emissions of light-duty gasoline vehicles.

    PubMed

    Schifter, Isaac; Díaz, Luis; Rodríguez, Rene; Salazar, Lucia

    2011-02-01

    Recently, the Mexican government launched a national program encouraging the blending of renewable fuels in engine fuel. To aid the assessment of the environmental consequences of this move, the effect of gasoline fuel additives, ethanol and methyl tert-butyl ether, on the tailpipe and the evaporative emissions of Mexico sold cars was investigated. Regulated exhaust and evaporative emissions, such as carbon monoxide, non-methane hydrocarbons, and nitrogen oxides, and 15 unregulated emissions were measured under various conditions on a set of 2005-2008 model light-duty vehicles selected based on sales statistics for the Mexico City metropolitan area provided by car manufacturers. The selected car brands are also frequent in Canada, the USA, and other parts of the world. This paper provides details and results of the experiment that are essential for evaluation of changes in the emission inventory, originating in the low-blend ethanol addition in light vehicle fuel. PMID:20229167

  20. Fuel properties of Brassica juncea oil methyl esters blended with ultra-low sulfur diesel fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica juncea is a drought-tolerant member of the Brassicaceae plant family with high oil content and a short growing season that is tolerant of low quality soils. It was investigated as a feedstock for production of biodiesel along with evaluation of subsequent fuel properties, both neat and in b...

  1. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  2. Process for producing fuel from plant sources and fuel blends containing same

    SciTech Connect

    Whitworth, R.D.

    1987-04-04

    A process for producing a fuel from plant sources comprising the steps of: (a) providing a supply of limonene; (b) distilling the limonene and removing the distillate fraction in a temperature range of from about 346/sup 0/F to about 382/sup 0/F; (c) removing water from the distilled limonene; and (d) treating the distilled limonene to preclude the formation of gums therefrom.

  3. An experimental study on usage of plastic oil and B20 algae biodiesel blend as substitute fuel to diesel engine.

    PubMed

    Ramesha, D K; Kumara, G Prema; Lalsaheb; Mohammed, Aamir V T; Mohammad, Haseeb A; Kasma, Mufteeb Ain

    2016-05-01

    Usage of plastics has been ever increasing and now poses a tremendous threat to the environment. Millions of tons of plastics are produced annually worldwide, and the waste products have become a common feature at overflowing bins and landfills. The process of converting waste plastic into value-added fuels finds a feasible solution for recycling of plastics. Thus, two universal problems such as problems of waste plastic management and problems of fuel shortage are being tackled simultaneously. Converting waste plastics into fuel holds great promise for both the environmental and economic scenarios. In order to carry out the study on plastic wastes, the pyrolysis process was used. Pyrolysis runs without oxygen and in high temperature of about 250-300 °C. The fuel obtained from plastics is blended with B20 algae oil, which is a biodiesel obtained from microalgae. For conducting the various experiments, a 10-HP single-cylinder four-stroke direct-injection water-cooled diesel engine is employed. The engine is made to run at 1500 rpm and the load is varied gradually from 0 to 100 %. The performance, emission and combustion characteristics are observed. The BTE was observed to be higher with respect to diesel for plastic-biodiesel blend and biodiesel blend by 15.7 and 12.9 %, respectively, at full load. For plastic-biodiesel blend, the emission of UBHC and CO decreases with a slight increase in NO x as compared to diesel. It reveals that fuel properties are comparable with petroleum products. Also, the process of converting plastic waste to fuel has now turned the problems into an opportunity to make wealth from waste. PMID:26695415

  4. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  5. Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities

    SciTech Connect

    Djukanovic, M.; Babic, B.; Milosevic, B.; Sobajic, D.J.; Pao, Y.H. |

    1996-05-01

    In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

  6. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  7. Influence of ethanol-gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine.

    PubMed

    Jia, Li-Wei; Shen, Mei-Qing; Wang, Jun; Lin, Man-Qun

    2005-08-31

    Emission characteristics from a four-stroke motorcycle engine using 10% (v/v) ethanol-gasoline blended fuel (E10) were investigated at different driving modes on the chassis dynamometers. The results indicate that CO and HC emissions in the engine exhaust are lower with the operation of E10 as compared to the use of unleaded gasoline, whereas the effect of ethanol on NO(X) emission is not significant. Furthermore, species of both unburned hydrocarbons and their ramifications were analyzed by the combination of gas chromatography/mass spectrometry (GC/MS) and gas chromatography/flame ionization detection (GC/FID). This analysis shows that aromatic compounds (benzene, toluene, xylene isomers (o-xylene, m-xylene and p-xylene), ethyltoluene isomers (o-ethyltoluene, m-ethyltoluene and p-ethyltoluene) and trimethylbenzene isomers (1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene)) and fatty group ones (ethylene, methane, acetaldehyde, ethanol, butene, pentane and hexane) are major compounds in motorcycle engine exhaust. It is found that the E10-fueled motorcycle engine produces more ethylene, acetaldehyde and ethanol emissions than unleaded gasoline engine does. The no significant reduction of aromatics is observed in the case of ethanol-gasoline blended fuel. The ethanol-gasoline blended fuel can somewhat improve emissions of the rest species. PMID:15923082

  8. Comparative spectral analysis of commercial fuel-ethanol blends using a low-cost prototype FT-Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Ortega Clavero, Valentin; Weber, Andreas; Schröder, Werner; Meyrueis, Patrick; Javahiraly, Nicolas

    2012-06-01

    The use of bio-fuels and fuel blends, specially in automotive industry, has been increasing substantially in recent years due to market prices and trends on sustainable development policies. Different spectral analysis techniques for quality control, production, purity, and counterfeit detection have been reported as non-invasive, fast, and price accessible. Raman spectra from three different commercial binary E10 fuel-ethanol blends has been obtained by using a low-cost Fourier-Transform Raman spectrometer (FT-Raman). Qualitative comparison between the commercial fuel blends and a laboratory-prepared fuel blend have been performed. The characteristic Raman lines from some additives contained in the commercial gasoline have been also observed. The spectral information is presented in the range of 0 cm-1 to 3500 cm-1 with a resolution of 1.66 cm-1. These Raman spectra shows reduced frequency deviation (less than 0.4 cm-1 when compared to standard Raman spectra from cyclohexane and toluene without compensation for instrumental response). Higher resolution values are possible, since the greater optical path lengths of the FT-Raman are achievable before the instrumental physical effects appear. The robust and highly flexible FT-Raman prototype proposed for the spectral analysis, consisting mainly of a Michelson interferometer and a self-designed photon counter, is able to deliver high resolution and precise Raman spectra with no additional complex hardware or software control. The mechanical and thermal disturbances affecting the FT-Raman system are mathematically compensated by extracting the optical path information from the generated interference pattern of a λ=632.8 nm Helium-Neon laser (HeNe laser), which is used at the spectrum evaluation.

  9. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion. PMID:27393832

  10. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  11. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM).

    PubMed

    Alves, Julio Cesar L; Poppi, Ronei J

    2013-01-30

    This work verifies the potential of support vector machine (SVM) algorithm applied to near infrared (NIR) spectroscopy data to develop multivariate calibration models for determination of biodiesel content in diesel fuel blends that are more effective and appropriate for analytical determinations of this type of fuel nowadays, providing the usual extended analytical range with required accuracy. Considering the difficulty to develop suitable models for this type of determination in an extended analytical range and that, in practice, biodiesel/diesel fuel blends are nowadays most often used between 0 and 30% (v/v) of biodiesel content, a calibration model is suggested for the range 0-35% (v/v) of biodiesel in diesel blends. The possibility of using a calibration model for the range 0-100% (v/v) of biodiesel in diesel fuel blends was also investigated and the difficulty in obtaining adequate results for this full analytical range is discussed. The SVM models are compared with those obtained with PLS models. The best result was obtained by the SVM model using the spectral region 4400-4600 cm(-1) providing the RMSEP value of 0.11% in 0-35% biodiesel content calibration model. This model provides the determination of biodiesel content in agreement with the accuracy required by ABNT NBR and ASTM reference methods and without interference due to the presence of vegetable oil in the mixture. The best SVM model fit performance for the relationship studied is also verified by providing similar prediction results with the use of 4400-6200 cm(-1) spectral range while the PLS results are much worse over this spectral region. PMID:23597903

  12. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine.

    PubMed

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph

    2015-06-16

    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend. PMID:25993509

  13. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  14. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  15. Influence of high-octane fuel blends on the performance of a two-stroke SI engine with knock-limited-compression ratio

    SciTech Connect

    Poola, R.B.; Bhasker, T.; Nagalingam, B.; Gopalakrishnan, K.V.

    1994-10-01

    The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a cosolvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends. Knock-limited maximum brake output also increases due to extension of the knock limit. The knock limit is extended by methanol-eucalyptus-ethanol-orange oil blends, in descending order. 30 refs., 14 figs., 1 tab.

  16. The influence of high-octane fuel blends on the performance of a two-stroke SI engine with knock-limited-compression ratio

    NASA Astrophysics Data System (ADS)

    Poola, Ramesh B.; Bhasker, T.; Nagalingam, B.; Gopalakrishnan, K. V.

    The use of alcohol-gasoline blends enables the favorable features of alcohols to be utilized in spark ignition (SI) engines while avoiding the shortcomings of their application as straight fuels. Eucalyptus and orange oils possess high octane values and are also good potential alternative fuels for SI engines. The high octane value of these fuels can enhance the octane value of the fuel when it is blended with low-octane gasoline. In the present work, 20 percent by volume of orange oil, eucalyptus oil, methanol and ethanol were blended separately with gasoline, and the performance, combustion and exhaust emission characteristics were evaluated at two different compression ratios. The phase separation problems arising from the alcohol-gasoline blends were minimized by adding eucalyptus oil as a cosolvent. Test results indicate that the compression ratio can be raised from 7.4 to 9 without any detrimental effect, due to the higher octane rating of the fuel blends. Knock-limited maximum brake output also increases due to extension of the knock limit. The knock limit is extended by methanol-eucalyptus-ethanol-orange oil blends, in descending order.

  17. Regulated, carbonyl and polycyclic aromatic hydrocarbon emissions from a light-duty vehicle fueled with diesel and biodiesel blends.

    PubMed

    Bakeas, Evangelos B; Karavalakis, Georgios

    2013-02-01

    This study investigates the impact of low concentration biodiesel blends on the regulated, carbonyl and PAH emissions from a modern passenger vehicle. The vehicle was a Euro 4 compliant SUV type fitted with a common-rail diesel engine and a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer using a constant volume sampling (CVS) technique, following the European regulations. All measurements were conducted over the NEDC and Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based biodiesel was blended with an ultra low sulphur diesel at proportions of 10 and 30% by volume. The experimental results revealed that emissions of PM, HC and CO decreased with biodiesel over most driving conditions. Some increases were observed over the NEDC which may be attributed to the cold-start effect and to certain fuel characteristics. NO x emissions were found to be higher with biodiesel especially during Artemis operation. CO 2 emissions and fuel consumption followed similar patterns and increased with biodiesel. Most carbonyl compound emissions increased with biodiesel, with the exception of aromatic aldehydes. It was found that carbonyl emissions decreased as the mean speed and load of the driving cycle was increased. Most PAH emissions were found to be lower with biodiesel, however, some increases were observed for certain toxic compounds. PMID:25208706

  18. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    Hydrogen is an attractive fuel source not only because it is abundant and renewable but also because it produces almost zero regulated emissions. Internal combustion engines fueled by compressed natural gas (CNG) are operated throughout a variety of industries in a number of mobile and stationary applications. While CNG engines offer many advantages over conventional gasoline and diesel combustion engines, CNG engine performance can be substantially improved in the lean operating region. Lean operation has a number of benefits, the most notable of which is reduced emissions. However, the extremely low flame propagation velocities of CNG greatly restrict the lean operating limits of CNG engines. Hydrogen, however, has a high flame speed and a wide operating limit that extends into the lean region. The addition of hydrogen to a CNG engine makes it a viable and economical method to significantly extend the lean operating limit and thereby improve performance and reduce emissions. Drawbacks of hydrogen as a fuel source, however, include lower power density due to a lower heating value per unit volume as compared to CNG, and susceptibility to pre-ignition and engine knock due to wide flammability limits and low minimum ignition energy. Combining hydrogen with CNG, however, overcomes the drawbacks inherent in each fuel type. Objectives of the current study were to evaluate the feasibility of using blends of hydrogen and natural gas as a fuel for conventional natural gas engines. The experiment and data analysis included evaluation of engine performance, efficiency, and emissions along with detailed in-cylinder measurements of key physical parameters. This provided a detailed knowledge base of the impact of using hydrogen/natural gas blends. A four-stroke, 4.2 L, V-6 naturally aspirated natural gas engine coupled to an eddy current dynamometer was used to measure the impact of hydrogen/natural gas blends on performance, thermodynamic efficiency and exhaust gas emissions

  19. Do biofuel blending mandates reduce gasoline consumption? Implications of state-level renewable fuel standards for energy security

    NASA Astrophysics Data System (ADS)

    Lim, Shinling

    In an effort to keep America's addiction to oil under control, federal and state governments have implemented a variety of policy measures including those that determine the composition of motor gasoline sold at the pump. Biofuel blending mandates known as Renewable Fuel Standards (RFS) are designed to reduce the amount of foreign crude oil needed to be imported as well as to boost the local ethanol and corn industry. Yet beyond looking at changes in gasoline prices associated with increased ethanol production, there have been no empirical studies that examine effects of state-level RFS implementation on gasoline consumption. I estimate a Generalized Least Squares model for the gasoline demand for the 1993 to 2010 period with state and time fixed effects controlling for RFS. States with active RFS are Minnesota, Hawaii, Missouri, Florida, Washington, and Oregon. I find that, despite the onset of federal biofuel mandates across states in 2007 and the lower energy content of blended gasoline, being in a state that has implemented RFS is associated with 1.5% decrease in gasoline consumption (including blended gasoline). This is encouraging evidence for efforts to lessen dependence on gasoline and has positive implications for energy security.

  20. Flame synthesis of multi-walled carbon nanotubes using CH{sub 4}-H{sub 2} fuel blends

    SciTech Connect

    Manciu, F.S.; Camacho, J.; Choudhuri, A.R.

    2008-07-01

    Flame synthesis of carbon nanotubes (CNTs) has the potential to become a cost effective, energy efficient and scalable method for large-volume commercial synthesis. The in-flame concentration of key particulate inception intermediates, i.e., CH{sub 3}, C{sub 2}H{sub 2}, C{sub 3}H{sub 3}, and C{sub 5}H{sub 5} can be tailored using hydrogen fuel blends to optimize and enhance the yield of flame synthesis processes. Additionally, synthesis of CNTs using hydrogen fuel blends (coal or biomass derived gases) creates new opportunities for efficient coal utilization and by-product synergism of coal-fired power plants. This article reports an investigation on the synthesis of CNTs using H{sub 2} doped CH{sub 4} flames. For a baseline study, nanostructures formed in diffusion flames of 100% CH{sub 4} at different fuel flow rates have been analyzed. Initially the yield of nanomaterials increases with the increase in H{sub 2} doping in the fuel mixture. However, at higher H{sub 2} concentration (10%) and flow velocity (Jet Exit Reynolds number > 200), formation of nanostructures diminishes and H{sub 2}-CH{sub 4} flames produce amorphous carbon and soot particles. The maximum yield of nanostructures occurs at 95-5% CH{sub 4}-H{sub 2} fuel compositions and 8.37E-07m{sup 3}/s (corresponding Jet Exit Reynolds number=200). Raman analyses of the pristine samples show the existence of distinctive multi-walled carbon nanotube (MWNT) D and G bands at 1321cm{sup -1} and 1595cm{sup -1}, respectively. Infrared absorption measurements of vibrational line characteristics of CNTs also reveal the presence of C-H bonds.

  1. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  2. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process. PMID:26010031

  3. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-01

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  4. Report: Suitability of Leak Detection Technology for Use In Ethanol-Blended Fuel Service

    EPA Science Inventory

    As the use of biofuels has increased in the last decade, there has been a level of concern over the effect that ethanol blends have on the material compatibility and operability of existing infrastructure. The focus of this research is to determine whether leak detection (LD) te...

  5. Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Arnett, Natalie Y.; Harrison, William L.; Badami, Anand S.; Roy, Abhishek; Lane, Ozma; Cromer, Frank; Dong, Limin; McGrath, James E.

    Polymer blending is recognized as a valuable technique used to modify and improve the mechanical, thermal, and surface properties of two different polymers or copolymers. This paper investigated the solution properties and membrane properties of a biphenol-based disulfonated poly (arylene ether sulfone) random copolymer (BPS-35) with hexafluoroisopropylidene bisphenol based sulfonated poly (arylene ether sulfone) copolymers (6FSH) and an unsulfonated biphenol-based poly (arylene ether sulfone)s. The development of blended membranes with desirable surface characteristics, reduced water swelling and similar proton conductivity is presented. Polymer blends were prepared both in the sodium salt and acid forms from dimethylacetamide (DMAc). Water uptake, specific conductivity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and contact angles were used to characterize the blended films. Surface enrichment of the fluorinated component is illustrated by an significant increase in the water-surface contact angle was observed when 10 wt.% 6FBPA-00 (106°) was added to BPS 35 (80°). Water weight gain was reduced by a factor of 2.

  6. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect

    James E. Francfort

    2003-11-01

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  7. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  8. Carbonyl emission and toxicity profile of diesel blends with an animal-fat biodiesel and a tire pyrolysis liquid fuel.

    PubMed

    Ballesteros, R; Guillén-Flores, J; Martínez, J D

    2014-02-01

    In this paper, two diesel fuels, an animal-fat biodiesel and two diesel blends with the animal-fat biodiesel (50vol.%) and with a tire pyrolysis liquid (TPL) fuel (5vol.%) have been tested in a 4-cylinder, 4-stroke, turbocharged, intercooled, 2.0L Nissan diesel automotive engine (model M1D) with common-rail injection system and diesel oxidation catalyst (DOC). Carbonyl emissions have been analyzed both before and after DOC and specific reactivity of carbonyl profile has been calculated. Carbonyl sampling was carried out by means of a heated line, trapping the gas in 2,4-DNPH cartridges. The eluted content was then analyzed in an HPLC system, with UV-VIS detection. Results showed, on the one hand, an increase in carbonyl emissions with the biodiesel fraction in the fuel. On the other hand, the addition of TPL to diesel also increased carbonyl emissions. These trends were occasionally different if the emissions were studied after the DOC, as it seems to be selectivity during the oxidation process. The specific reactivity was also studied, finding a decrease with the oxygen content within the fuel molecule, although the equivalent ozone emissions slightly increased with the oxygen content. Finally, the emissions toxicity was also studied, comparing them to different parameters defined by different organizations. Depending on the point of study, emissions were above or below the established limits, although acrolein exceeded them as it has the least permissive values. PMID:24184046

  9. Fuel properties of biodiesel/ultra-low sulfur diesel (ULSD) blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is an alternative fuel and fuel extender easily derived from vegetable oil or animal fat. In 2006, the U.S. Environmental Protection Agency mandated that maximum sulfur content of diesel fuels be reduced to 15 ppm to protect catalysts employed in exhaust after-treatment devices. Processi...

  10. Synthesis and fuel cell characterization of blend membranes from phenyl phosphine oxide containing flourinated novel polymers

    NASA Astrophysics Data System (ADS)

    Gürtekin Seden, Merve; Baştürk, Emre; Inan, Tülay Y.; Kayaman Apohan, Nilhan; Güngör, Atilla

    2014-12-01

    Novel fluorinated poly(arylene ether)'s are synthesized from polycondensation of bis (p-hydroxy-tetrafluoro) phenyl) phenyl phosphine oxide (PFPPO-OH) with 4,4‧-dichlorodiphenyl sulfone (DCDPS) and 2,2-bis(4-hydroxyphenyl)propane (Bisfenol A) (Copolymer 1a) or 2,2-bis(4-hydroxyphenyl) hexafluoropropane (Bisphenol AF) (Copolymer 1b). The fluorinated copolymers have been blended with sulphonated poly(ether ether ketone)-SPEEK by solvent casting method. The water uptake and proton conductivity of the blend membranes decreases with the increase of copolymer content as expected, but proton conductivity values are still comparable to that of Nafion117® membrane. Addition of hydrophobic copolymer 1b to the SPEEK caused increase in water vapor transmission. Methanol permeability of the membranes is decreased to 8.2 × 10-8 cm2 s-1 and 1.3 × 10-9 cm2 s-1 by addition of Copolymer 1a and 1b, respectively and they are much lower than that of Nafion® 117 (1.21E-06 (cm2 s-1). The blend membranes endure up to 6.5 h before it starts to dissolve. Hydrogen and oxygen permeability of the blend membranes is one-hundredth of the Nafion®. Fluorinated polymer improved chemical, mechanical, and hydrolytic stability and also phenyl phosphine oxide structure in the ionomer increased the thermal stability, gas and methanol permeability and overcomed the drawbacks of the Nafion® type membranes.

  11. Study on sulphonated polysulphone/polyurethane blend membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pedicini, R.; Saccà, A.; Carbone, A.; Gatto, I.; Patti, A.; Passalacqua, E.

    2013-07-01

    The study of sulphonated polysulphone membranes (s-PSF) containing urethane groups was carried out, in order to improve the proton conductivity of a PEFC at T ⩾ 80 °C. Sulphonated polysulphone (s-PSF) polymers with a sulphonation degree (DS) ranging 40-70% were prepared following a standardised preparation procedure. An aliphatic polyurethane diol in oligomeric form (PU-Aldrich) was added to a s-PSFs with different sulphonation levels to prepare blend membranes, containing a 18% wt of PU, casting by the Doctor-Blade technique. The obtained membranes were characterised in terms of water uptake (Wup), ionic exchange capacity (IEC), swelling data, methanol permeability, scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), proton conductivity measurements and electrochemical tests in a 5 cm2 commercial single cell with humidified H2/air at 80 °C. By adding a 18% wt of PU, a slight increase in the IEC values respect to the pristine polymers were obtained due to a ionic crosslinking, likewise, a slight increase of Wup values was observed for each DS between pristine and corresponding blend. For all prepared samples, a lower swelling than critical value of 2 was obtained also at 100 °C. PU introduction determined an enhanced proton conductivity for each DS, due to an interaction between sulphonic and nitrogenous groups caused by a possible tautomerisation mechanism. The I - V curves at 80 °C confirm that blend membranes performance is higher than bare membranes, in particular, an improvement was obtained with a blend membrane containing a 18% of PU and a medium PSF sulphonation degree (48%).

  12. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels. PMID:22519083

  13. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS. VOLUME I

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  14. The Knock-Limited Performance of Fuel Blends Containing Aromatics V : N-Propylbenzene, N-Butylbenzene, Isobutylbenzene, M-Xylene, and 1-Isopropyl-4-Methylbenzene

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L.; Branstetter, J. Robert

    1946-01-01

    Results are reported of knock-limited tests of five aromatics, each individually blended with selected base fuels and tested with and without TEL, using 17.6, F-4, and F-3 small-scale engines. The five aromatics rated in the following order of decreasing antiknock effectiveness at fuel/air ratio 0.10: m-xylene, 1-isopropyl-4-methylbenzene, n-propylbenzene, isobutylbenzene, and n-butylbenzene.

  15. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  16. Definitional-mission report: A national ethanol program for motor-fuel blending in Uganda. Export trade information

    SciTech Connect

    Not Available

    1991-06-01

    The U.S. Trade and Development Program (TDP) formed a definitional mission team to evaluate the prospects of TDP funding a study for the National Ethanol Program for Motor Fuel Blending in Uganda. The definitional mission team recommends that TDP provide a grant to the Ministry of Energy to finance the cost of (1) a feasibility study for the project, and (2) an orientation visit for several Ugandan officials to visit sugar estates and ethanol plants in the U.S. U.S. technology in this sector is competitive and Ugandans will need to import 60-70 percent of plant equipment and training and construction management services. This will undoubtedly provide opportunities to U.S. suppliers to participate in the expansion of the ethanol industry in Uganda.

  17. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  18. Autoignition response of n-butanol and its blend with primary reference fuel constituents of gasoline.

    SciTech Connect

    Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; Pitz, William J.

    2015-04-13

    We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results are compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.

  19. Modeling the Fate of Groundwater Contaminants Resulting from Leakage of Butanol-blended Fuel

    EPA Science Inventory

    The poster demonstrates the integration of MODFLOW2000 and modified RT3D, simulating flow and transport of remediation process results from leakage of Butanol and Benzene contained in alternative fuels.

  20. Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR

    DOEpatents

    Kass, Michael Delos; Graves, Ronald Lee; Storey, John Morse Elliot; Lewis, Sr., Samuel Arthur; Sluder, Charles Scott; Thomas, John Foster

    2007-08-21

    A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

  1. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  2. Apparatus for blending small particles

    DOEpatents

    Bradley, R.A.; Reese, C.R.; Sease, J.D.

    1975-08-26

    An apparatus is described for blending small particles and uniformly loading the blended particles in a receptacle. Measured volumes of various particles are simultaneously fed into a funnel to accomplish radial blending and then directed onto the apex of a conical splitter which collects the blended particles in a multiplicity of equal subvolumes. Thereafter the apparatus sequentially discharges the subvolumes for loading in a receptacle. A system for blending nuclear fuel particles and loading them into fuel rod molds is described in a preferred embodiment. (auth)

  3. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  4. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends.

    PubMed

    Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli

    2015-01-01

    The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene). PMID:25302450

  5. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  6. Heating and Efficiency Comparison of a Fischer-Tropsch (FT) Fuel, JP-8+100, and Blends in a Three-Cup Combustor Sector

    NASA Technical Reports Server (NTRS)

    Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry; Saxena, Nikita T.; Hendricks, Robert C.

    2012-01-01

    In order to realize alternative fueling for military and commercial use, the industry has set forth guidelines that must be met by each fuel. These aviation fueling requirements are outlined in MIL-DTL-83133F(2008) or ASTM D 7566-Annex standards and are classified as drop-in fuel replacements. This paper provides combustor performance data for synthetic-paraffinic-kerosene- (SPK-) type (Fisher-Tropsch (FT)) fuel and blends with JP-8+100, relative to JP-8+100 as baseline fueling. Data were taken at various nominal inlet conditions: 75 psia (0.52 MPa) at 500 aF (533 K), 125 psia (0.86 MPa) at 625 aF (603 K), 175 psia (1.21 MPa) at 725 aF (658 K), and 225 psia (1.55 MPa) at 790 aF (694 K). Combustor performance analysis assessments were made for the change in flame temperatures, combustor efficiency, wall temperatures, and exhaust plane temperatures at 3%, 4%, and 5% combustor pressure drop (% P) for fuel:air ratios (F/A) ranging from 0.010 to 0.025. Significant general trends show lower liner temperatures and higher flame and combustor outlet temperatures with increases in FT fueling relative to JP-8+100 fueling. The latter affects both turbine efficiency and blade/vane life. In general, 100% SPK-FT fuel and blends with JP-8+100 produce less particulates and less smoke and have lower thermal impact on combustor hardware.

  7. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  8. Organic nanoparticles from different fuel blends: in vitro toxicity and inflammatory potential.

    PubMed

    Gualtieri, Maurizio; Capasso, Laura; D'Anna, Andrea; Camatini, Marina

    2014-11-01

    Despite the well-established link between particulate vehicle emissions and adverse health effects, the biological effects produced by ultrafine particles generated from fuel combustion need to be investigated. The biological impact of nano-sized organic carbon particles in the size range 3-7 nm, obtained from an engine fuelled with a standard diesel and four diesel fuels doped with additives of commercial interest is reported. Our data showed that the number of particles < 10 nm is to a very small extent reduced by diesel particle filters, despite its ability to trap micrometric and submicrometric particulates, and that there is a correlation between the additives used and the chemical characteristics of the nanoparticles sampled. The results show that the different nano-sized organic carbon particles induce cytotoxic and proinflammatory effects on the in vitro systems A549 (epithelial cells) and BEAS-2B (bronchial cells). All the fuels tested are able to induce the release of proinflammatory interleukins 8 and 6; moreover, the IC50 values show that the additives can increase the toxic potential of particles 10 times. Further analyses are therefore needed to better define the potential impact of organic ultrafine particles on human health. PMID:25244046

  9. Preliminary investigation of the combustion of a 50 percent pentaborane - 50 percent JP-4 fuel blend in a turbojet combustor at simulated altitude conditions

    NASA Technical Reports Server (NTRS)

    Branstetter, J Robert; Kaufman, Warner B; Gibbs, James B

    1957-01-01

    A preliminary investigation was conducted to determine the combustion characteristics of a fuel composed of 50 percent pentaborane and 50 percent JP-4 (MIL-F-5624A) by weight in a turbojet combustor. A combustor designed to fit the housing of a J33-A-23 turbojet engine was selected for convenience. The fuel was evaluated at two engine conditions simulating altitudes of 40,000 and 57,000 feet, an engine speed of 85 percent of rated rpm, and a flight Mach number of 0.6. The pentaborane blend was initially evaluated in combustors developed for pure pentaborane and diborane reported in NACA RM E53B18 and RM E52L15. The performance of the blend was unsatisfactory in these combustors. A new combustor was then developed which provided combustor efficiencies measured from 91 to 101 percent as compared with efficiencies of 92 to 94 percent previously obtained for pentaborane at comparable conditions. Additional refinements of design details are needed to obtain lower oxide deposits and a more uniform outlet temperature profile; however, the combustor is believed to incorporate some of the design principles required to obtain satisfactory over-all performance with the fuel blend investigated.

  10. A study of performance and emission characteristics of computerized CI engine with composite biodiesel blends as fuel at various injection pressures

    NASA Astrophysics Data System (ADS)

    Yogish, H.; Chandarshekara, K.; Pramod Kumar, M. R.

    2013-09-01

    Transesterified vegetable oils are becoming increasingly important as alternative fuels for diesel engines due to several advantages. Biodiesel is a renewable, inexhaustible and green fuel. This paper presents the various properties of the oils derived from Jatropha and Pongamia, their mixes and biodiesels derived from the mixes. An innovative lab scale reactor was designed and developed for biodiesel production from mixed vegetable oils and used for the study of optimization of biodiesel yield [1]. Also, the analysis of data of experimental investigations carried out on a 3.75 kW computerized CI engine at injection pressures of 160 and 180 bar with methyl esters of mixed Jatropha and Pongamia in various proportions are also presented. The brake thermal efficiency for biodiesel blends was found to be higher than that of petrodiesel at various loading conditions. In case of Composite biodiesel blended fuels, the exhaust gas temperature increased with increase in load and the amount of composite biodiesel. The highest exhaust gas temperature was observed as 213 °C for biodiesel among the five loading conditions. When petrodiesel was used the exhaust gas temperature was observed to be 220 °C. The CO2, CO, HC and NOx emissions from the biodiesel blends were lower than that of petrodiesel.

  11. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    PubMed

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine. PMID:26445759

  12. Safety and Performance Advantages of Nitrous Oxide Fuel Blends (NOFBX) Propellants for Manned and Unmanned Spaceflight Applications

    NASA Astrophysics Data System (ADS)

    Taylor, R.

    2012-01-01

    Hydrazine, N2H4, is the current workhorse monopropellant in the spacecraft industry. Although widely used since the 1960's, hydrazine is highly toxic and its specific impulse (ISP) performance of ~230s is far lower than bipropellants and solid motors. NOFBX™ monopropellants were originally developed under NASA's Mars Advanced Technology program (2004-2007) for deep space Mars missions. This work focused on characterizing various Nitrous Oxide Fuel Blend (NOFB) monopropellants which exhibited many favorable attributes to include: (1) Mono-propulsion, (2) Isp > 320s, (3) Non-toxic constituents, (4) Non-toxic effluents, (5) Low Cost, (6) High Density Specific Impulse, (7) Non-cryogenic, (8) Wide Storable Temperature Range, (9) Deeply throttlable [between 5 - 100lbs], (10) Self Pressurizing, (11) Wide Range of materials compatibility, along with many, many other benefits. All rocket propellants carry with them a history or stigma associated with either the development or implementation of that propellant and NOFBX™ is no exception. This paper examines the benefits of NOFBX™ propellants while addressing or dispelling a number of critiques N2O based propellants acquired through the decades of rocket propellant testing.

  13. Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends

    SciTech Connect

    Pawel, Steven J; Kass, Michael D; Janke, Christopher James

    2009-11-01

    The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test

  14. Knock-Limited Performance of Triptane and Xylidines Blended with 28-R Aviation Fuel at High Compression Ratios and Maximum-Economy Spark Setting

    NASA Technical Reports Server (NTRS)

    Held, Louis F.; Pritchard, Ernest I.

    1946-01-01

    An investigation was conducted to evaluate the possibilities of utilizing the high-performance characteristics of triptane and xylidines blended with 28-R fuel in order to increase fuel economy by the use of high compression ratios and maximum-economy spark setting. Full-scale single-cylinder knock tests were run with 20 deg B.T.C. and maximum-economy spark settings at compression ratios of 6.9, 8.0, and 10.0, and with two inlet-air temperatures. The fuels tested consisted of triptane, four triptane and one xylidines blend with 28-R, and 28-R fuel alone. Indicated specific fuel consumption at lean mixtures was decreased approximately 17 percent at a compression ratio of 10.0 and maximum-economy spark setting, as compared to that obtained with a compression ratio of 6.9 and normal spark setting. When compression ratio was increased from 6.9 to 10.0 at an inlet-air temperature of 150 F, normal spark setting, and a fuel-air ratio of 0.065, 55-percent triptane was required with 28-R fuel to maintain the knock-limited brake power level obtained with 28-R fuel at a compression ratio of 6.9. Brake specific fuel consumption was decreased 17.5 percent at a compression ratio of 10.0 relative to that obtained at a compression ratio of 6.9. Approximately similar results were noted at an inlet-air temperature of 250 F. For concentrations up through at least 20 percent, triptane can be more efficiently used at normal than at maximum-economy spark setting to maintain a constant knock-limited power output over the range of compression ratios tested.

  15. 40 CFR 80.82 - Butane blending.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that produces gasoline by blending butane with conventional gasoline or reformulated gasoline or RBOB may meet... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Butane blending. 80.82 Section...

  16. 40 CFR 80.82 - Butane blending.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that produces gasoline by blending butane with conventional gasoline or reformulated gasoline or RBOB may meet... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Butane blending. 80.82 Section...

  17. 40 CFR 80.82 - Butane blending.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that produces gasoline by blending butane with conventional gasoline or reformulated gasoline or RBOB may meet... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Butane blending. 80.82 Section...

  18. Method of producing a diesel fuel blend having a pre-determined flash-point and pre-determined increase in cetane number

    DOEpatents

    Waller, Francis Joseph; Quinn, Robert

    2004-07-06

    The present invention relates to a method of producing a diesel fuel blend having a pre-determined flash-point and a pre-determined increase in cetane number over the stock diesel fuel. Upon establishing the desired flash-point and increase in cetane number, an amount of a first oxygenate with a flash-point less than the flash-point of the stock diesel fuel and a cetane number equal to or greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number. Thereafter, an amount of a second oxygenate with a flash-point equal to or greater than the flash-point of the stock diesel fuel and a cetane number greater than the cetane number of the stock diesel fuel is added to the stock diesel fuel in an amount sufficient to achieve the pre-determined increase in cetane number.

  19. [Emission characteristics of a diesel car fueled with coal based Fischer-Tropsch (F-T) diesel and fossil diesel blends].

    PubMed

    Hu, Zhi-Yuan; Cheng, Liang; Tan, Pi-Qiang; Lou, Di-Ming

    2012-11-01

    According to the first type test cycle of China national standard GB 18352.3-2005, the CO, NO(x), HC, PM and CO2 emission characteristics of a PASSAT diesel car fueled with Shanghai local IV diesel, coal based Fischer-Tropsch (F-T) diesel, and the blends of coal based F-T diesel and Shanghai local IV diesel up to 10% and 50% by volume were analyzed respectively. And the environmental impacts such as decreased air quality, health impact, photochemical ozone, global warming, and acidification that could be caused by CO, NO(x), HC, PM and CO2 emission of the diesel car were also assessed. The results showed that under GB 18352.3-2005 No. 1 test driving cycle, which consisted of four urban driving cycles and one extra urban driving cycle, the CO, HC, PM and CO2 emissions were released mainly in the urban driving cycles whereas the NO(x) emissions occurred mainly in the extra urban driving cycle. Compared with Shanghai local IV diesel, all of the CO, NO(x), HC, PM and CO2 emissions of the diesel car decreased to different extents when fueled with coal based F-T diesel blends. Moreover, the aerosol generation potential, global warming potential and acidification potential of F-T diesel fueled diesel car were also reduced. To sum up, coal based F-T diesel would be one of the alternative fuels to diesel in China. PMID:23323400

  20. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    PubMed

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  1. Preparation and properties of crosslinked sulphonated poly(arylene ether sulphone) blend s for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Tsai, Jie-Cheng; Lin, Chien-Kung; Kuo, Jen-Feng; Chen, Chuh-Yung

    HMS-based sulphonated poly(arylene ether sulphone) (HMSSH) is synthesised using 4,4‧-dihydroxy-α-methylstilbene (HMS) monomer to introduce an interesting stilbene core as crosslinkable group. Crosslinked blend membranes are obtained by blending the BPA-based sulphonated poly(arylene ether sulphone) (BPASH) with crosslinkable HMS-based sulphonated poly(arylene ether sulphone) by UV irradiation of the blend membrane. Compared to the native BPASH with crosslinked BPASH/HMSSH blend membranes, the crosslinked blend membranes greatly reduce the water uptake and methanol permeability with only a slight reduction in proton conductivity. The crosslinked blend membrane, which has a 6% HMSSH content, has a water uptake of 59%, methanol permeability of 0.75 × 10 -6 cm 2 s -1, and proton conductivity of 0.08 S cm -1. A membrane-electrode assembly is used to investigate single-cell performance and durability test for DMFC applications. Both the power density and open circuit voltage are higher than those of Nafion ® 117. A maximum power density of 32 mW cm -2 at 0.2 V is obtained at 80 °C, which is higher than that of Nafion ® 117 (25 mW cm -2).

  2. Structure and properties of proton transfer fuel cell blend membranes composed of sulfonated poly(phenylene oxide) with poly(vinylidene fluoride)

    NASA Astrophysics Data System (ADS)

    Mittelsteadt, Cortney Kenneth

    A novel polymer blend consisting of phenyl-sulfonated poly(2,6 dimethyl-1,4-phenylene oxide), SPPO and poly(vinylidene) fluoride, PVF2, is characterized as a potential membrane for polymer electrolyte membrane fuel cells (PEMFCs). SPPO displayed high proton conductivity (>0.20 O-1cm -1), yet swelled excessively in water for use in a PEMFC. Blending with PNT2 significantly reduced water uptake, while retaining high levels of conductivity. The membranes performed well as proton conductors in the PEWC, transporting up to 4 A/cm2. Stability in the fuel cell environment was demonstrated for >300 h at 80°C. NMR analysis of the SPPO/PVF2 membranes after fuel cell operation revealed that the membranes were impartial to the anodic environment, yet prone to oxidation at the cathode. SPPO was found to have a significant effect on the crystalline properties of PVF2. Specifically, at intermediate compositions (50--70 wt%) SPPO lowered the melting point and crystallinity of the PVF2. Additionally, it appeared to promote a specific polymorph of PVF2. Structural investigations using DSC and SAXS revealed phase separation on a scale >100 A and an interfacial region of ˜14 A between the polymers.

  3. The Effect of Compression Ratio on Knock Limits of High-Performance Fuels in a CFR Engine II : Blends of 2,2,3-Trimethylpentane with 28-R

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K

    1945-01-01

    The knock-limited performance of blends of 0,50; and 100 percent by volume of 2,2,3-trimethylpentane in 28-R fuel determined with a modified F-4 engine at three sets of conditions varying from severe to mild at each of three compression ratios (6.0, 8.0, and 10.0). A comparison of the knock-limited performance of 2,2,3-trimethylpentane with that of triptane (2,2,3-trimethylbutane) is included. The knock-Limited performance of 2,2,3-trimethylpontane was usually more sensitive to either compression ratio or inlet-air temperature than 28-R fuel, but the ratio of the knock-limited indicated mean effective pressure of a given blend containing 2,2,3-trimethypentane and 28-R to the indicated mean effective pressure of 28-R alone was not greatly affected by compression ratio if the engine operating conditions were mild. Although 2,2,3-trimethylpentane in general had a lower knock-limited performance than triptane, the characteristics of the two fuels were somewhat similar.

  4. Reducing emissions of persistent organic pollutants from a diesel engine by fueling with water-containing butanol diesel blends.

    PubMed

    Chang, Yu-Cheng; Lee, Wen-Jhy; Yang, Hsi-Hsien; Wang, Lin-Chi; Lu, Jau-Huai; Tsai, Ying I; Cheng, Man-Ting; Young, Li-Hao; Chiang, Chia-Jui

    2014-05-20

    The manufacture of water-containing butanol diesel blends requires no excess dehydration and surfactant addition. Therefore, compared with the manufacture of conventional bio-alcohols, the energy consumption for the manufacture of water-containing butanol diesel blends is reduced, and the costs are lowered. In this study, we verified that using water-containing butanol diesel blends not only solves the tradeoff problem between nitrogen oxides (NOx) and particulate matter emissions from diesel engines, but it also reduces the emissions of persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, polychlorinated diphenyl ethers, polybrominated dibenzo-p-dioxins and dibenzofurans, polybrominated biphenyls and polybrominated diphenyl ethers. After using blends of B2 with 10% and 20% water-containing butanol, the POP emission factors were decreased by amounts in the range of 22.6%-42.3% and 38.0%-65.5% on a mass basis, as well as 18.7%-78.1% and 51.0%-84.9% on a toxicity basis. The addition of water-containing butanol introduced a lower content of aromatic compounds and most importantly, lead to more complete combustion, thus resulting in a great reduction in the POP emissions. Not only did the self-provided oxygen of butanol promote complete oxidation but also the water content in butanol diesel blends could cause a microexplosion mechanism, which provided a better turbulence and well-mixed environment for complete combustion. PMID:24738886

  5. Chemically-modified Nafion ®/poly(vinylidene fluoride) blend ionomers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Song, Min-Kyu; Kim, Young-Taek; Fenton, James M.; Kunz, H. Russell; Rhee, Hee-Woo

    Miscible Nafion ®/poly(vinylidene fluoride) blend membranes are prepared and characterized PVdF = poly(vinylidene fluoride). The membranes have high miscibility above a 60 wt.% Nafion ® fraction when both polymers are dissolved in a solvent mixture of N, N'-dimethylacetamide and 2-propanol. Despite the high miscibility, the extremely hydrophobic PVdF component reduces the water uptake of Nafion ®/PVdF blend, and the proton conductivity is much lower than that of a Nafion ® 115 membrane even with a high weight fraction of Nafion ®. To improve water affinity and proton conductivity, PVdF is chemically-modified by means of a dehydrofluorination reaction and H 2SO 4 doping prior to solution blend. The chemically-modified Nafion ®/PVdF blend membrane shows similar conductance to Nafion ® 115 without any auxiliary fillers. Nafion ®/PVdF blend membranes of ˜35 μm thickness are hot-pressed between catalyzed carbon paper ELAT ® electrodes. A 25 cm 2 single cell delivers a maximum power of about 440 mW cm -2 at 900 mA cm -2 under H 2/O 2, which is comparable to the performance of Nafion ® 115 under the same operating conditions.

  6. Modelling and kinetics studies of a corn-rape blend combustion in an oxy-fuel atmosphere.

    PubMed

    López, R; Fernández, C; Martínez, O; Sánchez, M E

    2015-05-01

    A kinetic oxy-combustion study of a previously optimized lignocellulose blend is proposed. Kinetic and diffusion control mechanism are considered. The proposed correlations fit properly with the experimental results and diffusion effects are identified as be important enough to be taken into account. Afterwards, with the results obtained in the kinetic study, a detailed consecutive and parallel kinetic scheme is proposed for modelling the oxy-combustion of the blend. A discussion of the temperature and concentration profiles are included. Variation of products final distribution is considered. Smaller particles than 0.001 m are proposed for reducing temperature and concentration profiles and obtaining a good final product distribution. CO2-char reaction is identified as one of the most important step to be optimized for obtaining the lowest final residue. In this study, char is mainly oxidised at 950 K and this situation is attributed to an optimized blending of the bioresidues. PMID:25731924

  7. Comparing a Fischer-Tropsch Alternate Fuel to JP-8 and Their 50-50 Blend: Flow and Flame Visualization Results

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, M.

    2013-01-01

    Combustion performance of a Fischer-Tropsch (FT) jet fuel manufactured by Sasol was compared to JP-8 and a 50-50 blend of the two fuels, using the NASA/Woodward 9 point Lean Direct Injector (LDI) in its baseline configuration. The baseline LDI configuration uses 60deg axial air-swirlers, whose vanes generate clockwise swirl, in the streamwise sense. For all cases, the fuel-air equivalence ratio was 0.455, and the combustor inlet pressure and pressure drop were 10-bar and 4 percent. The three inlet temperatures used were 828, 728, and 617 K. The objectives of this experiment were to visually compare JP-8 flames with FT flames for gross features. Specifically, we sought to ascertain in a simple way visible luminosity, sooting, and primary flame length of the FT compared to a standard JP grade fuel. We used color video imaging and high-speed imaging to achieve these goals. The flame color provided a way to qualitatively compare soot formation. The length of the luminous signal measured using the high speed camera allowed an assessment of primary flame length. It was determined that the shortest flames resulted from the FT fuel.

  8. Origin Story: Blended Wing Body

    NASA Video Gallery

    NASA is partnering with the Boeing Company, among others, to develop and test the blended wing body aircraft. The BWB has the potential to significantly reduce fuel use and noise. In this video, Bo...

  9. Conversion of a micro, glow-ignition, two-stroke engine from nitromethane-methanol blend fuel to military jet propellant (JP-8)

    NASA Astrophysics Data System (ADS)

    Wiegand, Andrew L.

    The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and

  10. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cold for blending with diesel fuel to be used for heating purposes. Claims relating to kerosene sold... Commissioner. (2) A cold weather blend is a blend of kerosene and diesel fuel that is produced in an area... registered ultimate vendor (blending) is a taxable fuel registrant, a registered ultimate vendor, or...

  11. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cold for blending with diesel fuel to be used for heating purposes. Claims relating to kerosene sold... Commissioner. (2) A cold weather blend is a blend of kerosene and diesel fuel that is produced in an area... registered ultimate vendor (blending) is a taxable fuel registrant, a registered ultimate vendor, or...

  12. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cold for blending with diesel fuel to be used for heating purposes. Claims relating to kerosene sold... Commissioner. (2) A cold weather blend is a blend of kerosene and diesel fuel that is produced in an area... registered ultimate vendor (blending) is a taxable fuel registrant, a registered ultimate vendor, or...

  13. 26 CFR 48.6427-11 - Kerosene; claims by registered ultimate vendors (blending).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cold for blending with diesel fuel to be used for heating purposes. Claims relating to kerosene sold... Commissioner. (2) A cold weather blend is a blend of kerosene and diesel fuel that is produced in an area... registered ultimate vendor (blending) is a taxable fuel registrant, a registered ultimate vendor, or...

  14. Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume.

    PubMed

    Ma, Jie; Nossa, Carlos W; Alvarez, Pedro J J

    2015-09-01

    The capacity of groundwater ecosystem to recover from contamination by organic chemicals is a vital concern for environmental scientists. A pilot-scale aquifer system was used to investigate the long-term dynamics of contaminants, groundwater geochemistry, and microbial community structure (by 16S rRNA gene pyrosequencing and quantitative real-time PCR) throughout the 5-year life cycle of a surrogate ethanol blend fuel plume (10% ethanol + 50 mg/L benzene + 50 mg/L toluene). Two-year continuous ethanol-blended release significantly changed the groundwater geochemistry (resulted in anaerobic, low pH, and organotrophic conditions) and increased bacterial and archaeal populations by 82- and 314-fold respectively. Various anaerobic heterotrophs (fermenters, acetogens, methanogens, and hydrocarbon degraders) were enriched. Two years after the release was shut off, all contaminants and their degradation byproducts disappeared and groundwater geochemistry completely restored to the pre-release states (aerobic, neutral pH, and oligotrophic). Bacterial and archaeal populations declined by 18- and 45-fold respectively (relative to the time of shut off). Microbial community structure reverted towards the pre-release states and alpha diversity indices rebounded, suggesting the resilience of microbial community to ethanol blend releases. We also found shifts from O2-sensitive methanogens (e.g., Methanobacterium) to methanogens that are not so sensitive to O2 (e.g., Methanosarcina and Methanocella), which is likely to contribute to the persistence of methanogens and methane generation following the source removal. Overall, the rapid disappearance of contaminants and their metabolites, rebound of geochemical footprints, and resilience of microbial community unequivocally document the natural capacity of groundwater ecosystem to attenuate and recover from a large volume of catastrophic spill of ethanol-based biofuel. PMID:25996759

  15. 40 CFR 80.82 - Butane blending.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that... the provisions of § 80.101(g)(3). For purposes of this paragraph (h)(1), the property values in §...

  16. 40 CFR 80.82 - Butane blending.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.82 Butane blending. A refiner for any refinery that...). For purposes of this paragraph (i)(1), the property values in § 80.82(c) or (d), as appropriate,...

  17. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  18. COAL: DRDF (DENSIFIED REFUSE DERIVED FUEL) DEMONSTRATION TEST IN AN INDUSTRIAL SPREADER STOKER BOILER. USE OF COAL: DRDF BLENDS IN STOKER-FIRED BOILERS, APPENDICES A, B, C, AND D. VOLUME II

    EPA Science Inventory

    This study program has the overall objective of evaluating boiler performance and environmental feasibility when combusting densified forms of refuse derived fuels (dRDF) blended with coal and fired in a modern industrial spreader stoker-fired boiler. The results reported herein ...

  19. 40 CFR 80.85 - Pentane blending.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Pentane blending. 80.85 Section 80.85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.85 Pentane blending. A refiner for any...

  20. In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect

    Curran, Scott; Prikhodko, Vitaly Y; Wagner, Robert M; Parks, II, James E; Cho, Kukwon; Sluder, Scott; Kokjohn, Sage; Reitz, Rolf

    2010-01-01

    In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

  1. Blended Learning

    ERIC Educational Resources Information Center

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  2. Blended Learning

    ERIC Educational Resources Information Center

    Tucker, Catlin; Umphrey, Jan

    2013-01-01

    Catlin Tucker, author of "Blended Learning in Grades 4-12," is an English language arts teacher at Windsor High School in Sonoma County, CA. In this conversation with "Principal Leadership," she defines blended learning as a formal education program in which a student is engaged in active learning in part online where they…

  3. Synergetic and inhibition effects in carbon dioxide gasification of blends of coals and biomass fuels of Indian origin.

    PubMed

    Satyam Naidu, V; Aghalayam, P; Jayanti, S

    2016-06-01

    The present study investigates the enhancement of CO2 gasification reactivity of coals due to the presence of catalytic elements in biomass such as K2O, CaO, Na2O and MgO. Co-gasification of three Indian coal chars with two biomass chars has been studied using isothermal thermogravimetric analysis (TGA) in CO2 environment at 900, 1000 and 1100°C. The conversion profiles have been used to establish synergetic or inhibitory effect on coal char reactivity by the presence of catalytic elements in biomass char by comparing the 90% conversion time with and without biomass. It is concluded that both biomasses exhibit synergistic behavior when blended with the three coals with casuarina being more synergetic than empty fruit bunch. Some inhibitory effect has been noted for the high ash coal at the highest temperature with higher 90% conversion time for the blend over pure coal, presumably due to diffusional control of the conversion rate. PMID:26967339

  4. Flight and Test-stand Investigation of High-performance Fuels in Modified Double-row Radial Air-cooled Engines III: Knock-limited Performance of 33-R as Compared with a Triptane Blend and 28-R in Flight

    NASA Technical Reports Server (NTRS)

    Blackman, Calvin C.; White, H. Jack

    1945-01-01

    A comparison has been made in flight of the antiknock characteristics of 33-R fuel with that of 28-R and a triptane blent. The knock-limited performance of the three fuels - 33-R, a blend of 80 percent 28-R plus 20 percent triptane (leaded to 4.5 ml TEL/gal), and 28-R - was investigated in two modified 14-cylinder double-row radial air-cooled engines. Tests were conducted on the engines as installed in the left inboard nacelle of an airplane. A carburetor-air temperature of approximately 85 deg F was maintained. The conditions covered at an engine speed of 2250 rpm were high and low blower ratios and spark advances of 25 deg and 32 deg B.T.C. For an engine speed of 1800 rpm only the high-blower condition was investigated for both 25 deg and 32 deg spark advances. For the conditions investigated the difference between 33-R and the triptane blend was found to be slight; the performance of 33-R fuel, however, was slightly higher than that of the triptane blend in the lean region. The knock-limited power obtained with the 33-R fuel was from 14 to 28 percent higher than that of the 28-R fuel for the entire range of test conditions; the greatest improvement was shown in the lean region.

  5. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    PubMed Central

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  6. Evaluation of Alkyl Esters from Camelina Sativa Oil as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl and ethyl esters were prepared from camelina [Camelina sativa (L.) Crantz] oil by homogenous base-catalyzed transesterification for evaluation as a potential alternative source of biodiesel fuel. Camelina oil contained a high percentage of linolenic (32.6 wt %), linoleic (19.6 wt %), and ole...

  7. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  8. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude.

    PubMed

    Lavanya, Melcureraj; Meenakshisundaram, Arunachalam; Renganathan, Sahadevan; Chinnasamy, Senthil; Lewis, David Milton; Nallasivam, Jaganathan; Bhaskar, Sailendra

    2016-03-01

    Biocrude was produced from Tetraselmis sp. - a marine alga and Arthrospira platensis - a fresh water alga using hydrothermal liquefaction (HTL) process. Considering the constraints in cultivating algae for replacing 100% petrocrude, this study evaluated the option of blending and co-processing algal biocrude with petrocrude. Biocrudes obtained from algal strains cultivated in fresh water and sea water were blended with petrocrude at 10% concentration and the characteristics were studied using FT-IR and CNS SIMDIST. True Boiling Point (TBP) distillation was carried out to assess yields and properties of distillates of blended biocrudes. Biocrudes obtained from both algae were light crudes and the blended crudes recorded distillate yields of 76-77 wt%. The yield of light naphtha fraction of biocrude blends was 29-30%; whereas the yield of diesel fraction was about 18%. This study proposes blending and co-processing of algal biocrude with petrocrude to produce drop-in biofuels. PMID:26735877

  9. Catalytic hydroprocessing of coal-derived gasification residues to fuel blending stocks: effect of reaction variables and catalyst on hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), and hydrodesulfurization (HDS)

    SciTech Connect

    Dieter Leckel

    2006-10-15

    Gas liquors, tar oils, and tar products resulting from the coal gasification of a high-temperature Fischer-Tropsch plant can be successfully refined to fuel blending components by the use of severe hydroprocessing conditions. High operating temperatures and pressures combined with low space velocities ensure the deep hydrogenation of refractory oxygen, sulfur, and nitrogen compounds. Hydrodeoxygenation, particularly the removal of phenolic components, hydrodesulfurization, and hydrodenitrogenation were obtained at greater than 99% levels using the NiMo and NiW on {gamma}-Al{sub 2}O{sub 3} catalysts. Maximum deoxygenation activity was achieved using the NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst having a maximum pore size distribution in the range of 110-220{angstrom}. The NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst, which also has a relatively high proportion of smaller pore sizes (35-60 {angstrom}), displays lower hydrogenation activity. 30 refs., 1 fig. 8 tabs.

  10. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    NASA Astrophysics Data System (ADS)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  11. Effects of low concentration biodiesel blend application on modern passenger cars. Part 1: feedstock impact on regulated pollutants, fuel consumption and particle emissions.

    PubMed

    Fontaras, Georgios; Kousoulidou, Marina; Karavalakis, Georgios; Tzamkiozis, Theodoros; Pistikopoulos, Panayotis; Ntziachristos, Leonidas; Bakeas, Evangelos; Stournas, Stamoulis; Samaras, Zissis

    2010-05-01

    Five biodiesels from different feedstocks (rapeseed, soy, sunflower, palm, and used fried oils) blended with diesel at 10% vol. ratio (B10), were tested on a Euro 3 common-rail passenger car. Limited effects (-2% to +4%) were observed on CO(2) emissions. CO and HC emissions increased between 10% and 25% on average, except at high speed - high power where emissions were too low to draw conclusions. NOx emissions increased by up to 20% for two out of the five blends, decreased by up to 15% for two other blends, and remained unchanged for one blend. Particulate matter (PM) was reduced for all blends by up to 25% and the reductions were positively correlated with the extent of biodiesel saturation. PM reductions are associated with consistent reductions in non-volatile particle number. A variable behaviour in particle number is observed when volatile particles are also accounted. PMID:20080326

  12. Comparative analysis of plant oil based fuels

    SciTech Connect

    Ziejewski, M.; Goettler, H.J.; Haines, H.; Huong, C.

    1995-12-31

    This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.

  13. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  14. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  15. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  16. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  17. 40 CFR 80.340 - What standards and requirements apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG)? 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur Sampling, Testing and Retention... gasoline by blending blendstocks into previously certified gasoline (PCG)? (a) Any refiner who...

  18. 40 CFR 80.69 - Requirements for downstream oxygenate blending.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... blending. 80.69 Section 80.69 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.69 Requirements for downstream oxygenate blending. The requirements of this section apply to all reformulated gasoline...

  19. 40 CFR 80.69 - Requirements for downstream oxygenate blending.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... blending. 80.69 Section 80.69 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.69 Requirements for downstream oxygenate blending. The requirements of this section apply to all reformulated gasoline...

  20. 40 CFR 80.69 - Requirements for downstream oxygenate blending.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... blending. 80.69 Section 80.69 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.69 Requirements for downstream oxygenate blending. The requirements of this section apply to all reformulated gasoline...

  1. Gasoline-methanol blends boost mileage

    SciTech Connect

    Not Available

    1981-06-17

    A 16-month study commissioned by the Bank of America reports that by blending gasoline with methanol, substantial increases in fuel economy can be obtained in late-model cars. Fuel economy was found to increase by 3% in 1975-79 models and by 13% in 1980 models. Operating costs were found to be lower, and there was an improvement in engine performance.

  2. Coal blending in the `90s and beyond

    SciTech Connect

    Walz, M.A.; Edeal, D.; Snow, J.S.

    1995-10-01

    More and more utilities are leaning toward coal blending as a means of maintaining capacity while lowering emissions or reducing fuel cost. This trend has highlighted new concerns: blend facilities, blending techniques and blend confirmation. A recent project used several blending techniques, from off-site to on-site blending. Barge terminals, which blended coals using volumetric flows and mass flows, served as off-site facilities. The blended coal was transported by barge to another river terminal from which it was hauled by truck to the plant. The blended coal from each barge terminal was then blended on a mass basis with a third coal directly into coal bunkers. This paper describes the facilities and techniques, problems, and solutions in more detail. Several factors, such as sulfur, calcium and heating value, were used to confirm blend accuracy. The usability of these factors and the reasons for their level of success are described. This paper also presents the conclusions reached concerning the methods of blending and confirming the blend.

  3. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  4. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-01

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d6) solution of the purified polymer using 1H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10-3 Scm-1 at 30°C and 3.383 × 10-3 Scm-1 at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  5. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    SciTech Connect

    Hashim, Nordiana; Ali, Ab Malik Marwan; Lepit, Ajis; Rasmidi, Rosfayanti; Subban, Ri Hanum Yahaya; Yahya, Muhd Zu Azhan

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  6. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    NASA Astrophysics Data System (ADS)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton

  7. 40 CFR 80.1440 - What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... who handle and blend less than 125,000 gallons of renewable fuel per year? 80.1440 Section 80.1440... FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1440 What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable fuel per year? (a) Renewable fuel blenders...

  8. 40 CFR 80.1440 - What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... who handle and blend less than 125,000 gallons of renewable fuel per year? 80.1440 Section 80.1440... FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1440 What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable fuel per year? (a) Renewable fuel blenders...

  9. 40 CFR 80.1440 - What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... who handle and blend less than 125,000 gallons of renewable fuel per year? 80.1440 Section 80.1440... FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1440 What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable fuel per year? (a) Renewable fuel blenders...

  10. 40 CFR 80.1440 - What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1440 What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable fuel per year? (a) Renewable fuel blenders who... who handle and blend less than 125,000 gallons of renewable fuel per year? 80.1440 Section...

  11. 40 CFR 80.1440 - What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... FUELS AND FUEL ADDITIVES Renewable Fuel Standard § 80.1440 What are the provisions for blenders who handle and blend less than 125,000 gallons of renewable fuel per year? (a) Renewable fuel blenders who... who handle and blend less than 125,000 gallons of renewable fuel per year? 80.1440 Section...

  12. Combustion performance of pyrolysis oil/ethanol blends in a residential-scale oil-fired boiler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 40 kWth oil-fired commercial boiler was fueled with blends of biomass pyrolysis oil (py-oil) and ethanol to determine the feasibility of using these blends as a replacement for fuel oil in home heating applications. An optimal set of test parameters was determined for the combustion of these blend...

  13. Effective Blended Learning Techniques

    ERIC Educational Resources Information Center

    Gill, Deborah

    2009-01-01

    Blended learning is becoming more prevalent in higher education courses. Reasons for blending range from accommodating more students to improving the quality of courses offered. The purpose of this paper is twofold: (1) to discuss student attitudes towards blended courses versus face-to-face versus completely online courses, and (2) to consider…

  14. Looking East at Motor Control System, Clarity Columns and Blend ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking East at Motor Control System, Clarity Columns and Blend Tank Along East Side of Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  15. Classification of biodiesel and fuel blends using gas chromatography - differential mobility spectrometry with cluster analysis and isolation of C18:3 me by dual ion filtering.

    PubMed

    Pasupuleti, Dedeepya; Eiceman, Gary A; Pierce, Karisa M

    2016-08-01

    Fatty acid alkyl esters (FAAEs) were determined at 10-100mg/L in biodiesel and blends with petrodiesel without sample pre-treatment using gas chromatography with a tandem differential mobility detector. Selectivity was provided through chromatographic separations and atmospheric pressure chemical ionization reactions in the detector with mobility characterization of gas ions. Limits of detection were ~0.5ng with an average of 2.98% RSD for peak area precision, ≤1.3% RSD for retention time precision, and ≤9.2% RSD for compensation voltage precision. Biodiesel blends were classified using principal component analysis (PCA) and hierarchical cluster analysis (HCA). Unsupervised cluster analysis captured 52.72% of variance in a single PC while supervised analysis captured 71.64% of variance using Fisher ratio feature selection. Test set predictions showed successful clustering according to source or feedstock when regressed onto the training set model. Detection of the regulated substance methyl linolenate (C18:3 me) was achieved in 6-10s with a 1m long capillary column using dual ion filtering in the tandem differential mobility detector. PMID:27216685

  16. Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle.

    PubMed

    Ma, Jie; Deng, Ye; Yuan, Tong; Zhou, Jizhong; Alvarez, Pedro J J

    2015-03-01

    GeoChip, a comprehensive gene microarray, was used to examine changes in microbial functional gene structure throughout the 4-year life cycle of a pilot-scale ethanol blend plume, including 2-year continuous released followed by plume disappearance after source removal. Canonical correlation analysis (CCA) and Mantel tests showed that dissolved O2 (which was depleted within 5 days of initiating the release and rebounded 194 days after source removal) was the most influential environmental factor on community structure. Initially, the abundance of anaerobic BTEX degradation genes increased significantly while that of aerobic BTEX degradation genes decreased. Gene abundance for N fixation, nitrification, P utilization, sulfate reduction and S oxidation also increased, potentially changing associated biogeochemical cycle dynamics. After plume disappearance, most genes returned to pre-release abundance levels, but the final functional structure significantly differed from pre-release conditions. Overall, observed successions of functional structure reflected adaptive responses that were conducive to biodegradation of ethanol-blend releases. PMID:25603154

  17. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  18. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  19. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect

    Don Karner; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.

  20. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend, Ford F-150 -- Operating Summary

    SciTech Connect

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  1. Designing and upgrading plants to blend coal

    SciTech Connect

    McCartney, R.H.

    2006-10-15

    Fuel flexibility isn't free. Whether you are equipping a new power plant to burn more than one type of coal or retrofitting an existing plant to handle coal blends, you will have to spend time and money to ensure that all three functions performed by its coal-handling system, unloading, stockout, and reclaim, are up to the task. The first half of this article lays out the available options for configuring each subsystem to support blending. The second half describes, in words and pictures, how 12 power plants in the USA, both new and old, address the issue. 9 figs., 1 tab.

  2. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.

    SciTech Connect

    KRISHNA,C.R.

    2001-12-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

  3. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731

  4. Preparation of Biofuel Using Acetylatation of Jojoba Fatty Alcohols and Assessment as a Blend Component in Ultra Low Sulfur Diesel Fuel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of biodiesel fuels are produced from vegetable oils or animal fats by transesterification of oil with alcohol in the presence of a catalyst. In this study, a new class of biofuel is explored by acetylation of fatty alcohols from Jojoba oil. Recently, we reported Jojoba oil methyl este...

  5. SEASONAL IMPACT OF BLENDING OXYGENATED ORGANICS WITH GASOLINE IN MOTOR VEHICLE TAILPIPE AND EVAPORATIVE EMISSIONS

    EPA Science Inventory

    The evaporative and exhaust emissions from a 1988 GM Corsica with adaptive learning were measured with 4 fuels at 40 degrees F, 75 degrees F, and 90 degrees F. Test fuels were unleaded summer grade gasoline and a blend of this gasolIne contaInIng 8.1 ethanol. efiner's blend stock...

  6. Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biodiesel fuels along with neat fatty acid methyl esters (FAMEs) commonly encountered in biodiesel were blended with ultra-low sulfur diesel (ULSD) fuel at low blend levels permitted by ASTM D975 (B1-B5) and cold flow properties such as cloud point (CP), cold filter plugging point (CFPP), an...

  7. Light-duty vehicle PM and VOC speciated emissions at differing ambient temperatues with ethanol blend gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the U.S., interest is increasing in how these fuel blends affect PM and VOC emissions. EPA conducted a study characterizing emissions from two flex-fuel and one non-flex-fueled light-duty vehicles operated on a chassis dynamom...

  8. A Better Blend

    ERIC Educational Resources Information Center

    Demski, Jennifer

    2010-01-01

    In May 2009, the US Department of Education released a meta-analysis of effectiveness studies of online, face-to-face, and blended learning models. The analysis found that online learning produced better student outcomes than face-to-face classes, and that blended learning offered an even "larger advantage" over face-to-face. The hybrid approach…

  9. Tuning the Blend

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    "Tuning the blend" is a phrase that educators hear a lot these days. It refers to finding the correct balance of online activities and face-to-face instruction in hybrid--or blended--courses. Finding a mix that meets the needs of both faculty and students requires experimentation, experience, and constant tweaking. And, as with coffee, the same…

  10. A Blended Learning Experience

    ERIC Educational Resources Information Center

    Gecer, Aynur; Dag, Funda

    2012-01-01

    Blended (hybrid) learning is one of the approaches that is utilized to help students for meaningful learning via information and communication technologies in educational settings. In this study, Computer II Course which is taught in faculties of education was planned and implemented in the form of a blended learning environment. The data were…

  11. Blended Teaching & Learning

    ERIC Educational Resources Information Center

    Pape, Liz

    2010-01-01

    Blended learning is using online tools to communicate, collaborate and publish, to extend the school day or year and to develop the 21st-century skills students need. With blended learning, teachers can use online tools and resources as part of their daily classroom instruction. Using many of the online tools and resources students already are…

  12. PM₂.₅-bound polycyclic aromatic hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline.

    PubMed

    Oliveira, Rafael Lopes; Loyola, Josiane; Minho, Alan Silva; Quiterio, Simone Lorena; de Almeida Azevedo, Débora; Arbilla, Graciela

    2014-12-01

    The aim of this study was to characterize the PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and their diagnostic ratios in an area impacted by light-duty vehicles fueled by neat ethanol and ethanol-blended gasoline. Samples were collected using a high-volume sampler, extracted, and analyzed for all 16 EPA-priority PAHs using gas chromatography/mass spectrometry (GC/MS) following the EPA 3550B Method. The most abundant PAHs were benzo[g,h,i]perylene, benzo[b]fluoranthene, benzo[a]pyrene and indeno[1,2,3-c,d]pyrene. The total mean concentration was 3.80 ± 2.88 ng m(-3), and the contribution of carcinogenic species was 58 ± 16 % of the total PAHs. The cumulative health hazard from the PAH mixture was determined, and the carcinogenic equivalents and mutagenic equivalents were 0.80 ± 0.82 and 1.17 ± 1.04 ng m(-3), respectively. Diagnostic ratios and normalized ratios were calculated for the individual samples. PMID:25344749

  13. Alternative diesel fuel study on four different types of vegetable oils of Turkish origin

    SciTech Connect

    Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.

    1997-02-01

    Four different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade 2-D diesel fuel at a ratio of 20/80 (v/v). Blends were investigated in a diesel engine with a precombustion chamber at speeds between 1,200 and 2,100 rpm. Vegetable oils, diesel fuel, and fuel blends were characterized according to standard test methods. It was found that for short-term use, the fuel blends have engine characteristics similar to the baseline diesel fuel. Fuel blends also display less smoke emissions than diesel fuel.

  14. Intermediate Ethanol Blends Catalyst Durability Program

    SciTech Connect

    West, Brian H; Sluder, Scott; Knoll, Keith; Orban, John; Feng, Jingyu

    2012-02-01

    In the summer of 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends (also known as mid-level blends) on legacy vehicles and other engines. The purpose of the test program was to develop information important to assessing the viability of using intermediate blends as a contributor to meeting national goals for the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20 - gasoline blended with 15% and 20% ethanol - on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This report provides the results of the catalyst durability study, a substantial part of the overall test program. Results from additional projects will be reported separately. The principal purpose of the catalyst durability study was to investigate the effects of adding up to 20% ethanol to gasoline on the durability of catalysts and other aspects of the emissions control systems of vehicles. Section 1 provides further information about the purpose and context of the study. Section 2 describes the experimental approach for the test program, including vehicle selection, aging and emissions test cycle, fuel selection, and data handling and analysis. Section 3 summarizes the effects of the ethanol blends on emissions and fuel economy of the test vehicles. Section 4 summarizes notable unscheduled maintenance and testing issues experienced during the program. The appendixes provide additional detail about the statistical models used in the analysis, detailed statistical analyses, and detailed vehicle specifications.

  15. Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends.

    PubMed

    Ventura, M; Simionatto, E; Andrade, L H C; Lima, S M

    2012-04-01

    Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends. PMID:22559544

  16. Thermal lens spectroscopy for the differentiation of biodiesel-diesel blends

    NASA Astrophysics Data System (ADS)

    Ventura, M.; Simionatto, E.; Andrade, L. H. C.; Lima, S. M.

    2012-04-01

    Thermal lens (TL) spectroscopy was applied to biofuels to test its potential to distinguish diesel from biodiesel in blended fuels. Both the heat and mass diffusion effects observed using a TL procedure provide significant information about biodiesel concentrations in blended fuels. The results indicate that the mass diffusivity decreases 32% between diesel and the blend with 10% biodiesel added to the diesel. This simple TL procedure has the potential to be used for in loco analyses to certify the mixture and quality of biodiesel-diesel blends.

  17. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  18. 16 CFR 306.5 - Automotive fuel rating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fuels other than biodiesel blends and biomass-based diesel blends, you must possess a reasonable basis... alternative liquid automotive fuel that you must disclose. In the case of biodiesel blends, you must possess a reasonable basis, consisting of competent and reliable evidence, for the percentage of biodiesel contained...

  19. Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition.

    PubMed

    Chrzanowski, Łukasz; Dziadas, Mariusz; Ławniczak, Łukasz; Cyplik, Paweł; Białas, Wojciech; Szulc, Alicja; Lisiecki, Piotr; Jeleń, Henryk

    2012-05-01

    Bacterial utilization of rhamnolipids during biosurfactant-supplemented biodegradation of diesel and B20 (20% biodiesel and 80% diesel v/v) fuels was evaluated under conditions with full aeration or with nitrate and nitrite as electron acceptors. Rhamnolipid-induced changes in community dynamics were assessed by employing real-time PCR and the ddCt method for relative quantification. The experiments with rhamnolipids at 150 mg/l, approx. double critical micelle concentration (CMC) and diesel oil confirmed that rhamnolipids were readily degraded by a soil-isolated consortium of hydrocarbon degraders in all samples, under both aerobic and nitrate-reducing conditions. The presence of rhamnolipids increased the dissipation rates for B20 constituents under aerobic conditions, but did not influence the biodegradation rate of pure diesel. No effect was observed under nitrate-reducing conditions. The biodegradation of rhamnolipids did not favor the growth of any specific consortium member, which proved that the employed biosurfactant did not interfere with the microbial equilibrium during diesel/biodiesel biodegradation. PMID:22366606

  20. Advanced Vehicle Testing Activity: Low-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.

  1. Advanced Vehicle Testing Activity: High-Percentage Hydrogen/CNG Blend Ford F-150 Operating Summary - January 2003

    SciTech Connect

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.

  2. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    NASA Astrophysics Data System (ADS)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  3. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  4. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    SciTech Connect

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  5. 40 CFR 80.1640 - Standards and requirements that apply to refiners producing gasoline by blending blendstocks into...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to refiners producing gasoline by blending blendstocks into previously certified gasoline (PCG). 80... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur § 80.1640 Standards and requirements that apply to refiners producing gasoline by blending blendstocks into previously certified gasoline...

  6. Comparing the Lubricity of Biofuels Obtained from Pyrolysis and Alcoholysis of Soybean Oil and their Blends with Petroleum Diesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diesel-like fuel was synthesized by a pyrolysis method using only an edible soybean oil as starting material (PD). Some physical properties of the material were studied, neat, and in blends with both high sulfur (HSD) and low sulfur (LSD) diesel fuels, and compared with blends of biodiesel (BD) w...

  7. Engine and vehicle concepts for methanol-gasoline blends

    SciTech Connect

    Menrad, H.; Nierhauve, B.

    1983-10-01

    Blending methanol (MEOH) into gasoline results in the variation of the fuel properties, which are partially significant for the vehicle performance. Based on the modified fuel, necessary changes in the engine-vehicle concept are discussed including variations in the characteristics of the cars. Several steps of blending rates are considered: Low percentage in present production gasoline vehicles, medium rate up to 15 % and high values up to 60 % in modified concepts. The most influencing factor proves to be the material compatibility, followed by hot driving problems (vapor lock). Experiences with prototypes are discussed as well as larger test programs, e.g. the German Methanol Program with 1000 M 15 vehicles.

  8. Prenatal exposure to vapors of gasoline-ethanol blends causes few cognitive deficits in adult rats

    EPA Science Inventory

    Developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. Here we assessed cognitive functions in adult offspring of pregnant rats that were exposed to vapors of gasoline blended with a range of ethanol concentrations, including gasoli...

  9. Blending the Basics.

    ERIC Educational Resources Information Center

    McCampbell, Bill

    2001-01-01

    Blended e-learning approaches combine the power of the Internet with existing class events or assignments. Inexpensive tools include electronic mail, keyboarding instruction, online research, streamed video or audio clips, message boards, chat rooms, scanned class reading assignments, and online assessments. IT buzzwords are decoded. (MLH)

  10. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    PubMed

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. PMID:25060241

  11. Aerosols and Criteria Gases in an Underground Mine That Uses FAME Biodiesel Blends

    PubMed Central

    Bugarski, Aleksandar D.; Janisko, Samuel J.; Cauda, Emanuele G.; Patts, Larry D.; Hummer, Jon A.; Westover, Charles; Terrillion, Troy

    2015-01-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck’s contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13–29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends. PMID:25060241

  12. Proton-conducting membrane based on epoxy resin-poly(vinyl alcohol)-sulfosuccinic acid blend and its nanocomposite with sulfonated multiwall carbon nanotubes for fuel-cell application

    NASA Astrophysics Data System (ADS)

    Kakati, Nitul; Das, Gautam; Yoon, Young Soo

    2016-01-01

    A blend of poly(vinyl alcohol) (PVA) with diglycidyl ether of bisphenol-A (DGB) in the presence of sulfosuccinic acid (SSA) was investigated as hydrolytically-stable proton-conducting membrane. The PVA modification was carried out by varying the DGB:SSA ratio (20:20, 10:20, and 5:20). A nanocomposite of the blend (20:20) was prepared with sulfonated multiwall carbon nanotubes (viz., 1, 3 and 5 wt%). The water uptake behavior and the proton conductivity of the prepared membranes were evaluated. The ionic conductivity of the membranes and the water uptake behavior depended on the s-MWCNT and the DGB contents. The ionic conductivity showed an enhancement for the blend and for the nanocomposite membrane as compared to the pristine polymer.

  13. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  14. Fuel property effects on Navy aircraft fuel systems

    NASA Technical Reports Server (NTRS)

    Moses, C. A.

    1984-01-01

    Problems of ensuring compatibility of Navy aircraft with fuels that may be different than the fuels for which the equipment was designed and qualified are discussed. To avoid expensive requalification of all the engines and airframe fuel systems, methodologies to qualify future fuels by using bench-scale and component testing are being sought. Fuel blends with increasing JP5-type aromatic concentration were seen to produce less volume swell than an equivalent aromatic concentration in the reference fuel. Futhermore, blends with naphthenes, decalin, tetralin, and naphthalenes do not deviate significantly from the correlation line of aromatic blends, Similar results are found with tensile strenth and elongation. Other elastomers, sealants, and adhesives are also being tested.

  15. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    SciTech Connect

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  16. Synthesizing optimal waste blends

    SciTech Connect

    Narayan, V.; Diwekar, W.M.; Hoza, M.

    1996-10-01

    Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make this problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.

  17. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  18. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimethoxyphenol and catechol as biodiesel additives on oxidation stability

    PubMed Central

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sánchez, José L.

    2014-01-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower, and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP), and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimethoxyphenol and catechol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using catechol. Adding catechol loads as low as 0.05% (m/m) in blends with soybean biodiesel and as low as 0.10% (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard. An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either catechol or 4-allyl-2,6-dimethoxyphenol as additives affects the correlation observed. PMID:25101258

  19. Oxidation stability of biodiesel fuels and blends using the Rancimat and PetroOXY methods. Effect of 4-allyl-2,6-dimetoxiphenol and cathecol as biodiesel additives on oxidation stability

    NASA Astrophysics Data System (ADS)

    Botella, Lucía; Bimbela, Fernando; Martín, Lorena; Arauzo, Jesús; Sanchez, Jose Luis

    2014-07-01

    In the present work, several fatty acid methyl esters (FAME) have been synthesized from various fatty acid feedstocks: used frying olive oil, pork fat, soybean, rapeseed, sunflower and coconut. The oxidation stabilities of the biodiesel samples and of several blends have been measured simultaneously by both the Rancimat method, accepted by EN14112 standard, and the PetroOXY method, prEN16091 standard, with the aim of finding a correlation between both methodologies. Other biodiesel properties such as composition, cold filter plugging point (CFPP), flash point (FP) and kinematic viscosity have also been analyzed using standard methods in order to further characterize the biodiesel produced. In addition, the effect on the biodiesel properties of using 4-allyl-2,6-dimetoxiphenol and cathecol as additives in biodiesel blends with rapeseed and with soybean has also been analyzed. The use of both antioxidants results in a considerable improvement in the oxidation stability of both types of biodiesel, especially using cathecol. Adding cathecol loads as low as 0.05 % (m/m) in blends with soybean biodiesel and as low as 0.10 % (m/m) in blends with rapeseed biodiesel is sufficient for the oxidation stabilities to comply with the restrictions established by the European EN14214 standard.An empirical linear equation is proposed to correlate the oxidation stability by the two methods, PetroOXY and Rancimat. It has been found that the presence of either cathecol or 4-allyl-2,6-dimetoxiphenol as additives affects the correlation observed.

  20. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  1. JV Task 112-Optimal Ethanol Blend-Level Investigation

    SciTech Connect

    Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

    2008-01-31

    Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

  2. Hydrocarbon fuel additive

    SciTech Connect

    Ambrogio, S.

    1989-02-28

    This patent describes the method of fuel storage or combustion, wherein the fuel supply contains small amounts of water, the step of adding to the fuel supply an additive comprising a blend of a hydrophilic agent chosen from the group of ethylene glycol, n-butyl alcohol, and cellosolve in the range of 22-37% by weight; ethoxylated nonylphenol in the range of 26-35% by weight; nonylphenol polyethylene glycol ether in the range of 32-43% by weight.

  3. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  4. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    SciTech Connect

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  5. Methanol as an alternative automotive fuel: CMC's approach and experience

    SciTech Connect

    Ashton, P.M.; McCurdy, G.; Osler, C.F.

    1983-08-01

    This paper highlights experiences of Canadian Methanol Canadien (CMC) in demonstration of both methanol fuel and methanol-gasoline blends in Winnipeg since 1980 and describes CMC's commercial and technical approach to development of methanol as an alternative automotive fuel. CMC's marketing approach is to equip existing retail service station outlets with the capability to dispense a full slate of fuels (methanol, methanol containing gasolines, as well as conventional fuels) with fuel blending occurring at the service station location. In this way, the fuel distribution infrastructure can be put in place to service simultaneously both existing vehicles (with a range of methyl gasoline blends) and new methanol fuelled vehicles while assuming a high degree of blended fuel quality in a cost-effective manner. It is concluded that methanol and methanol containing gasolines are excellent transportation fuels for Canada and elsewhere, and can be readily integrated into existing transport fuel retail infrastructure.

  6. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    2000-01-01

    An automated propellant blending apparatus and method that uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation is discussed. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  7. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    1999-01-01

    An automated propellant blending apparatus and method uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  8. Blended Learning Improves Science Education.

    PubMed

    Stockwell, Brent R; Stockwell, Melissa S; Cennamo, Michael; Jiang, Elise

    2015-08-27

    Blended learning is an emerging paradigm for science education but has not been rigorously assessed. We performed a randomized controlled trial of blended learning. We found that in-class problem solving improved exam performance, and video assignments increased attendance and satisfaction. This validates a new model for science communication and education. PMID:26317458

  9. Viscoelastic Properties of Polymer Blends

    NASA Technical Reports Server (NTRS)

    Hong, S. D.; Moacanin, J.; Soong, D.

    1982-01-01

    Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.

  10. Blended Learning: A Dangerous Idea?

    ERIC Educational Resources Information Center

    Moskal, Patsy; Dziuban, Charles; Hartman, Joel

    2013-01-01

    The authors make the case that implementation of a successful blended learning program requires alignment of institutional, faculty, and student goals. Reliable and robust infrastructure must be in place to support students and faculty. Continuous evaluation can effectively track the impact of blended learning on students, faculty, and the…

  11. Classifying K-12 Blended Learning

    ERIC Educational Resources Information Center

    Staker, Heather; Horn, Michael B.

    2012-01-01

    The growth of online learning in the K-12 sector is occurring both remotely through virtual schools and on campuses through blended learning. In emerging fields, definitions are important because they create a shared language that enables people to talk about the new phenomena. The blended-learning taxonomy and definitions presented in this paper…

  12. FLOW BEHAVIOR OF PROTEIN BLENDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blending proteins can increase textural strength or enhance taste or mouth feel, such as blending soy with whey to improve taste. In this study, we measured the viscosity of various combinations of six proteins (whey protein isolates, calcium caseinate, soy protein isolates, wheat gluten, egg album...

  13. The Basics of Blended Instruction

    ERIC Educational Resources Information Center

    Tucker, Catlin R.

    2013-01-01

    Even though many of teachers do not have technology-rich classrooms, the rapidly evolving education landscape increasingly requires them to incorporate technology to customize student learning. Blended learning, with its mix of technology and traditional face-to-face instruction, is a great approach. Blended learning combines classroom learning…

  14. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  15. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  16. Physicochemical and toxicological characteristics of particulate matter emitted from a non-road diesel engine: comparative evaluation of biodiesel-diesel and butanol-diesel blends.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-01-15

    Combustion experiments were conducted to evaluate the effects of using blends of ultralow sulfur diesel (ULSD) with biodiesel or n-butanol on physicochemical and toxicological characteristics of particulate emissions from a non-road diesel engine. The results indicated that compared to ULSD, both the blended fuels could effectively reduce the particulate mass and elemental carbon emissions, with butanol being more effective than biodiesel. The proportion of organic carbon and volatile organic compounds in particles increased for both blended fuels. However, biodiesel blended fuels showed lower total particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions. The total number emissions of particles ≤560nm in diameter decreased gradually for the butanol blended fuels, but increased significantly for the biodiesel blended fuels. Both the blended fuels indicated lower soot ignition temperature and activation energy. All the particle extracts showed a decline in cell viability with the increased dose. However, the change in cell viability among test fuels is not statistically significant different with the exception of DB-4 (biodiesel-diesel blend containing 4% oxygen) used at 75% engine load. PMID:24316811

  17. To Blend or Not to Blend: Online and Blended Learning Environments in Undergraduate Teacher Education

    ERIC Educational Resources Information Center

    Collopy, Rachel M. B.; Arnold, Jackie Marshall

    2009-01-01

    Research comparing student experiences with online-only and blended delivery has often concentrated on graduate students and nontraditional programs. However, the effectiveness of online and blended delivery depends on audience and subject matter, suggesting that findings based on data from graduate and nontraditional programs may not hold true…

  18. Impact of higher alcohols blended in gasoline on light-duty vehicle exhaust emissions.

    PubMed

    Ratcliff, Matthew A; Luecke, Jon; Williams, Aaron; Christensen, Earl; Yanowitz, Janet; Reek, Aaron; McCormick, Robert L

    2013-12-01

    Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuel's exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested. PMID:24180630

  19. Investigation of Knock limited Compression Ratio of Ethanol Gasoline Blends

    SciTech Connect

    Szybist, James P; Youngquist, Adam D; Wagner, Robert M; Moore, Wayne; Foster, Matthew; Confer, Keith

    2010-01-01

    Ethanol offers significant potential for increasing the compression ratio of SI engines resulting from its high octane number and high latent heat of vaporization. A study was conducted to determine the knock limited compression ratio of ethanol gasoline blends to identify the potential for improved operating efficiency. To operate an SI engine in a flex fuel vehicle requires operating strategies that allow operation on a broad range of fuels from gasoline to E85. Since gasoline or low ethanol blend operation is inherently limited by knock at high loads, strategies must be identified which allow operation on these fuels with minimal fuel economy or power density tradeoffs. A single cylinder direct injection spark ignited engine with fully variable hydraulic valve actuation (HVA) is operated at WOT conditions to determine the knock limited compression ratio (CR) of ethanol fuel blends. The geometric compression ratio is varied by changing pistons, producing CR from 9.2 to 13.66. The effective CR is varied using an electro-hydraulic valvetrain that changed the effective trapped displacement using both Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC). The EIVC and LIVC strategies result in effective CR being reduced while maintaining the geometric expansion ratio. It was found that at substantially similar engine conditions, increasing the ethanol content of the fuel results in higher engine efficiency and higher engine power. These can be partially attributed to a charge cooling effect and a higher heating valve of a stoichiometric mixture for ethanol blends (per unit mass of air). Additional thermodynamic effects on and a mole multiplier are also explored. It was also found that high CR can increase the efficiency of ethanol fuel blends, and as a result, the fuel economy penalty associated with the lower energy content of E85 can be reduced by about a third. Such operation necessitates that the engine be operated in a de-rated manner for

  20. Utilization of Renewable Oxygenates as Gasoline Blending Components

    SciTech Connect

    Yanowitz, J.; Christensen, E.; McCormick, R. L.

    2011-08-01

    This report reviews the use of higher alcohols and several cellulose-derived oxygenates as blend components in gasoline. Material compatibility issues are expected to be less severe for neat higher alcohols than for fuel-grade ethanol. Very little data exist on how blending higher alcohols or other oxygenates with gasoline affects ASTM Standard D4814 properties. Under the Clean Air Act, fuels used in the United States must be 'substantially similar' to fuels used in certification of cars for emission compliance. Waivers for the addition of higher alcohols at concentrations up to 3.7 wt% oxygen have been granted. Limited emission testing on pre-Tier 1 vehicles and research engines suggests that higher alcohols will reduce emissions of CO and organics, while NOx emissions will stay the same or increase. Most oxygenates can be used as octane improvers for standard gasoline stocks. The properties of 2-methyltetrahydrofuran, dimethylfuran, 2-methylfuran, methyl pentanoate and ethyl pentanoate suggest that they may function well as low-concentration blends with gasoline in standard vehicles and in higher concentrations in flex fuel vehicles.

  1. Study of possible detrimental effects on internal combustion engines by the combustion of gasohol blends

    SciTech Connect

    Myburgh, I.S.; Kerens, G.; van Bergen, E.

    1980-01-01

    Initial performance tests were carried out, using one engine to determine power, torque and specific fuel consumption with the engine fueled firstly with premium petrol, then with a blend of 10% alcohol and 90% premium petrol and finally with a blend of 20% alcohol and 80% premium petrol. The above mentioned performance tests were carried out at factory-specified ignition and carburetor settings. Tests were then carried out at engine speeds of 3 000 r/min and 5 000 r/min at various carburetor settings to determine the optimum engine performance characteristics with the three fuels.

  2. Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.

    SciTech Connect

    Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

    2008-10-01

    The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

  3. Knock-limited performance of ethanol blends in a spark-ignition engine

    SciTech Connect

    Ferfecki, F.J.; Sorenson, S.C.

    1981-01-01

    An experimental study was performed to determine the effect of varying percentages of ethanol in fuel using a CFR engine operated at knock-limited compression ratio and maximum power spark timing. Blends of 85 octane primary reference fuel and ethanol in concentrations between 10 and 25% by volume were tested for performance, fuel economy, and exhaust emissions. The results indicated that when the engine was operated at knock-limited conditions at a constant equivalence ratio, the use of ethanol resulted in a reduction in petroleum fuel usage of 10% greater than the volumetric percentage of the ethanol used in the blend. These results were independent of the amount of ethanol used in the blend. Under these conditions, as the ethanol concentration was increased, BMEP and BSHC increased, BSNO and BSCO remained essentially constant, and exhaust temperature decreased.

  4. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect

    Toulson, Dr. Elisa; Allen, Casey M; Miller, Dennis J; McFarlane, Joanna; Schock, Harold; Lee, Tonghun

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  5. Hydrogen-bonded polymer blends

    NASA Astrophysics Data System (ADS)

    Guigley, Kevin Scott

    This thesis discusses three topics in the general area of hydrogen bonded polymer blends. The first pertains to the blending of flame retardant polyphosphazenes. Poly[bis(n-alkyoxy)phosphazenes] blends with poly(butyl methacrylate- co-4-vinyl phenol) (BMAVPh) were initially studied. These results were compared to BMAVPh blends of analogous poly (vinyl n-alkyl ethers) and the phase behavior was similar. Next, poly[bis(carboxylatophenoxy)phosphazene] blends with a structural polyurethane foam were prepared via reactive mixing. The combustion behavior of these foams was analyzed qualitatively, by a horizontal flame test, and quantitatively, by oxygen index (OI) measurements. Both of these tests indicated a modest increase in flame resistance at loadings of 20 wt% and above. In the second topic, equilibrium constants determined from low molecular weight mixtures were used to successfully predict the phase behavior of analogous polymer blends. Due consideration was given to intramolecular screening and functional group accessibility, factors that are a direct consequence of chain connectivity. In the third topic, polymer blends involving an alternating 1:1 copolymer of tetrafluoroethylene (TFE) and a hexafluoroisopropanol modified vinyl ether (HFIPVE) were studied. This copolymer is interesting for both experimental and theoretical studies of the phase behavior of polymer blends because (1) it is amorphous and has a relatively low glass transition temperature (12°C); (2) it has a relatively low solubility parameter (≈7 (cal.cm-3)-0.5); (3) it is soluble in moderately polar solvents, and (4) it contains the hexafluoroisopropanol group that is a strong hydrogen bond donor. Experimental infrared and thermal analysis studies of polymer blends with (co)polymers containing acetoxy, methacrylate and aliphatic ether groups were studied and compared to theoretical predictions of miscibility maps.

  6. Alcohol fuels

    SciTech Connect

    Not Available

    1990-07-01

    Ethanol is an alcohol made from grain that can be blended with gasoline to extend petroleum supplies and to increase gasoline octane levels. Congressional proposals to encourage greater use of alternative fuels could increase the demand for ethanol. This report evaluates the growth potential of the ethanol industry to meet future demand increases and the impacts increased production would have on American agriculture and the federal budget. It is found that ethanol production could double or triple in the next eight years, and that American farmers could provide the corn for this production increase. While corn growers would benefit, other agricultural segments would not; soybean producers, for example could suffer for increased corn oil production (an ethanol byproduct) and cattle ranchers would be faced with higher feed costs because of higher corn prices. Poultry farmers might benefit from lower priced feed. Overall, net farm cash income should increase, and consumers would see slightly higher food prices. Federal budget impacts would include a reduction in federal farm program outlays by an annual average of between $930 million (for double current production of ethanol) to $1.421 billion (for triple production) during the eight-year growth period. However, due to an partial tax exemption for ethanol blended fuels, federal fuel tax revenues could decrease by between $442 million and $813 million.

  7. Blended Families: Issues of Remarriage

    PubMed Central

    Sanders, Gary L.

    1984-01-01

    Canada's divorce rate increased by 50% between 1968 and 1982. This has resulted in new family forms. One of these, the family which has been `blended' through remarriage of a parent, has some unique developmental hardships and differences from traditional nuclear families. Blended families are subject to a number of myths that may adversely affect their formation. In addition, members of these families need more time and patience to form a stable and functioning family group than do traditional families. Family physicians can aid the blended family with frank discussion, preparation and specific information. PMID:21279000

  8. NASA Alternative Aviation Fuel Research

    NASA Astrophysics Data System (ADS)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  9. Blends of zein and nylon-6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blends of zein and nylon-6(55k)were used to produce solution cast films and electrospun fibers. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measurement...

  10. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  11. Low carbon flower buildup, low smoke, and efficient diesel operation with vegetable oils by conversion to mono-esters and blending with diesel oil or alcohols

    SciTech Connect

    Nobukazu, T.; Itow, K.

    1984-01-01

    The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated DI Diesel engine is evaluated. Means to reduce the carbon deposit buildup in vegetable oil combustion is found. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits are measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. Both of the vegetable oil fuels generate an acceptable engine performance and exhaust gas emission levels for short term operation, but they cause carbon deposit buildups and sticking of piston rings after extended operation. Practical solutions to overcome the problems are: increasing the fuel temperature to over 200/sup 0/C, blending 25 vol % diesel fuel in the vegetable oil, blending 20 vol % ethanol in the fuel, or converting the vegetable oils into methylesters.

  12. Comparative performance study of spark ignition engines burning alcohols, gasoline, and alcohol-gasoline blends

    SciTech Connect

    Desoky, A.A.; Rabie, L.H.

    1983-12-01

    In recent years it has been clear that the reserves of oil, from which petrol is refined, are becoming limited. In order to conserve these stocks of oil, and to minimize motoring costs as the price of dwindling oil resources escalates, it's obviously desirable to improve the thermal efficiency of the spark ignition engine. There are also obvious benefits to be obtained from making spark ignition engines run efficiently on alternative fuel, (non-crude based fuel). It has been claimed that hydrogen is an ideal fuel for the internal combustion engine it certainly causes little pollution, but is difficult to store, high in price, and difficult to burn efficiently in the engine without it knocking and backfiring. These problems arise because of the very wide flammability limits and the very high flame velocity of hydrogen. Alcohols used an additive or substitute for gasoline could immediately help to solve both energy and pollution problems. An experimental tests were carried out at Mansoura University Laboratories using a small single cylinder SIE, fully instrumented to measure the engine performance. The engine was fueled with pure methonol, pure ethonol, gasoline methanol blends and gasaline ethanol blends. The results showed that in principle, from kechnological aspects it's possible to use alcohols as a gasoline extender or as alcohol's gasoline, blends for automobiles. With regard to energy consumptions alcohols and alcohols gasoline blends lead to interesting results. The fuel economy benefits of using alcohols gasoline blends was found to be interesting in the part throltle operation.

  13. Making premium diesel fuel

    SciTech Connect

    Pipenger, G.

    1997-02-01

    For refiners, extra processing and blending is a practical, though not always easy, option for improving diesel fuel properties; however, it entails compromises. For example, ignition quality can be improved by including more paraffins, but this negatively impacts the required low-temperature operability properties. Another example is adding aromatics to increase the diesel`s Btu value, but aromatics burn poorly and tend to cause smoking. Due to these and other types of diametrical trade-offs, the scope of distillate processing and fuels blending at the refinery is often very limited. Therefore, fuel additives are rapidly becoming the only alternative for obtaining the superior quality necessary in a premium diesel fuel. If stabilizers, dispersants and other fuel additive components are used in the additive package, the product can be marketed as a premium diesel fuel additive. Engines using this additive-treated fuel will consistently have less emissions, produce optimum power from the fuel energy conversion process and perform to design specifications. And the user will truly have a premium diesel fuel. The paper discusses detergent additives, cetane or ignition improvers, fuel stabilizers, cold weather additives, and lubricity additives.

  14. Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1

    SciTech Connect

    Knoll, Keith; West, Brian; Clark, Wendy; Graves, Ronald; Orban, John; Przesmitzki, Steve; Theiss, Timothy

    2009-02-01

    This report (February 2009) is an update of the original version, which was published in October 2008. This report is the result of the U.S. Department of Energy's test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels.

  15. Empirical Study of the Stability of Biodiesel and Biodiesel Blends: Milestone Report

    SciTech Connect

    McCormick, R. L.; Westbrook, S. R.

    2007-05-01

    The objective of this work was to develop a database that supports specific proposals for a stability test and specification for biodiesel and biodiesel blends. B100 samples from 19 biodiesel producers were obtained in December of 2005 and January of 2006 and tested for stability. Eight of these samples were then selected for additional study, including long-term storage tests and blending at 5% and 20% with a number of ultra-low sulfur diesel fuels.

  16. Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Chiang, Hung-Lung

    2009-09-15

    The effect of ethanol-gasoline blends on criteria air pollutant emissions was investigated in a four-stroke motorcycle. The ethanol was blended with unleaded gasoline in four percentages (3, 10, 15, and 20% v/v) and controlled at a constant research octane number, RON (95), to accurately represent commercial gasoline. CO, THC, and NOx emissions were evaluated using the Economic Commission for Europe cycle on the chassis dynamometers. The results of the ethanol-gasoline blends were compared to those of commercial unleaded gasoline with methyl tert-butyl ether as the oxygenated additive. In general, the exhaust CO and NOx emissions decreased with increasing oxygen content in fuels. In contrast, ethanol added in the gasoline did not reduce the THC emissions for a constant RON gasoline. The 15% ethanol blend had the highest emission reductions relative to the reference fuel. The high ethanol-gasoline blend ratio (20%) resulted in a less emission reduction than those of low ratio blends (<15%). This may be attributed to the changes in the combustion conditions in the carburetor engine with 20% ethanol addition. Furthermore, the influence of ethanol-gasoline blends on the reduction of exhaust emissions was observed at different driving modes, especially at 15km/h cruising speed for CO and THC and acceleration stages for NOx. PMID:19595441

  17. Application of thermal lens technique to measure the thermal diffusivity of biodiesel blend

    NASA Astrophysics Data System (ADS)

    Sadrolhosseini, Amir Reza; Noor, A. S. M.; Mehdipour, Lotf Ali; Noura, Amin; Mahdi, Mohd Adzir

    2015-04-01

    Thermal diffusivity of palm biodiesel blends was measured using a thermal lens double beam setup. Palm biodiesel blends were prepared from a mixture of normal palm oil biodiesel and diesel fuel with the percentage of the mixture set in the range of 10-90 %. The thermal diffusivity of the palm biodiesel blends consistently increased by increasing the concentration of palm biodiesel from 0.784 × 10-7 to 1.056 × 10-7 m2/s and average of measurement limitation was 0.629 × 10-7 m2/s. Hence, thermal lens technique is suitable and accurate to assess the thermal diffusivity of palm biodiesel.

  18. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No...

  19. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No...

  20. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No...

  1. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No...

  2. 16 CFR Appendix A to Part 306 - Summary of Labeling Requirements for Biodiesel Fuels

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Biodiesel Fuels A Appendix A to Part 306 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER... Part 306—Summary of Labeling Requirements for Biodiesel Fuels (Part 1 of 2) Fuel type Blends of 5 percent or less Blends of more than 5 but not more than 20 percent Header Text Color Biodiesel No...

  3. Method to blend separator powders

    DOEpatents

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  4. Automate small refinery blending operations

    SciTech Connect

    Bauman, D.E.; Mellott, M.T.

    1981-11-01

    More than ever, small refiners must become more efficient to remain competitive. Increased automation can contribute significantly to improving operations and reducing costs. Presented is a method of automating the blending operation which incorporates unique features and equipment. The system has proven successful in reducing costs and manpower, and improved product quality. The discussion is presented under headings - basic blending system; digital blender; knock engines and octave computer; programmable logic controller; flowmeters; lead additive systems.

  5. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2007-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, OH, Oct. 17 to 18, 2007 (ref. 1).

  6. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  7. Unconventional fuel: Tire derived fuel

    SciTech Connect

    Hope, M.W.

    1995-09-01

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  8. Blender Pump Fuel Survey: CRC Project E-95

    SciTech Connect

    Alleman, T. L.

    2011-07-01

    To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

  9. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    PubMed

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured. PMID:25874218

  10. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    PubMed Central

    Alnefaie, Khaled A.

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218

  11. Advanced materials based on polymer blends/polymer blend nanocomposites

    NASA Astrophysics Data System (ADS)

    Shikaleska, A. V.; Pavlovska, F. P.

    2012-09-01

    Processability, morphology, mechanical properties and rheological behavior of poly(vinylchloride) (PVC)/poly(ethylmethacrylate) (PEMA) blends and PVC/PEMA/montmorillonite (MMT) composites, prepared by melt processing in a brabender mixer, were studied. Samples were characterized using SEM, mechanical testing, DMTA and a parallel plate rheometer. Plastograms show that there is noticeable drop of fusion times and increase in melt viscosity torque of both, polymer blend and polymer blend nanocomposite, in comparison with those of neat PVC. SEM images show that homogenous dispersions are obtained. Tensile tests indicate that PVC/PEMA and PVC/PEMA/MMT samples have greater tensile strength and elastic modulus and lower elongation compared to PVC. When solid viscoelastic properties are considered (DMTA), slightly higher storage moduli are obtained whereas more prominent increase of storage modulus is observed when nanoclay particles are added in a PVC/PEMA matrix. From the calculated area of tandelta peak of all tested samples, nanocomposites exhibit the lowest damping behavior. Oscillatory measurements in a molten state were used for determining the frequency dependencies of storage G' and loss G" moduli. It was found that G" curves of neat PVC lie above those of G' suggesting that PVC behaves like viscoelastic liquid. Similar results, but with significantly higher values of G' and G" over the whole frequency range for PVC/PEMA blends were obtained. Steady shear measurements show that the presence of PEMA and nanoclay particles increases the shear stress and shear viscosity of neat PVC. In order to define the rheological equations of state the three material functions were determined. According to these functions all samples exhibit shear thinning behavior and the curves obey the power law equation. As rheological behaviour was found to be strongly dependent on blend's micro and macro structure and it is one of the main factors defining the end properties, attempt was

  12. Alcohol based fuels for automotive engines

    SciTech Connect

    Menrad, H.K.

    1980-02-01

    The effects of methanol and/or ethanol additions on various properties of gasolines are discussed. Both advantages and disadvantages of such mixtures are set forth. The necessary changes in engine design to accommodate such fuel mixtures are described. Successful use of blended fuels in diesel engines is described. The current status of alcohol fuels in actual use is also reported. (BLM)

  13. The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization

    SciTech Connect

    Szybist, James P; West, Brian H

    2013-01-01

    Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68 vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon

  14. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. PMID:20452651

  15. Continuous inline blending of antimisting kerosene

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Yavrouian, A.; Sarohia, V.

    1985-01-01

    A continuous inline blender was developed to blend polymer slurries with a stream of jet A fuel. The viscosity of the slurries ranged widely. The key element of the blender was a static mixer placed immediately downstream of the slurry injection point. A positive displacement gear pump for jet A was employed, and a progressive cavity rotary screw pump was used for slurry pumping. Turbine flow meters were employed for jet A metering while the slurry flow rate was calibrated against the pressure drop in the injection tube. While using one of the FM-9 variant slurries, a provision was made for a time delay between the addition of slurry and the addition of amine sequentially into the jet A stream.

  16. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... vehicle's fuel system) and that is not intentionally removed prior to sale or use. (2) Neat biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The...

  17. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  18. Pressure sensitive conductive rubber blends

    SciTech Connect

    Hassan, H.H. ); Abdel-Bary, E.M. ); El-Mansy, M.K.; Khodair, H.A. )

    1989-12-01

    Butadiene-acrylonitrile rubber (NBR) was blended with polychloroprene (CR) according to standard techniques. The blend was mixed with different concentrations of ZnO. The vulcanized sample was subjected to electrical conductivity ({sigma}) measurements while different values of static pressure were applied on the sample. It was found that samples containing 7.5 phr ZnO showed a reasonable pressure sensitive increase of {sigma}. Furthermore, the {sigma} vs pressure relationship of rubber blend mixed with different concentrations of Fast Extrusion Furnace black (FEF) was investigated. It was found that rubber vulcanizate containing 40 phr FEF resulted in a negative value of the pressure coefficient of conductivity {approx equal} {minus} 4.5 KPa{sup {minus}1}.

  19. Comparative Study of Biofuel and Biodiesel Blend with Mineral Diesel Using One-Dimensional Simulation

    NASA Astrophysics Data System (ADS)

    Rahim, Rafidah; Mamat, Rizalman; Yusof Taib, Mohd

    2012-09-01

    This study is intended to perform one-dimensional simulation for four cylinders diesel engine by using various type of fuels and blend. The testing of biofuels properties conducted according to ASTM standards. The physical properties of the fuel are investigated in chemical laboratory which comprises of flash point, kinematic viscosity, density, cloud & pour point, acid value and moisture content. There are three types of fuels used throughout the study, which are straight vegetable oil (SVO), biodiesel 20% blend (B20) and biodiesel 5% blend (B5). Then, the properties data from the experiment will be used in the simulation GT Power software. Simulation tests have been run with the aim of obtaining comparative measures of torque, power, specific fuel consumption and volumetric efficiency. The results is use to evaluate and analyze the performance of diesel engine running with the mentioned fuels above. The comparison performances for each fuel have been discussed. There is no significant difference in the engine performance when fueled with B5 and diesel. There is only about one percent lower of B5 and four percent higher of B20 and SVO compare to diesel fuel.

  20. HEU to LEU conversion and blending facility: Oxide blending alternative to produce LEU oxide for commercial use

    SciTech Connect

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This document provides data to be used in the environmental impact analysis for the oxide blending HEU disposition option. This option provides for a yearly HEU throughput of 1 0 metric tons (MT) of uranium metal with an average U235 assay of 50% blended with 165 MT of natural assay triuranium octoxide (U{sub 3} O{sub 8}) per year to produce 177 MT of 4% U235 assay U{sub 3} O{sub 8}, for LWR fuel. Since HEU exists in a variety of forms and not necessarily in the form to be blended, worst case scenarios for preprocessing prior to blending will be assumed for HEU feed streams.

  1. Starch-Poly(Hydroxylalkanoate) Composites and Blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper summarizes research on starch-polyhydroxyalkanoate (PHA) blends and composites. Efforts to increase compatibility, characterize mechanical and biodegradation properties are described. A range of blend products have been prepared including molded plastics, films and foams. Finally, futu...

  2. LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...

  3. 7 CFR 989.16 - Blend.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 989.16 Blend. Blend means to mix or commingle raisins....

  4. Blended Learning as Transformational Institutional Learning

    ERIC Educational Resources Information Center

    VanDerLinden, Kim

    2014-01-01

    This chapter reviews institutional approaches to blended learning and the ways in which institutions support faculty in the intentional redesign of courses to produce optimal learning. The chapter positions blended learning as a strategic opportunity to engage in organizational learning.

  5. Raman Microimaging of Polymer Blends

    NASA Astrophysics Data System (ADS)

    Song, Guanghua; Waldek Zerda, Tadeusz

    2001-10-01

    Raman microimaging was used to estimate the effect of the silica filler on phase separation in polymer blends composed of brominated poly(isobutylene-co-para-methylstyrene)(BIMS),natural rubber, synthetic rubber, and cis-1-4-polybutadiene(BR).the domain sizes,relative concentration of polymer components within domains ,and distribution of particulate silica filler and zinc stearate curative were characterized for blends of different compositions and history of aging treatments. The presence of increased concentrations of precipitated silica results in better polymer morphology since domain sizes are reduced.

  6. Partial Miscibility in Copolymer Blends

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Lipson, Jane

    2011-03-01

    Copolymers can be used to affect the miscibility of otherwise immiscible polymer blends by acting as compatibilizers. To better understand the energetics of these types of systems, we use a simple lattice model to study phase separation in binary copolymer/homopolymer blends. We focus on a copolymer that contains both A and B type monomers and a homopolymer that contains purely A type monomer. An example of a system that we are investigating is polyethylene mixed with either random or alternating poly(ethylene-co-propylene). The sequence effect on miscibility as the copolymer microstructure is varied from random to alternating is investigated as well. The support of GAANN is gratefully acknowledged.

  7. Intrinsically safe moisture blending system

    SciTech Connect

    Hallman Jr., Russell L.; Vanatta, Paul D.

    2012-09-11

    A system for providing an adjustable blend of fluids to an application process is disclosed. The system uses a source of a first fluid flowing through at least one tube that is permeable to a second fluid and that is disposed in a source of the second fluid to provide the adjustable blend. The temperature of the second fluid is not regulated, and at least one calibration curve is used to predict the volumetric mixture ratio of the second fluid with the first fluid from the permeable tube. The system typically includes a differential pressure valve and a backpressure control valve to set the flow rate through the system.

  8. 27 CFR 24.198 - Blending.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Blending. 24.198 Section... THE TREASURY ALCOHOL WINE Production of Special Natural Wine § 24.198 Blending. Special natural wine may be blended with other special natural wine of the same class and kind, and with heavy...

  9. 27 CFR 24.198 - Blending.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Blending. 24.198 Section... THE TREASURY LIQUORS WINE Production of Special Natural Wine § 24.198 Blending. Special natural wine may be blended with other special natural wine of the same class and kind, and with heavy...

  10. 27 CFR 24.198 - Blending.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Blending. 24.198 Section... THE TREASURY LIQUORS WINE Production of Special Natural Wine § 24.198 Blending. Special natural wine may be blended with other special natural wine of the same class and kind, and with heavy...

  11. 27 CFR 24.198 - Blending.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Blending. 24.198 Section... THE TREASURY ALCOHOL WINE Production of Special Natural Wine § 24.198 Blending. Special natural wine may be blended with other special natural wine of the same class and kind, and with heavy...

  12. Blending at Small Colleges: Challenges and Solutions

    ERIC Educational Resources Information Center

    Liu, Ying-Hsiu; Tourtellott, Mark

    2011-01-01

    Implementing blended accelerated learning programs or courses requires a systematic approach, not just the addition of new technologies. Small colleges face challenges when they move toward blended learning because of already-constrained resources. In this article, we will survey issues faced by small colleges in moving to blended learning,…

  13. Blending Creativity, Science and Drama

    ERIC Educational Resources Information Center

    Nicholas, Howard; Ng, Wan

    2008-01-01

    Blending the arts into students' learning of science concepts through role-play and drama is unusual pedagogy in schools. For seven Australian Year Five students seeking extended learning, advanced scientific concepts were learned during the creative process of script writing and production of a science play called "Hectic Electric". A mentor and…

  14. Neighborhood School Blends In Well.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    Design considerations for the Haverhill Elementary School in Fort Wayne (Indiana) were that it blend in with the residential neighborhood and be extremely energy effective. By dividing the building into four pods with low hip roofs, and by the extensive use of insulation, both requirements were met. (Author/MLF)

  15. Building a Blended Learning Program

    ERIC Educational Resources Information Center

    McLester, Susan

    2011-01-01

    "Online learning" often serves as an umbrella term that includes the subcategory of blended learning, which might also be referred to as hybrid learning, and comprises some combination of online and face-to-face time. Spurred in part by a 2009 U.S. Department of Education study, "Evaluation of Evidence-Based Practices in Online Learning," which…

  16. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  17. Long term exposure of metals to hydrazine nitrate blend

    NASA Technical Reports Server (NTRS)

    Moran, Clifford M.; Blue, Gary D.

    1986-01-01

    A long term testing program is being conducted to determine the effects of materials in contact with a hydrazine nitrate blend for the purpose of designing chemical propulsion systems which can be used for current as well as future planetary spacecraft. Analysis of this data indicates that some aluminum alloys are acceptable for use with the particular blend of fuel used. Titanium alloy was identified as being acceptable for 10-year applications. Corrosion resistant steels, however, were found to have excessive corrosion rates and are therefore considered unacceptable for long-term use. There is also some evidence that the propellant decomposed at a rate far in excess of the acceptable rate of 0.1 percent per year when in contact with stainless steel.

  18. Association of American Railroads Alternative Fuels Program

    SciTech Connect

    Furber, C.P.

    1985-01-01

    Alternative fuels can be used in locomotive diesel engines as a means to reduce fuel costs or as fuel extenders when sufficient quantities of suitable lower cost fuels are not available. Broadened fuel purchasing guidelines, based on engine fuel tolerance limitation tests, offer a potential for reducing fuel costs. Fuels such as alcohols, certain vegetable oils, shale oils, and heavy oil blends can be used to extend fuel supplies. Fuel tolerance limitations of existing engines can be increased through modifications such as staged injection or the use of ceramic coatings. This paper describes the methods used by the Association of American Railroads Alternative Fuels Research Program to determine engine fuel tolerance limitations and extend engine fuel tolerance limits.

  19. Compression-ignition fuel properties of Fischer-Tropsch syncrude

    SciTech Connect

    Suppes, G.J.; Terry, J.G.; Burkhart, M.L.; Cupps, M.P.

    1998-05-01

    Fischer-Tropsch conversion of natural gas to liquid hydrocarbon fuel typically includes Fischer-Tropsch synthesis followed by refining (hydrocracking and distillation) of the syncrude into mostly diesel or kerosene with some naphtha (a feedstock for gasoline production). Refining is assumed necessary, possibly overlooking the exception fuel qualities of syncrude for more direct utilization as a compression-ignition (CI) fuel. This paper evaluates cetane number, viscosity, cloud-point, and pour-point properties of syncrude and blends of syncrude with blend stocks such as ethanol and diethyl ether. The results show that blends comprised primarily of syncrude are potentially good CI fuels, with pour-point temperature depression being the largest development obstacle. The resulting blends may provide a much-needed and affordable alternative CI fuel. Particularly good market opportunities exist with Environmental Policy Act (EPACT) applications.

  20. Combustion engineering issues for solid fuel systems

    SciTech Connect

    Bruce Miller; David Tillman

    2008-05-15

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  1. Blending materials composed of boron, nitrogen and carbon to transform approaches to liquid hydrogen stores.

    PubMed

    Whittemore, Sean M; Bowden, Mark; Karkamkar, Abhijeet; Parab, Kshitij; Neiner, Doinita; Autrey, Tom; Ishibashi, Jacob S A; Chen, Gang; Liu, Shih-Yuan; Dixon, David A

    2016-04-14

    Mixtures of hydrogen storage materials containing the elements of boron, nitrogen, carbon, i.e., isomers of BN cyclopentanes are examined to find a 'fuel blend' that remains a liquid phase throughout hydrogen release, maximizes hydrogen storage density, minimizes impurities and remains thermally stable at ambient temperatures. We find that the mixture of ammonia borane dissolved in 3-methyl-1,2-dihydro-1,2-azaborolidine (compound B) provide a balance of these properties and provides ca. 5.6 wt% hydrogen. The two hydrogen storage materials decompose at a faster rate than either individually and products formed are a mixture of molecular trimers. Digestion of the product mixture formed from the decomposition of the AB + B fuel blend with methanol leads to the two corresponding methanol adducts of the starting material and not a complex mixture of adducts. The work shows the utility of using blends of materials to reduce volatile impurities and preserve liquid phase. PMID:26629961

  2. Electromechanically active polymer blends for actuation

    NASA Astrophysics Data System (ADS)

    Su, Ji; Ounaies, Zoubeida; Harrison, Joycelyn S.; Bar-Cohen, Yoseph; Leary, Sean P.

    2000-06-01

    Actuator mechanisms that are lightweight, durable, and efficient are needed to support telerobotic requirements, for future NASA missions. In this work, we present a series of electromechanically active polymer blends that can potentially be used as actuators for a variety of applications. This polymer blend combines an electrostrictive graft-elastomer with a ferroelectric poly (vinylidene fluoride-trifluoroethylene) polymer. Mechanical and piezoelectric properties of the blends as a function of temperature, frequency and relative composition of the two constituents in the blends have been studied. Electric field induced strain response of the blend films has also been studied as a function of the relative composition. A bending actuator device was developed incorporating the use of the polymer blend materials. The results and the possible effects of the combination of piezoelectricity and electrostriction in a material system are presented and discussed. This type of analysis may enable the design of blend compositions with optimal strain, mechanical, and dielectric properties for specific actuator applications.

  3. Alternate Fuels for Use in Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  4. Basic mechanisms of photosynthesis and applications to improved production and conversion of biomass to fuels and chemical products

    SciTech Connect

    El-Sayed, M.; Greenbaum, E.; Wasielewski, M.

    1996-09-01

    Natural photosynthesis, the result of 3.5 billion years of evolutionary experimentation, is the best proven, functional solar energy conversion technology. It is responsible for filling the vast majority of humanity`s energy, nutritional, and materials needs. Understanding the basic physical chemical principles underlying photosynthesis as a working model system is vital to further exploitation of this natural technology. These principles can be used to improve or modify natural photosynthesis so that it is more efficient or so that it can produce unusual products such as hydrogen, methane, methanol, ethanol, diesel fuel substitutes, biodegradable materials, or other high value chemical products. Principles garnered from the natural process can also be used to design artificial photosynthetic devices that employ analogs of natural antenna and reaction center function, self-assembly and repair concepts, photoinduced charge transfer processes, photoprotection, and dark reactions that facilitate catalytic action to convert light into, useful chemical or electrical energy. The present broad understanding of many structural and functional aspects of photosynthesis has resulted from rapid recent research progress. X-ray structures of several key photosynthetic reaction centers and antenna systems are available, and the overall principles controlling photoinduced energy and electron transfer are being established.

  5. MOVES2014: Fuel Effects, Toxics Emissions, Total Organic Gases (TOG) and PM Speciation Analysis

    EPA Science Inventory

    The report updates fuel effects applied in MOVES2013 for selected fuel content and bulk fuel properties in gasolines containing up to 20% ethanol for gasoline fuel sulfur content and for fuel ethanol content for E85 and similar blends. These adjustments are applied to vehicle exh...

  6. The Effects of Low-Level Ethanol Blends in 4-Stroke Small Non-Road Engines

    NASA Astrophysics Data System (ADS)

    Reek, Chris

    Small Non-Road Engines (SNRE's) abound in numbers and are used daily by consumers and businesses alike. Considering the atmosphere of change looming in the air regarding alternative fuels, this particular engine classification will also be affected by any change in standardization of fuels. This body of research attempts to address possible ways SNRE's can change their operational characteristics after being fueled by specific yet differing fuels. These characteristics will be contrasted against blends of ethanol with gasoline, from 0% ethanol to 20% ethanol, run on test engines to determine patterns, if any, of these characteristics. Topics include: materials compatibility, engine longevity/durability, engine performance, emissions characteristics, operational temperatures, engine oil characteristics, and inspection of engines. These parameters will be used to compare the effects of low-level blends of ethanol with gasoline has on these particular SNRE's.

  7. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  8. Biodiesel fuel technology for military application. Interim report, July 1994-May 1996

    SciTech Connect

    Frame, E.A.; Bessee, G.B.; Marbach, H.W.

    1997-12-01

    This program addressed the effects of biodiesel (methyl soyate) and blends of biodiesel with petrofuels on fuel system component and material compatibility, fuel storage stability, and fuel lubricity. Biodiesel was found to have excellent lubricity properties and was effective at 1 volume percent (vol %) blend in improving the lubricity of Jet A-1 fuel. The following potential problem areas associated with methyl soyate use were identified: storage stability, compatibility with some metals, and compatibility with nitrile elastomers.

  9. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    EPA Science Inventory

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  10. 75 FR 70241 - Compatibility of Underground Storage Tank Systems With Biofuel Blends

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... whose equipment may not be certified as compatible by an independent testing laboratory. \\1\\ See 74 FR 18228 (April 21, 2009). \\2\\ See 75 FR 68043 (November 4, 2010). Compatibility of Biodiesel-Blended Fuel... than 10 percent ethanol and diesel containing an amount of biodiesel yet to be determined....

  11. Instrumental Analysis of Biodiesel Content in Commercial Diesel Blends: An Experiment for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Feng, Z. Vivian; Buchman, Joseph T.

    2012-01-01

    The potential of replacing petroleum fuels with renewable biofuels has drawn significant public interest. Many states have imposed biodiesel mandates or incentives to use commercial biodiesel blends. We present an inquiry-driven experiment where students are given the tasks to gather samples, develop analytical methods using various instrumental…

  12. Gasification of blended animal manures to produce synthesis gas and activated charcoal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blended swine solids, chicken litter, and hardwood are renewable and expensive sources to produce combined heat and power (CHP), fuels and related chemicals. The therrmochemical pathway to gasify manure has the added advantage of destroying harmful pathogens and pharmaceutically active compounds dur...

  13. Toxicological Assessments of Rats Exposed Prenatally to Inhaled Vapors of Gasoline and Gasoline-Ethanol Blends

    EPA Science Inventory

    The primary alternative to petroleum-based fuels is ethanol, which is blended with gasoline in the United States at concentrations up to 15% for most automobiles. Efforts to increase the amount of ethanol in gasoline have prompted concerns about the potential toxicity of inhaled ...

  14. A FIELD TEST USING COAL:DRDF BLENDS IN SPREADER STOKER-FIRED BOILERS

    EPA Science Inventory

    This program was conducted to characterize and demonstrate the technical, economic, and environmental feasibility of combustion densified forms of refuse derived fuel (dRDF) blended with coal in spreader stoker-fired boilers. A total of 258.5 Mg (285 tons) of pelletized 1/2-inch-...

  15. Quantification of ethanol in ethanol-petrol and biodiesel in biodiesel-diesel blends using fluorescence spectroscopy and multivariate methods.

    PubMed

    Kumar, Keshav; Mishra, Ashok K

    2012-01-01

    Ethanol blended petrol and biodiesel blended diesel are being introduced in many countries to meet the increasing demand of hydrocarbon fuels. However, technological limitations of current vehicle engine do not allow ethanol and biodiesel percentages in the blended fuel to be increased beyond a certain level. As a result quantification of ethanol in blended petrol and biodiesel in blended diesel becomes an important issue. In this work, calibration models for the quantification of ethanol in the ethanol-petrol and biodiesel in the biodiesel-diesel blends of a particular batch were made using the combination of synchronous fluorescence spectroscopy (SFS) with principal component regression (PCR) and partial least square (PLS) and excitation emission matrix fluorescence (EEMF) with N-way Partial least square (N-PLS) and unfolded-PLS. The PCR, PLS, N-PLS and unfolded-PLS calibration models were evaluated through measures like root mean square error of cross-validation (RMSECV), root mean square error of calibration (RMSEC) and square of the correlation coefficient (R(2)). The prediction abilities of the models were tested using a testing set of ethanol-petrol and biodiesel-diesel blends of known ethanol and biodiesel concentrations, error in the predictions made by the models were found to be less than 2%. The obtained calibration models are highly robust and capable of estimating low as well as high concentrations of ethanol and biodiesel. PMID:21909636

  16. The blending strategy for the plutonium immobilization program

    SciTech Connect

    Ebbinghaus, B B; Edmunds, T A; Gentry, S; Gray, L W; Riley, D C; Spingarn, J; VanKonynenburg, R A

    1999-02-12

    The Department of Energy (DOE) has declared approximately 38.2 tonnes of weapons-grade plutonium to be excess to the needs of national security, 14.3 tonnes of fuel- and reactor-grade plutonium excess to DOE needs, and anticipates an additional 7 tonnes to be declared excess to national security needs. Of this 59.5 tonnes, DOE anticipates that {approximately} 7.5 tonnes will be dispositioned as spent fuel at the Geologic Repository and {approximately} 2 tonnes will be declared below the safeguards termination limit and be discard3ed as TRU waste at WIPP. The remaining 50 tonnes of excess plutonium exists in many forms and locations around the country, and is under the control of several DOE offices. In addition to the plutonium, the feed stock also contains about 17 tonnes of depleted uranium, about 600 kg of highly enriched uranium, and many kilograms of neptunium and thorium and about 8 to 10 tonnes of tramp impurities. The Materials Disposition Program (MD) will be received materials packaged by these other Programs to disposition in a manor that meets the spent fuel standard. To minimize the cost of characterization of the feedstock and to minimize purification processes, a blending strategy will be followed. The levelization of the impurities, the plutonium isotopics, and the actinide impurities will also provide some benefits in the area of proliferation resistance. The overall strategy will be outlined and the benefits of following a blending instead of a purification program will be discussed.

  17. Superstrings in Sheared Polymer Blends

    NASA Astrophysics Data System (ADS)

    Migler, Kalman

    2000-03-01

    We report the discovery of a droplet-string-ribbon transition in concentrated polymer blends which occurs when the droplet size of the dispersed component becomes comparable to the gap between the boundary plates. Above a critical shear rate (or gap width), dispersed droplets continuously coalescence and breakup; the upper limit on their size is set by the Taylor length. Below this critical shear rate, droplets coalesce into strings and then ribbons in a four stage kinetic process. The mass ratio of string / droplet can be as large as 10^4. The transition is sharp, occurring over a shear interval of 2droplet-string transition is a manifestation of the weakening of the Rayleigh-Tomatika instability which occurs when the system becomes quasi two-dimensional. Possible applications of this technology are ultra-thin materials of high one-dimensional strength, polymer blend wires, and novel polymeric scaffolds.

  18. Peanut oil as an emergency diesel fuel

    SciTech Connect

    Goodrum, J.W.

    1983-06-01

    Two elements of an emergency fuel system are discussed. A CeCoCo mechanical oil expeller's efficiency is related to temperature, moisture, and pressure conditions. Durability test on 20:80 and 80:20 peanut oil: diesel blends show injector coking and effects on exhaust temperature, specific fuel, and crankcase oil.

  19. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  20. Alternate-Fueled Combustor-Sector Performance: Part A: Combustor Performance Part B: Combustor Emissions

    NASA Technical Reports Server (NTRS)

    Shouse, D. T.; Neuroth, C.; Henricks, R. C.; Lynch, A.; Frayne, C.; Stutrud, J. S.; Corporan, E.; Hankins, T.

    2010-01-01

    Alternate aviation fuels for military or commercial use are required to satisfy MIL-DTL-83133F(2008) or ASTM D 7566 (2010) standards, respectively, and are classified as drop-in fuel replacements. To satisfy legacy issues, blends to 50% alternate fuel with petroleum fuels are certified individually on the basis of feedstock. Adherence to alternate fuels and fuel blends requires smart fueling systems or advanced fuel-flexible systems, including combustors and engines without significant sacrifice in performance or emissions requirements. This paper provides preliminary performance (Part A) and emissions and particulates (Part B) combustor sector data for synthetic-parafinic-kerosene- (SPK-) type fuel and blends with JP-8+100 relative to JP-8+100 as baseline fueling.

  1. Combustion performance evaluation of air staging of palm oil blends.

    PubMed

    Mohd Jaafar, Mohammad Nazri; Eldrainy, Yehia A; Mat Ali, Muhammad Faiser; Wan Omar, W Z; Mohd Hizam, Mohd Faizi Arif

    2012-02-21

    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber. PMID:22296110

  2. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P; Thomas, John F; Barone, Teresa L; Eibl, Mary A; Nafziger, Eric J; Kaul, Brian C

    2014-01-01

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  3. Investigation of Atomization and Combustion Performance of Renewable Biofuels and the Effects of Ethanol Blending in Biodiesel

    NASA Astrophysics Data System (ADS)

    Silver, Adam Gregory

    This thesis presents results from an experimental investigation of the macroscopic and microscopic atomization and combustion behavior of B99 biodiesel, ethanol, B99-ethanol blends, methanol, and an F-76-Algae biodiesel blend. In addition, conventional F-76 and Diesel #2 sprays were characterized as a base case to compare with. The physical properties and chemical composition of each fuel were measured in order to characterize and predict atomization performance. A variety of B99-ethanol fuel blends were used which demonstrate a tradeoff between lower density, surface tension, and viscosity with a decrease in the air to liquid ratio. A plain jet air-blast atomizer was used for both non-reacting and reacting tests. The flow rates for the alternative fuels were set by matching the power input provided by the baseline fossil fuels in order to simulate use as a drop in replacement. For this study, phase Doppler interferometry is employed to gain information on drop size, SMD, velocity, and volume flux distribution across the spray plume. A high speed camera is used to gather high speed cinematography of the sprays for observing breakup characteristics and providing additional insight. Reacting flow tests captured NOx, CO, and UHC emissions along with high speed footage used to predict soot levels based on flame luminosity. The results illustrate how the fuel type impacts the atomization and spray characteristics. The air-blast atomizer resulted in similar atomization performance among the DF2, F-76, and the F-76/Algae blend. While methanol and ethanol are not suitable candidates for this air-blast configuration and B99 produces significantly larger droplets, the addition of ethanol decreased drop sizes for all B99-ethanol blends by approximately 5 microns. In regards to reacting conditions, increased ethanol blending to B99 consistently lowered NOx emissions while decreasing combustion efficiency. Overall, lower NOx and CO emissions were achieved with the fuel blends

  4. Fuel flexible fuel injector

    SciTech Connect

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  5. Alternative fuels utilization and the automotive emission certification process

    SciTech Connect

    Not Available

    1980-03-01

    The Clean Air Act of 1977 requires that commercially offered automotive fuels and fuel additives be substantially similar to fuels used in certifying model year 1975 and later vehicles. Procedures for certifying that vehicles perform with emissions that meet the Clean Air Act specifications and the impact of this emissions certification process on the use of alternative fuels, such as alcohols, alcohol-gasoline blends and synthetic fuels, in highway vehicles is discussed. (LCL)

  6. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter. PMID:18988104

  7. Thermodynamics of reformulated automotive fuels

    SciTech Connect

    Zudkevitch, D.; Murthy, A.K.S.; Gmehling, J.

    1995-06-01

    Two methods for predicting Reid vapor pressure (Rvp) and initial vapor emissions of reformulated gasoline blends that contain one or more oxygenated compounds show excellent agreement with experimental data. In the first method, method A, D-86 distillation data for gasoline blends are used for predicting Rvp from a simulation of the mini dry vapor pressure equivalent (Dvpe) experiment. The other method, method B, relies on analytical information (PIANO analyses) of the base gasoline and uses classical thermodynamics for simulating the same Rvp equivalent (Rvpe) mini experiment. Method B also predicts composition and other properties for the fuel`s initial vapor emission. Method B, although complex, is more useful in that is can predict properties of blends without a D-86 distillation. An important aspect of method B is its capability to predict composition of initial vapor emissions from gasoline blends. Thus, it offers a powerful tool to planners of gasoline blending. Method B uses theoretically sound formulas, rigorous thermodynamic routines and uses data and correlations of physical properties that are in the public domain. Results indicate that predictions made with both methods agree very well with experimental values of Dvpe. Computer simulation methods were programmed and tested.

  8. Impact of reformulated ethanol-gasoline blends on high-emitting vehicles.

    PubMed

    Schifter, I; Díaz, L; González, Uriel

    2013-01-01

    In-use vehicles which are high emitters (HEVs) make a large contribution to the emissions inventory. It is not known, however, whether HEVs share common emissions characteristics, and particularly the effect of ethanol blends. We study this by first examining laboratory measurements of exhaust and evaporative emissions on ethanol blends containing 21%, 26% and 30% aromatics, and a reference fuel formulated with methyl-tertiary butyl ether (MTBE). Switching from MTBE to ethanol fuels on HEVs shows no effect on the total emissions of regulated pollutants, but 1,3-butadiene emissions would increased substantially while the emissions of total carbonyls would not be affected except in the case of acetaldehyde, which would increase with EtOH. The ozone-forming potential of exhaust and evaporative emissions would be less using the EtOH blends and specific reactivity will not be incremented. Lowering the vapour pressure of the gasoline and increasing the proportions of alkylate and isomerate in the composition produces an ethanol-blended fuel with lower environmental impact both in normal vehicles and HEVs. PMID:23837342

  9. Alcohol fuels. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-07-01

    The bibliography contains citations of selected patents concerning alcohol and alcohol-containing fuels for use in internal combustion engines. Methanol-fueled diesel engines and fuel systems are discussed. Citations also cover alcohol-gasoline mixtures, gasoline-blended methanol, fuel component sensors, injectors, air-fuel ratio control, fuel evaporation control, and fuel contamination. (Contains 50-250 citations and includes a subject term index and title list.)

  10. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  11. Laboratory endurance test of a sunflower oil blend in a diesel engine

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-01-01

    This paper compares the effects of using a 25 to 75 blend (v/v) of alkali refined sunflower oil and diesel fuel in a diesel engine as compared to a baseline test on diesel fuel. There were no significant problems with engine operation during the baseline test. However, problems were experienced while using the blended fuel. The major problems were (1) abnormal buildup on the injection nozzle tips, (2) injector needle sticking, (3) secondary injection, (4) carbon buildup in the intake ports, (5) carbon deposits on the exhaust valve stems, (6) carbon filling of the compression ring grooves, and (7) abnormal lacquer and varnish buildup on the third piston land. 6 figures, 4 tables.

  12. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  13. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  14. Custom blending of lamp phosphors

    NASA Technical Reports Server (NTRS)

    Klemm, R. E.

    1978-01-01

    Spectral output of fluorescent lamps can be precisely adjusted by using computer-assisted analysis for custom blending lamp phosphors. With technique, spectrum of main bank of lamps is measured and stored in computer memory along with emission characteristics of commonly available phosphors. Computer then calculates ratio of green and blue intensities for each phosphor according to manufacturer's specifications and plots them as coordinates on graph. Same ratios are calculated for measured spectrum. Once proper mix is determined, it is applied as coating to fluorescent tubing.

  15. Sludge Stabilization Campaign blend plan

    SciTech Connect

    De Vries, M.L.

    1994-10-04

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material.

  16. Effect of oxygenated fuels on physicochemical and toxicological characteristics of diesel particulate emissions.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2014-12-16

    A systematic study was conducted to make a comparative evaluation of the effects of blending five different oxygenates (diglyme (DGM), palm oil methyl ester (PME), dimethyl carbonate (DMC), diethyl adipate (DEA), and butanol (Bu)) with ultralow sulfur diesel (ULSD) at 2% and 4% oxygen levels on physicochemical and toxicological characteristics of particulate emissions from a nonroad diesel engine. All blended fuels led to an overall decrease in the particulate mass concentration and elemental carbon (EC) emissions, which was strongly associated with the oxygen content in fuels and the specific type of fuels used. In general, the proportion of particulate-bound organic carbon (OC) and water-soluble organic carbon (WSOC) increased while using oxygenated fuel blends. Compared to ULSD, all fuel blends showed different emission factors of particle-phase PAHs and n-alkanes, slight alterations in soot nanostructure, lower soot ignition temperature, and lower activation energy. The total counts of particles (≤ 560 nm diameter) emitted decreased gradually for ULSD blended with DMC, DEA, and Bu, while they increased significantly for other fuel blends. The in vitro toxicity of particulates significantly increased with ULSD blended with DMC and DEA, while it decreased when ULSD was blended with PME, DGM, and Bu. PMID:25383974

  17. Perspectives on Blended Learning in Higher Education

    ERIC Educational Resources Information Center

    Vaughan, N.

    2007-01-01

    This article explores the benefits and challenges of blended learning in higher education from the perspective of students, faculty, and administration that have had direct experience with this form of course delivery. Students indicate that a blended learning model provides them with greater time flexibility and improved learning outcomes but…

  18. Preparing Teachers for Emerging Blended Learning Environments

    ERIC Educational Resources Information Center

    Oliver, Kevin M.; Stallings, Dallas T.

    2014-01-01

    Blended learning environments that merge learning strategies, resources, and modes have been implemented in higher education settings for nearly two decades, and research has identified many positive effects. More recently, K-12 traditional and charter schools have begun to experiment with blended learning, but to date, research on the effects of…

  19. Enhancing Students' Language Skills through Blended Learning

    ERIC Educational Resources Information Center

    Banditvilai, Choosri

    2016-01-01

    This paper presents a case study of using blended learning to enhance students' language skills and learner autonomy in an Asian university environment. Blended learning represents an educational environment for much of the world where computers and the Internet are readily available. It combines self-study with valuable face-to-face interaction…

  20. Dynamic Heterogeneity in Interacting Miscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Gaikwad, Ashish; Lodge, Timothy

    2008-03-01

    Dynamic heterogeneity leading to time-temperature superposition (tTS) failure has been widely reported in non-interacting/weakly interacting miscible polymer blends. However, coupling of the component dynamic response in blends, even with a huge dynamic asymmetry in the pure components, is possible with H-bonding interactions. This study is focused on finding the minimum level of interaction necessary for thermo-rheological simplicity in blends. Blends of styrene-co-vinylphenol (PSVPh) and poly(vinyl methyl ether) (PVME) were chosen. Incorporation of styrene provides an effective way to modulate H-bonding interactions in the system. Linear viscoelastic data indicate that tTS fails for PS/PVME blends, whereas data obtained for different PVPh/PVME blends showed that tTS was obeyed a over wide temperature range. For PSVPh/PVME blends with low PSVPh content, tTS was successful. This suggests that the presence of alternating styrene and vinyl phenol units was insufficient for dynamic response decoupling. Further studies are in progress, with varying vinyl phenol content in PSVPh, to explore the influence of H-bonding on dynamic heterogeneity and blend dynamics.

  1. Compatible Blends of Zein and Polyvinylpyrrolidone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blends of zein and polyvinylpyrrolidone (PVP) were compared based on their tensile properties, thermal properties and morphology. Zein was blended with polyvinylpyrrolidone of varying molecular weights (10,000, 55,000 and 1,300,000 MW) and films were cast from ethanol solutions. Films cast using t...

  2. Meeting Diverse Learner Needs with Blended Learning

    ERIC Educational Resources Information Center

    Owen, Hazel

    2010-01-01

    This article describes a 40-week Computer, Research Skills, and Projects (CRSP) blended learning course designed and implemented at Dubai Men's College. The learning employed a design using socio-constructivist principles in the blended approach to cater to the learning preferences of students. (Contains 2 figures and 1 footnote.)

  3. How Are Universities Involved in Blended Instruction?

    ERIC Educational Resources Information Center

    Oh, Eunjoo; Park, Suhong

    2009-01-01

    The purposes of this study are to examine faculty involvement in blended instruction and their attitudes towards the instructional method. The study also explored how universities support faculty in their current practices on blended instruction and the challenges in supporting faculty. The target population of this study was Institute of Higher…

  4. Green emitting phosphors and blends thereof

    DOEpatents

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  5. PAIRWISE BLENDING OF HIGH LEVEL WASTE (HLW)

    SciTech Connect

    CERTA, P.J.

    2006-02-22

    The primary objective of this study is to demonstrate a mission scenario that uses pairwise and incidental blending of high level waste (HLW) to reduce the total mass of HLW glass. Secondary objectives include understanding how recent refinements to the tank waste inventory and solubility assumptions affect the mass of HLW glass and how logistical constraints may affect the efficacy of HLW blending.

  6. Investigation of sources, properties and preparation of distillate test fuels

    NASA Technical Reports Server (NTRS)

    Bowden, J. N.; Erwin, J.

    1983-01-01

    Distillate test fuel blends were generated for prescribed variations in composition and physical properties. Fuels covering a wide range in properties and composition which would provide a matrix of fuels for possible use in future combustion research programs were identified. Except for tetralin the blending components were all from typical refinery streams. Property variation blends span a boiling range within 150 C to 335 C, freezing point -23 C to -43 C, aromatic content 20 to 50 volume percent, hydrogen content 11.8 to 14.2 mass percent, viscosity 4 and 11 cSt (-20 C), and naphthalenes 8 and 16 volume percent. Composition variation blends were made with two base stocks, one paraffinic and the other napthenic. To each base stock was added each of three aromatic type fuels (alkyl benzenes, tetralin, and naphthalenes) for assigned initial boiling point, final boiling point, and hydrogen content. The hydrogen content was 13.5 mass percent for the paraffinic base stock blends and 12.5 mass percent and 11.5 mass percent for the naphthenic base stock blends. Sample 5-gallon quantities of all blends were prepared and analyzed.

  7. Fish oil as an alternative fuel for internal combustion engines

    SciTech Connect

    Blythe, N.X.

    1996-12-31

    This paper presents the results of combustion studies performed with fish oil and fish oil/diesel fuel blends in a medium speed, two cycle, opposed piston engine. Performance and emissions results with blends from 10% to 100% fish oil in diesel fuel are presented. Combustion cycle analysis data comparisons are made between fish oil and diesel fuel operation. Component inspection results and analysis of deposits found in the engine after the tests are also presented. Finally, comparisons between fish oil and other biodiesel fuels are made.

  8. Thermodynamic aspects of reformulation of automotive fuels

    SciTech Connect

    Zudkevitch, D.; Murthy, A.K.S.; Gmehling, J.

    1995-09-01

    A study of procedures for measuring and predicting the RVP and the initial vapor emissions of reformulated gasoline blends which contain one or more oxygenated compounds, viz., Ethanol, MTBE, ETBE, and TAME is discussed. Two computer simulation methods were programmed and tested. In one method, Method A, the D-86 distillation data on the blend are used for predicting the blend`s RVP from a simulation of the Mini RVPE (RVP Equivalent) experiment. The other method, Method B, relies on analytical information (PIANO analyzes) on the nature of the base gasoline and utilizes classical thermodynamics for simulating the same RVPE, Mini experiment. Method B, also, predicts the composition and other properties of the initial vapor emission from the fuel. The results indicate that predictions made with both methods agree very well with experimental values. The predictions with Method B illustrate that the admixture of an oxygenate to a gasoline blend changes the volatility of the blend and, also, the composition of the vapor emission. From the example simulations, a blend with 10 vol % ethanol increases the RVP by about 0.8 psi. The accompanying vapor emission will contain about 15% ethanol. Similarly, the vapor emission of a fuel blend with 11 vol % MTBE was calculated to contain about 11 vol % MTBE. Predictions of the behavior of blends with ETBE and ETBE+Ethanol are also presented and discussed. Recognizing that quite some efforts have been invested in developing empirical correlations for predicting RVP, the writers consider the purpose of this paper to be pointing out that the methods of classical thermodynamics are adequate and that there is a need for additional work in developing certain fundamental data that are still lacking.

  9. Influence of electrostatic interactions on the morphology and properties of blends containing perfluorinated ionomers

    NASA Astrophysics Data System (ADS)

    Taylor, Eric Paul

    2002-01-01

    The first goal of this research project was to investigate the influence of the electrostatic interactions within the ion-containing domains of Nafion RTM perfluorosulfonate ionomer (PFSI) on the morphology and resultant properties of blend systems with poly(propylene imine) dendrimers of a variety of generational sizes and poly(vinylidene fluoride) (PVDF). Perfluorosulfonate ionomers (PFSIs) are a commercially successful class of semi-crystalline, ion-containing polymers whose most extensive application is in use as a polymer electrolytic membrane in fuel cell applications. NafionRTM was blended and high temperature solution processed with poly(propylene imine) dendrimer as the minor component in order to increase the efficiency of direct methanol fuel cells by decreasing methanol crossover without significant loss of protonic conductivity. The preferential insertion of the dendrimer into the ionic cluster due to proton transfer reactions and the creation of ammonium-sulfonate ion pairs served to alter the transport properties through the ionic network of the membrane. In the second major system investigated, blends of poly(vinylidene fluoride) (PVDF) with NafionRTM, a perfluorosulfonate ionomer, have been prepared and examined in terms of the crystallization kinetics and crystal morphology of the PVDF component in the blend. DSC analysis showed faster rates of bulk crystallization when PVDF was crystallized in the presence of Na+-form NafionRTM suggesting a high degree of phaseseparation in this blend system and an increase in the nucleation density. NafionRTM neutralized with alkylammonium-form counterions display an increase in blend compatibility with PVDF with an increase in the alkylammonium counterion size. As the alkylammonium counterion size increases, the strength of the electrostatic network within the ionic domains of Nafion RTM decrease resulting in a reduction in the driving force for ionic aggregation. Thus, a decrease is observed in the crystal

  10. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic

  11. Biofuel Blending Impacts on Aircraft Engine Particle Emissions at Cruise Conditions

    NASA Astrophysics Data System (ADS)

    Moore, R.

    2015-12-01

    We present measurements of aerosol emissions indices and microphysical properties measured in-situ behind the CFM56-2-C1 engines of the NASA DC-8 aircraft during the 2014 Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) project. Aircraft engine emissions can have a disproportionately large climatic impact since they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. This has motivated numerous past ground-based studies focused on quantifying the emissions indices of non-volatile and semi-volatile aerosol species, however, it is unclear the extent to which emissions on the ground translate to emissions at cruise conditions. In addition, the ability of engine-emitted aerosols to nucleate ice crystals and form linear contrails or contrail cirrus clouds remains poorly understood. To better understand these effects, two chase plane experiments were carried out in 2013 and 2014. Three different fuel types are discussed: a low-sulfur JP-8 fuel, a 50:50 blend of JP-8 and a camelina-based HEFA fuel, and the JP-8 fuel doped with sulfur. Emissions were sampled using a large number of aerosol and gas instruments integrated on HU-25 and Falcon 20 jets that were positioned in the DC-8 exhaust plume at approximately 50-500 m distance behind the engines. It was found that the biojet fuel blend substantially decreases the aerosol number and mass emissions indices, while the gas phase emission indices were similar across fuels. The magnitude of the effects of these fuel-induced changes of aerosol emissions and implications for future aviation biofuel blending impacts will be discussed.

  12. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  13. Effect of first and second generation biodiesel blends on engine performance and emission

    NASA Astrophysics Data System (ADS)

    Azad, A. K.; Rasul, M. G.; Bhuiya, M. M. K.; Islam, Rubayat

    2016-07-01

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NOx emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NOx emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  14. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect

    Magoulas, Virginia

    2013-07-01

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ∼5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ∼19% LEU. (authors)

  15. Thermal characterization of polymer blends prepared by reactive blending of PC and PET

    SciTech Connect

    Fiorini, M.; Marchese, P.; Pilati, F.

    1996-12-31

    Several Poly(ethylene terephthalate)-Bisphenol A polycarbonate (PC/PET) blends were prepared by reactive blending poly(ethylene terephthalate) and Bisphenol A polycarbonate in a batch mixer in the presence of ester exchange catalysts with different catalytic activity, such as Titanium, Terbium, Cerium, Samarium, Europium and Calcium/Antimony compounds. The catalytic activity and mixing time have been correlated with the extent of ester-carbonate exchange reactions and hence the influence of the PET/PC block copolymers formed during the blending on miscibility has been investigated by differential scanning calorimetry. The results of the thermal characterization showed that blends with a single glass transition temperature can be prepared at different mixing time determined by the ester-carbonate exchange reaction activity of the different catalysts employed. In addition, the Tg`s values for the miscible blends were lower than those predicted by the widely used Flory-Fox equation, except from the blends prepared with the Titanium catalyst. Crystallization of PET in PC/PET blends was also investigated. Thermal analysis is a powerful technique that can be applied to the determination of miscibility in polymer blends. In this communication, the results of a differential scanning calorimetry (DSC) study on blends prepared by reactive blending PC and PET are reported.

  16. Pilot plant assessment of blend properties and their impact on critical power plant components

    SciTech Connect

    1996-10-01

    A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

  17. Polymer blends for directed self-assembly

    NASA Astrophysics Data System (ADS)

    Namie, Yuuji; Anno, Yusuke; Naruoka, Takehiko; Minegishi, Shinya; Nagai, Tomoki; Hishiro, Yoshi; Yamaguchi, Yoshikazu

    2013-03-01

    The advantage of blend DSA (Directed Self Assembly) is milder anneal condition than PS-b-PMMA BCP DSA materials and availability of conventional instruments. In this paper, blend type DSA was applied for hole patterning. Target patterns were contact hole and oval hole. Polymer phase separation behavior has been studied from the point of χN. In the case of polymer blend, χN needs to be more than 2 to give phase separation. At first the effect of polymer size was studied. When the polymer weight was low, the shrunk hole was not clean because of low χN. Furthermore, the correlation of shrink amount and χN was studied. Higher χN polymer blend system gave higher shrink amount. High χN polymer systems give clear interface, then the intermixing area would be reduced, then the attached polymer blend part became larger. The polymer blend ratio effect was also investigated. The blend ratio was varied for polymer A/ polymer B=70/30-50/50. The shrink amount of oval hole was reduced with increasing the ratio of polymer B. However, the shrink amount ratio of CDY/CDX was almost constant (~3).

  18. Evaluation of PRB subbituminous coal--petroleum coke blending on fouling and slagging

    SciTech Connect

    Galbreath, K.C.; Zygarlicke, J.; Toman, D.L.

    1999-07-01

    The effects of blending petroleum shot coke with two Powder River Basin (PRB) subbituminous coals on ash fouling and slagging were evaluated using two laboratory-scale (fuel feed rates of {approx} 6 g/hr and 2 kg/hr) combustion systems. Deposits from coal-petroleum coke blends of 100:0, 90:10, and 80:20 on a coal:coke weight basis were generated under fouling and slagging conditions. Measurements of fouling deposit growth rates and slag deposit compressive strengths indicate that petroleum coke blending with PRB subbituminous coal impedes the rate of ash deposition but promotes slag deposit strength. A vanadium K-edge x-ray absorption fine structure spectroscopy analysis of a fly ash sample indicates that vanadium, generally the dominant inorganic component of petroleum coke, is present in a pentavalent oxidation state (V{sup 5+}), most likely as a metal vanadate compound. Sulfur analysis of combustion flue gases and fly ashes indicate that petroleum coke blending promotes the conversion of fuel sulfur to inorganic sulfate (SO{sub 4}) compounds in the fly ash. V{sup 5+} catalysis of SO{sub 2}(g) oxidation followed by SO{sub 3}(g) reaction with lime (CaO) to form anhydrite (CaSO{sub 4}) is the dominant ash sulfation mechanism.

  19. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    SciTech Connect

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

  20. Two glass transitions in miscible polymer blends?

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  1. BioBlend.objects: metacomputing with Galaxy

    PubMed Central

    Leo, Simone; Pireddu, Luca; Cuccuru, Gianmauro; Lianas, Luca; Soranzo, Nicola; Afgan, Enis; Zanetti, Gianluigi

    2014-01-01

    Summary: BioBlend.objects is a new component of the BioBlend package, adding an object-oriented interface for the Galaxy REST-based application programming interface. It improves support for metacomputing on Galaxy entities by providing higher-level functionality and allowing users to more easily create programs to explore, query and create Galaxy datasets and workflows. Availability and implementation: BioBlend.objects is available online at https://github.com/afgane/bioblend. The new object-oriented API is implemented by the galaxy/objects subpackage. Contact: simone.leo@crs4.it PMID:24928211

  2. Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .

    SciTech Connect

    Wallner, T.

    2011-08-01

    The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of

  3. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit...

  4. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Spanish type blending... type blending sherry. Blending wine made with partially caramelized grape concentrate may be produced..., produced under this section, is designated “Spanish Type Blending Sherry.” Upon removal, the...

  5. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Spanish type blending... type blending sherry. Blending wine made with partially caramelized grape concentrate may be produced..., produced under this section, is designated “Spanish Type Blending Sherry.” Upon removal, the...

  6. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit...

  7. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit...

  8. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Spanish type blending... type blending sherry. Blending wine made with partially caramelized grape concentrate may be produced..., produced under this section, is designated “Spanish Type Blending Sherry.” Upon removal, the...

  9. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit...

  10. 27 CFR 24.214 - Spanish type blending sherry.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Spanish type blending... type blending sherry. Blending wine made with partially caramelized grape concentrate may be produced..., produced under this section, is designated “Spanish Type Blending Sherry.” Upon removal, the...

  11. Segmentation and Representation of Consonant Blends in Kindergarten Children's Spellings

    ERIC Educational Resources Information Center

    Werfel, Krystal L.; Schuele, C. Melanie

    2012-01-01

    Purpose: The purpose of this study was to describe the growth of children's segmentation and representation of consonant blends in the kindergarten year and to evaluate the extent to which linguistic features influence segmentation and representation of consonant blends. Specifically, the roles of word position (initial blends, final blends),…

  12. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  13. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and

  14. Influence of Biofuel Additions on the Ignition Delay of Single Diesel Fuel Drops

    NASA Astrophysics Data System (ADS)

    Kopeika, A. K.; Golovko, V. V.; Zolotko, A. N.; Raslavičius, L.; Lubarskii, V. M.

    2015-07-01

    The behavior of single drops of two- and three-component mineral diesel fuel blends with ethanol and rapeseed oil methyl ester in a heated atmosphere has been investigated. With the use of the known quasi-stationary approach, the influence of the thermal properties of fuel blend components and their composition on the ignition delay time of the drop has been investigated. It has been established that under inert heating conditions of the drop, additions of low-boiling ethanol to diesel fuel should shorten the duration of the preignition period, and additions of rapeseed oil methyl ester should, on the contrary, prolong it. Analysis of the obtained data has made it possible to determine the optimal composition of the fuel blend for the most economical operation of the diesel. The prognostic estimates made are confirmed by laboratory experiments and bench tests of fuel blends.

  15. Transition metal catalysed dehydrogenation of amine-borane fuel blends.

    PubMed

    Mal, Sib Sankar; Stephens, Frances H; Baker, R Tom

    2011-03-14

    Mixtures containing ammonia-borane and sec-butylamine-borane remain liquid throughout the hydrogen release process that affords tri(N-sec-butyl)borazine and polyborazylene. Concentrated solutions with metal catalysts afford >5 wt% H(2) in 1 h at 80 °C and addition of (EMIM)EtSO(4) ionic liquid co-solvent eliminates competing formation of insoluble linear poly(aminoborane) (EMIM = 1-ethyl-3-methyl-imidazolium). PMID:21258748

  16. Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity.

    PubMed

    Lee, Young-Hee; Kim, Ji-Soo; Kim, Do-Hyung; Shin, Min-Seung; Jung, Young-Jin; Lee, Dong-Jin; Kim, Han-Do

    2013-01-01

    More research and development on novel oil sorbent materials is needed to protect the environmental pollution. New nonwoven fabrics (pads) of polypropylene (PP)/kapok blends (blend ratio: 100/0, 75/25, 50/50, 25/75 and 10/90) were prepared by needle punching process at a fixed (optimized) condition (punch density: 50 punches/cm2 and depth: 4mm). This study focused on the effect of blend ratio of PP/kapok nonwoven fabrics on oil sorption capacities to find the best blend ratio having the highest synergy effect. The PP/kapok blend (50/50) sample has the lowest bulk density and showed the best oil absorption capacity. The oil sorption capacity of PP/kapok blend (50/50) nonwoven fabric for kerosene/soybean oil [21.09/27.01 (g oil/g sorbent)] was 1.5-2 times higher than those of commercial PP pad oil sorbents. The highest synergy effect of PP/kapok blend (50/50) was ascribed to the lowest bulk density of PP/kapok blend (50/50), which might be due to the highest morphologically incompatibility between PP fibre and kapok. These results suggest that the PP/kapok blend (50/50) having the highest synergy effect has a high potential as a new high-performance oil sorbent material. PMID:24617076

  17. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-01

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels. PMID:22732009

  18. Aviation-fuel property effects on combustion

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  19. Oleochemicals as a fuel: mechanical and economic feasibility

    SciTech Connect

    Harwood, H.J.

    1984-02-01

    The status of vegetable oils as diesel fuel substitutes is currently dubious. Although it is fair to consider them as short-term emergency fuels (or more desirably low proportion supplements to diesel fuels) they present mechanical problems in long-term use that have not yet been solved. It is preferable to use these oils blended in small proportions with diesel fuels. Indirect-injection diesel engines have had fewer problems than direct-injection engines, whether the tests were performed with pure vegetable oil fuel or with vegetable oil/diesel fuel blends. The economic prospect for these fuels is not promising. In general, they are not and have not been economical alternatives to diesel fuel. Exceptions appear to have occurred recently in Brazil and the Philippines where low local prices for vegetable oils combined with high petroleum prices encouraged officials to use low proportion vegetable oil/diesel fuel blends. Nonetheless, current and long-term trends in petroleum and oilseed prices indicate that these fuels will probably not be price competitive within the near future. Emergency disruption of petroleum supplies completely changes the economic situation. Vegetable oils would be worth much more as a fuel during disruptions than otherwise; thus incentives could be strong to include these oils in the fuel supply, diverting them from the food supply. 20 references.

  20. Predict octane number for gasoline blends

    SciTech Connect

    Zahed, A.H.; Mullah, S.A.; Bashir, M.D. )

    1993-05-01

    A model with five independent variables is used to predict the octane number of gasoline blends with more accuracy than any previous model. Often, it is useful to know the resulting octane number before the gasoline is blended. Clearly, such a model is useful because good predictive models have been few and far between. With high-powered and faster personal computers, regressional analyses are quite easy to perform with many more independent variables. The objective here was to develop an empirical equation using the regressional analyses are quite easy to perform with many more independent variables. The objective here was to develop an empirical equation using the regression analysis technique to predict the octane rating of 16 blends of motor gasoline. Predicted results for the 16 blends of gasolines were compared with experimental results obtained on CFR engines. Predicted results from the proposed empirical model were in agreement with the experimental data with an average deviational error of 0.54%.

  1. 27 CFR 24.198 - Blending.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the production of special natural wine of the same type, e.g., producing a sweet vermouth by blending sweet vermouths produced under two or more approved formulas, the submission and approval of...

  2. Enzymatic degradation of polycaprolactone-gelatin blend

    NASA Astrophysics Data System (ADS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-04-01

    Blends of polycaprolactone (PCL), a synthetic polymer and gelatin, natural polymer offer a optimal combination of strength, water wettability and cytocompatibility for use as a resorbable biomaterial. The enzymatic degradation of PCL, gelatin and PCL-gelatin blended films was studied in the presence of lipase (Novozym 435, immobilized) and lysozyme. Novozym 435 degraded the PCL films whereas lysozyme degraded the gelatin. Though Novozym 435 and lysozyme individually could degrade PCL-gelatin blended films, the combination of these enzymes showed the highest degradation of these blended films. Moreover, the enzymatic degradation was much faster when fresh enzymes were added at regular intervals. The changes in physico-chemical properties of polymer films due to degradation were studied by scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. These results have important implications for designing resorbable biomedical implants.

  3. EPDM - Silicone blends - a high performance elastomeric composition for automotive applications

    SciTech Connect

    Mitchell, J.M.

    1987-01-01

    Styling and design changes have dramatically altered performance requirements for elastomers. High performance engines with electronic fuel injection have increased temperatures under the hood. Therefore, high performance elastomers are required to meet today's service conditions. New technology has been developed to compatibilize EPDM and silicone into high performance elastomeric compositions. These blends have physical, electrical and mechanical properties, for 175/sup 0/C service. Formulations are discussed for applications which require heat and weather resistance.

  4. Blending Gyro Signals To Improve Control Stability

    NASA Technical Reports Server (NTRS)

    Lee, J. F. L.

    1986-01-01

    Interference by structural vibrations reduced by adding signals from spatially separated gyros. Technique involves blending signals from rate gyroscopes located at different parts of structure to obtain composite signal that more nearly represents rotation of entire structure. Aircraft vibrations perpendicular to pitch axis contribute to rotations sensed by pitch-rate gyros. Proper blending of signals from gyros suppress contribution of dominant vibrational mode. Most likely applications of concept are flight-control systems for aircraft.

  5. The Ellipticity Distribution of Ambiguously Blended Objects

    NASA Astrophysics Data System (ADS)

    Dawson, William A.; Schneider, Michael D.; Tyson, J. Anthony; Jee, M. James

    2016-01-01

    Using overlapping fields with space-based Hubble Space Telescope and ground-based Subaru Telescope imaging we identify a population of blended galaxies that are blended to such a large degree that they are detected as single objects in the ground-based monochromatic imaging, which we label “ambiguous blends.” For deep imaging data, such as the depth targeted with the Large Synoptic Survey Telescope (LSST), the ambiguous blend population is both large (∼14%) and has a distribution of ellipticities that is different from that of unblended objects in a way that will likely be important for weak lensing measurements. Most notably, for a limiting magnitude of i ∼ 27 we find that ambiguous blending results in a ∼14% increase in shear noise (or an ∼12% decrease in the effective projected number density of lensed galaxies; neff) due to (1) larger intrinsic ellipticity dispersion, and (2) a scaling with the galaxy number density Ngal that is shallower than 1/\\sqrt{{N}{gal}}. For the LSST Gold Sample (i < 25.3) there is a ∼7% increase in shear noise (or ∼7% decrease in neff). More importantly than these increases in the shear noise, we find that the ellipticity distribution of ambiguous blends has an rms that is 13% larger than that of non-blended galaxies. Given the need of future weak lensing surveys to constrain the ellipticity distribution of galaxies to better than a percent in order to mitigate cosmic shear multiplicative biases, if it is unaccounted for, the different ellipticity distribution of ambiguous blends could be a dominant systematic.

  6. Film formation from latex blends

    NASA Astrophysics Data System (ADS)

    Tang, Jiansheng

    2000-10-01

    Film formation from hard/soft (i.e., high Tg/low Tg) latex blends consisting of hard polystyrene (PS) and soft poly(n-butyl methacrylate-co-n-butyl acrylate) [P(BMA/BA)] latex particles were studied with an emphasis on the influence of the carboxyl groups present on the latex particles. A theoretical model was developed to calculate the optimal surfactant and monomer feed rates for a semicontinuous polymerization process to synthesize monodisperse carboxylated latex particles and independently control the particle size and degree of carboxylation. An important finding obtained from the drying studies is that the drying rate from the edge zone is much faster than the rate obtained from the latex pool. It was also found that the presence of carboxyl groups on the latex particles retarded the drying rate. Utilizing PS particles with a low density of carboxyl groups present on the particle surfaces (e.g., 10% surface coverage) resulted in an even distribution of these particles in the soft copolymer matrix, and thus, good film gloss was achieved. However, the use of hard particles with a high density of carboxyl groups present (e.g., 65% coverage) resulted in a less even distribution of PS particles and poor gloss. A cluster model and a hydrogen bonding mechanism were proposed to explain these phenomena. The presence of the carboxyl groups on the PS particles significantly enhanced the Young's modulus and the yield strength, but did not influence the ultimate mechanical properties. A quantitative model was proposed to predict the Young's modus of the latex blend films as a function of the carboxyl group coverage on the hard particles. There was a good fit between model and the experimental data. The stability of the precipitated calcium carbonate (PCC) particles in the P(BMA/BA) latexes was determined by the charge on pigment surface which, in turn, was influenced by the presence of sodium polyacrylate stabilizer. It was found that the wetting ability of the soft

  7. Potential of vegetable oils as a domestic heating fuel

    SciTech Connect

    Hayden, A.C.S.; Begin, E.; Palmer, C.E.

    1982-06-01

    The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

  8. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    SciTech Connect

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  9. Considerations for blending data from various sensors

    USGS Publications Warehouse

    Bauer, Brian P.

    1980-01-01

    A project is being proposed at the EROS Data Center to blend the information from sensors aboard various satellites. The problems of, and considerations for, blending data from several satellite-borne sensors are discussed. System descriptions of the sensors aboard the HCMM, TIROS-N, GOES-D, Landsat 3, Landsat D, Seasat, SPOT, Stereosat, and NOSS satellites, and the quantity, quality, image dimensions, and availability of these data are summaries to define attributes of a multi-sensor satellite data base. Unique configurations of equipment, storage, media, and specialized hardware to meet the data system requirement are described as well as archival media and improved sensors that will be on-line within the next 5 years. Definitions and rigor required for blending various sensor data are given. Problems of merging data from the same sensor (intrasensor comparison) and from different sensors (intersensor comparison), the characteristics and advantages of cross-calibration of data, and integration of data into a product matrix field are addressed. Data processing considerations as affected by formation, resolution, and problems of merging large data sets, and organization of data bases for blending data are presented. Examples utilizing GOES and Landsat data are presented to demonstrate techniques of data blending, and recommendations for future implementation of a set of standard scenes and their characteristics necessary for optimal data blending are discussed.

  10. Pairwise polymer blends for oral drug delivery.

    PubMed

    Marks, Joyann A; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2014-09-01

    Blends of polymers with complementary properties hold promise for addressing the diverse, demanding polymer performance requirements in amorphous solid dispersions (ASDs), but we lack comprehensive property understanding for blends of important ASD polymers. Herein, we prepare pairwise blends of commercially available polymers polyvinylpyrrolidone (PVP), the cationic acrylate copolymer Eudragit 100 (E100), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate (CMCAB), hydroxypropyl methylcellulose (HPMC), and the new derivative cellulose acetate adipate propionate (CAAdP). This study identifies miscible binary blends that may find use, for example, in ASDs for solubility and bioavailability enhancement of poorly water-soluble drugs. Differential scanning calorimetry, FTIR spectroscopy, and film clarity were used to determine blend miscibility. Several polymer combinations including HPMCAS/PVP, HPMC/CMCAB, and PVP/HPMC appear to be miscible in all proportions. In contrast, blends of E100/PVP and E100/HPMC showed a miscibility gap. Combinations of water-soluble and hydrophobic polymers like these may permit effective balancing of ASD performance criteria such as release rate and polymer-drug interaction to prevent nucleation and crystal growth of poorly soluble drugs. Miscible polymer combinations described herein will enable further study of their drug delivery capabilities, and provide a potentially valuable set of ASD formulation tools. PMID:24823790

  11. WI Biodiesel Blending Progream Final Report

    SciTech Connect

    Redmond, Maria E; Levy, Megan M

    2013-04-01

    The Wisconsin State Energy Office's (SEO) primary mission is to implement cost effective, reliable, balanced, and environmentally friendly clean energy projects. To support this mission the Wisconsin Biodiesel Blending Program was created to financially support the installation infrastructure necessary to directly sustain biodiesel blending and distribution at petroleum terminal facilities throughout Wisconsin. The SEO secured a federal directed award of $600,000 over 2.25 years. With these funds, the SEO supported the construction of inline biodiesel blending facilities at two petroleum terminals in Wisconsin. The Federal funding provided through the state provided a little less than half of the necessary investment to construct the terminals, with the balance put forth by the partners. Wisconsin is now home to two new biodiesel blending terminals. Fusion Renewables on Jones Island (in the City of Milwaukee) will offer a B100 blend to both bulk and retail customers. CITGO is currently providing a B5 blend to all customers at their Granville, WI terminal north of the City of Milwaukee.

  12. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  13. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  14. Polymer dynamics in binary blends

    NASA Astrophysics Data System (ADS)

    Wilson, Jeffrey D.; Loring, Roger F.

    1992-09-01

    We develop a theory of the dynamics of flexible linear polymers in a melt composed of macromolecules of two molecular weights and of the same chemical species. A polymer is represented by a freely jointed chain that moves by two dynamical processes. The first is a local jump motion that may be blocked by obstacles, and the second is a slithering mode that mimics reptation. The dynamics of the obstacles are determined self-consistently by an ansatz that associates their relaxation with the dynamics of the slowest mode of conformational relaxation of a chain. The calculations of the autocorrelation function of the end-to-end vector and of the mean squared displacement of the center of mass are related exactly to the solution of a random walk problem with dynamical disorder. We calculate the necessary random walk propagator by applying the dynamical effective medium approximation. Calculations of the dependence of the self-diffusion coefficient of both components on blend composition and on molecular weights are presented. The theory is shown to provide a unified description of diffusion in the unentangled and entangled regimes.

  15. Proton-exchange membrane materials based on blends of poly(ether ketone ketone) and poly(ether imide)

    NASA Astrophysics Data System (ADS)

    Swier, S.; Gasa, J.; Shaw, M. T.; Weiss, R. A.

    2004-03-01

    The development of materials for proton-exchange membranes (PEM) involves finding a compromise between high proton conductivities and sufficient mechanical and chemical stability to withstand the conditions in the fuel cell. The currently used perfluorinated polymer electrolyte membranes tend to be expensive and have problems in case of extensive application. New polymer electrolytes based on hydrocarbon polymers are therefore the focus of a considerable research effort. Blends of sulfonated poly(ether ketone ketone) (SPEKK) and poly(ether imide) (PEI) were evaluated as PEMs. Sulfonation of PEKK was achieved by using a mixture of concentrated sulfuric acid and fuming sulfuric acid, and blend membranes were prepared by casting a solution of the two polymers in N-methyl-2- pyrrolidone. The hydration level of the membrane decreased with increasing PEI concentration, but a proton conductivity comparable to NafionTM was obtained for blends containing less than 20 wt% PEI. The fuel cell performance of the membranes was affected by the sulfonation level of the PEKK, the blend composition and the casting procedure employed. The state of water in the membrane was evaluated from the depression of the glass transition and from the melting endotherms associated with water. Proton conductivity depended strongly on the hydration number (water molecules per sulfonate group), which depended on the sulfonation level of the PEKK and the blend morphology. Sorption data from gravimetric techniques provided important transport information like the solubility and diffusivity of water and methanol.

  16. 40 CFR 1065.701 - General requirements for test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... these procedures, you may instead rely upon the procedures identified in 40 CFR part 80 for measuring... parameters in 40 CFR 80.46. (e) Two-stroke fuel/oil mixing. For two-stroke engines, use a fuel/oil mixture... Motor vehicle gasoline ASTM D4814-07a. Minor oxygenated gasoline blends ASTM D4814-07a. Alcohol...

  17. 40 CFR 1065.701 - General requirements for test fuels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... these procedures, you may instead rely upon the procedures identified in 40 CFR part 80 for measuring... parameters in 40 CFR 80.46. (e) Two-stroke fuel/oil mixing. For two-stroke engines, use a fuel/oil mixture... Motor vehicle gasoline ASTM D4814-07a. Minor oxygenated gasoline blends ASTM D4814-07a. Alcohol...

  18. Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends

    SciTech Connect

    Storey, John Morse; Barone, Teresa L; Thomas, John F; Huff, Shean P

    2012-01-01

    Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle

  19. Processing sunflower oil for fuel

    SciTech Connect

    Backer, L.F.; Jacobsen, L.; Olson, C.

    1982-05-01

    Research on processing of sunflower seed for oil was initiated to evaluate the equipment that might adapt best to on-farm or small factory production facilities. The first devices identified for evaluation were auger press expeller units, primary oil cleaning equipment, and final filters. A series of standard finishing filtration tests were carried out on sunflower oil and sunflower oil - diesel fuel blends using sunflower oil from four different sources.

  20. Fuel Cell Stations Automate Processes, Catalyst Testing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  1. The seasonal impact of blending oxygenated organics with gasoline on motor vehicle tailpipe and evaporative emissions. Part 2

    SciTech Connect

    Stump, F.D.; Knapp, K.T.; Ray, W.D.; Burton, C.; Snow, R.

    1990-01-01

    Evaporative and tailpipe emissions from a 1987 GM Corsica with adaptive learning closed loop control were measured with six fuels and four temperatures. Measured emissions were total (THC) and speciated hydrocarbons, aldehydes, ethanol, MTBE, benzene, 1,3,-butadiene, Co, and NO{sub x}. Tests were also performed to determine the effect of air conditioning (AC) and oxygen sensor failure. In general, AC reduced Highway Fuel Economy emissions, increased FTP emissions, and reduced fuel economy for both test cycles. Oxygen sensor malfunction increased tailpipe emissions and fuel economy. Higher levels of regulated tailpipe emissions were generally produced at the low test temperature. None of the fuels tested appeared to offer a consistent reduction in tailpipe THC and CO emissions under the conditions tested. This paper is the second in a series describing the effects of oxygenated fuels on the evaporative and tailpipe emissions from current technology light-duty gasoline powered motor vehicles. The study resulted from recent considerations by the United States Environmental Protection Agency (EPA) concerning the benefits of blending certain oxygenated compounds (alcohols and ethers) at specified levels with gasoline to be used as a vehicle fuel. This action was taken because these gasoline blends should provide the following benefits: Oxygenation can enhance fuel octane rating and thus compensate for the elimination of lead, and octane booster; the presence of oxygen in the field should reduce tailpipe emissions of total hydrocarbons and carbon monoxide; the addition of these oxygenated compounds will extend the present fuel supply and therefore could reduce oil imports; and surplus grain crops can be turned into ethanol, which can be used directly in fuel blends or reacted with isobutylene to form ethyl tertiary butyl ether.

  2. The Optimum Blend: Affordances and Challenges of Blended Learning for Students

    ERIC Educational Resources Information Center

    Gedik, Nuray; Kiraz, Ercan; Ozden, M. Yasar

    2012-01-01

    The purpose of this study was to elicit students' perceptions regarding the most facilitative and most challenging features (affordances and barriers) in a blended course design. Following the phenomenological approach of qualitative inquiry, data were collected from ten undergraduate students who had experiences in a blended learning environment.…

  3. Blended Learning: How Teachers Balance the Blend of Online and Classroom Components

    ERIC Educational Resources Information Center

    Jeffrey, Lynn M.; Milne, John; Suddaby, Gordon

    2014-01-01

    Despite teacher resistance to the use of technology in education, blended learning has increased rapidly, driven by evidence of its advantages over either online or classroom teaching alone. However, blended learning courses still fail to maximize the benefits this format offers. Much research has been conducted on various aspects of this problem,…

  4. Diesel fuel by fermentation of wastes

    SciTech Connect

    Pierce, S.M.; Wayman, M.

    1983-01-11

    An improved diesel fuel which is entirely capable of preparation from renewable resources. The fuel comprises a blend of fermentation produced butanol and fermentation produced glycerides. The substrates useful for the butanol fermentation are conventional industrial waste products, such as cheese whey and low value carbohydrate containing waste materials such as corn cobs, wood chips, etc. Similar substrate materials are used in the fermentation or growth culture of glyceride producing microbes.

  5. Blended Learning: The Student Viewpoint

    PubMed Central

    Shantakumari, N; Sajith, P

    2015-01-01

    Background: Blended learning (BL) is defined as “a way of meeting the challenges of tailoring learning and development to the needs of individuals by integrating the innovative and technological advances offered by online learning with the interaction and participation offered in the best of traditional learning.” The Gulf Medical University (GMU), Ajman, UAE, offers a number of courses which incorporate BL with contact classes and online component on an E-learning platform. Insufficient learning satisfaction has been stated as an obstacle to its implementation and efficacy. Aim: To determine the students’ perceptions toward BL which in turn will determine their satisfaction and the efficacy of the courses offered. Subjects and Methods: This was a cross-sectional study conducted at the GMU, Ajman between January and December 2013. Perceptions of BL process, content, and ease of use were collected from 75 students enrolled in the certificate courses offered by the university using a questionnaire. Student perceptions were assessed using Mann–Whitney U-test and Kruskal–Wallis test on the basis of gender, age, and course enrollment. Results: The median scores of all the questions in the three domains were above three suggesting positive perceptions on BL. The distribution of perceptions was similar between gender and age. However, significant differences were observed in the course enrollment (P = 0.02). Conclusion Students hold a positive perception of the BL courses being offered in this university. The difference in perceptions among students of different courses suggest that the BL format offered needs modification according to course content to improve its perception. PMID:26500788

  6. Blended Training for Combat Medics

    NASA Technical Reports Server (NTRS)

    Fowlkes, Jennifer; Dickinson, Sandra; Lazarus, Todd

    2010-01-01

    Bleeding from extremity wounds is the number one cause of preventable death on the battlefield and current research stresses the importance of training in preparing every Soldier to use tourniquets. HapMed is designed to provide tourniquet application training to combat medics and Soldiers using a blended training solution encompassing information, demonstration, practice, and feedback. The system combines an instrumented manikin arm, PDA, and computer. The manikin arm provides several training options including stand-alone, hands-on skills training in which soldiers can experience the actual torque required to staunch bleeding from an extremity wound and be timed on tourniquet application. This is more realistic than using a block of wood to act as a limb, which is often how training is conducted today. Combining the manikin arm with the PDA allows instructors to provide scenario based training. In a classroom or field setting, an instructor can specify wound variables such as location, casualty size, and whether the wound is a tough bleed. The PDA also allows more detailed feedback to be provided. Finally, combining the manikin arm with game-based technologies, the third component, provides opportunities to build knowledge and to practice battlefield decision making. Not only do soldiers learn how to apply a tourniquet, but when to apply a tourniquet in combat. The purpose of the paper is to describe the learning science underlying the design of HapMed, illustrate the training system and ways it is being expanded to encompass other critical life-saving tasks, and report on feedback received from instructors and trainees at military training and simulation centers.

  7. Computational Analysis of Dynamic SPK(S8)-JP8 Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Ryder, R.; Hendricks, Roberts C.; Huber, M. L.; Shouse, D. T.

    2010-01-01

    Civil and military flight tests using blends of synthetic and biomass fueling with jet fuel up to 50:50 are currently considered as "drop-in" fuels. They are fully compatible with aircraft performance, emissions and fueling systems, yet the design and operations of such fueling systems and combustors must be capable of running fuels from a range of feedstock sources. This paper provides Smart Combustor or Fuel Flexible Combustor designers with computational tools, preliminary performance, emissions and particulates combustor sector data. The baseline fuel is kerosene-JP-8+100 (military) or Jet A (civil). Results for synthetic paraffinic kerosene (SPK) fuel blends show little change with respect to baseline performance, yet do show lower emissions. The evolution of a validated combustor design procedure is fundamental to the development of dynamic fueling of combustor systems for gas turbine engines that comply with multiple feedstock sources satisfying both new and legacy systems.

  8. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sold during certain periods of extreme cold for blending with diesel fuel to be used for heating... vehicle (as defined in § 48.4081-1(b)). F used the remaining 50 gallons to heat F's residence. F filed...

  9. Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 2

    SciTech Connect

    Giles, H.N.

    1998-12-01

    Volume 2 of these proceedings contain 42 papers arranged under the following topical sections: Fuel blending and compatibility; Middle distillates; Microbiology; Alternative fuels; General topics (analytical methods, tank remediation, fuel additives, storage stability); and Poster presentations (analysis methods, oxidation kinetics, health problems).

  10. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load. PMID:24812943

  11. Pretreatment of biomass by torrefaction and carbonization for coal blend used in pulverized coal injection.

    PubMed

    Du, Shan-Wen; Chen, Wei-Hsin; Lucas, John A

    2014-06-01

    To evaluate the utility potential of pretreated biomass in blast furnaces, the fuel properties, including fuel ratio, ignition temperature, and burnout, of bamboo, oil palm, rice husk, sugarcane bagasse, and Madagascar almond undergoing torrefaction and carbonization in a rotary furnace are analyzed and compared to those of a high-volatile coal and a low-volatile one used in pulverized coal injection (PCI). The energy densities of bamboo and Madagascar almond are improved drastically from carbonization, whereas the increase in the calorific value of rice husk from the pretreatment is not obvious. Intensifying pretreatment extent significantly increases the fuel ratio and ignition temperature of biomass, but decreases burnout. The fuel properties of pretreated biomass materials are superior to those of the low-volatile coal. For biomass torrefied at 300°C or carbonized at temperatures below 500°C, the pretreated biomass can be blended with coals for PCI. PMID:24727692

  12. Coal-liquid fuel/diesel engine operating compatibility. Final report

    SciTech Connect

    Hoffman, J.G.; Martin, F.W.

    1983-09-01

    This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

  13. Effect of Organoclays on Immiscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Ha, Mai; Krishnamoorti, Ramanan

    2011-03-01

    The effect of adding organoclays on the phase behavior, rheological properties and bulk mechanical properties of immiscible polymer blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) is investigated. Traditional organoclays, prepared using alkyl ammonium chains, display a preference to segregate to the PS phase for high PS volume fraction blends where the PS forms the continuous matrix. On the other hand, for blends with low PS volume fractions, the organoclay segregates to the interface between the PS and PMMA domains and leads to a decrease in the domain size that does not change much with organoclay concentration variations from 0.1 to 2 wt %. Linear dynamic rheological data of these samples show significant increase in the low-frequency modulus of the blends with added organoclay. A thermodynamic model for estimating the interfacial modulus is proposed and the results agree well with the interfacial modulus calculated by Palierne's emulsion model. The toughness of the blends increases at low concentrations of added organoclays with the optimal improvements observed for less than 0.5 wt % added organoclay.

  14. Biocompatible electrospun polymer blends for biomedical applications.

    PubMed

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. PMID:24604876

  15. Bottlebrush Polymer Additives for Binary Polymer Blends

    NASA Astrophysics Data System (ADS)

    Mah, Hui Zhen; Afzali, Pantea; Phan, Hanh; Qi, Luqing; Pesek, Stacy; Verduzco, Rafael; Stein, Gila

    Bottlebrush polymers are highly branched polymers that have been used in applications such as self-assembling photonics, drug delivery and stimuli-responsive surface coatings. However, they have not been widely studied as compatibilizers for polymer blends. In this study, bottlebrush polymers with poly(styrene-r-methyl methacrylate) side chains were used as additives for thin film blends of polystyrene (PS) and poly (methyl methacrylate) (PMMA). The blends were heated above the glass transition temperature to drive phase separation, and the resulting morphology was characterized with atomic force microscopy and optical microscopy. Outcomes were compared with PS/PMMA blends that contain conventional compatibilizers such as linear random copolymers of poly(styrene-r-methyl methacrylate) and diblock PS-PMMA copolymers. The bottlebrush additive accumulates at the PS/PMMA interface and drives the formation of vesicle-like droplets that assemble into longer chains. The continuity of the chains depends on the blend composition, where a network structure is achieved close to the critical composition. This unusual microstructure was not observed with the other additives, and may be a consequence of preferential wetting of the bottlebrush by the PS phase.

  16. THE EFFECTS OF BIODIESEL BLENDS AND ARCO EC-DIESEL ON EMISSIONS from LIGHT HEAVY-DUTY DIESEL VEHICLES

    SciTech Connect

    Durbin, Thomas

    2001-08-05

    Chassis dynamometer tests were performed on 7 light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from 4 other fuels: ARCO EC-diesel (EC-D) and three 20% biodiesel blends (1 yellow grease and 2 soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in THC and CO emissions over the test vehicle fleet. EC-D also showed reductions in PM emission rates. NOx emissions were comparable for the different fuel types over the range of vehicles tested. The soy-based biodiesel blends did not show significant or consistent emissions differences over all test vehicles. Total carbon accounted for more than 70% of the PM mass for 4 of the 5 sampled vehicles. Elemental and organic carbon ratios varied significantly from vehicle-to-vehicle but showed very little fuel dependence. Inorganic species represented a smaller portion of the composite total, ranging from 0.2 to 3.3% of the total PM. Total PAH emissions ranged from approximately 1.8 mg/mi to 67.8 mg/mi over the different vehicle/fuel combinations representing between 1.6 and 3.8% of the total PM mass.

  17. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  18. Production of bio-jet fuel from microalgae

    NASA Astrophysics Data System (ADS)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  19. Saturated Monoglyceride Polymorphism and Gel Formation of Biodiesel Blends

    SciTech Connect

    Chupka, Gina; Fouts, Lisa; McCormick, Robert

    2015-11-13

    Crystallization or gel formation of normal paraffins in diesel fuel under cold weather conditions leading to fuel filter clogging is a common problem. Cold weather operability of biodiesel (B100) and blends with diesel fuel presents additional complexity because of the presence of saturated monoglycerides (SMGs) and other relatively polar species. Currently, the cloud point measurement (a measure of when the first component crystallizes out of solution) is used to define the lowest temperature at which the fuel can be used without causing cold weather issues. While filter plugging issues have declined, there still remain intermittent unexpected problems above the cloud point for biodiesel blends. Development of a fundamental understanding of how minor components in biodiesel crystallize, gel, and transform is needed in order to prevent these unexpected issues. We have found that SMGs, a low level impurity present in B100 from the production process, can crystallize out of solution and undergo a solvent-mediated polymorphic phase transformation to a more stable, less soluble form. This causes them to persist at temperatures above the cloud point once they have some out of solution. Additionally, we have found that SMGs can cause other more soluble, lower melting point minor components in the B100 to co-crystallize and come out of solution. Monoolein, another minor component from the production process is an unsaturated monoglyceride with a much lower melting point and higher solubility than SMGs. It is able to form a co-crystal with the SMGs and is found together with the SMGs on plugged filters we have analyzed in our laboratory. An observation of isolated crystals in the lab led us to believe that the SMGs may also be forming a gel-like network with components of the B100 and diesel fuel. During filtration experiments, we have noted that in some cases a solid layer of crystals forms and blocks the filter completely, while in other cases this does not occur

  20. Aviation fuel property effects on altitude relight

    NASA Technical Reports Server (NTRS)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  1. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  2. Interfacial Slip in Polymer Blends with Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Jaber, Eihab; Gersappe, Dilip

    2010-03-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here we use Molecular Dynamics simulations to establish the role that added nanoparticle fillers play in modifying the interfacial rheology. By choosing conditions under which the fillers are localized, either in the two phases or at the interface, we can look at the interplay between the strengthening capability of nanoparticles and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component, and the amount of filler in the material. Our studies are performed both above and below the point at which the filler particles form a transient network in the blend.

  3. Interfacial Slip in Polymer Blends with Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Jaber, Eihab; Gersappe, Dilip

    2009-03-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here we use Molecular Dynamics simulations to establish the role that added nanoparticle fillers play in modifying the interfacial rheology. By choosing conditions under which the fillers are localized, either in the two phases or at the interface, we can look at the interplay between the strengthening capability of nanoparticles and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component, and the amount of filler in the material. Our studies are performed both above and below the point at which the filler particles form a transient network in the blend.

  4. Interfacial slip in polymer blends with nanoparticles

    NASA Astrophysics Data System (ADS)

    Ortiz, Joseph; Jaber, Eihab; Gersappe, Dilip

    2008-03-01

    The interfacial region in polymer blends has been identified as a low viscosity region in which considerable slip can occur when the blend is subjected to shear forces. Here, we use Molecular Dynamics simulations to establish the role that added nanofiller particles play in modifying the interfacial rheology. By choosing conditions under which the fillers are localized either in the two phases, or at the interface we can look at the interplay between the strengthening capability of nanoparticles, and the change in the interfacial slip behavior. We examine particle size, attraction between the particle and the polymer component and the amount of filler in the material. Our studies are performed both above and below the point at which the filler particles form a transient network in the blend.

  5. Designing appropriate blended courses: a students' perspective.

    PubMed

    Tsai, Chia-Wen

    2010-10-01

    The computing education in Taiwan's vocational schools usually focuses on how to help students enhance their professional skills and pass certified examinations. In addition, due to national education policy and universities' regulations, pure online courses are not permitted in Taiwan. In order to design appropriate blended learning (BL) courses, the author explored the effects of web-mediated self-regulated learning (SRL) with variations in online class frequency on enhancing students' computing skills and their perspective of the blended courses. A total of 172 students, divided into four groups, participated in the experiment. The results showed that students in the SRL and BL group with five online classes had the highest scores for using a database management system (DBMS), and the highest pass rate on certified examinations. Students in this group also expressed their positive perspective on the arrangement of their blended course with the intervention of web-mediated SRL. PMID:20950181

  6. Controlled morphology of biodegradable polymer blends

    NASA Astrophysics Data System (ADS)

    Buddhiranon, Sasiwimon; Kyu, Thein

    2009-03-01

    Phase diagrams of biodegradable polymer blends containing poly(ɛ-caprolactone) (PCL) and poly(d,l-lactic acid) (PDLLA) having two different molecular weights were established by means of cloud point measurement and differential scanning calorimetry. Subsequently, the theoretical phase diagram was calculated self-consistently based on the combination of Flory-Huggins free energy for liquid-liquid phase separation and phase field free energy for crystal solidification. The phase diagrams thus obtained were LCST type or hour-glass type, which depended on molecular weight of PDLLA utilized. Guided by the phase diagram, the emerged morphology was determined as a function of blend concentration and temperature. It appears that the morphology control is feasible that ultimately affects the end-use property of PCL/PDLLA blends. A wide variety of morphology of biodegradable polymer may be developed with the porous structure and pore size to control scaffold porosity and the rate of drug delivery.

  7. Phase Segregation in Polystyrene?Polylactide Blends

    SciTech Connect

    Leung, Bonnie; Hitchcock, Adam; Brash, John; Scholl, Andreas; Doran, Andrew

    2010-06-09

    Spun-cast films of polystyrene (PS) blended with polylactide (PLA) were visualized and characterized using atomic force microscopy (AFM) and synchrotron-based X-ray photoemission electron microscopy (X-PEEM). The composition of the two polymers in these systems was determined by quantitative chemical analysis of near-edge X-ray absorption signals recorded with X-PEEM. The surface morphology depends on the ratio of the two components, the total polymer concentration, and the temperature of vacuum annealing. For most of the blends examined, PS is the continuous phase with PLA existing in discrete domains or segregated to the air?polymer interface. Phase segregation was improved with further annealing. A phase inversion occurred when films of a 40:60 PS:PLA blend (0.7 wt percent loading) were annealed above the glass transition temperature (Tg) of PLA.

  8. Wetting induced instabilities in miscible polymer blends

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel; Thomas, Katherine; Steiner, Ullrich; Poetes, Rosa; Morariu, Mihai

    2011-03-01

    The behaviour of miscible blends of polystyrene (PS)/poly(vinyl methyl ether)(PVME) of varying compositions has been investigated at temperatures where PS and PVME are miscible. The PVME is seen to enrich the polymer-air surface, forming a layer with a width that is comparable to the correlation length. Further heating close to the demixing temperature results in the formation of a capillary instabilities at the polymer surface exhibiting a spinodal-like pattern with a characteristic wavelength that depends on the blend composition. Formation of these instabilities is seen for all blend compositions. We propose that these wetting induced instabilities result from coupled height and composition fluctuations in the PVME enriched surface layer, driving the build-up of long wavelength fluctuations.

  9. Polymer blends as high explosive binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1984-10-05

    One approach to high-density, high-modulus binders for explosives is to blend low-density, high-modulus polymers with high-density, low-modulus polymers. Improved properties, which miscible pairs theoretically should have, are discussed. Two attempts to achieve miscibility between a high-density fluoropolymer (Kel-F 800) and high-modulus thermoplastics (Lucite 130 and Phenoxy PKHJ) were unsuccessful. These blends are immiscible and their physical properties are additive or not significantly enhanced. Anelastic properties of the blends indicate phase separation by the presence of two glass transitions, one associated with each phase. Unfortunately, neither of these pairs has merit as an improved plastic-bonded explosive binder. However, a compatible (miscible) pair would be an improved binder if the appropriate polymer pair could be found.

  10. Designed blending for near infrared calibration.

    PubMed

    Scheibelhofer, Otto; Grabner, Bianca; Bondi, Robert W; Igne, Benoît; Sacher, Stephan; Khinast, Johannes G

    2015-07-01

    Spectroscopic methods are increasingly used for monitoring pharmaceutical manufacturing unit operations that involve powder handling and processing. With that regard, chemometric models are required to interpret the obtained spectra. There are many ways to prepare artificial powder blend samples used in a chemometric model for predicting the chemical content. Basically, an infinite number of possible concentration levels exist in terms of the individual components. In our study, design of experiments for ternary mixtures was used to establish a suitable number of blend compositions that represents the entire mixture region of interest for a three component blend. Various experimental designs and their effect on the predictive power of a chemometric model for near infrared spectra were investigated. It was determined that a particular choice of experimental design could change the predictive power of a model, even with the same number of calibration experiments. PMID:25980978

  11. Ethanol fuel modification for highway vehicle use. Final report

    SciTech Connect

    Not Available

    1980-01-01

    A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

  12. Alternative transportation fuels

    SciTech Connect

    Askew, W. S.; McNamara, T. M.; Maxfield, D. P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  13. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  14. ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE

    EPA Science Inventory

    The contributions of three major gasoline blending components (reformate, alkylate and cracked gasoline) to potential environmental impacts are assessed. This study estimates losses of the gasoline blending components due to evaporation and leaks through their life cycle, from pe...

  15. Formulation, physicochemical characterization, and in vitro study of chitosan/HPMC blends-based herbal blended patches.

    PubMed

    Suksaeree, Jirapornchai; Monton, Chaowalit; Madaka, Fameera; Chusut, Tun; Saingam, Worawan; Pichayakorn, Wiwat; Boonme, Prapaporn

    2015-02-01

    The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application. PMID:25233803

  16. Blends of cysteine-containing proteins

    NASA Astrophysics Data System (ADS)

    Barone, Justin

    2005-03-01

    Many agricultural wastes are made of proteins such as keratin, lactalbumin, gluten, and albumin. These proteins contain the amino acid cysteine. Cysteine allows for the formation of inter-and intra-molecular sulfur-sulfur bonds. Correlations are made between the properties of films made from the proteins and the amino acid sequence. Blends of cysteine-containing proteins show possible synergies in physical properties at intermediate concentrations. FT-IR spectroscopy shows increased hydrogen bonding at intermediate concentrations suggesting that this contributes to increased physical properties. DSC shows limited miscibility and the formation of new crystalline phases in the blends suggesting that this too contributes.

  17. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  18. "Blended" online technology: maximizing instructor reach.

    PubMed

    Acor, Geneva Keene

    2005-01-01

    This article describes the development and implementation of a small animal nutrition course for veterinary technicians using ''blended'' online technology and delivery at multiple sites. Student contact was accomplished through both synchronous and asynchronous Internet platforms. A summary of student evaluations is provided. Application of the process described here may be appropriate where specific content expertise is available in one location and desired in multiple locations. Unique features of the course include (a) course and instructor provided by industry partner, (b) synchronous and asynchronous blended online elements, and (c) multiple schools engaged in merged, simultaneous sessions. PMID:15834821

  19. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  20. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  1. An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Tesfa, B.; Yuan, X.; Wang, R.; Gu, F.; Ball, A. D.

    2012-05-01

    In this paper, an experimental investigation has been carried out on the acoustic characteristics of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The experiment was conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine which runs with biodiesel (B50 and B100) and pure diesel. The signals of acoustic, vibration and in-cylinder pressure were measured during the experiment. To correlate the combustion process and the acoustic characteristics, both phenomena have been investigated. The acoustic analysis resulted in the sound level being increased with increasing of engine loads and speeds as well as the sound characteristics being closely correlated to the combustion process. However, acoustic signals are highly sensitive to the ambient conditions and intrusive background noise. Therefore, the spectral subtraction was employed to minimize the effects of background noise in order to enhance the signal to noise ratio. In addition, the acoustic characteristics of CI engine running with different fuels (biodiesel blends and diesel) was analysed for comparison. The results show that the sound energy level of acoustic signals is slightly higher when the engine fuelled by biodiesel and its blends than that of fuelled by normal diesel. Hence, the acoustic characteristics of the CI engine will have useful information for engine condition monitoring and fuel content estimation.

  2. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  3. Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study

    SciTech Connect

    Shoffner, Brent; Johnson, Ryan; Heimrich, Martin J.; Lochte, Michael

    2010-11-01

    The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

  4. Blended Learning within an Undergraduate Exercise Physiology Laboratory

    ERIC Educational Resources Information Center

    Elmer, Steven J.; Carter, Kathryn R.; Armga, Austin J.; Carter, Jason R.

    2016-01-01

    In physiological education, blended course formats (integration of face-to-face and online instruction) can facilitate increased student learning, performance, and satisfaction in classroom settings. There is limited evidence on the effectiveness of using blending course formats in laboratory settings. We evaluated the impact of blended learning…

  5. Transitioning to Blended Learning: Understanding Student and Faculty Perceptions

    ERIC Educational Resources Information Center

    Napier, Nannette P.; Dekhane, Sonal; Smith, Stella

    2011-01-01

    This paper describes the conversion of an introductory computing course to the blended learning model at a small, public liberal arts college. Blended learning significantly reduces face-to-face instruction by incorporating rich, online learning experiences. To assess the impact of blended learning on students, survey data was collected at the…

  6. The Blended Advising Model: Transforming Advising with ePortfolios

    ERIC Educational Resources Information Center

    Ambrose, G. Alex; Williamson Ambrose, Laura

    2013-01-01

    This paper provides the rationale and framework for the blended advising model, a coherent approach to fusing technology--particularly the ePortfolio--into advising. The proposed term, "blended advising," is based on blended learning theory and incorporates the deliberate use of the strengths from both face-to-face and online…

  7. Blended Course Design: A Synthesis of Best Practices

    ERIC Educational Resources Information Center

    McGee, Patricia; Reis, Abby

    2012-01-01

    Blended or hybrid course offerings in higher education are commonplace and much has been written about how to design a blended course effectively. This study examines publically available guides, documents, and books that espouse best or effective practices in blended course design to determine commonalities among such practices. A qualitative…

  8. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  9. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  10. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  11. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  12. 21 CFR 133.167 - Pasteurized blended cheese.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized blended cheese. 133.167 Section 133...) FOOD FOR HUMAN CONSUMPTION CHEESES AND RELATED CHEESE PRODUCTS Requirements for Specific Standardized Cheese and Related Products § 133.167 Pasteurized blended cheese. Pasteurized blended cheese conforms...

  13. 27 CFR 24.213 - Heavy bodied blending wine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Heavy bodied blending wine. 24.213 Section 24.213 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine...

  14. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOEpatents

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  15. Effect of blending and storage on quality characteristics of blended sand pear-apple juice beverage.

    PubMed

    Raj, Dev; Sharma, P C; Vaidya, Devina

    2011-02-01

    Juice from sand pear and apple was extracted by grating the fruits following extraction using hydraulic press. The juice after extraction was filtered, heat pasteurized and packed in glass bottles followed by processing. Suitability of blending sand pear juice with apple juice was evaluated. Blending of sand pear juice (SPJ) with apple juice (AJ) in the proportion of 50:50 to 60:40 gave better quality with higher sensory score. With the increase in the level of SPJ in the AJ mix there was gradual increase in the level of polyphenols. Brix to acid ratio of the beverage was optimum when SPJ and AJ were blended in the ratio of 50:50 to 60:40. Storage of blended beverage containing 50-60% SPJ was found more shelf stable during 6 months storage. PMID:23572723

  16. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    SciTech Connect

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  17. Performance, durability and low temperature evaluation of sunflower oil as a diesel fuel extender

    SciTech Connect

    Baranescu, R.A.; Lusco, J.J.

    1982-01-01

    The paper presents the results of a research project to evaluate performance and durability of direct injection turbocharged diesel engines using sunflower oil and blends thereof. Alcaline refined sunflower oil and three different blends of sunflower oil and diesel fuel were comparatively tested against No. 2 diesel fuel for: physical and chemical characteristics, fuel injection system performance, short term engine performance, propensity to nozzle deposits buildup, limited durability operation and low temperature starting capability. Results are presented for the various phases of the project and correlations between the fuel characteristics and engine accept-ability are discussed. 19 figures, 2 tables.

  18. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  19. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  20. Porous Polyolefin Films via Polymer Blends

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    Porous polymer films have broad application including battery separators, membrane supports and filters. Polyolefins are attractive for these applications because of their solvent resistance, low electrical and thermal conductivity, easy fabrication and cost. We will describe fabrication of porous films using cocontinuous blends of a polyolefin with another polymer which can be readily removed with a solvent. Methods to image and control the cocontinuous morphology will be presented.Bell, J. R., K. Chang, C. R. Lopez-Barron, C. W. Macosko, and D. C. Morse, ''Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture,'' Macromolecules 43, 5024-5032 (2010).Lopez-Barron, C. R., and C. W. Macosko, ''Direct measurement of interface anisotropy of bicontinuous structures via 3D image analysis,'' Langmuir 26, 14284-14293 (2010).Trifkovic, M., A. T. Hedegaard, K. Huston, M. Sheikhzadeh, and C. W. Macosko, ''Porous films via PE/PEO cocontinuous blends,'' Macromolecules 45, 6036-6044 (2012).Hedegaard, A.T., L.L. Gu and C. W. Macosko, ``Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends'' J. Rheol. 59, 1397-1417 (2015).