Science.gov

Sample records for ethanol-induced hepatic damage

  1. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy

    PubMed Central

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-01

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease. PMID:26742072

  2. Quercetin Attenuates Chronic Ethanol-Induced Hepatic Mitochondrial Damage through Enhanced Mitophagy.

    PubMed

    Yu, Xiao; Xu, Yanyan; Zhang, Shanshan; Sun, Jian; Liu, Peiyi; Xiao, Lin; Tang, Yuhan; Liu, Liegang; Yao, Ping

    2016-01-01

    Emerging evidence suggested mitophagy activation mitigates ethanol-induced liver injury. However, the effect of ethanol on mitophagy is inconsistent. Importantly, the understanding of mitophagy status after chronic ethanol consumption is limited. This study evaluated the effect of quercetin, a naturally-occurring flavonoid, on chronic ethanol-induced mitochondrial damage focused on mitophagy. An ethanol regime to mice for 15 weeks (accounting for 30% of total calories) led to significant mitochondrial damage as evidenced by changes of the mitochondrial ultrastructure, loss of mitochondrial membrane potential and remodeling of membrane lipid composition, which was greatly attenuated by quercetin (100 mg/kg.bw). Moreover, quercetin blocked chronic ethanol-induced mitophagy suppression as denoted by mitophagosomes-lysosome fusion and mitophagy-related regulator elements, including LC3II, Parkin, p62 and voltage-dependent anion channel 1 (VDAC1), paralleling with increased FoxO3a nuclear translocation. AMP-activated protein kinase (AMPK) and extracellular signal regulated kinase 2 (ERK2), instead of AKT and Sirtuin 1, were involved in quercetin-mediated mitophagy activation. Quercetin alleviated ethanol-elicited mitochondrial damage through enhancing mitophagy, highlighting a promising preventive strategy for alcoholic liver disease. PMID:26742072

  3. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents

    PubMed Central

    Ashar, Hardik; Srinath, Sudhamani

    2012-01-01

    The protective effects of aqueous extracts of the fruit rind of Garcinia indica (GIE) on ethanol-induced hepatotoxicity and the probable mechanisms involved in this protection were investigated in rats. Liver damage was induced in rats by administering ethanol (5 g/kg, 20% w/v p.o.) once daily for 21 days. GIE at 400 mg/kg and 800 mg/kg and the reference drug silymarin (200 mg/kg) were administered orally for 28 days to ethanol treated rats, this treatment beginning 7 days prior to the commencement of ethanol administration. Levels of marker enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)), triglyceride (sTG), albumin (Alb) and total protein (TP) were evaluated in serum. Antioxidant parameters (reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)), hepatic triglycerides (hTG) and the lipid peroxidation marker malondialdehyde (MDA) were determined in liver. GIE and silymarin elicited significant hepatoprotective activity by attenuating the ethanolelevated levels of AST, ALT, ALP, sTG, hTG and MDA and restored the ethanol-depleted levels of GSH, SOD, CAT, GPx, GR, Alb and TP. GIE 800 mg/kg demonstrated greater hepatoprotection than GIE 400 mg/kg. The present findings indicate that hepatoprotective effects of GIE in ethanol-induced oxidative damage may be due to an augmentation of the endogenous antioxidants and inhibition of lipid peroxidation in liver. PMID:23554565

  4. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents.

    PubMed

    Panda, Vandana; Ashar, Hardik; Srinath, Sudhamani

    2012-12-01

    The protective effects of aqueous extracts of the fruit rind of Garcinia indica (GIE) on ethanol-induced hepatotoxicity and the probable mechanisms involved in this protection were investigated in rats. Liver damage was induced in rats by administering ethanol (5 g/kg, 20% w/v p.o.) once daily for 21 days. GIE at 400 mg/kg and 800 mg/kg and the reference drug silymarin (200 mg/kg) were administered orally for 28 days to ethanol treated rats, this treatment beginning 7 days prior to the commencement of ethanol administration. Levels of marker enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)), triglyceride (sTG), albumin (Alb) and total protein (TP) were evaluated in serum. Antioxidant parameters (reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)), hepatic triglycerides (hTG) and the lipid peroxidation marker malondialdehyde (MDA) were determined in liver. GIE and silymarin elicited significant hepatoprotective activity by attenuating the ethanol-elevated levels of AST, ALT, ALP, sTG, hTG and MDA and restored the ethanol-depleted levels of GSH, SOD, CAT, GPx, GR, Alb and TP. GIE 800 mg/kg demonstrated greater hepatoprotection than GIE 400 mg/kg. The present findings indicate that hepatoprotective effects of GIE in ethanol-induced oxidative damage may be due to an augmentation of the endogenous antioxidants and inhibition of lipid peroxidation in liver. PMID:23554565

  5. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage.

    PubMed

    Tang, Yuhan; Gao, Chao; Xing, Mingyou; Li, Yanyan; Zhu, Liping; Wang, Di; Yang, Xuefeng; Liu, Liegang; Yao, Ping

    2012-05-01

    Lipid metabolism disorder and oxidative stress play an important role on the development and progression of alcoholic liver disease (ALD), and mitochondria compartment is presumed as the main source and susceptible target of intracellular ROS. The objective of this study was to evaluate the protective effect of quercetin, a naturally occurring flavonoids possessing both antioxidant and hypolipidemic effect, on ethanol-induced dyslipidemia and oxidative damage focused on mitochondria. Chronic alcohol administration for adult male rats (4.0 g/kg for 90 days) resulted in the leakage of alanine and especially aspartate aminotransferases, and morphological malformation mainly evidenced by sustained lipid infiltration and degenerative changes on mitochondria and rough endoplasmic reticulum, which was markedly alleviated by quercetin (100 mg/kg.bw.) pretreatment. Furthermore, quercetin prophylaxis evidently ameliorated ethanol-stimulated mitochondrial dysfunction manifested by decreased membrane potential and induced permeability transition though suppressing glutathione depletion, enzymatic inactivation of manganese superoxide dismutase and glutathione peroxidase, ROS over-generation, and lipid peroxidation in mitochondria. Quercetin, thus, may protect rat, especially hepatic mitochondria, from chronic ethanol toxicity through its hypolipidemic effect and antioxidative role, highlighting a promising preventive strategy for ALD by naturally occurring phytochemicals. PMID:22365892

  6. Copper deficiency potentiates ethanol induced liver damage

    SciTech Connect

    Zidenberg-Cherr, S.; Han, B.; Graham, T.W.; Keen, C.L. )

    1992-02-26

    Copper sufficient (+Cu) and deficient ({minus}Cu) rats were fed liquid diets with EtOH or dextrose at 36% of kcals for 2 mo. Consumption of either the {minus}Cu diet or EtOH resulted in lower liver CuZn superoxide dismutase (CuZnSOD) and glutathione peroxidase (GPx) activities were lowest in EtOH/{minus}Cu rats; being 20% and 50% of control values, respectively. Ethanol resulted in higher MnSOD activity in +Cu and {minus}Cu rats. Low Cu intake as well as EtOH resulted in lower mitochondrial (Mit) TBARS relative to controls. TBARS were lowest in Mit from EtOH/{minus}Cu rats. Microsomal (Micro) TBARS were lower in {minus}Cu and EtOH-fed rats than in controls. The peroxidizability index (PI) was calculated as an index of substrate availability for lipid peroxidation. Ethanol feeding resulted in lower PI's in Mit and Micro than measured in non-EtOH rats. There was a positive correlation between Micro PI's and TBARS. These results show that despite reductions in components of antioxidant defense, compensatory mechanism arise resulting in reduction in peroxidation targets and/or an increase in alternate free radical quenching factors. Histological examination demonstrated increased portal and intralobular connective tissue and cell necrosis in EtOH/{minus}Cu rats, suggesting that Cu may be a critical modulator of EtOH induced tissue damage.

  7. BHT blocks NfkB activation and Ethanol-Induced Brain Damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Binge ethanol administration causes corticolimbic brain damage that models alcoholic neurodegeneration. The mechanism of binge ethanol induced degeneration is unknown, but is not glutamate neurotoxicity. To test the hypothesis that oxidative stress and inflammation are mechanisms of binge ethanol ...

  8. Genetic determinants of ethanol-induced liver damage.

    PubMed Central

    Monzoni, A.; Masutti, F.; Saccoccio, G.; Bellentani, S.; Tiribelli, C.; Giacca, M.

    2001-01-01

    BACKGROUND: Although a clear correlation exists between cumulative alcohol intake and liver disease, only some of the alcohol abusers develop signs of ethanol-induced liver damage. To identify some of the genetic variations predisposing persons to alcoholic liver disease (ALD), a genetic study was performed in heavy drinkers from the cohort of the Dionysis study, a survey aimed at evaluating liver disease in the open population of two towns in Northern Italy (6917 individuals). MATERIALS AND METHODS: 158 heavy drinkers (approximately 85% of all heavy drinkers in the population; daily alcohol intake > 120 g in males and >60 g in females) were investigated by the analysis of nine polymorphic regions, mapping in exons III and IX of the alcohol-dehydrogenase (ADH)-2 gene, in exon VIII of the ADH3 gene, in intron VI, in the promoter region of the cytochrome P4502E1 (CYP2E1) gene, and in the promoter region of the tumor necrosis factor-alpha gene. RESULTS: Heavy drinkers with or without ALD significantly differed for the distribution of alleles of the cytochrome P4502E1 (CYP2E1) and alcohol-dehydrogenase-3 (ADH-3) genes. In one town, allele C2 in the promoter region of the CYP2E1 gene had a frequency of 0.06 in healthy heavy drinkers, of 0.19 in heavy drinkers with ALD (p = 0.012), and of 0.33 in heavy drinkers with cirrhosis (p = 0.033). In the other town, whose inhabitants have different genetic derivation, a prominent association between ALD and homozygosity for allele ADH3*2 of ADH3 was found, with a prevalence of 0.31 in heavy drinkers with ALD and of 0.07 in healthy heavy drinkers controls (p = 0.004). CONCLUSIONS. Both heterozygosity for allele C2 of CYP2E1 and homozygosity for allele ADH3*2 of ADH3 are independent risk factors for ALD in alcohol abusers. The relative contribution of these genotypes to ALD is dependent on their frequency in the population. Overall, heavy drinkers lacking either of these two genotypes are 3.2 and 4.3 times more protected from developing ALD and cirrhosis respectively. PMID:11471570

  9. Ethanol-induced impairment of hepatic glycoprotein secretion in the isolated rat liver perfusion model

    SciTech Connect

    Volentine, G.D.; Ogden, K.A.; Tuma, D.J.; Sorrell, M.F.

    1987-05-01

    The authors have previously shown that acute administration of ethanol inhibits hepatic glycoprotein secretion in vivo. This ethanol-induced effect appears to be mediated by its reactive metabolite, acetaldehyde. Since hormonal influences and vascular changes can not be controlled in vivo during ethanol administration, they investigated the effect of ethanol in the isolated perfused liver model. Rat liver from fed animals was perfused with oxygenated KRB at 3 ml/min/g liver for 4 hrs. Since ethanol inhibits proteins synthesis in vitro, protein acceptor pool size was equalized in both ethanol and control perfused livers with 1 mM cycloheximide. /sup 3/H-glucosamine was used to label hepatic secretory glycoproteins in the perfusate. Colchicine, a known inhibitor of protein secretion, impaired the secretion of labeled glycoproteins with a concomitant retention of these export proteins in the liver; therefore, confirming the authors secretory model. Ethanol (50 mM) inhibited the appearance of glucosamine-labeled glycoproteins by 60% into the perfusate as compared to control livers. Pretreatment of animals with cyanamide (an aldehyde dehydrogenase inhibitor) further potentiated this effect of ethanol in the isolated perfused liver. These data suggest that ethanol inhibits hepatic glycoprotein secretion in the isolated liver perfusion model, and this ethanol-induced impairment appears to be mediated by acetaldehyde.

  10. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.

    PubMed

    Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2013-01-01

    The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. PMID:21924598

  11. Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes.

    PubMed

    Lu, Chunfeng; Zhang, Feng; Xu, Wenxuan; Wu, Xiafei; Lian, Naqi; Jin, Huanhuan; Chen, Qin; Chen, Lianyun; Shao, Jiangjuan; Wu, Li; Lu, Yin; Zheng, Shizhong

    2015-08-01

    Alcoholic liver disease (ALD) is a common health problem worldwide, characterized by aberrant accumulation of lipid in hepatocytes. Inhibition of lipid accumulation has been well recognized as a promising strategy for ALD. Previous studies showed that curcumin has potential effect on ALD by regulating oxidative stress and ethanol metabolism. However, the effects of curcumin on lipid accumulation and its mechanism remain unclear. Recent researches have indicated that farnesoid X receptor (FXR) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) have excellent effects on reducing lipid deposition. This study demonstrated that curcumin alleviated ethanol-induced liver injury by ameliorating activities of serum marker enzymes and inflammation. Moreover, curcumin alleviated the symptom of hyperlipidemia and hepatic steatosis via modulating the expression of sterol regulatory element-binding protein-1c, fatty acid synthase, and peroxisome proliferator-activated receptor-alpha as well as the activity of carnitine palmitoyltransferase 1. Additionally, curcumin induced the expression of Nrf2 and FXR in liver, strongly implying close relationship between inhibitory effect of curcumin on hepatic steatosis and the above two genes. The following in vitro experiments further verified the protective effects of curcumin against hepatotoxicity and lipid accumulation in hepatocytes induced by ethanol. Gain- or loss-of-function analyses revealed Nrf2 and FXR mediated the effect of curcumin on lipid deposition in hepatocytes, and curcumin modulated the expression of FXR mediated by Nrf2. Collectively, we drew a conclusion that curcumin attenuated ALD by modulating lipid deposition in hepatocytes via a Nrf2/FXR activation-dependent mechanism. The findings make curcumin a potential agent for ALD and broaden the horizon of the molecular mechanism involved. PMID:26305715

  12. Hepatoprotective effects of dieckol-rich phlorotannins from Ecklonia cava, a brown seaweed, against ethanol induced liver damage in BALB/c mice.

    PubMed

    Kang, Min-Cheol; Ahn, Ginnae; Yang, Xiudong; Kim, Kil-Nam; Kang, Sung-Myung; Lee, Seung-Hong; Ko, Seok-Chun; Ko, Ju-Young; Kim, Daekyung; Kim, Yong-Tae; Jee, Youngheun; Park, Sun-Joo; Jeon, You-Jin

    2012-06-01

    Alcoholic liver disease, which is one of the most serious liver disorders, has been known to cause by ethanol intake. In the present study, in vivo hepatoprotective effects of dieckol-rich phlorotannins (DRP) from Ecklonia cava, a brown seaweed, on ethanol induced hepatic damage in BALB/c mice liver were investigated. After administration of 5 and 25mg/kg mouse of DRP and 4 g/kg mice ethanol, the body weights and survival rates were increased as compared to the control, which is ethanol-treated group without DRP. The glutamic oxaloacetic transaminase and glutamic pyruvic transaminase levels in the serum were lower than those of the control. DRP exhibited a reduction of the total cholesterol. The lower levels of SOD enzyme and a reduction of the formation of malondialdehyde were occurred in mice fed with 5 and 25mg/kg mouse of DRP. Finally the effect on improvement of fatty liver induced by ethanol was observed by taking out the liver immediately after dissecting the mouse. However, no significant difference was observed on hepatic histopathological changes. In conclusion, this study indicated that DRP could protect liver injury induced by ethanol in vivo. It suggested that DRP possesses the beneficial effect to human against ethanol-induced liver injury. PMID:22504843

  13. Prostaglandins and nitric oxide in copper-complex mediated protection against ethanol-induced gastric damage.

    PubMed

    Franco, L; Doria, D

    1997-11-01

    This study was designed to determine the effects of oral administration of the copper(II) complex of amino acids, on gastric lesions induced by ethanol in rats and the possible mechanism(s) of protection. The copper(II) complex of L-tryptophan and L-phenylalanine is reported as the most effective in reducing ulcer numbers as well as ulcer severity of the many amino acid complexes studied. We investigated the role of PGE2 and nitric oxide (NO) in the protection afforded by Cu(II)(L-Trp)(L-Phe) against ethanol-induced damage. The involvement of endogenous eicosanoids and NO was evaluated with the respective inhibitors of prostaglandin and NO synthesis, indomethacin and NG-nitro-L-arginine (L-NNA). Ex vivo PGE2 accumulation in the rat gastric mucosa has also been determined. Pretreatment with indomethacin only partially counteracted the protective activity of Cu(II)(L-Trp)(L-Phe). L-NNA did not attenuate the protection by Cu(II)(L-Trp)(L-Phe), which was reduced but not prevented by indomethacin, suggesting that prostanoids contribute to the Cu(II)(L-Trp)(L-Phe) protective effect, together with some mechanism(s) other than NO synthesis. PMID:9441731

  14. The cytoprotective effect of zinc L-carnosine on ethanol-induced gastric gland damage in rabbits.

    PubMed

    Cho, C H; Hui, W M; Chen, B W; Luk, C T; Lam, S K

    1992-04-01

    The effects of zinc L-carnosine on the damaging actions of ethanol were examined in rabbit isolated gastric glands. Ethanol (8%, v/v) incubation produced a 50% viability of the gland populations and released a significant amount (38%) of the total lactate dehydrogenase (an index of membrane injury) of the glands. Zinc L-carnosine pre-incubation for 15 min markedly prevented these actions of ethanol; however, L-carnosine by itself did not have these effects. The findings indicate that zinc ion but not carnosine in the zinc L-carnosine molecule possesses cytoprotective action against ethanol-induced gastric gland damage in rabbits. PMID:1355553

  15. Protective effect of vitamin E against ethanol-induced small intestine damage in rats.

    PubMed

    Shirpoor, Alireza; Barmaki, Hanieh; Khadem Ansari, Mohamadhasan; Lkhanizadeh, BehrouzI; Barmaki, Haleh

    2016-03-01

    The role of oxidative stress and inflammatory reaction has been reported in various ethanol-induced complications. The purpose of this study was to evaluate the effect of ethanol-induced structural alteration, oxidative stress, and inflammatory reaction on the small intestine of rats, and plausible protective effect of vitamin E to determine whether it inhibits the abnormality induced by ethanol in the small intestine. Twenty-four male wistar rats were divided into three groups, namely: Control(©), ethanol, and vitamin E treated ethanol groups. After six weeks of treatment, the small intestine length, villus height, crypt depth and muscular layer thickness, oxidative stress, and inflammatory parameters showed significant changes in the ethanol treated group compared to the control group. Vitamin E consumption along with ethanol ameliorated structural alteration of the small intestine and reduced the elevated amount of oxidative stress and inflammatory markers such as protein carbonyl, OX-LDL, IL-6, Hcy, and TNF-α. Furthermore, their total antioxidant capacity was increased significantly compared to that of the ethanol group. These findings indicate that ethanol induces the small intestine abnormality by oxidative and inflammatory stress, and that these effects can be alleviated by using vitamin E as an antioxidant and anti-inflammatory molecule. PMID:26898436

  16. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model

    PubMed Central

    Szary, Nicholas; Rector, R. Scott; Uptergrove, Grace M.; Ridenhour, Suzanne E.; Shukla, Shivendra D.; Thyfault, John P.; Koch, Lauren G.; Britton, Steven L.; Ibdah, Jamal A.

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide “metabolic protection” from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  17. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and ?-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  18. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil.

    PubMed

    Pang, Min; He, Shujian; Wang, Lu; Cao, Xinmin; Cao, Lili; Jiang, Shaotong

    2014-08-01

    This study was designed to investigate physicochemical characterization of the oil extracted from foxtail millet bran (FMBO), and the antioxidant and hepatoprotective effects against acute ethanol-induced hepatic injury in mice. GC-MS analysis revealed that unsaturated fatty acids (UFAs) account for 83.76% of the total fatty acids; in particular, the linoleic acid (C18:2) is the predominant polyunsaturated fatty acid (PUFA), and the compounds of squalene and six phytosterols (or phytostanols) were identified in unsaponifiable matter of FMBO. The antioxidant activity examination of FMBO in vitro showed highly ferric-reducing antioxidant power and scavenging effects against DPPH and HO radicals. Furthermore, the protective effect of FMBO against acute hepatic injuries induced by ethanol was verified in mice. In this, intragastric administration with different dosages of FMBO in mice ahead of acute ethanol administration could observably antagonize the ethanol-induced increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and the hepatic malondialdehyde (MDA) levels, respectively, along with enhanced hepatic superoxide dismutase (SOD) levels relative to the control. Hepatic histological changes were also observed and confirmed that FMBO is capable of attenuating ethanol-induced hepatic injury. PMID:24909671

  19. Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage.

    PubMed

    Magierowska, Katarzyna; Magierowski, Marcin; Hubalewska-Mazgaj, Magdalena; Adamski, Juliusz; Surmiak, Marcin; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2015-01-01

    The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1? was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1?, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties. PMID:26460608

  20. Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage

    PubMed Central

    Magierowska, Katarzyna; Magierowski, Marcin; Hubalewska-Mazgaj, Magdalena; Adamski, Juliusz; Surmiak, Marcin; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2015-01-01

    The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5–10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions involving an increase in gastric microcirculation mediated by sGC/cGMP, prostaglandins derived from COX-1, NO-NOS system and its anti-inflammatory properties. PMID:26460608

  1. Betaine Treatment Attenuates Chronic Ethanol-Induced Hepatic Steatosis and Alterations to the Mitochondrial Respiratory Chain Proteome

    PubMed Central

    Kharbanda, Kusum K.; Todero, Sandra L.; King, Adrienne L.; Osna, Natalia A.; McVicker, Benita L.; Tuma, Dean J.; Wisecarver, James L.; Bailey, Shannon M.

    2012-01-01

    Introduction. Mitochondrial damage and disruption in oxidative phosphorylation contributes to the pathogenesis of alcoholic liver injury. Herein, we tested the hypothesis that the hepatoprotective actions of betaine against alcoholic liver injury occur at the level of the mitochondrial proteome. Methods. Male Wister rats were pair-fed control or ethanol-containing liquid diets supplemented with or without betaine (10?mg/mL) for 4-5 wks. Liver was examined for triglyceride accumulation, levels of methionine cycle metabolites, and alterations in mitochondrial proteins. Results. Chronic ethanol ingestion resulted in triglyceride accumulation which was attenuated in the ethanol plus betaine group. Blue native gel electrophoresis (BN-PAGE) revealed significant decreases in the content of the intact oxidative phosphorylation complexes in mitochondria from ethanol-fed animals. The alcohol-dependent loss in many of the low molecular weight oxidative phosphorylation proteins was prevented by betaine supplementation. This protection by betaine was associated with normalization of SAM?:?S-adenosylhomocysteine (SAH) ratios and the attenuation of the ethanol-induced increase in inducible nitric oxide synthase and nitric oxide generation in the liver. Discussion/Conclusion. In summary, betaine attenuates alcoholic steatosis and alterations to the oxidative phosphorylation system. Therefore, preservation of mitochondrial function may be another key molecular mechanism responsible for betaine hepatoprotection. PMID:22187660

  2. Hepatoprotective activity of Peganum harmala against ethanol-induced liver damages in rats.

    PubMed

    Bourogaa, Ezzeddine; Jarraya, Raoudha Mezghani; Damak, Mohamed; Elfeki, Abdelfattah

    2015-05-01

    In this study, we investigated the protective effects of Peganum harmala seeds extract (CPH) against chronic ethanol treatment. Hepatotoxicity was induced in male Wistar rats by administrating ethanol 35% (4 g/kg/day) for 6 weeks. CPH was co-administered with ethanol, by intraperitonial (IP) injection, at a dose of 10 mg/kg bw/day. Control rats were injected by saline solution (NaCl 9‰). Chronic ethanol administration intensified lipid peroxidation monitored by an increase of TBARS level in liver. Ethanol treatment caused also a drastic alteration in antioxidant defence system; hepatic superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. A co-administration of CPH during ethanol treatment inhibited lipid peroxidation and improved antioxidants activities. However, treatment with P. harmala extract protects efficiently the hepatic function of alcoholic rats by the considerable decrease of aminotransferase contents in serum of ethanol-treated rats. PMID:25974007

  3. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity

    PubMed Central

    Donohue, Jr., Terrence M.; Thomes, Paul G.

    2014-01-01

    In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitinproteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063

  4. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity.

    PubMed

    Donohue, Terrence M; Thomes, Paul G

    2014-01-01

    In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin-proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063

  5. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage.

    PubMed

    Hernndez, Jos A; Lpez-Snchez, Rosa C; Rendn-Ramrez, Adela

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms. PMID:26949445

  6. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    PubMed Central

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms. PMID:26949445

  7. The Protective Effect of Quercetin-3-O-?-D-Glucuronopyranoside on Ethanol-induced Damage in Cultured Feline Esophageal Epithelial Cells

    PubMed Central

    Cho, Jung Hyun; Park, Sun Young; Lee, Ho Sung; Whang, Wan Kyunn

    2011-01-01

    Quercetin-3-O-?-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus Herba. We aimed to explore its protective effect against ethanol-induced cell damage and the mechanism involved in the effect in feline esophageal epithelial cells (EEC). Cell viability was tested and 2',7'-dichlorofluorescin diacetate assay was used to detect intracellular H2O2 production. Western blotting analysis was performed to investigate MAPK activation and interleukin 6 (IL-6) expression. Exposure of cells to 10% ethanol time-dependently decreased cell viability. Notably, exposure to ethanol for 30 min decreased cell viability to 43.4%. When cells were incubated with 50 M QGC for 12 h prior to and during ethanol treatment, cell viability was increased to 65%. QGC also inhibited the H2O2 production and activation of ERK 1/2 induced by ethanol. Pretreatment of cells with the NADPH oxidase inhibitor, diphenylene iodonium, also inhibited the ethanol-induced ERK 1/2 activation. Treatment of cells with ethanol for 30 or 60 min in the absence or presence of QGC exhibited no changes in the IL-6 expression or release compared to control. Taken together, the data indicate that the cytoprotective effect of QGC against ethanol-induced cell damage may involve inhibition of ROS generation and downstream activation of the ERK 1/2 in feline EEC. PMID:22359468

  8. Protective effects of green tea polyphenol extracts against ethanol-induced gastric mucosal damages in rats: stress-responsive transcription factors and MAP kinases as potential targets.

    PubMed

    Lee, Jeong-Sang; Oh, Tae-Young; Kim, Young-Kyung; Baik, Joo-Hyun; So, Sung; Hahm, Ki-Baik; Surh, Young-Joon

    2005-11-11

    There are multiple lines of compelling evidence from epidemiologic and laboratory studies supporting that frequent consumption of green tea is inversely associated with the risk of chronic human diseases including cancer. The chemopreventive and chemoprotective effects of green tea have been largely attributed to antioxidative and anti-inflammatory activities of its polyphenolic constituents, such as epigallocatechin gallate. The present study was designed to evaluate the efficacy of green tea polyphenols in protecting against alcohol-induced gastric damage and to elucidate the underlying mechanisms. Intragastric administration of ethanol to male Sprague-Dawley rats caused significant gastric mucosal damage, which was accompanied by elevated expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as transient activation of redox-sensitive transcription factors, such as NF-kappaB and AP-1, and mitogen-activated protein kinases (MAPKs). Oral administration of the green tea polyphenolic extract (GTE) significantly ameliorated mucosal damages induced by ethanol and also attenuated the ethanol-induced expression of COX-2 and iNOS. Inactivation of MAPKs, especially p38 and ERKl/2, by GTE might be responsible for inhibition of ethanol-induced expression of COX-2 and iNOS. PMID:16095631

  9. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    SciTech Connect

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  10. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway.

    PubMed

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8mg/kg for mice or 20μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. PMID:23994557

  11. Role of nitric oxide in prevention of ethanol-induced gastric damage by CuNSN a copper-chelating compound.

    PubMed

    Franco, L

    1995-01-01

    CuNSN a bis (2-benzimidazolyl)thiother complex with copper, has been shown to prevent the formation of acute gastric mucosal lesions induced by acetylsalicylic acid and ethanol. In the present study we have investigated the role of NO in CuNSN protection from ethanol-induced gastric damage. For this purpose we have used the inhibitor of NO biosynthesis, NG-nitro-L-arginine (L-NNA) as well as L- or D-arginine. Gastric mucosal damage caused by ethanol was dose-dependently increased by i.v. administration of graded dose of L-NNA. The effect of L-NNA was completely antagonized by the administration of L-arginine while D-arginine did not cause a reduction in the damage. Treatment with CuNSN has shown a significant protection against the damage produced by ethanol. This protection was not reversed by L-NNA and was significant as compared to the corresponding control group. The combination of L-NNA plus L-arginine potentiates this protection. These results suggest that NO synthesis is not involved in the protection afforded by CuNSN. PMID:7545068

  12. Protective effect of Opuntia ficus indica f. inermis prickly pear juice upon ethanol-induced damages in rat erythrocytes.

    PubMed

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Ben Rhouma, Khmais

    2012-05-01

    Juice from the fruit of the cactus Opuntia ficus indica is claimed to possess several health-beneficial properties. The present study was carried out to determine whether O. ficus indica f. inermis fruit extract might have a protective effect upon physiological and morphological damages inflicted to erythrocytes membrane by chronic ethanol poisoning, per os, in rat. Chemical analysis of the extract revealed the presence of polyphenols, flavonoids, ascorbic acid, carotenoids, and betalains. Ethanol administration (3 g/kg b.w, per day for 90 days) induced an increase of malondialdehyde (MDA) and carbonylated proteins levels and a decrease of glutathione (GSH) level in erythrocyte. Ethanol administration also reduced the scavenging activity in plasma and enhanced erythrocytes hemolysis, as compared to control rats. In addition, ethanol intake increased the erythrocyte shape index by +895.5% and decreased the erythrocyte diameter by -61.53% as compared to controls. In animals also given prickly pear juice during the same experimental period, the studied parameters were much less shifted. This protective effect was found to be dose-dependent. It is likely that the beneficial effect of the extract is due to the high content of antioxidant compounds. PMID:22445806

  13. Hepatoprotective effects of chestnut (Castanea crenata) inner shell extract against chronic ethanol-induced oxidative stress in C57BL/6 mice.

    PubMed

    Noh, Jung-Ran; Kim, Yong-Hoon; Gang, Gil-Tae; Hwang, Jung Hwan; Lee, Hyun-Sun; Ly, Sun-Yung; Oh, Won-Keun; Song, Kyung-Sik; Lee, Chul-Ho

    2011-07-01

    This study was carried out to evaluate the protective effects of chestnut inner shell extract (CISE) on chronic ethanol-induced oxidative stress in liver. Mice were fed a control liquid diet (Normal-control), liquid diet containing ethanol alone (EtOH+Vehicle), or were administered CISE and ethanol (EtOH+CISE) for 6 weeks. Administration of ethanol induced liver damage with significant increase of plasma GOT, GPT, hepatic triglyceride (TG) and thiobarbituric acid reactive substance (TBARS) levels. By contrast, co-treatment of CISE with ethanol significantly decreased the activities of GOT and GPT in the plasma, and hepatic TG and TBARS levels. Histological observations were consistent with the result obtained from hepatic lipid quantification. Moreover, CISE treatment with ethanol decreased CYP2E1 expression and increased activities of catalase and superoxide dismutase, which were significantly inhibited by treatment with ethanol alone. To determine the active compound of CISE, fractionation of CISE was conducted and scoparone and scopoletin were identified as main compounds. These compounds were also shown to inhibit the ethanol-induced reduction in antioxidant enzyme activity in an in vitro model system. These results suggest that CISE has protective effects against ethanol-induced oxidative damage, possibly by inhibition of lipid accumulation, peroxidation and increase of antioxidant defense system in the liver. PMID:21457746

  14. Molecular pathways underpinning ethanol-induced neurodegeneration

    PubMed Central

    Goldowitz, Dan; Lussier, Alexandre A.; Boyle, Julia K.; Wong, Kaelan; Lattimer, Scott L.; Dubose, Candis; Lu, Lu; Kobor, Michael S.; Hamre, Kristin M.

    2014-01-01

    While genetics impacts the type and severity of damage following developmental ethanol exposure, little is currently known about the molecular pathways that mediate these effects. Traditionally, research in this area has used a candidate gene approach and evaluated effects on a gene-by-gene basis. Recent studies, however, have begun to use unbiased approaches and genetic reference populations to evaluate the roles of genotype and epigenetic modifications in phenotypic changes following developmental ethanol exposure, similar to studies that evaluated numerous alcohol-related phenotypes in adults. Here, we present work assessing the role of genetics and chromatin-based alterations in mediating ethanol-induced apoptosis in the developing nervous system. Utilizing the expanded family of BXD recombinant inbred mice, animals were exposed to ethanol at postnatal day 7 via subcutaneous injection (5.0 g/kg in 2 doses). Tissue was collected 7 h after the initial ethanol treatment and analyzed by activated caspase-3 immunostaining to visualize dying cells in the cerebral cortex and hippocampus. In parallel, the levels of two histone modifications relevant to apoptosis, ?H2AX and H3K14 acetylation, were examined in the cerebral cortex using protein blot analysis. Activated caspase-3 staining identified marked differences in cell death across brain regions between different mouse strains. Genetic analysis of ethanol susceptibility in the hippocampus led to the identification of a quantitative trait locus on chromosome 12, which mediates, at least in part, strain-specific differential vulnerability to ethanol-induced apoptosis. Furthermore, analysis of chromatin modifications in the cerebral cortex revealed a global increase in ?H2AX levels following ethanol exposure, but did not show any change in H3K14 acetylation levels. Together, these findings provide new insights into the molecular mechanisms and genetic contributions underlying ethanol-induced neurodegeneration. PMID:25076964

  15. Subcellular location of secretory proteins retained in the liver during the ethanol-induced inhibition of hepatic protein secretion in the rat

    SciTech Connect

    Volentine, G.D.; Tuma, D.J.; Sorrell, M.F.

    1986-01-01

    Ethanol administration inhibits the secretion of proteins by the liver, resulting in their hepatocellular retention. Experiments were designed in this study to determine the subcellular location of the retained secretory proteins. Ethanol was administered acutely to nonfasted rats by gastric intubation, whereas control animals received an isocaloric dose of glucose. Two hours after intubation, when maximum blood ethanol levels (45 mM) were observed, (/sup 3/H)leucine and (/sup 14/C)fucose were injected simultaneously into the dorsal vein of the penis. The labelling of secretory proteins was determined in the liver and plasma at various time periods after label injection. Ethanol treatment decreased the secretion of both leucine- and fucose-labeled proteins into the plasma. This inhibition of secretion was accompanied by a corresponding increase in the hepatic retention of both leucine- and fucose-labeled immunoprecipitable secretory proteins. At the time of maximum inhibition of secretion, leucine labeled secretory proteins located in the Golgi apparatus represented about 50% of the accumulated secretory proteins in the livers of the ethanol-treated rats, whereas the remainder was essentially equally divided among the rough and smooth endoplasmic reticulum and cytosol. Because fucose is incorporated into secretory proteins almost exclusively in the Golgi complex, fucose-labeled proteins accumulated in the livers of the ethanol-treated rats mainly in the Golgi apparatus, with the remainder located in the cytosol. These results show that ethanol administration causes an impaired movement of secretory proteins along the secretory pathway, and that secretory proteins accumulate mainly, but not exclusively, in the Golgi apparatus.

  16. Hepatoprotective effect of aqueous extract of Aframomum melegueta on ethanol-induced toxicity in rats.

    PubMed

    Nwozo, Sarah O; Oyinloye, Babatunji E

    2011-01-01

    In recent years there have been remarkable developments in the prevention of diseases, especially with regards to the role of free radicals and antioxidants. Ethanol-induced oxidative stress appears to be one mechanism by which ethanol causes liver injury. The protective effect of aqueous plant extract of Aframomum melegueta on ethanol-induced toxicity was investigated in male Wistar rats. The rats were treated with 45 % ethanol (4.8 g/kg b.w.t.) for 16 days to induce alcoholic diseases in the liver. The activities of alanine aminotransferase, aspartate aminotransferase and triglyceride were monitored and the histological changes in liver examined in order to evaluate the protective effects of the plant extract. Hepatic malondialdehyde and reduced glutathione, as well as superoxide dismutase and glutathione-S-transferase activities were determined for the antioxidant status. Chronic ethanol administration resulted in a statistically significant elevation of serum alanine aminotransferases and triglyceride levels, as well as a decrease in reduced glutathione and superoxide dismutase which was dramatically attenuated by the co-administration of the plant extract. Histological changes were related to these indices. Co-administration of the plant extract suppressed the elevation of lipid peroxidation, restored the reduced glutathion, and enhanced the superoxide dismutase activity. These results highlight the ability of Aframomum melegueta to ameliorate oxidative damage in the liver and the observed effects are associated with its antioxidant activities. PMID:21887409

  17. Mean platelet volume is an important predictor of hepatitis C but not hepatitis B liver damage

    PubMed Central

    Eminler, Ahmet Tarik; Uslan, Mustafa Ihsan; Ayyildiz, Talat; Irak, Kader; Kiyici, Murat; Gurel, Selim; Dolar, Enver; Gulten, Macit; Nak, Selim Giray

    2015-01-01

    Background: The mean platelet volume (MPV) is the most commonly used measure of platelet size and is a potential marker of platelet reactivity. In this study, we aimed to explore the relationship between hepatic histopathology in viral hepatitis and MPV levels, which are associated with platelet count and activity. Materials and Methods: We performed a retrospective case-control study of baseline histological and clinical parameters in chronic hepatitis B and C patients in our tertiary reference center between January 2005 and January 2011. Two hundred and five chronic hepatitis B patients and 133 chronic hepatitis C patients who underwent liver biopsy were included in the study. The patients were divided into two groups: Chronic hepatitis B and chronic hepatitis C and were additionally divided into groups of two according to histological activity index (HAI) and fibrosis scores obtained by liver biopsy results (according to the Ishak scoring system). The clinical characteristics of chronic viral hepatitis patients, including demographics, laboratory (especially MPV), and liver biopsy findings, were reviewed. Results: One hundred and forty-three patients were male (69.1%), and the mean age was 41.9 12.75 with an age range of 18-71 years in hepatitis B patients. In the classification made according to HAI, 181 patients were in the low activity group (88.3%) and 24 in the high activity group (11.7%). In the evaluation made according to fibrosis score, 169 patients were found to have early fibrosis (82.4%) and 36 were found to have advanced fibrosis (17.6%). In patients with hepatitis B, there was no statistically significant difference in terms of their MPV values between the two groups, separated according to their degree of activity and fibrosis. Sixty-three patients were male (47.3%), and the mean age was 50.03 12.75 with an age range of 19-75 years. In the classification made according to HAI, 109 patients were in low activity group (81.9%) and 24 in high activity group (18.1%). In the evaluation made according to fibrosis score, 101 patients were found to have early fibrosis (75.9%) and 32 have advanced fibrosis (24.1%). There was a statistically significant difference between the activity and fibrosis groups of the hepatitis C patients (P = 0.04 and P = 0.02, respectively). Conclusion: MPV values are more reliable in hepatitis C patients than hepatitis B for predicting the advanced damage in liver histology. This finding might be useful for the detection of early fibrosis and also starting early treatment, which is important in hepatitis C. PMID:26759574

  18. Lithium protects ethanol-induced neuronal apoptosis

    SciTech Connect

    Zhong Jin . E-mail: jizhong@iupui.edu; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-12-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3{beta}, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3{beta} (ser9). In addition, the selective GSK-3{beta} inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits.

  19. Specific Conditions for Resveratrol Neuroprotection against Ethanol-Induced Toxicity.

    PubMed

    Gonthier, Brigitte; Allibe, Nathalie; Cottet-Rousselle, Ccile; Lamarche, Frdric; Nuiry, Laurence; Barret, Luc

    2012-01-01

    Aims. 3,5,4'-Trihydroxy-trans-stilbene, a natural polyphenolic compound present in wine and grapes and better known as resveratrol, has free radical scavenging properties and is a potent protector against oxidative stress induced by alcohol metabolism. Today, the mechanism by which ethanol exerts its toxicity is still not well understood, but it is generally considered that free radical generation plays an important role in the appearance of structural and functional alterations in cells. The aim of this study was to evaluate the protective action of resveratrol against ethanol-induced brain cell injury. Methods. Primary cultures of rat astrocytes were exposed to ethanol, with or without a pretreatment with resveratrol. We examined the dose-dependent effects of this resveratrol pretreatment on cytotoxicity and genotoxicity induced by ethanol. Cytotoxicity was assessed using the MTT reduction test. Genotoxicity was evidenced using single cell gel electrophoresis. In addition, DNA staining with fluorescent dyes allowed visualization of nuclear damage using confocal microscopy. Results. Cell pretreatment with low concentrations of trans-resveratrol (0.1-10??M) slowed down cell death and DNA damage induced by ethanol exposure, while higher concentrations (50-100??M) enhanced these same effects. No protection by cis-resveratrol was observed. Conclusion. Protection offered by trans-resveratrol against ethanol-induced neurotoxicity was only effective for low concentrations of this polyphenol. PMID:22778731

  20. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice.

    PubMed

    Zhang, Pengcheng; Ma, Dongshen; Wang, Yongchen; Zhang, Miao; Qiang, Xiaoyan; Liao, Min; Liu, Xie; Wu, Hui; Zhang, Yubin

    2014-12-01

    Alcohol consumption is customary in many cultures and it is a common human behavior worldwide. Binge ethanol and chronic alcohol consumption, two usual drinking patterns of human beings, produce a state of oxidative stress in liver and disturb the liver function. However, a safe and effective therapy for alcoholic liver disease in humans is still elusive. This study identified the natural product berberine as a potential agent for treating or preventing ethanol-induced liver injury. We demonstrated that berberine attenuated oxidative stress resulted from binge drinking in liver by reducing hepatic lipid peroxidation, glutathione exhaust and mitochondrial oxidative damage. Furthermore, berberine also prevented the oxidative stress and macrosteatosis in response to chronic ethanol exposure in mice. Either the total cytochrome P450 2E1 or the mitochondria-located cytochrome P450 2E1, which is implicated in ethanol-mediated oxidative stress, was suppressed by berberine. On the other hand, berberine significantly blunted the lipid accumulation in liver due to chronic alcohol consumption, at least partially, through restoring peroxisome proliferator-activated receptor ?/peroxisome proliferator-activated receptor-gamma Co-activator-1? and hepatocyte nuclear factor 4?/microsomal triglyceride transfer protein pathways. These findings suggested that berberine could serve as a potential agent for preventing or treating human alcoholic liver disease. PMID:25455889

  1. Quercetin prevents ethanol-induced iron overload by regulating hepcidin through the BMP6/SMAD4 signaling pathway.

    PubMed

    Tang, Yuhan; Li, Yanyan; Yu, Haiyan; Gao, Chao; Liu, Liang; Chen, Shaodan; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2014-06-01

    Emerging evidence has demonstrated that chronic ethanol exposure induces iron overload, enhancing ethanol-mediated liver damage. The purpose of this study was to explore the effects of the naturally occurring compound quercetin on ethanol-induced iron overload and liver damage, focusing on the signaling pathway of the iron regulatory hormone hepcidin. Adult male C57BL/6J mice were pair-fed with isocaloric-Lieber De Carli diets containing ethanol (accounting for 30% of total calories) and/or carbonyl iron (0.2%) and treated with quecertin (100 mg/kg body weight) for 15 weeks. Mouse primary hepatocytes were incubated with ethanol (100 mM) and quercetin (100 μM) for 24 h. Mice exposed to either ethanol or iron presented significant fatty infiltration and iron deposition in the liver; these symptoms were exacerbated in mice cotreated with ethanol and iron. Quercetin attenuated the abnormity induced by ethanol and/or iron. Ethanol suppressed BMP6 and intranuclear SMAD4 as well as decreased hepcidin expression. These effects were partially alleviated by quercetin supplementation in mice and hepatocytes. Importantly, ethanol caused suppression of SMAD4 binding to the HAMP promoter and of hepcidin messenger RNA expression. These effects were exacerbated by anti-BMP6 antibody and partially alleviated by quercetin or human recombinant BMP6 in cultured hepatocytes. In contrast, co-treatment with iron and ethanol, especially exposure of iron alone, activated BMP6/SMAD4 pathway and up-regulated hepcidin expression, which was also normalized by quercetin in vivo. Quercetin prevented ethanol-induced hepatic iron overload different from what carbonyl iron diet elicited in the mechanism, by regulating hepcidin expression via the BMP6/SMAD4 signaling pathway. PMID:24746831

  2. Endogenously elevated n-3 polyunsaturated fatty acids alleviate acute ethanol-induced liver steatosis.

    PubMed

    Huang, Wei; Wang, Bin; Li, Xiangyong; Kang, Jing X

    2015-11-12

    Effective means for the prevention of alcohol-induced liver disease, a global health problem, have yet to be developed. We evaluated whether the high endogenous levels of omega-3 polyunsaturated acids (n-3 PUFA) in fat-1 transgenic mice could protect them against acute ethanol-induced liver steatosis. We induced alcoholic liver steatosis in 9-week-old male heterozygous fat-1 mice and their wild-type (WT) male littermates through three oral gavages of 60% ethanol at 4.7 g/kg body weight. Hepatic lipid accumulation was significantly increased in both alcohol treatment groups, but by much less in the fat-1 group compared with the WT group. Fat-1 mice exhibited significantly lower levels of total hepatic/plasma TG and plasma alanine aminotransferase activity. Accordingly, hepatic expression of lipogenesis-related genes (e.g., SREBP-1c, FAS, and SCD-1) and plasma levels of inflammatory cytokines (e.g., IL-6, TNF-?, and MCP-1) were reduced in the fat-1 mice. Furthermore, decreased hepatic expression of cytochrome P450 2E1 (CYP2E1) and increased hepatic levels of PPAR-? and HO-1 were observed in the fat-1 mice, compared to the WT mice. These findings show that elevated tissue n-3 PUFA protect against acute ethanol-induced liver steatosis in fat-1 mice, possibly through the down-regulation of hepatic lipogenesis, inflammatory response, and oxidative stress. 2015 BioFactors, 41(6):453-462, 2015. PMID:26637972

  3. Hepatoprotective and antioxidant activities of grapeseeds against ethanol-induced oxidative stress in rats.

    PubMed

    Dogan, Abdulahad; Celik, Ismail

    2012-01-01

    The present study was carried out to evaluate the hepatoprotective effect and antioxidant role of grape (Vitis vinifera L.) seeds (GS) against ethanol-induced oxidative stress. The hepatoprotective and antioxidant roles of the GS supplementation feed against ethanol-induced oxidative stress were evaluated by measuring liver damage serum marker enzymes, aspartate aminotransferase, alanine aminotransferase, ?-glutamyl transpeptidase and lactate dehydrogenase, antioxidant defence system such as GSH, glutathione reductase, superoxide dismutase, glutathione S-transferase and glutathione peroxidase and malondialdehyde (MDA) content in various tissues of rats. Rats were divided into four experimental groups: I (control), II (20% ethanol), III (15% GS) and IV (20% ethanol+15% GS). According to the results, the level of serum marker enzymes was significantly increased in group II as compared to that of group I, but decreased in group IV as compared to that of group II. Also, administration of GS-supplemented food restored the ethanol-induced MDA, which was increased near the control level. The results indicated that GS could be as important as diet-derived antioxidants in preventing oxidative damage in the tissues by reducing the lipid oxidation or inhibiting the production of ethanol-induced free radicals in rats. PMID:21733325

  4. Evaluation of hepatic damage by reactive metabolites--with consideration of circadian variation of murine hepatic glutathione levels.

    PubMed

    Mori, Koji; Kumano, Atsushi; Kodama, Toshihisa; Takiguchi, Shigeyuki; Takano, Naomi; Kumada, Kohei; Hatao, Kana; Kimura, Takashi

    2014-08-01

    Generally, reactive metabolites are detoxified by conjugation with glutathione (GSH). A GSH-depleted model was prepared by administering L-buthionine-(S,R)-sulfoximine (BSO), which can be used to detect hepatic damage by reactive metabolites. However, BSO may cause adverse effects on other organs, such as renal damage by reactive metabolites because it depletes GSH in the whole body. The present study was designed to examine whether it was possible to specifically detect hepatic damage by reactive metabolites without reducing renal GSH levels by administering BSO in a time course when hepatic GSH levels are naturally reduced. Male BALB/c mice were administered reverse osmosis (RO) water or 20 mmol/l BSO in drinking water for 4 days. Subsequently, animals in the RO water group were orally administered 500 mg/kg acetaminophen (APAP) at 9:00 or 15:00 and in the BSO group at 9:00 for 4 days. As a result, severe hepatic damage and necrosis of the renal proximal tubules were observed in the BSO/APAP administration at 9:00 group, and all animals died on 1 or 2 days after APAP administration. Hepatic damage was clearly increased in the RO water/APAP administration at 15:00 group compared with the RO water/APAP administration at 9:00 group. However, renal damage and deaths were not observed. This BSO administration model may detect renal damage induced by reactive metabolites. Using an administration time course, whereby hepatic GSH levels were naturally reduced, hepatic damage by reactive metabolites can be detected without secondary renal effects. PMID:25056778

  5. Nicotine enhances ethanol-induced fat accumulation and collagen deposition but not inflammation in mouse liver

    PubMed Central

    Lu, Yongke; Ward, Stephen; Cederbaum, Arthur I.

    2013-01-01

    Introduction Alcohol and tobacco are frequently co-abused. Tobacco smoke increases alcoholic steatosis in apoE(−/−) mice. Tobacco smoke contains more than 4000 chemicals, but it is unknown which compounds in tobacco smoke play a major role in increasing alcoholic steatosis. Methods C57BL/J6 mice were intraperitoneally injected with nicotine 1 mg/kg every day or saline at the same volume as a control when the mice were fed dextrose-control or ethanol Lieber-DeCarli liquid diets. Three weeks later the mice were sacrificed after overnight fasting. Results Neither nicotine injection nor ethanol feeding alone increased serum levels of triglyceride, but the combination of nicotine and ethanol increased serum levels of triglyceride. Both nicotine injection and ethanol feeding alone increased hepatic collagen type I deposition, and nicotine injection and ethanol feeding combined further increased hepatic collagen type I deposition. The combination of nicotine and ethanol also activated hepatic stellate cells, a principal liver fibrogenic cell. Hepatic fat accumulation was induced by ethanol feeding, which was enhanced by nicotine injection. Ethanol feeding caused an increase in serum ALT, but nicotine did not further increase serum ALT levels. Lipid droplets and inflammatory foci were observed in liver sections from ethanol-fed mice; nicotine treatment increased the number and size of lipid droplets, but not the number and size of inflammatory foci. Nicotine did not further increase ethanol-induced hepatic neutrophil infiltration. Conclusions These results suggest that nicotine enhances ethanol-induced steatosis and collagen deposition, but nicotine has no effect on ethanol-induced inflammation. PMID:23731694

  6. Protective effect of tetrahydrocoptisine against ethanol-induced gastric ulcer in mice

    SciTech Connect

    Li, Weifeng Huang, Huimin; Niu, Xiaofeng Fan, Ting; Mu, Qingli; Li, Huani

    2013-10-01

    Excessive alcohol consumption can lead to gastric ulcer and the present work was aimed to examine the protective effect of tetrahydrocoptisine (THC) in the model of ethanol-induced gastric ulcer in mice. Fasted mice treated with ethanol 75% (0.5 ml/100 g) were pre-treated with THC (10 or 20 mg/kg, ip), cimetidine (100 mg/kg, ip) or saline in different experimental sets for a period of 3 days, and animals were euthanized 4 h after ethanol ingestion. Gross and microscopic lesions, immunological and biochemical parameters were taken into consideration. The results showed that ethanol induced gastric damage, improving nitric oxide (NO) level, increased pro-inflammatory cytokine (TNF-α and IL-6) levels and myeloperoxidase (MPO) activity, as well as the expression of nuclear factor-κB (NF-κB) in the ethanol group. Pretreatment of THC at doses of 10 and 20 mg/kg bodyweight significantly attenuated the gastric lesions as compared to the ethanol group. These results suggest that the gastroprotective activity of THC is attributed to reducing NO production and adjusting the pro-inflammatory cytokine, inhibited neutrophil accumulation and NF-κB expression. - Highlights: • THC decreased ethanol-induced pro-inflammatory cytokine release. • THC inhibited the production of NO in serum and gastric tissue. • THC reduced NF-κB expression and MPO accumulation in ethanol-induced gastric tissue.

  7. Hepatic Primary and Secondary Cholesterol Deposition and Damage in Niemann-Pick Disease.

    PubMed

    Bosch, Marta; Fajardo, Alba; Alcal-Vida, Rafael; Fernndez-Vidal, Andrea; Tebar, Francesc; Enrich, Carlos; Cardellach, Francesc; Prez-Navarro, Esther; Pol, Albert

    2016-03-01

    Niemann-Pick C disease is a neurovisceral disorder caused by mutations in the NPC gene that result in systemic accumulation of intracellular cholesterol. Although neurodegeneration defines the disease's severity, in most patients it is preceded by hepatic complications such as cholestatic jaundice or hepatomegaly. To analyze the contribution of the hepatic disease in Niemann-Pick C disease progression and to evaluate the degree of primary and secondary hepatic damage, we generated a transgenic mouse with liver-selective expression of NPC1 from embryonic stages. Hepatic NPC1 re-expression did not ameliorate the onset and progression of neurodegeneration of the NPC1-null animal. However, the mice showed reduced hepatomegalia and dramatic, although not complete, reduction of hepatic cholesterol and serum bile salts, bilirubin, and transaminase levels. Therefore, hepatic primary and secondary cholesterol deposition and damage occur simultaneously during Niemann-Pick C disease progression. PMID:26784526

  8. Diosmin Protects against Ethanol-Induced Gastric Injury in Rats: Novel Anti-Ulcer Actions

    PubMed Central

    Arab, Hany H.; Salama, Samir A.; Omar, Hany A.; Arafa, El-Shaimaa A.; Maghrabi, Ibrahim A.

    2015-01-01

    Alcohol consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Diosmin (DIO) is a natural citrus flavone with remarkable antioxidant and anti-inflammatory features that underlay its protection against cardiac, hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus, the current study aimed to investigate the potential protective effects of DIO against ethanol-induced gastric injury in rats. Pretreatment with DIO (100 mg/kg p.o.) attenuated the severity of ethanol gastric mucosal damage as evidenced by lowering of ulcer index (UI) scores, area of gastric lesions, histopathologic aberrations and leukocyte invasion. These actions were analogous to those exerted by the reference antiulcer sucralfate. DIO suppressed gastric inflammation by curbing of myeloperoxidase (MPO) and tumor necrosis factor-α (TNF-α) levels along with nuclear factor kappa B (NF-κB) p65 expression. It also augmented the anti-inflammatory interleukin-10 (IL-10) levels. Meanwhile, DIO halted gastric oxidative stress via inhibition of lipid peroxides with concomitant enhancement of glutathione (GSH), glutathione peroxidase (GPx) and the total antioxidant capacity (TAC). With respect to gastric mucosal apoptosis, DIO suppressed caspase-3 activity and cytochrome C (Cyt C) with enhancement of the anti-apoptotic B cell lymphoma-2 (Bcl-2) in favor of cell survival. These favorable actions were associated with upregulation of the gastric cytoprotective prostaglandin E2 (PGE2) and nitric oxide (NO). Together, these findings accentuate the gastroprotective actions of DIO in ethanol gastric injury which were mediated via concerted multi-pronged actions, including suppression of gastric inflammation, oxidative stress and apoptosis besides boosting of the antioxidant and the cytoprotective defenses. PMID:25821971

  9. Diosmin protects against ethanol-induced gastric injury in rats: novel anti-ulcer actions.

    PubMed

    Arab, Hany H; Salama, Samir A; Omar, Hany A; Arafa, El-Shaimaa A; Maghrabi, Ibrahim A

    2015-01-01

    Alcohol consumption has been commonly associated with gastric mucosal lesions including gastric ulcer. Diosmin (DIO) is a natural citrus flavone with remarkable antioxidant and anti-inflammatory features that underlay its protection against cardiac, hepatic and renal injuries. However, its impact on gastric ulcer has not yet been elucidated. Thus, the current study aimed to investigate the potential protective effects of DIO against ethanol-induced gastric injury in rats. Pretreatment with DIO (100 mg/kg p.o.) attenuated the severity of ethanol gastric mucosal damage as evidenced by lowering of ulcer index (UI) scores, area of gastric lesions, histopathologic aberrations and leukocyte invasion. These actions were analogous to those exerted by the reference antiulcer sucralfate. DIO suppressed gastric inflammation by curbing of myeloperoxidase (MPO) and tumor necrosis factor-? (TNF-?) levels along with nuclear factor kappa B (NF-?B) p65 expression. It also augmented the anti-inflammatory interleukin-10 (IL-10) levels. Meanwhile, DIO halted gastric oxidative stress via inhibition of lipid peroxides with concomitant enhancement of glutathione (GSH), glutathione peroxidase (GPx) and the total antioxidant capacity (TAC). With respect to gastric mucosal apoptosis, DIO suppressed caspase-3 activity and cytochrome C (Cyt C) with enhancement of the anti-apoptotic B cell lymphoma-2 (Bcl-2) in favor of cell survival. These favorable actions were associated with upregulation of the gastric cytoprotective prostaglandin E2 (PGE2) and nitric oxide (NO). Together, these findings accentuate the gastroprotective actions of DIO in ethanol gastric injury which were mediated via concerted multi-pronged actions, including suppression of gastric inflammation, oxidative stress and apoptosis besides boosting of the antioxidant and the cytoprotective defenses. PMID:25821971

  10. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  11. The role of cellular oxidases and catalytic iron in the pathogenesis of ethanol-induced liver injury

    SciTech Connect

    Shaw, S.; Jayatilleke, E. Mount Sinai School of Medicine, New York, NY )

    1992-01-01

    Free radical generation and catalytic iron have been implicated in the pathogenesis of alcohol-induced liver injury but the source of free radicals is a subject of controversy. The mechanism of ethanol-induced liver injury was investigated in isolated hepatocytes from a rodent model of iron loading in which free radical generation was measured by the determination of alkane production. Iron loading increased hepatic non-heme iron 3-fold, increased the prooxidant activity of cytosolic ultrafiltrates 2-fold and doubled ethanol-induced alkane production. The role of cellular oxidases as a source of ethanol induced free radicals was studied through the use of selective inhibitors. In both the presence and absence of iron loading, selective inhibition of xanthine oxidase with oxipurinol diminished ethanol-induced alkane production 0-40%, inhibition of aldehyde oxidase with menadione diminished alkane production 36-75%, while the inhibition of aldehyde and xanthine oxidase by feeding tungstate virtually abolished alkane production. Addition of acetaldehyde to hepatocytes generated alkanes at rates comparable to those achieved with ethanol indicating the importance of acetaldehyde metabolism in free radical generation.

  12. [Hemorheological effects of thiophane on tetrachloromethane induced hepatic damage].

    PubMed

    Smol'iakova, V I; Plotnikov, M B; Chernysheva, G A; Ivanov, I S; Prosenko, A E; Kandalintseva, N V

    2010-08-01

    Carbon tetrachloride-induced hepatitis in rats is accompanied by blood hyperviscosity syndrome development. A course intragastric administration of thiophane under these conditions prevents the increase in whole blood viscosity by normalizing the microrheological indices (deformability and aggregation of erythrocytes), which is manifested by increasing oxygen availability for tissues. PMID:20919556

  13. Farnesoid X receptor regulates forkhead BoxO3a activation in ethanol-induced autophagy and hepatotoxicity.

    PubMed

    Manley, Sharon; Ni, Hong-Min; Williams, Jessica A; Kong, Bo; DiTacchio, Luciano; Guo, Grace; Ding, Wen-Xing

    2014-08-28

    Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. PMID:25460735

  14. Farnesoid X receptor regulates forkhead BoxO3a activation in ethanol-induced autophagy and hepatotoxicity

    PubMed Central

    Manley, Sharon; Ni, Hong-Min; Williams, Jessica A.; Kong, Bo; DiTacchio, Luciano; Guo, Grace; Ding, Wen-Xing

    2014-01-01

    Alcoholic liver disease encompasses a wide spectrum of pathogenesis including steatosis, fibrosis, cirrhosis, and alcoholic steatohepatitis. Autophagy is a lysosomal degradation process that degrades cellular proteins and damaged/excess organelles, and serves as a protective mechanism in response to various stresses. Acute alcohol treatment induces autophagy via FoxO3a-mediated autophagy gene expression and protects against alcohol-induced steatosis and liver injury in mice. Farnesoid X Receptor (FXR) is a nuclear receptor that regulates cellular bile acid homeostasis. In the present study, wild type and FXR knockout (KO) mice were treated with acute ethanol for 16h. We found that ethanol treated-FXR KO mice had exacerbated hepatotoxicity and steatosis compared to wild type mice. Furthermore, we found that ethanol treatment had decreased expression of various essential autophagy genes and several other FoxO3 target genes in FXR KO mice compared with wild type mice. Mechanistically, we did not find a direct interaction between FXR and FoxO3. Ethanol-treated FXR KO mice had increased Akt activation, increased phosphorylation of FoxO3 resulting in decreased FoxO3a nuclear retention and DNA binding. Furthermore, ethanol treatment induced hepatic mitochondrial spheroid formation in FXR KO mice but not in wild type mice, which may serve as a compensatory alternative pathway to remove ethanol-induced damaged mitochondria in FXR KO mice. These results suggest that lack of FXR impaired FoxO3a-mediated autophagy and in turn exacerbated alcohol-induced liver injury. PMID:25460735

  15. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB.

    PubMed

    Alfonso-Loeches, Silvia; Ureña-Peralta, Juan; Morillo-Bargues, M José; Gómez-Pinedo, Ulises; Guerri, Consuelo

    2016-02-01

    We reported that the ethanol-induced innate immune response by activating TLR4 signaling triggers gliosis and neuroinflammation. Ethanol also activates other immune receptors, such as NOD-like-receptors, and specifically NLRP3-inflammasome in astroglial cells, to stimulate caspase-1 cleavage and IL-1β and IL-18 cytokines production. Yet, whether microglia NLRs are also sensitive to the ethanol effects that contribute to neuroinflammation is uncertain. Using cerebral cortexes of the chronic alcohol-fed WT and TLR4(-/-) mice, we demonstrated that chronic ethanol treatment enhanced TLR4 mediated-NLRP3/Caspase-1 complex activation, and up-regulated pro-inflammatory cytokines and chemokines levels. Ethanol-induced NLRP3-inflammasome activation and mitochondria-ROS generation were also observed in cultured microglial cells. The up-regulation of CD45(high)/CD11b(+) cell populations and matrix metalloproteinase-9 levels was also noted in the cortexes of the ethanol-treated WT mice. Notably, elimination of the TLR4 function abolished most ethanol-induced neuroinflammatory effects. Thus, our results demonstrate that ethanol triggers TLR4-mediated NLRP3-inflammasome activation in glial cells, and suggest that microglia stimulation may compromise the permeability of blood-brain barrier events to contribute to ethanol-induced neuroinflammation and brain damage. PMID:26555554

  16. Protective Effects of the Traditional Herbal Formula Oryeongsan Water Extract on Ethanol-Induced Acute Gastric Mucosal Injury in Rats

    PubMed Central

    Jeon, Woo-Young; Lee, Mee-Young; Shin, In-Sik; Lim, Hye-Sun; Shin, Hyeun-Kyoo

    2012-01-01

    This study was performed to evaluate the protective effect and safety of Oryeongsan water extract (OSWE) on ethanol-induced acute gastric mucosal injury and an acute toxicity study in rats. Acute gastric lesions were induced via intragastric oral administration of absolute ethanol at a dose of 5 mL/kg. OSWE (100 and 200 mg/kg) was administered to rats 2 h prior to the oral administration of absolute ethanol. The stomach of animal models was opened and gastric mucosal lesions were examined. Gastric mucosal injuries were evaluated by measuring the levels of malondialdehyde (MDA), glutathione (GSH), and the activity of antioxidant enzymes. In the acute toxicity study, no adverse effects of OSWE were observed at doses up to 2000 mg/kg/day. Administration of OSWE reduced the damage by conditioning the gastric mucosa against ethanol-induced acute gastric injury, which included hemorrhage, hyperemia, and loss of epithelial cells. The level of MDA was reduced in OSWE-treated groups compared with the ethanol-induced group. Moreover, the level of GSH and the activity of antioxidant enzymes were significantly increased in the OSWE-treated groups. Our findings suggest that OSWE has a protective effect on the gastric mucosa against ethanol-induced acute gastric injury via the upregulation of antioxidant enzymes. PMID:23118790

  17. Delayed ethanol elimination and enhanced susceptibility to ethanol-induced hepatosteatosis after liver resection

    PubMed Central

    Liu, Xu; Hakucho, Ayako; Liu, Jinyao; Fujimiya, Tatsuya

    2014-01-01

    AIM: To investigate ethanol-induced hepatic steatosis after liver resection and the mechanisms behind it. METHODS: First, the preliminary examination was performed on 6 sham-operated (Sham) and 30 partial hepatectomy (PH) male Wistar rats (8-wk-old) to evaluate the recovery of the liver weight and liver function after liver resection. PH rats were sacrificed at the indicated time points (4, 8, and 12 h; 1, 3, and 7 d) after PH. Second, the time point for the beginning of the chronic ethanol exposure (1 wk after sham- or PH-operation) was determined based on the results of the preliminary examination. Finally, pair-feeding was performed with a controlled diet or with a 5-g/dL ethanol liquid diet for 28 d in another 35 age-matched male Wistar rats with a one-week recovery after undergoing a sham- (n = 15) or PH-operation (n = 20) to evaluate the ethanol-induced liver injury after liver resection. Hepatic steatosis, liver function, fatty acid synthase (Fas) gene expression level, the expression of lipid metabolism-associated enzyme regulator genes [sterol regulatory element binding protein (Srebp)-1 and peroxisome proliferator-activated receptor (Ppar)-α], the mediators that alter lipid metabolism [plasminogen activator (Pai)-1 gene expression level and tumor necrosis factor (Tnf)-α production], and hepatic class-1 alcohol dehydrogenase (Adh1)-associated ethanol elimination were investigated in the 4 groups based on histological, immunohistochemical, biochemical, Western blotting, reverse transcriptase chain reaction, and blood ethanol concentration analyses. The relevant gene expression levels, liver weight, and liver function were assessed before and 1 wk after surgery to determine the subject’s recovery from the liver resection using the rats that had been subjected to the preliminary examination. RESULTS: In the PH rats, ethanol induced marked hepatic steatosis with impaired liver functioning, as evidenced by the accumulation of fatty droplets within the hepatocytes, the higher increases in their hepatic triglyceride and blood alanine aminotransferase and blood aspartate aminotransferase levels after the 28-d pair-feeding period. The Sham-ethanol rats, not the PH-ethanol rats, demonstrated the up-regulation of Srebp-1 and the down-regulation of Ppar-α mRNA expression levels after the 28-d pair-feeding period. The 28-d ethanol administration induced the up-regulation of Pai-1 gene expression level and an overproduction of TNF-α in the Sham and the PH rats; however, the effect was more significant in the PH rats. The PH-ethanol rats (n = 4) showed higher residual blood ethanol concentrations than did the Sham-ethanol rats (n = 6) after a 5-h fast (0.66 ± 0.4 mg/mL vs 0.2 ± 0.1 mg/mL, P < 0.05); these effects manifested without up-regulation of Adh1 gene expression, which was present in the Sham-ethanol group after the 28-d pair-feeding period. One week after the liver resection, the liver weight, function, the gene expression levels of Fas, Srebp-1, Ppar-α, Pai-1 and Tnf-α recovered; however, the Adh1 gene expression did not recover in rats. CONCLUSION: Desensitization to post-hepatectomy ethanol treatment and slow recovery from PH in Adh1 gene expression enhanced the susceptibility to ethanol-induced hepatic steatosis after PH in rats. PMID:25561792

  18. 1,2-Dibromoethane causes rat hepatic DNA damage at low doses.

    PubMed

    Kitchin, K T; Brown, J L

    1986-12-15

    Two oral doses of 1,2-dibromoethane (10-300 mumol/kg) were given to adult female rats 21 and 4 hours before sacrifice. Then hepatic DNA damage, ornithine decarboxylase, cytochrome P-450 content, glutathione content and serum alanine aminotransferase activity assays were performed. In addition, DNA damage was assessed in blood, bone marrow, kidney, spleen and thymus. Of the six organs studied, liver showed the largest amount of DNA damage. Doses at or above 10 mumol/kg EDB caused DNA damage as determined by the alkaline elution technique. Far greater doses (300 mumol/kg, 56.4 mg/kg) of EDB were required to cause other biochemical effects, such as increased activity of ornithine decarboxylase. Thus, the carcinogen EDB caused substantial DNA damage at doses far below those required to show other biochemical effects or frank liver toxicity. DNA damage occurred at a dose level 40-fold lower than that demonstrated in previous studies. PMID:3801022

  19. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    PubMed Central

    Lu, Yongke; Cederbaum, Arthur I.

    2015-01-01

    Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT), CYP2E1 knockout (KO) or CYP2E1 humanized transgenic knockin (KI), mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA), an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These results suggest that autophagy is protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. We speculate that autophagy-dependent processes such as mitophagy and lipophagy help to minimize ethanol-induced CYP2E1-dependent oxidative stress and therefore the subsequent liver injury and steatosis. Attempts to stimulate autophagy may be helpful in lowering ethanol and CYP2E1-dependent liver toxicity. PMID:26501338

  20. Gynura procumbens Reverses Acute and Chronic Ethanol-Induced Liver Steatosis through MAPK/SREBP-1c-Dependent and -Independent Pathways.

    PubMed

    Li, Xiao-Jun; Mu, Yun-Mei; Li, Ting-Ting; Yang, Yan-Ling; Zhang, Mei-Tuo; Li, Yu-Sang; Zhang, Wei Kevin; Tang, He-Bin; Shang, Hong-Cai

    2015-09-30

    The present study aimed to evaluate the hepatoprotective effect and mechanism of action of Gynura procumbens on acute and chronic ethanol-induced liver injuries. Ethanol extract from G. procumbens stems (EEGS) attenuated acute ethanol-induced serum alanine aminotransferase levels and hepatic lipid accumulation. Therefore, EEGS was successively extracted by petroleum, ethyl acetate, and n-butyl alcohol. The results showed that the n-butyl alcohol extract was the active fraction of EEGS, and hence it was further fractionated on a polyamide glass column. The 60% ethanol-eluted fraction that contained 13.6% chlorogenic acid was the most active fraction, and its effect was further evaluated using a chronic model. Both the n-butyl alcohol extract and the 60% ethanol-eluted fraction inhibited chronic ethanol-induced hepatic lipid accumulation by modulating lipid metabolism-related regulators through MAPK/SREBP-1c-dependent and -independent signaling pathways and ameliorated liver steatosis. Our findings suggest that EEGS and one of its active ingredients, chlorogenic acid, may be developed as potential effective agents for ethanol-induced liver injury. PMID:26345299

  1. Hepatitis

    MedlinePLUS

    ... Sledding, Skiing, Snowboarding, Skating Crushes What's a Booger? Hepatitis KidsHealth > For Kids > Hepatitis Print A A A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  2. Hepatitis

    MedlinePLUS

    ... for the virus that causes it; for example, hepatitis A, hepatitis B or hepatitis C. Drug or alcohol ... not, it can be treated with drugs. Sometimes hepatitis lasts a lifetime. Vaccines can help prevent some viral forms.

  3. Hepatitis

    MedlinePLUS

    ... Your Best Self Smart Snacking Losing Weight Safely Hepatitis KidsHealth > Teens > Infections > Sexually Transmitted Diseases > Hepatitis Print ... to a liver condition called hepatitis . What Is Hepatitis? The liver is one of the body's powerhouses. ...

  4. Hepatitis

    MedlinePLUS

    ... Digestive System How the Body Works Main Page Hepatitis KidsHealth > Kids > Health Problems > Infections > Hepatitis Print A ... an important digestive liquid called bile . What Is Hepatitis? Hepatitis is an inflammation (say: in-fluh-MAY- ...

  5. Roles of endothelin-1 and nitric oxide in the mechanism for ethanol-induced vasoconstriction in rat liver.

    PubMed Central

    Oshita, M; Takei, Y; Kawano, S; Yoshihara, H; Hijioka, T; Fukui, H; Goto, M; Masuda, E; Nishimura, Y; Fusamoto, H

    1993-01-01

    This study was designed to investigate the mechanism for ethanol-induced hepatic vasoconstriction in isolated perfused rat liver. Upon initiation of ethanol infusion into the portal vein at concentrations ranging from 25 to 100 mM, portal pressure began to increase in a concentration-dependent manner and reached maximal levels in 2-5 min (initial phase), followed by a gradual decrease over the period of ethanol infusion (escape phenomenon). Endothelin-1 antiserum significantly inhibited this ethanol-induced hepatic vasoconstriction by 45-80%. Cessation of infusion of endothelin-1 antiserum was followed by a subsequent increase in portal pressure. On the other hand, when a nitric oxide synthesis inhibitor, NG-monomethyl-L-arginine (L-NMMA), was infused into the portal vein simultaneously with ethanol, the initial phase of the response of portal pressure to ethanol was not altered and the peak values of portal pressure remained unchanged. However, after the peak increase in portal pressure, the rate of decrease was less than in the absence of L-NMMA. Thus, L-NMMA diminished the escape phenomenon and sustained the vasoconstriction. This study supports the hypothesis that two endothelium-derived vasoactive factors, endothelin-1 and nitric oxide, regulate hepatic vascular tone in the presence of ethanol. PMID:8473486

  6. Bamboo salt attenuates CCl4-induced hepatic damage in Sprague-Dawley rats

    PubMed Central

    Zhao, Xin; Song, Jia-Le; Kil, Jeung-Ha

    2013-01-01

    Bamboo salt, a Korean folk medicine, is prepared with solar salt (sea salt) and baked several times at high temperatures in a bamboo case. In this study, we compared the preventive effects of bamboo salt and purified and solar salts on hepatic damage induced by carbon tetrachloride in Sprague-Dawley rats. Compared with purified and solar salts, bamboo salts prevented hepatic damage in rats, as evidenced by significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase (P < 0.05). Bamboo salt (baked 9) triggered the greatest reduction in these enzyme levels. In addition, it also reduced the levels of the proinflammatory cytokines interleukin (IL)-6, interferon (IFN)-?, and tumor necrosis factor (TNF)-?. Histopathological sections of liver tissue demonstrated the protective effect of bamboo salt, whereas sections from animals treated with the other salt groups showed a greater degree of necrosis. We also performed reverse transcription-polymerase chain reaction and western blot analyses of the inflammation-related genes iNOS, COX-2, TNF-?, and IL-1? in rat liver tissues. Bamboo salt induced a significant decrease (~80%) in mRNA and protein expression levels of COX-2, iNOS, TNF-?, and IL-1?, compared with the other salts. Thus, we found that baked bamboo salt preparations could prevent CCl4-induced hepatic damage in vivo. PMID:23964314

  7. A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model.

    PubMed

    Choi, Bong-Keun; Kim, Tae-Won; Lee, Dong-Ryung; Jung, Woon-Ha; Lim, Jong-Hwan; Jung, Ju-Young; Yang, Seung Hwan; Suh, Joo-Won

    2015-10-01

    Nobiletin and tangeretin are polymethoxy flavonoids (PMFs), found in rich quantities in the peel of citrus fruits. In the present study, we assessed the biological effect of the PMFs on liver damage using a mouse model of binge drinking. First, we extracted PMFs from the peels of Citrus aurantium to make Citrus aurantium extract (CAE). Male C57BL/6 mice were orally treated with silymarin and CAE (50, 100, and 200?mg/kg) for 3?days prior to ethanol (5?g/kg, total of 3 doses) oral gavage. Liver injury was observed in the ethanol alone group, as evidenced by increases in serum hepatic enzymes and histopathologic alteration, as well as by hepatic oxidative status disruption. CAE improved serum marker and hepatic structure and restored oxidative status by enhancing antioxidant enzyme levels and by reducing lipid peroxidation levels. In addition, CAE evidently suppressed inflammation and apoptosis in the livers of mice administered with ethanol, by 85% (tumor necrosis factor-?) and 44% compared to the control group, respectively. Furthermore, CAE activated lipid metabolism related signals and enhanced phosphorylation of AMP-activated protein kinase (AMPK) and nuclear factor E2-related factor 2 (Nrf2) with several cytoprotective proteins including heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and ?-glutamylcysteine synthetase. Taken together, the present study demonstrated that, CAE possesses antioxidant, anti-inflammatory, and antiapoptotic activity against ethanol-induced liver injury. PMID:26178909

  8. Ameliorating effects of preadolescent aniracetam treatment on prenatal ethanol-induced impairment in AMPA receptor activity.

    PubMed

    Wijayawardhane, Nayana; Shonesy, Brian C; Vaithianathan, Thirumalini; Pandiella, Noemi; Vaglenova, Julia; Breese, Charles R; Dityatev, Alexander; Suppiramaniam, Vishnu

    2008-01-01

    Ethanol-induced damage in the developing hippocampus may result in cognitive deficits such as those observed in fetal alcohol spectrum disorder (FASD). Cognitive deficits in FASD are partially mediated by alterations in glutamatergic synaptic transmission. Recently, we reported that synaptic transmission mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is impaired following fetal ethanol exposure. This finding led us to develop a rational approach for the treatment of alcohol-related cognitive deficits using aniracetam, an allosteric AMPAR modulator. In the present study, 28 to 34-day-old rats exposed to ethanol in utero were treated with aniracetam, and subsequently exhibited persistent improvement in mEPSC amplitude, frequency, and decay time. Furthermore, these animals expressed positive changes in synaptic single channel properties, suggesting that aniracetam ameliorates prenatal ethanol-induced deficits through modifications at the single channel level. Specifically, single channel open probability, conductance, mean open and closed times, and the number and burst duration were positively affected. Our findings emphasize the utility of compounds which slow the rate of deactivation and desensitization of AMPARs such as aniracetam. PMID:17916430

  9. On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response.

    PubMed

    Bonet-Ponce, Luis; Saez-Atienzar, Sara; da Casa, Carmen; Flores-Bellver, Miguel; Barcia, Jorge M; Sancho-Pelluz, Javier; Romero, Francisco J; Jordan, Joaqun; Galindo, Mara F

    2015-07-01

    We have explored the mechanisms underlying ethanol-induced mitochondrial dynamics disruption and mitophagy. Ethanol increases mitochondrial fission in a concentration-dependent manner through Drp1 mitochondrial translocation and OPA1 proteolytic cleavage. ARPE-19 (a human retinal pigment epithelial cell line) cells challenged with ethanol showed mitochondrial potential disruptions mediated by alterations in mitochondrial complex IV protein level and increases in mitochondrial reactive oxygen species production. In addition, ethanol activated the canonical autophagic pathway, as denoted by autophagosome formation and autophagy regulator elements including Beclin1, ATG5-ATG12 and P-S6 kinase. Likewise, autophagy inhibition dramatically increased mitochondrial fission and cell death, whereas autophagy stimulation rendered the opposite results, placing autophagy as a cytoprotective response aimed to remove damaged mitochondria. Interestingly, although ethanol induced mitochondrial Bax translocation, this episode was associated to cell death rather than mitochondrial fission or autophagy responses. Thus, Bax required 600 mM ethanol to migrate to mitochondria, a concentration that resulted in cell death. Furthermore, mouse embryonic fibroblasts lacking this protein respond to ethanol by undergoing mitochondrial fission and autophagy but not cytotoxicity. Finally, by using the specific mitochondrial-targeted scavenger MitoQ, we revealed mitochondria as the main source of reactive oxygen species that trigger autophagy activation. These findings suggest that cells respond to ethanol activating mitochondrial fission machinery by Drp1 and OPA1 rather than bax, in a manner that stimulates cytoprotective autophagy through mitochondrial ROS. PMID:25779081

  10. Polymer fraction of Aloe vera exhibits a protective activity on ethanol-induced gastric lesions.

    PubMed

    Park, Chul-Hong; Nam, Dong-Yoon; Son, Hyeong-U; Lee, Si-Rim; Lee, Hyun-Jin; Heo, Jin-Chul; Cha, Tae-Yang; Baek, Jin-Hong; Lee, Sang-Han

    2011-04-01

    For centuries, Aloe has been used as a herbal plant remedy against skin disorders, diabetes, and for its cardiac stimulatory activity. Here, we examined the gastroprotective effects of an Aloe vera polymer fraction (Avpf; molecular weight cut-off ?50 kDa; 150 mg/kg body weight, p.o.) on an ethanol-induced gastric lesion mouse model. Mice pre-treated with Avpf had significantly fewer gastric lesions than their respective controls. To further examine the potential mechanism underlying this effect, we used reverse transcription-polymerase chain reaction to examine nitric oxide synthase and matrix metalloproteinase (MMP)mRNA expression on tissues from gastric lesions. Our results revealed that the mRNA expressions of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) were each reduced by ~50% in Avpf-treated mice vs. the controls, whereas, the mRNA expression levels of endothelial nitric oxide synthase remained unchanged. MMP-9, an index for gastric lesions, also alleviated the ethanol-treated gastric ulceration during Avpf treatment. These findings collectively suggest that Avpf significantly protects the gastric mucosa against ethanol-induced gastric damage, at least in part, by decreasing mRNA expression levels of not only iNOS and nNOS, but also MMP-9. PMID:21286662

  11. AMPA receptor potentiation can prevent ethanol-induced intoxication.

    PubMed

    Jones, Nicholas; Messenger, Marcus J; O'Neill, Michael J; Oldershaw, Anna; Gilmour, Gary; Simmons, Rosa M A; Iyengar, Smriti; Libri, Vincenzo; Tricklebank, Mark; Williams, Steve C R

    2008-06-01

    We present a substantial series of behavioral and imaging experiments, which demonstrate, for the first time, that increasing AMPA receptor-mediated neurotransmission via administration of potent and selective biarylsulfonamide AMPA potentiators LY404187 and LY451395 reverses the central effects of an acutely intoxicating dose of ethanol in the rat. Using pharmacological magnetic resonance imaging (phMRI), we observed that LY404187 attenuated ethanol-induced reductions in blood oxygenation level dependent (BOLD) in the anesthetized rat brain. A similar attenuation was apparent when measuring local cerebral glucose utilization (LCGU) via C14-2-deoxyglucose autoradiography in freely moving conscious rats. Both LY404187 and LY451395 significantly and dose-dependently reversed ethanol-induced deficits in both motor coordination and disruptions in an operant task where animals were trained to press a lever for food reward. Both prophylactic and acute intervention treatment with LY404187 reversed ethanol-induced deficits in motor coordination. Given that LY451395 and related AMPA receptor potentiators/ampakines are tolerated in both healthy volunteers and elderly patients, these data suggest that such compounds may form a potential management strategy for acute alcohol intoxication. PMID:17851540

  12. Hepatitis

    MedlinePLUS

    ... Issues Listen Espaol Text Size Email Print Share Hepatitis Page Content Article Body Hepatitis means inflammation of ... it has been associated with drinking contaminated water. Hepatitis Viruses Type Transmission Prognosis A Fecal-oral (stool ...

  13. Ulcerative colitis-induced hepatic damage in mice: studies on inflammation, fibrosis, oxidative DNA damage and GST-P expression.

    PubMed

    Trivedi, P P; Jena, G B

    2013-01-25

    There exists a close relationship between ulcerative colitis and various hepatic disorders. The present study was aimed to evaluate the hepatocellular damage in experimental colitis model. Ulcerative colitis was induced in Swiss mice by cyclic treatment with 3% w/v dextran sulfate sodium in drinking water. The severity of colitis was assessed on the basis of disease activity index and colon histology. The effect of ulcerative colitis on the liver was assessed using various biochemical parameters, histological evaluation, sirius red staining, immunohistochemical staining with peroxisome proliferator-activated receptor ?, 8-oxo-7,8-dihydro-2'-deoxyguanosine and placental glutathione S-transferase, comet assay (alkaline and modified), Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assay and western blot analysis to detect the protein expression of nuclear factor kappa B, cyclooxygenase-2, nuclear erythroid 2-related factor 2 and NADPH: quinone oxidoreductase-1. Dextran sulfate sodium induced severe colitis in mice as evident from an elevated disease activity index and histological abnormalities. Ulcerative colitis increased the permeability of colon as apparent from a significant reduction in the expression of tight junction protein, occludin. Further, the bacterial translocation assay as well as the analysis of lipopolysaccharide level revealed the existence of various bacterial species in the liver of ulcerative colitis-induced mice. There was a significant increase in the plasma alanine and aspartate transaminases and liver triglyceride levels, expression of peroxisome proliferator-activated receptor ?, inflammatory markers, oxidative stress, fibrosis, oxidative DNA damage and apoptosis in the liver of mice. Moreover, there was an increase in the expression of nuclear factor kappa B and cyclooxygenase-2 and a reduction in the expression of nuclear erythroid 2-related factor 2 and NADPH: quinone oxidoreductase-1 in the liver of severe ulcerative colitis-induced mice. The results of the present study provide evidence that ulcerative colitis is accompanied with hepatic damage in mice. PMID:23261717

  14. Hepatoprotective effect of Caesalpinia gilliesii and Cajanus cajan proteins against acetoaminophen overdose-induced hepatic damage.

    PubMed

    Rizk, Maha Z; Aly, Hanan F; Abo-Elmatty, Dina M; Desoky, M M; Ibrahim, N; Younis, Eman A

    2014-01-10

    This study aims to evaluate two proteins derived from the seeds of the plants Cajanus cajan (Leguminosae) and Caesalpinia gilliesii (Leguminosae) for their abilities to ameliorate the toxic effects of chronic doses of acetoaminphen (APAP) through the determination of certain biochemical parameters including liver marker enzymes: alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bilirubin. Also, total protein content and hepatic marker enzyme, lactate dehydrogenase were studied. Moreover, liver antioxidants, glutathione (GSH), nitric oxide, and lipid peroxides were determined in this study. Hepatic adenosine triphosphatase (ATPase), adenylate energy charge (ATP, adenosine diphosphate, adenosine monophosphate, and inorganic phosphate), and phosphate potential, serum interleukin-6, tumor necrosis factor-α, and myeloperoxidase were also examined in the present study. On the other hand, histopathological examination of intoxicated and liver treated with both proteins was taken into consideration. The present results show disturbances in all biochemical parameters and hepatic toxicity signs including mild vascular congestion, moderate inflammatory changes with moderate congested sinusoids, moderate nuclear changes (pyknosis), moderate centrilobular necrosis, fatty changes, nuclear pyknosis vascular congestion, and change in fatty centrilobular necrosis liver. Improvement in all biochemical parameters studied was noticed as a result of treatment intoxicated liver with C. gilliesii and C. cajan proteins either paracetamol with or post paracetamol treatment. These results were documented by the amelioration signs in rat's hepatic architecture. Thus, both plant protein extracts can upregulate and counteract the inflammatory process, minimize damage of the liver, delay disease progression, and reduce its complications. PMID:24414985

  15. Hepatic hyperplasia and damages induces by zearalenone Fusarium mycotoxins in BALB/c mice.

    TOXLINE Toxicology Bibliographic Information

    Chatopadhyay P; Pandey A; Chaurasia AK; Upadhyay A; Karmakar S; Singh L

    2012-01-01

    CONTEXT: Zearalenone is a mycoestrogen and considered a mycotoxin.OBJECTIVE: To establish whether zearalenone produced hepatotoxicity via oral administration.METHODS: Zearalenone was orally administered at a dose of 50 mg, 100 mg and 200 mg ZEN/body weight/daily, respectively, for 14 days to three groups of BALB/c mice. Diagnostic modalities used to evaluate hepatic damage and impaired hepatic function pre- and post zearalenone administration included hepatic marker enzyme activity, pentobarbital sleeping time, cytochrome P-(450) activities and histopathologic evaluation of liver.RESULTS: Significant histopathologic changes viz. sinusoidal congestion, cytoplasmic vacuolization, hepatocellular necrosis and neutrophil infiltration were observed after evaluating of liver section from each group after accumulated zearalenone exposure. Further, zearalenone exposure increased activities of alanine transaminase, aspartate transaminase and lipid peroxides whereas activities of tissue glutathione and cytochrome P(450) were decreased as compared to control mice. Zearalenone also increased the sleeping time and decreased sleeping latency after pentobarbital through intraperitoneal route as compared to control mice which indicates that the impairment of hepatic metabolizing enzymes by zearalenone.CONCLUSION: Zearalenone is a potential hepatotoxin by oral route.

  16. Characterization of hepatic DNA damage induced in rats by the pyrrolizidine alkaloid monocrotaline

    SciTech Connect

    Petry, T.W.; Bowden, G.T.; Huxtable, R.J.; Sipes, I.G.

    1984-04-01

    Hepatic DNA damage induced by the pyrrolizidine alkaloid monocrotaline was evaluated following i.p. administration to adult male Sprague-Dawley rats. Animals were treated with various doses ranging upward from 5 mg/kg, and hepatic nuclei were isolated 4 hr later. Hepatic nuclei were used as the DNA source in all experiments. DNA damage was characterized by the alkaline elution technique. A mixture of DNA-DNA interstrand cross-links and DNA-protein cross-links was induced. Following an injection of monocrotaline, 30 mg/kg i.p., DNA-DNA interstrand cross-linking reached a maximum within 12 hr or less and thereafter decreased over a protracted period of time. By 96 hr postadministration, the calculated cross-linking factor was no longer statistically different from zero. No evidence for the induction of DNA single-strand breaks was observed, although the presence of small numbers of DNA single-strand breaks could have been masked by the overwhelming predominance of DNA cross-links. These DNA cross-links may be related to the hepatocarcinogenic, hepatotoxic, and/or antimitotic effects of monocrotaline.

  17. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice.

    PubMed

    Chaudhry, Kamaljit K; Shukla, Pradeep K; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E; Rao, RadhaKrishna

    2016-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  18. Influence of aging on ethanol-induced oxidative stress in digestive tract of rats.

    PubMed

    Vucevi?, D; Mladenovi?, D; Ninkovi?, M; Stankovi?, Mn; Jorgacevi?, B; Stankovi?, Ms; de Luka, S; Radosavljevi?, T

    2013-07-01

    Aging and ethanol induce oxidative stress due to increased prooxidant production and decreased antioxidative capacity. The aim was to investigate the influence of aging on oxidative stress in liver, stomach and pancreas in acute ethanol intoxication. Adult (3 months) and old (18 months) male Wistar rats were divided into the following groups: control (control group rats aged 3 months (C3) and control group rats aged 18 months (C18)) and ethanol-treated groups (ethanol-treated 3-month-old rats (E3) and ethanol-treated 18-month-old rats (E18)). Ethanol was administered in five doses of 2 g/kg at 12-h intervals by orogastric tube. Tissue samples were collected for the determination of oxidative stress parameters. Malondialdehyde (MDA) concentration was increased in all the experimental groups and investigated organs versus C3 group (?p?Hepatic, gastric and pancreatic NO x level was significantly increased in E18 group when compared with E3 group (?p?ethanol-induced oxidative stress in liver, stomach and pancreas due to increased lipid peroxidation and nitrosative stress and decreased antioxidative tissue capacity. PMID:23821589

  19. Spontaneous rupture of a hepatic epithelioid angiomyolipoma: damage control surgery. A case report

    PubMed Central

    OCCHIONORELLI, S.; DELLACHIESA, L.; STANO, R.; CAPPELLARI, L.; TARTARINI, D.; SEVERI, S.; PALINI, G.M.; PANSINI, G.C.; VASQUEZ, G.

    2013-01-01

    SUMMARY Background Angiomyolipoma (AML) is a rare mesenchymal tumor composed by blood vessels, adipose tissue and smooth muscle cells in variable proportions. Although it is most often diagnosed in the kidney, this tumor may originate from any part of the liver. It is often misdiagnosed as hepatocellular carcinoma (HCC) or other benign liver tumor. We describe a case of spontaneous rupture of hepatic angiomyolipoma in a young woman, with evidence of internal hemorrhage and hemoperitoneum. Case report Liver tumor rupture is a rare but real surgical emergency. In our case it has been managed according to the trauma principles of the damage control surgery. At the time of the observation, the patient presented an instable condition, so the decision-making was oriented toward a less invasive first step of liver packing instead of a more aggressive intervention such as one shot hepatic resection. Conclusion Damage control surgery with deep parenchymal sutures of the liver and pro-coagulant tissue adhesives packing abbreviates surgical time before the development of critical and irreversible physiological endpoints and permits a more confident second time surgery. This surgical management concept helps to reduce the mortality rate and the incidence of complications not only in traumatic liver damages, it works very well in spontaneous liver ruptures as well. PMID:24342160

  20. Adenosine signaling contributes to ethanol-induced fatty liver in mice

    PubMed Central

    Peng, Zhongsheng; Borea, Pier Andrea; Wilder, Tuere; Yee, Herman; Chiriboga, Luis; Blackburn, Michael R.; Azzena, Gianfranco; Resta, Giuseppe; Cronstein, Bruce N.

    2009-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the biochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5?-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5?-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:19221436

  1. Impairment of autophagosome-lysosome fusion contributes to chronic ethanol-induced liver injury.

    PubMed

    Cho, Hong-Ik; Choi, Joo-Wan; Lee, Sun-Mee

    2014-11-01

    The pathogenic mechanism underlying alcoholic fatty liver (AFL) is not clear. Autophagy is a self-digestion process that is critical for the maintenance of cellular homeostasis and regulation of lipid metabolism. We investigated the role of autophagy and autophagic flux in hepatic injury induced by chronic ethanol feeding in mice. C57BL/6 mice were fed a Lieber-DeCarli ethanol diet (ED) to induce AFL or an isocaloric control diet for 6 weeks. Chloroquine (CQ, 10 mg/kg, intra-peritoneally [i.p.]) or rapamycin (Rapa, 5 mg/kg, i.p.) were administered during the last 2 weeks of the experimental period. Chronic ethanol feeding induced AFL with focal necrosis associated with increased levels of hepatic triglyceride. This phenomenon was aggravated by CQ, an inhibitor of autophagy, and attenuated by Rapa, an inducer of autophagy. Expression of microtubule-associated protein 1 light chain 3 (LC3)-II and sequestosome1/p62 significantly increased in the ED group. Moreover, accumulation of autophagosomes was observed by transmission electron microscopy in chronic ethanol-treated mice. Chronic ethanol consumption decreased protein expression of LC3 lipidation-related proteins Atg3 and Atg7, and the lysosomal proteins lysosome-associated membrane protein-2 and Rab7, and increased the protein expression of calpain 1 and phosphorylated mammalian target of rapamycin. Taken together, these findings suggest that chronic ethanol consumption leads to impairment of autophagic flux, which contributes to ethanol-induced liver injury. PMID:25224493

  2. Ethanol induces rotational behavior in 6-hydroxydopamine lesioned mice

    SciTech Connect

    Silverman, P.B.

    1987-03-09

    Mice with unilateal striatal lesions created by 6-hydroxydopamine (6HDA) injection were screened for rotational (circling) behavior in response to injection of amphetamine and apomorphine. Those that rotated ipsilaterally in response to amphetamine and contralaterally in response to apomorphine were subsequently challenged with 1 to 3 g/kg (i.p.) ethanol. Surprisingly, ethanol induced dose related contralateral (apomorphine-like) rotation which, despite gross intoxication, was quite marked in most animals. No significant correlation was found between the number of turns made following ethanol and made after apomorphine or amphetamine. 14 references, 2 figures, 1 table.

  3. Attrition of Hepatic Damage Inflicted by Angiotensin II with ?-Tocopherol and ?-Carotene in Experimental Apolipoprotein E Knock-out Mice.

    PubMed

    Gopal, Kaliappan; Gowtham, Munusamy; Sachin, Singh; Ravishankar Ram, Mani; Shankar, Esaki M; Kamarul, Tunku

    2015-01-01

    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of ?-tocopherol and ?-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if ?-tocopherol and ?-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe(-/-)mice by infusion of Angiotensin II followed by oral administration with ?-tocopherol and ?-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, ?-tocopherol and ?-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by ?-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that ?-tocopherol and ?-carotene treatment has salubrious role in repairing hepatic pathology. PMID:26670291

  4. Melatonin's role in preventing toxin-related and sepsis-mediated hepatic damage: A review.

    PubMed

    Esteban-Zubero, Eduardo; Alatorre-Jiménez, Moisés Alejandro; López-Pingarrón, Laura; Reyes-Gonzales, Marcos César; Almeida-Souza, Priscilla; Cantín-Golet, Amparo; Ruiz-Ruiz, Francisco José; Tan, Dun-Xian; García, José Joaquín; Reiter, Russel J

    2016-03-01

    The liver is a central organ in detoxifying molecules and would otherwise cause molecular damage throughout the organism. Numerous toxic agents including aflatoxin, heavy metals, nicotine, carbon tetrachloride, thioacetamide, and toxins derived during septic processes, generate reactive oxygen species followed by molecular damage to lipids, proteins and DNA, which culminates in hepatic cell death. As a result, the identification of protective agents capable of ameliorating the damage at the cellular level is an urgent need. Melatonin is a powerful endogenous antioxidant produced by the pineal gland and a variety of other organs and many studies confirm its benefits against oxidative stress including lipid peroxidation, protein mutilation and molecular degeneration in various organs, including the liver. Recent studies confirm the benefits of melatonin in reducing the cellular damage generated as a result of the metabolism of toxic agents. These protective effects are apparent when melatonin is given as a sole therapy or in conjunction with other potentially protective agents. This review summarizes the published reports that document melatonin's ability to protect hepatocytes from molecular damage due to a wide variety of substances (aflatoxin, heavy metals, nicotine, carbon tetrachloride, chemotherapeutics, and endotoxins involved in the septic process), and explains the potential mechanisms by which melatonin provides these benefits. Melatonin is an endogenously-produced molecule which has a very high safety profile that should find utility as a protective molecule against a host of agents that are known to cause molecular mutilation at the level of the liver. PMID:26808084

  5. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    PubMed

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of ?-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  6. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

    PubMed Central

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N.; Guo, Lei; Mei, Nan

    2015-01-01

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of ?-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition. PMID:26419945

  7. Adolescent rats are resistant to the development of ethanol-induced chronic tolerance and ethanol-induced conditioned aversion.

    PubMed

    Pautassi, Ricardo Marcos; Godoy, Juan Carlos; Molina, Juan Carlos

    2015-11-01

    The analysis of chronic tolerance to ethanol in adult and adolescent rats has yielded mixed results. Tolerance to some effects of ethanol has been reported in adolescents, yet other studies found adults to exhibit greater tolerance than adolescents or comparable expression of the phenomena at both ages. Another unanswered question is how chronic ethanol exposure affects subsequent ethanol-mediated motivational learning at these ages. The present study examined the development of chronic tolerance to ethanol's hypothermic and motor stimulating effects, and subsequent acquisition of ethanol-mediated odor conditioning, in adolescent and adult male Wistar rats given every-other-day intragastric administrations of ethanol. Adolescent and adult rats exhibited lack of tolerance to the hypothermic effects of ethanol during an induction phase; whereas adults, but not adolescents, exhibited a trend towards a reduction in hypothermia at a challenge phase (Experiment 1). Adolescents, unlike adults, exhibited ethanol-induced motor activation after the first ethanol administration. Adults, but not adolescents, exhibited conditioned odor aversion by ethanol. Subsequent experiments conducted only in adolescents (Experiment 2, Experiment 3 and Experiment 4) manipulated the context, length and predictability of ethanol administration. These manipulations did not promote the expression of ethanol-induced tolerance. This study indicated that, when moderate ethanol doses are given every-other day for a relatively short period, adolescents are less likely than adults to develop chronic tolerance to ethanol-induced hypothermia. This resistance to tolerance development could limit long-term maintenance of ethanol intake. Adolescents, however, exhibited greater sensitivity than adults to the acute motor stimulating effects of ethanol and a blunted response to the aversive effects of ethanol. This pattern of response may put adolescents at risk for early initiation of ethanol intake. PMID:26388098

  8. Herbal SGR Formula Prevents Acute Ethanol-Induced Liver Steatosis via Inhibition of Lipogenesis and Enhancement Fatty Acid Oxidation in Mice

    PubMed Central

    Qiu, Ping; Li, Xiang; Kong, De-song; Li, Huan-zhou; Niu, Cong-cong; Pan, Su-hua

    2015-01-01

    Our previous study indicated that herbal SGR formula partially attenuates ethanol-induced fatty liver, but the underlying mechanisms remain unclear. In the present study, mice were pretreated with SGR (100 and 200?mg/kg/d?bw) for 30?d before being exposed to ethanol (4.8?g/kg?bw). The biochemical indices and histopathological changes were examined to evaluate the protective effects and to explore potential mechanisms by investigating the adiponectin, tumor necrosis factor-? (TNF-?), peroxisome proliferators-activated receptor-? (PPAR-?), sterol regulatory element binding protein-1c (SREBP-1c), adenosine monophosphate-activated protein kinase (AMPK), and so forth. Results showed that SGR pretreatment markedly inhibited acute ethanol-induced liver steatosis, significantly reduced serum and hepatic triglyceride (TG) level, and improved classic histopathological changes. SGR suppressed the protein expression of hepatic SREBP-1c and TNF-? and increased adiponectin, PPAR-?, and AMPK phosphorylation in the liver. Meanwhile, acute toxicity tests showed that no death or toxic side effects within 14 days were observed upon oral administration of the extracts at a dose of 16?g/kg body wt. These results demonstrate that SGR could protect against acute alcohol-induced liver steatosis without any toxic side effects. Therefore, our studies provide novel molecular insights into the hepatoprotective effect of SGR formula, which may be exploited as a therapeutic agent for ethanol-induced hepatosteatosis. PMID:26101535

  9. Honey prevents hepatic damage induced by obstruction of the common bile duct

    PubMed Central

    Erguder, B Imge; Kilicoglu, Sibel S; Namuslu, Mehmet; Kilicoglu, Bulent; Devrim, Erdinc; Kismet, Kemal; Durak, Ilker

    2008-01-01

    AIM: To examine the possible effects of honey supplementation on hepatic damage due to obstruction of the common bile duct in an experimental rat model. METHODS: The study was performed with 30 male rats divided into three groups: a sham group, an obstructive jaundice group, and an obstructive jaundice plus honey group. At the end of the study period, the animals were sacrificed, and levels of nitric oxide (NO), and NO synthase (NOS) activities were measured in liver tissues, and levels of adenosine deaminase (ADA) and alanine transaminase (ALT) activities were measured in serum. RESULTS: Blood ALT and ADA activities were significantly elevated in the jaundice group as compared to those of the sham group. In the obstructive jaundice plus honey group, blood ALT and ADA activities were significantly decreased as compared to those of the jaundice group. In erythrocytes and liver tissues, NO levels were found to be significantly higher in the obstructive jaundice plus honey group compared to those of the sham group. Additionally, NO levels were found to be significantly higher in liver tissues from the animals in the obstructive jaundice plus honey group than those of the jaundice group. CONCLUSION: Honey was found to be beneficial in the prevention of hepatic damage due to obstruction of the common bile duct. PMID:18595140

  10. Differential timing of oxidative DNA damage and telomere shortening in hepatitis C and B virus-related liver carcinogenesis.

    PubMed

    Piciocchi, Marika; Cardin, Romilda; Cillo, Umberto; Vitale, Alessandro; Cappon, Andrea; Mescoli, Claudia; Guido, Maria; Rugge, Massimo; Burra, Patrizia; Floreani, Annarosa; Farinati, Fabio

    2016-02-01

    In viral hepatitis, inflammation is correlated with chronic oxidative stress, one of the biological events leading to DNA damage and hepatocellular carcinoma (HCC) development. Aim of this study was to investigate the complex molecular network linking oxidative damage to telomere length and telomerase activity and regulation in hepatitis C and B virus-related liver carcinogenesis. We investigated 142 patients: 21 with HCC (in both tumor and peritumor tissues) and 121 with chronic viral hepatitis in different stages. We evaluated 8-hydroxydeoxyguanosine (8-OHdG), marker of oxidative DNA damage, OGG1 gene polymorphism, telomere length, telomerase activity, TERT promoter methylation, and mitochondrial TERT localization. In hepatitis C-related damage, 8-OHdG levels increased since the early disease stages, whereas hepatitis B-related liver disease was characterized by a later and sharper 8-OHdG accumulation (P=0.005). In C virus-infected patients, telomeres were shorter (P=0.03), whereas telomerase activity was higher in tumors than that in the less advanced stages of disease in both groups (P=0.0001, P=0.05), with an earlier increase in hepatitis C. Similarly, TERT promoter methylation was higher in tumor and peritumor tissues in both groups (P=0.02, P=0.0001). Finally, TERT was localized in mitochondria in tumor and peritumor samples, with 8-OHdG levels significantly lower in mitochondrial than those in genomic DNA (P=0.0003). These data describe a pathway in which oxidative DNA damage accumulates in correspondence with telomere shortening, telomerase activation, and TERT promoter methylation with a different time course in hepatitis B and C virus-related liver carcinogenesis. Finally, TERT localizes in mitochondria in HCC, where it lacks a canonical function. PMID:26408804

  11. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation

    SciTech Connect

    Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-08-01

    Oxidative stress and lipid accumulation play important roles in alcohol-induced liver injury. Previous reports showed that, in livers of nuclear factor erythroid 2-related factor 2 (Nrf2)-activated mice, genes involved in antioxidant defense are induced, whereas genes involved in lipid biosynthesis are suppressed. To investigate the role of Nrf2 in ethanol-induced hepatic alterations, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation, were treated with ethanol (5 g/kg, po). Blood and liver samples were collected 6 h thereafter. Ethanol increased alanine aminotransferase and lactate dehydrogenase activities as well as thiobarbituric acid reactive substances in serum of Nrf2-null and wild-type mice, but not in Nrf2-enhanced mice. After ethanol administration, mitochondrial glutathione concentrations decreased markedly in Nrf2-null mice but not in Nrf2-enhanced mice. H{sub 2}DCFDA staining of primary hepatocytes isolated from the four genotypes of mice indicates that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. Ethanol increased serum triglycerides and hepatic free fatty acids in Nrf2-null mice, and these increases were blunted in Nrf2-enhanced mice. In addition, the basal mRNA and nuclear protein levels of sterol regulatory element-binding protein 1(Srebp-1) were decreased with graded Nrf2 activation. Ethanol further induced Srebp-1 mRNA in Nrf2-null mice but not in Nrf2-enhanced mice. In conclusion, Nrf2 activation prevented alcohol-induced oxidative stress and accumulation of free fatty acids in liver by increasing genes involved in antioxidant defense and decreasing genes involved in lipogenesis. -- Highlights: ► Ethanol depleted mitochondrial GSH in Nrf2-null mice but not in Keap1-KD mice. ► Ethanol increased ROS in hepatocytes isolated from Nrf2-null and wild-type mice. ► Nrf2 blunted ethanol-induced increase of triglycerides and free fatty acids. ► The mRNA and nuclear protein of Srebp-1 were decreased with Nrf2 activation. ► The mRNA of Scd1 was increased in Nrf2-null mice after ethanol exposure.

  12. Hepatitis

    MedlinePLUS

    ... from a hepatitis A infection, that person has immunity to the virus, meaning he or she will ... from the disease and may develop a natural immunity to future hepatitis B infections. But some people ...

  13. Diet and risk of ethanol-induced hepatotoxicity: carbohydrate-fat relationships in rats.

    PubMed

    Korourian, S; Hakkak, R; Ronis, M J; Shelnutt, S R; Waldron, J; Ingelman-Sundberg, M; Badger, T M

    1999-01-01

    Nutritional status is a primary factor in the effects of xenobiotics and may be an important consideration in development of safety standards and assessment of risk. One important xenobiotic consumed daily by millions of people worldwide is alcohol. Some adverse effects of ethanol, such as alcohol liver disease, have been linked to diet. For example, ethanol-induced hepatotoxicity in animal models requires diets that have a high percentage of the total calories as unsaturated fat. However, little attention has been given to the role of carbohydrates (or carbohydrate to fat ratio) in the effects of this important xenobiotic on liver injury. In the present study, adult male Sprague-Dawley rats (8-10/group) were infused (intragastrically) diets high in unsaturated fat (25 or 45% total calories), sufficient protein (16%) and ethanol (38%) in the presence or absence of adequate carbohydrate (21 or 2.5%) for 42-55 days (d). Animals infused ethanol-containing diets adequate in carbohydrate developed steatosis, but had no other signs of hepatic pathology. However, rats infused with the carbohydrate-deficient diet had a 4-fold increase in serum ALT levels (p < 0.05), an unexpectedly high (34-fold) induction of hepatic microsomal CYP2E1 apoprotein (p < 0.001), and focal necrosis. The strong positive association between low dietary carbohydrate, enhanced CYP2E1 induction and hepatic necrosis suggests that in the presence of low carbohydrate intake, ethanol induction of CYP2E1 is enhanced to levels sufficient to cause necrosis, possibly through reactive oxygen species and other free radicals generated by CYP2E1 metabolism of ethanol and unsaturated fatty acids. PMID:10048159

  14. Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons

    PubMed Central

    2012-01-01

    Background Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met) and thymoquinone (TQ) during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD) 17.5. Results We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM) exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (??M), which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2), increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death. Conclusion These findings suggested that Met and TQ are strong protective agents against ethanol-induced neuronal apoptosis in primary rat cortical neurons. The collective data demonstrated that Met and TQ have the potential to ameliorate ethanol neurotoxicity and revealed a possible protective target mechanism for the damaging effects of ethanol during early brain development. PMID:22260211

  15. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ?1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  16. Ameliorative effect of Opuntia ficus indica juice on ethanol-induced oxidative stress in rat erythrocytes.

    PubMed

    Alimi, Hichem; Hfaeidh, Najla; Bouoni, Zouhour; Sakly, Mohsen; Rhouma, Khmais Ben

    2013-05-01

    The aim of the present study was to investigate the efficacy of Opuntia ficus indica f. inermis fruit juice (OFIj) on reversing oxidative damages induced by chronic ethanol intake in rat erythrocytes. OFIj was firstly analyzed with HPLC for phenolic and flavonoids content. Secondly, 40 adult male Wistar rats were equally divided into five groups and treated for 90 days as follows: control (C), ethanol-only 3 g/kg body weight (b.w) (E), low dose of OFIj 2 ml/100 g b.w+ethanol (Ldj+E), high dose of OFIj 4 ml/100 g b.w+ethanol (Hdj+E), and only a high dose of OFIj 4 ml/100g b.w (Hdj). HPLC analysis indicated high concentrations of phenolic acids and flavonoids in OFIj. Ethanol treatment markedly decreased the activities of erythrocyte superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and the level of reduced glutathione (GSH). Changes in the erythrocyte's antioxidant ability were accompanied by enhanced oxidative modification of lipids (increase of malondialdeyde level) and proteins (increase in carbonyl groups). Interestingly, pre-administration of either 2 ml/100 g b.w or 4 ml/100 g b.w of OFIj to ethanol-intoxicated rats significantly reversed decreases in enzymatic as well as non enzymatic antioxidants parameters in erythrocytes. Also, the administration of OFIj significantly protected lipids and proteins against ethanol-induced oxidative modifications in rat erythrocytes. The beneficial effect of OFIj can result from the inhibition of ethanol-induced free radicals chain reactions in rat erythrocytes or from the enhancement of the endogenous antioxidants activities. PMID:22285760

  17. Ethanol induced NF-{kappa}B activation protects against cell injury in cultured rat gastric mucosal epithelium.

    PubMed

    Mustonen, Harri; Hietaranta, Antti; Puolakkainen, Pauli; Kemppainen, Esko; Paimela, Hannu; Kiviluoto, Tuula; Kivilaakso, Eero

    2007-06-01

    Ethanol is a well-established irritant inducing inflammation in gastric mucosa, but the effects at the cellular level remain unclear. This study investigates NF-kappaB activation in gastric mucosal cells by ethanol and assesses the effects of heat shock pretreatment in this ulcerogenic situation. Rat gastric mucosal epithelia were exposed to ethanol for different time periods. Heat shock was induced by incubating the cells at 42 degrees C for 1 h prior to the experiments. For evaluation of NF-kappaB activation, the nuclear fraction of the cell lysates was analyzed with an EMSA or an ELISA-based assay. Caspase-3 (a promoter of apoptosis) activity was measured with a time-resolved fluorescence based assay, cell viability with a tetrazolium assay, and cell membrane integrity with a LDH assay. Ethanol (1-5%) induced NF-kappaB activation, reaching a maximum after 3 h, and also led to moderately increased COX-2 expression. Heat shock pretreatment and the intracellular calcium chelator BAPTA were able to inhibit ethanol-induced NF-kappaB activation. Heat shock pretreatment decreased ethanol-induced caspase-3 activation, decreased cell membrane damage, and retained cellular viability. Inhibition of NF-kappaB activation by NEMO-binding peptide, by decreasing RelA expression, or by inhibiting COX-2 activity by CAY-14040 promoted the effects of ethanol, such as increased caspase-3 activity and decreased cell viability. In conclusion, ethanol induces NF-kappaB activation via a calcium-dependent pathway and induces COX-2 expression. Inhibition of the NF-kappaB activation or COX-2 activity potentiates apoptosis and cell damage induced by ethanol, suggesting a protective role for NF-kappaB activation and COX-2 expression. PMID:17347452

  18. Muscular damage during telbivudine treatment in a chronic hepatitis B patient.

    PubMed

    Caroleo, Benedetto; Galasso, Olimpio; Staltari, Orietta; Giofrè, Chiara; De Sarro, Giovambattista; Guadagnino, Vincenzo; Gallelli, Luca

    2011-04-01

    Muscle tissue damage might be related to metabolic and mechanical factors. Certain drugs have been associated with increased blood levels of creatin phospho kinase (CPK) and myoglobin that are biochemical markers of musculoskeletal damage. An increase of CPK plasma levels might suggest severe rhabdomyolysis with possible resulting renal failure. Telbivudine is an antiviral drug indicated for the treatment of chronic hepatitis B (CHB) in adult patients. An increase in CPK plasma levels has been recently described in some telbivudine-treated CHB patients without muscle-skeletal symptoms. In this paper we report a CHB patient that developed a severe increase of CPK plasma levels during telbivudine-treatment. Pharmacological evaluation, using the Naranjo probability scale, indicated a probable relationship between telbivudine and CPK increase, so telbivudine was discontinued and replaced with entecavir with a complete resolution of laboratory findings. In conclusion, telbivudine treatment can induce muscular damage in the absence of skeletal injury, therefore we suggest to closely monitor the muscular function of the patients treated with this drug in order to prevent possible major complications. PMID:23738248

  19. Hepatic stellate cell-expressed endosialin balances fibrogenesis and hepatocyte proliferation during liver damage

    PubMed Central

    Mogler, Carolin; Wieland, Matthias; König, Courtney; Hu, Junhao; Runge, Anja; Korn, Claudia; Besemfelder, Eva; Breitkopf-Heinlein, Katja; Komljenovic, Dorde; Dooley, Steven; Schirmacher, Peter; Longerich, Thomas; Augustin, Hellmut G

    2015-01-01

    Liver fibrosis is a reversible wound-healing response to injury reflecting the critical balance between liver repair and scar formation. Chronic damage leads to progressive substitution of liver parenchyma by scar tissue and ultimately results in liver cirrhosis. Stromal cells (hepatic stellate cells [HSC] and endothelial cells) have been proposed to control the balance between liver fibrosis and regeneration. Here, we show that endosialin, a C-type lectin, expressed in the liver exclusively by HSC and portal fibroblasts, is upregulated in liver fibrosis in mouse and man. Chronic chemically induced liver damage resulted in reduced fibrosis and enhanced hepatocyte proliferation in endosialin-deficient (ENKO) mice. Correspondingly, acute-liver-damage-induced hepatocyte proliferation (partial hepatectomy) was increased in ENKO mice. A candidate-based screen of known regulators of hepatocyte proliferation identified insulin-like growth factor 2 (IGF2) as selectively endosialin-dependent hepatocyte mitogen. Collectively, the study establishes a critical role of HSC in the reciprocal regulation of fibrogenesis vs. hepatocyte proliferation and identifies endosialin as a therapeutic target in non-neoplastic settings. PMID:25680861

  20. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice.

    PubMed

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-03-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-? and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-?, IL-1?, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage. PMID:25866750

  1. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice

    PubMed Central

    Yi, Ruo-Kun; Song, Jia-Le; Lim, Yaung-Iee; Kim, Yong-Kyu; Park, Kun-Young

    2015-01-01

    This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-? and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-?, IL-1?, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage. PMID:25866750

  2. Angiotensin Receptor Blockade Recovers Hepatic UCP2 Expression and Aconitase and SDH Activities and Ameliorates Hepatic Oxidative Damage in Insulin Resistant Rats

    PubMed Central

    Montez, Priscilla; Vzquez-Medina, Jos Pablo; Rodrguez, Rubn; Thorwald, Max A.; Viscarra, Jos A.; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira

    2012-01-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kgd 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water 6 wk), and 5) OLETF + ARB + HG (ARB/HG 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity. PMID:23087176

  3. Red Mold Rice against Hepatic Inflammatory Damage in Zn-deficient Rats

    PubMed Central

    Lee, Bao-Hong; Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2012-01-01

    The protective effect of red mold rice (RMR) against liver injury in rats fed with a Zn-deficient diet for 12 weeks was investigated in this study. Rats were orally administered RMR (151 mg/kg body weight or 755 mg/kg body weight; 1 × dose or 5 × dose, respectively) with or without Zn once a day for 4 consecutive weeks. The severity of liver damage was evaluated by measuring the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in Zn-deficient rats. RMR significantly inhibited the elevation of serum ALT levels by Zn-deficient induction. Hepatic antioxidase activity was also significantly increased in the RMR + Zn group (RZ), thereby suppressing the productions of reactive oxygen species (ROS) and proinflammatory cytokines in the liver of Zn-deficient rats. These findings suggested that RMR exerted hepatoprotective effects against Zn deficiency-induced liver inflammation. PMID:24716115

  4. Potassium permanganate toxicity: A rare case with difficult airway management and hepatic damage

    PubMed Central

    Agrawal, Vijay Kumar; Bansal, Abhishek; Kumar, Ranjeet; Kumawat, Bhanwar Lal; Mahajan, Parul

    2014-01-01

    Potassium permanganate (KMnO4) is rarely used for suicidal attempt. Its ingestion can lead to local as well as systemic toxicities due to coagulation necrosis and damage, caused by free radicals of permanganate. We recently managed a case of suicidal ingestion of KMnO4 in a lethal dose. She had significant narrowing of upper airway leading to difficult intubation as well as hepatic dysfunction and coagulopathy as systemic manifestation. We suggest to keep ourselves ready to handle difficult airway with the aid of fiber optic bronchoscope or surgical airway management in such patients. Upper gastrointestinal (GI) endoscopy should be done at the earliest to determine the extent of upper GI injury and further nutrition planning. PMID:25538417

  5. [Anesthesia for a patient with a giant hepatoma associated with severe acute hepatic damage].

    PubMed

    Tanaka, M; Tanaka, Y

    1991-07-01

    We gave anesthesia to a patient for extensive right lobe hepatectomy. Although the liver function test revealed acute exacerbation just before the operation, we carried out anesthesia, diagnosing it to be due to giant liver tumor. The anesthesia was maintained with nitrous oxide, oxygen and epidural anesthesia with 1.5% lidocaine or 0.25% bupivacaine. A biopump inserted between the inferior vena cava and the left basilic vein was used during the right lobe resection to maintain sufficient venous return to the right atrium during the right lobe resection. Ketone body ratio was checked frequently in order to know the remnant liver energy charge and glucose was loaded properly. The surgery and anesthesia were uneventful. The resected right lobe weighed 2380 g, with necrosis of moderate size at the posterior-inferior segment. The serum transaminase decreased markedly after operation. It is important to have accurate diagnosis before we anesthetize patients with acute hepatic damage. PMID:1656114

  6. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage

    PubMed Central

    Valva, Pamela; Ríos, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-01

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class I serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  7. Chronic hepatitis C virus infection: Serum biomarkers in predicting liver damage.

    PubMed

    Valva, Pamela; Ros, Daniela A; De Matteo, Elena; Preciado, Maria V

    2016-01-28

    Currently, a major clinical challenge in the management of the increasing number of hepatitis C virus (HCV) infected patients is determining the best means for evaluating liver impairment. Prognosis and treatment of chronic hepatitis C (CHC) are partly dependent on the assessment of histological activity, namely cell necrosis and inflammation, and the degree of liver fibrosis. These parameters can be provided by liver biopsy; however, in addition to the risks related to an invasive procedure, liver biopsy has been associated with sampling error mostly due to suboptimal biopsy size. To avoid these pitfalls, several markers have been proposed as non-invasive alternatives for the diagnosis of liver damage. Distinct approaches among the currently available non-invasive methods are (1) the physical ones based on imaging techniques; and (2) the biological ones based on serum biomarkers. In this review, we discuss these approaches with special focus on currently available non-invasive serum markers. We will discuss: (1) class?I?serum biomarkers individually and as combined panels, particularly those that mirror the metabolism of liver extracellular matrix turnover and/or fibrogenic cell changes; (2) class II biomarkers that are indirect serum markers and are based on the evaluation of common functional alterations in the liver; and (3) biomarkers of liver cell death, since hepatocyte apoptosis plays a significant role in the pathogenesis of HCV infection. We highlight in this review the evidence behind the use of these markers and assess the diagnostic accuracy as well as advantages, limitations, and application in clinical practice of each test for predicting liver damage in CHC. PMID:26819506

  8. Sodium selenite/selenium nanoparticles (SeNPs) protect cardiomyoblasts and zebrafish embryos against ethanol induced oxidative stress.

    PubMed

    Kalishwaralal, Kalimuthu; Jeyabharathi, Subhaschandrabose; Sundar, Krishnan; Muthukumaran, Azhaguchamy

    2015-10-01

    Alcoholic cardiomyopathy is the damage caused to the heart muscles due to high level of alcohol consumption resulting in enlargement and inflammation of the heart. Selenium is an important trace element that is beneficial to human health. Selenium protects the cells by preventing the formation of free radicals in the body. In the present study, protein mediated synthesis of SeNPs was investigated. Two different sizes of SeNPs were synthesized using BSA and keratin. The synthesized SeNPs were characterized by scanning electron microscopy (SEM) with elemental composition analysis Energy Dispersive X-ray spectroscopy(EDX) and X-ray diffraction (XRD). This study demonstrates the in vitro and in vivo antioxidative effects of sodium selenite and SeNPs. Further selenium and SeNPs were evaluated for their ability to protect against 1% ethanol induced oxidative stress in H9C2 cell line. The selenium and SeNPs were found to reduce the 1% ethanol-induced oxidative damage through scavenging intracellular reactive oxygen species. The selenium and SeNPs could also prevent pericardial edema induced ethanol treatment and reduced apoptosis and cell death in zebrafish embryos. The results indicate that selenium and SeNPs could potentially be used as an additive in alcoholic beverage industry to control the cardiomyopathy. PMID:26302921

  9. The protective effects of Masson pine pollen aqueous extract on CCl4-induced oxidative damage of human hepatic cells

    PubMed Central

    Jin, Xueyuan; Cong, Tao; Zhao, Lin; Ma, Long; Li, Reisheng; Zhao, Ping; Guo, Changjiang

    2015-01-01

    Objective: We observed the effects of Masson pine pollen aqueous extracts (MPPAE) on CCl4-induced oxidative damage of the human hepatic cell line L-02. Methods: We created an in vitro model of oxidative liver damage by treating L-02 human hepatic cells with 40 mmol/L CCl4. Effects of different concentrations of MPPAE on cell proliferation, morphology, and change of functional indexes were observed after addition of CCl4. Results: CCl4 was toxic to proliferation, cell morphology, and functionality of hepatic cells. It decreased proliferation by 29.3-38.4% and increased AST and ALT activities by 22.3% and 99.2%, respectively. The oxidative stress also disrupted hepatic cell growth and induced pyknosis. Although MPPAE did not prevent decreased proliferation of L-02 cells, the treatment alleviated some CCl4-induced cell morphology changes and inhibited the abnormal rise of ALT (39.8%-70.1%) and AST (14.75-27.25%) activities in a dose dependent manner. A high dose of MPPAE (400 mg/L) ameliorated nucleus deformation to an almost normal appearance. Conclusions: According to our in vitro model, MPPAE specifically prevented the changes in cell morphology and functional injury caused by CCL4 treatment; however, it offered limited protection against damage-induced reduction of proliferation. PMID:26770368

  10. Further studies on the hepatoprotective effect of Antrodia camphorata in submerged culture on ethanol-induced acute liver injury in rats.

    PubMed

    Lu, Zhen-Ming; Tao, Wen-Yi; Xu, Hong-Yu; Ao, Zong-Hua; Zhang, Xiao-Mei; Xu, Zheng-Hong

    2011-04-01

    To further understand the hepatoprotective activity of Antrodia camphorata in living systems and the possible mechanisms of this protection, the effects of fractions from A. camphorata in submerged culture on the liver and its antioxidative system in acute ethanol intoxicated rats were investigated. The results showed that the ethanolic extract (Fr-I) of A. camphorata was the most effective in the prevention of ethanol-induced acute liver injury and free radical generation in rats. The ethanolic extract administrated prior to ethanol significantly prevented the increase in serum levels of hepatic enzyme markers such as aspartate aminotransferase and alanine aminotransferase. It also normalised the increase of hepatic malondialdehyde concentration and the decrease of glutathione levels in the liver. Moreover, Fr-I improved the ethanol-induced decrease of hepatic glutathione peroxidase and reductase activities. On the basis of these results, the ethanolic extract of A. camphorata may exert its hepatoprotective activity by up-regulating GSH-dependent enzymes and inhibiting free radical formation in the liver. PMID:20623423

  11. Heme oxygenase protects hippocampal neurons from ethanol-induced neurotoxicity.

    PubMed

    Ku, Bo Mi; Joo, Yeon; Mun, Jihye; Roh, Gu Seub; Kang, Sang Soo; Cho, Gyeong Jae; Choi, Wan Sung; Kim, Hyun Joon

    2006-09-25

    Ethanol has deleterious effects on neuronal cells both in vivo and in vitro, but the mechanisms are unknown. Here, treatment with increasing doses of ethanol (from 20 up to 600mM) decreased the viability of a mouse hippocampal neuroblastoma cell line, HT22. The glutathione concentration decreased and intracellular reactive oxygen species (ROS) increased in a dose-and time-dependent manner, suggesting that the neurotoxicity was due to oxidative stress. Expression of heme oxygenase (HO)-1, a redox regulator and heat shock protein, increased with time after ethanol treatment, but HO-2 was expressed constitutively. The addition of 5microM zinc protoporphyrin IX (ZnPP IX), a competitive HO inhibitor, with the ethanol further reduced cell viability and increased intracellular ROS, but these effects were reversed by co-treatment with 50nM bilirubin, a well-known antioxidant and a product of HO catalysis. These results suggest that HO has a protective role in hippocampal neurons as an intrinsic factor against ethanol-induced oxidative stress and the protection depends on the degree of oxidative stress. PMID:16857315

  12. Hepatitis

    MedlinePLUS

    ... hepatitis A, B, or C. You cannot keep food down due to excessive vomiting. You may need to receive nutrition through a vein (intravenously). You feel sick and have travelled to Asia, Africa, South America, or Central America.

  13. Strawberry Polyphenols Attenuate Ethanol-Induced Gastric Lesions in Rats by Activation of Antioxidant Enzymes and Attenuation of MDA Increase

    PubMed Central

    Alvarez-Suarez, José M.; Dekanski, Dragana; Ristić, Slavica; Radonjić, Nevena V.; Petronijević, Nataša D.; Giampieri, Francesca; Astolfi, Paola; González-Paramás, Ana M.; Santos-Buelga, Celestino; Tulipani, Sara; Quiles, José L.; Mezzetti, Bruno; Battino, Maurizio

    2011-01-01

    Background and Aim Free radicals are implicated in the aetiology of gastrointestinal disorders such as gastric ulcer, colorectal cancer and inflammatory bowel disease. Strawberries are common and important fruit due to their high content of essential nutrient and beneficial phytochemicals which seem to have relevant biological activity on human health. In the present study we investigated the antioxidant and protective effects of three strawberry extracts against ethanol-induced gastric mucosa damage in an experimental in vivo model and to test whether strawberry extracts affect antioxidant enzyme activities in gastric mucosa. Methods/Principal Findings Strawberry extracts were obtained from Adria, Sveva and Alba cultivars. Total antioxidant capacity and radical scavenging capacity were performed by TEAC, ORAC and electron paramagnetic resonance assays. Identification and quantification of anthocyanins was carried out by HPLC-DAD-MS analyses. Different groups of animals received 40 mg/day/kg body weight of strawberry crude extracts for 10 days. Gastric damage was induced by ethanol. The ulcer index was calculated together with the determination of catalase and SOD activities and MDA contents. Strawberry extracts are rich in anthocyanins and present important antioxidant capacity. Ethanol caused severe gastric damage and strawberry consumption protected against its deleterious role. Antioxidant enzyme activities increased significantly after strawberry extract intake and a concomitantly decrease in gastric lipid peroxidation was found. A significant correlation between total anthocyanin content and percent of inhibition of ulcer index was also found. Conclusions Strawberry extracts prevented exogenous ethanol-induced damage to rats' gastric mucosa. These effects seem to be associated with the antioxidant activity and phenolic content in the extract as well as with the capacity of promoting the action of antioxidant enzymes. A diet rich in strawberries might exert a beneficial effect in the prevention of gastric diseases related to generation of reactive oxygen species. PMID:22016781

  14. Hawk tea (Litsea coreana Levl. var. lanuginose) attenuates CCl4-induced hepatic damage in Sprague-Dawley rats

    PubMed Central

    ZHAO, XIN

    2013-01-01

    Hawk tea (Litsea coreana Levl. var. lanuginose) is a traditional Chinese drink similar to green tea. In the present study, the preventive effects of Hawk tea on hepatic damage induced by carbon tetrachloride (CCl4) were studied in Sprague-Dawley rats. Silymarin was used as a positive control. Hawk tea was successfully shown to prevent hepatic damage in the rats. Serum levels of AST, ALT and LDH were significantly decreased when the rats were treated with varying concentrations of Hawk tea compared with silymarin (P<0.05). The lowest enzyme activities were exhibited in the 400 mg/kg Hawk tea group. This group showed reduced levels of the serum proinflammatory cytokines IL-6, IFN-? and TNF-?. In particular, the IFN-? level decreased markedly compared with the other concentration groups. The histopathology sections of liver tissue in the 400 mg/kg Hawk tea group recovered well from the CCl4 damage, but the sections of the other concentration groups showed necrosis to a more serious degree. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analyses of the inflammation-related genes iNOS, COX-2, TNF-? and IL-1? in the rat livers were tested. The 400 mg/kg Hawk tea group showed significantly decreased mRNA and protein expression levels of iNOS, COX-2, TNF-? and IL-1? compared with the control group. Accordingly, 400 mg/kg Hawk tea potentially contributes to the prevention of CCl4-induced hepatic damage in vivo. A 200 or 100 mg/kg dose of Hawk tea also demonstrated preventive effects against hepatic damage. PMID:23403509

  15. Mitochondrial Damage-Associated Molecular Patterns (MTDs) Are Released during Hepatic Ischemia Reperfusion and Induce Inflammatory Responses

    PubMed Central

    Hu, Qianni; Wood, Caroline Ruth; Cimen, Sanem; Venkatachalam, Ananda Baskaran; Alwayn, Ian Patrick Joseph

    2015-01-01

    Ischemia / reperfusion injury (IRI) during the course of liver transplantation enhances the immunogenicity of allografts and thus impacts overall graft outcome. This sterile inflammatory insult is known to activate innate immunity and propagate organ damage through the recognition of damage-associate molecular pattern (DAMP) molecules. The purpose of the present study was to investigate the role of mitochondrial DAMPs (MTDs) in the pathogenesis of hepatic IRI. Using in vitro models we observed that levels of MTDs were significantly higher in both transplantation-associated and warm IR, and that co-culture of MTDs with human and rat hepatocytes significantly increased cell death. MTDs were also released in an in vivo rat model of hepatic IRI and associated with increased secretion of inflammatory cytokines (TNF-?, IL-6, and IL-10) and increased liver injury compared to the sham group. Our results suggest that hepatic IR results in a significant increase of MTDs both in vitro and in vivo suggesting that MTDs may serve as a novel marker in hepatic IRI. Co-culture of MTDs with hepatocytes showed a decrease in cell viability in a concentration dependent manner, which indicates that MTDs is a toxic mediator participating in the pathogenesis of liver IR injury. PMID:26451593

  16. Dietary oxidized fat prevents ethanol-induced triacylglycerol accumulation and increases expression of PPARalpha target genes in rat liver.

    PubMed

    Ringseis, Robert; Muschick, Alexandra; Eder, Klaus

    2007-01-01

    Alcoholic fatty liver results from an impaired fatty acid catabolism due to blockade of PPARalpha and increased lipogenesis due to activation of sterol regulatory element-binding protein (SREBP)-1c. Because both oxidized fats (OF) and conjugated linoleic acids (CLA) have been demonstrated in rats to activate hepatic PPARalpha, we tested the hypothesis that these fats are able to prevent ethanol-induced triacylglycerol accumulation in the liver by upregulation of PPARalpha-responsive genes. Forty-eight male rats were assigned to 6 groups and fed isocaloric liquid diets containing either sunflower oil (SFO) as a control fat, OF prepared by heating of SFO, or CLA, in the presence and absence of ethanol, for 4 wk. Administration of ethanol lowered mRNA concentrations of PPARalpha and the PPARalpha-responsive genes medium chain acyl-CoA dehydrogenase, long chain acyl-CoA dehydrogenase, acyl-CoA oxidase, carnitine palmitoyl-CoA transferase I, and cytochrome P450 4A1 and increased triacylglycerol concentrations in the liver (P < 0.05). OF increased hepatic mRNA concentrations of PPARalpha-responsive genes and lowered hepatic triacylglycerol concentrations compared with SFO (P < 0.05) whereas CLA did not. Rats fed OF with ethanol had similar mRNA concentrations of PPARalpha-responsive genes and similar triacylglycerol concentrations in the liver as rats fed SFO or CLA without ethanol. In contrast, hepatic mRNA concentrations of SREBP-1c and fatty acid synthase were not altered by OF or CLA compared with SFO. This study shows that OF prevents an alcohol-induced triacylglycerol accumulation in rats possibly by upregulation of hepatic PPARalpha-responsive genes involved in oxidation of fatty acids, whereas CLA does not exert such an effect. PMID:17182804

  17. Ethanol-induced colitis prevents oral tolerance induction in mice.

    PubMed

    Andrade, M C; Vaz, N M; Faria, A M C

    2003-09-01

    The gut mucosa is a major site of contact with antigens from food and microbiota. Usually, these daily contacts with natural antigens do not result in inflammatory reactions; instead they result in a state of systemic hyporesponsiveness named oral tolerance. Inflammatory bowel diseases (IBD) are associated with the breakdown of the immunoregulatory mechanisms that maintain oral tolerance. Several animal models of IBD/colitis are available. In mice, these include targeted disruptions of the genes encoding cytokines, T cell subsets or signaling proteins. Colitis can also be induced by intrarectal administration of chemical substances such as 2,4,6-trinitrobenzene sulfonic acid in 50% ethanol. We report here a novel model of colitis induced by intrarectal administration of 50% ethanol alone. Ethanol-treated mice develop an inflammatory reaction in the colon characterized by an intense inflammatory infiltrate in the mucosa and submucosa of the large intestine. They also present up-regulation of both interferon gamma (IFN-gamma) and interleukin-4 (IL-4) production by cecal lymph node and splenic cells. These results suggest a mixed type of inflammation as the substrate of the colitis. Interestingly, cells from mesenteric lymph nodes of ethanol-treated mice present an increase in IFN-gamma production and a decrease in IL-4 production indicating that the cytokine balance is altered throughout the gut mucosa. Moreover, induction of oral tolerance to ovalbumin is abolished in these animals, strongly suggesting that ethanol-induced colitis interferes with immunoregulatory mechanisms in the intestinal mucosa. This novel model of colitis resembles human IBD. It is easy to reproduce and may help us to understand the mechanisms involved in IBD pathogenesis. PMID:12937790

  18. Ursodeoxycholate protects against ethanol-induced liver mitochondrial injury.

    PubMed

    Tabouy, L; Zamora, A J; Oliva, L; Montet, A M; Beaug, F; Montet, J C

    1998-01-01

    The purpose of this work was to examine whether ursodeoxycholate (UDC), a hydrophilic bile salt, could reduce mitochondrial liver injury from chronic ethanol consumption in rats. Animals were pair-fed liquid diets containing 36% of calories as ethanol or isocaloric carbohydrates. They were randomly assigned into 4 groups of 7 rats each and received a specific treatment for 5 weeks: control diet, ethanol diet, control diet + UDC, and ethanol diet + UDC. Respiratory rates of isolated liver mitochondria were measured using a Clark oxygen electrode with sodium succinate as substrate. Mitochondria from rats chronically fed ethanol demonstrated an impaired ability to produce energy. At the fatty liver stage, the ADP-stimulated respiration (V3) was depressed by 33%, the respiratory control ratio (RC) by 25% and the P/O ratio by 15%. In ethanol-fed rats supplemented with UDC, both the rate and efficiency of ATP synthesis via the oxidative phosphorylation were improved: V3 was increased by 35%, P/O by 8%. All the respiratory parameters were similar in control group and control + UDC group. On the other hand, the number and size of mitochondria were assessed by electron microscopy and computer-assisted quantitative analysis. The number of mitochondria from ethanol-treated rats was decreased by 29%, and they were enlarged by 74%. Both parameters were normalized to control values by UDC treatment. These studies demonstrate that UDC has a protective effect against ethanol-induced mitochondrial injury by improving ATP synthesis and preserving liver mitochondrial morphology. These UDC positive effects may contribute to the observed decrease in fat accumulation and may delay the progression of alcoholic injury to more advanced stages. PMID:9870712

  19. GABAergic Modulation of Ethanol-Induced Motor Impairment

    PubMed Central

    FRYE, GERALD D.; BREESE, GEORGE R.

    2011-01-01

    Direct or indirect pharmacological manipulation of ?-aminobutyric acid (GABA) receptor activity was examined in relation to the motor incoordinating actions of ethanol in the rat. Ethanol (1.133.0 g/kg i.p.) caused a dose-dependent increase in the height of aerial righting. This motor impairment was increased selectively by intracisternal injection of the GABA agonists muscimol (0.10 ?g), 4,5,6,7-tetrahydroisoxazole(5,4-c) pyridin(3-ol) (1.0 ?g) and GABA (1000 ?g). The GABA antagonist, bicuculline (1.0 and 5.0 ?g intracisternally), reduced impairment. Thus, direct manipulation of GABA receptor activity modulated motor incoordination caused by ethanol. In addition, indirect-acting GABA-mimetics, such as ?-acetylenic GABA (100 mg/kg i.p.), aminooxyacetic acid (50 mg/kg i.p.), ethanolamine-O-sulfate (250 mg/kg i.p.) and L-2,4-diaminobutyric acid (600 mg/kg i.p.) all potentiated the increase in the height of aerial righting caused by ethanol treatment. Failure of ethanol to modify the binding of [3H]muscimol to cerebral cortical membranes in vitro suggested there was no direct competition for GABA binding sites or facilitation of the binding of GABA to these sites by ethanol. Also, no simple relationship was observed between the degree of motor impairment caused by either ethanol or ?-acetylenic GABA and changes in GABA concentration in three brain areas. Although GABAergic neurons may be involved in the mechanism underlying ethanol-induced depression of motor coordination, the interaction does not involve a direct activation of GABA receptors by ethanol. PMID:6292399

  20. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation.

    PubMed

    Xie, Yirui; Chen, Huazhong; Zhu, Biao; Qin, Nan; Chen, Yunbo; Li, Zhengfeng; Deng, Min; Jiang, Haiyin; Xu, Xiangfei; Yang, Jiezuan; Ruan, Bing; Li, Lanjuan

    2014-11-01

    The previous studies all focus on the effect of probiotics and antibiotics on infection after liver transplantation. Here, we focus on the effect of gut microbiota alteration caused by probiotics and antibiotics on hepatic damage after allograft liver transplantation. Brown-Norway rats received saline, probiotics, or antibiotics via daily gavage for 3 weeks. Orthotopic liver transplantation (OLT) was carried out after 1 week of gavage. Alteration of the intestinal microbiota, liver function and histopathology, serum and liver cytokines, and T cells in peripheral blood and Peyer's patch were evaluated. Distinct segregation of fecal bacterial diversity was observed in the probiotic group and antibiotic group when compared with the allograft group. As for diversity of intestinal mucosal microbiota and pathology of intestine at 2 weeks after OLT, antibiotics and probiotics had a significant effect on ileum and colon. The population of Lactobacillus and Bifidobacterium in the probiotic group was significantly greater than the antibiotic group and the allograft group. The liver injury was significantly reduced in the antibiotic group and the probiotic group compared with the allograft group. The CD4/CD8 and Treg cells in Peyer's patch were decreased in the antibiotic group. The intestinal Treg cell and serum and liver TGF-? were increased markedly while CD4/CD8 ratio was significantly decreased in the probiotic group. It suggested that probiotics mediate their beneficial effects through increase of Treg cells and TGF-? and deduction of CD4/CD8 in rats with acute rejection (AR) after OLT. PMID:25004996

  1. Investigation of Antioxidant and Hepatoprotective Activity of Standardized Curcuma xanthorrhiza Rhizome in Carbon Tetrachloride-Induced Hepatic Damaged Rats

    PubMed Central

    Devaraj, Sutha; Ismail, Sabariah; Ramanathan, Surash

    2014-01-01

    Curcuma xanthorrhiza (CX) has been used for centuries in traditional system of medicine to treat several diseases such as hepatitis, liver complaints, and diabetes. It has been consumed as food supplement and “jamu” as a remedy for hepatitis. Hence, CX was further explored for its potential as a functional food for liver related diseases. As such, initiative was taken to evaluate the antioxidant and hepatoprotective potential of CX rhizome. Antioxidant activity of the standardized CX fractions was determined using in vitro assays. Hepatoprotective assay was conducted against carbon tetrachloride- (CCl4-) induced hepatic damage in rats at doses of 125, 250, and 500 mg/kg of hexane fraction. Highest antioxidant activity was found in hexane fraction. In the case of hepatoprotective activity, CX hexane fraction showed significant improvement in terms of a biochemical liver function, antioxidative liver enzymes, and lipid peroxidation activity. Good recovery was observed in the treated hepatic tissues histologically. Hence, the results concluded that CX hexane fraction possessed prominent hepatoprotective activities which might be due to its in vitro antioxidant activity. These findings also support the use of CX as a functional food for hepatitis remedy in traditional medicinal system. PMID:25133223

  2. Hepatoprotective Evaluation of Ganoderma lucidum Pharmacopuncture: In vivo Studies of Ethanol-induced Acute Liver Injury

    PubMed Central

    Jang, Sun-Hee; Cho, Sung-woo; Yoon, Hyun-Min; Jang, Kyung-Jeon; Song, Chun-Ho; Kim, Cheol-Hong

    2014-01-01

    Objectives: Alcohol abuse is a public issue and one of the major causes of liver disease worldwide. This study was aimed at investigating the protective effect of Ganoderma lucidum pharmacopuncture (GLP) against hepatotoxicity induced by acute ethanol (EtOH) intoxication in rats. Methods: Sprague-Dawley (SD) rats were divided into 4 groups of 8 animals each: normal, control, normal saline pharmacopuncture (NP) and GLP groups. The control, NP and GLP groups received ethanol orally. The NP and the GLP groups were treated daily with injections of normal saline and Ganoderma lucidum extract, respectively. The control group received no treatment. The rats in all groups, except the normal group, were intoxicated for 6 hours by oral administration of EtOH (6 g/kg BW). The same volume of distilled water was administered to the rats in the normal group. Two local acupoints were used: Qimen (LR14) and Taechung (LR3). A histopathological analysis was performed, and the liver function and the activities of antioxidant enzymes were assessed. Results: GLP treatment reduced the histological changes due to acute liver injury induced by EtOH and significantly reduced the increase in the alanine aminotransferase (ALT) enzyme; however, it had an insignificant effect in reducing the increase in aspartate aminotransferase (AST) enzyme. It also significantly ameliorated the superoxide dismutase (SOD) and the catalase (CAT) activities. Conclusion: The present study suggests that GLP treatment is effective in protecting against ethanol-induced acute hepatic injury in SD rats by modulating the activities of ethanol-metabolizing enzymes and by attenuating oxidative stress. PMID:25780705

  3. The effects of caloric restriction against ethanol-induced oxidative and nitrosative cardiotoxicity and plasma lipids in rats.

    PubMed

    Vucevic, Danijela; Mladenovic, Dusan; Ninkovic, Milica; Aleksic, Vuk; Stankovic, Milena N; Stankovic, Marija; Jorgacevic, Bojan; Vukicevic, Rada Jesic; Radosavljevic, Tatjana

    2013-12-01

    Caloric restriction (CR) prevents or delays a wide range of aging-related diseases possibly through alleviation of oxidative stress. The aim of our study was to examine the effect of CR on oxidative and nitrosative cardiac damage in rats, induced by acute ethanol intoxication. Male Wistar rats were divided into following groups: control; calorie-restricted groups with intake of 60-70% (CR60-70) and 40-50% of daily energy needs (CR40-50); ethanol-treated group (E); calorie-restricted, ethanol-treated groups (CR60-70?+?E, CR40-50?+?E). Ethanol was administered in five doses of 2?g/kg every 12?h, while the duration of CR was five weeks before ethanol treatment. Malondialdehyde level was significantly lower in CR60-70?+?E and significantly higher in CR40-50?+?E vs. control. Nitrite and nitrate level was significantly higher in CR40-50?+?E compared to control group. Activity of total superoxide dismutase (SOD) and its isoenzyme, copper/zinc-SOD (Cu/ZnSOD), was significantly higher in CR60-70?+?E and lower in CR40-50?+?E vs. control. Activity of manganese-SOD (MnSOD), that is also SOD isoenzyme, was significantly lower in ?CR40-50 + E compared to control group. Plasma content of sulfhydryl (SH) groups was significantly higher in CR60-70 group vs. control. Plasma concentration of total cholesterol, triacylglycerol, low-density lipoproteins and high-density lipoproteins was significantly lower in CR60-70 group compared to control values. Food restriction to 60-70% of daily energy needs has a protective effect on acute ethanol-induced oxidative and nitrosative cardiac damage, at least partly due to alleviation of ethanol-induced decrease in SOD activity, while restriction to 40-50% of energy needs aggravates lipid peroxidation and nitrosative stress. PMID:24157589

  4. Distinct cellular responses differentiating alcohol- and hepatitis C virus-induced liver cirrhosis

    PubMed Central

    Lederer, Sharon L; Walters, Kathie-Anne; Proll, Sean; Paeper, Bryan; Robinzon, Shahar; Boix, Loreto; Fausto, Nelson; Bruix, Jordi; Katze, Michael G

    2006-01-01

    Background Little is known at the molecular level concerning the differences and/or similarities between alcohol and hepatitis C virus induced liver disease. Global transcriptional profiling using oligonucleotide microarrays was therefore performed on liver biopsies from patients with cirrhosis caused by either chronic alcohol consumption or chronic hepatitis C virus (HCV). Results Global gene expression patterns varied significantly depending upon etiology of liver disease, with a greater number of differentially regulated genes seen in HCV-infected patients. Many of the gene expression changes specifically observed in HCV-infected cirrhotic livers were expectedly associated with activation of the innate antiviral immune response. We also compared severity (CTP class) of cirrhosis for each etiology and identified gene expression patterns that differentiated ethanol-induced cirrhosis by class. CTP class A ethanol-cirrhotic livers showed unique expression patterns for genes implicated in the inflammatory response, including those related to macrophage activation and migration, as well as lipid metabolism and oxidative stress genes. Conclusion Stages of liver cirrhosis could be differentiated based on gene expression patterns in ethanol-induced, but not HCV-induced, disease. In addition to genes specifically regulating the innate antiviral immune response, mechanisms responsible for differentiating chronic liver damage due to HCV or ethanol may be closely related to regulation of lipid metabolism and to effects of macrophage activation on deposition of extracellular matrix components. PMID:17121680

  5. Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain

    PubMed Central

    Naseer, M I; Ullah, I; Narasimhan, M L; Lee, H Y; Bressan, R A; Yoon, G H; Yun, D J; Kim, M O

    2014-01-01

    Fetal alcohol syndrome is a neurological and developmental disorder caused by exposure of developing brain to ethanol. Administration of osmotin to rat pups reduced ethanol-induced apoptosis in cortical and hippocampal neurons. Osmotin, a plant protein, mitigated the ethanol-induced increases in cytochrome c, cleaved caspase-3, and PARP-1. Osmotin and ethanol reduced ethanol neurotoxicity both in vivo and in vitro by reducing the protein levels of cleaved caspase-3, intracellular [Ca2+]cyt, and mitochondrial transmembrane potential collapse, and also upregulated antiapoptotic Bcl-2 protein. Osmotin is a homolog of adiponectin, and it controls energy metabolism via phosphorylation. Adiponectin can protect hippocampal neurons against ethanol-induced apoptosis. Abrogation of signaling via receptors AdipoR1 or AdipoR2, by transfection with siRNAs, reduced the ability of osmotin and adiponectin to protect neurons against ethanol-induced neurodegeneration. Metformin, an activator of AMPK (adenosine monophosphate-activated protein kinase), increased whereas Compound C, an inhibitor of AMPK pathway, reduced the ability of osmotin and adiponectin to protect against ethanol-induced apoptosis. Osmotin exerted its neuroprotection via Bcl-2 family proteins and activation of AMPK signaling pathway. Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome. PMID:24675468

  6. Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    PubMed

    Naseer, M I; Ullah, I; Narasimhan, M L; Lee, H Y; Bressan, R A; Yoon, G H; Yun, D J; Kim, M O

    2014-01-01

    Fetal alcohol syndrome is a neurological and developmental disorder caused by exposure of developing brain to ethanol. Administration of osmotin to rat pups reduced ethanol-induced apoptosis in cortical and hippocampal neurons. Osmotin, a plant protein, mitigated the ethanol-induced increases in cytochrome c, cleaved caspase-3, and PARP-1. Osmotin and ethanol reduced ethanol neurotoxicity both in vivo and in vitro by reducing the protein levels of cleaved caspase-3, intracellular [Ca(2+)]cyt, and mitochondrial transmembrane potential collapse, and also upregulated antiapoptotic Bcl-2 protein. Osmotin is a homolog of adiponectin, and it controls energy metabolism via phosphorylation. Adiponectin can protect hippocampal neurons against ethanol-induced apoptosis. Abrogation of signaling via receptors AdipoR1 or AdipoR2, by transfection with siRNAs, reduced the ability of osmotin and adiponectin to protect neurons against ethanol-induced neurodegeneration. Metformin, an activator of AMPK (adenosine monophosphate-activated protein kinase), increased whereas Compound C, an inhibitor of AMPK pathway, reduced the ability of osmotin and adiponectin to protect against ethanol-induced apoptosis. Osmotin exerted its neuroprotection via Bcl-2 family proteins and activation of AMPK signaling pathway. Modulation of AMPK pathways by osmotin, adiponectin, and metformin hold promise as a preventive therapy for fetal alcohol syndrome. PMID:24675468

  7. Environmental enrichment blocks reinstatement of ethanol-induced conditioned place preference in mice.

    PubMed

    Li, Xinjuan; Meng, Li; Huang, Keyu; Wang, Hua; Li, Dongliang

    2015-07-10

    This study aimed to explore the effect of environmental enrichment (EE) on the reinstatement of ethanol-induced conditioned place preference (CPP) in C57Bl/6J mice. To investigate the effect of training dose on the extinction and relapse of ethanol-induced CPP, doses of ethanol were applied and we found 0.8 g/kg and 1.6 g/kg training doses lead to significant CPP. In the reinstatement procedure, previously extinguished 1.6 g/kg ethanol CPP could be markedly reinstated by a priming injection of 0.8 g/kg. In contrast, priming with 0.4 g/kg of ethanol failed to reinstate the CPP induced by 0.8 g/kg. To investigate whether concomitant EE exposure could prevent the reinstatement of ethanol-induced CPP, one half of the mice were housed in standard environment (SE) and the other half in EE during the extinction and reinstatement session in the second experiment. Our study showed that reinstatement of ethanol-induced CPP was blocked by EE and the extinction rate was the same between SE and EE mice. These findings suggest that EE can block reinstatement of ethanol-induced CPP in mice, and aiding in the identification of new therapeutic strategies for alcohol addiction. PMID:26003446

  8. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    PubMed Central

    Osna, Natalia A.; Ganesan, Murali; Kharbanda, Kusum K.

    2015-01-01

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signalinga crucial point for activation of anti-viral genes to protect cells from virusand the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients. PMID:25664450

  9. Hepatitis C, innate immunity and alcohol: friends or foes?

    PubMed

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-01-01

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients. PMID:25664450

  10. Early role of the ? opioid receptor in ethanol-induced reinforcement.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Acevedo, Ma Beln; Spear, Norman E

    2012-03-20

    Effects of early ethanol exposure on later ethanol intake emphasize the importance of understanding the neurobiology of ethanol-induced reinforcement early in life. Infant rats exhibit ethanol-induced appetitive conditioning and ethanol-induced locomotor activation, which have been linked in theory and may have mechanisms in common. The appetitive effects of ethanol are significantly modulated by ? and ? opioid receptors, whereas ? but not ? receptors are involved in the motor stimulant effects of ethanol during early development. The involvement of the ? opioid receptor (KOR) system in the motivational effects of ethanol has been much less explored. The present study assessed, in preweanling (infant) rats, the modulatory role of the KOR system in several paradigms sensitive to ethanol-induced reinforcement. Kappa opioid activation and blockade were examined in second-order conditioned place preference with varied timing before conditioning and with varied ethanol doses. The role of KOR on ethanol-induced locomotion and ethanol-induced taste conditioning was also explored. The experiments were based on the assumption that ethanol concurrently induces appetitive and aversive effects and that the latter may be mediated by activation of kappa receptors. The main result was that blockade of kappa function facilitated the expression of appetitive ethanol reinforcement in terms of tactile and taste conditioning. The effects of kappa activation on ethanol conditioning seemed to be independent from ethanol's stimulant effects. Kappa opioid activation potentiated the motor depressing effects of ethanol but enhanced motor activity in control subjects. Overall, the results support the hypothesis that a reduced function of the KOR system in nondependent subjects should attenuate the aversive consequences of ethanol. PMID:22261437

  11. The Preventive Effect on Ethanol-Induced Gastric Lesions of the Medicinal Plant Plumeria rubra: Involvement of the Latex Proteins in the NO/cGMP/KATP Signaling Pathway

    PubMed Central

    de Alencar, Nylane Maria Nunes; Pinheiro, Rachel Sindeaux Paiva; de Figueiredo, Ingrid Samantha Tavares; Luz, Patrícia Bastos; Freitas, Lyara Barbosa Nogueira; de Souza, Tamiris de Fátima Goebel; do Carmo, Luana David; Marques, Larisse Mota; Ramos, Marcio Viana

    2015-01-01

    Plumeria rubra (Apocynaceae) is frequently used in folk medicine for the treatment of gastrointestinal disorders, hepatitis, and tracheitis, among other infirmities. The aim of this study was to investigate the gastroprotective potential of a protein fraction isolated from the latex of Plumeria rubra (PrLP) against ethanol-induced gastric lesions and describe the underlying mechanisms. In a dose-dependent manner, the pretreatment with PrLP prevented ethanol-induced gastric lesions in mice after single intravenous administration. The gastroprotective mechanism of PrLP was associated with the involvement of prostaglandins and balance of oxidant/antioxidant factors. Secondarily, the NO/cGMP/KATP pathway and activation of capsaicin-sensitive primary afferents were also demonstrated as part of the mechanism. This study shows that proteins extracted from the latex of P. rubra prevent gastric lesions induced in experimental animals. Also, the results support the use of the plant in folk medicine. PMID:26788111

  12. Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2012-01-01

    Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

  13. Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio).

    PubMed

    Jin, Yuanxiang; Zheng, Shanshan; Pu, Yue; Shu, Linjun; Sun, Liwei; Liu, Weiping; Fu, Zhengwei

    2011-01-01

    Cypermethrin (CYP), a widely used Type II pyrethroid pesticide, is one of the most common contaminants in the freshwater aquatic system. We studied the effects of CYP exposure on the induction of hepatic oxidative stress, DNA damage and the alteration of gene expression related to apoptosis in adult zebrafish. Hepatic mRNA levels for the genes encoding antioxidant proteins, such as Cu/Zn-Sod, Mn-Sod, Cat, and Gpx, were significantly upregulated when zebrafish were exposed to various concentrations of CYP for 4 or 8 days. In addition, the main genes related to fatty acid ?-oxidation and the mitochondrial genes related to respiration and ATP synthesis were also significantly upregulated after exposure to high concentrations (1 and 3 ?g L(-1)) of CYP for 4 or 8 days. Moreover, in a comet assay of zebrafish hepatocytes, tail DNA, tail length, tail moment and Olive tail moment increased in a concentration-dependent manner. The significant induction (p<0.01) of all four parameters observed with CYP concentrations of 0.3 ?g L(-1) or higher suggests that heavy DNA damage was induced even at low levels. Furthermore, several apoptosis- related genes, such as p53, Apaf1 and Cas3, were significantly upregulated after CYP exposure, and Bcl2/Bax expression ratio decreased, especially in groups treated with 1 and 3 ?g L(-1) CYP for 8 days. Taken together, our results suggested that CYP has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in zebrafish. This information will be helpful in fully understanding the mechanism of aquatic toxicology induced by CYP in fish. PMID:20965546

  14. Attrition of Hepatic Damage Inflicted by Angiotensin II with α-Tocopherol and β-Carotene in Experimental Apolipoprotein E Knock-out Mice

    PubMed Central

    Gopal, Kaliappan; Gowtham, Munusamy; Sachin, Singh; Ravishankar Ram, Mani; Shankar, Esaki M.; Kamarul, Tunku

    2015-01-01

    Angiotensin II is one of the key regulatory peptides implicated in the pathogenesis of liver disease. The mechanisms underlying the salubrious role of α-tocopherol and β-carotene on liver pathology have not been comprehensively assessed. Here, we investigated the mechanisms underlying the role of Angiotensin II on hepatic damage and if α-tocopherol and β-carotene supplementation attenuates hepatic damage. Hepatic damage was induced in Apoe−/−mice by infusion of Angiotensin II followed by oral administration with α-tocopherol and β-carotene-enriched diet for 60 days. Investigations showed fibrosis, kupffer cell hyperplasia, hepatocyte degeneration and hepatic cell apoptosis; sinusoidal dilatation along with haemorrhages; evidence of fluid accumulation; increased ROS level and increased AST and ALT activities. In addition, tPA and uPA were down-regulated due to 42-fold up-regulation of PAI-1. MMP-2, MMP-9, MMP-12, and M-CSF were down-regulated in Angiotensin II-treated animals. Notably, α-tocopherol and β-carotene treatment controlled ROS, fibrosis, hepatocyte degeneration, kupffer cell hyperplasia, hepatocyte apoptosis, sinusoidal dilatation and fluid accumulation in the liver sinusoids, and liver enzyme levels. In addition, PAI-1, tPA and uPA expressions were markedly controlled by β-carotene treatment. Thus, Angiotensin II markedly influenced hepatic damage possibly by restraining fibrinolytic system. We concluded that α-tocopherol and β-carotene treatment has salubrious role in repairing hepatic pathology. PMID:26670291

  15. Suppression of intralysosomal proteolysis aggravates structural damage and functional impairment of liver lysosomes in rats with toxic hepatitis

    SciTech Connect

    Korolenko, T.A.; Gavrilova, N.I.; Kurysheva, N.G.; Malygin, A.E.; Pupyshev, A.B.

    1986-01-01

    This paper estimates the effect of lowering protein catabolism in the lysosomes on structural and functional properties of the latter during liver damage. For comparison, polyvinylpyrrolidone (PVP), which is inert relative to intralysosomal proteolysis, and which also accumulates largely in lysosomes of the kupffer cells of the liver, was used. The uptake of labeled bovine serum albuman (C 14-BSA) by the liver is shown and the rate of intralysosomal proteolysis is given 24 hours after administration of suramin an CCl/sub 4/ to rats. It is suggested that it is risky to use drugs which inhibit intralysosomal proteolysis in the treatment of patients with acute hepatitis.

  16. Gastroprotective effects of Corchorus olitorius leaf extract against ethanol-induced gastric mucosal hemorrhagic lesions in rats

    PubMed Central

    Al Batran, Rami; Al-Bayaty, Fouad; Ameen Abdulla, Mahmood; Jamil Al-Obaidi, Mazen M; Hajrezaei, Maryam; Hassandarvish, Pouya; Fouad, Mustafa; Golbabapour, Shahram; Talaee, Samaneh

    2013-01-01

    Background and AimCorchorus olitorius is a medicinal plant traditionally utilized as an antifertility, anti-convulsive, and purgative agent. This study aimed to evaluate the gastroprotective effect of an ethanolic extract of C. olitorius against ethanol-induced gastric ulcers in adult Sprague Dawley rats. MethodsThe rats were divided into seven groups according to their pretreatment: an untreated control group, an ulcer control group, a reference control group (20 mg/kg omeprazole), and four experimental groups (50, 100, 200, or 400 mg/kg of extract). Carboxymethyl cellulose was the vehicle for the agents. Prior to the induction of gastric ulcers with absolute ethanol, the rats in each group were pretreated orally. An hour later, the rats were sacrificed, and gastric tissues were collected to evaluate the ulcers and to measure enzymatic activity. The tissues were subjected to histological and immunohistochemical evaluations. ResultsCompared with the extensive mucosal damage in the ulcer control group, gross evaluation revealed a marked protection of the gastric mucosa in the experimental groups, with significantly preserved gastric wall mucus. In these groups, superoxide dismutase and malondialdehyde levels were significantly increased (P < 0.05) and reduced (P < 0.05), respectively. In addition to the histologic analyses (HE and periodic acid-Schiff staining), immunohistochemistry confirmed the protection through the upregulation of Hsp70 and the downregulation of Bax proteins. The gastroprotection of the experimental groups was comparable to that of the reference control medicine omeprazole. ConclusionsOur study reports the gastroprotective property of an ethanolic extract of C. olitorius against ethanol-induced gastric mucosal hemorrhagic lesions in rats. PMID:23611708

  17. Calpain inhibition prevents ethanol-induced alterations in spinal motoneurons.

    PubMed

    Samantaray, Supriti; Patel, Kaushal S; Knaryan, Varduhi H; Thakore, Nakul P; Roudabush, Stacy; Heissenbuttle, Jenna H; Becker, Howard C; Banik, Naren L

    2013-08-01

    Long-term exposure of ethanol (EtOH) alters the structure and function in brain and spinal cord. The present study addresses the mechanisms of EtOH-induced damaging effects on spinal motoneurons in vitro. Altered morphology and biochemical changes of such damage were demonstrated by in situ Wright staining and DNA ladder assay. EtOH at low to moderate (25-50mM) concentrations induced damaging effects in the motoneuronal scaffold which involved activation of proteases like ?-calpain and caspase-3. Caspase-8 was seen only at higher (100mM) EtOH concentration. Further, pretreatment with calpeptin, a potent calpain inhibitor, confirmed the involvement of active proteases in EtOH-induced damage to motoneurons. The lysosomal enzyme cathepsin D was also elevated in the motoneurons by EtOH, and this effect was significantly attenuated by inhibitor treatment. Overall, EtOH exposure rendered spinal motoneurons vulnerable to damage, and calpeptin provided protection, suggesting a critical role of calpain activation in EtOH-induced alterations in spinal motoneurons. PMID:23690229

  18. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  19. Zinc inhibits ethanol-induced HepG2 cell apoptosis

    SciTech Connect

    Szuster-Ciesielska, Agnieszka Plewka, Krzysztof; Daniluk, Jadwiga; Kandefer-Szerszen, Martyna

    2008-05-15

    Alcohol consumption produces a variety of metabolic alterations in liver cells, associated with ethanol oxidation and with nonoxidative metabolism of ethanol, among others apoptosis of hepatocytes. As zinc is known as a potent antioxidant and an inhibitor of cell apoptosis, the aim of this paper was to investigate whether zinc supplementation could inhibit ethanol-induced HepG2 apoptosis, and whether this inhibition was connected with attenuation of oxidative stress and modulation of FasR/FasL system expression. The results indicated that zinc supplementation significantly inhibited ethanol-induced HepG2 cell apoptosis (measured by cytochrome c release from mitochondria and caspase-3 activation) by attenuation of reactive oxygen species (ROS) production, increase in the cellular level of GSH, inhibition of ethanol-induced sFasR and FasL overexpression and caspase-8 activation. These results indicate that zinc can inhibit ethanol-induced hepatocyte apoptosis by several independent mechanisms, among others by an indirect antioxidative effect and probably by inhibition of caspase-8 and caspase-9 activation.

  20. Ethanol-Induced Alterations in Purkinje Neuron Dendrites in Adult and Aging Rats: a Review.

    PubMed

    Dlugos, Cynthia A

    2015-08-01

    Uncomplicated alcoholics suffer from discrete motor dysfunctions that become more pronounced with age. These deficits involve the structure and function of Purkinje neurons (PN), the sole output neurons from the cerebellar cortex. This review focuses on alterations to the PN dendritic arbor in the adult and aging Fischer 344 rat following lengthy alcohol consumption. It describes seminal studies using the Golgi-Cox method which proposed a model for ethanol-induced dendritic regression. Subsequent ultrastructural studies of PN dendrites showed dilation of the extensive smooth endoplasmic reticulum (SER) which preceded and accompanied dendritic regression. The component of the SER that was most affected by ethanol was the sarco/endoplasmic reticulum Ca(2+) ATPase pump (SERCA) responsible for resequestration of calcium into the SER. Ethanol-induced decreases in SERCA pump levels, similar to the finding of SER dilation, preceded and occurred concomitantly with dendritic regression. Discrete ethanol-induced deficits in balance also accompanied these decreases. Ethanol-induced ER stress within the SER of PN dendrites was proposed as an underlying cause of dendritic regression. It was recently shown that increased activation of caspase 12, inherent to the ER, occurred in PN of acute slices in ethanol-fed rats and was most pronounced following 40 weeks of ethanol treatment. These findings shed new light into alcohol-induced disruption in PN dendrites providing a new model for the discrete but critical changes in motor function in aging, adult alcoholics. PMID:25648753

  1. Curcuma aromatica Water Extract Attenuates Ethanol-Induced Gastritis via Enhancement of Antioxidant Status

    PubMed Central

    Jeon, Woo-Young; Lee, Mee-Young; Shin, In-Sik; Jin, Seong Eun; Ha, Hyekyung

    2015-01-01

    Curcuma aromatica is an herbal medicine and traditionally used for the treatment of various diseases in Asia. We investigated the effects of C. aromatica water extract (CAW) in the stomach of rats with ethanol-induced gastritis. Gastritis was induced in rats by intragastric administration of 5 mL/kg body weight of absolute ethanol. The CAW groups were given 250 or 500 mg of extract/kg 2 h before administration of ethanol, respectively. To determine the antioxidant effects of CAW, we determined the level of lipid peroxidation, the level of reduced glutathione (GSH), the activities of catalase, degree of inflammation, and mucus production in the stomach. CAW reduced ethanol-induced inflammation and loss of epithelial cells and increased the mucus production in the stomach. CAW reduced the increase in lipid peroxidation associated with ethanol-induced gastritis (250 and 500 mg/kg, p < 0.01, resp.) and increased mucosal GSH content (500 mg/kg, p < 0.01) and the activity of catalase (250 and 500 mg/kg, p < 0.01, resp.). CAW increased the production of prostaglandin E2. These findings suggest that CAW protects against ethanol-induced gastric mucosa injury by increasing antioxidant status. We suggest that CAW could be developed for the treatment of gastritis induced by alcohol. PMID:26483844

  2. Zinc inhibits ethanol-induced HepG2 cell apoptosis.

    PubMed

    Szuster-Ciesielska, Agnieszka; Plewka, Krzysztof; Daniluk, Jadwiga; Kandefer-Szerszeń, Martyna

    2008-05-15

    Alcohol consumption produces a variety of metabolic alterations in liver cells, associated with ethanol oxidation and with nonoxidative metabolism of ethanol, among others apoptosis of hepatocytes. As zinc is known as a potent antioxidant and an inhibitor of cell apoptosis, the aim of this paper was to investigate whether zinc supplementation could inhibit ethanol-induced HepG2 apoptosis, and whether this inhibition was connected with attenuation of oxidative stress and modulation of FasR/FasL system expression. The results indicated that zinc supplementation significantly inhibited ethanol-induced HepG2 cell apoptosis (measured by cytochrome c release from mitochondria and caspase-3 activation) by attenuation of reactive oxygen species (ROS) production, increase in the cellular level of GSH, inhibition of ethanol-induced sFasR and FasL overexpression and caspase-8 activation. These results indicate that zinc can inhibit ethanol-induced hepatocyte apoptosis by several independent mechanisms, among others by an indirect antioxidative effect and probably by inhibition of caspase-8 and caspase-9 activation. PMID:18396304

  3. ALTERED RA SIGNALING IN THE GENESIS OF ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Altered RA Signaling in the Genesis of Ethanol-Induced Limb Defects

    Johnson CS(1), Sulik KK(1,2) Hunter, ES III(3)
    (1) Dept of Cell and Developmental Biology, UNC-Chapel Hill (2) Bowles Center for Alcohol Studies, UNC-CH (3) NHEERL, ORD, US EPA, RTP, NC

    Administr...

  4. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    SciTech Connect

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-03-14

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3{beta} (GSK-3{beta}), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3{beta}, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3{beta}, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways.

  5. Role of chemokines and their receptors in viral persistence and liver damage during chronic hepatitis C virus infection

    PubMed Central

    Larrubia, Juan R; Benito-Martnez, Selma; Calvino, Miryam; Sanz-de-Villalobos, Eduardo; Parra-Cid, Trinidad

    2008-01-01

    Chemokines produced in the liver during hepatitis C virus (HCV) infection induce migration of activated T cells from the periphery to infected parenchyma. The milieu of chemokines secreted by infected hepatocytes is predominantly associated with the T-helper/T-cytotoxic type-1 cell (Th1/Tc1) response. These chemokines consist of CCL3 (macrophage inflammatory protein-1?; MIP-1?), CCL4 (MIP-1?), CCL5 (regulated on activation normal T cell expressed and secreted; RANTES), CXCL10 (interferon-??inducible protein-10; IP-10), CXCL11 (interferon-inducible T-cell ? chemoattractant; I-TAC), and CXCL9 (monokine induced by interferon ?; Mig) and they recruit T cells expressing either CCR5 or CXCR3 chemokine receptors. Intrahepatic and peripheral blood levels of these chemokines are increased during chronic hepatitis C. The interaction between chemokines and their receptors is essential in recruiting HCV-specific T cells to control the infection. When the adaptive immune response fails in this task, non-specific T cells without the capacity to control the infection are also recruited to the liver, and these are ultimately responsible for the persistent hepatic damage. The modulation of chemokine receptor expression and chemokine secretion could be a viral escape mechanism to avoid specific T cell migration to the liver during the early phase of infection, and to maintain liver viability during the chronic phase, by impairing non-specific T cell migration. Some chemokines and their receptors correlate with liver damage, and CXCL10 (IP-10) and CXCR3 levels have shown a clinical utility as predictors of treatment response outcome. The regulation of chemokines and their receptors could be a future potential therapeutic target to decrease liver inflammation and to increase specific T cell migration to the infected liver. PMID:19084927

  6. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: Role of nonoxidative metabolism

    SciTech Connect

    Wu Hai; Cai Ping; Clemens, Dahn L.; Jerrells, Thomas R.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S. . E-mail: bkaphali@utmb.edu

    2006-10-15

    Chronic alcohol abuse, a major health problem, causes liver and pancreatic diseases and is known to impair hepatic alcohol dehydrogenase (ADH). Hepatic ADH-catalyzed oxidation of ethanol is a major pathway for the ethanol disposition in the body. Hepatic microsomal cytochrome P450 (CYP2E1), induced in chronic alcohol abuse, is also reported to oxidize ethanol. However, impaired hepatic ADH activity in a rat model is known to facilitate a nonoxidative metabolism resulting in formation of nonoxidative metabolites of ethanol such as fatty acid ethyl esters (FAEEs) via a nonoxidative pathway catalyzed by FAEE synthase. Therefore, the metabolic basis of ethanol-induced cytotoxicity was determined in HepG2 cells and recombinant HepG2 cells transfected with ADH (VA-13), CYP2E1 (E47) or ADH + CYP2E1 (VL-17A). Western blot analysis shows ADH deficiency in HepG2 and E47 cells, compared to ADH-overexpressed VA-13 and VL-17A cells. Attached HepG2 cells and the recombinant cells were incubated with ethanol, and nonoxidative metabolism of ethanol was determined by measuring the formation of FAEEs. Significantly higher levels of FAEEs were synthesized in HepG2 and E47 cells than in VA-13 and VL-17A cells at all concentrations of ethanol (100-800 mg%) incubated for 6 h (optimal time for the synthesis of FAEEs) in cell culture. These results suggest that ADH-catalyzed oxidative metabolism of ethanol is the major mechanism of its disposition, regardless of CYP2E1 overexpression. On the other hand, diminished ADH activity facilitates nonoxidative metabolism of ethanol to FAEEs as found in E47 cells, regardless of CYP2E1 overexpression. Therefore, CYP2E1-mediated oxidation of ethanol could be a minor mechanism of ethanol disposition. Further studies conducted only in HepG2 and VA-13 cells showed lower ethanol disposition and ATP concentration and higher accumulation of neutral lipids and cytotoxicity (apoptosis) in HepG2 cells than in VA-13 cells. The apoptosis observed in HepG2 vs. VA-13 cells incubated with ethanol appears to be mediated by release of mitochondrial cytochrome c via activation of caspase-9 and caspase-3. These results strongly support our hypothesis that diminished hepatic ADH activity facilitates nonoxidative metabolism of ethanol and the products of ethanol nonoxidative metabolism cause apoptosis in HepG2 cells via intrinsic pathway.

  7. Aripiprazole an atypical antipsychotic protects against ethanol induced gastric ulcers in rats

    PubMed Central

    Asmari, Abdulrahman Al; Arshaduddin, Mohammed; Elfaki, Ibrahim; Kadasah, Saeed; Robayan, Abdulrahman Al; Asmary, Saeed Al

    2014-01-01

    The present investigation was undertaken, to study the gastro-protective potential of aripiprazole (ARI) an atypical antipsychotic drug in ethanol induced gastric ulcers in rats. ARI (10, 30, 100 mg/kg) was tested for gastric secretion and antiulcer activity in different groups of male Sprague Dawley rats. Gastric secretion and acidity studies were performed in pylorus ligated rats while indices of gastric ulcers were measured in ethanol (1 ml-100%) induced gastric ulcers. Histological changes and the levels of gastric wall mucus, malondialdehyde (MDA), non-protein sulfhydryls (NP-SH), myeloperoxidase (MPO), and serotonin were used to assess ethanol induced gastric mucosal injuries. Exposure of rats to ethanol resulted in gastric mucosal injury and a high index of ulcer. Pretreatment with ARI significantly (P < 0.001), reduced the gastric lesions induced by ethanol and also resulted in a significant decrease in the gastric secretion, and total acidity in pylorus ligated rats. ARI also significantly attenuated the ethanol induced reduction in the levels of gastric wall mucus, and NP-SH (P < 0.001). The histological changes and the increased MDA and MPO activity were also significantly (P < 0.001) inhibited by ARI. Ethanol induced depletion in the levels of serotonin in the gastric tissue were also significantly restored by pretreatment with ARI (p < 0.001). ARI showed significant antiulcer and gastroprotective activity against ethanol induced gastric ulcers. The gastroprotective effects of ARI may be due to its anti-secretory, antioxidant and anti-inflammatory action and also due to the restoration of the depleted gastric serotonin levels. PMID:25232384

  8. Resveratrol mitigate structural changes and hepatic stellate cell activation in N'-nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage.

    PubMed

    Ahmad, Areeba; Ahmad, Riaz

    2014-09-25

    Resveratrol, a polyphenol, found in skin of red grapes, peanuts and berries possesses anti-inflammatory, anti-carcinogenic and lipid modulation properties. Here, we demonstrate in vivo antifibrotic activity of resveratrol in a mammalian model, wherein hepatic fibrosis was induced by N'-nitrosodimethylamine (NDMA) administration. Apart from being a potent hepatotoxin, NDMA is a known mutagen and carcinogen, as well. To induce hepatic fibrosis, rats were administered NDMA (i.p.) in 10mg/kgb.wt thrice/week for 21 days. Another group of animals received resveratrol supplement (10mg/kgb.wt) subsequent to NDMA administration and were sacrificed weekly. The changes in selected biomarkers were monitored to compare profibrotic effects of NDMA and antifibrotic activity of resveratrol. The selected biomarkers were: sera transaminases, ALP, bilirubin, liver glycogen, LPO, SOD, protein carbonyl content, ATPases (Ca(2+), Mg(2+), Na(+)/K(+)) and hydroxyproline/collagen content. Alterations in liver architecture were assessed by H&E, Masson's trichrome and reticulin staining of liver biopsies. Immuno-histochemistry and immunoblotting were employed to examine expression of ?-SMA. Our results demonstrate that during NDMA-induced liver fibrosis transaminases, ALP, bilirubin, hydroxyproline and liver collagen increases, while liver glycogen is depleted. The decline in SOD (>65%) and ATPases, which were concomitant with the elevation in MDA and protein carbonyls, strongly indicate oxidative damage. Fibrotic transformation of liver in NDMA-treated rats was verified by histopathology, immuno-histochemistry and immunoblotting data, with the higher expressivity of ?-SMA-positive HSCs being most established diagnostic immuno-histochemical marker of HSCs. Resveratrol-supplement refurbished liver architecture by significantly restoring levels of biomarkers of oxidative damage (MDA, SOD, protein carbonyls and membrane-bound ATPases). Therefore, we conclude that antifibrotic effect of resveratrol is due to restrained oxidative damage and down-regulation of ?-SMA, which inhibits HSC activation to obstruct liver fibrosis. PMID:25064540

  9. Increased methylation demand exacerbates ethanol-induced liver injury.

    PubMed

    Kharbanda, Kusum K; Todero, Sandra L; Thomes, Paul G; Orlicky, David J; Osna, Natalia A; French, Samuel W; Tuma, Dean J

    2014-08-01

    We previously reported that chronic ethanol intake lowers hepatocellular S-adenosylmethionine to S-adenosylhomocysteine ratio and significantly impairs many liver methylation reactions. One such reaction, catalyzed by guanidinoacetate methyltransferase (GAMT), is a major consumer of methyl groups and utilizes as much as 40% of the SAM-derived groups to convert guanidinoacetate (GAA) to creatine. The exposure to methyl-group consuming compounds has substantially increased over the past decade that puts additional stresses on the cellular methylation potential. The purpose of our study was to investigate whether increased ingestion of a methyl-group consumer (GAA) either alone or combined with ethanol intake, plays a role in the pathogenesis of liver injury. Adult male Wistar rats were pair-fed the Lieber DeCarli control or ethanol diet in the presence or absence of GAA for 2weeks. At the end of the feeding regimen, biochemical and histological analyses were conducted. We observed that 2 weeks of GAA- or ethanol-alone treatment increases hepatic triglyceride accumulation by 4.5 and 7-fold, respectively as compared with the pair-fed controls. However, supplementing GAA in the ethanol diet produced panlobular macro- and micro-vesicular steatosis, a marked decrease in the methylation potential and a 28-fold increased triglyceride accumulation. These GAA-supplemented ethanol diet-fed rats displayed inflammatory changes and significantly increased liver toxicity compared to the other groups. In conclusion, increased methylation demand superimposed on chronic ethanol consumption causes more pronounced liver injury. Thus, alcoholic patients should be cautioned for increased dietary intake of methyl-group consuming compounds even for a short period of time. PMID:24842317

  10. The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline

    PubMed Central

    Amin, Kamal A; Hassan, Mohamed S; Awad, El-Said T; Hashem, Khalid S

    2011-01-01

    Objective The objective of the present study was to determine the ability of cerium oxide (CeO2) nanoparticles to protect against monocrotaline (MCT)-induced hepatotoxicity in a rat model. Method Twenty male Sprague Dawley rats were arbitrarily assigned to four groups: control (received saline), CeO2 (given 0.0001 nmol/kg intraperitoneally [IP]), MCT (given 10 mg/kg body weight IP as a single dose), and MCT + CeO2 (received CeO2 both before and after MCT). Electron microscopic imaging of the rat livers was carried out, and hepatic total glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) enzymatic activities were quantified. Results Results showed a significant MCT-induced decrease in total hepatic GSH, GPX, GR, and GST normalized to control values with concurrent CeO2 administration. In addition, MCT produced significant increases in hepatic CAT and SOD activities, which also ameliorated with CeO2. Conclusions These results indicate that CeO2 acts as a putative novel and effective hepatoprotective agent against MCT-induced hepatotoxicity. PMID:21289991

  11. [Hepatoprotective properties of isoflavonoids from roots of Maackia amurensis on experimental carbon tetrachloride-induced hepatic damage].

    PubMed

    Kushnerova, N F; Fedoreev, S A; Fomenko, S E; Sprygin, V G; Kulesh, N I; Mishchenko, N P; Veselova, M V; Momot, T V

    2014-01-01

    Hepatoprotective properties of ethanol extract from the roots of Maackia amurensis Ruper et Maxim have been studied on the model of toxic hepatitis induced by carbon tetrachloride damage. It is established that the extract contains daidzein, 7-O-gentobiosides of isoflavonoids genistein, formononetin, pseudobabtige-nin, and 5-O-methylgenistein, and 3-O-gentobiosides of pterocarpans (6aR, 11aR)-maakiain and (6aR, 11aR)-medicarpin. The administration of extract facilitates the restoration of antioxidant protection enzymes activity and reduced glutathione level, decreases the formation of toxic peroxidation products, produces normalizing impact on liver phospholipid pattern, and improves the erythrocyte tolerance to hemolytic agents. The action of isoflavonoids from Maackia amurensis in restoration of metabolic pathways of the liver and removal of toxic stress was more effective as compared to that of the reference hepatoprotector legalon. PMID:24791337

  12. Acetaminophen increases the risk of arsenic-mediated development of hepatic damage in rats by enhancing redox-signaling mechanism.

    PubMed

    Majhi, Chhaya Rani; Khan, Saleem; Leo, Marie Dennis Marcus; Prawez, Shahid; Kumar, Amit; Sankar, Palanisamy; Telang, Avinash Gopal; Sarkar, Souvendra Nath

    2014-02-01

    We evaluated whether the commonly used analgesic-antipyretic drug acetaminophen can modify the arsenic-induced hepatic oxidative stress and also whether withdrawal of acetaminophen administration during the course of long-term arsenic exposure can increase susceptibility of liver to arsenic toxicity. Acetaminophen was co-administered orally to rats for 3 days following 28 days of arsenic pre-exposure (Phase-I) and thereafter, acetaminophen was withdrawn, but arsenic exposure was continued for another 28 days (Phase-II). Arsenic increased lipid peroxidation and reactive oxygen species (ROS) generation, depleted glutathione (GSH), and decreased superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR) activities. Acetaminophen caused exacerbation of arsenic-mediated lipid peroxidation and ROS generation and further enhancement of serum alanine aminotransferase and aspartate aminotransferase activities. In Phase-I, acetaminophen caused further GSH depletion and reduction in SOD, catalase, GPx and GR activities, but in Phase-II, only GPx and GR activities were more affected. Arsenic did not alter basal and inducible nitric oxide synthase (iNOS)-mediated NO production, but decreased constitutive NOS (cNOS)-mediated NO release. Arsenic reduced expression of endothelial NOS (eNOS) and iNOS genes. Acetaminophen up-regulated eNOS and iNOS expression and NO production in Phase-I, but reversed these effects in Phase-II. Results reveal that acetaminophen increased the risk of arsenic-mediated hepatic oxidative damage. Withdrawal of acetaminophen administration also increased susceptibility of liver to hepatotoxicity. Both ROS and NO appeared to mediate lipid peroxidation in Phase-I, whereas only ROS appeared responsible for peroxidative damage in Phase-II. PMID:22120977

  13. Naltrexone Reverses Ethanol-Induced Rat Hippocampal and Serum Oxidative Damage

    PubMed Central

    Almansa, Inmaculada; Barcia, Jorge M.; Lpez-Pedrajas, Rosa; Muriach, Mara; Miranda, Mara; Romero, Francisco Javier

    2013-01-01

    Naltrexone, an antagonist of ?-opioid receptors, is clinically used as adjuvant therapy of alcohol dishabituation. The aim of the present work was to test the effect of 1?mg/kg body weight of naltrexone to revert oxidative stress-related biochemical alterations, in the hippocampus and serum of chronic alcoholic adult rats. Malondialdehyde concentration was increased and glutathione peroxidase activity was decreased in hippocampus and serum of alcohol-treated rats. Naltrexone treatment restored these alterations. The in vitro antioxidant ability of Ntx could not justify these effects considering the doses used. Thus this apparent protective effect of Ntx can only be attributed to its pharmacological effects, as herein discussed. PMID:24363821

  14. Protective Effects of Manassantin A against Ethanol-Induced Gastric Injury in Rats.

    PubMed

    Song, Ji-Won; Seo, Chang-Seob; Kim, Tae-In; Moon, Og-Sung; Won, Young-Suk; Son, Hwa-Young; Son, Jong-Keun; Kwon, Hyo-Jung

    2016-02-01

    Manassantin A, a neolignan isolated from Saururus chinensis, is a major phytochemical compound that has various biological activities, including anti-inflammatory, neuroleptic, and human acyl-CoA?:?cholesterol acyltransferase (ACAT) inhibitory activities. In this study, we investigated the protective effects of manassantin A against ethanol-induced acute gastric injury in rats. Gastric injury was induced by intragastric administration of 5?mL/kg body weight of absolute ethanol to each rat. The positive control group and the manassantin A group were given oral doses of omeprazole (20?mg/kg) or manassantin A (15?mg/kg), respectively, 1?h prior to the administration of absolute ethanol. Our examinations revealed that manassantin A pretreatment reduced ethanol-induced hemorrhage, hyperemia, and epithelial cell loss in the gastric mucosa. Manassantin A pretreatment also attenuated the increased lipid peroxidation associated with ethanol-induced acute gastric lesions, increased the mucosal glutathione (GSH) content, and enhanced the activities of antioxidant enzymes. The levels of pro-inflammatory cytokines, tumor necrosis factor-? (TNF-?), interleukin (IL)-6, and IL-1? were clearly decreased in the manassantin A-pretreated group. In addition, manassantin A pretreatment enhanced the levels of cyclooxygenase (COX)-1, COX-2, and prostaglandin E2 (PGE2) and reduced the inducible nitric oxide synthase (iNOS) overproduction and nuclear factor kappa B (NF-?B) phosphorylation. Collectively, these results indicate that manassantin A protects the gastric mucosa from ethanol-induced acute gastric injury, and suggest that these protective effects might be associated with COX/PGE2 stimulation, inhibition of iNOS production and NF-?B activation, and improvements in the antioxidant and anti-inflammatory status. PMID:26632199

  15. Protective effects of Ginkgo biloba extract on the ethanol-induced gastric ulcer in rats

    PubMed Central

    Chen, Sheng-Hsuan; Liang, Yu-Chih; Chao, Jane CJ; Tsai, Li-Hsueh; Chang, Chun-Chao; Wang, Chia-Chi; Pan, Shiann

    2005-01-01

    AIM: To evaluate the preventive effect of Ginkgo biloba extract (GbE) on ethanol-induced gastric mucosal injuries in rats. METHODS: Female Wistar albino rats were used for the studies. We randomly divided the rats for each study into five subgroups: normal control, experimental control, and three experimental groups. The gastric ulcers were induced by instilling 1 mL 50% ethanol into the stomach. We gave GbE 8.75, 17.5, 26.25 mg/kg intravenously to the experimental groups respectively 30 min prior to the ulcerative challenge. We removed the stomachs 45 min later. The gastric ulcers, gastric mucus and the content of non-protein sulfhydryl groups (NP-SH), malondialdehyde (MDA), c-Jun kinase (JNK) activity in gastric mucosa were evaluated. The amount of gastric juice and its acidity were also measured. RESULTS: The findings of our study are as follows: (1) GbE pretreatment was found to provide a dose-dependent protection against the ethanol-induced gastric ulcers in rats; (2) the GbE pretreatment afforded a dose-dependent inhibition of ethanol-induced depletion of stomach wall mucus, NP-SH contents and increase in the lipid peroxidation (increase MDA) in gastric tissue; (3) gastric ulcer induced by ethanol produced an increase in JNK activity in gastric mucosa which also significantly inhibited by pretreatment with GbE; and (4) GbE alone had no inhibitory effect on gastric secretion in pylorus-ligated rats. CONCLUSION: The finding of this study showed that GbE significantly inhibited the ethanol-induced gastric lesions in rats. We suggest that the preventive effect of GbE may be mediated through: (1) inhibition of lipid peroxidation; (2) preservation of gastric mucus and NP-SH; and (3) blockade of cell apoptosis. PMID:15968732

  16. Neuropeptide Y Signaling Modulates the Expression of Ethanol-Induced Behavioral Sensitization in Mice

    PubMed Central

    Hayes, Dayna M.; Fee, Jon R.; McCown, Thomas J.; Knapp, Darin J.; Breese, George R.; Cubero, Inmaculada; Carvajal, Francisca; Lerma-Cabrera, Jose Manuel; Navarro, Montserrat; Thiele, Todd E.

    2011-01-01

    Neuropeptide Y (NPY) and Protein Kinase A (PKA) have been implicated in neurobiological responses to ethanol. We have previously reported that mutant mice lacking normal production of the RII? subunit of PKA (RII??/? mice) show enhanced sensitivity to the locomotor stimulant effects of ethanol and increased behavioral sensitization relative to littermate wild-type RII?+/+ mice. We now report that RII??/? mice also show increased NPY immunoreactivity in the nucleus accumbens (NAc) core and the ventral striatum relative to RII?+/+ mice. These observations suggest that elevated NPY signaling in the NAc and/or striatum may contribute to the increased sensitivity to ethanol-induced behavioral sensitization that is characteristic of RII??/? mice. Consistently, NPY?/? mice failed to display ethanol-induced behavioral sensitization that was evident in littermate NPY+/+ mice. To more directly examine the role of NPY in the locomotor stimulant effects of ethanol, we infused a recombinant adeno-associated virus (rAAV) into the region of the NAc core of DBA/2J mice. The rAAV-FIB-NPY13-36 vector expresses and constitutively secretes the NPY fragment NPY13-36 (a selective Y2 receptor agonist) from infected cells in vivo. Mice treated with the rAAV-FIB-NPY13-36 vector exhibited reduced expression of ethanol-induced behavioral sensitization compared to mice treated with a control vector. Taken together, the current data provide the first evidence that NPY signaling in the NAc core and the Y2 receptor modulate ethanol-induced behavioral sensitization. PMID:21762289

  17. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    SciTech Connect

    Pennington, S.; Kalmus, G.

    1987-05-01

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either /sup 3/H cyclic AMP binding or as 8-azido cyclic AM/sup 32/P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/..mu..g protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase.

  18. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    PubMed

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1? (IL-1?) secretion, and IL-1? is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1? secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD). PMID:25592072

  19. Ethanol-induced increase in portal blood glow: Role of adenosine

    SciTech Connect

    Orrego, H.; Carmichael, F.J.; Saldivia, V.; Giles, H.G.; Sandrin, S.; Israel, Y. )

    1988-04-01

    The mechanism by which ethanol induces an increase in portal vein blood flow was studied in rats using radiolabeled microspheres. Ethanol by gavage resulted in an increase of 50-70% in portal vein blood flow. The ethanol-induced increase in portal blood flow was suppressed by the adenosine receptor blocker 8-phenyltheophylline. By itself, 8-phenyltheophylline was without effect on cardiac output or portal blood flow. Adenosine infusion resulted in a dose-dependent increase in portal blood flow. This adenosine-induced increase in portal blood flow was inhibited by 8-phenyltheophylline in a dose-dependent manner. Both alcohol and adenosine significantly reduced preportal vascular resistance by 40% and 60%, respectively. These effects were fully suppressed by 8-phenyltheophylline. It is concluded that adenosine is a likely candidate to mediate the ethanol-induced increase in portal vein blood flow. It is suggested that an increase in circulating acetate and liver hypoxia may mediate the effects of alcohol by increasing tissue and interstitial adenosine levels.

  20. Protective effects of betulin and betulinic acid against ethanol-induced cytotoxicity in HepG2 cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Kandefer-Szerszeń, Martyna

    2005-01-01

    Plant triterpenes, such as oleanolic acid and betulin were described as hepatoprotectants active against cytotoxicity of acetaminophen or cadmium. The aim of this paper is to compare the cytoprotective activity of betulin, betulinic acid and oleanolic acid against ethanol-induced cytotoxicity in HepG2 cells. The influence of three triterpenes on ethanol-induced production of superoxide anion and hydrogen peroxide was also examined. Among the examined triterpenes, betulin was the most active protectant of HepG2 cells against ethanol-induced cytotoxicity. Betulin and betulinic acid significantly decreased ethanol-induced production of superoxide anion. Oleanolic acid inhibited only ethanol- and phorbol ester-induced production of hydrogen peroxide. The results indicate that cytoprotective or antioxidative activity of triterpenes depends on their chemical structure. PMID:16227641

  1. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat.

    PubMed

    Souli, Abdelaziz; Sebai, Hichem; Chehimi, Latifa; Rtibi, Kaïs; Tounsi, Haifa; Boubaker, Samir; Sakly, Mohsen; El-Benna, Jamel; Amri, Mohamed

    2015-09-01

    The present study was undertaken to determine whether subacute treatment with aqueous extract of carob (Ceratonia siliqua L.) pods (AECPs) protects against ethanol (EtOH)-induced oxidative stress in rat liver. Animals were divided into four groups: control, carob, EtOH and EtOH + carob. Wistar rats were intraperitoneally pretreated with AECP (600 mg/kg body weight (bw)) during 7 days and intoxicated for 6 h by acute oral administration of EtOH (6 g/kg bw) 24 h after the last injection. We found that acute administration of EtOH leads to hepatotoxicity as monitored by the increase in the levels of hepatic marker aspartate aminotransferase and alanine aminotransferase as well as hepatic tissue injury. EtOH also increased the formation of malondialdehyde in the liver, indicating an increase in lipid peroxidation and depletion of antioxidant enzyme activities as superoxide dismutase, catalase and glutathione peroxidase. Subacute carob pretreatment prevented all the alterations induced by EtOH and returned their levels to near normal. Importantly, we showed that acute alcohol increased hepatic and plasmatic hydrogen peroxide and free iron levels. The carob pretreatment reversed EtOH effects to near control levels. These data suggest that carob could have a beneficial effect in inhibiting the oxidative damage induced by acute EtOH administration and that its mode of action may involve an opposite effect on plasma and tissue-free iron accumulation. Indeed, carob can be offered as a food additive to protect against EtOH-induced oxidative damage. PMID:23363576

  2. Acute Hepatitis.

    PubMed

    Proujansky; Vinton

    1995-10-01

    The acute onset of hepatitis may occur in adolescents as a result of hepatic damage from infectious agents, drugs, or toxins, or it may be the initial presentation of a chronic autoimmune or metabolic liver disease. The authors characterize the clinical features of each of these disorders emphasizing recognition and diagnosis. PMID:10358327

  3. The gastroprotective effects of hydroalcoholic extract of Monolluma quadrangula against ethanol-induced gastric mucosal injuries in Sprague Dawley rats

    PubMed Central

    Ibrahim, Ibrahim Abdel Aziz; Abdulla, Mahmood Ameen; Hajrezaie, Maryam; Bader, Ammar; Shahzad, Naiyer; Al-Ghamdi, Saeed S; Gushash, Ahmad S; Hasanpourghadi, Mohadeseh

    2016-01-01

    Monolluma quadrangula (Forssk.) Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE) was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg) to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg) orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid–Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the experimental rats pretreated with MHAE compared to the ulcer control group. Immunohistochemistry staining revealed an upregulation of the Hsp70 protein and a downregulation of the Bax protein in rats pretreated with MHAE compared with the control rats. Gastric homogenate showed significantly increased catalase and superoxide dismutase, and the level of malondialdehyde (MDA) was reduced in the rats pretreated with MHAE compared to the control group. In conclusion, MHAE exhibited a gastroprotective effect against ethanol-induced gastric mucosal injury in rats. The mechanism of this gastroprotection included an increase in pH and gastric wall mucus, an increase in endogenous enzymes, and a decrease in the level of MDA. Furthermore, protection was given through the upregulation of Hsp70 and the downregulation of Bax proteins. PMID:26766904

  4. The gastroprotective effects of hydroalcoholic extract of Monolluma quadrangula against ethanol-induced gastric mucosal injuries in Sprague Dawley rats.

    PubMed

    Ibrahim, Ibrahim Abdel Aziz; Abdulla, Mahmood Ameen; Hajrezaie, Maryam; Bader, Ammar; Shahzad, Naiyer; Al-Ghamdi, Saeed S; Gushash, Ahmad S; Hasanpourghadi, Mohadeseh

    2016-01-01

    Monolluma quadrangula (Forssk.) Plowes is used in Saudi traditional medicines to treat gastric ulcers. The hydroalcoholic extract of M. quadrangula (MHAE) was used in an in vivo model to investigate its gastroprotective effects against ethanol-induced acute gastric lesions in rats. Five groups of Sprague Dawley rats were used. The first group was treated with 10% Tween 20 as a control. The other four groups included rats treated with absolute ethanol (5 mL/kg) to induce an ulcer, rats treated with 20 mg/kg omeprazole as a reference drug, and rats treated with 150 or 300 mg/kg MHAE. One hour later, the rats were administered absolute ethanol (5 mL/kg) orally. Animals fed with MHAE exhibited a significantly increased pH, gastric wall mucus, and flattening of the gastric mucosa, as well as a decreased area of gastric mucosal damage. Histology confirmed the results; extensive destruction of the gastric mucosa was observed in the ulcer control group, and the lesions penetrated deep into the gastric mucosa with leukocyte infiltration of the submucosal layer and edema. However, gastric protection was observed in the rats pre-fed with plant extracts. Periodic acid-Schiff staining of the gastric wall revealed a remarkably intensive uptake of magenta color in the experimental rats pretreated with MHAE compared to the ulcer control group. Immunohistochemistry staining revealed an upregulation of the Hsp70 protein and a downregulation of the Bax protein in rats pretreated with MHAE compared with the control rats. Gastric homogenate showed significantly increased catalase and superoxide dismutase, and the level of malondialdehyde (MDA) was reduced in the rats pretreated with MHAE compared to the control group. In conclusion, MHAE exhibited a gastroprotective effect against ethanol-induced gastric mucosal injury in rats. The mechanism of this gastroprotection included an increase in pH and gastric wall mucus, an increase in endogenous enzymes, and a decrease in the level of MDA. Furthermore, protection was given through the upregulation of Hsp70 and the downregulation of Bax proteins. PMID:26766904

  5. Protective Effect of Areca catechu Leaf Ethanol Extract Against Ethanol-Induced Gastric Ulcers in ICR Mice.

    PubMed

    Lee, Kang Pa; Choi, Nan Hee; Sudjarwo, Giftania Wardani; Ahn, Sang-Hyun; Park, In-Sik; Lee, Sang-Rak; Hong, Heeok

    2016-02-01

    Gastric ulcer is a common digestive disorder that results in considerable suffering. Hence, this digestive pathology has been the focus of a number of recent studies. Although numerous drugs have been developed to treat gastric ulcers, therapeutic approaches for many of the complications associated with these drugs remain to be identified. For this reason, many natural compounds have been explored as alternatives for these drugs. In this study, we have investigated the effectiveness of Areca catechu leaf ethanol extract (ACE) for treating ethanol-induced gastric ulcers in mice. We performed histological as well as immunohistochemical examinations to explore the therapeutic properties of ACE. We also examined the levels of inflammatory signaling molecules to confirm the anti-inflammatory effects of ACE. The histochemical data demonstrate that ACE can protect the mucosal epithelium as well as the vascular supply in the gastric tract. Furthermore, ACE significantly reduced the expression levels of tumor necrosis factor-alpha (TNF-?), interleukin-6 receptor (IL-6R), inducible NO synthase (iNOS), cyclooxygenase 2 (COX2), and nuclear factor-kappa B (NF-?B). Taken together, these data suggest that ACE administration may have the potential as an alternative treatment for gastric ulcer because of its cytoprotective and anti-inflammatory effects and ability to promote the rejuvenation and revascularization of the damaged gastric epithelium. PMID:26540449

  6. Acute Toxicity and Gastroprotective Role of M. pruriens in Ethanol-Induced Gastric Mucosal Injuries in Rats

    PubMed Central

    Hassandarvish, Pouya; Abdul Majid, Nazia; Hadi, A. Hamid A.; Nordin, Noraziah; Abdulla, Mahmood A.

    2013-01-01

    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions. PMID:23781513

  7. 1,2-DIBROMOETHANE CAUSES RAT HEPATIC DNA DAMAGE AT LOW DOSES

    EPA Science Inventory

    Two oral administrations of 1,2-dibromoethane to adult female rats at doses above 10 micromoles/kg (1.9 mg/kg) caused DNA damage as determined by the alkaline elution technique. Far greater doses (300 micromoles/kg, 56.4 mg/kg) of 1,2-dibromoethane were required to cause other he...

  8. Hepatoprotective Potential of Chestnut Bee Pollen on Carbon Tetrachloride-Induced Hepatic Damages in Rats

    PubMed Central

    Y?ld?z, Oktay; Can, Zehra; Saral, zlem; Yulu?, Esin; ztrk, Ferhat; Aliyaz?c?o?lu, Rezzan; Canpolat, Sinan; Kolayl?, Sevgi

    2013-01-01

    Bee pollen has been used as an apitherapy agent for several centuries to treat burns, wounds, gastrointestinal disorders, and various other diseases. The aim of our study was to investigate the hepatoprotective effects of chestnut bee pollen against carbon tetrachloride (CCI4)-induced liver damage. Total phenolic content, flavonoid, ferric reducing/antioxidant power, and DPPH radical activity measurements were used as antioxidant capacity determinants of the pollen. The study was conducted in rats as seven groups. Two different concentrations of chestnut bee pollens (200 and 400?mg/kg/day) were given orally and one group was administered with silibinin (50?mg/kg/day, i.p.) for seven days to the rats following the CCI4 treatment. The protective effect of the bee pollen was monitored by aspartate transaminase (AST) and alanine transaminase (AST) activities, histopathological imaging, and antioxidant parameters from the blood and liver samples of the rats. The results were compared with the silibinin-treated and untreated groups. We detected that CCI4 treatment induced liver damage and both the bee pollen and silibinin-treated groups reversed the damage; however, silibinin caused significant weight loss and mortality due, severe diarrhea in the rats. The chestnut pollen had showed 28.87?mg GAE/g DW of total phenolic substance, 8.07?mg QUE/g DW of total flavonoid, 92.71?mg Cyn-3-glu/kg DW of total anthocyanins, and 9?mg ?-carotene/100?g DW of total carotenoid and substantial amount of antioxidant power according to FRAP and DPPH activity. The results demonstrated that the chestnut bee pollen protects the hepatocytes from the oxidative stress and promotes the healing of the liver damage induced by CCI4 toxicity. Our findings suggest that chestnut bee pollen can be used as a safe alternative to the silibinin in the treatment of liver injuries. PMID:24250716

  9. Efficacy of curcumin to reduce hepatic damage induced by alcohol and thermally treated oil in rats.

    PubMed

    El-Deen, Nasr A M N; Eid, Mohamed

    2010-01-01

    The authors investigated the effect of curcumin on markers of oxidative stress and liver damage in rats that chronically ingested alcohol and heated oil. Nine groups of ten Wistar male rats received combinations of curcumin 100 mg/kg body weight daily, ethanol 5 mg/kg, 15% dietary sunflower oil and 15% heated sunflower oil for 12 weeks. Serum and liver tissue were collected. Groups 4-6, which had received compounds causing oxidative stress, showed increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, cholesterol, triglycerides, low density lipoprotein, very low density lipoprotein and reduced high density lipoprotein, protein and albumin, compared with the controls. Reductions were observed in glutathione peroxidase and reductase gene expression, superoxide dismutase activity, glutathione peroxidase activity, glutathione reductase activity, reduced glutathione concentration and catalase enzyme activity. Groups 7, 8 and 9 which received curcumin with heated oil, ethanol or both, showed lower elevations in serum and oxidative damage markers compared with the corresponding non-curcumin treated groups. It can be concluded that curcumin reduces markers of liver damage in rats treated with heated sunflower oil or ethanol. PMID:20391370

  10. Hepatitis C virus and metabolic disorder interactions towards liver damage and atherosclerosis

    PubMed Central

    Vespasiani-Gentilucci, Umberto; Gallo, Paolo; De Vincentis, Antonio; Galati, Giovanni; Picardi, Antonio

    2014-01-01

    Hepatitis C virus (HCV) is one of the main causes of liver disease worldwide, and alterations of glucose metabolism have reached pandemic proportions in western countries. However, the frequent coexistence between these two conditions is more than simply coincidental, since HCV can induce insulin resistance through several mechanisms. Indeed, the virus interferes with insulin signaling both directly and indirectly, inducing the production of pro-inflammatory cytokines. Furthermore, the entire viral life cycle has strict interconnections with lipid metabolism, and HCV is responsible for a viral steatosis which is frequently superimposed to a metabolic one. Several evidences suggest that HCV-induced metabolic disorders contribute both to the evolution of liver fibrosis and, likely, to the progression of the other disorders which are typically associated with altered metabolism, in particular atherosclerosis. In the present review, we will examine in depth the links between HCV infection and insulin resistance, liver steatosis and diabetes, and analyze the impact of these interactions on the progression of liver fibrosis and atherosclerosis. Special attention will be focused on the highly debated topic of the relationship between HCV infection and cardiovascular disease. The available clinical literature on this item will be broadly reviewed and all the mechanisms possibly implied will be discussed. PMID:24659875

  11. Gastroprotective effect of taurine zinc solid dispersions against absolute ethanol-induced gastric lesions is mediated by enhancement of antioxidant activity and endogenous PGE2 production and attenuation of NO production.

    PubMed

    Yu, Chuan; Mei, Xue-Ting; Zheng, Yan-Ping; Xu, Dong-Hui

    2014-10-01

    Zinc plays a key role in maintaining gastric mucosal integrity, while alcohol dependency can lead to low zinc status. Complexes containing zinc have been reported to have better ability to protect gastric mucosa than the compounds alone. In this study, taurine zinc [Zn(NH3CH2CH2SO3)2] solid dispersions (SDs) were synthesized and investigated in an ethanol-induced ulcer model in rats. Gastric ulcer index; gastric mucosa malondialdehyde (MDA) level, glutathione (GSH) content, superoxide dismutase (SOD) activity and prostaglandin E2 (PGE2) production; and serum nitric oxide (NO) were assessed and histological analysis of the gastric mucosa tissue was performed. Taurine zinc (100, 200 mg/kg) SDs protected rat gastric mucosa from ethanol-induced injury. Moreover, the gastroprotective effect of taurine zinc SDs was accompanied by a decrease in serum NO and significant increase in gastric prostaglandin E2 (PGE2). When indomethacin, a non-selective COX inhibitor was administered before the last dose of taurine zinc, the gastroprotective effect of taurine zinc was weakened. Furthermore, taurine zinc (200 mg/kg) SDs protected against ulceration more significantly than the same dose of taurine alone, suggesting a synergistic effect between taurine and zinc. These results indicate taurine zinc protects the gastric mucosa against ethanol-induced damage by elevating antioxidants, decreasing lipid peroxidation and inhibiting the production of nitric oxide. The gastroprotective effect of taurine zinc was also partially mediated by endogenous PGE2 production. PMID:25041839

  12. Combination of Alcohol and Fructose Exacerbates Metabolic Imbalance in Terms of Hepatic Damage, Dyslipidemia, and Insulin Resistance in Rats

    PubMed Central

    Schultze, Frank Christian; Wilting, Jrg; Mihm, Sabine; Raddatz, Dirk; Ramadori, Giuliano

    2014-01-01

    Although both alcohol and fructose are particularly steatogenic, their long-term effect in the development of a metabolic syndrome has not been studied in vivo. Consumption of fructose generally leads to obesity, whereas ethanol can induce liver damage in the absence of overweight. Here, Sprague-Dawley rats were fed ad libitum for 28 days on five diets: chow (control), liquid Lieber-DeCarli (LDC) diet, LDC +30%J of ethanol (L-Et) or fructose (L-Fr), and LDC combined with 30%J ethanol and 30%J fructose (L-EF). Body weight (BW) and liver weight (LW) were measured. Blood and liver samples were harvested and subjected to biochemical tests, histopathological examinations, and RT-PCR. Alcohol-containing diets substantially reduced the food intake and BW (?3rd week), whereas fructose-fed animals had higher LW than controls (P<0.05). Additionally, leukocytes, plasma AST and leptin levels were the highest in the fructose-administered rats. Compared to the chow and LDC diets, the L-EF diet significantly elevated blood glucose, insulin, and total-cholesterol levels (also vs. the L-Et group). The albumin and Quick-test levels were the lowest, whereas ALT activity was the highest in the L-EF group. Moreover, the L-EF diet aggravated plasma triglyceride and reduced HDL-cholesterol levels more than 2.7-fold compared to the sum of the effects of the L-Et and L-Fr diets. The decreased hepatic insulin clearance in the L-EF group vs. control and LDC groups was reflected by a significantly decreased C-peptide:insulin ratio. All diets except the control caused hepatosteatosis, as evidenced by Nile red and H&E staining. Hepatic transcription of insulin receptor substrate-1/2 was mainly suppressed by the L-Fr and L-EF diets. The L-EF diet did not enhance the mitochondrial ?-oxidation of fatty acids (Cpt1? and Ppar-? expressions) compared to the L-Et or L-Fr diet. Together, our data provide evidence for the coaction of ethanol and fructose with a high-fat-diet on dyslipidemia and insulin resistance-accompanied liver damage. PMID:25101998

  13. Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats.

    PubMed

    Muthumani, M; Miltonprabu, S

    2015-06-25

    Arsenic (As) is a well-known human carcinogen and a potent hepatotoxin. Environmental exposure to arsenic imposes a serious health hazard to humans and other animals worldwide. Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiological and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than the curcumin. It has been reported that THC has antioxidant efficacy attributable to the presence of identical β-diketone of 3rd and 5th substitution in heptane moiety. In the present study, rats were orally treated with arsenic alone (5 mg kg(-1) bw/day) with THC (80 mg kg(-1) bw/day) for 28 days. Hepatotoxicity was measured by the increased activities of serum hepatospecific enzymes, namely aspartate transaminase, alanine transaminase, alkaline phosphatase and bilirubin along with increased elevation of lipid peroxidative markers, thiobarbituric acid reactive substances. And also elevated levels of serum cholesterol, triglycerides, free fatty acids and phospholipids were observed in arsenic intoxicated rats. These effects of arsenic were coupled with enhanced mitochondrial swelling, inhibition of cytochrome c oxidase, Ca(2+)ATPase and a decrease in mitochondrial calcium content. The toxic effect of arsenic was also indicated by significantly decreased activities of enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase along with non-enzymatic antioxidant such as reduced glutathione. Administration of THC exhibited significant reversal of arsenic induced toxicity in hepatic tissue. All these changes were supported by the reduction of arsenic concentration and histopathological observations of the liver. These results suggest that THC has a protective effect over arsenic induced toxicity in rat. PMID:25869292

  14. Protective effects of friedelin isolated from Azima tetracantha Lam. against ethanol-induced gastric ulcer in rats and possible underlying mechanisms.

    PubMed

    Antonisamy, Paulrayer; Duraipandiyan, Veeramuthu; Aravinthan, Adithan; Al-Dhabi, Naif Abdullah; Ignacimuthu, Savarimuthu; Choi, Ki Choon; Kim, Jong-Hoon

    2015-03-01

    The current study was aimed to investigate the gastroprotective effects of friedelin isolated from the hexane extract of leaves of Azima tetracantha. Ethanol-induced gastric ulcer model was used to investigate the gastroprotective effects of friedelin. Antioxidant enzymes, lipid peroxidation, nitric oxide, gastric vascular permeability, pro and anti-inflammatory cytokines and apoptosis level have been investigated. Ethanol caused severe gastric damage and friedelin pretreatment protected against its deleterious role. Antioxidant enzyme activities, anti-inflammatory cytokines, prostaglandin E2 (PGE2), constitutive nitric oxide synthase (cNOS) and mucus weight have been increased significantly. However, the vascular permeability, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), caspase-3 and apoptosis level have significantly been decreased after friedelin ingestion. The present study has clearly demonstrated the anti-ulcer potential of friedelin, these findings suggested that friedelin could be a new useful natural gastroprotective tool against gastric ulcer. PMID:25617794

  15. Fractalkine is a find-me signal released by neurons undergoing ethanol-induced apoptosis

    PubMed Central

    Sokolowski, Jennifer D.; Chabanon-Hicks, Chloe N.; Han, Claudia Z.; Heffron, Daniel S.; Mandell, James W.

    2014-01-01

    Apoptotic neurons generated during normal brain development or secondary to pathologic insults are efficiently cleared from the central nervous system. Several soluble factors, including nucleotides, cytokines, and chemokines are released from injured neurons, signaling microglia to find and clear debris. One such chemokine that serves as a neuronalmicroglial communication factor is fractalkine, with roles demonstrated in several models of adult neurological disorders. Lacking, however, are studies investigating roles for fractalkine in perinatal brain injury, an important clinical problem with no effective therapies. We used a well-characterized mouse model of ethanol-induced apoptosis to assess the role of fractalkine in neuronalmicroglial signaling. Quantification of apoptotic debris in fractalkine-knockout (KO) and CX3CR1-KO mice following ethanol treatment revealed increased apoptotic bodies compared to wild type mice. Ethanol-induced injury led to release of soluble, extracellular fractalkine. The extracellular media harvested from apoptotic brains induces microglial migration in a fractalkine-dependent manner that is prevented by neutralization of fractalkine with a blocking antibody or by deficiency in the receptor, CX3CR1. This suggests fractalkine acts as a find-me signal, recruiting microglial processes toward apoptotic cells to promote their clearance. Next, we aimed to determine whether there are downstream alterations in cytokine gene expression due to fractalkine signaling. We examined mRNA expression in fractalkine-KO and CX3CR1-KO mice after alcohol-induced apoptosis and found differences in cytokine production in the brains of these KOs by 6 h after ethanol treatment. Collectively, this suggests that fractalkine acts as a find me signal released by apoptotic neurons, and subsequently plays a critical role in modulating both clearance and inflammatory cytokine gene expression after ethanol-induced apoptosis. PMID:25426022

  16. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation.

    PubMed

    Rashid, Mohammad Abdur; Kim, Hee-Yong

    2016-03-01

    Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment. PMID:26586023

  17. Autoconditioning factor relieves ethanol-induced growth inhibition of Saccharomyces cerevisiae

    SciTech Connect

    Walker-Caprioglio, H.M.; Parks, L.W.

    1987-01-01

    Viable Saccharomyces cerevisiae suspended in medium containing growth-inhibiting concentrations of ethanol produce a metabolite that relieves growth inhibition. This autoconditioning of the medium by yeasts is due to the formation of small amounts (0.01%, vol/vol) of acetaldehyde. The effect is duplicated precisely in fresh medium by the addition of acetaldehyde. Acetaldehyde does not increase the yield of or accelerate ethanol production by the organism. Ethanol-induced modifications of membrane order in the plasma membranes, as measured by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, were not resolved by exogenously added acetaldehyde.

  18. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.

    PubMed

    Je, Jae-Young; Lee, Da-Bin

    2015-06-01

    Naturally occurring phenolic compounds are widely found in plants. Here, the phenolic composition and hepatoprotective effect of the butanolic extract (BE) from Nelumbo nucifera leaves against H2O2-induced hepatic damage in cultured hepatocytes were investigated. BE showed high total phenol and flavonoid contents, and major phenolic compounds are quercetin, catechin, ferulic acid, rutin, and protocatechuic acid by HPLC analysis. BE effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) cation radicals (IC50 values of 5.21 μg mL(-1) for DPPH and 6.22 μg mL(-1) for ABTS(+)) and showed strong reducing power. Pretreatment of BE prior to 650 μM H2O2 exposure markedly increased cell viability and suppressed H2O2-induced intracellular reactive oxygen species generation and AAPH-induced cell membrane lipid peroxidation. In addition, BE up-regulated intracellular glutathione levels under normal and oxidative stress conditions. Notably, the hepatoprotective effect of BE was directly correlated with the increased expression of superoxide dismutase-1 (SOD-1) by 0.62-fold, catalase (CAT) by 0.42-fold, and heme oxygenase-1 (HO-1) by 2.4-fold. Pretreatment of BE also increased the nuclear accumulation of Nrf2 by 8.1-fold indicating that increased SOD-1, CAT, and HO-1 expressions are Nrf2-mediated. PMID:25962859

  19. Xanthohumol, a main prenylated chalcone from hops, reduces liver damage and modulates oxidative reaction and apoptosis in hepatitis C virus infected Tupaia belangeri.

    PubMed

    Yang, Mingbo; Li, Na; Li, Fang; Zhu, Qianqian; Liu, Xi; Han, Qunying; Wang, Yawen; Chen, Yanping; Zeng, Xiaoyan; Lv, Yi; Zhang, Pingping; Yang, Cuiling; Liu, Zhengwen

    2013-08-01

    Hepatitis C virus (HCV) infection in Tupaia belangeri (Tupaia) represents an important model of HCV infection. Xanthohumol (XN), a major prenylated chalcone from hops, has various biological activities including hepatopreventive and anti-viral activities. In this study, Tupaias infected with HCV RNA positive serum were used to evaluate the effects of XN on liver damage, oxidative reaction, apoptosis and viral protein expression in liver tissues. The Tupaias inoculated with HCV positive serum had elevated serum aminotransferase levels and inflammation, especially hepatic steatosis, and HCV core protein expression in liver tissue. In the animals inoculated with HCV positive serum, XN significantly decreased aminotransferase levels, histological activity index, hepatic steatosis score and transforming growth factor ?1 expression in liver tissue compared with the animals without XN intervention. XN reduced HCV core protein expression in liver tissue compared with those without XN intervention but the difference was not significant. XN significantly decreased malondialdehyde, potentiated superoxide dismutase and glutathione peroxidase, reduced Bax expression, promoted Bcl-xL and inhibited caspase 3 activity in liver tissues compared with the animals without XN intervention. These results indicate that XN may effectively improve hepatic inflammation, steatosis and fibrosis induced by HCV in Tupaias primarily through inhibition of oxidative reaction and regulation of apoptosis and possible suppression of hepatic stellate cell activation. The anti-HCV potential of XN needs further investigation. PMID:23669332

  20. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats

    PubMed Central

    Ye, Qinyuan; Lian, Fuzhi; Chavez, Pollyanna R.G.; Chung, Jayong; Ling, Wenhua; Qin, Hua; Seitz, Helmut K.

    2012-01-01

    Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethanol liquid diet or a non-ethanol liquid diet, with or without CMZ for one and ten months. A single intraperitoneal injection of diethylnitrosamine (DEN, 20 mg/kg) was given to initiate hepatic carcinogenesis. CYP2E1 expression, inflammatory proteins, cell proliferation, protein-bound 4-HNE, etheno-DNA adducts, 8-hydroxy-2'-deoxyguanosine (8-OHdG), retinoid concentrations, and hepatic carcinogenesis were examined. Ethanol feeding for 1 month with DEN resulted in significantly increased hepatic CYP2E1 levels and increased nuclear accumulation of NF-?B protein and TNF-? expression, which were associated with increased cyclin D1 expression and p-GST positive altered hepatic foci. All of these changes induced by ethanol feeding were significantly inhibited by the one month CMZ treatment. At 10-months of treatment, hepatocellular adenomas were detected in ethanol-fed rats only, but neither in control rats nor in animals receiving ethanol and CMZ. The 8-OHdG formation was found to be significantly increased in ethanol fed animals and normalized with CMZ treatment. In addition, alcohol-reduced hepatic retinol and retinoic acid concentrations were restored by CMZ treatment to normal levels in the rats at 10 months of treatment. These data demonstrate that the inhibition of ethanol-induced CYP2E1 as a key pathogenic factor can counteract the tumor-promoting action of ethanol by decreasing TNF-? expression, NF-?B activation, and oxidative DNA damage as well as restoring normal hepatic levels of retinoic acid in DEN-treated rats. PMID:23543859

  1. Protective effect of dieckol isolated from Ecklonia cava against ethanol caused damage in vitro and in zebrafish model.

    PubMed

    Kang, Min-Cheol; Kim, Kil-Nam; Kang, Sung-Myung; Yang, Xiudong; Kim, Eun-A; Song, Choon Bok; Nah, Jae-Woon; Jang, Mi-Kyeong; Lee, Jung-Suck; Jung, Won-Kyo; Jeon, You-Jin

    2013-11-01

    In the present study, the protective effects of phlorotannins isolated from Ecklonia cava against ethanol-induced cell damage and apoptosis were investigated both in vitro and in vivo. Three phlorotannin compounds, namely phloroglucinol, eckol and dieckol, were successively isolated and identified from the extract. Dieckol showed the strongest protective effect against ethanol-induced cell apoptosis in Chang liver cells, with the lowest cytotoxicity. It was observed that dieckol reduced cell apoptosis through activation of Bcl-xL and PARP, and down-regulation of Bax and caspase-3 in Western blot analyses. In the in vivo study, the protective effect of ethanol induced by dieckol was investigated in a zebrafish model. The dieckol treated group scavenged intracellural reactive oxygen species and prevented lipid peroxidation and ethanol induced cell death in the zebrafish embryo. In conclusion, dieckol isolated from E. cava might possess a potential protective effect against ethanol-induced liver diseases. PMID:24189014

  2. Ethanol-induced alterations in sup 14 C-glucose utilization: Modulation by brain adenosine in mice

    SciTech Connect

    Anwer, J.; Dar, M.S. )

    1992-02-26

    The possible role of brain adenosine (Ado) in acute ethanol-induced alteration in glucose utilization in the cerebellum and brain stem was investigated. The slices were incubated for 100 min in a glucose medium in Warburg flasks using {sup 14}C-glucose as a tracer. Trapped {sup 14}CO{sub 2} was counted to estimate glucose utilization. Ethanol markedly increased the glucose utilization in both areas of brain. Theophylline, an Ado antagonist, significantly reduced ethanol-induced increase in glucose utilization in both brain areas. Ado agonist CHA significantly accentuated ethanol-induced increase in glucose utilization in both motor areas. Ado agonist CHA significantly accentuated ethanol-induced increase in glucose utilization in both motor areas. Ethanol was still able to produce a smaller but significant increase in glucose utilization in both brain areas when theophylline and CHA were given together, suggesting an additional mechanism. Collectively, the data indicate that ethanol-induced glucose utilization in the cerebellum and brain stem is modulated by brain Ado receptor and by non-adenosinergic mechanism.

  3. Ethanol-induced oxidative stress is mediated by p38 MAPK pathway in mouse hippocampal cells.

    PubMed

    Ku, Bo Mi; Lee, Yeon Kyung; Jeong, Joo Yeon; Mun, Jihye; Han, Jae Yoon; Roh, Gu Seob; Kim, Hyun Joon; Cho, Gyeong Jae; Choi, Wan Sung; Yi, Gwan-su; Kang, Sang Soo

    2007-05-23

    It has been known that ethanol causes neuronal cell death through oxidative stress. Ethanol itself and reactive oxygen species (ROS) produced by ethanol modulate intracellular signaling pathways including mitogen-activated protein kinase (MAPK) cascades. This study was conducted to examine the impact of ethanol on MAPK signaling in HT22 cells. Ethanol (100 and 400mM) caused activation of ERK, p38 MAPK, and JNK. ERK activation occurred in early time and p38 MAPK activation was evident when ERK activation was diminished. Specific inhibitor of p38 MAPK (SB203580) protected HT22 cells against ethanol, which was accompanied by an inhibition of ROS accumulation. However, inhibitors of ERK (U0126) and JNK (SP600125) had no effects on ethanol-induced neuronal cell death when they are treated with ethanol for 24h. These results suggest that p38 MAPK may have important roles in ROS accumulation during ethanol-induced oxidative stress in HT22 cells. PMID:17420100

  4. A Novel Antioxidant Multitarget Iron Chelator M30 Protects Hepatocytes against Ethanol-Induced Injury

    PubMed Central

    Lv, Yi; Lin, Bin; Tipoe, George L.; Youdim, Moussa B. H.; Xing, Feiyue; Liu, Yingxia

    2015-01-01

    The multitarget iron chelator, M30, is a novel antioxidant and protective agent against oxidative stress in a spectrum of diseases. However, there is no report regarding its role in liver diseases. Since oxidative stress is one of the major pathological events during the progression of alcoholic liver diseases, the protective effects and mechanisms of M30 on ethanol-induced hepatocyte injury were investigated in this study. Rat hepatocyte line BRL-3A was pretreated with M30 prior to ethanol treatment. Cell death, apoptosis, oxidative stress, and inflammation were examined. Specific antagonists and agonists were applied to determine the involvements of hypoxia inducible factor-1 alpha (HIF-1?) and its upstream adenylate cyclase (AC)/cyclic AMP (cAMP)/protein kinase A (PKA)/HIF-1?/NOD-like receptor 3 (NLRP3) inflammasome pathway. We found that M30 significantly attenuated ethanol-induced cellular death, apoptosis, production of reactive oxygen species (ROS), and secretion of inflammatory cytokines and inhibited activation of the AC/cAMP/PKA/HIF-1?/NLRP3 inflammasome pathway. Inhibition and activation of the AC/cAMP/PKA/HIF-1? pathway mimicked and abolished the effects of M30, respectively. In conclusion, inhibition of the AC/cAMP/PKA/HIF-1?/NLRP3 inflammasome pathway by M30 partially contributes to its attenuation of hepatocyte injury caused by ethanol exposure. PMID:25722794

  5. Protective effect of Quercetin in the Regression of Ethanol-Induced Hepatotoxicity

    PubMed Central

    Vidhya, A.; Indira, M.

    2009-01-01

    This study examined the protective effects of quercetin on chronic ethanol-induced liver injury. Rats were treated with ethanol at a dose of 4 g/100 g/day for 90 days. After ethanol intoxication, levels of serum amino transferases were significantly elevated. Decreased activity of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was also observed on ethanol administration. Increased amounts of lipid peroxidation products viz. hydroperoxides, conjugated dienes and malodialdehyde were observed on ethanol intoxication. Ethanol administration resulted in significant decrease in liver glutathione content. After 90 days, the control animals were divided into two groups, the control group and the control+quercetin group. Ethanol-treated group was divided into two groups, abstention group and quercetin-supplemented group. After 30 days, the animals were sacrificed and various biochemical parameters were analyzed. The changes in enzyme activities as well as levels of lipid peroxidation products were reversed to a certain extent by quercetin. Quercetin supplementation resulted in increase of glutathione content to a significant level compared to normal abstention group. Quercetin supplemented group showed a faster recovery than abstention group. This shows the protective effect of quercetin against chronic ethanol induced hepatotoxicity. Histopathological study is also in line with these results. PMID:20502571

  6. Conservation of the ethanol-induced locomotor stimulant response among arthropods.

    PubMed

    Kliethermes, Christopher L

    2015-01-01

    Ethanol-induced locomotor stimulation has been variously described as reflective of the disinhibitory, euphoric, or reinforcing effects of ethanol and is commonly used as an index of acute ethanol sensitivity in rodents. The fruit fly Drosophila melanogaster also shows a locomotor stimulant response to ethanol that is believed to occur via conserved, ethanol-sensitive neurobiological mechanisms, but it is currently unknown whether this response is conserved among arthropod species or is idiosyncratic to D. melanogaster. The current experiments surveyed locomotor responses to ethanol in a phylogenetically diverse panel of insects and other arthropod species. A clear ethanol-induced locomotor stimulant response was seen in 9 of 13 Drosophilidae species tested, in 8 of 10 other species of insects, and in an arachnid (wolf spider) and a myriapod (millipede) species. Given the diverse phylogenies of the species that showed the response, these experiments support the hypothesis that locomotor stimulation is a conserved behavioral response to ethanol among arthropod species. Further comparative studies are needed to determine whether the specific neurobiological mechanisms known to underlie the stimulant response in D. melanogaster are conserved among arthropod and vertebrate species. PMID:25721420

  7. Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats.

    PubMed

    Prakash, Usha N S; Srinivasan, Krishnapura

    2010-04-01

    Spices are traditionally known to have digestive stimulant action and to cure digestive disorders. In this study, the protective effect of dietary spices with respect to activities of antioxidant enzymes in gastric and intestinal mucosa was examined. Groups of Wistar rats were fed for 8 weeks with diets containing black pepper (0.5%), piperine (0.02%), red pepper (3.0%), capsaicin (0.01%), and ginger (0.05%). All these spices significantly enhanced the activities of antioxidant enzymes--superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase--in both gastric and intestinal mucosa, suggesting a gastrointestinal protective role for these spices. In a separate study, these dietary spices were found to alleviate the diminished activities of antioxidant enzymes in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the spices was also reflected in their positive effect on mucosal glycoproteins, thereby lowering mucosal injury. The amelioration of the ethanol-induced decrease in the activities of antioxidant enzymes in gastric and intestinal mucosa by dietary spices suggests their beneficial gastrointestinal protective role. This is the first report on the gastrointestinal protective potential of dietary spices. PMID:20383223

  8. Electrolyzed-reduced water inhibits acute ethanol-induced hangovers in Sprague-Dawley rats.

    PubMed

    Park, Seung-Kyu; Qi, Xu-Feng; Song, Soon-Bong; Kim, Dong-Heui; Teng, Yung-Chien; Yoon, Yang-Suk; Kim, Kwang-Yong; Li, Jian-Hong; Jin, Dan; Lee, Kyu-Jae

    2009-10-01

    Ethanol consumption disturbs the balance between the pro- and anti-oxidant systems of the organism, leading to oxidative stress. Electrolyzed-reduced water (ERW) is widely used by people in East Asia for drinking purposes because of its therapeutic properties including scavenging effect of reactive oxygen species. This study was performed to investigate the effect of ERW on acute ethanol-induced hangovers in Sprague-Dawley rats. Alcohol concentration in serum of ERW-treated rats showed significant difference at 1 h, 3 h and 5 h respectively as compared with the rats treated with distilled water. Both alcohol dehydrogenase type 1 and acetaldehyde dehydrogenase related with oxidation of alcohol were significantly increased in liver tissue while the level of aspartate aminotransferase and alanine aminotransferase in serum was markedly decreased 24 h after pre-oral administration of ERW. Moreover, oral administration of ERW significantly activated non-ezymatic (glutathione) and enzymatic (glutathione peroxidase, glutathione-S-transferase, Cu/Zn-superoxide dismutase and catalase) antioxidants in liver tissues compared with the control group. These results suggest that drinking ERW has an effect of alcohol detoxification by antioxidant mechanism and has potentiality for relief of ethanol-induced hangover symptoms. PMID:19887722

  9. The ameliorative effect of dates (Phoenix dactylifera L.) on ethanol-induced gastric ulcer in rats.

    PubMed

    Al-Qarawi, A A; Abdel-Rahman, H; Ali, B H; Mousa, H M; El-Mougy, S A

    2005-04-26

    The present work aimed at testing, in a rat model of ethanol-induced gastric ulceration, a local folk medicinal claim that dates are beneficial in gastric ulcers in humans. Aqueous and ethanolic undialyzed and dialyzed extracts from date fruit and pits were given orally to rats at a dose of 4 ml/kg for 14 consecutive days. On the last day of treatment, rats were fasted for 24 h, and were then given ethanol, 80% (1 ml/rat) by gastric intubation to induce gastric ulcer. Rats were killed after 1 h of ethanol exposure, and the incidence and severity of the ulceration were estimated, as well as the concentrations of gastrin in plasma, and histamine and mucus in the gastric mucosa. A single group of rats that were fasted for 24 h, was administered orally with lansoprazole (30 mg/kg), and was given 80% ethanol as above, 8 h thereafter, served as a positive control. The results indicated that the aqueous and ethanolic extracts of the date fruit and, to a lesser extent, date pits, were effective in ameliorating the severity of gastric ulceration and mitigating the ethanol-induced increase in histamine and gastrin concentrations, and the decrease in mucin gastric levels. The ethanolic undialyzed extract was more effective than the rest of the other extracts used. It is postulated that the basis of the gastroprotective action of date extracts may be multi-factorial, and may include an anti-oxidant action. PMID:15814265

  10. Structure and preventive effects against ethanol-induced gastric ulcer of an expolysaccharide from Lachnum sp.

    PubMed

    Xu, Ping; Yang, Liu; Yuan, Ru-Yue; Ye, Zi-Yang; Ye, Hui-Ran; Ye, Ming

    2016-05-01

    An extracellular polysaccharide of Lachnum sp. (LEP) was purified by DEAE-cellulose 52 column chromatography and Sepharose CL-6B column chromatography. LEP-2a was identified to be a homogeneous component with an average molecular weight of 3.22×10(4)Da. The structure of LEP-2a was characterized by chemical and spectroscopic methods, including methylation analysis, periodate oxidation-smith degradation, infrared spectroscopy and NMR analysis. Results indicated that LEP-2a was a (1→3)-,(1→6)-β-D-Glcp, whose branch chain was consist of two d-glucopyranosyl residues linked by β-1,3-glycosidic linkage, which was linked at C6 of the backbone chain by β-1,6-glycosidic linkage. To study the protective effects of LEP-2a on the ethanol-induced gastric ulcer in mice, LEP-2a (100, 200 and 400mg/kg/d) was given to mice by gavage for 2 weeks. Results showed that LEP-2a significantly decreased the ulcer bleeding areas, pepsin activity, gastric juice volume, gastric juice total acidity and the malondialdehyde (MDA) content in serum. Meanwhile, the superoxide dismutase (SOD) increased significantly. The above findings suggested that LEP-2a had a significant preventive effect against the ethanol-induced gastric ulcer. PMID:26774377

  11. Quercetin protects rat hepatocytes from oxidative damage induced by ethanol and iron by maintaining intercellular liable iron pool.

    PubMed

    Li, Y; Deng, Y; Tang, Y; Yu, H; Gao, C; Liu, L; Liu, L; Yao, P

    2014-05-01

    Accumulating evidence has shown that ethanol-induced iron overload plays a crucial role in the development and progression of alcoholic liver disease. We designed the present study to investigate the potential protective effect of quercetin, a naturally occurring iron-chelating antioxidant on alcoholic iron overload and oxidative stress. Ethanol-incubated (100 mmol/L) rat primary hepatocytes were co-treated by quercetin (100 µmol/L) and different dose of ferric nitrilotriacetate (Fe-NTA) for 24 h. When the hepatic enzyme releases in the culture medium, redox status of hepatocytes and the intercellular labile iron pool (LIP) level were assayed. Our data showed that Fe-NTA dose dependently induced cellular leakage of aspartate transaminase and lactate dehydrogenase, glutathione depletion, superoxide dismutase inactivation, and overproduction of malondialdehyde) and reactive oxygen species (ROS) of intact and especially ethanol-incubated hepatocytes. The oxidative damage resulted from ethanol, Fe-NTA, and especially their combined treatment was substantially alleviated by quercetin, accompanying the corresponding normalization of intercellular LIP level. Iron in excess, thus, may aggravate ethanol hepatotoxicity through Fenton-active LIP, and quercetin attenuated ethanol-induced iron and oxidative stress. To maintain intercellular LIP contributes to the hepatoprotective effect of quercetin besides its direct ROS-quenching activity. PMID:23928830

  12. Gastroprotective activity of Annona muricata leaves against ethanol-induced gastric injury in rats via Hsp70/Bax involvement

    PubMed Central

    Moghadamtousi, Soheil Zorofchian; Rouhollahi, Elham; Karimian, Hamed; Fadaeinasab, Mehran; Abdulla, Mahmood Ameen; Kadir, Habsah Abdul

    2014-01-01

    The popular fruit tree of Annona muricata L. (Annonaceae), known as soursop and graviola, is a widely distributed plant in Central and South America and tropical countries. Leaves of A. muricata have been reported to possess antioxidant and anti-inflammatory activities. In this study, the gastroprotective effects of ethyl acetate extract of A. muricata leaves (EEAM) were investigated against ethanol-induced gastric injury models in rats. The acute toxicity test of EEAM in rats, carried out in two doses of 1 g/kg and 2 g/kg, showed the safety of this plant, even at the highest dose of 2 g/kg. The antiulcer study in rats (five groups, n=6) was performed with two doses of EEAM (200 mg/kg and 400 mg/kg) and with omeprazole (20 mg/kg), as a standard antiulcer drug. Gross and histological features showed the antiulcerogenic characterizations of EEAM. There was significant suppression on the ulcer lesion index of rats pretreated with EEAM, which was comparable to the omeprazole effect in the omeprazole control group. Oral administration of EEAM to rats caused a significant increase in the level of nitric oxide and antioxidant activities, including catalase, glutathione, and superoxide dismutase associated with attenuation in gastric acidity, and compensatory effect on the loss of gastric wall mucus. In addition, pretreatment of rats with EEAM caused significant reduction in the level of malondialdehyde, as a marker for oxidative stress, associated with an increase in prostaglandin E2 activity. Immunohistochemical staining also demonstrated that EEAM induced the downregulation of Bax and upregulation of Hsp70 proteins after pretreatment. Collectively, the present results suggest that EEAM has a promising antiulcer potential, which could be attributed to its suppressive effect against oxidative damage and preservative effect toward gastric wall mucus. PMID:25378912

  13. Gastroprotective activity of Annona muricata leaves against ethanol-induced gastric injury in rats via Hsp70/Bax involvement.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Rouhollahi, Elham; Karimian, Hamed; Fadaeinasab, Mehran; Abdulla, Mahmood Ameen; Kadir, Habsah Abdul

    2014-01-01

    The popular fruit tree of Annona muricata L. (Annonaceae), known as soursop and graviola, is a widely distributed plant in Central and South America and tropical countries. Leaves of A. muricata have been reported to possess antioxidant and anti-inflammatory activities. In this study, the gastroprotective effects of ethyl acetate extract of A. muricata leaves (EEAM) were investigated against ethanol-induced gastric injury models in rats. The acute toxicity test of EEAM in rats, carried out in two doses of 1 g/kg and 2 g/kg, showed the safety of this plant, even at the highest dose of 2 g/kg. The antiulcer study in rats (five groups, n=6) was performed with two doses of EEAM (200 mg/kg and 400 mg/kg) and with omeprazole (20 mg/kg), as a standard antiulcer drug. Gross and histological features showed the antiulcerogenic characterizations of EEAM. There was significant suppression on the ulcer lesion index of rats pretreated with EEAM, which was comparable to the omeprazole effect in the omeprazole control group. Oral administration of EEAM to rats caused a significant increase in the level of nitric oxide and antioxidant activities, including catalase, glutathione, and superoxide dismutase associated with attenuation in gastric acidity, and compensatory effect on the loss of gastric wall mucus. In addition, pretreatment of rats with EEAM caused significant reduction in the level of malondialdehyde, as a marker for oxidative stress, associated with an increase in prostaglandin E2 activity. Immunohistochemical staining also demonstrated that EEAM induced the downregulation of Bax and upregulation of Hsp70 proteins after pretreatment. Collectively, the present results suggest that EEAM has a promising antiulcer potential, which could be attributed to its suppressive effect against oxidative damage and preservative effect toward gastric wall mucus. PMID:25378912

  14. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 ?g/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. PMID:23546397

  15. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    PubMed

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure. PMID:26057446

  16. Effect and mechanism of evodiamine against ethanol-induced gastric ulcer in mice by suppressing Rho/NF-кB pathway.

    PubMed

    Zhao, Zhongyan; Gong, Shilin; Wang, Shumin; Ma, Chunhua

    2015-09-01

    Evodiamine (EVD), a major alkaloid compound extracted from the dry unripened fruit Evodia fructus (Evodia rutaecarpa Benth., Rutaceae), has various pharmacological effects. The purpose of the present study was to investigate the possible anti-ulcerogenic potential of EVD and explore the underlying mechanism against ethanol-induced gastric ulcer in mice. Administration of EVD at the doses of 20, 40mg/kg body weight prior to the ethanol ingestion could effectively protect the stomach from ulceration. The gastric lesion was significantly ameliorated in the EVD group compared with that in the model group. Pre-treatment with EVD prevented the oxidative damage and decreased the levels of prostaglandin E2 (PGE2) content, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, EVD pretreatment markedly increased the serum levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), decreased malonaldehyde (MDA) content in serum and activity of myeloperoxidase (MPO) in stomach tissues compared with those in the model group. In the mechanistic study, significant elevation of Rho, Rho-kinase 1 (ROCK1), ROCK2, cytosolic and nucleic NF-κBp65 expressions were observed in the gastric mucosa group, whereas EVD effectively suppressed the protein expressions of Rho, Rho-kinase 1 (ROCK1), ROCK2, cytosolic and nucleic NF-κBp65 in mice. Moreover, EVD showed protective activity on ethanol-induced GES-1 cells, while the therapeutic effects were not due to its cytotoxity. Taken together, these results strongly indicated that EVD exerted a gastro-protective effect against gastric ulceration. The underlying mechanism might be associated with the improvement of antioxidant and anti-inflammatory status through Rho/NF-κB pathway. PMID:26225926

  17. 14-Deoxyandrographolide alleviates ethanol-induced hepatosteatosis through stimulation of AMP-activated protein kinase activity in rats.

    PubMed

    Mandal, Samir; Mukhopadhyay, Sibabrata; Bandhopadhyay, Sukdeb; Sen, Gargi; Biswas, Tuli

    2014-03-01

    Andrographis paniculata (AP) is a traditional medicinal plant of Ayurveda. It grows widely in Asia and isprescribed in the treatment of liver diseases. Here we have investigated the beneficial role of 14-deoxyandrographolide (14-DAG), a bioactive diterpenoid from AP, against alcoholic steatosis in rats. 14-DAG was extracted from aerial parts (leaves and stems) of AP. Rats were fed with ethanol for 8 weeks. Animals were treated with 14-DAG during the last 4 weeks of ethanol treatment. Invitro studies were undertaken in a human hepatocellular liver carcinoma cell line culture. Hepatosteatosis was assessed from histopathological studies of liver sections. Acetyl-CoA, malonyl-CoA, and triglyceride contents were determined using commercially available kits. Fatty acid synthesis was evaluated from incorporation of 1-(14)C acetate. Regulation of fatty acid oxidation and lipogenesis were monitored with immunoblotting and immunoprecipitation studies. Ethanol exposure led to hepatotoxicity, as evident from the marked enhancement in the levels of AST and ALT. The values decreased almost to control levels in response to 14-DAG treatment. Results showed that ethanol feeding induced deactivation of AMP-activated protein kinase (AMPK) that led to enhanced lipid synthesis and decreased fatty acid oxidation, culminating in hepatic fat accumulation. Treatment with 14-DAG activated AMPK through induction of cyclic AMP-protein kinase A pathway. Activation of AMPK was followed by down-regulation of sterol regulatory element binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase, leading to suppression of lipogenesis. This was associated with up-regulation of sirtuin 1 and depletion of malonyl-CoA, in favor of increased fatty acid oxidation. 14-DAG controlled ethanol-induced hepatosteatosis by interfering with dysregulation of lipid metabolism. In conclusion, our results indicated that 14-DAG was capable of preventing the development of fatty liver through AMPK-mediated regulation of lipid metabolism. This finding supported the hepatoprotective role of 14-DAG, which might serve as a therapeutic option to alleviate hepatosteatosis in chronic alcoholism. PMID:24507479

  18. Rutin attenuates ethanol-induced neurotoxicity in hippocampal neuronal cells by increasing aldehyde dehydrogenase 2.

    PubMed

    Song, Kibbeum; Kim, Sokho; Na, Ji-Young; Park, Jong-Heum; Kim, Jae-Kyung; Kim, Jae-Hun; Kwon, Jungkee

    2014-10-01

    Rutin is derived from buckwheat, apples, and black tea. It has been shown to have beneficial anti-inflammatory and antioxidant effects. Ethanol is a central nervous system depressant and neurotoxin. Its metabolite, acetaldehyde, is critically toxic. Aldehyde dehydrogenase 2 (ALDH2) metabolizes acetaldehyde into nontoxic acetate. This study examined rutin's effects on ALDH2 activity in hippocampal neuronal cells (HT22 cells). Rutin's protective effects against acetaldehyde-based ethanol neurotoxicity were confirmed. Daidzin, an ALDH2 inhibitor, was used to clarify the mechanisms of rutin's protective effects. Cell viability was significantly increased after rutin treatment. Rutin significantly reversed ethanol-increased Bax, cytochrome c expression and caspase 3 activity, and decreased Bcl-2 and Bcl-xL protein expression in HT22 cells. Interestingly, rutin increased ALDH2 expression, while daidzin reversed this beneficial effect. Thus, this study demonstrates rutin protects HT22 cells against ethanol-induced neurotoxicity by increasing ALDH2 activity. PMID:25084483

  19. Ethanol induces oxidative stress in alveolar macrophages via upregulation of NADPH oxidases.

    PubMed

    Yeligar, Samantha M; Harris, Frank L; Hart, C Michael; Brown, Lou Ann S

    2012-04-15

    Chronic alcohol abuse is a comorbid variable of acute respiratory distress syndrome. Previous studies showed that, in the lung, chronic alcohol consumption increased oxidative stress and impaired alveolar macrophage (AM) function. NADPH oxidases (Noxes) are the main source of reactive oxygen species in AMs. Therefore, we hypothesized that chronic alcohol consumption increases AM oxidant stress through modulation of Nox1, Nox2, and Nox4 expression. AMs were isolated from male C57BL/6J mice, aged 8-10 wk, which were treated with or without ethanol in drinking water (20% w/v, 12 wk). MH-S cells, a mouse AM cell line, were treated with or without ethanol (0.08%, 3 d) for in vitro studies. Selected cells were treated with apocynin (300 μM), a Nox1 and Nox2 complex formation inhibitor, or were transfected with Nox small interfering RNAs (20-35 nM), before ethanol exposure. Human AMs were isolated from alcoholic and control patients' bronchoalveolar lavage fluid. Nox mRNA levels (quantitative RT-PCR), protein levels (Western blot and immunostaining), oxidative stress (2',7'-dichlorofluorescein-diacetate and Amplex Red analysis), and phagocytosis (Staphylococcus aureus internalization) were measured. Chronic alcohol increased Nox expression and oxidative stress in mouse AMs in vivo and in vitro. Experiments using apocynin and Nox small interfering RNAs demonstrated that ethanol-induced Nox4 expression, oxidative stress, and AM dysfunction were modulated through Nox1 and Nox2 upregulation. Further, Nox1, Nox2, and Nox4 protein levels were augmented in human AMs from alcoholic patients compared with control subjects. Ethanol induces AM oxidative stress initially through upregulation of Nox1 and Nox2 with downstream Nox4 upregulation and subsequent impairment of AM function. PMID:22412195

  20. The role of endogenous dynorphin in ethanol-induced state-dependent CPP

    PubMed Central

    Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Hamid, Abdul; Lutfy, Kabirullah

    2015-01-01

    The aim of this study was to determine the role of the endogenous dynorphin/kappa opioid receptor (DYN/KOP) system in ethanol-induced state-dependent conditioned place preference (CPP). To this end, mice lacking the pro-DYN gene and their wild-type littermates/controls were tested for baseline place preference on day 1, received 15-min morning and afternoon conditionings with saline or ethanol (2 g/kg) each day for three consecutive days and were then tested for CPP under a drug-free state on day 5 and following a saline or ethanol (1 or 2 g/kg) challenge on day 8. Given that compensatory developmental changes may occur in knockout mice, the effect of nor-binaltorphimine (nor-BNI), a KOP antagonist, on state-dependent CPP induced by ethanol was also studied in wild-type mice. On day 1, mice were tested for baseline place preference and, 4 h later, treated with saline or nor-BNI (10 mg/kg). On days 24, mice received 15-min morning and afternoon conditionings and were tested for CPP under a drug-free state on day 5 and following an ethanol (1 g/kg) challenge on day 8. A comparable CPP was observed in mice lacking the pro-DYN gene and their wild-type littermates/controls as well as in wild-type mice treated with nor-BNI and their saline-treated controls. However, these mice compared to their respective controls exhibited a greater CPP response following an ethanol (1 g/kg) challenge, suggesting that the endogenous DYN/KOP system may negatively regulate ethanol-induced state-dependent CPP. PMID:22074899

  1. SELECTIVE VULNERABILITY OF EMBRYONIC CELL POPULATIONS TO ETHANOL-INDUCED APOPTOSIS: IMPLICATIONS FOR ALCOHOL RELATED BIRTH DEFECTS AND NEURODEVELOPMENTAL DISORDER

    EPA Science Inventory

    The locations of cell death and resulting malformations in embryos following teratogen exposure vary depending on the teratogen used, the genotype of the conceptus, and the developmental stage of the embryo at time of exposure. To date, ethanol-induced cell death has been charac...

  2. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  3. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors.

    PubMed

    Mancinelli, Romina; Glaser, Shannon; Francis, Heather; Carpino, Guido; Franchitto, Antonio; Vetuschi, Antonella; Sferra, Roberta; Pannarale, Luigi; Venter, Julie; Meng, Fanyin; Alpini, Gianfranco; Onori, Paolo; Gaudio, Eugenio

    2015-12-01

    Liver transplantation and cholangiocarcinoma induce biliary dysfunction following ischemia reperfusion (IR). The function of the intrahepatic biliary tree is regulated by both autocrine and paracrine factors. The aim of the study was to demonstrate that IR-induced damage of cholangiocytes is associated with altered expression of biliary angiogenic factors. Normal and bile duct ligation rats underwent 24-h sham or hepatic reperfusion after 30 min of transient occlusion of the hepatic artery (HAIR) or portal vein (PVIR) before collecting liver blocks and cholangiocyte RNA or protein. We evaluated liver histology, biliary apoptosis, proliferation and expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2 in liver sections and isolated small and large cholangiocytes. Normal rat intrahepatic cholangiocyte cultures (NRICC) were maintained under standard conditions in normoxic or under a hypoxic atmosphere for 4 h and then transferred to normal conditions for selected times. Subsequently, we measured changes in biliary proliferation and apoptosis and the expression of VEGF-A/C and VEGFR-2/3. In vivo, HAIR (but not PVIR) induced damage of large bile ducts and decreased proliferation and secretin-stimulated cAMP levels. HAIR-induced damage of large bile ducts was associated with increased expression of VEGF-A/C, VEGFR-2/3, Ang-1/2, and Tie-1/2. In vitro, under hypoxic conditions, there was increased apoptosis and reduced proliferation of NRICC concomitant with enhanced expression of VEGF-A/C and VEGFR-2/3. The functional damage of large bile ducts by HAIR and hypoxia is associated with increased expression of angiogenic factors in small cholangiocytes, presumably due to a compensatory mechanism in response to biliary damage. PMID:26451003

  4. Apocynin protects against ethanol-induced gastric ulcer in rats by attenuating the upregulation of NADPH oxidases 1 and 4.

    PubMed

    El-Naga, Reem N

    2015-12-01

    Gastric ulcer is a common gastrointestinal disorder affecting many people all over the world. Absolute ethanol (5ml/kg) was used to induce gastric ulceration in rats. Apocynin (50mg/kg) was given orally one hour before the administration of absolute ethanol. Omeprazole (20mg/kg) was used as a standard. Interestingly, apocynin pre-treatment provided 93.5% gastroprotection against ethanol-induced ulceration. Biochemically, gastric mucin content was significantly increased with apocynin pre-treatment. This finding was further supported by alcian blue staining of stomach sections obtained from the different treated groups. Also, gastric juice volume and acidity were significantly reduced. Apocynin significantly ameliorated ethanol-induced oxidative stress by replenishing reduced glutathione and superoxide dismutase levels as well as reducing elevated malondialdehyde levels in gastric tissues. Besides, ethanol-induced pro-inflammatory response was significantly decreased by apocynin pre-treatment via reducing elevated levels of pro-inflammatory markers; interleukin-1?, tumor necrosis factor-?, cyclooxygenase-2 and inducible nitric oxide synthase. Additionally, caspase-3 tissue level was significantly reduced in apocynin pre-treated group. Interestingly, NADPH oxidase-1 (NOX-1) and NOX-4 up-regulation was shown to be partially involved in the pathogenesis of ethanol-induced gastric ulceration and was significantly reversed by apocynin pre-treatment. Gastroprotective properties of apocynin were confirmed by histopathological examination. It is worth mentioning that apocynin was superior in all aspects except gastric mucin content parameter where it was significantly increased by 13.5 folds in the omeprazole pre-treated group. This study was the first to show that apocynin is a promising gastroprotective agent against ethanol-induced gastric ulceration, partially via its anti-oxidant, anti-inflammatory, anti-apoptotic effects as well as down-regulating NOX-1 and NOX-4 expression. PMID:26522475

  5. Dilinoleoylphosphatidylcholine is responsible for the beneficial effects of polyenylphosphatidylcholine on ethanol-induced mitochondrial injury in rats.

    PubMed

    Navder, Khursheed P; Lieber, Charles S

    2002-03-01

    Chronic ethanol consumption depletes phosphatidylcholines (PC) in membranes and hepatic mitochondria are an early target of this toxicity. Our previous studies showed that soybean-derived polyenylphosphatidylcholine (PPC), attenuated mitochondrial liver injury. Since dilinoleoylphosphatidylcholine (DLPC) is the major component of PPC, we assessed whether it is responsible for the protection of PPC. Forty-two male rats were fed the following liquid diets for 8 weeks: Control; Control with DLPC (1.5 g/1000 Calories (Cal); Alcohol (36% of Cal); Alcohol with DLPC (1.5 g/1000 Cal) and Alcohol with PPC (3 g/1000 Cal). As expected, ethanol feeding diminished the capacity of hepatic mitochondria to oxidize glutamate and palmitoyl-1-carnitine, and also decreased the activity of mitochondrial cytochrome oxidase. These effects were equally prevented by either PPC or DLPC. In conclusion, DLPC fully reproduced PPC's protective action and may be effective in the prevention or delay of more severe liver damage. PMID:11866479

  6. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. (Zuojin Pill) against ethanol-induced acute gastric mucosal injury in rats

    PubMed Central

    Wang, Qiang-Song; Zhu, Xiao-Ning; Jiang, Heng-Li; Wang, Gui-Fang; Cui, Yuan-Lu

    2015-01-01

    Zuojin Pill (ZJP), a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. in a ratio of 6:1 (w/w) and was first recorded in “Danxi’s experiential therapy” for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss.) Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the mucoadhesive microspheres loaded with alkaloids reduce the inflammatory response by decreasing the levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), downregulating the mRNA expression of inducible nitric oxide synthase, TNF-α, and IL-1β in gastric mucosa. All the results indicate that mucoadhesive microspheres loaded with alkaloids could not only increase the residence time of alkaloids in rat stomach, but also exert gastroprotective effects through reducing the inflammatory response on ethanol-induced gastric mucosal damage. Thus, these microspheres could be developed as a potential controlled release drug for treatment of gastric ulcer. PMID:26640368

  7. Supplementation of coconut oil from different sources to the diet induces cellular damage and rapid changes in fatty acid composition of chick liver and hepatic mitochondria.

    PubMed

    Gil-Villarino, A; Torres, M I; Zafra, M F; Garca-Peregrn, E

    1997-07-01

    Supplementation of 20% coconut oil from two commercial sources pharmaceutical ("Pharmacy") and cooking ("Pastry") use, to the chick diet for 14 days produced a clear damage to the hepatic mitochondria, accompanied by an accumulation of glycogen and lipid droplets in the hepatocyte cytoplasm. These effects may be accounted for the high proportion of fat supplemented to the diets (20%). Pharmacy coconut oil induced a high percentage of cellular death when administered for 14 days. Fatty acid profiles in liver and hepatic mitochondria rapidly changed (24 hr) after both coconut oils supplementation to the diet. The accumulation of shorter chain fatty acids (12:0 and 14:0) was always higher after Pharmacy than after Pastry diet feeding. This fact may contribute, at least in part, to the cellular damage mentioned above especially after Pharmacy diet feeding. Mitochondrial ratios of saturated/unsaturated and saturated/polyunsaturated fatty acids rapidly changed in parallel to these ratios in both diets. Most of the mitochondrial parameters measured tend to recuperate the control values when diets were supplied for 5-14 days. Nevertheless, the maintenance of the mentioned ratios after 14-days Pharmacy diet feeding at significantly higher levels than those observed in control, seems to suggest the lack of the homeostatic mechanism in these membranes and could be also related with the high percentage of cellular death observed after this dietary manipulation. PMID:9297804

  8. Increased oxidative DNA damage and hepatocyte overexpression of specific cytochrome P450 isoforms in hepatitis of mice infected with Helicobacter hepaticus.

    PubMed Central

    Sipowicz, M. A.; Chomarat, P.; Diwan, B. A.; Anver, M. A.; Awasthi, Y. C.; Ward, J. M.; Rice, J. M.; Kasprzak, K. S.; Wild, C. P.; Anderson, L. M.

    1997-01-01

    A recently discovered bacterium, Helicobacter hepaticus, infects the intrahepatic bile canaliculi of mice, causing a severe chronic hepatitis culminating in liver cancer. Thus, it affords an animal model for study of bacteria-associated tumorigenesis including H. pylori-related gastric cancer. Reactive oxygen species are often postulated to contribute to this process. We now report that hepatitis of male mice infected with H. hepaticus show significant increases in the oxidatively damaged DNA deoxynucleoside 8-hydroxydeoxyguanosine, with the degree of damage increasing with progression of the disease. Perfusion of infected livers with nitro blue tetrazolium revealed that superoxide was produced in the cytoplasm of hepatocytes, especially in association with plasmacytic infiltrates near portal triads. Contrary to expectations, Kupffer cells, macrophages, and neutrophils were rarely involved. However, levels of cytochrome P450 (CYP) isoforms 1A2 and 2A5 in hepatocytes appeared to be greatly increased, as indicated by the number of cells positive in immunohistochemistry and the intensity of staining in many cells, concomitant with severe hepatitis. The CYP2A5 immunohistochemical staining co-localized with formazan deposits resulting from nitro blue tetrazolium reduction and occurred in nuclei as well as cytoplasm. These findings suggest that CYP2A5 contributes to the superoxide production and 8-hydroxydeoxyguanosine formation, although reactive oxygen species from an unknown source in the hepatocytes leading to CYP2A5 induction or coincidental occurrence of these events are also possibilities. Three glutathione S-transferase isoforms, mGSTP1-1 (pi), mGSTA1-1 (YaYa), and mGSTA4-4, also showed striking increases evidencing major oxidative stress in these livers. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9327726

  9. Ontogeny of the Enhanced Fetal-Ethanol-Induced Behavioral and Neurophysiologic Olfactory Response to Ethanol Odor

    PubMed Central

    Eade, Amber M.; Sheehe, Paul R.; Youngentob, Steven L.

    2012-01-01

    Background Studies report a fundamental relationship between chemosensory function and the responsiveness to ethanol, its component orosensory qualities, and its odor as a consequence of fetal ethanol exposure. Regarding odor, fetal exposed rats display enhanced olfactory neural and behavioral responses to ethanol odor at postnatal (P) day 15. Although these consequences are absent in adults (P90), the behavioral effect has been shown to persist into adolescence (P37). Given the developmental timing of these observations, we explored the decay in the response to ethanol odor by examining ages between P37 and young adulthood. Moreover, we sought to determine whether the P15 neurophysiologic effect persists, at least, to P40. Methods Behavioral and olfactory epithelial (OE) responses of fetal ethanol exposed and control rats were tested at P40, P50, P60, or P70. Whole-body plethysmography was used to quantify each animals innate behavioral response to ethanol odor. We then mapped the odorant-induced activity across the OE in response to different odorants, including ethanol, using optical recording methods. Results Relative to controls, ethanol exposed animals showed an enhanced behavioral response to ethanol odor that, while significant at each age, decreased in magnitude. These results, in conjunction with previous findings, permitted the development of an ontologic odor response model of fetal exposure. The fitted model exemplifies that odor-mediated effects exist at birth, peak in adolescence and then decline, becoming absent by P90. There was no evidence of an effect on the odor response of the OE at any age tested. Conclusions Fetal exposure yields an enhanced behavioral response to ethanol odor that peaks in adolescence and wanes through young adulthood. This occurs absent an enhanced response of the OE. This latter finding suggests that by P40 the OE returns to an ethanol neutral status and that central mechanisms, such as ethanol-induced alterations in olfactory bulb circuitry, underlie the enhanced behavioral response. Our study provides a more comprehensive understanding of the ontogeny of fetal-ethanol-induced olfactory functional plasticity and the behavioral response to ethanol odor. PMID:19951301

  10. Ethanol-induced neurodegeneration in NRSF/REST neuronal conditional knockout mice.

    PubMed

    Cai, L; Bian, M; Liu, M; Sheng, Z; Suo, H; Wang, Z; Huang, F; Fei, J

    2011-05-01

    The transcription regulator, neuron-restrictive silencer factor (NRSF), also known as repressor element-1 silencing transcription factor (REST), plays an important role in neurogenesis and various neuronal diseases such as ischaemia, epilepsy, and Huntington's disease. In these disease processes, neuronal loss is associated with abnormal expression and/or localization of NRSF. Previous studies have demonstrated that NRSF regulates the effect of ethanol on neuronal cells in vitro, however, the role of NRSF in ethanol-induced neuronal cell death remains unclear. We generated nrsf conditional knockout mice using the Cre-loxP system to disrupt neuronal expression of nrsf and its truncated forms. At postnatal day 6, ethanol significantly increased the expression of REST4, a neuron-specific truncated form of NRSF, in the brains of wild type mice, and this effect was diminished in nrsf conditional knockout mice. The apoptotic effect of ethanol was pronounced in multiple brain regions of nrsf conditional mutant mice. These results indicate that NRSF, specifically REST4, may protect the developing brain from ethanol, and provide new evidence that NRSF can be a therapeutic target in foetal alcohol syndrome (FAS). PMID:21396985

  11. Ethanol-Induced Activation of ATP-Dependent Proton Extrusion in Elodea densa Leaves.

    PubMed

    Marr, M T; Venegoni, A; Moroni, A

    1992-11-01

    In Elodea densa leaves, ethanol up to 0.17 m stimulates H(+) extrusion activity. This effect is strictly dependent on the presence of K(+) in the medium and is suppressed by the presence of the plasmalemma H(+)-ATPase inhibitor vanadate. Stimulation of H(+) extrusion is associated with (a) a decrease in cellular ATP level, (b) a marked hyperpolarization of transmembrane electrical potential, and (c) an increase in net K(+) influx. These results suggest that ethanol-induced H(+) extrusion is mediated by an activation of the plasma membrane ATP-dependent, electrogenic proton pump. This stimulating effect is associated with an increase of cell sap pH and of the capacity to take up the weak acid 5,5-dimethyloxazolidine-2,4-dione, which is interpretable as due to an increase of cytosolic pH. This indicates that the stimulation of H(+) extrusion by ethanol does not depend on a cytosolic acidification by products of ethanol metabolism. The similarity of the effects of ethanol and those of photosynthesis on proton pump activity in E. densa leaves suggests that a common metabolic situation is responsible for the activation of the ATP-dependent H(+)-extruding mechanism. PMID:16653093

  12. Relation between ethanol induced changes in plasma catecholines during stress and voluntary ethanol preference

    SciTech Connect

    Pashko, S.

    1986-03-01

    N/NIH rats (N = 10) were implanted with venous catheters to permit stressless chronic, repeated blood withdrawal. Following surgical recovery, the rats were restrained to a lab counter top for 30 min after injection with saline or low dose (0.5 g/kg) ethanol. Blood was repeatedly withdrawn to determine AUC production of NE and E to assess the effect that low dose ethanol has on stress responsiveness. Between saline injection restraint and ethanol injection restraint conditions no differences in NE or E AUC were apparent. A 2- bottle preference test for ethanol was then performed over 21 days. Multiple regression analyses of NE saline restraint and ethanol restraint could predict ethanol consumption to the p = .02 level with R/sup 2/ = .681. Multiple regressions of E saline restraint and E ethanol restraint could predict ethanol consumption to the p = .01 level with R/sup 2/ = .746. These data suggest that ethanol induced increases in plasma NE and E during stress can predict later voluntary ethanol consumption between the ranges of .13 and 1.05 g ethanol/kg/day. This data seems to be more in line with an arousal or withdrawal relationship between ethanol consumption and stress than by a simple tension reduction formulation based on plasma NE or E.

  13. Involvement of hepatic stellate cell cytoglobin in acute hepatocyte damage through the regulation of CYP2E1-mediated xenobiotic metabolism.

    PubMed

    Teranishi, Yuga; Matsubara, Tsutomu; Krausz, Kristopher W; Le, Thi T T; Gonzalez, Frank J; Yoshizato, Katsutoshi; Ikeda, Kazuo; Kawada, Norifumi

    2015-05-01

    Oxygen (O2) is required for cytochrome P450 (CYP)-dependent drug metabolism. Cytoglobin (CYGB) is a unique globin expressed exclusively in hepatic stellate cells (HSCs). However, its role in O2-dependent metabolism in neighboring hepatocytes remains unknown. This study provides evidence that CYGB in HSCs is involved in acetaminophen (N-acetyl-p-aminophenol; APAP)-induced hepatotoxicity. Serum alanine aminotransferase levels were higher in wild-type mice than in Cygb-null mice. Wild-type mice exhibited more severe hepatocyte necrosis around the central vein area compared with Cygb-null mice, thus indicating that CYGB deficiency protects against APAP-induced liver damage. Although no difference in the hepatic expression of CYP2E1, a key enzyme involved in APAP toxicity, was observed between wild-type and Cygb-null mice, the serum levels of the APAP metabolites cysteinyl-APAP and N-acetyl-cysteinyl-APAP were decreased in Cygb-null mice, suggesting reduced APAP metabolism in the livers of Cygb-null mice. In primary cultures, APAP-induced hepatocyte damage was increased by co-culturing with wild-type HSCs but not with Cygb-null HSCs. In addition, cell damage was markedly alleviated under low O2 condition (5% O2), suggesting the requirement of O2 for APAP toxicity. Carbon tetrachloride-induced liver injury (CYP2E1-dependent), but not lipopolysaccharide/D-galactosamine-induced injury (CYP2E1-independent), was similarly alleviated in Cygb-null mice. Considering the function of CYGB as O2 carrier, these results strongly support the hypothesis that HSCs are involved in the CYP2E1-mediated xenobiotic activation by augmenting O2 supply to hepatocytes. In conclusion, CYGB in HSCs contributes to the CYP-mediated metabolism of xenobiotics in hepatocytes by supplying O2 for enzymatic oxidation. PMID:25686096

  14. Taurine protects cerebellar neurons of the external granular layer against ethanol-induced apoptosis in 7-day-old mice.

    PubMed

    Taranukhin, Andrey G; Taranukhina, Elena Y; Saransaari, Pirjo; Pelto-Huikko, Markku; Podkletnova, Irina M; Oja, Simo S

    2012-10-01

    Acute alcohol administration is harmful especially for the developing nervous system, where it induces massive apoptotic neurodegeneration leading to alcohol-related disorders of newborn infants. Neuroprotection against ethanol-induced apoptosis may save neurons and reduce the consequences of maternal alcohol consumption. Previously we have shown that taurine protects immature cerebellar neurons in the internal granular layer of cerebellum from ethanol-induced apoptosis. Now we describe a similar protective action for taurine in the external layer of cerebellum of 7-day-old mice. The mice were divided into three groups: ethanol-treated, ethanol + taurine-treated and controls. Ethanol (20% solution) was administered subcutaneously at a total dose of 5 g/kg (2.5 g/kg at time 0 h and 2.5 g/kg at 2 h) to the ethanol and ethanol + taurine groups. The ethanol + taurine group also received subcutaneously two injections of taurine (1 g/kg each, 1 h before the first dose of ethanol and 1 h after the second dose of ethanol). To verify apoptosis, immunostaining for activated caspase-3 and TUNEL staining were made in the mid-sagittal sections containing lobules I-X of the cerebellar vermis at 8 h after the first ethanol injection. Ethanol induced apoptosis in the cerebellar external granular layer. Taurine treatment significantly reduced the number of activated caspase-3-immunoreactive and TUNEL-positive cells. Taurine has thus a neuroprotective antiapoptotic action in the external granular layer of the cerebellum, preserving a number of neurons from ethanol-induced apoptosis. PMID:22383089

  15. The Ethanol-Induced Stimulation of Rat Duodenal Mucosal Bicarbonate Secretion In Vivo Is Critically Dependent on Luminal Cl

    PubMed Central

    Sommansson, Anna; Wan Saudi, Wan Salman; Nylander, Olof; Sjblom, Markus

    2014-01-01

    Alcohol may induce metabolic and functional changes in gastrointestinal epithelial cells, contributing to impaired mucosal barrier function. Duodenal mucosal bicarbonate secretion (DBS) is a primary epithelial defense against gastric acid and also has an important function in maintaining the homeostasis of the juxtamucosal microenvironment. The aim in this study was to investigate the effects of the luminal perfusion of moderate concentrations of ethanol in vivo on epithelial DBS, fluid secretion and paracellular permeability. Under thiobarbiturate anesthesia, a ?30-mm segment of the proximal duodenum with an intact blood supply was perfused in situ in rats. The effects on DBS, duodenal transepithelial net fluid flux and the blood-to-lumen clearance of 51Cr-EDTA were investigated. Perfusing the duodenum with isotonic solutions of 10% or 15% ethanol-by-volume for 30 min increased DBS in a concentration-dependent manner, while the net fluid flux did not change. Pre-treatment with the CFTR inhibitor CFTRinh172 (i.p. or i.v.) did not change the secretory response to ethanol, while removing Cl? from the luminal perfusate abolished the ethanol-induced increase in DBS. The administration of hexamethonium (i.v.) but not capsazepine significantly reduced the basal net fluid flux and the ethanol-induced increase in DBS. Perfusing the duodenum with a combination of 1.0 mM HCl and 15% ethanol induced significantly greater increases in DBS than 15% ethanol or 1.0 mM HCl alone but did not influence fluid flux. Our data demonstrate that ethanol induces increases in DBS through a mechanism that is critically dependent on luminal Cl? and partly dependent on enteric neural pathways involving nicotinic receptors. Ethanol and HCl appears to stimulate DBS via the activation of different bicarbonate transporting mechanisms. PMID:25033198

  16. Banhabaekchulchunma-tang, a traditional herbal formula attenuates absolute ethanol-induced gastric injury by enhancing the antioxidant status

    PubMed Central

    2013-01-01

    Background Banhabaekchulchunma-tang (hange-byakujutsu-tenma-to in Japanese and banxia-baizhu-tianma-tang in Chinese) is a mixture of fourteen herbs. It is used traditionally for the treatment of anemia, anorexia, general weakness, and female infertility in China, Japan, and Korea. In this study, we investigated the protective effects of a Banhabaekchulchunma-tang water extract (BCT) against ethanol-induced acute gastric injury in rats. Methods Gastric injury was induced by intragastric administration of 5mL/kg body weight of absolute ethanol to each rat. The positive control group and the BCT group were given oral doses of omeprazole (50mg/kg) or BCT (400mg/kg), respectively, 2h prior to the administration of absolute ethanol. The stomach of each animal was excised and examined for gastric mucosal lesions. To confirm the protective effects of BCT, we evaluated the degree of lipid peroxidation, the level of reduced glutathione (GSH), and the activities of the antioxidant enzymes catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase in the stomach. In addition, we conducted an acute toxicity study to evaluate the safety of BCT according to OECD guideline. Results BCT reduced ethanol-induced hemorrhage, hyperemia, and loss of epithelial cell in the gastric mucosa. BCT reduced the increased lipid peroxidation associated with ethanol-induced acute gastric lesions, and increased the mucosal GSH content and the activities of antioxidant enzymes. In addition, BCT did not cause any adverse effects at up to 5000mg/kg. Conclusions These results indicate that BCT protects the gastric mucosa against ethanol-induced gastric injury by increasing the antioxidant status. We suggest that BCT could be developed as an effective drug for the treatment of gastric injury caused by alcohol intake. PMID:23844748

  17. Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity

    SciTech Connect

    Salgueiro, S.P.; Sa-Correia, I.; Novais, J.M.

    1988-04-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36/sup 0/C were an exponential function of ethanol concentration. At 36/sup 0/C, as compared with the corresponding values at 30/sup 0/C, the efflux rates were higher and the minimal concentration of ethanol was lower. The exponential constants for the enhancement of the rate of leakage had similar values at 30 or 36/sup 0/C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30/sup 0/C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed.

  18. Antioxidant and antiulcer potential of aqueous leaf extract of Kigelia africana against ethanol-induced ulcer in rats

    PubMed Central

    dos Santos, Matheus M; Olaleye, Mary T; Ineu, Rafael P; Boligon, Aline A; Athayde, Margareth L; Barbosa, Nilda BV; Rocha, Joo Batista Teixeira

    2014-01-01

    Ethnobotanical claims regarding Kigelia africana reported antiulcer properties as part of its medicinal application. In this work, aqueous leaf extract from K. africana was investigated for its phytochemical constituents and antiulcer potential against ethanol-induced ulcer in rats. The participation of oxidative stress on ethanol-induced ulcer and the potential protective antioxidant activity of K. africana extracts were investigated by determining vitamin C and thiobarbituric acid reactive species (TBARS) contents in the gastric mucosa of rats. The HPLC analysis showed the presence of gallic acid, chlorogenic acid, caffeic acid and also the flavonoids rutin, quercetin and kaempferol in the aqueous plant extract. Oral treatment with K. africana extract (1.75; 3.5; 7 and 14 mg/kg) one hour after ulcer induction with ethanol decreased in a dose dependent manner the ulcer index. Ethanol increased significantly stomachal TBARS levels and decreased vitamin C content when compared to the control animals. K. africana blunted the ethanol-induced oxidative stress and restored vitamin C content to the control levels. The present results indicate that the aqueous leaf extract from K. africana possesses antiulcer potential. The presence of flavonoids in plant extract suggests that its antiulcerogenic potential is associated with antioxidant activity. Of particular therapeutic potential, K. africana was effective against ethanol even after the induction of ulcer, indicating that it can have protective and curative effects against gastric lesion. PMID:26417263

  19. Quetiapine mitigates the ethanol-induced oxidative stress in brain tissue, but not in the liver, of the rat

    PubMed Central

    Han, Jin-hong; Tian, Hong-zhao; Lian, Yang-yang; Yu, Yi; Lu, Cheng-biao; Li, Xin-min; Zhang, Rui-ling; Xu, Haiyun

    2015-01-01

    Quetiapine, an atypical antipsychotic, has been employed to treat alcoholic patients with comorbid psychopathology. It was shown to scavenge hydroxyl radicals and to protect cultured cells from noxious effects of oxidative stress, a pathophysiological mechanism involved in the toxicity of alcohol. This study compared the redox status of the liver and the brain regions of prefrontal cortex, hippocampus, and cerebellum of rats treated with or without ethanol and quetiapine. Ethanol administration for 1 week induced oxidative stress in the liver and decreased the activity of glutathione peroxidase and total antioxidant capacity (TAC) there. Coadministration of quetiapine did not protect glutathione peroxidase and TAC in the liver against the noxious effect of ethanol, thus was unable to mitigate the ethanol-induced oxidative stress there. The ethanol-induced alteration in the redox status in the prefrontal cortex is mild, whereas the hippocampus and cerebellum are more susceptible to ethanol intoxication. For all the examined brain regions, coadministration of quetiapine exerted effective protection on the antioxidants catalase and total superoxide dismutase and on the TAC, thus completely blocking the ethanol-induced oxidative stress in these brain regions. These protective effects may explain the clinical observations that quetiapine reduced psychiatric symptoms intensity and maintained a good level of tolerability in chronic alcoholism with comorbid psychopathology. PMID:26109862

  20. The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis.

    PubMed

    Haybaeck, Johannes; Zeller, Nicolas; Heikenwalder, Mathias

    2011-01-01

    In recent years, enormous progress has been made in identifying microRNAs (miRNAs) as important regulators of gene expression and their association with or control of various liver diseases such as fibrosis, hepatitis and hepatocellular carcinoma (HCC). Indeed, many genes encoding miRNAs as well as their targets have been described and their direct or indirect link to the respective liver diseases has been investigated in various experimental systems as well as in human tissue. Here we discuss current knowledge of miRNAs and their involvement in liver diseases, elaborating in particular on the contribution of miRNAs to hepatitis, fibrosis and HCC formation. We also debate possible prognostic, predictive and therapeutic values of respective miRNAs in liver diseases. The discovery of liver disease related miRNAs has constituted a major breakthrough in liver research and will most likely be of high relevance for future therapeutic strategies, especially when dealing with hepatitis, fibrosis and HCC. PMID:22020555

  1. Activation of autophagy by globular adiponectin attenuates ethanol-induced apoptosis in HepG2 cells: involvement of AMPK/FoxO3A axis.

    PubMed

    Nepal, Saroj; Park, Pil-Hoon

    2013-10-01

    Hepatocellular apoptosis is an important pathological entity of alcoholic liver disease. Previously, we have shown that globular adiponectin (gAcrp) protects liver cells from ethanol-induced apoptosis by modulating an array of signaling pathways. In the present study, we investigated the role of autophagy induction by gAcrp in the suppression of ethanol-induced apoptosis and its potential mechanism(s) in liver cells. Here, we demonstrated that gAcrp significantly restores ethanol-induced suppression of autophagy-related genes, including Beclin-1 and microtubule-associated protein light chain (LC3B) both in primary rat hepatocytes and human hepatoma cell line (HepG2). Globular adiponectin also restored autophagosome formation suppressed by ethanol treatment in HepG2. Furthermore, inhibition of gAcrp-induced autophagic process by knock-down of LC3B prevented protection from ethanol-induced apoptosis. In particular, the autophagic process induced by gAcrp was involved in the suppression of ethanol-induced activation of caspase-8 and expression of Bax. Moreover, knock-down of AMPK by small interfering RNA (siRNA) blocked gAcrp-induced expression of genes related to autophagy, which in turn prevented protection from ethanol-induced apoptosis, suggesting that AMPK plays an important role in the induction of autophagy and protection of liver cells by gAcrp. Finally, we also showed that gAcrp treatment induces translocation of the forkhead box O member protein, FoxO3A, into the nucleus, which may play a role in the induction of autophagy-related genes. Taken together, our data demonstrated that gAcrp protects liver cells from ethanol-induced apoptosis via induction of autophagy. Further, the AMPK-FoxO3A axis plays a cardinal role in gAcrp-induced autophagy and subsequent inhibition of ethanol-induced apoptosis. PMID:23688633

  2. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1

    SciTech Connect

    Wu Defeng; Cederbaum, Arthur I. . E-mail: arthur.cederbaum@mssm.edu

    2005-09-01

    Induction of CYP2E1 by ethanol is one of the central pathways by which ethanol generates a state of oxidative stress in hepatocytes. To study the biochemical and toxicological actions of CYP2E1, our laboratory established HepG2 cell lines which constitutively overexpress CYP2E1 and characterized these cells with respect to ethanol toxicity. Addition of ethanol or an unsaturated fatty acid such as arachidonic acid or iron was toxic to the CYP2E1-expressing cells but not control cells. This toxicity was associated with elevated lipid peroxidation and could be prevented by antioxidants and inhibitors of CYP2E1. Apoptosis occurred in the CYP2E1-expressing cells exposed to ethanol, arachidonic acid, or iron. Removal of GSH caused a loss of viability in the CYP2E1-expressing cells even in the absence of added toxin or pro-oxidant. This was associated with mitochondrial damage and decreased mitochondrial membrane potential. Low concentrations of iron and arachidonic acid synergistically interacted with CYP2E1 to produce cell toxicity, suggesting these nutrients may act as priming or sensitizing agents to alcohol-induced liver injury. Surprisingly, CYP2E1-expressing cells had elevated GSH levels, due to transcriptional activation of glutamate cysteine ligase. Similarly, levels of catalase, alpha-, and microsomal glutathione transferase were also increased, suggesting that upregulation of these antioxidant genes may reflect an adaptive mechanism to remove CYP2E1-derived oxidants. Using co-cultures, interaction between CYP2E1-derived diffusible mediators to activate collagen production in hepatic stellate cells was found. While it is likely that several mechanisms contribute to alcohol-induced liver injury, the linkage between CYP2E1-dependent oxidative stress, mitochondrial injury, stellate cell activation, and GSH homeostasis may contribute to the toxic action of ethanol on the liver. HepG2 cell lines overexpressing CYP2E1 may be a valuable model to characterize the biochemical and toxicological properties of CYP2E1.

  3. Protective and therapeutic effects of Argyreia speciosa against ethanol-induced gastric ulcer in rats.

    PubMed

    Motawi, Tarek K; Hamed, Manal A; Hashem, Reem M; Shabana, Manal H; Ahmed, Yomna R

    2012-01-01

    The protective and therapeutic effects of Argyreia speciosa Sweet (Convolvulaceae) against ethanol-induced gastric ulcer in rats were evaluated. Ethanolic and water extracts of the aerial plant parts (200 mg/kg body weight) were orally administered daily for seven days prior to or after ulceration with one oral dose of 1 mL absolute ethanol on 24-h empty stomachs. Rats were divided into eleven groups. Group 1 served as control. To groups 2 and 3 each extract was administered. Groups 4 to 6 received each extract or ranitidine (100 mg/kg body weight) prior to ulcer induction. Groups 7 to 9 received each extract or ranitidine post ulcer induction. Groups 10 and 11 were gastric ulcerative rats after one hour and one week of ethanol induction. The evaluation was done through measuring ulcer indices: stomach acidity and volume, lesion counts, mucus, and prostaglandin E2 contents. Oxidative stress marker, i. e. malondialdehyde, glutathione, and superoxide dismutase, were estimated. Certain marker enzymes for different cell organelles, i. e. succinate and lactate dehydrogenases, glucose-6-phosphatase, acid phosphatase, and 5'-nucleotidase, were evaluated. The work was extended to determine the collagen content and the histopathological assessment of the stomach. Gastric ulcer exhibited a significant elevation of the ulcer index, antioxidant levels, collagen content, and the marker enzymes. The water extract attenuated these increments and was more potent as a protective agent, while the ethanol extract exhibited stronger therapeutic potency. In conclusion, A. speciosa acted as antiulcer agent. More detailed studies are required to identify the compounds responsible for the pharmacological effect. PMID:22486041

  4. Shuidouchi (Fermented Soybean) Fermented in Different Vessels Attenuates HCl/Ethanol-Induced Gastric Mucosal Injury.

    PubMed

    Suo, Huayi; Feng, Xia; Zhu, Kai; Wang, Cun; Zhao, Xin; Kan, Jianquan

    2015-01-01

    Shuidouchi (Natto) is a fermented soy product showing in vivo gastric injury preventive effects. The treatment effects of Shuidouchi fermented in different vessels on HCl/ethanol-induced gastric mucosal injury mice through their antioxidant effect was determined. Shuidouchi contained isoflavones (daidzein and genistein), and GVFS (glass vessel fermented Shuidouchi) had the highest isoflavone levels among Shuidouchi samples fermented in different vessels. After treatment with GVFS, the gastric mucosal injury was reduced as compared to the control mice. The gastric secretion volume (0.47 mL) and pH of gastric juice (3.1) of GVFS treated gastric mucosal injury mice were close to those of ranitidine-treated mice and normal mice. Shuidouchi could decrease serum motilin (MTL), gastrin (Gas) level and increase somatostatin (SS), vasoactive intestinal peptide (VIP) level, and GVFS showed the strongest effects. GVFS showed lower IL-6, IL-12, TNF-? and IFN-? cytokine levels than other vessel fermented Shuidouchi samples, and these levels were higher than those of ranitidine-treated mice and normal mice. GVFS also had higher superoxide dismutase (SOD), nitric oxide (NO) and malonaldehyde (MDA) contents in gastric tissues than other Shuidouchi samples. Shuidouchi could raise I?B-?, EGF, EGFR, nNOS, eNOS, Mn-SOD, Gu/Zn-SOD, CAT mRNA expressions and reduce NF-?B, COX-2, iNOS expressions as compared to the control mice. GVFS showed the best treatment effects for gastric mucosal injuries, suggesting that glass vessels could be used for Shuidouchi fermentation in functional food manufacturing. PMID:26540032

  5. Ganoderma Lucidum Pharmacopuncture for Teating Ethanol-induced Chronic Gastric Ulcers in Rats

    PubMed Central

    Park, Jae-Heung; Jang, Kyung-Jun; Kim, Cheol-Hong; Kim, Jung-Hee; Kim, Young-Kyun; Yoon, Hyun-Min

    2015-01-01

    Objectives: The stomach is a sensitive digestive organ that is susceptible to exogenous pathogens from the diet. In response to such pathogens, the stomach induces oxidative stress, which might be related to the development of both gastric organic disorders such as gastritis, gastric ulcers, and gastric cancer, and functional disorders such as functional dyspepsia. This study was accomplished to investigate the effect of Ganoderma lucidum pharmacopuncture (GLP) on chronic gastric ulcers in rats. Methods: The rats were divided into 4 groups of 8 animals each: the normal, the control, the normal saline (NP) and the GLP groups. In this study, the modified ethanol gastritis model was used. The rats were administrated 56% ethanol orally every other day. The dose of ethanol was 8 g/kg body weight. The normal group received the same amount of normal saline instead of ethanol. The NP and the GLP groups were treated with injection of saline and GLP respectively. The control group received no treatment. Two local acupoints CV12 (??) and ST36 (???) were used. All laboratory rats underwent treatment for 15 days. On last day, the rats were sacrificed and their stomachs were immediately excised. Results: Ulcers of the gastric mucosa appeared as elongated bands of hemorrhagic lesions parallel to the long axis of the stomach. In the NP and GLP groups, the injuries to the gastric mucosal injuries were not as severe as they were in the control group. Wound healings of the chronic gastric ulcers was promoted by using GLP and significant alterations of the indices in the gastric mucosa were observed. Such protection was demonstrated by gross appearance, histology and immunehistochemistry staining for Bcl-2-associated X (BAX), B-cell lymphoma 2 (Bcl-2) and Transforming growth factor-beta 1 (TGF-?1). Conclusion: These results suggest that GLP at CV12 and ST36 can provide significant protection to the gastric mucosa against an ethanol induced chronic gastric ulcer. PMID:25830061

  6. Central adenosinergic system involvement in ethanol-induced motor incoordination in mice

    SciTech Connect

    Dar, M.S. )

    1990-12-01

    To clarify if the behavioral interaction between ethanol and adenosine reported previously occur centrally or due to a peripheral hemodynamic change, the effect of i.c.v. adenosine agonists, N6-(R-phenylisopropyl)adenosine (R-PIA), N6-(S-phenylisopropyl)adenosine, 5'-(N-cyclopropyl)-carboxamidoadenosine, antagonists, theophylline and 8-p-(sulfophenyl)theophylline as well as enprofylline on ethanol-(i.p.)-induced motor incoordination was evaluated by rotorod. Adenosine agonists and antagonists dose dependently accentuated and attenuated, respectively, ethanol-induced motor incoordination, thereby suggesting a central mechanism of adenosine modulation of this effect of ethanol and confirmed our previous reports in which adenosine agonists and antagonists were given i.p. Enprofylline, a weak adenosine antagonist but potent inhibitor of cyclic AMP phosphodiesterase, did not alter ethanol's motor incoordination, further supporting involvement of brain adenosine receptor mechanism(s) in ethanol-adenosine interactions. Results from R-PIA and N6-(S-phenylisopropyl)adenosine experiments showed nearly a 40-fold greater potency of R-vs. S-diastereoisomer, suggesting predominance of adenosine A1 subtype. However, 5'-(N-cyclopropyl)-carboxamidoadenosine data indicate complexity of the mechanism(s) and point toward an additional involvement of a yet unknown subtype of adenosine A2. No effect of ethanol on blood or brain levels of (3H)R-PIA was noted and sufficient amount of the latter entered the brain to suggest adenosine receptor activation adequate to produce behavioral interaction with ethanol. There was no escape of i.c.v.-administered (3H)R-PIA from brain to the peripheral circulation ruling out a peripheral and supporting a central mechanism of ethanol-adenosine interaction.

  7. Role of defective methylation reactions in ethanol-induced dysregulation of intestinal barrier integrity.

    PubMed

    Thomes, Paul G; Osna, Natalia A; Bligh, Sarah M; Tuma, Dean J; Kharbanda, Kusum K

    2015-07-01

    Alcoholic liver disease (ALD) is a major healthcare challenge worldwide. Emerging evidence reveals that ethanol administration disrupts the intestinal epithelial tight junction (TJ) complex; this defect allows for the paracellular translocation of gut-derived pathogenic molecules to reach the liver to cause inflammation and progressive liver injury. We have previously demonstrated a causative role of impairments in liver transmethylation reactions in the pathogenesis of ALD. We have further shown that treatment with betaine, a methylation agent that normalizes liver methylation potential, can attenuate ethanol-induced liver injury. Herein, we explored whether alterations in methylation reactions play a causative role in disrupting intestinal mucosal barrier function by employing an intestinal epithelial cell line. Monolayers of Caco-2 cells were exposed to ethanol or a-pan methylation reaction inhibitor, tubercidin, in the presence and absence of betaine. The structural and functional integrity of intestinal epithelial barrier was then examined. We observed that exposure to either ethanol or tubercidin disrupted TJ integrity and function by decreasing the localization of TJ protein occludin-1 to the intracellular junctions, reducing transepithelial electrical resistance and increasing dextran influx. All these detrimental effects of ethanol and tubercidin were attenuated by co-treatment with betaine. We further show that the mechanism of betaine protection was through BHMT-mediated catalysis. Collectively, our data suggest a novel mechanism for alcohol-induced gut leakiness and identifies the importance of normal methylation reactions in maintaining TJ integrity. We also propose betaine as a potential therapeutic option for leaky gut in alcohol-consuming patients who are at the risk of developing ALD. PMID:25931143

  8. Molecular Mechanisms of Ethanol-Induced Pathogenesis Revealed by RNA-Sequencing

    PubMed Central

    Camarena, Laura; Bruno, Vincent; Euskirchen, Ghia; Poggio, Sebastian; Snyder, Michael

    2010-01-01

    Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C. PMID:20368969

  9. Ethanol-induced impairment in the biosynthesis of N-linked glycosylation.

    PubMed

    Welti, Michael; Hlsmeier, Andreas J

    2014-04-01

    Deficiency in N-linked protein glycosylation is a long-known characteristic of alcoholic liver disease and congenital disorders of glycosylation. Previous investigations of ethanol-induced glycosylation deficiency demonstrated perturbations in the early steps of substrate synthesis and in the final steps of capping N-linked glycans in the Golgi. The significance of the biosynthesis of N-glycan precursors in the endoplasmic reticulum, however, has not yet been addressed in alcoholic liver disease. Ethanol-metabolizing hepatoma cells were treated with increasing concentrations of ethanol. Transcript analysis of genes involved in the biosynthesis of N-glycans, activity assays of related enzymes, dolichol-phosphate quantification, and analysis of dolichol-linked oligosaccharides were performed. Upon treatment of cells with ethanol, we found a decrease in the final N-glycan precursor Dol-PP-GlcNAc(2) Man(9) Glc(3) and in C95- and C100-dolichol-phosphate levels. Transcript analysis of genes involved in N-glycosylation showed a 17% decrease in expression levels of DPM1, a subunit of the dolichol-phosphate-mannose synthase, and an 8% increase in RPN2, a subunit of the oligosaccharyl transferase. Ethanol treatment decreases the biosynthesis of dolichol-phosphate. Consequently, the formation of N-glycan precursors is affected, resulting in an aberrant precursor assembly. Messenger RNA levels of genes involved in N-glycan biosynthesis are slightly affected by ethanol treatment, indicating that the assembly of N-glycan precursors is not regulated at the transcriptional level. This study confirms that ethanol impairs N-linked glycosylation by affecting dolichol biosynthesis leading to impaired dolichol-linked oligosaccharide assembly. Together our data help to explain the underglycosylation phenotype observed in alcoholic liver disease and congenital disorders of glycosylation. PMID:24243557

  10. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing.

    PubMed

    Camarena, Laura; Bruno, Vincent; Euskirchen, Ghia; Poggio, Sebastian; Snyder, Michael

    2010-04-01

    Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C. PMID:20368969

  11. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    PubMed

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. PMID:26372198

  12. Hepatitis C virus (HCV) genotype, tissue HCV antigens, hepatocellular expression of HLA-A,B,C, and intercellular adhesion-1 molecules. Clues to pathogenesis of hepatocellular damage and response to interferon treatment in patients with chronic hepatitis C.

    PubMed Central

    Ballardini, G; Groff, P; Pontisso, P; Giostra, F; Francesconi, R; Lenzi, M; Zauli, D; Alberti, A; Bianchi, F B

    1995-01-01

    To obtain information on the mechanisms of hepatocellular damage and the determinants of response to interferon, hepatitis C virus (HCV) genotype, tissue HCV antigens, hepatocellular expression of HLA-A,B,C and intercellular adhesion-1 molecules, and the number of lobular T lymphocytes were studied in 38 anti-HCV-positive patients. 14 patients did not show a primary response to interferon treatment. HCV genotype 1b was detected in 11 of them. They displayed higher scores of HCV-positive hepatocytes, HLA-A,B,C, and ICAM-1 molecules expression than with the responders. HCV-infected hepatocytes maintained the capacity to express HLA-A,B,C and ICAM-1 molecules. CD8-positive T cells in contact with infected hepatocytes and Councilman-like bodies were observed. A significant correlation was found between the number of lobular CD8-positive T cells and alanine amino transferase levels. No differences were observed in clinical, biochemical, and histological features between patients with high and low number of hepatocytes containing HCV antigens. These data suggest a prominent role of T cell-mediated cytotoxicity in the genesis of hepatocellular damage. The high expression of interferon-inducible antigens like HLA-A,B,C molecules suggests the presence of strong activation of the interferon system possibly related to high HCV replication in nonresponder patients infected with genotype 1b. Images PMID:7738174

  13. Ethanol and liver: Recent insights into the mechanisms of ethanol-induced fatty liver

    PubMed Central

    Liu, Jinyao

    2014-01-01

    Alcoholic fatty liver disease (AFLD), a potentially pathologic condition, can progress to steatohepatitis, fibrosis, and cirrhosis, leading to an increased probability of hepatic failure and death. Alcohol induces fatty liver by increasing the ratio of reduced form of nicotinamide adenine dinucleotide to oxidized form of nicotinamide adenine dinucleotide in hepatocytes; increasing hepatic sterol regulatory element-binding protein (SREBP)-1, plasminogen activator inhibitor (PAI)-1, and early growth response-1 activity; and decreasing hepatic peroxisome proliferator-activated receptor-α activity. Alcohol activates the innate immune system and induces an imbalance of the immune response, which is followed by activated Kupffer cell-derived tumor necrosis factor (TNF)-α overproduction, which is in turn responsible for the changes in the hepatic SREBP-1 and PAI-1 activity. Alcohol abuse promotes the migration of bone marrow-derived cells (BMDCs) to the liver and then reprograms TNF-α expression from BMDCs. Chronic alcohol intake triggers the sympathetic hyperactivity-activated hepatic stellate cell (HSC) feedback loop that in turn activates the HSCs, resulting in HSC-derived TNF-α overproduction. Carvedilol may block this feedback loop by suppressing sympathetic activity, which attenuates the progression of AFLD. Clinical studies evaluating combination therapy of carvedilol with a TNF-α inhibitor to treat patients with AFLD are warranted to prevent the development of alcoholic liver disease. PMID:25356030

  14. CMZ Reversed Chronic Ethanol-Induced Disturbance of PPAR-α Possibly by Suppressing Oxidative Stress and PGC-1α Acetylation, and Activating the MAPK and GSK3β Pathway

    PubMed Central

    Zeng, Tao; Zhang, Cui-Li; Song, Fu-Yong; Zhao, Xiu-Lan; Xie, Ke-Qin

    2014-01-01

    Background Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms. Methods Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods. Results CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ. Conclusion These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL. PMID:24892905

  15. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius auratus Induced by Pentachlorophenol Exposure.

    PubMed

    Kan, Haifeng; Zhao, Fuzheng; Zhang, Xu-Xiang; Ren, Hongqiang; Gao, Shixiang

    2015-10-01

    Goldfish (Carassius auratus) were exposed to 0-100 ?g/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology. PMID:26378342

  16. Antioxidative Role of Hatikana (Leea macrophylla Roxb.) Partially Improves the Hepatic Damage Induced by CCl4 in Wistar Albino Rats

    PubMed Central

    Akhter, Samina; Rahman, Md. Atiar; Aklima, Jannatul; Hasan, Md. Rakibul; Hasan Chowdhury, J. M. Kamirul

    2015-01-01

    This research investigated the protective role of Leea macrophylla extract on CCl4-induced acute liver injury in rats. Different fractions of Leea macrophylla (Roxb.) crude extract were subjected to analysis for antioxidative effects. Rats were randomly divided into four groups as normal control, hepatic control, and reference control (silymarin) group and treatment group. Evaluations were made for the effects of the fractions on serum enzymes and biochemical parameters of CCl4-induced albino rat. Histopathological screening was also performed to evaluate the changes of liver tissue before and after treatment. Different fractions of Leea macrophylla showed very potent 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect, FeCl3 reducing effect, superoxide scavenging effect, and iron chelating effect. Carbon tetrachloride induction increased the level of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and other biochemical parameters such as lipid profiles, total protein, and CK-MB. In contrast, treatment of Leea macrophylla reduced the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) activities as well as biochemical parameters activities. L. macrophylla partially restored the lipid profiles, total protein, and CK-MB. Histopathology showed the treated liver towards restoration. Results evidenced that L. macrophylla can be prospective source of hepatic management in liver injury. PMID:26221590

  17. Fenugreek (Trigonella foenum graecum) seed polyphenols protect liver from alcohol toxicity: a role on hepatic detoxification system and apoptosis.

    PubMed

    Kaviarasan, S; Anuradha, C V

    2007-04-01

    The present study investigates the hepatoprotective effect of fenugreek seed polyphenolic extract (FPEt) against ethanol-induced hepatic injury and apoptosis in rats. Chronic ethanol administration (6 g/kg/day x 60 days) caused liver damage that was manifested by the elevation of markers of liver dysfunction--aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin and gamma-glutamyl transferase (GGT) in plasma and reduction in liver glycogen. The effects on alcohol metabolizing enzymes such as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were studied and found to be altered in the alcohol-treated group. Ethanol administration resulted in adaptive induction of the activities of cytochrome p450 (cyt-p-450) and cytochrome-b5 (cyt-b5) and reduction in cytochrome-c-reductase (cyt-c-red) and glutathione-S-tranferase (GST), a phase II enzyme. Further, ethanol reduced the viability of isolated hepatocytes (ex vivo) as assessed by the trypan blue exclusion test and increased hepatocyte apoptosis as assessed by propidium iodide staining (PI). Treatment with FPEt restored the levels of markers of liver injury and mitigated the alterations in alcohol metabolizing and detoxification enzymes and the electron transport component cytochrome-c reductase. Increased hepatocyte viability and reduced apoptotic nuclei were observed in FPEt-treated rats. These findings demonstrate that FPEt acts as a protective agent against ethanol-induced abnormalities in the liver. The effects of FPEt are comparable with those of a known hepatoprotective agent, silymarin. PMID:17484288

  18. Hepatoprotective effect of the aqueous extract of Simarouba amara Aublet (Simaroubaceae) stem bark against carbon tetrachloride (CCl4)-induced hepatic damage in rats.

    PubMed

    Maranhão, Hélida M L; Vasconcelos, Carlos F B; Rolim, Larissa A; Neto, Pedro J Rolim; Neto, Jacinto da C Silva; Filho, Reginaldo C da Silva; Fernandes, Mariana P; Costa-Silva, João H; Araújo, Alice V; Wanderley, Almir G

    2014-01-01

    Simarouba amara stem bark decoction has been traditionally used in Brazil to treat malaria, inflammation, fever, abdominal pain, diarrhea, wounds and as a tonic. In this study, we investigate the hepatoprotective effects of the aqueous extract of S. amara stem bark (SAAE) on CCl4-induced hepatic damage in rats. SAAE was evaluated by high performance liquid chromatography. The animals were divided into six groups (n = 6/group). Groups I (vehicle-corn oil), II (control-CCl4), III, IV, V and VI were pretreated during 10 consecutive days, once a day p.o, with Legalon® 50 mg/kg b.w, SAAE at doses 100, 250 and 500 mg/kg b.w, respectively. The hepatotoxicity was induced on 11th day with 2 mL/kg of 20% CCl4 solution. 24 h after injury, the blood samples were collected and their livers were removed to biochemical and immunohistochemical analyzes. The SAAE decreased the levels of liver markers and lipid peroxidation in all doses and increased the catalase levels at doses 250 and 500 mg/kg. Immunohistochemical results suggested hepatocyte proliferation in all doses. These results may be related to catechins present in SAAE. Thus, SAAE prevented the oxidative damage at the same time that increased regenerative and reparative capacities of the liver. PMID:25365298

  19. MiR-125b protects against ethanol-induced apoptosis in neural crest cells and mouse embryos by targeting Bak 1 and PUMA.

    PubMed

    Chen, Xiaopan; Liu, Jie; Feng, Wen-ke; Wu, Xiaoyang; Chen, Shao-yu

    2015-09-01

    MicroRNAs are a class of small noncoding RNAs that have been implicated in regulation of a broad range of cellular and physiologic processes, including apoptosis. The objective of this study is to elucidate the roles of miR-125b in modulating ethanol-induced apoptosis in neural crest cells (NCCs) and mouse embryos. We found that treatment with ethanol resulted in a significant decrease in miR-125b expression in NCCs and in mouse embryos. We also validated that Bcl-2 antagonist killer 1 (Bak1) and p53-upregulated modulator of apoptosis (PUMA) are the direct targets of miR-125b in NCCs. In addition, over-expression of miR-125b significantly reduced ethanol-induced increase in Bak1 and PUMA protein expression, caspase-3 activation, and apoptosis in NCCs, indicating that miR-125b can modulate ethanol-induced apoptosis by the regulation of Bcl-2 and p53 pathways. Furthermore, microinjection of miR-125b mimic resulted in a significant increase in miR-125b expression and a decrease in the protein expression of Bak1 and PUMA in ethanol-exposed mouse embryos. Up-regulation of miR-125b also significantly reduced ethanol-induced caspase-3 activation and diminished ethanol-induced growth retardation in mouse embryos. This is the first demonstration that miR-125b can prevent ethanol-induced apoptosis and that microinjection of miRNA mimic can prevent ethanol-induced embryotoxicity. PMID:26024858

  20. Lactobacillus fermentum Suo Attenuates HCl/Ethanol Induced Gastric Injury in Mice through Its Antioxidant Effects.

    PubMed

    Suo, Huayi; Zhao, Xin; Qian, Yu; Sun, Peng; Zhu, Kai; Li, Jian; Sun, Baozhong

    2016-01-01

    The purpose of the study was to determine the inhibitory effects of Lactobacillus fermentum Suo (LF-Suo) on HCl/ethanol induced gastric injury in ICR (Institute for Cancer Research) mice and explain the mechanism of these effects through the molecular biology activities of LF-Suo. The studied mice were divided into four groups: healthy, injured, LF-Suo-L and LF-Suo-H group. After the LF-Suo intragastric administration, the gastric injury area was reduced compared to the injured group. The serum MOT (motilin), SP (substance P), ET (endothelin) levels of LF-Suo treated mice were lower, and SS (somatostatin), VIP (vasoactive intestinal peptide) levels were higher than the injured group mice. The cytokine IL-6 (interleukin 6), IL-12 (interleukin 12), TNF-α (tumor necrosis factor-α) and IFN-γ (interferon-γ) serum levels were decreased after the LF-Suo treatment. The gastric tissues SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), NO (nitric oxide) and activities of LF-Suo treated mice were increased and MDA (malondialdehyde) activity was decreased compared to the injured group mice. By the RT-PCR assay, LF-Suo raised the occludin, EGF (epidermal growth factor), EGFR (epidermal growth factor receptor), VEGF (vascular endothelial growth factor), Fit-1 (fms-like tyrosine kinase-1), IκB-α (inhibitor kappaB-α), nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase), Mn-SOD, Cu/Zn-SOD, CAT (catalase) mRNA or protein expressions and reduced the COX-2, NF-κB (nuclear factor kappaB), and iNOS (inducible nitric oxide synthase) expressions in gastric tissues compared to the gastric injured group mice. A high concentration (1.0 × 10⁸ CFU/kg b.w.) of LF-Suo treatment showed stronger anti-gastric injury effects compared to a low concentration of (0.5 × 10⁸ CFU/kg b.w.) of LF-Suo treatment. LF-Suo also showed strong survival in pH 3.0 man-made gastric juice and hydrophobic properties. These results indicate that LF-Suo has potential use as probiotics for its gastric injury treatment effects. PMID:26978395

  1. The proapoptotic BH3-only, Bcl-2 family member, Puma is critical for acute ethanol-induced neuronal apoptosis.

    PubMed

    Ghosh, Arindam P; Walls, Ken C; Klocke, Barbara J; Toms, Rune; Strasser, Andreas; Roth, Kevin A

    2009-07-01

    Synaptogenesis in humans occurs in the last trimester of gestation and in the first few years of life, whereas it occurs in the postnatal period in rodents. A single exposure of neonatal rodents to ethanol during this period evokes extensive neuronal apoptosis. Previous studies indicate that ethanol triggers the intrinsic apoptotic pathway in neurons, and that this requires the multi-BH domain, proapoptotic Bcl-2 family member Bax. To define the upstream regulators of this apoptotic pathway, we examined the possible roles of p53 and a subclass of proapoptotic Bcl-2 family members (i.e. the BH3 domain-only proteins) in neonatal wild-type and gene-targeted mice that lack these cell death inducers. Acute ethanol exposure produced greater caspase-3 activation and neuronal apoptosis in wild-type mice than in saline-treated littermate controls. Loss of p53-upregulated mediator of apoptosis (Puma) resulted in marked protection from ethanol-induced caspase-3 activation and apoptosis. Although Puma expression has been reported to be regulated by p53, p53-deficient mice exhibited a similar extent of ethanol-induced caspase-3 activation and neuronal apoptosis as wild-type mice. Mice deficient in other proapoptotic BH3-only proteins, including Noxa, Bim, or Hrk, showed no significant protection from ethanol-induced neuronal apoptosis. Collectively, these studies indicate a p53-independent, Bax- and Puma-dependent mechanism of neuronal apoptosis and identify Puma as a possible molecular target for inhibiting the effects of intrauterine ethanol exposure in humans. PMID:19535997

  2. Ethanol-Induced Leakage in Saccharomyces cerevisiae: Kinetics and Relationship to Yeast Ethanol Tolerance and Alcohol Fermentation Productivity

    PubMed Central

    Salgueiro, Sancha P.; S-Correia, Isabel; Novais, Jlio M.

    1988-01-01

    Ethanol stimulated the leakage of amino acids and 260-nm-light-absorbing compounds from cells of Saccharomyces cerevisiae. The efflux followed first-order kinetics over an initial period. In the presence of lethal concentrations of ethanol, the efflux rates at 30 and 36C were an exponential function of ethanol concentration: keX = keXmeE (X-Xm), where keX and keXm are the efflux rate constants, respectively, in the presence of a concentration X of ethanol or the minimal concentration of ethanol, Xm, above which the equation was applicable, coincident with the minimal lethal concentration of ethanol. E is the enhancement constant. At 36C, as compared with the corresponding values at 30C, the efflux rates were higher and the minimal concentration of ethanol (Xm) was lower. The exponential constants for the enhancement of the rate of leakage (E) had similar values at 30 or 36C and were of the same order of magnitude as the corresponding exponential constants for ethanol-induced death. Under isothermic conditions (30C) and up to 22% (vol/vol) ethanol, the resistance to ethanol-induced leakage of 260-nm-light-absorbing compounds was found to be closely related with the ethanol tolerance of three strains of yeasts, Kluyveromyces marxianus, Saccharomyces cerevisiae, and Saccharomyces bayanus. The resistance to ethanol-induced leakage indicates the possible adoption of the present method for the rapid screening of ethanol-tolerant strains. The addition to a fermentation medium of the intracellular material obtained by ethanol permeabilization of yeast cells led to improvements in alcohol fermentation by S. cerevisiae and S. bayanus. The action of the intracellular material, by improving yeast ethanol tolerance, and the advantages of partially recycling the fermented medium after distillation were discussed. PMID:16347612

  3. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats.

    PubMed

    Patil, Shaktipal; Tawari, Santosh; Mundhada, Dharmendra; Nadeem, Sayyed

    2015-09-01

    Memory impairment induced by ethanol in rats is a consequence of changes in the CNS that are secondary to impaired oxidative stress and cholinergic dysfunction. Treatment with antioxidants and cholinergic agonists are reported to produce beneficial effects in this model. Berberine, an isoquinoline alkaloid is reported to exhibit antioxidant effect and cholinesterase (ChE) inhibitor activity. However, no report is available on the influence of berberine on ethanol-induced memory impairment. Therefore, we tested its influence against cognitive dysfunction in ethanol-induced rats using Morris water maze paradigm. Lipid peroxidation and glutathione levels as parameter of oxidative stress and cholinesterase (ChE) activity as a marker of cholinergic function were assessed in the cerebral cortex and hippocampus. Forty five days after ethanol treated rats showed a severe deficit in learning and memory associated with increased lipid peroxidation, decreased glutathione, and elevated ChE activity. In contrast, chronic treatment with berberine (25-100mg/kg, p.o., once a day for 45days) improved cognitive performance, and lowered oxidative stress and ChE activity in ethanol treated rats. In another set of experiments, berberine (100mg/kg) treatment during training trials also improved learning and memory, and lowered oxidative stress and ChE activity. Chronic treatment (45days) with vitamin C, and donepezil during training trials also improved ethanol-induced memory impairment and reduced oxidative stress and/or cholinesterase activity. In conclusion, the present study demonstrates that treatment with berberine prevents the changes in oxidative stress and ChE activity, and consequently memory impairment in ethanol treated rats. PMID:26159088

  4. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: relevance to cancer reduction.

    PubMed

    Karbownik, M; Reiter, R J; Garcia, J J; Cabrera, J; Burkhardt, S; Osuna, C; Lewi?ski, A

    2001-01-01

    Excessive free iron and the associated oxidative damage are commonly related to carcinogenesis. Among the antioxidants known to protect against iron-induced oxidative abuse and carcinogenesis, melatonin and other indole compounds recently have received considerable attention. Indole-3-propionic acid (IPA), a deamination product of tryptophan, with a structure similar to that of melatonin, is present in biological fluids and is an effective free radical scavenger. The aim of the study was to examine the effect of IPA on experimentally induced oxidative changes in rat hepatic microsomal membranes. Microsomes were preincubated in presence of IPA (10, 3, 2, 1, 0.3, 0.1, 0.01 or 0.001 mM) and, then, incubated with FeCl(3) (0.2 mM), ADP (1.7 mM) and NADPH (0.2 mM) to induce oxidative damage. Alterations in membrane fluidity (the inverse of membrane rigidity) were estimated by fluorescence spectroscopy and lipid peroxidation by measuring concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA). IPA, when used in concentrations of 10, 3 or 2 mM, increased membrane fluidity, although at these concentrations it did not influence lipid peroxidation significantly. The decrease in membrane fluidity due to Fe(3+) was completely prevented by preincubation in the presence of IPA at concentrations of 10, 3, 2 or 1 mM. The enhanced lipid peroxidation due to Fe(3+) was prevented by IPA only at the highest concentration (10 mM). It is concluded that Fe(3+)-induced rigidity and, to a lesser extent, lipid peroxidation in microsomal membranes may be reduced by IPA. However, IPA in high concentrations increase membrane fluidity. Besides melatonin, IPA may be used as a pharmacological agent to protect against iron-induced oxidative damage to membranes and, potentially, against carcinogenesis. PMID:11255233

  5. Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning.

    PubMed

    Polat, Murat; Cerrah, Serkan; Albayrak, Bulent; Ipek, Serkan; Arabul, Mahmut; Aslan, Fatih; Yilmaz, Omer

    2015-01-01

    Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20?g/kg leptin, Group 3: 2?g/kg paracetamol, Group 4: 2?g/kg paracetamol + 10?g/kg leptin, and Group 5: 2?g/kg paracetamol + 20?g/kg leptin. Results. The most significant increase was observed in the PARA 2?g/kg group, while the best improvement among the treatment groups occurred in the PARA 2?g/kg + LEP 10?g/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2?g/kg group, the best improvement was in the PARA 2?g/kg + LEP 10?g/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy. PMID:26697061

  6. Hepatoprotective Activity of Methanolic Extract of Bauhinia purpurea Leaves against Paracetamol-Induced Hepatic Damage in Rats

    PubMed Central

    Yahya, F.; Mamat, S. S.; Kamarolzaman, M. F. F.; Seyedan, A. A.; Jakius, K. F.; Mahmood, N. D.; Shahril, M. S.; Suhaili, Z.; Mohtarrudin, N.; Susanti, D.; Somchit, M. N.; Teh, L. K.; Salleh, M. Z.; Zakaria, Z. A.

    2013-01-01

    In an attempt to further establish the pharmacological properties of Bauhinia purpurea (Fabaceae), hepatoprotective potential of methanol extract of B. purpurea leaves (MEBP) was investigated using the paracetamol- (PCM-) induced liver toxicity in rats. Five groups of rats (n = 6) were used and administered orally once daily with 10% DMSO (negative control), 200 mg/kg silymarin (positive control), or MEBP (50, 250, and 500 mg/kg) for 7 days, followed by the hepatotoxicity induction using paracetamol (PCM). The blood samples and livers were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay with the total phenolic content (TPC) also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of the normal hepatic structural was observed in group pretreated with silymarin and MEBP. Hepatotoxic rats pretreated with silymarin or MEBP exhibited significant decrease (P < 0.05) in ALT and AST enzyme level. Moreover, the extract also exhibited antioxidant activity and contained high TPC. In conclusion, MEBP exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and high phenolic content and thus warrants further investigation. PMID:23853662

  7. Assessing the Effect of Leptin on Liver Damage in Case of Hepatic Injury Associated with Paracetamol Poisoning

    PubMed Central

    Polat, Murat; Cerrah, Serkan; Albayrak, Bulent; Ipek, Serkan; Yilmaz, Omer

    2015-01-01

    Background Aim. In case of high-dose acetaminophen intake, the active metabolite can not bind to the glutathione, thereby inducing cellular necrosis through binding to the cytosol proteins. This trial was performed to histologically and biochemically investigate whether leptin was protective against liver damage induced by paracetamol at toxic doses. Material and Method. In our trial, 30 female rats, divided into 5 groups, were used. IP leptin administration was performed after an hour in the group of rats, in which paracetamol poisoning was induced. The groups were as follows: Group 1: the control group, Group 2: 20 µg/kg leptin, Group 3: 2 g/kg paracetamol, Group 4: 2 g/kg paracetamol + 10 µg/kg leptin, and Group 5: 2 g/kg paracetamol + 20 µg/kg leptin. Results. The most significant increase was observed in the PARA 2 g/kg group, while the best improvement among the treatment groups occurred in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). While the most significant glutathione (GSH) reduction was observed in the PARA 2 g/kg group, the best improvement was in the PARA 2 g/kg + LEP 10 µg/kg group (p < 0.05). Conclusion. Liver damage occurring upon paracetamol poisoning manifests with hepatocyte breakdown occurring as a result of inflammation and oxidative stress. Leptin can prevent this damage thanks to its antioxidant and anti-inflammatory efficacy. PMID:26697061

  8. Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner.

    PubMed

    Yamashita, Haruka; Goto, Mayu; Matsui-Yuasa, Isao; Kojima-Yuasa, Akiko

    2015-06-01

    Previously, we showed that Ecklonia cava polyphenol (ECP) treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS) and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol. ECP was dissolved in dimethylsulfoxide. ECP was added to cultured cells that had been incubated with or without ethanol. The cells were incubated for 0-24 h. In cultured hepatocytes, the ECP treatment with ethanol inhibited cytochrome P450 2E1 (CYP2E1) expression and activity, which is related to the production of ROS when large quantities of ethanol are oxidized. On the other hand, ECP treatment with ethanol increased the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. These changes in activities of CYP2E1 and ADH were suppressed by treatment with H89, an inhibitor of protein kinase A. ECP treatment with ethanol enhanced cyclic AMP concentrations compared with those of control cells. ECP may be a candidate for preventing ethanol-induced liver injury via regulating alcohol metabolic enzymes in a cyclic AMP-dependent manner. PMID:26096275

  9. Tiao He Yi Wei Granule, a Traditional Chinese Medicine, against Ethanol-Induced Gastric Ulcer in Mice

    PubMed Central

    Yao, Jinfu

    2015-01-01

    Tiao He Yi Wei granule (DHYW), a traditional Chinese medicine, has been used for the treatment of gastric ulcer in clinical setting. The purpose of the present study was to investigate the possible effect of DHYW and explore the underlying mechanism against ethanol-induced gastric ulcer in mice. The model of ethanol-induced gastric ulcer in mice was induced by ethanol (0.2 mL/kg). Administration of DHYW at the doses of 250, 500 mg/kg body weight prior to the ethanol ingestion could effectively protect the stomach from ulceration. The gastric lesions were significantly ameliorated in the DHYW group compared with that in the model group. Treatment with DHYW markedly decreased the levels of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). In addition, DHYW treatment elevated myeloperoxidase (MPO) level in stomach, increased superoxide dismutase (SOD) activity, and decreased malonaldehyde (MDA) content in serum and stomach compared with those in the model group. DHYW significantly inhibited NF-κB pathway expressions in the gastric mucosa ulcer group. Taken together, DHYW exerted a gastroprotective effect against gastric ulceration and the underlying mechanism might be associated with NF-κB pathway. PMID:26779276

  10. Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner

    PubMed Central

    Yamashita, Haruka; Goto, Mayu; Matsui-Yuasa, Isao; Kojima-Yuasa, Akiko

    2015-01-01

    Previously, we showed that Ecklonia cava polyphenol (ECP) treatment suppressed ethanol-induced increases in hepatocyte death by scavenging intracellular reactive oxygen species (ROS) and maintaining intracellular glutathione levels. Here, we examined the effects of ECP on the activities of alcohol-metabolizing enzymes and their regulating mechanisms in ethanol-treated hepatocytes. Isolated hepatocytes were incubated with or without 100 mM ethanol. ECP was dissolved in dimethylsulfoxide. ECP was added to cultured cells that had been incubated with or without ethanol. The cells were incubated for 0–24 h. In cultured hepatocytes, the ECP treatment with ethanol inhibited cytochrome P450 2E1 (CYP2E1) expression and activity, which is related to the production of ROS when large quantities of ethanol are oxidized. On the other hand, ECP treatment with ethanol increased the activity of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase. These changes in activities of CYP2E1 and ADH were suppressed by treatment with H89, an inhibitor of protein kinase A. ECP treatment with ethanol enhanced cyclic AMP concentrations compared with those of control cells. ECP may be a candidate for preventing ethanol-induced liver injury via regulating alcohol metabolic enzymes in a cyclic AMP-dependent manner. PMID:26096275

  11. Genetic relationship between ethanol-induced conditioned place preference and other ethanol phenotypes in 15 inbred mouse strains.

    PubMed

    Cunningham, Christopher L

    2014-08-01

    The genetic relationships between different behaviors used to index the rewarding or reinforcing effects of alcohol are poorly understood. To address this issue, ethanol-induced conditioned place preference (CPP) was tested in a genetically diverse panel of inbred mouse strains, and strain means from this study and other inbred strain studies were used to examine the genetic correlation between CPP and several ethanol-related phenotypes, including activity measures recorded during CPP training and testing. Mice from each strain were exposed to a well-characterized unbiased place conditioning procedure using ethanol doses of 2 or 4 g/kg; an additional group from each strain was exposed to saline alone on all trials. Genotype had a significant effect on CPP, basal locomotor activity, ethanol-stimulated activity, and the effect of repeated ethanol exposure on activity. Correlational analyses showed significant negative genetic correlations between CPP and sweetened ethanol intake and between CPP and test session activity, as well as a significant positive genetic correlation between CPP and chronic ethanol withdrawal severity. Moreover, there was a trend toward a positive genetic correlation between CPP and ethanol-induced conditioned taste aversion. These genetic correlations suggest overlap in the genetic mechanisms underlying CPP and each of these traits. The patterns of genetic relationships suggest a greater impact of ethanol's aversive effects on drinking and a greater impact of ethanol's rewarding effects on CPP. Overall, these data support the idea that genotype influences ethanol's rewarding effect, a factor that may contribute importantly to addictive vulnerability. PMID:24841742

  12. Neuroprotective effects of the 17β-estradiol against ethanol-induced neurotoxicity and oxidative stress in the developing male rat cerebellum: biochemical, histological and behavioral changes.

    PubMed

    Ramezani, Azam; Goudarzi, Iran; Lashkarbolouki, Taghi; Ghorbanian, Mohammad Taghi; Salmani, Mahmoud Elahdadi; Abrari, Kataneh

    2011-11-01

    During particular periods of central nervous system (CNS) development, exposure to ethanol can decrease regional brain growth and can result in selective loss of neurons. Unfortunately, there are few effective means of attenuating damage in the immature brain. In this study, the possible antioxidant and neuroprotective properties of 17β-estradiol against ethanol-induced neurotoxicity was investigated. 17β-estradiol (600 μg/kg) was injected subcutaneously in postnatal day (PD) 4 and 5, 30 min prior to intraperitoneal injection of ethanol (6g/kg) in rat pups. Ninety minutes after injection of ethanol, the activities of several antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (Gpx) in vermis of cerebellum were assayed. Thiobarbituric acid reactive substance (TBARS) levels were also measured as a marker of lipid peroxidation. Behavioral studies, including rotarod and locomotor activity tests were performed in PD 21-23 and histological study was performed after completion of behavioral measurements in postnatal day 23. The results of the present work demonstrated that ethanol could induce lipid peroxidation, increase TBARS levels and decrease glutathione peroxidase levels in pup cerebellum. We also observed that ethanol impaired performance on the rotarod and locomotor activities of rat pups. However, treatment with 17β-estradiol significantly attenuated motoric impairment, the lipid peroxidation process and restored the levels of antioxidants. Histological analysis also indicated that ethanol could decrease vermis Purkinje cell count and 17β-estradiol prevented this toxic effect. These results suggest that ethanol may induce lipid peroxidation in the rat pups cerebellum while treatment with 17β-estradiol improves motor deficits by protecting the cerebellum against ethanol toxicity. PMID:21851833

  13. Autophagy in Hepatic Fibrosis

    PubMed Central

    Zhao, Yingying; Wang, Fei; Tao, Lichan; Yang, Changqing

    2014-01-01

    Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future. PMID:24779010

  14. Increased DNA methylation in the livers of patients with alcoholic hepatitis.

    PubMed

    Shen, Hong; French, Barbara A; Tillman, Brittany C; Li, Jun; French, Samuel W

    2015-10-01

    Epigenetic regulation of gene expression has been suggested to play a critical role in the development of alcoholic hepatitis (AH). Although it has been shown that ethanol-induced damage in hepatocytes resulted from a change in methionine metabolism causes global gene expression changes in hepatocytes, the role of the epigenetic machinery in such processes has, however, been barely investigated. 5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are major molecules of epigenetic DNA modification that play an important role in the control of gene expression. Using antibodies against 5mC and 5hmC, the DNA methylation in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of 5mC in patients with AH was significantly higher than that seen in normal controls. While there was a trend of decreased 5-hmC in patients with AH, the difference between patients with AH and normal control was not significant. Our study suggests that aberrant DNA-methylation is associated with pathogenesis of AH. PMID:26260903

  15. Hepatitis A

    MedlinePLUS

    ... Issues Listen Espaol Text Size Email Print Share Hepatitis A Article Body Hepatitis means inflammation of the liver. This inflammation can ... well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child ...

  16. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    SciTech Connect

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  17. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats

    PubMed Central

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (−)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats. PMID:26106435

  18. Curcumin protects against gallic acid-induced oxidative stress, suppression of glutathione antioxidant defenses, hepatic and renal damage in rats.

    PubMed

    Abarikwu, Sunny O; Durojaiye, Mojisola; Alabi, Adenike; Asonye, Bede; Akiri, Oghenetega

    2016-03-01

    Curcumin (Cur) and gallic acid (Gal) are major food additives. Cur has well-known antioxidant properties, whereas Gal has both antioxidant and pro-oxidant effects. The present study investigated the effects of oral administration of Gal with or without Cur on antioxidant enzymes activities, glutathione (GSH) and the enzymes in its metabolism in rat liver in vivo and markers of tissue damage in the serum. Results showed that the increase in serum creatinine level, alkaline phosphatase and lactate dehydrogenase activities by Gal treatment were inhibited by combined administration of Gal and Cur. The decrease in GSH-peroxidase, GSH-S-transferase, superoxide dismutase and GSH-reductase activities by Gal treatment were inhibited when both Gal and Cur were administered together. The malondialdehyde concentration and catalase activity were significantly increased following administration of Gal but not when the administration of Gal was combined with Cur. Finally, the increase in GSH level was seen following administration of Cur alone or in combination with Gal but not with Gal alone. These results suggest that Gal might induce oxidative stress in the rat liver and affect renal function that can be inhibited by the combined administration of Gal and Cur. PMID:26707166

  19. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats.

    PubMed

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Hossain, Hemayet; Alam, Md Ashraful

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (-)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats. PMID:26106435

  20. Trace Mineral Overload Induced Hepatic Oxidative Damage and Apoptosis in Pigs with Long-Term High-Level Dietary Mineral Exposure.

    PubMed

    Pu, Junning; Tian, Gang; Li, Bin; Chen, Daiwen; He, Jun; Zheng, Ping; Mao, Xiangbing; Yu, Jie; Huang, Zhiqing; Yu, Bing

    2016-03-01

    The present study investigated the effects of dietary trace mineral (Cu, Fe, Mn, and Zn) supplemental strategies on liver oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis of pigs. A total of 96 Duroc × Landrace × Yorkshire (DLY) piglets were randomly divided into four groups: considered or not considered the trace mineral concentrations in basal diet, and then added to the requirements proposed by NRC (2012) (+B/NR or -B/NR); and considered or not considered the basal diet's trace mineral concentrations and then added to the level of commercial trace mineral supplement (+B/PL or -B/PL). Pigs were fed from 6.5 to 115 kg. Compared with +B/NR diets, -B/PL diets increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations (P < 0.05), resulted in high levels of Fe, Cu, Mn, and Zn accumulation in liver (P < 0.05), as well as led to hepatic oxidative damage with the high concentrations of thiobarbituric acid reactive substance (TBARS), protein carbonylation (PCO), and 8-hydroxyguanine (8-OHG) in liver (P < 0.05). Furthermore, pigs fed -B/PL diets increased CCAAT/enhancer-binding protein homologous protein (CHOP), eukaryotic initiation factor-2α (eIF-2a), interleukin-6(IL-6), B-cell lymphoma leukemia-2-associated X protein (Bax), and caspase-3, caspase-8, and caspase-9 gene expression (P < 0.05) in liver. -B/PL diets also up-regulated hepatic mRNA expression of phosphoenolpyruvate carboxykinase1 (PEPCK1), glucose-6-phosphatase (G6PC), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) (P < 0.05) and down-regulated hormone-sensitive lipase (HSL) mRNA expression (P < 0.05) when compared with those of the + B/NR diet group. Taken together, the results indicated that long-term dietary mineral exposure with the commercial supplement level could cause harm to the structure and metabolic function of liver in pigs. PMID:26829127

  1. Effects of the Cognition-Enhancing Agent ABT-239 on Fetal Ethanol-Induced Deficits in Dentate Gyrus Synaptic Plasticity

    PubMed Central

    Varaschin, Rafael K.; Akers, Katherine G.; Rosenberg, Martina J.; Hamilton, Derek A.

    2010-01-01

    Prenatal ethanol exposure causes deficits in hippocampal synaptic plasticity and learning. At present, there are no clinically effective pharmacotherapeutic interventions for these deficits. In this study, we examined whether the cognition-enhancing agent 4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl) benzonitrile (ABT-239), a histamine H3 receptor antagonist, could ameliorate fetal ethanol-induced long-term potentiation (LTP) deficits. Long-Evans rat dams consumed a mean of 2.82 g/kg ethanol during a 4-h period each day. This voluntary drinking pattern produced a mean peak serum ethanol level of 84 mg/dl. Maternal weight gain, offspring litter size, and birth weights were not different between ethanol-consuming and control groups. A stimulating electrode was implanted in the entorhinal cortical perforant path, and a recording electrode was implanted in the dorsal dentate gyrus of urethane-anesthetized adult male offspring. Baseline input/output responses were not affected either by prenatal ethanol exposure or by 1 mg/kg ABT-239 administered 2 h before data collection. No differences were observed between prenatal treatment groups when a 10-tetanus train protocol was used to elicit LTP. However, LTP elicited by 3 tetanizing trains was markedly impaired by prenatal ethanol exposure compared with control. This fetal ethanol-induced LTP deficit was reversed by ABT-239. In contrast, ABT-239 did not enhance LTP in control offspring using the 3-tetanus train protocol. These results suggest that histamine H3 receptor antagonists may have utility for treating fetal ethanol-associated synaptic plasticity and learning deficits. Furthermore, the differential effect of ABT-239 in fetal alcohol offspring compared with controls raises questions about the impact of fetal ethanol exposure on histaminergic modulation of excitatory neurotransmission in affected offspring. PMID:20308329

  2. Pyranocycloartobiloxanthone A, a novel gastroprotective compound from Artocarpus obtusus Jarret, against ethanol-induced acute gastric ulcer in vivo.

    PubMed

    Sidahmed, Heyam M A; Hashim, Najihah Mohd; Amir, Junaidah; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Abdelwahab, Siddig Ibrahim; Taha, Manal Mohamed Elhassan; Hassandarvish, Pouya; Teh, Xinsheng; Loke, Mun Fai; Vadivelu, Jamuna; Rahmani, Mawardi; Mohan, Syam

    2013-07-15

    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori. PMID:23570997

  3. Preventive effect of polysaccharides from the large yellow croaker swim bladder on HCl/ethanol induced gastric injury in mice

    PubMed Central

    CHEN, SHAOCHENG; ZHU, KAI; WANG, RUI; ZHAO, XIN

    2014-01-01

    In the present study the preventive effect of polysaccharides from the large yellow croaker swim bladder (PLYCSB) on HCl/ethanol-induced gastric injury in ICR mice was investigated. A high dose of PLYCSB (50 mg/kg) was found to reduce the levels of the serum proinflammatory cytokines interleukin (IL)-1?, IL-6, IL-8, as well as increase the levels of IL-4 compared with those in mice treated with a low dose of PLYCSB (25 mg/kg) and control mice. The somatostatin and vasoactive intestinal peptide serum levels in PLYCSB-treated mice were higher compared with those in control mice, whilst motilin and substance P serum levels were lower compared with those in control mice. The extent of the gastric injury in the mice treated with PLYCSB was lower compared with that in the control mice; however, the results obtained for mice treated with a high dose of PLYCSB were similar to those for omeprazole-treated mice. In addition, the superoxide dismutase and glutathione peroxidase activities of PLYCSB-treated mice were higher compared with those of the control mice, and similar to those observed in normal and omeprazole-treated mice. Furthermore, PLYCSB-treated mice showed levels of nitric oxide and malondialdehyde that were similar to those in the normal group. Using PCR and western blot analysis, it was demonstrated that PLYCSB significantly inhibited inflammation in the tissues of the HCl/ethanol induced gastric injury mice by downregulating the expression of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-? and IL-1?. These results suggest that PLYCSB has an inhibitory effect against gastric injury that is comparable to that of the gastric injury drug omeprazole. Therefore, PLYCSB has the potential to be used as a natural therapeutic drug. PMID:24944640

  4. Zonal differences in ethanol-induced impairments in receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J. )

    1991-02-01

    We have shown previously that ethanol-induced defects in receptor-mediated endocytosis of asialoorosomucoid occurred as early as 1 wk after ethanol feeding. This study was undertaken as an initial attempt to establish a possible role of defective receptor-mediated endocytosis in liver injury by investigating whether differences exist in the effects of ethanol on receptor-mediated endocytosis in hepatocytes isolated from different regions of the liver. Perivenule cells, present in the distal half of the liver, are thought to be more susceptible to ethanol-induced liver injury than are the periportal cells located in the proximal half of the liver acini. For these studies, we fed male Sprague-Dawley rats for 7 days with liquid diets containing either ethanol (36% of calories) or isocaloric carbohydrate. Perivenule and periportal hepatocytes were then isolated using a digitonin-collagenase perfusion method. In control animals, cells isolated from the perivenule region bound significantly more ligand than did cells from the periportal region. Amounts of ligand internalized and degraded were also greater in perivenule than in periportal cells in these animals. After ethanol feeding, cells isolated from both the perivenule and periportal regions bound significantly less ligand than their respective controls. This impairment in surface and total binding was more pronounced in perivenule than in periportal cells. Internalization and degradation of the ligand were also more adversely affected in the centrilobular region as shown by decreases of greater than 60% in perivenule cells and by only 20% to 30% in periportal cells of ethanol-fed animals compared with controls.

  5. Oxytocin prevents ethanol actions at δ subunit-containing GABAA receptors and attenuates ethanol-induced motor impairment in rats

    PubMed Central

    Bowen, Michael T.; Peters, Sebastian T.; Absalom, Nathan; Chebib, Mary; Neumann, Inga D.; McGregor, Iain S.

    2015-01-01

    Even moderate doses of alcohol cause considerable impairment of motor coordination, an effect that substantially involves potentiation of GABAergic activity at δ subunit-containing GABAA receptors (δ-GABAARs). Here, we demonstrate that oxytocin selectively attenuates ethanol-induced motor impairment and ethanol-induced increases in GABAergic activity at δ-GABAARs and that this effect does not involve the oxytocin receptor. Specifically, oxytocin (1 µg i.c.v.) given before ethanol (1.5 g/kg i.p.) attenuated the sedation and ataxia induced by ethanol in the open-field locomotor test, wire-hanging test, and righting-reflex test in male rats. Using two-electrode voltage-clamp electrophysiology in Xenopus oocytes, oxytocin was found to completely block ethanol-enhanced activity at α4β1δ and α4β3δ recombinant GABAARs. Conversely, ethanol had no effect when applied to α4β1 or α4β3 cells, demonstrating the critical presence of the δ subunit in this effect. Oxytocin had no effect on the motor impairment or in vitro effects induced by the δ-selective GABAAR agonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, which binds at a different site on δ-GABAARs than ethanol. Vasopressin, which is a nonapeptide with substantial structural similarity to oxytocin, did not alter ethanol effects at δ-GABAARs. This pattern of results confirms the specificity of the interaction between oxytocin and ethanol at δ-GABAARs. Finally, our in vitro constructs did not express any oxytocin receptors, meaning that the observed interactions occur directly at δ-GABAARs. The profound and direct interaction observed between oxytocin and ethanol at the behavioral and cellular level may have relevance for the development of novel therapeutics for alcohol intoxication and dependence. PMID:25713389

  6. Bioactivity of sesquiterpenes: compounds that protect from alcohol-induced gastric mucosal lesions and oxidative damage.

    PubMed

    Repetto, M G; Boveris, A

    2010-06-01

    Sesquiterpene lactones of the guaianolide and eudermanolide types are considered of interest because they have an effect in the regulation and prevention of oxidative damage and inflammation-mediated biological damage. Dehydroleucodine, a natural sesquiterpene isolated from Artemisia douglasiana Besser, and ilicic aldehyde, a semi-synthetic sesquiterpene lactones, showed in vivo protection in ethanol-induced gastric mucosa damage. This action was determined by in situ gastric mucosa chemiluminescence and by tissue antioxidant content. PMID:20500151

  7. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  8. A crucial role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female skeletal responses to ethanol may vary depending on the physiologic status (viz. cycling, pregnancy, lactation). Nonetheless, ethanol-induced oxidative stress appears to be the key event leading to skeletal toxicity. In the current study, we chronically infused EtOH-containing liquid diets ...

  9. Age-related effects of chronic restraint stress on ethanol drinking, ethanol-induced sedation, and on basal and stress-induced anxiety response.

    PubMed

    Fernández, Macarena Soledad; Fabio, María Carolina; Miranda-Morales, Roberto Sebastián; Virgolini, Miriam B; De Giovanni, Laura N; Hansen, Cristian; Wille-Bille, Aranza; Nizhnikov, Michael E; Spear, Linda P; Pautassi, Ricardo Marcos

    2016-03-01

    Adolescents are sensitive to the anxiolytic effect of ethanol, and evidence suggests that they may be more sensitive to stress than adults. Relatively little is known, however, about age-related differences in stress modulation of ethanol drinking or stress modulation of ethanol-induced sedation and hypnosis. We observed that chronic restraint stress transiently exacerbated free-choice ethanol drinking in adolescent, but not in adult, rats. Restraint stress altered exploration patterns of a light-dark box apparatus in adolescents and adults. Stressed animals spent significantly more time in the white area of the maze and made significantly more transfers between compartments than their non-stressed peers. Behavioral response to acute stress, on the other hand, was modulated by prior restraint stress only in adults. Adolescents, unlike adults, exhibited ethanol-induced motor stimulation in an open field. Stress increased the duration of loss of the righting reflex after a high ethanol dose, yet this effect was similar at both ages. Ethanol-induced sleep time was much higher in adult than in adolescent rats, yet stress diminished ethanol-induced sleep time only in adults. The study indicates age-related differences that may increase the risk for initiation and escalation in alcohol drinking. PMID:26830848

  10. Protective effect of manganese in cadmium-induced hepatic oxidative damage, changes in cadmium distribution and trace elements level in mice

    PubMed Central

    Eybl, Vladislav; Kotyzová, Dana

    2010-01-01

    Oxidative tissue damage is considered an early sign of cadmium (Cd) toxicity and has been linked with carcinogenesis. Manganese(II)-at low doses, was found to act as a potent antioxidant against oxidative stress in different in vitro systems producing lipid peroxidation conditions. The present study investigates in vivo antioxidant effects of Mn2+ pretreatment in acute Cd intoxication with regard to lipid peroxidation, antioxidant defense system and cadmium distribution in the tissues of mice. Four groups of male mice (n=7–8) were used: Cd group was injected sc a single dose of CdCl2 · 2½ H2O · (7 mg/kg b.w.); Cd+Mn group was treated ip with MnCl2 · 4H2O (20 mg/kg b.w.) 24 hours before Cd intoxication; Mn group received manganese treatment only; Control group received saline only. Twenty-four hours after Cd intoxication an increased lipid peroxidation (p<0.05), depleted GSH level (p<0.01), increased activity of GSH-Px (p<0.05) and inhibited CAT activity (p<0.01) were found in Cd-treated group compared to controls. Manganese(II) pre-treatment either completely prevented (LP, GSH, GSH-Px) or significantly attenuated (CAT) these changes. Manganese(II) treatment alone decreased LP, enhanced hepatic GSH level and had no effect on antioxidant enzymes compared to control group. A significant increase of Cd concentration in the liver and decreased Cd concentration in the kidneys and testes were found in Cd+Mn treated mice compared to Cd-only treated group. The effect of manganese may result from a different metallothionein induction in particular organs. Manganese(II) pretreatment attenuated the interference of cadmium with Ca homeostasis, the alteration in Zn and Cu levels remained mostly unaffected. PMID:21217875

  11. NKP30-B7-H6 Interaction Aggravates Hepatocyte Damage through Up-Regulation of Interleukin-32 Expression in Hepatitis B Virus-Related Acute-On-Chronic Liver Failure

    PubMed Central

    Pan, Xingfei; Lu, Ying; Liao, Sihong; Wang, Xicheng; Wang, Guoying; Lin, Dongjun

    2015-01-01

    Background and Aims Previous work conducted by our group has shown that the accumulation of hepatic natural killer (NK) cells and the up-regulation of natural cytotoxicity receptors (NKP30 and NKP46) on NK cells from patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) were correlated with disease progression in HBV-ACLF. The natural cytotoxicity receptors expressed on NK cells are believed to be probable candidates involved in the NK cell-mediated hepatocyte damage in HBV-ACLF. However, the underlying mechanisms remain to be elucidated. In the present study, we aimed to discover the role of NKP30-B7-H6 interaction in NK cells-mediated hepatocyte damage in HBV-ACLF. Methods Hepatic expressions of B7-H6 and interleukin-32 (IL-32) were examined by immunochemistry staining in samples from patients with HBV-ACLF or mild chronic hepatitis B (CHB). The cytotoxicity of NK-92 cell against target cells (Huh-7 and LO2) was evaluated by CCK8 assay. Expression of IL-32 in liver NK cell, T cells and NK-92 cell line was detected by the flow cytometric analysis. The effect of IL-32 on the apoptosis of Huh7 cells was evaluated using Annexin V/PI staining analysis. Results An enhancement of hepatic B7-H6 and IL-32 expression was associated with the severity of liver injury in HBV-ACLF. And there was a positive association between hepatic B7-H6 and IL-32 expression. Expressions of IL-32 in liver NK cells and T cells were increased in HBV-ACLF patients. In vitro NK-92 cells are highly capable of killing the high B7-H6 expressing Huh7 cells and B7-H6-tansfected hepatocyte line LO2 cells dependent on NKP30 and B7-H6 interaction. Furthermore, NK-92 cells exhibited elevated IL-32 expression when stimulated with anti-NKP30 antibodies or when co-cultured with Huh7 cells. IL-32 can induce the apoptosis of Huh7 cells in a dose-dependent manner. Conclusion Our results suggest that NKP30-B7-H6 interaction can aggravate hepatocyte damage, probably through up-regulation of IL-32 expression in HBV-ACLF. PMID:26241657

  12. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition

    PubMed Central

    Samantaray, Supriti; Knaryan, Varduhi H.; Patel, Kaushal S.; Mulholland, Patrick J.; Becker, Howard C.; Banik, Naren L.

    2015-01-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60 %), myelin proteins (myelin basic protein, 20-40 % proteolipid protein, 25 %) and enzyme (2?, 3?-cyclic-nucleotide 3?-phosphodiesterase, 21-55 %) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 ?g/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against EtOH associated CNS degeneration. PMID:26100335

  13. Chronic intermittent ethanol induced axon and myelin degeneration is attenuated by calpain inhibition.

    PubMed

    Samantaray, Supriti; Knaryan, Varduhi H; Patel, Kaushal S; Mulholland, Patrick J; Becker, Howard C; Banik, Naren L

    2015-10-01

    Chronic alcohol consumption causes multifaceted damage to the central nervous system (CNS), underlying mechanisms of which are gradually being unraveled. In our previous studies, activation of calpain, a calcium-activated neutral protease has been found to cause detrimental alterations in spinal motor neurons following ethanol (EtOH) exposure in vitro. However, it is not known whether calpain plays a pivotal role in chronic EtOH exposure-induced structural damage to CNS in vivo. To test the possible involvement of calpain in EtOH-associated neurodegenerative mechanisms the present investigation was conducted in a well-established mouse model of alcohol dependence - chronic intermittent EtOH (CIE) exposure and withdrawal. Our studies indicated significant loss of axonal proteins (neurofilament light and heavy, 50-60%), myelin proteins (myelin basic protein, 20-40% proteolipid protein, 25%) and enzyme (2', 3'-cyclic-nucleotide 3'-phosphodiesterase, 21-55%) following CIE in multiple regions of brain including hippocampus, corpus callosum, cerebellum, and importantly in spinal cord. These CIE-induced deleterious effects escalated after withdrawal in each CNS region tested. Increased expression and activity of calpain along with enhanced ratio of active calpain to calpastatin (sole endogenous inhibitor) was observed after withdrawal compared to EtOH exposure. Pharmacological inhibition of calpain with calpeptin (25 ?g/kg) prior to each EtOH vapor inhalation significantly attenuated damage to axons and myelin as demonstrated by immuno-profiles of axonal and myelin proteins, and Luxol Fast Blue staining. Calpain inhibition significantly protected the ultrastructural integrity of axons and myelin compared to control as confirmed by electron microscopy. Together, these findings confirm CIE exposure and withdrawal induced structural alterations in axons and myelin, predominantly after withdrawal and corroborate calpain inhibition as a potential protective strategy against EtOH associated CNS degeneration. PMID:26100335

  14. Toxin-induced hepatic injury.

    PubMed

    Lopez, Annette M; Hendrickson, Robert G

    2014-02-01

    Toxins such as pharmaceuticals, herbals, foods, and supplements may lead to hepatic damage. This damage may range from nonspecific symptoms in the setting of liver test abnormalities to acute hepatic failure. The majority of severe cases of toxin-induced hepatic injury are caused by acetaminophen and ethanol. The most important step in the patient evaluation is to gather an extensive history that includes toxin exposure and exclude common causes of liver dysfunction. Patients whose hepatic dysfunction progresses to acute liver failure may benefit from transfer to a transplant service for further management. Currently, the mainstay in management for most exposures is discontinuing the offending agent. This manuscript will review the incidence, pathophysiology, diagnosis and management of the different forms of toxin-induced hepatic injury and exam in-depth the most common hepatic toxins. PMID:24275171

  15. Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells-PC12.

    PubMed

    Kumar, V; Tripathi, V K; Jahan, S; Agrawal, M; Pandey, A; Khanna, V K; Pant, A B

    2015-12-01

    Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10?M) and ethanol (200mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems. PMID:25367877

  16. Dietary fat sources differentially modulate intestinal barrier and hepatic inflammation in alcohol-induced liver injury in rats

    PubMed Central

    Zhong, Wei; Li, Qiong; Xie, Guoxiang; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Jia, Wei

    2013-01-01

    Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent. PMID:24113767

  17. Magnetic Resonance Microscopy Defines Ethanol-Induced Brain Abnormalities In Prenatal Mice: Effects Of Acute Insult On Gestational Day 7

    PubMed Central

    Godin, Elizabeth A.; OLeary-Moore, Shonagh K.; Khan, Amber A.; Parnell, Scott E.; Ament, Jacob J.; Dehart, Deborah B.; Johnson, Brice W.; Johnson, G. Allan; Styner, Martin A.; Sulik, Kathleen K.

    2012-01-01

    Background This magnetic resonance microscopy (MRM)-based report is the 2nd in a series designed to illustrate the spectrum of craniofacial and central nervous system (CNS) dysmorphia resulting from single- and multiple-day maternal ethanol treatment. The study described in this report examined the consequences of ethanol exposure on gestational day (GD) 7 in mice, a time in development when gastrulation and neural plate development begins; corresponding to the mid- to late 3rd week post-fertilization in humans. Acute GD 7 ethanol exposure in mice has previously been shown to result in CNS defects consistent with holoprosencephaly (HPE) and craniofacial anomalies typical of those in Fetal Alcohol Syndrome (FAS). MRM has facilitated further definition of the range of GD 7 ethanol-induced defects. Methods C57Bl/6J female mice were intraperitoneally administered vehicle or 2 injections of 2.9 g/kg ethanol on day 7 of pregnancy. Stage-matched control and ethanol-exposed GD 17 fetuses selected for imaging were immersion fixed in a Bouins/Prohance solution. MRM was conducted at either 7.0 Tesla (T) or 9.4 T. Resulting 29 m isotropic spatial resolution scans were segmented and reconstructed to provide 3D images. Linear and volumetric brain measures, as well as morphological features, were compared for control and ethanol-exposed fetuses. Following MRM, selected specimens were processed for routine histology and light microscopic examination. Results GD 7 ethanol exposure resulted in a spectrum of median facial and forebrain deficiencies, as expected. This range of abnormalities falls within the HPE spectrum; a spectrum for which facial dysmorphology is consistent with and typically is predictive of that of the forebrain. In addition, other defects including median facial cleft, cleft palate, micrognathia, pituitary agenesis and third ventricular dilatation were identified. MRM analyses also revealed cerebral cortical dysplasia/heterotopias resulting from this acute, early insult and facilitated a subsequent focused histological investigation of these defects. Conclusions Individual MRM scans and 3D reconstructions of fetal mouse brains have facilitated demonstration of a broad range of GD 7 ethanol-induced morphological abnormality. These results, including the discovery of cerebral cortical heterotopias, elucidate the teratogenic potential of ethanol insult during the 3rd week of human prenatal development. PMID:19860813

  18. ?4-Containing GABAA Receptors are Required for Antagonism of Ethanol-Induced Motor Incoordination and Hypnosis by the Imidazobenzodiazepine Ro15-4513

    PubMed Central

    Iyer, Sangeetha V.; Benavides, Rodrigo A.; Chandra, Dev; Cook, James M.; Rallapalli, Sundari; June, Harry L.; Homanics, Gregg E.

    2011-01-01

    Alcohol (ethanol) is widely consumed for its desirable effects but unfortunately has strong addiction potential. Some imidazobenzodiazepines such as Ro15-4513 are able to antagonize many ethanol-induced behaviors. Controversial biochemical and pharmacological evidence suggest that the effects of these ethanol antagonists and ethanol are mediated specifically via overlapping binding sites on ?4/?-containing GABAA-Rs. To investigate the requirement of ?4-containing GABAA-Rs in the mechanism of action of Ro15-4513 on behavior, wildtype (WT) and ?4 knockout (KO) mice were compared for antagonism of ethanol-induced motor incoordination and hypnosis. Motor effects of ethanol were tested in two different fixed speed rotarod assays. In the first experiment, mice were injected with 2.0?g/kg ethanol followed 5?min later by 10?mg/kg Ro15-4513 (or vehicle) and tested on a rotarod at 8?rpm. In the second experiment, mice received a single injection of 1.5?g/kg ethanol??3?mg/kg Ro15-4513 and were tested on a rotarod at 12?rpm. In both experiments, the robust Ro15-4513 antagonism of ethanol-induced motor ataxia that was observed in WT mice was absent in KO mice. A loss of righting reflex (LORR) assay was used to test Ro15-4513 (20?mg/kg) antagonism of ethanol (3.5?g/kg)-induced hypnosis. An effect of sex was observed on the LORR assay, so males and females were analyzed separately. In male mice, Ro15-4513 markedly reduced ethanol-induced LORR in WT controls, but ?4 KO mice were insensitive to this effect of Ro15-4513. In contrast, female KO mice did not differ from WT controls in the antagonistic effects of Ro15-4513 on ethanol-induced LORR. We conclude that Ro15-4513 requires ?4-containing receptors for antagonism of ethanol-induced LORR (in males) and motor ataxia. PMID:21779248

  19. Viral Hepatitis

    MedlinePLUS

    ... I prevent viral hepatitis infection? Below are the best methods for preventing the hepatitis viruses most commonly seen in the United States. Hepatitis A prevention Get vaccinated. People with certain ...

  20. Viral Hepatitis

    MedlinePLUS

    ... Liver Complications Liver Complications Home Cirrhosis Liver Cancer Liver Transplant Living with Hepatitis Living with Hepatitis Home Alcohol ... to Liver Basics > Liver Complications Cirrhosis Liver Cancer Liver Transplants Search Hepatitis Search this website Submit Share this ...

  1. Evidence for the involvement of 5-lipoxygenase products in ethanol-induced intestinal plasma protein loss

    SciTech Connect

    Beck, I.T.; Boyd, A.J.; Dinda, P.K. )

    1988-04-01

    In this study the authors investigated whether the products of 5-lipoxygenase (5-LO) were involved in the jejunal microvascular injury induced by intraluminal ethanol (ETH). A group of rabbits was given orally a selective inhibitor of 5-LO in two 10-mg doses, 24, and 2 h before the experiments. A jejunal segment was perfused with a control solution (control segment) and an adjacent segment with an ETH-containing solution (ETH-perfused segment). In a series of experiments, they measured 5-LO activity of the jejunal segments of both groups using the generation of leukotriene B{sub 4} (LTB{sub 4}) as an index. In a second series of experiments, they determined the ETH-induced intraluminal protein loss, which was taken as a measure of mucosal microvascular damage. The ETH-induced increase in protein loss was significantly lower in the treated than in the untreated group. These findings suggest that products of 5-LO are involved in the ETH-induced jejunal microvascular injury.

  2. Defining Hepatic Dysfunction Parameters in Two Models of Fatty Liver Disease in Zebrafish Larvae

    PubMed Central

    Howarth, Deanna L.; Yin, Chunyue; Yeh, Karen

    2013-01-01

    Abstract Fatty liver disease in humans can progress from steatosis to hepatocellular injury, fibrosis, cirrhosis, and liver failure. We developed a series of straightforward assays to determine whether zebrafish larvae with either tunicamycin- or ethanol-induced steatosis develop hepatic dysfunction. We found altered expression of genes involved in acute phase response and hepatic function, and impaired hepatocyte secretion and disruption of canaliculi in both models, but glycogen deficiency in hepatocytes and dilation of hepatic vasculature occurred only in ethanol-treated larvae. Hepatic stellate cells (HSCs) become activated during liver injury and HSC numbers increased in both models. Whether the excess lipids in hepatocytes are a direct cause of hepatocyte dysfunction in fatty liver disease has not been defined. We prevented ethanol-induced steatosis by blocking activation of the sterol response element binding proteins (Srebps) using gonzombtps1 mutants and scap morphants and found that hepatocyte dysfunction persisted even in the absence of lipid accumulation. This suggests that lipotoxicity is not the primary cause of hepatic injury in these models of fatty liver disease. This study provides a panel of parameters to assess liver disease that can be easily applied to zebrafish mutants, transgenics, and for drug screening in which liver function is an important consideration. PMID:23697887

  3. Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae.

    PubMed

    Howarth, Deanna L; Yin, Chunyue; Yeh, Karen; Sadler, Kirsten C

    2013-06-01

    Fatty liver disease in humans can progress from steatosis to hepatocellular injury, fibrosis, cirrhosis, and liver failure. We developed a series of straightforward assays to determine whether zebrafish larvae with either tunicamycin- or ethanol-induced steatosis develop hepatic dysfunction. We found altered expression of genes involved in acute phase response and hepatic function, and impaired hepatocyte secretion and disruption of canaliculi in both models, but glycogen deficiency in hepatocytes and dilation of hepatic vasculature occurred only in ethanol-treated larvae. Hepatic stellate cells (HSCs) become activated during liver injury and HSC numbers increased in both models. Whether the excess lipids in hepatocytes are a direct cause of hepatocyte dysfunction in fatty liver disease has not been defined. We prevented ethanol-induced steatosis by blocking activation of the sterol response element binding proteins (Srebps) using gonzo(mbtps1) mutants and scap morphants and found that hepatocyte dysfunction persisted even in the absence of lipid accumulation. This suggests that lipotoxicity is not the primary cause of hepatic injury in these models of fatty liver disease. This study provides a panel of parameters to assess liver disease that can be easily applied to zebrafish mutants, transgenics, and for drug screening in which liver function is an important consideration. PMID:23697887

  4. Cinitapride protects against ethanol-induced gastric mucosal injury in rats: role of 5-hydroxytryptamine, prostaglandins and sulfhydryl compounds.

    PubMed

    Alarcn-de-la-Lastra Romero, C; Lpez, A; Martn, M J; la Casa, C; Motilva, V

    1997-04-01

    This study was designed to determine the gastroprotective properties of cinitapride (CNT), a novel prokinetic benzamide derivative agonist of 5-HT4 and 5-HT1 receptors and 5-HT2 antagonist, on mucosal injury produced by 50% (v/v) ethanol. Results were compared with those for 5-hydroxytryptamine (5-HT: 10 mg kg-1). The possible involvements of gastric mucus secretion, endogenous prostaglandins (PGs) and sulfhydryl compounds (SH) in the protection mediated by CNT were also examined. Intraperitoneal administration of CNT (0.50 and 1 mg kg-1), 30 min before ethanol, significantly prevented gastric ulceration and increased the hexosamine content of gastric mucus. CNT (1 mg kg-1) also produced a significant increase in gastric mucosal levels of PGE2, but did not induce any significant changes in SH values. On the contrary, pretreatment with 5-HT worsened ethanol-induced erosions, however, did not affect gastric mucus secretion, glycoprotein content or PGE2 levels, although the non-protein SH fraction was significantly decreased. The present results demonstrate that the gastroprotective effects of CNT could be partly explained by a complex PG dependent mechanism. We suggest that 5-HT dependent mechanisms through 5-HT2 receptor blockade and 5-HT1 receptor activation could be also involved. PMID:9211565

  5. Protective effect of N-acetylcysteine against ethanol-induced gastric ulcer: A pharmacological assessment in mice

    PubMed Central

    Jaccob, Ausama Ayoob

    2015-01-01

    Aim: Since there is an increasing need for gastric ulcer therapies with optimum benefit-risk profile. This study was conducted to investigate gastro-protective effects of N-acetylcysteine (NAC) against ethanol-induced gastric ulcer models in mice. Materials and Methods: A total of 41 mice were allocated into six groups consisted of 7 mice each. Groups 1 (normal control) and 2 (ulcer control) received distilled water at a dose of 10 ml/kg, groups 3, 4 and 5 were given NAC at doses 100, 300 and 500 mg/kg, respectively, and the 6th group received ranitidine (50 mg/kg). All drugs administered orally once daily for 7 days, on the 8th day absolute ethanol (7 ml/kg) was administrated orally to all mice to induce the acute ulcer except normal control group. Then 3 h after, all animals were sacrificed then consequently the stomachs were excised for examination. Results: NAC administration at the tested doses showed a dose-related potent gastro-protective effect with significant increase in curative ratio, PH of gastric juice and mucus content viscosity seen with the highest dose of NAC and it is comparable with that observed in ranitidine group. Conclusion: The present findings demonstrate that, oral NAC shows significant gastro-protective effects comparable to ranitidine confirmed by anti-secretory, cytoprotective, histological and biochemical data, but the molecular mechanisms behind such protection are complex. PMID:26401392

  6. Prevention of ethanol-induced vascular injury and gastric mucosal lesions by sucralfate and its components: possible role of endogenous sulfhydryls

    SciTech Connect

    Szabo, S.; Brown, A.

    1987-09-01

    The authors tested the hypothesis that sucralfate, which contains eight sulfate and aluminum molecules on a sucrose and its other components might decrease ethanol-induced vascular injury and hemorrhagic mucosal lesions through a sulfhydryl (SH)-sensitive process. Experiments performed in rats revealed that the entire sucralfate molecule is not a prerequisite for protection against ethanol-induced mucosal vascular injury and erosions. It appears that sulfate and sucrose octasulfate are potent components of sucralfate, although an equimolar amount of sucralfate is at least twice as effective in gastroprotection than its components. The SH alkylator N-ethylmaleimide abolished the gastroprotection by sucralfate, suggesting SH-sensitive process in the mucosal protection which seems to be associated with the prevention of rapidly developing vascular injury in the stomach of rats given ethanol.

  7. Biochanin A Gastroprotective Effects in Ethanol-Induced Gastric Mucosal Ulceration in Rats

    PubMed Central

    Hajrezaie, Maryam; Salehen, NurAin; Karimian, Hamed; Zahedifard, Maryam; Shams, Keivan; Batran, Rami Al; Majid, Nazia Abdul; Khalifa, Shaden A. M.; Ali, Hapipah Mohd; El-Seedi, Hesham; Abdulla, Mahmood Ameen

    2015-01-01

    Background Biochanin A notable bioactive compound which is found in so many traditional medicinal plant. In vivo study was conducted to assess the protective effect of biochanin A on the gastric wall of Spraguedawley rats` stomachs. Methodology The experimental set included different animal groups. Specifically, four groups with gastric mucosal lesions were receiving either a) Ulcer control group treated with absolute ethanol (5 ml/kg), b) 20 mg/kg of omeprazole as reference group, c) 25 of biochanin A, d) 50 mg/kg of biochanin A. Histopathological sectioning followed by immunohistochemistry staining were undertaken to evaluate the influence of the different treatments on gastric wall mucosal layer. The gastric secretions were collected in the form of homogenate and exposed to superoxide dismutase (SOD) and nitric oxide enzyme (NO) and the level of malondialdehyde (MDA) and protein content were measured. Ulceration and patchy haemorrhage were clearly observed by light microscopy. The morphology of the gastric wall as confirmed by immunohistochemistry and fluorescent microscopic observations, exhibited sever deformity with notable thickness, oedematous and complete loss of the mucosal coverage however the biochanin-pretreated animals, similar to the omeprazole-pretreated animals, showed less damage compared to the ulcer control group. Moreover, up-regulation of Hsp70 protein and down-regulation of Bax protein were detected in the biochanin A pre-treated groups and the gastric glandular mucosa was positively stained with Periodic Acid Schiff (PAS) staining and the Leucocytes infiltration was commonly seen. Biochanin A displayed a great increase in SOD and NO levels and decreased the release of MDA. Conclusions This gastroprotective effect of biochanin A could be attributed to the enhancement of cellular metabolic cycles perceived as an increase in the SOD, NO activity, and decrease in the level of MDA, and also decrease in level of Bax expression and increase the Hsp70 expression level. PMID:25811625

  8. Modulation of Atg5 expression by globular adiponectin contributes to autophagy flux and suppression of ethanol-induced cell death in liver cells.

    PubMed

    Nepal, Saroj; Kim, Mi Jin; Lee, Eung-Seok; Kim, Jung-Ae; Choi, Dong-Young; Sohn, Dong-Hwan; Lee, Sung-Hee; Song, Kyung; Kim, Sang-Hyun; Jeong, Gil-Saeng; Jeong, Tae Cheon; Park, Pil-Hoon

    2014-06-01

    Globular adiponectin (gAcrp) protects liver cells from ethanol-induced apoptosis via induction of autophagy. However, the underlying mechanisms are unknown. The present study aims to investigate the potential role of autophagy-related protein 5 (Atg5), an essential Atg for the elongation of autophagosomes, in suppression of ethanol-induced cytotoxicity by gAcrp. Here, we demonstrated that suppression of Atg5 expression by ethanol was restored by pretreatment with gAcrp both in primary rat hepatocytes and human hepatoma cell line (HepG2). Moreover, ethanol-induced accumulation of p62 (sequestosome1), a marker of autophagic flux, was restored by gAcrp treatment, implying that gAcrp modulates autophagic flux in liver cells. Further, Atg5 silencing prevented p62 degradation by gAcrp, suggesting that Atg5 plays a critical role in induction of autophagic flux by gAcrp. Interestingly, gene silencing of Atg5 by siRNA abrogated restoration of autophagosome formation by gAcrp in ethanol-treated cells. Finally, protection of liver cells by gAcrp from ethanol-induced apoptosis was also significantly attenuated by knocking-down of Atg5 expression, suggesting an important role of Atg5 in autophagy induction and cellular apoptosis modulated by gAcrp. Taken together, our data demonstrated that Atg5 expression, at least in part, is implicated in gAcrp-induced autophagy and subsequent anti-apoptotic effects in ethanol-treated liver cells. PMID:24582693

  9. Anandamide-CB1 Receptor Signaling Contributes to Postnatal Ethanol-Induced Neonatal Neurodegeneration, Adult Synaptic and Memory Deficits

    PubMed Central

    Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S.

    2013-01-01

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), which is comparable to the third trimester human pregnancy, induces synaptic dysfunctions. However, the molecular mechanisms underlying these dysfunctions are still poorly understood. Although the endocannabinoid system has been shown to be an important modulator of ethanol sensitivity in adult mice, its potential role in synaptic dysfunctions in mice exposed to ethanol during early brain development is not examined. In this study, we investigated the potential role of endocannabinoids and the cannabinoid receptor type 1 (CB1R) in neonatal neurodegeneration and adult synaptic dysfunctions in mice exposed to ethanol at P7. Ethanol treatment at P7, which induces neurodegeneration, increased anandamide (AEA) but not 2-arachidonylglycerol biosynthesis and CB1R protein expression in the hippocampus and cortex, two brain areas that are important for memory formation and storage, respectively. N-arachidonoyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), glycerophosphodiesterase (GDE1) and CB1Rs protein expression were enhanced by transcriptional activation of the genes encoding NAPE-PLD, GDE1 and CB1R proteins respectively. In addition, ethanol inhibited ERK1/2 and AKT phosphorylation. The blockade of CB1Rs prior to ethanol treatment at P7 relieved ERK1/2 but not AKT phosphorylation and prevented neurodegeneration. CB1R knockout mice exhibited no ethanol-induced neurodegeneration and inhibition of ERK1/2-phosphorylation. The protective effects of CB1R blockade through pharmacological or genetic deletion resulted in normal adult synaptic plasticity and novel object recognition memory in mice exposed to ethanol at P7. The AEA/CB1R/pERK1/2 signaling pathway may be directly responsible for the synaptic and memory deficits associated with fetal alcohol spectrum disorders. PMID:23575834

  10. Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits.

    PubMed

    Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Xie, Shan; Basavarajappa, Balapal S

    2013-04-10

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), which is comparable with the third trimester in human pregnancy, induces synaptic dysfunctions. However, the molecular mechanisms underlying these dysfunctions are still poorly understood. Although the endocannabinoid system has been shown to be an important modulator of ethanol sensitivity in adult mice, its potential role in synaptic dysfunctions in mice exposed to ethanol during early brain development is not examined. In this study, we investigated the potential role of endocannabinoids and the cannabinoid receptor type 1 (CB1R) in neonatal neurodegeneration and adult synaptic dysfunctions in mice exposed to ethanol at P7. Ethanol treatment at P7, which induces neurodegeneration, increased anandamide (AEA) but not 2-arachidonylglycerol biosynthesis and CB1R protein expression in the hippocampus and cortex, two brain areas that are important for memory formation and storage, respectively. N-Arachidonoyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), glycerophosphodiesterase (GDE1), and CB1R protein expression were enhanced by transcriptional activation of the genes encoding NAPE-PLD, GDE1, and CB1R proteins, respectively. In addition, ethanol inhibited ERK1/2 and AKT phosphorylation. The blockade of CB1Rs before ethanol treatment at P7 relieved ERK1/2 but not AKT phosphorylation and prevented neurodegeneration. CB1R knock-out mice exhibited no ethanol-induced neurodegeneration and inhibition of ERK1/2 phosphorylation. The protective effects of CB1R blockade through pharmacological or genetic deletion resulted in normal adult synaptic plasticity and novel object recognition memory in mice exposed to ethanol at P7. The AEA/CB1R/pERK1/2 signaling pathway may be directly responsible for the synaptic and memory deficits associated with fetal alcohol spectrum disorders. PMID:23575834

  11. Ethanol-Induced ADH Activity in Zebrafish: Differential Concentration-Dependent Effects on High- Versus Low-Affinity ADH Enzymes.

    PubMed

    Tran, Steven; Nowicki, Magda; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert

    2016-04-01

    Zebrafish express enzymes that metabolize ethanol in a manner comparable to that of mammals, including humans. We previously demonstrated that acute ethanol exposure increases alcohol dehydrogenase (ADH) activity in an inverted U-shaped dose-dependent manner. It was hypothesized that the biphasic dose-response was due to the increased activity of a high-affinity ADH isoform following exposure to low concentrations of ethanol and increased activity of a low-affinity ADH isoform following exposure to higher concentrations of ethanol. To test this hypothesis, we exposed zebrafish to different concentrations of ethanol (0%, 0.25%, 0.5%, and 1.0% v/v) for 30 min and measured the total ADH activity in the zebrafish liver. However, we also repeated this enzyme activity assay using a low concentration of the substrate (ethanol) to determine the activity of high-affinity ADH isoforms. We found that total ADH activity in response to ethanol induces an inverted U-shaped dose-response similar to our previous study. Using a lower substrate level in our enzyme assay targeting high-affinity isozymes, we found a similar dose-response. However, the difference in activity between the high and low substrate assays (high substrate activity - low substrate activity), which provide an index of activity for low-affinity ADH isoforms, revealed no significant effect of ethanol exposure. Our results suggest that the inverted U-shaped dose-response for total ADH activity in response to ethanol is driven primarily by high-affinity isoforms of ADH. PMID:26741829

  12. Ethanol-induced anxiolysis and neuronal activation in the amygdala and bed nucleus of the stria terminalis.

    PubMed

    Sharko, Amanda C; Kaigler, Kris F; Fadel, Jim R; Wilson, Marlene A

    2016-02-01

    High rates of comorbidity for anxiety and alcohol-use disorders suggest a causal relationship between these conditions. Previous work demonstrates basal anxiety levels in outbred Long-Evans rats correlate with differences in voluntary ethanol consumption and that amygdalar Neuropeptide Y (NPY) systems may play a role in this relationship. The present work explores the possibility that differences in sensitivity to ethanol's anxiolytic effects contribute to differential ethanol self-administration in these animals and examines the potential role of central and peripheral NPY in mediating this relationship. Animals were first exposed to the elevated plus maze (EPM) to assess individual differences in anxiety-like behaviors and levels of circulating NPY and corticosterone (CORT). Rats were then tested for anxiety-like behavior in the light-dark box (LD box) following acute ethanol treatment (1g/kg; intraperitoneally [i.p.]), and neuronal activation in the amygdala and bed nucleus of the stria terminalis (BNST) was assessed using Fos immunohistochemistry. EPM exposure increased plasma CORT levels without altering plasma NPY levels. Acute ethanol treatment significantly increased light-dark transitions and latency to re-enter the light arena, but no differences were seen between high- and low-anxiety groups and no correlations were found between anxiety-like behaviors in the EPM and LD box. Acute ethanol treatment significantly increased Fos immunoreactivity in the BNST and the central amygdala. Although NPY neurons were not significantly activated following ethanol exposure, in saline-treated animals lower levels of anxiety-like behavior in the LD box (more time in the light arena and more transitions) were correlated with higher NPY-positive cell density in the central amygdala. Our results suggest that activation of the CeA and BNST are involved in the behavioral expression of ethanol-induced anxiolysis, and that differences in basal anxiety state may be correlated with NPY systems in the extended amygdala. PMID:26775553

  13. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    PubMed Central

    Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong

    2009-01-01

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382

  14. Mangiferin, a Natural Xanthone, Protects Murine Liver in Pb(II) Induced Hepatic Damage and Cell Death via MAP Kinase, NF-?B and Mitochondria Dependent Pathways

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2013-01-01

    One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-?B and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction. PMID:23451106

  15. Ethanol-induced analgesia

    SciTech Connect

    Pohorecky, L.A.; Shah, P.

    1987-09-07

    The effect of ethanol (ET) on nociceptive sensitivity was evaluated using a new tail deflection response (TDR) method. The IP injection of ET (0.5 - 1.5 g/kg) produced raid dose-dependent analgesia. Near maximal effect (97% decrease in TDR) was produced with the 1.5 g/kg dose of ET ten minutes after injection. At ninety minutes post-injection there was still significant analgesia. Depression of ET-induced nociceptive sensitivity was partially reversed by a 1 mg/kg dose of naloxone. On the other hand, morphine (0.5 or 5.0 mg/kg IP) did not modify ET-induced analgesia, while 3.0 minutes of cold water swim (known to produce non-opioid mediated analgesia) potentiated ET-induced analgesic effect. The 0.5 g/kg dose of ET by itself did not depress motor activity in an open field test, but prevented partially the depression in motor activity produced by cold water swim (CWS). Thus, the potentiation by ET of the depression of the TDR produced by CWS cannot be ascribed to the depressant effects of ET on motor activity. 21 references, 4 figures, 1 table.

  16. More on hepatic granulomas.

    PubMed

    Ozaras, Resat; Yemisen, Mucahit; Balkan, Ilker Inanc

    2015-01-01

    We have read the case report of Nihon-Yanagi et al. The patient they described developed hepatic granuloma two times and the granulomatous lesion was surrounding metal staples/clips suggesting that the granuloma was due to surgical staples/clips. Hepatic granulomas (HGs) are reported in around 5% of patient who undergo a liver biopsy and caused by several diseases including sarcoidosis, tuberculosis, hydatid cyst, brucellosis, typhoid fever, chronic hepatitis B and C and primary biliary cirrhosis (PBC). Chronic hepatitis B and C infections are the most common and serious causes of liver damage in patient with renal failure. Their prevalence is a higher than people without renal failure. We have previously reported that the prevalences of HGs in patients with chronic hepatitis B and C are 1.5 and 1.3% respectively. The described patient was on hemodialysis for 12 years. The other causes of HG seem excluded; however hepatitis B and C infections and PBC should have been tested and excluded before ascribing the HGs to surgical staples/clipping material. PMID:26586239

  17. Hepatitis C

    MedlinePLUS

    ... kidney dialysis Have regular contact with blood at work (such as a health care worker) Have unprotected sexual contact with a person who has hepatitis C Were born to a mother who had hepatitis C Received a tattoo or ...

  18. Hepatitis A

    MedlinePLUS

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  19. Hepatic ischemia

    MedlinePLUS

    Hepatic ischemia is a condition in which the liver does not get enough blood or oxygen, causing injury to ... pressure from any condition can lead to hepatic ischemia. Such conditions may include: Abnormal heart rhythms Dehydration ...

  20. Hepatitis C

    MedlinePLUS

    ... 2014 Select a Language: Fact Sheet 507 Hepatitis C WHAT IS HEPATITIS C? HOW IS IT DIAGNOSED? ... treatment may be less likely to work. Hep C treatment is less effective for coinfected people. Cure ...

  1. Hepatic Cysts.

    PubMed

    Kaul; Friedenberg; Rothstein

    2000-12-01

    Treatment of hepatic cysts should be considered only for those patients who are symptomatic. For simple cysts, percutaneous aspiration invariably leads to recurrence; laparoscopic deroofing is usually curative. Open deroofing (fenestration) should be reserved for cysts inaccessible by laparoscopy. Percutaneous instillation of sclerosing agents (ethanol, iophendylate, minocycline) into nonbiliary and nonparasitic cysts is an alternative therapeutic option in certain cases. Due to increased morbidity, hepatic resection should be reserved for polycystic liver disease, diffuse hepatic involvement, or recurrence after a deroofing procedure. Patients with congenital fibropolycystic disorders (eg, congenital hepatic fibrosis) with evidence of hepatic decompensation, should be considered for liver transplantation. For hepatic hydatid cysts, simple cystectomy or the PAIR (puncture, aspirate, inject, and reaspirate) technique with albendazole treatment have been shown to be equally successful. In the case of alveolar echinococcosis, hepatic resection and liver transplantation are the only effective modalities for localized and extensive hepatic disease, respectively. PMID:11096603

  2. Autoimmune hepatitis

    MedlinePLUS

    Lupoid hepatitis; Chronic acute liver disease ... This form of hepatitis is an autoimmune disease . The body's immune system cannot tell the difference between healthy body tissue and harmful, outside ...

  3. Hepatitis E

    MedlinePLUS

    ... non-enveloped, positive-sense, single-stranded ribonucleic acid (RNA) virus. The hepatitis E virus is transmitted mainly ... RT-PCR) to detect the hepatitis E virus RNA in blood and/or stool, but this assay ...

  4. ETHANOL INDUCES AND INSULIN INHIBITS ALCOHOL DEHYDROGENASE CLASS 1 IN FGC-4 CELLS: BOTH APPEAR TO WORK THROUGH SREBP-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported that chronic feeding of alcohol-containing diets (via intragastric infusion) to Sprague-Dawley rats induces hepatic alcohol dehydrogenase (ADH) Class 1 by interfering with signaling via the sterol regulatory element binding protein (SREBP-1). We have studied the effects ...

  5. Hepatitis C and Incarceration

    MedlinePLUS

    HEPATITIS C & INCARCERATION What is hepatitis? “Hepatitis” means inflammation or swelling of the liver. The liver is an important ... viral hepatitis: Hepatitis A, Hepatitis B, and Hepatitis C. They are all different from each other and ...

  6. Resveratrol Restores Nrf2 Level and Prevents Ethanol-Induced Toxic Effects in the Cerebellum of a Rodent Model of Fetal Alcohol Spectrum Disorders

    PubMed Central

    Kumar, Ambrish; Singh, Chandra K.; LaVoie, Holly A.; DiPette, Donald J.

    2011-01-01

    In humans, ethanol exposure during pregnancy produces a wide range of abnormalities in infants collectively known as fetal alcohol spectrum disorders (FASD). Neuronal malformations in FASD manifest as postnatal behavioral and functional disturbances. The cerebellum is particularly sensitive to ethanol during development. In a rodent model of FASD, high doses of ethanol (blood ethanol concentration 80 mM) induces neuronal cell death in the cerebellum. However, information on potential agent(s) that may protect the cerebellum against the toxic effects of ethanol is lacking. Growing evidence suggests that a polyphenolic compound, resveratrol, has antioxidant and neuroprotective properties. Here we studied whether resveratrol (3,5,4′-trihydroxy-trans-stilbene), a phytoalexin found in red grapes and blueberries, protects the cerebellar granule neurons against ethanol-induced cell death. In the present study, we showed that administration of resveratrol (100 mg/kg) to postnatal day 7 rat pups prevents ethanol-induced apoptosis by scavenging reactive oxygen species in the external granule layer of the cerebellum and increases the survival of cerebellar granule cells. It restores ethanol-induced changes in the level of transcription factor nuclear factor-erythroid derived 2-like 2 (nfe2l2, also known as Nrf2) in the nucleus. This in turn retains the expression and activity of its downstream gene targets such as NADPH quinine oxidoreductase 1 and superoxide dismutase in cerebellum of ethanol-exposed pups. These studies indicate that resveratrol exhibits neuroprotective effects in cerebellum by acting at redox regulating proteins in a rodent model of FASD. PMID:21697273

  7. Hepatitis C

    MedlinePLUS

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  8. Autoimmune Hepatitis

    MedlinePLUS

    ... online catalog. Additional Links ​ Hepatitis A Hepatitis B Hepatitis C Liver Biopsy Liver Transplantation Contact Us Health Information ... before the surgery. The patient stays in the hospital about 1 to 2 weeks to ... for bleeding, infections, and signs of liver rejection. The patient will ...

  9. Ethanol Activation of Protein Kinase A Regulates GABA(A) Receptor Subunit Expression in the Cerebral Cortex and Contributes to Ethanol-Induced Hypnosis.

    PubMed

    Kumar, Sandeep; Ren, Qinglu; Beckley, Jonathon H; O'Buckley, Todd K; Gigante, Eduardo D; Santerre, Jessica L; Werner, David F; Morrow, A Leslie

    2012-01-01

    Protein kinases are implicated in neuronal cell functions such as modulation of ion channel function, trafficking, and synaptic excitability. Both protein kinase C (PKC) and A (PKA) are involved in regulation of ?-aminobutyric acid type A (GABA(A)) receptors through phosphorylation. However, the role of PKA in regulating GABA(A) receptors (GABA(A)-R) following acute ethanol exposure is not known. The present study investigated the role of PKA in the effects of ethanol on GABA(A)-R ?1 subunit expression in rat cerebral cortical P2 synaptosomal fractions. Additionally, GABA-related behaviors were examined. Rats were administered ethanol (2.0-3.5?g/kg) or saline and PKC, PKA, and GABA(A)-R ?1 subunit levels were measured by western blot analysis. Ethanol (3.5?g/kg) transiently increased GABA(A)-R ?1 subunit expression and PKA RII? subunit expression at similar time points whereas PKA RII? was increased at later time points. In contrast, PKC isoform expression remained unchanged. Notably, lower ethanol doses (2.0?g/kg) had no effect on GABA(A)-R ?1 subunit levels, although PKA type II regulatory subunits RII? and RII? were increased at 10 and 60?min when PKC isozymes are also known to be elevated. To determine if PKA activation was responsible for the ethanol-induced elevation of GABA(A)-R ?1 subunits, the PKA antagonist H89 was administered to rats prior to ethanol exposure. H89 administration prevented ethanol-induced increases in GABA(A)-R ?1 subunit expression. Moreover, increasing PKA activity intracerebroventricularly with Sp-cAMP prior to a hypnotic dose of ethanol increased ethanol-induced loss of righting reflex (LORR) duration. This effect appears to be mediated in part by GABA(A)-R as increasing PKA activity also increased the duration of muscimol-induced LORR. Overall, these data suggest that PKA mediates ethanol-induced GABA(A)-R expression and contributes to behavioral effects of ethanol involving GABA(A)-R. PMID:22509146

  10. Liver ultrastructural morphology and mitochondrial DNA levels in HIV/hepatitis C virus coinfection: no evidence of mitochondrial damage with highly active antiretroviral therapy.

    PubMed

    Matsukura, Motoi; Chu, Fanny F S; Au, May; Lu, Helen; Chen, Jennifer; Rietkerk, Sonja; Barrios, Rolando; Farley, John D; Montaner, Julio S; Montessori, Valentina C; Walker, David C; Ct, Hlne C F

    2008-06-19

    Liver mitochondrial toxicity is a concern, particularly in HIV/hepatitis C virus (HCV) coinfection. Liver biopsies from HIV/HCV co-infected patients, 14 ON-highly active antiretroviral therapy (HAART) and nine OFF-HAART, were assessed by electron microscopy quantitative morphometric analyses. Hepatocytes tended to be larger ON-HAART than OFF-HAART (P = 0.05), but mitochondrial volume, cristae density, lipid volume, mitochondrial DNA and RNA levels were similar. We found no evidence of increased mitochondrial toxicity in individuals currently on HAART, suggesting that concomitant HAART should not delay HCV therapy. PMID:18525271

  11. Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation

    PubMed Central

    Han, Jae Yun; Lee, Sangkyu; Yang, Ji Hye; Kim, Sunju; Sim, Juhee; Kim, Mi Gwang; Jeong, Tae Cheon; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2014-01-01

    Background Alcoholic steatosis is the earliest and most common liver disease, and may precede the onset of more severe forms of liver injury. Methods The effect of Korean Red Ginseng extract (RGE) was tested in two murine models of ethanol (EtOH)-feeding and EtOH-treated hepatocytes. Results Blood biochemistry analysis demonstrated that RGE treatment improved liver function. Histopathology and measurement of hepatic triglyceride content verified the ability of RGE to inhibit fat accumulation. Consistent with this, RGE administration downregulated hepatic lipogenic gene induction and restored hepatic lipolytic gene repression by EtOH. The role of oxidative stress in the pathogenesis of alcoholic liver diseases is well established. Treatment with RGE attenuated EtOH-induced cytochrome P450 2E1, 4-hydroxynonenal, and nitrotyrosine levels. Alcohol consumption also decreased phosphorylation of adenosine monophosphate-activated protein kinase, which was restored by RGE. Moreover, RGE markedly inhibited fat accumulation in EtOH-treated hepatocytes, which correlated with a decrease in sterol regulatory element-binding protein-1 and a commensurate increase in sirtuin 1 and peroxisome proliferator-activated receptor-α expression. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly inhibited fat accumulation in hepatocytes. Conclusion These results demonstrate that RGE and its ginsenoside components inhibit alcoholic steatosis and liver injury by adenosine monophosphate-activated protein kinase/sirtuin 1 activation both in vivo and in vitro, suggesting that RGE may have a potential to treat alcoholic liver disease. PMID:26045683

  12. Pre-administration of G9a/GLP Inhibitor during Synaptogenesis Prevents Postnatal Ethanol-induced LTP Deficits and Neurobehavioral Abnormalities in Adult Mice

    PubMed Central

    Subbanna, Shivakumar; Basavarajappa, Balapal S.

    2014-01-01

    It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. Recently, we found that histone H3 dimethylation (H3K9me2), which is mediated by G9a (lysine dimethyltransferase), is responsible for the neurodegeneration caused by ethanol exposure in P7 mice. In addition, pharmacological inhibition of G9a prior to ethanol treatment at P7 normalized H3K9me2 proteins to basal levels and prevented neurodegeneration in neonatal mice. Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin. PMID:25017367

  13. Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents.

    PubMed

    Olatunji, Opeyemi J; Chen, Hongxia; Zhou, Yifeng

    2015-01-01

    The objective of this study was to explore the gastroprotective properties of the aerial part of Lycium chinense Mill (LCA) against ethanol-induced gastric mucosa lesions in mice models. Administration of LCA at doses of 50, 100, 200 and 400 mg/kg body weight prior to ethanol consumption dose dependently inhibited gastric ulcers. The gastric mucosal injury was analyzed by gastric juice acidity, glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO) activities. Furthermore, the levels of the inflammatory mediators, tumor necrosis factor-? (TNF-?), interleukin-6 (IL-6) and interleukin-1? (IL-1?) in serum were also analyzed using ELISA. Pathological changes were also observed with the aid of hematoxylin-eosin (HE) staining. Our results indicated that LCA significantly reduced the levels of MPO, MDA and increased SOD and GSH activities. Furthermore, LCA also significantly inhibited the levels of TNF-?, IL-6, and IL-1? in the serum of ulcerated mice in a dose dependent manner. Immunohistological analysis indicated that LCA also significantly attenuated the overexpression of nuclear factor-?B in pretreated mice models. This findings suggests Lycium chinense Mill possesses gastroprotective properties against ethanol-induced gastric injury and could be a possible therapeutic intervention in the treatment and management of gastric ulcers. PMID:26694339

  14. Hepatitis Vaccines.

    PubMed

    Ogholikhan, Sina; Schwarz, Kathleen B

    2016-01-01

    Viral hepatitis is a serious health problem all over the world. However, the reduction of the morbidity and mortality due to vaccinations against hepatitis A and hepatitis B has been a major component in the overall reduction in vaccine preventable diseases. We will discuss the epidemiology, vaccine development, and post-vaccination effects of the hepatitis A and B virus. In addition, we discuss attempts to provide hepatitis D vaccine for the 350 million individuals infected with hepatitis B globally. Given the lack of a hepatitis C vaccine, the many challenges facing the production of a hepatitis C vaccine will be shown, along with current and former vaccination trials. As there is no current FDA-approved hepatitis E vaccine, we will present vaccination data that is available in the rest of the world. Finally, we will discuss the existing challenges and questions facing future endeavors for each of the hepatitis viruses, with efforts continuing to focus on dramatically reducing the morbidity and mortality associated with these serious infections of the liver. PMID:26978406

  15. Hepatitis B virus infection.

    PubMed

    Trpo, Christian; Chan, Henry L Y; Lok, Anna

    2014-12-01

    Hepatitis B virus infection is a major public health problem worldwide; roughly 30% of the world's population show serological evidence of current or past infection. Hepatitis B virus is a partly double-stranded DNA virus with several serological markers: HBsAg and anti-HBs, HBeAg and anti-HBe, and anti-HBc IgM and IgG. It is transmitted through contact with infected blood and semen. A safe and effective vaccine has been available since 1981, and, although variable, the implementation of universal vaccination in infants has resulted in a sharp decline in prevalence. Hepatitis B virus is not cytopathic; both liver damage and viral control--and therefore clinical outcome--depend on the complex interplay between virus replication and host immune response. Overall, as much as 40% of men and 15% of women with perinatally acquired hepatitis B virus infection will die of liver cirrhosis or hepatocellular carcinoma. In addition to decreasing hepatic inflammation, long-term antiviral treatment can reverse cirrhosis and reduce hepatocellular carcinoma. Development of new therapies that can improve HBsAg clearance and virological cure is warranted. PMID:24954675

  16. Apoptotic Damage of Pancreatic Ductal Epithelia by Alcohol and Its Rescue by an Antioxidant

    PubMed Central

    Seo, Jong Bae; Gowda, G. A. Nagana; Koh, Duk-Su

    2013-01-01

    Alcohol abuse is a major cause of pancreatitis. However alcohol toxicity has not been fully elucidated in the pancreas and little is known about the effect of alcohol on pancreatic ducts. We report the molecular mechanisms of ethanol-induced damage of pancreatic duct epithelial cells (PDEC). Ethanol treatment for 1, 4, and 24 h resulted in cell death in a dose-dependent manner. The ethanol-induced cell damage was mainly apoptosis due to generation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (MMP), and activation of caspase-3 enzyme. The antioxidant N-acetylcysteine (NAC) attenuated these cellular responses and reduced cell death significantly, suggesting a critical role for ROS. Acetaldehyde, a metabolic product of alcohol dehydrogenase, induced significant cell death, depolarization of MMP, and caspase-3 activation as ethanol and this damage was also averted by NAC. Reverse transcription-polymerase chain reaction revealed the expression of several subtypes of alcohol dehydrogenase and acetaldehyde dehydrogenase. Nuclear magnetic resonance spectroscopy data confirmed the accumulation of acetaldehyde in ethanol-treated cells, suggesting that acetaldehyde formation can contribute to alcohol toxicity in PDEC. Finally, ethanol increased the leakage of PDEC monolayer which was again attenuated by NAC. In conclusion, ethanol induces apoptosis of PDEC and thereby may contribute to the development of alcohol-induced pancreatitis. PMID:24244749

  17. [Alcoholic hepatitis].

    PubMed

    Radchenko, V G; Prikhod'ko, E M

    2012-01-01

    The aim of the study was to evaluate Kholit efficiency in complex treatment of alcoholic hepatitis. 72 patients with proved chronic alcoholic hepatitis were examined. 37 of them underwent complex treatment including Kholit. Kholit in complex treatment of patients with chronic alcoholic hepatitis was shown to promote improvement of the general patient's state, disappearance of objective signs of the disease, normalization of laboratory and instrumental data. PMID:23402199

  18. Hepatitis B

    MedlinePLUS

    ... A Hepatitis B HPV (Human Papillomavirus) Influenza (Flu) Measles Meningococcal Disease Mumps Pertussis (Whooping Cough) Pneumococcal Disease Rubella (German Measles) Shingles (Herpes Zoster) Tetanus (Lockjaw) Professional Resources Adult ...

  19. Hepatitis C Test

    MedlinePLUS

    ... Hepatitis C Antibody; Anti-HCV; HCV-PCR; HCV-RNA; Hepatitis C Viral Load Formal name: Viral Hepatitis C Antibody Screen; Viral Hepatitis C RNA by PCR; Hepatitis C Virus Genotype Related tests: ...

  20. CB1-receptor knockout neonatal mice are protected against ethanol-induced impairments of DNMT1, DNMT3A, and DNA methylation.

    PubMed

    Nagre, Nagaraja N; Subbanna, Shivakumar; Shivakumar, Madhu; Psychoyos, Delphine; Basavarajappa, Balapal S

    2015-02-01

    The significant consequences of ethanol use during pregnancy are neurobehavioral abnormalities involving hippocampal and neocortex malfunctions that cause learning and memory deficits collectively named fetal alcohol spectrum disorder. However, the molecular mechanisms underlying these abnormalities are still poorly understood and therefore warrant systematic research. Here, we document novel epigenetic abnormalities in the mouse model of fetal alcohol spectrum disorder. Ethanol treatment of P7 mice, which induces activation of caspase 3, impaired DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) levels. Inhibition of caspase 3 activity, before ethanol treatment, rescued DNMT1, DNMT3A proteins as well as DNA methylation levels. Blockade of histone methyltransferase (G9a) activity or cannabinoid receptor type-1 (CB1R), prior to ethanol treatment, which, respectively, inhibits or prevents activation of caspase 3, rescued the DNMT1 and DNMT3A proteins and DNA methylation. No reduction of DNMT1 and DNMT3A proteins and DNA methylation was found in P7 CB1R null mice, which exhibit no ethanol-induced activation of caspase 3. Together, these data demonstrate that ethanol-induced activation of caspase 3 impairs DNA methylation through DNMT1 and DNMT3A in the neonatal mouse brain, and such impairments are absent in CB1R null mice. Epigenetic events mediated by DNA methylation may be one of the essential mechanisms of ethanol teratogenesis. Schematic mechanism of action by which ethanol impairs DNA methylation. Studies have demonstrated that ethanol has the capacity to bring epigenetic changes to contribute to the development of fetal alcohol spectrum disorder (FASD). However, the mechanisms are not well studied. P7 ethanol induces the activation of caspase 3 and impairs DNA methylation through reduced DNA methyltransferases (DNMT1 and DNMT3A) proteins (?). The inhibition or genetic ablation of cannabinoid receptor type-1 or inhibition of histone methyltransferase (G9a) by Bix (-----) or inhibition of caspase 3 activation by Q- quinoline-Val-Asp(Ome)-CH2-O-phenoxy (Q-VD-OPh) () rescue loss of DNMT1, DNMT3A as well as DNA methylation. Hence, the putative DNMT1/DNMT3A/DNA methylation mechanism may have a potential regulatory role in FASD. PMID:25487288

  1. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance

    PubMed Central

    Wang, Rui-Hong; Kim, Hyun-Seok; Xiao, Cuiying; Xu, Xiaoling; Gavrilova, Oksana; Deng, Chu-Xia

    2011-01-01

    Insulin resistance is a major risk factor for type 2 diabetes mellitus. The protein encoded by the sirtuin 1 (Sirt1) gene, which is a mouse homolog of yeast Sir2, is implicated in the regulation of glucose metabolism and insulin sensitivity; however, the underlying mechanism remains elusive. Here, using mice with a liver-specific null mutation of Sirt1, we have identified a signaling pathway involving Sirt1, Rictor (a component of mTOR complex 2 [mTorc2]), Akt, and Foxo1 that regulates gluconeogenesis. We found that Sirt1 positively regulates transcription of the gene encoding Rictor, triggering a cascade of phosphorylation of Akt at S473 and Foxo1 at S253 and resulting in decreased transcription of the gluconeogenic genes glucose-6-phosphatase (G6pase) and phosphoenolpyruvate carboxykinase (Pepck). Liver-specific Sirt1 deficiency caused hepatic glucose overproduction, chronic hyperglycemia, and increased ROS production. This oxidative stress disrupted mTorc2 and impaired mTorc2/Akt signaling in other insulin-sensitive organs, leading to insulin resistance that could be largely reversed with antioxidant treatment. These data delineate a pathway through which Sirt1 maintains insulin sensitivity and suggest that treatment with antioxidants might provide protection against progressive insulin resistance in older human populations. PMID:21965330

  2. Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions

    PubMed Central

    Nerandzic, Michelle M.; Sunkesula, Venkata C. K.; C., Thriveen Sankar; Setlow, Peter; Donskey, Curtis J.

    2015-01-01

    Background Due to their efficacy and convenience, alcohol-based hand sanitizers have been widely adopted as the primary method of hand hygiene in healthcare settings. However, alcohols lack activity against bacterial spores produced by pathogens such as Clostridium difficile and Bacillus anthracis. We hypothesized that sporicidal activity could be induced in alcohols through alteration of physical or chemical conditions that have been shown to degrade or allow penetration of spore coats. Principal Findings Acidification, alkalinization, and heating of ethanol induced rapid sporicidal activity against C. difficile, and to a lesser extent Bacillus thuringiensis and Bacillus subtilis. The sporicidal activity of acidified ethanol was enhanced by increasing ionic strength and mild elevations in temperature. On skin, sporicidal ethanol formulations were as effective as soap and water hand washing in reducing levels of C. difficile spores. Conclusions These findings demonstrate that novel ethanol-based sporicidal hand hygiene formulations can be developed through alteration of physical and chemical conditions. PMID:26177038

  3. In ovo exposure of a Fusarium mycotoxin butenolide induces hepatic and renal oxidative damage in chick embryos, and antioxidants provide protections.

    TOXLINE Toxicology Bibliographic Information

    Wang YM; Wang HJ; Peng SQ

    2009-10-01

    Butenolide is a mycotoxin produced by several toxigenic Fusarium species. It frequently invades many important grains, and evokes a broad spectrum of toxic effects. For these reasons, butenolide poses a health risk to both humans and animals. However, many toxicology issues of butenolide including targets and mechanisms of toxicity remain to be elucidated so far. The present study therefore attempts to reveal the toxic profile of butenolide from a viewpoint of oxidative damage, using chick embryos as an in vitro model. A single in ovo injection of butenolide resulted in significant oxidative injuries in embryonic livers and kidneys, as manifested by a dose-dependent depletion of sulfhydryl groups, reduction of glutathione peroxidase activity, and increase of thiobarbituric acid reactive substances production, an indicator of lipid peroxidation. In contrast, co-injections of butenolide with antioxidants sodium selenite, vitamin C and a representative antioxidative enzyme superoxide dismutase markedly abated these oxidative toxicities. In conclusion, the present study suggests that oxidative damage may serve as a mediator in the toxicity of butenolide, and amelioration of antioxidant defense capacity by exogenous supplementation may play a role in the prevention and treatment of butenolide intoxication.

  4. Ethanol induces cell-cycle activity and reduces stem cell diversity to alter both regenerative capacity and differentiation potential of cerebral cortical neuroepithelial precursors

    PubMed Central

    Santillano, Daniel R; Kumar, Leena S; Prock, Terasa L; Camarillo, Cynthia; Tingling, Joseph D; Miranda, Rajesh C

    2005-01-01

    Background The fetal cortical neuroepithelium is a mosaic of distinct progenitor populations that elaborate diverse cellular fates. Ethanol induces apoptosis and interferes with the survival of differentiating neurons. However, we know little about ethanol's effects on neuronal progenitors. We therefore exposed neurosphere cultures from fetal rat cerebral cortex, to varying ethanol concentrations, to examine the impact of ethanol on stem cell fate. Results Ethanol promoted cell cycle progression, increased neurosphere number and increased diversity in neurosphere size, without inducing apoptosis. Unlike controls, dissociated cortical progenitors exposed to ethanol exhibited morphological evidence for asymmetric cell division, and cells derived from ethanol pre-treated neurospheres exhibited decreased proliferation capacity. Ethanol significantly reduced the numbers of cells expressing the stem cell markers CD117, CD133, Sca-1 and ABCG2, without decreasing nestin expression. Furthermore, ethanol-induced neurosphere proliferation was not accompanied by a commensurate increase in telomerase activity. Finally, cells derived from ethanol-pretreated neurospheres exhibited decreased differentiation in response to retinoic acid. Conclusion The reduction in stem cell number along with a transient ethanol-driven increase in cell proliferation, suggests that ethanol promotes stem to blast cell maturation, ultimately depleting the reserve proliferation capacity of neuroepithelial cells. However, the lack of a concomitant change in telomerase activity suggests that neuroepithelial maturation is accompanied by an increased potential for genomic instability. Finally, the cellular phenotype that emerges from ethanol pre-treated, stem cell depleted neurospheres is refractory to additional differentiation stimuli, suggesting that ethanol exposure ablates or delays subsequent neuronal differentiation. PMID:16159388

  5. Involvement of the Beta-Endorphin Neurons of the Hypothalamic Arcuate Nucleus in Ethanol-Induced Place Preference Conditioning in Mice

    PubMed Central

    Pastor, Raúl; Font, Laura; Miquel, Marta; Phillips, Tamara J.; Aragon, Carlos M.G.

    2014-01-01

    Background Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. Methods In the present study we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction and reinstatement of ethanol (0 or 2 g/kg; i.p.)-induced conditioned place preference (CPP). Results Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. Conclusions The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol, and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected. PMID:22014186

  6. Ethanol induced acetylation of histone at G9a exon1 and G9a-mediated histone H3 dimethylation leads to neurodegeneration in neonatal mice.

    PubMed

    Subbanna, S; Nagre, N N; Shivakumar, M; Umapathy, N S; Psychoyos, D; Basavarajappa, B S

    2014-01-31

    The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). In this study, we investigated the potential role of epigenetic changes at G9a exon1, G9a-mediated H3 dimethylation on neurodegeneration and G9a-associated proteins in the P7 brain following exposure to a low dose of ethanol. We found that a low dose of ethanol induces mild neurodegeneration in P7 mice, enhances specific acetylation of H3 on lysine 14 (H3K14ace) at G9a exon1, G9a protein levels, augments the dimethylation of H3K9 and H3 lysine 27 (H3K27me2). However, neither dimethylated H3K9 nor K27 underwent degradation. Pharmacological inhibition of G9a activity prior to ethanol treatment prevented H3 dimethylation and neurodegeneration. Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low-dose ethanol-induced neurodegeneration in the developing brain. PMID:24300108

  7. [A histologic variant of autoimmune hepatitis with zonal necrosis].

    PubMed

    Stankovi?, Ivica; Zlatkovi?, Marija; Proki?, Dragan; Plamenac, Pavle

    2002-01-01

    Autoimmune hepatitis type 1 in a 8-year old girl is described. The diagnosis was established using International Autoimmune hepatitis group scoring system. In addition to characteristic histologic features of autoimmune hepatitis (periportal hepatitis, piecemeal necrosis and rozettes) prominent centrilobular necrosis was discovered. As an isolate finding in autoimmune hepatitis, this type was described only in five cases. In our unique case centrilobular necrosis is a very important parallel finding previously not detected in autoimmune hepatitis. Some experimental studies suggest that cytocins present in inflammatory cell infiltrate in the liver play a pathologic role in autoimmune liver cell damage. PMID:12154504

  8. Role of CD44 and Its v7 Isoform in Staphylococcal Enterotoxin B-Induced Toxic Shock: CD44 Deficiency on Hepatic Mononuclear Cells Leads to Reduced Activation-Induced Apoptosis That Results in Increased Liver Damage

    PubMed Central

    McKallip, Robert J.; Fisher, Michael; Gunthert, Ursula; Szakal, Andras K.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2005-01-01

    Exposure to bacterial superantigens such as staphylococcal enterotoxin B (SEB) leads to the induction of toxic shock syndrome which results in multiorgan failure, including liver damage. In the present study, we investigated the role of CD44 in SEB-induced liver injury. Injection of SEB into d-galactosamine-sensitized CD44 wild-type (WT) mice led to a significant increase in CD44 expression on liver T cells, NK cells, and NKT cells. Administration of SEB to CD44 knockout (KO) mice caused significantly enhanced liver damage which correlated with elevated numbers of T cells, NK cells, NKT cells, and macrophages in the liver and increased production of tumor necrosis factor alpha and gamma interferon compared to CD44 WT mice. Furthermore, liver mononuclear cells from CD44 KO mice were resistant to SEB-induced apoptosis, and cDNA microarray analysis revealed that SEB activation of such cells led to the induction of several antiapoptotic genes and repression of proapoptotic genes. Examination of CD44 isoforms revealed that SEB exposure altered CD44 variant 7 (v7) isoform expression. Interestingly, mice bearing a specific deletion of the CD44v7 exon exhibited increased susceptibility to SEB-induced hepatitis. Finally, treatment of CD44 WT mice with anti-CD44 monoclonal antibodies reduced expression of CD44 in liver mononuclear cells and caused increased susceptibility to SEB-induced liver injury. Together, these data demonstrate that the expression of CD44 and/or CD44v7 on SEB-activated liver mononuclear cells facilitates their rapid apoptosis, thereby preventing severe liver injury in wild-type mice, and suggest that CD44 plays an important role in the regulation and elimination of immune cells in the liver. PMID:15618140

  9. Hepatic Encephalopathy

    PubMed Central

    Bleibel, Wissam; Al-Osaimi, Abdullah M. S.

    2012-01-01

    Chronic liver disease and cirrhosis affect hundreds of millions of patients all over the world. The majority of patients with cirrhosis will eventually develop complications related to portal hypertension. One of these recurrent and difficult to treat complications is hepatic encephalopathy. Studies have indicated that overt hepatic encephalopathy affects 30 to 45% of patients with cirrhosis and a higher percentage may be affected by minimal degree of encephalopathy. All of these factors add to the impact of hepatic encephalopathy on the healthcare system and presents a major challenge to the gastroenterologist, hospitalist and primary care physician. PMID:23006457

  10. Protective effects of carnosine alone and together with alpha-tocopherol on lipopolysaccharide (LPS) plus ethanol-induced liver injury.

    PubMed

    Kalaz, Esra Betül; Aydın, A Fatih; Doğan-Ekici, Işın; Çoban, Jale; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-03-01

    The aim of this study was to investigate the effect of carnosine (CAR) alone and together with vitamin E (Vit E) on alcoholic steatohepatitis (ASH) in rats. ASH was induced by ethanol (3 times; 5g/kg; 12h intervals, via gavage), followed by a single dose of lipopolysaccharide (LPS; 10mg/kg; i.p.). CAR (250mg/kg; i.p.) and Vit E (200mg d-α-tocopherol/kg; via gavage) were administered 30min before and 90min after the LPS injection. CAR treatment lowered high serum transaminase activities together with hepatic histopathologic improvements in rats with ASH. Reactive oxygen species formation, malondialdehyde levels, myeloperoxidase activities and transforming growth factor β1 (TGF-β1) and collagen 1α1 (COL1A1) expressions were observed to decrease. These improvements were more remarkable in CAR plus Vit E-treated rats. Our results indicate that CAR may be effective in suppressing proinflammatory, prooxidant, and profibrotic factors in the liver of rats with ASH. PMID:26773358

  11. Alcohol Induced Hepatic Degeneration in a Hepatitis C Virus Core Protein Transgenic Mouse Model

    PubMed Central

    Noh, Dong-Hyung; Lee, Eun-Joo; Kim, Ah-Young; Lee, Eun-Mi; Min, Chang-Woo; Kang, Kyung-Ku; Lee, Myeong-Mi; Kim, Sang-Hyeob; Sung, Soo-Eun; Hwang, Meeyul; Yu, Dae-Yeul; Jeong, Kyu-Shik

    2014-01-01

    Hepatitis C virus (HCV) has become a major public health issue. It is prevalent in most countries. HCV infection frequently begins without clinical symptoms, before progressing to persistent viremia, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) in the majority of patients (70% to 80%). Alcohol is an independent cofactor that accelerates the development of HCC in chronic hepatitis C patients. The purpose of the current study was to evaluate ethanol-induced hepatic changes in HCV core-Tg mice and mutant core Tg mice. Wild type (NTG), core wild-Tg mice (TG-K), mutant core 116-Tg mice (TG-116) and mutant core 99-Tg mice (TG-99) were used in this investigation. All groups were given drinking water with 10% ethanol and 5% sucrose for 13 weeks. To observe liver morphological changes, we performed histopathological and immunohistochemical examinations. Histopathologically, NTG, TG-K and TG-116 mice showed moderate centrilobular necrosis, while severe centrilobular necrosis and hepatocyte dissociation were observed in TG-99 mice with increasing lymphocyte infiltration and piecemeal necrosis. In all groups, a small amount of collagen fiber was found, principally in portal areas. None of the mice were found to have myofibroblasts based on immunohistochemical staining specific for ?-SMA. CYP2E1-positive cells were clearly detected in the centrilobular area in all groups. In the TG-99 mice, we also observed cells positive for CK8/18, TGF-?1 and phosphorylated (p)-Smad2/3 and p21 around the necrotic hepatocytes in the centrilobular area (p < 0.01). Based on our data, alcohol intake induced piecemeal necrosis and hepatocyte dissociation in the TG-99 mice. These phenomena involved activation of the TGF-?1/p-Smad2/3/p21 signaling pathway in hepatocytes. Data from this study will be useful for elucidating the association between alcohol intake and HCV infection. PMID:24608925

  12. Hepatic Encephalopathy

    MedlinePLUS Videos and Cool Tools

    ... is a condition that causes temporary worsening of brain function in people with advanced liver disease. When ... travel through your body until they reach your brain, causing mental and physical symptoms of HE. Hepatic ...

  13. Hepatitis B

    MedlinePLUS

    ... vaccine for HBV. It requires three shots. All babies should get the vaccine, but older children and adults can get it too. If you travel to countries where Hepatitis B is common, you should get the vaccine. NIH: ...

  14. Organ Damage and Hepatic Lipid Accumulation in Carp (Cyprinus carpio L.) after Feed-Borne Exposure to the Mycotoxin, Deoxynivalenol (DON)

    PubMed Central

    Pietsch, Constanze; Schulz, Carsten; Rovira, Pere; Kloas, Werner; Burkhardt-Holm, Patricia

    2014-01-01

    Deoxynivalenol (DON) frequently contaminates animal feed, including fish feed used in aquaculture. This study intends to further investigate the effects of DON on carp (Cyprinus carpio L.) at concentrations representative for commercial fish feeds. Experimental feeding with 352, 619 or 953 μg DON kg−1 feed resulted in unaltered growth performance of fish during six weeks of experimentation, but increased lipid peroxidation was observed in liver, head kidney and spleen after feeding of fish with the highest DON concentration. These effects of DON were mostly reversible by two weeks of feeding the uncontaminated control diet. Histopathological scoring revealed increased liver damage in DON-treated fish, which persisted even after the recovery phase. At the highest DON concentration, significantly more fat, and consequently, increased energy content, was found in whole fish body homogenates. This suggests that DON affects nutrient metabolism in carp. Changes of lactate dehydrogenase (LDH) activity in kidneys and muscle and high lactate levels in serum indicate an effect of DON on anaerobic metabolism. Serum albumin was reduced by feeding the medium and a high dosage of DON, probably due to the ribotoxic action of DON. Thus, the present study provides evidence of the effects of DON on liver function and metabolism. PMID:24566729

  15. Origin of hepatitis ? virus

    PubMed Central

    Taylor, John; Pelchat, Martin

    2010-01-01

    This article addresses some of the questions relating to how hepatitis ? virus (HDV), an agent so far unique in the animal world, might have arisen. HDV was discovered in patients infected with hepatitis B virus (HBV). It generally makes HBV infections more damaging to the liver. It is a subviral satellite agent that depends upon HBV envelope proteins for its assembly and ability to infect new cells. In other aspects of replication, HDV is both independent of and very different from HBV. In addition, the small single-stranded circular RNA genome of HDV, and its mechanism of replication, demonstrate an increasing number of similarities to the viroids a large family of helper-independent subviral agents that cause pathogenesis in plants. PMID:20210550

  16. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

    PubMed Central

    Huang, Wei; Booth, David M; Cane, Matthew C; Chvanov, Michael; Javed, Muhammad A; Elliott, Victoria L; Armstrong, Jane A; Dingsdale, Hayley; Cash, Nicole; Li, Yan; Greenhalf, William; Mukherjee, Rajarshi; Kaphalia, Bhupendra S; Jaffar, Mohammed; Petersen, Ole H; Tepikin, Alexei V; Sutton, Robert; Criddle, David N

    2014-01-01

    Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation. PMID:24162590

  17. Immunochemical evidence for an ethanol-inducible form of liver microsomal cytochrome P-450 in rodents and primates

    SciTech Connect

    Lasker, J.M.; Ardies, C.M.; Bloswick, B.P.; Lieber, C.S.

    1986-05-01

    Polyclonal antibodies against cytochrome P-450-4, a major liver microsomal P-450 isozyme purified from ethanol (E)-treated hamsters, were used to probe for immunochemically-related hemeproteins in other species. Liver microsomes (LM) were obtained from naive and E-treated rats, deermice, hamsters, and baboons. Baboon liver 9000 x g supernatant (S-9) was prepared from needle biopsy samples. LM and S-9 proteins were resolved by SDS-PAGE, then transferred to nylon membranes. Immunodetection was performed on the Western blots using rabbit anti P-450-4 IgG, anti-rabbit IgG-alk. phos., and an appropriate chromagen. Control LM from all species contained a cross-reacting protein of mol. wt. similar to P-450-4 (54k). The amount of this cross-reacting protein as reflected by staining intensity, was much higher in LM from E-treated animals. This protein was also detected in S-9 from E-treated baboons. In contrast, no increase in phenobarbital-inducible P-450-2 related LM protein (assessed using anti P-450-2) was observed after E treatment. Increased P-450-4 related protein in LM from E-treated animals was associated with enhanced oxidation of ethanol and aniline by these LM when compared to controls. In conclusion, LM from rats, deermice, and baboons contain a protein immunochemically homologous to hamster liver P-450-4. As observed in hamsters, the amount of this hepatic protein increases in these other species after E treatment.

  18. Protect Yourself from Hepatitis

    MedlinePLUS

    ... Your Liver Guard Your Liver Protect Yourself From Hepatitis Hepatitis can make you feel as if you have ... viruses that attack your lungs and respiratory system; hepatitis is a liver disease. Some forms of hepatitis ...

  19. Hepatitis A FAQs

    MedlinePLUS

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis A FAQs for the Public Recommend on Facebook ...

  20. Hepatitis B FAQs

    MedlinePLUS

    ... of Viral Hepatitis Contact Us Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home ... Outbreaks State and Local Partners & Grantees Resource Center Hepatitis B FAQs for the Public Recommend on Facebook ...

  1. What Is Hepatitis?

    MedlinePLUS

    ... Twitter Facebook Google + iTunes Play Store What is hepatitis? Online Q&A Reviewed July 2015 Q: What ... Question and answer archives Submit a question World Hepatitis Day World Hepatitis Day 2014: Think agaiin Hepatitis ...

  2. Delta agent (Hepatitis D)

    MedlinePLUS

    Hepatitis D virus ... Hepatitis D virus (HDV) is found only in people who carry the hepatitis B virus. HDV may make liver ... B virus but who never had symptoms. Hepatitis D infects about 15 million people worldwide. It occurs ...

  3. Effects of chronic hepatitis C genotype 1 and 4 on serum activins and follistatin in treatment nave patients and their correlations with interleukin-6, tumour necrosis factor-?, viral load and liver damage.

    PubMed

    Refaat, Bassem; Ashshi, Ahmed Mohammed; El-Shemi, Adel Galal; AlZanbagi, Adnan

    2015-08-01

    The importance of activins and follistatin in liver diseases has recently emerged. The aim of the present study was to measure the influence of chronic infection with viral hepatitis C (CHC) genotype 1 and 4 on serum levels of activin-A, activin-B and follistatin, and to determine their correlations with viral load, liver damage, interleukin-6 (IL-6) and tumour necrosis factor (TNF)-?. Sera samples collected from 20 male and 20 female treatment nave CHC genotype 1 and 4 Saudi patients (ten males and ten females for each genotype), and 40 gender- and age-matched healthy participants were analysed for activin-A, activin-B and follistatin using enzyme-linked immunosorbent assay and their levels were correlated with IL-6, TNF-?, viral load and AST platelet ratio index (APRI). Serum activin-A, activin-B, IL-6 and TNF-? were significantly increased, while serum follistatin was significantly decreased, in both genders of CHC patients compared with control subjects, In both viral genotypes, activin-A was strongly and positively correlated with the viral load, APRI, IL-6 and TNF-?, and negatively with albumin (P<0.01). Activin-B showed the same correlations of activin-A only in CHC genotype 1 patients, but it was weaker than activin-A. No correlation was detected with follistatin. Serum activins, particularly activin-A, and follistatin are significantly altered by CHC genotype 1 and 4. This dysregulation of activins/follistatin axis may be associated with viral replication, host immune response and liver injury. Further studies are needed to illustrate the definite role(s) and clinical value of activins and follistatin in CHC. PMID:24925642

  4. Mutations in core nucleotide sequence of hepatitis B virus correlate with fulminant and severe hepatitis.

    PubMed Central

    Ehata, T; Omata, M; Chuang, W L; Yokosuka, O; Ito, Y; Hosoda, K; Ohto, M

    1993-01-01

    Infection with hepatitis B virus leads to a wide spectrum of liver injury, including self-limited acute hepatitis, fulminant hepatitis, and chronic hepatitis with progression to cirrhosis or acute exacerbation to liver failure, as well as an asymptomatic chronic carrier state. Several studies have suggested that the hepatitis B core antigen could be an immunological target of cytotoxic T lymphocytes. To investigate the reason why the extreme immunological attack occurred in fulminant hepatitis and severe exacerbation patients, the entire precore and core region of hepatitis B virus DNA was sequenced in 24 subjects (5 fulminant, 10 severe fatal exacerbation, and 9 self-limited acute hepatitis patients). No significant change in the nucleotide sequence and deduced amino acid residue was noted in the nine self-limited acute hepatitis patients. In contrast, clustering changes in a small segment of 16 amino acids (codon 84-99 from the start of the core gene) in all seven adr subtype infected fulminant and severe exacerbation patients was found. A different segment with clustering substitutions (codon 48-60) was also found in seven of eight adw subtype infected fulminant and severe exacerbation patients. Of the 15 patients, 2 lacked precore stop mutation which was previously reported to be associated with fulminant hepatitis. These data suggest that these core regions with mutations may play an important role in the pathogenesis of hepatitis B viral disease, and such mutations are related to severe liver damage. Images PMID:8450049

  5. Liver damage due to perhexiline maleate.

    PubMed Central

    Forbes, G B; Rake, M O; Taylor, D J

    1979-01-01

    Two middle-aged men, who had received perhexiline in recommended dosage, showed clinical and histological evidence of severe hepatic damage, and one of them died. Histological study of the livers showed a striking resemblance to alcoholic hepatitis. Images Fig. 1 Fig. 2 Fig. 3 PMID:536463

  6. Toxic acute hepatitis and hepatic fibrosis after consumption of chaparral tablets.

    PubMed

    Kauma, H; Koskela, R; Mäkisalo, H; Autio-Harmainen, H; Lehtola, J; Höckerstedt, K

    2004-11-01

    In this report we describe a young, previously healthy woman who developed severe acute hepatitis after consumption of chaparral tablets, a commonly used herbal product. In this case, the elimination-rechallenge event and the exclusion of other possible aetiologic factors strongly supported true causality between the herbal product and the liver damage. Primary liver biopsy showed severe toxic hepatitis consistent with previous reports of chaparral-induced liver damage. Later, 6 months after the liver function tests had normalized, permanent hepatic fibrosis could still be seen. PMID:15545179

  7. Mistletoe hepatitis.

    PubMed Central

    Harvey, J; Colin-Jones, D G

    1981-01-01

    A 49-year-old woman presented with nausea, general malaise, and a dull ache in the right hypochondrium. Liver biopsy showed slight inflammatory-cell infiltration, and results of liver function tests suggested hepatitis. Hepatitis B surface antigen was not detected, and a cholecystogram was normal. Two years later she presented with similar symptoms, and both illnesses were found to have occurred after ingestion of a herbal remedy containing kelp, motherwort, skullcap, and mistletoe. A challenge test established this to be the cause of the illness. Mistletoe is the only constituent of the tablets known to contain any potential toxin and thus was probably the cause of the illness. Mistletoe is widely used in herbal remedies, whose ingestion may therefore cause hepatitis. Images FIG 1 FIG 2 PMID:6779941

  8. Hepatic hydrothorax.

    PubMed

    Siddappa, Pradeep Kumar; Kar, Premashish

    2009-01-01

    Hepatic hydrothorax is defined as significant pleural effusion (usually greater than 500 mL) in a cirrhotic patient, in the absence of underlying pulmonary or cardiac disease. The diagnosis of hepatic hydrothorax should be suspected in a patient with established cirrhosis and portal hypertension, presenting with unilateral pleural effusion, most commonly right-sided. Hydrothorax is uncommon, and is found in 4-6% of all patients with cirrhosis and up to 10% in patients with decompensated cirrhosis. Although ascites is usually present, hydrothorax can occur in the absence of ascites. Patients with hepatic hydrothorax usually have advanced liver disease with portal hypertension and most of them require liver transplantation. Current insight into the pathogenesis of this entity has led to improved treatment modalities such as portosystemic shunts (TIPS) and video-assisted thoracoscopy for closure of diaphragmatic defects. These modalities may provide a bridge towards transplantation. PMID:20306741

  9. Protective effect of propolis ethanol extract on ethanol-induced renal toxicity: an in-vivo study.

    PubMed

    Liu, Chi-Feng; Lin, Chia-Hsien; Lin, Chun-Ching; Lin, Yun-Ho; Chen, Chin-Fa; Lin, Song-Chow

    2005-01-01

    Acute p.o. administration of absolute ethanol (10 ml/kg) to fasted mice would produce extensive renal failure. Pretreatment with p.o. administration of propolis ethanol extract (PEE) could prevent such renal failure effectively and dose dependently. This renal protective effect of PEE may be contributed, at least in part, to its antioxidative activity. The maximal antioxidative effect against absolute ethanol (AE)-induced renal failure could be observed 1 hour after PEE administration. In order to further investigate the renal protective mechanism of PEE, lipid peroxidation and superoxide scavenging activity were conducted in vivo. PEE exhibited dose-dependent antioxidative effects on lipid peroxidation in mice renal homogenate. Results indicated that mice with acute renal failure have higher malonic dialdehyde (MDA) levels compared with those in PEE administered mice. It was concluded that the renal protective mechanism of PEE could be contributed, at least in part, to its prominent superoxide scavenging effect; hence, it could protect, indirectly, the kidney from superoxide-induced renal damages. PMID:16265990

  10. Fenugreek (Trigonella foenum graecum) seed extract prevents ethanol-induced toxicity and apoptosis in Chang liver cells.

    PubMed

    Kaviarasan, Subramanian; Ramamurty, Nalini; Gunasekaran, Palani; Varalakshmi, Elango; Anuradha, Carani Venkatraman

    2006-01-01

    The protective effect of a polyphenolic extract of fenugreek seeds (FPEt) against ethanol (EtOH)-induced toxicity was investigated in human Chang liver cells. Cells were incubated with either 30 mM EtOH alone or together in the presence of seed extract for 24 h. Assays were performed in treated cells to evaluate the ability of seeds to prevent the toxic effects of EtOH. EtOH treatment suppressed the growth of Chang liver cells and induced cytotoxicity, oxygen radical formation and mitochondrial dysfunction. Reduced glutathione (GSH) concentration was decreased significantly (P < 0.05) while oxidized glutathione (GSSG) concentration was significantly elevated in EtOH-treated cells as compared with normal cells. Incubation of FPEt along with EtOH significantly increased cell viability in a dose-dependent manner, caused a reduction in lactate dehydrogenase leakage and normalized GSH/GSSG ratio. The extract dose-dependently reduced thiobarbituric acid reactive substances formation. Apoptosis was observed in EtOH-treated cells while FPEt reduced apoptosis by decreasing the accumulation of sub-G1 phase cells. The cytoprotective effects of FPEt were comparable with those of a positive control silymarin, a known hepatoprotective agent. The findings suggest that the polyphenolic compounds of fenugreek seeds can be considered cytoprotective during EtOH-induced liver damage. PMID:16574673

  11. Biphasic effects of histamine on ethanol-induced gastric mucosal lesions: Studies with betahistine, dimaprit, (R). alpha. -methylhistamine and nizatidine

    SciTech Connect

    Morales, R.E.; Palitzsch, K.D.; Szabo, S. )

    1991-03-15

    In elucidating further the role that histamine (H) may play in gastroprotection against hemorrhagic mucosal lesions (HML) induced by ethanol (E), fasted S-D rats were treated with subcutaneous (s.c.) H 10, 15, 20 and 30 min before intragastric (i.g.) 100% E or H-agonists betahistine (H1) or dimaprit (H2) i.g. 30 min. before 75% E. All animals were killed 1 hr after E, HML were measured with stereomicrosopic planimetry and expressed as % of glandular stomach. The H2 antagonist nizatidine did not influence the extent of HML. As a follow up to previously reported nizatidine blockade of H2-induced gastroprotection against 75% E, nizatidine + H1 or nizatidine + H3 agonist (R){alpha}-methylhistamine was also tested. The H2 antagonist nizatidine abolished the gastroprotection by H3 but did not influence the H1-induced reduction of HML. H injected s.c. showed a dose- and time-dependent biphasic effect on E-induced gastric mucosal lesions. Both H1- and H2-agonists injected s.c. reduced the E-induced damage. Nizatidine alone failed to influence mucosal lesions, blocked gastroprotection induced by H2 or H3, but not by H1 agonists.

  12. [Ischemic hepatitis].

    PubMed

    van Riel, J M; Kerremans, A L

    1992-10-17

    Triggered by a case of ischaemic hepatitis (shock liver) in a patient with severe respiratory insufficiency, we tried to gather information about clinical characteristics and incidence. To our surprise, this information could be found neither in major critical care, medical or gastroenterology textbooks nor in textbook indices or works on differential diagnosis. From Sept. 1989 to May 1990 we studied all possible cases of ischaemic hepatitis in a 390 bed general hospital, to establish incidence. Using computerised data from the clinical chemistry laboratory, all patients with grossly abnormal liver function tests were identified. In this nine-month period 27 adult patients had a peak ALAT level of > 500 U/l: 8 of these suffered from ischaemic hepatitis, using the criteria described by Gibson et al. In another 5 this diagnosis was suspected but could not be ascertained before death (30% and 18% of all cases). In all these cases ASAT, ALAT, LDH levels were 8-100 times normal, but bilirubin, alkaline phosphatase, gamma-glutamyl transferase and prothrombin time were only slightly abnormal. With correction of the underlying disorder enzyme levels returned to normal very rapidly, in 5-10 days. Ischaemic hepatitis could easily be distinguished from other causes such as alcoholic, viral or drug-induced hepatitis. Ischaemic hepatitis was the most frequent cause of severely elevated ASAT, ALAT and LDH in hospitalised patients. The diagnosis can easily be made on clinical characteristics and the typical biochemical pattern. An elaborate work-up or invasive procedure is redundant. Prognosis per se is excellent but depends on the underlying disorder. PMID:1407210

  13. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration.

    PubMed

    Mathews, Stephanie; Feng, Dechun; Maricic, Igor; Ju, Cynthia; Kumar, Vipin; Gao, Bin

    2016-03-01

    Neutrophil infiltration is a hallmark of alcoholic steatohepatitis; however, the underlying mechanisms remain unclear. We previously reported that chronic-plus-binge ethanol feeding synergistically induces hepatic recruitment of neutrophils, which contributes to liver injury. In this paper, we investigated the roles of invariant natural killer T (iNKT) cells in chronic-plus-binge ethanol feeding-induced hepatic neutrophil infiltration and liver injury. Wild-type and two strains of iNKT cell-deficient mice (CD1d- and Jα18-deficient mice) were subjected to chronic-plus-binge ethanol feeding. Liver injury and inflammation were examined. Chronic-plus-binge ethanol feeding synergistically increased the number of hepatic iNKT cells and induced their activation, compared with chronic feeding or binge alone. iNKT cell-deficient mice were protected from chronic-plus-binge ethanol-induced hepatic neutrophil infiltration and liver injury. Moreover, chronic-plus-binge ethanol feeding markedly upregulated the hepatic expression of several genes associated with inflammation and neutrophil recruitment in wild-type mice, but induction of these genes was abrogated in iNKT cell-deficient mice. Importantly, several cytokines and chemokines (e.g., MIP-2, MIP-1, IL-4, IL-6 and osteopontin) involved in neutrophil infiltration were upregulated in hepatic NKT cells isolated from chronic-plus-binge ethanol-fed mice compared to pair-fed mice. Finally, treatment with CD1d blocking antibody, which blocks iNKT cell activation, partially prevented chronic-plus-binge ethanol-induced liver injury and inflammation. Chronic-plus-binge ethanol feeding activates hepatic iNKT cells, which play a critical role in the development of early alcoholic liver injury, in part by releasing mediators that recruit neutrophils to the liver, and thus, iNKT cells represent a potential therapeutic target for the treatment of alcoholic liver disease. PMID:25661730

  14. Invariant natural killer T cells contribute to chronic-plus-binge ethanol-mediated liver injury by promoting hepatic neutrophil infiltration

    PubMed Central

    Mathews, Stephanie; Feng, Dechun; Maricic, Igor; Ju, Cynthia; Kumar, Vipin; Gao, Bin

    2016-01-01

    Neutrophil infiltration is a hallmark of alcoholic steatohepatitis; however, the underlying mechanisms remain unclear. We previously reported that chronic-plus-binge ethanol feeding synergistically induces hepatic recruitment of neutrophils, which contributes to liver injury. In this paper, we investigated the roles of invariant natural killer T (iNKT) cells in chronic-plus-binge ethanol feeding-induced hepatic neutrophil infiltration and liver injury. Wild-type and two strains of iNKT cell-deficient mice (CD1d- and Jα18-deficient mice) were subjected to chronic-plus-binge ethanol feeding. Liver injury and inflammation were examined. Chronic-plus-binge ethanol feeding synergistically increased the number of hepatic iNKT cells and induced their activation, compared with chronic feeding or binge alone. iNKT cell-deficient mice were protected from chronic-plus-binge ethanol-induced hepatic neutrophil infiltration and liver injury. Moreover, chronic-plus-binge ethanol feeding markedly upregulated the hepatic expression of several genes associated with inflammation and neutrophil recruitment in wild-type mice, but induction of these genes was abrogated in iNKT cell-deficient mice. Importantly, several cytokines and chemokines (e.g., MIP-2, MIP-1, IL-4, IL-6 and osteopontin) involved in neutrophil infiltration were upregulated in hepatic NKT cells isolated from chronic-plus-binge ethanol-fed mice compared to pair-fed mice. Finally, treatment with CD1d blocking antibody, which blocks iNKT cell activation, partially prevented chronic-plus-binge ethanol-induced liver injury and inflammation. Chronic-plus-binge ethanol feeding activates hepatic iNKT cells, which play a critical role in the development of early alcoholic liver injury, in part by releasing mediators that recruit neutrophils to the liver, and thus, iNKT cells represent a potential therapeutic target for the treatment of alcoholic liver disease. PMID:25661730

  15. Ethanol-induced impairments in receptor-mediated endocytosis of asialoorosomucoid in isolated rat hepatocytes: Time course of impairments and recovery after ethanol withdrawal

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J.

    1989-04-01

    Chronic ethanol administration markedly impairs the process of receptor-mediated endocytosis (RME) of a representative asialoglycoprotein, asialoorosomucoid (ASOR), by the liver. In this study, we further characterized these impairments by identifying the time of onset for ethanol-induced changes in RME as well as establishing the time course for recovery to normal endocytotic values after ethanol withdrawal. Ethanol administration for 3 days did not alter any aspect of endocytosis examined in this study. After feeding ethanol to rats for 7 days, however, significant decreases in amounts of ligand bound, internalized, and degraded were apparent. These impairments persisted throughout the 5-week feeding study although the effects were somewhat attenuated with more prolonged ethanol feeding. In addition, an accumulation of intracellular receptors was observed in ethanol-fed animals relative to controls after 7 days of ethanol feeding. In all cases, recovery of endocytotic values to control levels was partially completed after 2 to 3 days of refeeding control diet and was fully completed after 7 days of refeeding. These results indicate that ethanol feeding for as little as 7 days profoundly impairs the process of RME by the liver. These impairments can be reversed after refeeding control diet for 7 days.

  16. Mechanisms of Gastroprotective Effects of Ethanolic Leaf Extract of Jasminum sambac against HCl/Ethanol-Induced Gastric Mucosal Injury in Rats

    PubMed Central

    AlRashdi, Ahmed S.; Salama, Suzy M.; Alkiyumi, Salim S.; Abdulla, Mahmood A.; Hadi, A. Hamid A.; Abdelwahab, Siddig I.; Taha, Manal M.; Hussiani, Jamal; Asykin, Nur

    2012-01-01

    Jasminum sambac is used in folk medicine as the treatment of many diseases. The aim of the present investigation is to evaluate the gastroprotective effects of ethanolic extracts of J. sambac leaves against acidified ethanol-induced gastric ulcers in rats. Seven groups of rats were orally pre-treated with carboxymethylcellulose (CMC) as normal group, CMC as ulcer group, 20 mg/kg of omeprazole as positive group, 62.5, 125, 250, and 500 mg/kg of extract as the experimental groups, respectively. An hour later, CMC was given orally to normal group and acidified ethanol solution was given orally to the ulcer control, positive control, and the experimental groups. The rats were sacrificed after an hour later. Acidity of gastric content, the gastric wall mucus, ulcer areas, and histology and immunohistochemistry of the gastric wall were assessed. Gastric homogenates were determined for prostaglandin E2 (PGE2), superoxide dismutase (SOD), andmalondialdehyde (MDA) content. Ulcer group exhibited significantly severe mucosal injury as compared with omeprazole or extract which shows significant protection towards gastric mucosal injury the plant promotes ulcer protection as it shows significant reduction of ulcer area grossly, and histology showed marked reduction of edema and leucocytes infiltration of submucosal layer compared with ulcer group. Immunohistochemistry showed overexpression of Hsp70 protein and downexpression of Bax protein in rats pretreated with extract. Significant increased in the pH, mucus of gastric content and high levels of PGE2, SOD and reduced amount of MDA was observed. PMID:22550543

  17. Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced Changes in Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease.

    PubMed

    Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J

    2016-04-01

    Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD. PMID:27012191

  18. [Hepatic tumors].

    PubMed

    Moser, K; Dittrich, C; Pirich, P; Schneeweiss, B

    1983-01-01

    In this paper aspects concerning epidemiology, pathophysiology, laboratory diagnosis and treatment modalities of primary hepatomas and secondary tumors of the liver are discussed. As results obtained with conventional chemotherapy are unsatisfying special emphasis is put on the new therapeutic methods of intraarterial and intravenous cytostatic perfusion via hepatic artery and portal vein respectively. Additionally our own clinical and laboratory datas are presented. PMID:6195884

  19. Hepatitis B

    MedlinePLUS

    ... can get the virus if you have unprotected sexual contact with an infected partner. People who use intravenous (IV) drugs can get hepatitis B when they share needles with someone who has the virus. Health care workers (such as nurses, lab technicians and doctors) can ...

  20. Hepatitis C and pregnancy

    PubMed Central

    Floreani, Annarosa

    2013-01-01

    Acute hepatitis C is a rare event in pregnancy. The most common scenario is chronic hepatitis C virus (HCV) infection in pregnancy. During pregnancy in women with chronic HCV infection a significant reduction in mean alanine aminotransferase levels has been reported, with a rebound during the postpartum period. In few cases exacerbation of chronic hepatitis C has been reported in pregnancy. A cofactor that might play a role in the reduction of liver damage is the release of endogenous interferon from the placenta. Observations regarding serum HCV-RNA concentration have been variable. In some women HCV-RNA levels rise toward the end of pregnancy. In general, pregnancy does not have a negative effect on HCV infection. Conversely, chronic hepatitis does not appear to have an adverse effect on the course of pregnancy, or the birth weight of the newborn infant. The role of spontaneous abortion is approximately the same as in the general population. The overall rate of mother-to-child transmission for HCV is 3%-5% if the mother is known to be anti-HCV positive. Co-infection with human immunodeficiency virus (HIV) increases the rate of mother-to-child transmission up to 19.4%. Numerous risk factors for vertical transmission have been studied. In general, high viral load defined as at least 2.5 × 106 viral RNA copies/mL, HIV co-infection, and invasive procedures are the most important factors. Both interferon and ribavirin are contraindicated during pregnancy. Viral clearance prior to pregnancy increases the likelihood that a woman remains non-viremic in pregnancy with a consequent reduced risk of vertical transmission. PMID:24187446

  1. Spontaneous hepatic rupture in pregnancy.

    PubMed

    Nelson, E W; Archibald, L; Albo, D

    1977-12-01

    Hepatic rupture as a late complication of toxemic pregnancy is a rare yet lethal condition requiring rapid recognition and surgical management. The clinical triad of toxemia, right upper quadrant pain, and sudden hypotension is the diagnostic hallmark of presentation. Most patients present near the time of delivery and are found to have subcapsular hematomas of the right hepatic lobe with free rupture into the peritoneal cavity and resultant exsanguinating hemorrhage. The association of toxemia and disseminated intravascular coagulation with secondary microembolic damage to the liver and other organs has been discussed. Basic surgical principles in the managment of hepatic subcapsular hematomas, and the prolonged postoperative course and frequent complications in these patients have been stressed. PMID:596550

  2. Hepatic artery bridging lessens temporary ischemic injury to bile canaliculi

    PubMed Central

    Wang, Jia-Zhong; Liu, Yang; Wang, Jin-Long; Lu, Le; Zhang, Ya-Fei; Lu, Hong-Wei; Li, Yi-Ming

    2015-01-01

    AIM: To study whether transfer of blood between the right gastroepiploic artery and gastroduodenal artery could lessens the damage to bile canaliculi. METHODS: Forty male Bama miniature pigs were divided into four groups as follows: a control group, two hepatic artery ischemia groups (1 h and 2 h), and a hepatic artery bridging group. The hemodynamics of the hepatic artery in the hepatic artery bridging group was measured using color Doppler ultrasound. Morphological changes in the bile canaliculus were observed by transmission electron microscopy. Cofilin, heat shock protein 27 and F-actin expression was detected by immunohistochemistry, Western blot, and real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated nick end-labeling method was used to evaluate liver injury. RESULTS: The hemodynamics was not changed in the hepatic artery bridging group. The microvilli in the bile canaliculus were impaired in the two hepatic artery ischemia groups. The down-regulation of cofilin and F-actin and up-regulation of heat shock protein 27 were observed in the two hepatic artery ischemia groups, while there were no significant differences between the control group and hepatic artery bridging group. CONCLUSION: Hepatic artery ischemia aggravates damage to bile canaliculi, and this damage can be diminished by a hepatic artery bridging duct. PMID:26401076

  3. Hepatitis C: progress and problems.

    PubMed Central

    Cuthbert, J A

    1994-01-01

    The hepatitis C virus (HCV), a single-stranded RNA virus, is the major cause of posttransfusion hepatitis. HCV isolates differ in nucleotide and amino acid sequences. Nucleotide changes are concentrated in hypervariable regions and may be related to immune selection. In most immunocompetent persons, HCV infection is diagnosed serologically, using antigens from conserved regions. Amplification of RNA may be necessary to detect infection in immunosuppressed patients. Transmission by known parenteral routes is frequent; other means of spread are less common and may represent inapparent, percutaneous dissemination. Infection can lead to classical acute hepatitis, but most infected persons have no history of acute disease. Once infected, most individuals apparently remain carriers of the virus, with varying degrees of hepatocyte damage and fibrosis ensuing. Chronic hepatitis may lead to cirrhosis and hepatocellular carcinoma. However, disease progression varies widely, from less than 2 years to cirrhosis in some patients to more than 30 years with only chronic hepatitis in others. Determinants important in deciding outcome are unknown. Alpha interferon, which results in sustained remission in selected patients, is the only available therapy. Long-term benefits from such therapy have not been demonstrated. Prevention of HCV infection by vaccination is likely to be challenging if ongoing viral mutation results in escape from neutralization and clearance. PMID:7834603

  4. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; ?a?ewska, Dorota; Kie?-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(?)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism. PMID:26169446

  5. Meconium Fatty Acid Ethyl Esters as Biomarkers of Late Gestational Ethanol Exposure and Indicator of Ethanol-Induced Multi-Organ Injury in Fetal Sheep

    PubMed Central

    Zelner, Irene; Kenna, Kelly; Brien, James F.; Bocking, Alan; Harding, Richard; Walker, David; Koren, Gideon

    2013-01-01

    Background Meconium fatty acid ethyl esters (FAEE) constitute a biomarker of heavy fetal ethanol exposure. Our objective was to measure meconium FAEE in fetal sheep following daily, relatively moderate-dose ethanol exposure in late gestation, and to evaluate their utility in identifying fetal organ-system injury. Methods Pregnant ewes received ethanol (0.75 g/kg; n?=?14) or saline (n?=?8) via 1-h IV infusion daily during the third trimester equivalent, while additional pregnant sheep served as untreated controls (n?=?6). The daily ethanol regimen produced similar maximal maternal and fetal plasma ethanol concentrations of 0.110.12 g/dL. Ewes and fetuses were euthanized shortly before term, and meconium was collected and analyzed for FAEE (ethyl palmitate, stearate, linoleate, and oleate). Results Meconium total FAEE concentration was significantly higher in ethanol-exposed fetuses compared with controls, and a positive cut-off of 0.0285 nmol total FAEE/g meconium had 93.3% sensitivity and specificity for detecting fetal ethanol exposure. When the studied animals (ethanol-exposed and controls) were classified according to meconium FAEE concentration, FAEE-positive and FAEE-negative groups frequently differed with respect to previously examined pathological endpoints, including nephron endowment, lung collagen deposition, cardiomyocyte maturation, and tropoelastin gene expression in cerebral vessels. Furthermore, in all studied animals as a group (ethanol-exposed and controls combined), meconium FAEE concentration was correlated with many of these pathological endpoints in fetal organs. Conclusions We conclude that, in fetal sheep, meconium FAEE could serve as a biomarker of daily ethanol exposure in late gestation and could identify fetuses with subtle ethanol-induced toxic effects in various organs. This study illustrates the potential for using meconium FAEE to identify neonates at risk for dysfunction of major organs following in-utero ethanol exposure that does not result in overt physical signs of ethanol teratogenicity. PMID:23533604

  6. Regulation of Extrasynaptic GABAA α4 Receptors by Ethanol-Induced Protein Kinase A, but Not Protein Kinase C Activation in Cultured Rat Cerebral Cortical Neurons.

    PubMed

    Carlson, Stephen L; Bohnsack, J Peyton; Patel, Vraj; Morrow, A Leslie

    2016-01-01

    Ethanol produces changes in GABAA receptor trafficking and function that contribute to ethanol dependence symptomatology. Extrasynaptic γ-aminobutyric acid A receptors (GABAA-R) mediate inhibitory tonic current and are of particular interest because they are potentiated by physiologically relevant doses of ethanol. Here, we isolate GABAA α4δ receptors by western blotting in subsynaptic fractions to investigate protein kinase A (PKA) and protein kinase C (PKC) modulation of ethanol-induced receptor trafficking, while extrasynaptic receptor function is determined by measurement of tonic inhibition and responses evoked by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). Rat cerebral cortical neurons were grown for 18 days in vitro and exposed to ethanol and/or PKA/PKC modulators. Ethanol exposure (1 hour) did not alter GABAA α4 receptor abundance, but it increased tonic current amplitude, an effect that was prevented by inhibiting PKA, but not PKC. Direct activation of PKA, but not PKC, increased the abundance and tonic current of extrasynaptic α4δ receptors. In contrast, prolonged ethanol exposure (4 hours) reduced α4δ receptor abundance as well as tonic current, and this effect was also PKA dependent. Finally, PKC activation by ethanol or phorbol-12,13-dibutyrate (PdBu) had no effect on extrasynaptic α4δ subunit abundance or activity. We conclude that ethanol alters extrasynaptic α4δ receptor function and expression in cortical neurons in a PKA-dependent manner, but ethanol activation of PKC does not influence these receptors. These results could have clinical relevance for therapeutic strategies to restore normal GABAergic functioning for the treatment of alcohol use disorders. PMID:26483396

  7. Acute Toxicity and Gastroprotection Studies of a New Schiff Base Derived Copper (II) Complex against Ethanol-Induced Acute Gastric Lesions in Rats

    PubMed Central

    Hassandarvish, Pouya; Gwaram, Nura Suleiman; A. Hadi, A. Hamid; Mohd Ali, Hapipah; Majid, Nazia; Abdulla, Mahmood Ameen

    2012-01-01

    Background Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II) complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats. Methodology/Principal Findings Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v). Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20). Groups 4–7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20), respectively. Tween 20 (10% v/v) was given orally to group 1 and absolute ethanol was given orally to groups 2–7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH), superoxide dismutase (SOD), nitric oxide (NO), and Prostaglandin E2 (PGE2) activities and a decrease in malondialdehyde (MDA) level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4–7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4–7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound. Conclusions/Significance The gastroprotective effect of the Copper (II) complex may possibly be due to preservation of gastric wall mucus; increase in PGE2 synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein. PMID:23251568

  8. [Hepatic encephalopathy].

    PubMed

    Jacques, Jrmie; Carrier, Paul; Debette-Gratien, Marilyne; Sobesky, Rodolphe; Loustaud-Ratti, Vronique

    2016-01-01

    Hepatic encephalopathy is a severe complication of liver cirrhosis and is an important therapeutic challenge, with a social and economic issue. If, now, the pathophysiology is not totally understood (main role of ammonia, but a better understanding of cerebral mechanisms), the clinical presentation is well-known. Some treatments are useful (disaccharides, treatment of the trigger) but their efficiency is limited. Nevertheless, the emergence of new treatments, such as non-absorbable antibiotics (rifaximin essentially), is an interesting therapeutic tool. PMID:26597584

  9. [Autoimmune hepatitis].

    PubMed

    Orts Costa, J A; Ziga Cabrera, A; Alarcn Torres, I

    2004-07-01

    Autoimmune hepatitis (AIH) is a hepatocellular inflammation that is characterised by a wide range of histopathologic (periportal interface hepatitis with plasma cell infiltration and piecemeal necrosis), biochemical (hypertransaminasemia, hypergammaglobulinaemia) and autoimmune (several autoantibodies presence) features. This relatively rare disorder frequently affects middle-aged women. There is no pathognomonic marker for AIH diagnosis, therefore it requires a careful rule out of other causes of liver disease together with the detection of a suggestive pattern of clinical and laboratory abnormalities. Scoring system for AIH diagnosis proposed by International Autoimmune Hepatitis Group has been used as a tool in clinical practice but is not sufficiently exclusive in terms of defining prognosis or treatment. AIH has been classified in two subtypes according to autoantibodies detected: 1 and 2, but this classification results in poor clinical implications. Previously known as subtype 3 is at the present included in subtype 1 because no clinical significant differences has been found between them. Aetiology, and molecular mechanisms still remain to be elucitaded in this disease, although viruses, drugs and molecular mimicry act presumably as a trigger in genetically predisposed patients (associated with HLA-DR3 and DR4 haplotypes). On the other hand, immunosuppressive therapy (corticosteroid or azathioprine) generally offers favourable response. Our aim is to review this disease from different points of view, considering: clinical, histopathological, etiologic, genetic, biochemical, autoimmune, treatment and prognosis features. PMID:15347241

  10. Hepatitis virus panel

    MedlinePLUS

    ... infection or you have received the hepatitis B vaccine and are unlikely to become infected Hepatitis B ... Pawlotsky J-M, Mchutchinson J. Chronic vialr and autoimmune hepatitis. In: Goldman L, Ausiello D, eds. Goldman's ...

  11. Hepatitis B virus (image)

    MedlinePLUS

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  12. Hepatitis C FAQs

    MedlinePLUS

    ... State and Local Partners & Grantees Resource Center Hepatitis C FAQs for the Public Recommend on Facebook Tweet ... URL - Redirecting ... Quick Links to Hepatitis ... A | B | C | D | E Viral Hepatitis Home Statistics & Surveillance Populations & ...

  13. Travelers' Health: Hepatitis A

    MedlinePLUS

    ... on Facebook Tweet Share Compartir Chapter 3 - Helminths, Soil-Transmitted Chapter 3 - Hepatitis B Hepatitis A Noele ... 20;2(6):227–30. Chapter 3 - Helminths, Soil-Transmitted Chapter 3 - Hepatitis B File Formats Help: ...

  14. Adenosine: Tipping the balance towards hepatic steatosis and fibrosis

    PubMed Central

    Robson, Simon C.; Schuppan, Detlef

    2010-01-01

    Fatty liver is commonly associated with alcohol ingestion and abuse. While the molecular pathogenesis of these fatty changes is well understood, the histochemical and pharmacological mechanisms by which ethanol stimulates these molecular changes remain unknown. During ethanol metabolism, adenosine is generated by the enzyme ecto-5?-nucleotidase, and adenosine production and adenosine receptor activation are known to play critical roles in the development of hepatic fibrosis. We therefore investigated whether adenosine and its receptors play a role in the development of alcohol-induced fatty liver. WT mice fed ethanol on the Lieber-DeCarli diet developed hepatic steatosis, including increased hepatic triglyceride content, while mice lacking ecto-5-nucleotidase or adenosine A1 or A2B receptors were protected from developing fatty liver. Similar protection was also seen in WT mice treated with either an adenosine A1 or A2B receptor antagonist. Steatotic livers demonstrated increased expression of genes involved in fatty acid synthesis, which was prevented by blockade of adenosine A1 receptors, and decreased expression of genes involved in fatty acid metabolism, which was prevented by blockade of adenosine A2B receptors. In vitro studies supported roles for adenosine A1 receptors in promoting fatty acid synthesis and for A2B receptors in decreasing fatty acid metabolism. These results indicate that adenosine generated by ethanol metabolism plays an important role in ethanol-induced hepatic steatosis via both A1 and A2B receptors and suggest that targeting adenosine receptors may be effective in the prevention of alcohol-induced fatty liver. PMID:20395005

  15. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    MedlinePLUS

    ... many NIDDK research projects related to hepatitis and liver disease: A recent study concluded that about half of patients with chronic hepatitis C recovered after receiving initial treatments from ...

  16. Involvement of autophagy in alcoholic liver injury and hepatitis C pathogenesis

    PubMed Central

    Osna, Natalia A; Thomes, Paul G; Jr, Terrence M Donohue

    2011-01-01

    This review describes the principal pathways of macroautophagy (i.e. autophagy), microautophagy and chaperone-mediated autophagy as they are currently known to occur in mammalian cells. Because of its crucial role as an accessory digestive organ, the liver has a particularly robust autophagic activity that is sensitive to changes in plasma and dietary components. Ethanol consumption causes major changes in hepatic protein and lipid metabolism and both are regulated by autophagy, which is significantly affected by hepatic ethanol metabolism. Ethanol exposure enhances autophagosome formation in liver cells, but suppresses lysosome function. Excessive ethanol consumption synergizes with hepatitis C virus (HCV) to exacerbate liver injury, as alcohol-consuming HCV patients frequently have a longer course of infection and more severe manifestations of chronic hepatitis than abstinent HCV patients. Alcohol-elicited exacerbation of HCV infection pathogenesis is related to modulation by ethanol metabolism of HCV replication. Additionally, as part of this mechanism, autophagic proteins have been shown to regulate viral (HCV) replication and their intracellular accumulation. Because ethanol induces autophagosome expression, enhanced levels of autophagic proteins may enhance HCV infectivity in liver cells of alcoholics and heavy drinkers. PMID:21633655

  17. Hepatitis A.

    PubMed

    Brundage, Stephanie C; Fitzpatrick, A Nicole

    2006-06-15

    The introduction of hepatitis A vaccines in 1995 led to a drop in the number of reported cases of hepatitis A and a shift to a higher percentage of cases occurring in older age groups. The hepatitis A virus survives for extended periods in the environment. Transmission primarily is fecal-oral, although there have been rare instances of transmission through blood products. The virus appears sporadically and is spread by close personal contact, with occasional food-borne outbreaks. Older persons infected by the virus usually develop a symptomatic infection with abrupt onset, fever, and jaundice lasting two months. Children usually have an asymptomatic infection and rarely develop jaundice. Laboratory diagnosis is made by detection of antihepatitis A virus immunoglobulin M in serum. Ten to 20 percent of symptomatic patients experience a prolonged or relapsing course of illness, but chronic infection has not been reported. Fulminant infection occurs in less than 1 percent of patients and can result in emergent liver transplant or death. Prevention starts with thorough handwashing and careful food handling. Prompt disease reporting, the identification of exposed persons, and expeditious administration of immune globulin prevent secondary transmission of the disease. Physicians should consider routine vaccination of children 12 to 23 months of age based on recommendations from the Centers for Disease Control and Prevention. Vaccination for children two years or older and adults should be included in routine preventive care for those at increased risk of contracting the disease (e.g., travelers to certain countries, men who have sex with men, drug abusers, recipients of clotting factor replacement) and for persons with chronic liver disease. PMID:16848078

  18. [Novel treatments for hepatitis C viral infection and the hepatic fibrosis].

    PubMed

    Lugo-Baruqui, Alejandro; Bautista López, Carlos Alfredo; Armendáriz-Borunda, Juan

    2009-02-01

    Hepatitis C virus (HCV) infection represents a global health problem due to its evolution to hepatic cirrhosis and hepatocellular carcinoma. The viral pathogenesis and infectious processes are not yet fully understood. The development of natural viral resistance towards the host immune system represents a mayor challenge for the design of alternative therapeutic interventions and development of viral vaccines. The molecular mechanisms of hepatic fibrosis are well described. New alternatives for the treatment of patients with HCV infection and hepatic cirrhosis are under intensive research. New drugs such as viral protease inhibitors and assembly inhibitors, as well as immune modulators have been studied in clinical trials. Additional alternatives include antifibrotic drugs, which reverse the hepatic cellular damage caused by HCV infection. This review makes reference to viral infective mechanisms, molecular pathways of liver fibrosis and overviews conventional and new treatments for HCV infection and liver fibrosis. PMID:19543653

  19. Curcumin attenuates chronic ethanol-induced liver injury by inhibition of oxidative stress via mitogen-activated protein kinase/nuclear factor E2-related factor 2 pathway in mice

    PubMed Central

    Xiong, Zhang E; Dong, Wei Guo; Wang, Bao Ying; Tong, Qiao Yun; Li, Zhong Yan

    2015-01-01

    Objective: This study aimed to investigate the protective effect of curcumin on chronic ethanol-induced liver injury in mice and to explore its underlying mechanisms. Materials and Methods: Ethanol-exposed Balb/c mice were simultaneously treated with curcumin for 6 weeks. Liver injury was evaluated by biochemical and histopathological examination. Lipid peroxidation and anti-oxidant activities were measured by spectrophotometric method. Anti-oxidative genes expression such as NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD) were determined by real-time polymerase chain reaction. The nuclear factor E2-related factor 2 (Nrf2) and the phosphorylation states of specific proteins central to intracellular signaling cascades were measured by western blotting. Results: Curcumin treatment protected liver from chronic ethanol-induced injury through reducing serum alanine aminotransferase and aspartate aminotransferase activities, improving liver histological architecture, and reversing lipid disorders indicated by decrease of triglyceride, total cholesterol and low-density lipoprotein-cholesterol levels and increase of High-density lipoprotein-cholesterol levels. Meanwhile, curcumin administration attenuated oxidative stress via up-regulating SOD and glutathione peroxidase activities, leading to a reduction of lipid hydroperoxide production. In addition, curcumin increased Nrf2 activation and anti-oxidative genes expressions such as NQO1, HO-1, and SOD through inducing extracellular signal-regulated kinase (ERK) and p38 phosphorylation. Conclusion: Our data suggested that curcumin protected the liver from chronic-ethanol induced injury through attenuating oxidative stress, at least partially, through ERK/p38/Nrf2-mediated anti-oxidant signaling pathways. PMID:26600714

  20. Hepatitis A and HIV

    MedlinePLUS

    ... Hepatitis B and Hepatitis C . Hepatitis A and HIV Hepatitis A is preventable with a vaccine, and ... aids.gov • locator.aids.gov • facing.aids.gov • HIV/AIDS Service Locator Locator Widgets • Instructions • API Find ...

  1. Role of mouse cerebellar nicotinic acetylcholine receptor (nAChR) ?(4)?(2)- and ?(7) subtypes in the behavioral cross-tolerance between nicotine and ethanol-induced ataxia.

    PubMed

    Taslim, Najla; Soderstrom, Ken; Dar, M Saeed

    2011-03-01

    We have demonstrated that nicotine attenuated ethanol-induced ataxia via nicotinic-acetylcholine-receptor (nAChR) subtypes ?(4)?(2) and ?(7). In the present study, ethanol (2g/kg; i.p.)-induced ataxia was assessed by Rotorod performance following repeated intracerebellar infusion of ?(4)?(2)- and ?(7)-selective agonists. Localization of ?(4)?(2) and ?(7) nAChRs was confirmed immunohistochemically. Cerebellar NO(x) (nitrite+nitrate) was determined flurometrically. Repeated intracerebellar microinfusion of the ?(4)?(2)-selective agonist, RJR-2403 (for 1, 2, 3, 5 or 7 days) or the ?(7)-selective agonist, PNU-282987 (1, 2, 3 or 5 days), dose-dependently attenuated ethanol-induced ataxia. These results suggest the development of cross-tolerance between ethanol-induced ataxia and ?(4)?(2) and ?(7) nAChR agonists. With RJR-2403, the cross-tolerance was maximal after a 5-day treatment and lasted 48h. Cross-tolerance was maximal after a 1-day treatment with PNU-282987 and lasted 72h. Pretreatment with ?(4)?(2)- and ?(7)-selective antagonists, dihydro-?-erythroidine and methyllycaconitine, respectively, prevented the development of cross-tolerance confirming ?(4)?(2) and ?(7) involvement. Repeated agonist infusions elevated cerebellar NO(x) 16h after the last treatment while acute ethanol exposure decreased it. Pretreatment with repeated RJR-2403 or PNU-282987 reversed ethanol-induced decrease in NOx. The NO(x) data suggests the involvement of the nitric oxide (NO)-cGMP signaling pathway in the cross-tolerance that develops between ?(4)?(2)- and ?(7)-selective agonists and ethanol ataxia. Both ?(4)?(2) and ?(7) subtypes exhibited high immunoreactivity in Purkinje but sparse expression in molecular and granular cell layers. Our results support a role for ?(4)?(2) and ?(7) nAChR subtypes in the development of cross-tolerance between nicotine and ethanol with the NO signaling pathway as a potential mechanism. PMID:20974182

  2. The influence of the new enkephalin derivative, cyclo[N(?),N(?)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), on reinstatement of ethanol-induced conditioned place preference in rats.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Witkowska, Ewa; Izdebski, Jan; Kotlinska, Jolanta H

    2015-06-01

    The aim of the present study was to determine whether a new cyclic analog of enkephalin, cyclo[N(?),N(?)-carbonyl-d-Lys(2),Dap(5)] enkephalinamide (cUENK6), a preferential ?-(MORs), and, to a lower extent, a ?-opioid receptor (DORs) agonist in vitro, could reinstate ethanol-induced conditioned place preference (CPP). In our work, male Wistar rats were first conditioned either with ethanol (10% w/v, 0.5g/kg, intraperitoneally (i.p.)) or 0.9% NaCl in a biased CPP procedure. The intracerebroventricular (i.c.v.) administration of DORs antagonist (naltrindole, 2.5 and 5nmol) or MORs antagonist (?-funaltrexamine, 5 and 10nmol), but not the ? opioid receptor (KORs) antagonist (norbinaltorphimine, 5 and 10nmol) was then administered and inhibited the expression of ethanol-induced CPP. After the extinction session, i.c.v. administration of cUENK6 at the dose of 0.125, 0.25 and 0.5nmol occurred, and was found to reinstate the ethanol-induced CPP similar to that of the priming injection of ethanol. However, the reinstated effect of cUENK6 (0.25nmol) was strongly abolished by administration of naltrindole and, to lesser extent, by ?-funaltrexamine. Furthermore, the preferential MORs agonist-morphine (13nmol, i.c.v.) and the DORs agonist-[Leu(5)]-enkephalin (2.7 and 5.4nmol, i.c.v.) also reinstated the ethanol-induced CPP. cUENK6 given alone at the dose of 0.25nmol before the testing phase had no effect in animals that received 0.9% NaCl during the conditioning phase and also did not influence their locomotor activity. These data suggest that the effects of cUENK6 did not have an impact on the results obtained in the reinstatement procedure of CPP. Overall, the data support the idea that both MORs and DORs are normally involved in the expression and reinstatement of ethanol conditioned seeking behavior - as indexed by CPP in rats. PMID:25817357

  3. Management of hepatic vascular diseases.

    PubMed

    Plessier, Aurlie; Rautou, Pierre-Emmanuel; Valla, Dominique-Charles

    2012-01-01

    Primary damage to hepatic vessels is rare. (i) Hepatic arterial disorders, related mostly to iatrogenic injury and occasionally to systemic diseases, lead to ischemic cholangiopathy. (ii) Hepatic vein or inferior vena cava thrombosis, causing primary Budd-Chiari syndrome, is related typically to a combination of underlying prothrombotic conditions, particularly myeloproliferative neoplasms, factor V Leiden, and oral contraceptive use. The outcome of Budd-Chiari syndrome has markedly improved with anticoagulation therapy and, when needed, angioplasty, stenting, TIPS, or liver transplantation. (iii) Extrahepatic portal vein thrombosis is related to local causes (advanced cirrhosis, surgery, malignant or inflammatory conditions), or general prothrombotic conditions (mostly myeloproliferative neoplasms or factor II gene mutation), often in combination. Anticoagulation at the early stage prevents thrombus extension and, in 40% of the cases, allows for recanalization. At the late stage, gastrointestinal bleeding related to portal hypertension can be prevented in the same way as in cirrhosis. (iv) Sinusoidal obstruction syndrome (or venoocclusive disease), caused by agents toxic to bone marrow progenitors and to sinusoidal endothelial cells, induces portal hypertension and liver dysfunction. Decreasing the intensity of myeloablative regimens reduces the incidence of sinusoidal toxicity. (v) Obstruction of intrahepatic portal veins (obliterative portal venopathy) can be associated with autoimmune diseases, prothrombotic conditions, or HIV infection. The disease can eventually be complicated with end-stage liver disease. Extrahepatic portal vein obstruction is common. Anticoagulation should be considered. (vi) Nodular regenerative hyperplasia is induced by the uneven perfusion due to obstructed sinusoids, or portal or hepatic venules. It causes pure portal hypertension. PMID:22300463

  4. Hepatic osmoreceptors?

    PubMed Central

    Glasby, M. A.; Ramsay, D. J.

    1974-01-01

    1. The effects of 0·45% saline infusions into the portal vein of conscious and anaesthetized dogs have been compared with similar infusions through a systemic vein. 2. Measurements were made of plasma and urinary osmolality, sodium, potassium and chloride concentrations and urine flows; osmolal clearances, free water clearances, the percentage of the infused loads excreted at given times, and rates of sodium and potassium excretion in the urine, were calculated. 3. In the conscious and anaesthetized series of experiments no significant differences were found between the portal and systemic routes of infusion. 4. For both the portal and systemic routes of infusion there was a significantly smaller diuretic response to the saline infusion in anaesthetized as compared with conscious animals. 5. These results do not support the concept of hepatic osmoreceptors occurring in the dog. PMID:4449080

  5. Protective and therapeutic effects of an extract mixture of alder tree, labiate herb, milk thistle green bean-rice bran fermentation, and turnip against ethanol-induced toxicity in the rat.

    PubMed

    Baek, Min-Won; Seok, Seung-Hyeok; Lee, Hui-Young; Kim, Dong Jae; Lee, Byoung-Hee; Ahn, Young-Tae; Lim, Kwang-Sei; Huh, Chul-Sung; Park, Jae-Hak

    2008-03-01

    An herbal extract mixture and yogurt added to the herbal extract mixture were tested for their protective and therapeutic effects on ethanol-induced liver injury. The herbal extract mixture, yogurt and commercial drugs were used for treatment for two weeks prior to administering a single oral dose of ethanol (3 g/kg body weight). The herbal extract mixture and yogurt added to the herbal extract mixture were found to provide protection against ethanol-induced toxicity comparable to the commercial drug treatment, according to the serum and histopathological analysis. It was also shown that co-treatment with herbal extract mixture and yogurt against a triple oral dose of ethanol (2 g/kg body weight, over one week) provided protection against ethanol toxicity. After the initial set of experiments, the herbal extract mixture and yogurt treatments were extended for three more weeks. When compared to the positive control, further treatment with both the herbal extract and yogurt significantly reduced liver injury and resulted in a lower grade of lipid deposition. PMID:18296886

  6. Protective and therapeutic effects of an extract mixture of alder tree, labiate herb, milk thistle green bean-rice bran fermentation, and turnip against ethanol-induced toxicity in the rat

    PubMed Central

    Baek, Min-Won; Seok, Seung-Hyeok; Lee, Hui-Young; Kim, Dong Jae; Lee, Byoung-Hee; Ahn, Young-Tae; Lim, Kwang-Sei; Huh, Chul-Sung

    2008-01-01

    An herbal extract mixture and yogurt added to the herbal extract mixture were tested for their protective and therapeutic effects on ethanol-induced liver injury. The herbal extract mixture, yogurt and commercial drugs were used for treatment for two weeks prior to administering a single oral dose of ethanol (3 g/kg body weight). The herbal extract mixture and yogurt added to the herbal extract mixture were found to provide protection against ethanol-induced toxicity comparable to the commercial drug treatment, according to the serum and histopathological analysis. It was also shown that co-treatment with herbal extract mixture and yogurt against a triple oral dose of ethanol (2 g/kg body weight, over one week) provided protection against ethanol toxicity. After the initial set of experiments, the herbal extract mixture and yogurt treatments were extended for three more weeks. When compared to the positive control, further treatment with both the herbal extract and yogurt significantly reduced liver injury and resulted in a lower grade of lipid deposition. PMID:18296886

  7. [Extra-hepatic manifestations of viral hepatitis].

    PubMed

    Causse, X; Germanaud, J; Legoux, A; Legoux, J L

    1995-01-15

    A variety of prodromal symptoms of viral hepatitis (urticaria, fever, arthralgias, headache, polyradiculonevritis) are attributed to A, B, C, D or E hepatitis only when jaundice appears, and because they disappear with it. Spectacular extrahepatic symptoms (polyarteritis nodosa, cryoglobulinemia, glomerulonephritis, marrow aplasia...) may be associated with B or C hepatitis without any liver symptom. Some of the extrahepatic symptoms observed during chronic hepatitis C therapy with interferon (thyroid dysfunctions, cutaneo-mucous lichen) may be related to the immunomodulatory effects of interferon rather than to virus C itself. PMID:7725020

  8. [Viral hepatitis in travellers].

    PubMed

    Abreu, Cndida

    2007-01-01

    Considering the geographical asymmetric distribution of viral hepatitis A, B and E, having a much higher prevalence in the less developed world, travellers from developed countries are exposed to a considerable and often underestimated risk of hepatitis infection. In fact a significant percentage of viral hepatitis occurring in developed countries is travel related. This results from globalization and increased mobility from tourism, international work, humanitarian and religious missions or other travel related activities. Several studies published in Europe and North America shown that more than 50% of reported cases of hepatitis A are travel related. On the other hand frequent outbreaks of hepatitis A and E in specific geographic areas raise the risk of infection in these restricted zones and that should be clearly identified. Selected aspects related with the distribution of hepatitis A, B and E are reviewed, particularly the situation in Portugal according to the published studies, as well as relevant clinical manifestations and differential diagnosis of viral hepatitis. Basic prevention rules considering enteric transmitted hepatitis (hepatitis A and hepatitis E) and parenteral transmitted (hepatitis B) are reviewed as well as hepatitis A and B immunoprophylaxis. Common clinical situations and daily practice "pre travel" advice issues are discussed according to WHO/CDC recommendations and the Portuguese National Vaccination Program. Implications from near future availability of a hepatitis E vaccine, a currently in phase 2 trial, are highlighted. Potential indications for travellers to endemic countries like India, Nepal and some regions of China, where up to 30% of sporadic cases of acute viral hepatitis are caused by hepatitis E virus, are considered. Continued epidemiological surveillance for viral hepatitis is essential to recognize and control possible outbreaks, but also to identify new viral hepatitis agents that may emerge as important global health issues. PMID:18331700

  9. Hepatic abscesses

    PubMed Central

    Rajagopalan, S.; Langer, V.

    2012-01-01

    Hepatic abscesses are potentially lethal diseases if early diagnosis and treatment are not instituted. They are prevalent all over the globe and pyogenic abscesses are predominant over amoebic. With better control of intra abdominal and systemic infections by a spectrum of antibiotics, aetiology of pyogenic abscesses are secondary to interventions and diseases in the biliary tree to a large extent today. The common organisms isolated are the Gram negative group. Amoebic abscesses continue to plague some regions of the world where hygiene and sanitation are questionable. Over the years, diagnosis, treatment and prognosis have evolved remarkably. Imaging modalities like ultrasonography and CT scan have become the cornerstone of diagnosis. The absence of ionizing radiation makes MRI an attractive alternative in patients who require multiple follow up scans. Serological testing in amoebic abscesses has become more reliable. Though antibiotics have remained the principal modality of management, percutaneous drainage of abscesses have vastly improved the chances of cure and bring down the morbidity drastically in pyogenic abscesses. Amoebic abscesses respond well to medical treatment with nitroimidazoles, and minimally invasive surgical drainage is an option in cases where open surgery is indicated. PMID:24532886

  10. Experimental Viral Hepatitis in the Dog: Production of Persistent Disease in Partially Immune Animals*

    PubMed Central

    Gocke, D. J.; Presig, R.; Morris, T. Q.; McKay, D. G.; Bradley, S. E.

    1967-01-01

    Experimental infection with canine hepatitis virus has been studied in a series of 49 dogs. The pattern of response to infection was distinctly modified by the immune status of the animal. All of 19 fully susceptible dogs had an acute, fulminating fatal hepatitis when infected with a standard dose of virus, and all of 19 dogs with high levels of immunity to the virus survived without apparent illness. However, 11 dogs were spontaneously encountered with partial immunity to the infectious agent, and these animals developed different, prolonged forms of hepatitis following infection. In four animals death occurred in 8-21 days following what may be called a subacute course. The remaining seven dogs survived up to 8 months with evidence of chronic hepatic damage. The subacute and chronic forms of hepatitis were reproduced experimentally in seven of eight fully susceptible dogs which were passively immunized against the canine hepatitis virus by administration of hyperimmune serum. Although the virus could be found in sites of hepatic damage in the early stages of the subacute and chronic diseases, it could not be demonstrated in the later stages which were characterized by persistent hepatic damage and a marked chronic inflammatory reaction. Dogs with chronic hepatitis eventually developed extensive hepatic fibrosis. The pathologic, physiologic, virologic, and immunologic features of these experimental forms of viral hepatitis are described. Images PMID:4292093

  11. Hepatitis C (image)

    MedlinePLUS

    Hepatitis C is a virus-caused liver inflammation which may cause jaundice, fever and cirrhosis. Persons who are most at risk for contracting and spreading hepatitis C are those who share needles for injecting drugs ...

  12. Hepatitis B Test

    MedlinePLUS

    ... IgM; anti-HBe; Hepatitis B e Antibody; HBV DNA Formal name: Hepatitis B Virus Testing Related tests: ... produced by the virus, and others detect viral DNA . The main uses for HBV tests include: To ...

  13. [Hepatic artery pseudoaneurysm following blunt abdominal injury].

    PubMed

    Kargl, S; Breitwieser, J; Gitter, R; Pumberger, W

    2012-12-01

    Posttraumatic hepatic artery pseudoaneurysms are a rare but life-threatening complication of blunt abdominal trauma with liver damage. We report the case of a child who developed a pseudoaneurysm of the right hepatic artery after a bicycle accident with central liver rupture. After an episode of hemodynamically relevant hemobilia due to delayed bleeding, the asymptomatic pseudoaneurysm was diagnosed coincidentally by ultrasound. Because of the progression in size angiographic coiling was performed and led to thrombotic occlusion of the pseudoaneurysm. After a symptom-free period of 1 month the child required surgery because of acute cholecystitis. PMID:22699314

  14. Hepatitis B (HBV)

    MedlinePLUS

    ... How Can I Help a Friend Who Cuts? Hepatitis B (HBV) KidsHealth > For Teens > Hepatitis B (HBV) Print A A A Text Size ... Prevented? How Is It Treated? What Is It? Hepatitis (pronounced: hep-uh-TIE-tiss) is a disease ...

  15. Hepatitis B and HIV

    MedlinePLUS

    ... Hepatitis A and Hepatitis C . Hepatitis B and HIV About 10% of people living with HIV in ... aids.gov • locator.aids.gov • facing.aids.gov • HIV/AIDS Service Locator Locator Widgets • Instructions • API Find ...

  16. Hepatitis C and HIV

    MedlinePLUS

    ... Hepatitis A and Hepatitis B . Hepatitis C AND HIV About 25% of people living with HIV in ... aids.gov • locator.aids.gov • facing.aids.gov • HIV/AIDS Service Locator Locator Widgets • Instructions • API Find ...

  17. Pathogenesis of Hepatic Encephalopathy

    PubMed Central

    Cie?ko-Michalska, Irena; Szczepanek, Ma?gorzata; S?owik, Agnieszka; Mach, Tomasz

    2012-01-01

    Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO) on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy. PMID:23316223

  18. Hepatitis B in pregnancy.

    PubMed

    Gambarin-Gelwan, Maya

    2007-11-01

    In countries with a high prevalence of chronic hepatitis B, perinatal transmission from mother to infant accounts for the majority of cases of chronic hepatitis B. Passive-active immunoprophylaxis with hepatitis B immunoglobulin and hepatitis B vaccine at birth is 95% efficacious in reducing the risk of HBV transmission but is less effective in HBeAg-positive mothers with very high serum HBV DNA levels. In the last 4 weeks of pregnancy lamivudine may provide additional protection in pregnant women who have high-level viremia. Further studies are needed to evaluate the use of nucleos(t)ide analogues to treat chronic hepatitis B during pregnancy. PMID:17981236

  19. Alcohol and Viral Hepatitis

    PubMed Central

    Dolganiuc, Angela

    2015-01-01

    Both alcohol abuse and infection with hepatitis viruses can lead to liver disease, including chronic hepatitis. Alcohol and hepatitis viruses have synergistic effects in the development of liver disease. Some of these involve the cellular membranes and particularly their functionally active domains, termed lipid rafts, which contain many proteins with essential roles in signaling and other processes. These lipid rafts play a central role in the lifecycles of hepatitis viruses. Alcohol’s actions at the lipid rafts may contribute to the synergistic harmful effects of alcohol and hepatitis viruses on the liver and the pathogenesis of liver disease. PMID:26695752

  20. Gastroprotective effect of desmosdumotin C isolated from Mitrella kentii against ethanol-induced gastric mucosal hemorrhage in rats: possible involvement of glutathione, heat-shock protein-70, sulfhydryl compounds, nitric oxide, and anti-Helicobacter pylori activity

    PubMed Central

    2013-01-01

    Background Mitrella kentii (M. kentii) (Bl.) Miq, is a tree-climbing liana that belongs to the family Annonaceae. The plant is rich with isoquinoline alkaloids, terpenylated dihydrochalcones and benzoic acids and has been reported to possess anti-inflammatory activity. The purpose of this study is to assess the gastroprotective effects of desmosdumotin C (DES), a new isolated bioactive compound from M. kentii, on gastric ulcer models in rats. Methods DES was isolated from the bark of M. kentii. Experimental rats were orally pretreated with 5, 10 and 20mg/kg of the isolated compound and were subsequently subjected to absolute ethanol-induced acute gastric ulcer. Gross evaluation, mucus content, gastric acidity and histological gastric lesions were assessed in vivo. The effects of DES on the anti-oxidant system, non-protein sulfhydryl (NP-SH) content, nitric oxide (NO)level, cyclooxygenase-2 (COX-2) enzyme activity, bcl-2-associated X (Bax) protein expression and Helicabacter pylori (H pylori) were also investigated. Results DES pre-treatment at the administered doses significantly attenuated ethanol-induced gastric ulcer; this was observed by decreased gastric ulcer area, reduced or absence of edema and leucocytes infiltration compared to the ulcer control group. It was found that DES maintained glutathione (GSH) level, decreased malondialdehyde (MDA) level, increased NP-SH content and NO level and inhibited COX-2 activity. The compound up regulated heat shock protein-70 (HSP-70) and down regulated Bax protein expression in the ulcerated tissue. DES showed interesting anti-H pylori effects. The efficacy of DES was accomplished safely without any signs of toxicity. Conclusions The current study reveals that DES demonstrated gastroprotective effects which could be attributed to its antioxidant effect, activation of HSP-70 protein, intervention with COX-2 inflammatory pathway and potent anti H pylori effect. PMID:23866830

  1. Coculturing embryonic stem cells with damaged hepatocytes leads to restoration of damage and high frequency of fusion.

    PubMed

    Xu, D; Wang, F; Pan, Z; Guo, Q

    2009-01-01

    Controversy surrounds issue of cell fusion as a repair mechanism whereby stem cells regenerate. To identify the ratio of fusion happens between stem cells and damaged cells, hepatic cells were damaged with 200microM H2O2 for 2 hr. Then, mouse ESCs were cocultured with damaged human hepatocytes. Fusion was detected directly by karyotyping after 48hr coculture as well as by Oct4 promoter drove GFP signal. Results showed that average ratio of fusion in undamaged control group was 0.031 per thousand while ratio of fusion in damaged group was 0.357 per thousand, which was 10 times higher than fusion happened in the control group. Meanwhile, GFP signal indicated that fusion induced hepatic cells' Oct-4 reactivation. Fusion derived hybrid cells contained chromosomes from both parental cells. Most of the chromosomes were from damaged human hepatic cells. Activity of damage-related enzymes LDH, SGOT and SGPT were significantly lower at 48hr coculture than at 12hr coculture. Expression of albumin in co-culture system was up-regulated after coculture, which indicated the reparation of damage after coculturing. Also, by applying RT-PCR and immunocytochemistry differentiation status of ES cells were evaluated. It was shown that ES cells differentiated to hepatic lineage cells and expressed hepatic genes and proteins. PMID:20003813

  2. Immune-mediated Liver Injury in Hepatitis B Virus Infection

    PubMed Central

    Oh, In Soo

    2015-01-01

    Hepatitis B virus (HBV) is responsible for approximately 350 million chronic infections worldwide and is a leading cause of broad-spectrum liver diseases such as hepatitis, cirrhosis and liver cancer. Although it has been well established that adaptive immunity plays a critical role in viral clearance, the pathogenetic mechanisms that cause liver damage during acute and chronic HBV infection remain largely known. This review describes our current knowledge of the immune-mediated pathogenesis of HBV infection and the role of immune cells in the liver injury during hepatitis B. PMID:26330805

  3. Increased activity of the complement system in the liver of patients with alcoholic hepatitis.

    PubMed

    Shen, Hong; French, Barbara A; Liu, Hui; Tillman, Brittany C; French, Samuel W

    2014-12-01

    Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH. PMID:25217811

  4. Feature Hepatitis: Hepatitis Can Strike Anyone

    MedlinePLUS

    ... please turn Javascript on. From Hollywood's "Walk of Stars" to Main Street, USA, people from all walks ... that includes many well-known names: Legendary television star Larry Hagman was diagnosed with advanced hepatitis C ...

  5. Bitter correlationship between autoimmune hepatitis and smoking.

    PubMed

    Bose, Tanima

    2015-02-01

    Cigarette smoke contains numerous toxic, carcinogenic and mutagenic chemicals, stable and unstable free radicals and reactive oxygen species (ROS) which cause biological oxidative damage. Continuous exposure to those chemicals leads to immense amount of damage to the human health either directly or indirectly. A hypothesis is advanced here that a possible explanation for developing autoimmune hepatitis (AIH) is due to regular smoking for long years of time. To examine this hypothesis, I relied on an experience of a case of a patient, as well as critical reading of the literature on smoking and different autoimmune disorders. Among the autoimmune diseases, rheumatoid arthritis (RA), multiple sclerosis (MS), thyroid disease, primary biliary cirrhosis (PBC) are reported mostly among tobacco-exposed animals. The observational and theoretical knowledge strengthen the hypothesis that smoking can be one of the causes of generating autoimmune hepatitis. This hypothesis could lead to a new diagnostic category, as well as therapeutic approaches for changing the regular smoking behavior. PMID:25543266

  6. A copper-complex reduced gastric damage caused by acetylsalicylic acid and ethanol.

    PubMed

    Franco, L; Velo, G P

    1996-05-01

    We investigated the effect of oral administration of CuNSN, a bis(2-benzimidazolyl) thioether (see structure 1) on gastric lesions induced in rats by acetylsalicylic acid (ASA) or ethanol. The involvement of endogenous eicosanoids and nitric oxide in protection by CuNSN was evaluated with indomethacin and NG-nitro-L-arginine (L-NNA), inhibitors of prostaglandin and NO synthesis respectively. L-arginine and its enantiomer D-arginine were also used. Pretreatment with graded doses of CuNSN inhibited ASA- and ethanol-induced mucosal injury. CuNSN increased PGE2 output in rat ex vivo gastric mucosal pieces after administration of 100 mg/kg of ASA. Pretreatment with indomethacin only partially counteracted the protective activity of CuNSN against ethanol-induced damage. L-NNA did not attenuate the protection by CuNSN, which was reduced but not prevented by indomethacin, suggesting that prostanoids contribute to the CuNSN protective effect, together with some mechanism(s) other than NO synthesis. PMID:8792443

  7. Diabetes and Hepatitis B Vaccination

    MedlinePLUS

    ... Hepatitis B can be spread through sharing needles, syringes, or other injection equipment. In addition, the hepatitis ... devices or other diabetes-care equipment such as syringes or insulin pens. How infectious is the hepatitis ...

  8. Hepatitis B: Information for Parents

    MedlinePLUS

    ... PARENT S | DISEASES and the VACCINES THAT PREVENT THEM | Hepatitis B and the Vaccine (Shot) to Prevent It Last ... February 2014 The best way to protect against hepatitis B is by getting the hepatitis B vaccine. Doctors ...

  9. [Treatment for hepatic osteodystrophy].

    PubMed

    Kaji, Hiroshi

    2015-11-01

    Chronic liver diseases, including liver cirrhosis, are caused by various pathogenesis, such as viral hepatitis, primary biliary cirrhosis, autoimmune hepatitis and steatohepatitis. There have not been enough clinical evidence about the treatment of hepatic osteodystrophy at the present time. Several reports suggested that bisphosphonates, such as alendronate, are effective for an increase in bone mineral density in patients with chronic liver disease. Vitamin D treatment might be useful for the frequent prevalence of vitamin D deficiency in the pathogenesis of hepatic oseodystrophy. The use of estrogens will be limited for the risk of liver dysfunction and hepatocellular carcinoma. PMID:26503875

  10. Hepatitis C: Information on Testing and Diagnosis

    MedlinePLUS

    HEPATITIS C Information on Testing & Diagnosis What is Hepatitis C? Hepatitis C is a serious liver disease that results from infection with the Hepatitis C virus. Hepatitis C has been called a silent ...

  11. Hepatic manifestations of celiac disease

    PubMed Central

    Freeman, Hugh James

    2010-01-01

    Different hepatic and biliary tract disorders may occur with celiac disease. Some have been hypothesized to share genetic or immunopathogenetic factors, such as primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. Other hepatic changes in celiac disease may occur with malnutrition resulting from impaired nutrient absorption, including hepatic steatosis. In addition, celiac disease may be associated with rare hepatic complications, such as hepatic T-cell lymphoma. PMID:21694844

  12. [Hepatic artery embolization for primary hepatic carcinoma].

    PubMed

    Ye, W J

    1989-03-01

    Twenty patients with primary hepatic carcinoma (PHC) treated by hepatic arterial embolization in our department from Dec. 1986 to Mar. 1987 are reported. There were 15 males and 5 females. The ages ranged from 34 to 75 years with an average of 50.7. Preoperative diagnosis and localization of the tumor were done by AFP, B-us, CT and angiography (right lobe 15 cases, left lobe 1 case, both lobes 4 cases). Celiac and superior mesenteric angiography was carried out by femoral artery approach and then highly selective hepatic catheterization was utilized for hepatic arterial embolization. Antitumor agent (5-Fu, adriamycin), iophendylate and foamy gel sponge were used for peripheral and proximal embolization. Manifestations were improved in most of the patients after embolization, such as relief of abdominal pain, improvement of appetite, decrease of tumor size. Total necrosis of the tumor was found in 2 patients who underwent surgery 1 month after embolization. The side effects of the posthepatic embolization such as, nausea, vomiting, abdominal pain and fever could be relieved by symptomatic treatment. No severe complications, such as gangrene of the gall bladder, hepatic failure, liver abscess, intestinal necrosis or pulmonary embolization were found except 3 patients who died of renal failure after the procedure. The liver dys-function returned to normal within 2 weeks. Hepatic arterial embolization provides an alternative treatment for the patients with PHC who has compensated liver function without severe systemic diseases, especially renal endocrine problems and severe portal hypertension. They should have patent portal system as proved by angiography. The authors considered that this therapeutic embolization with hepatic chemotherapy infusion is safe and effective in the management of PHC. It may increase the resectability and provide palliative means for the advanced and terminal cases. PMID:2553366

  13. Non-primate hepacivirus infection with apparent hepatitis in a horse - Short communication.

    PubMed

    Reuter, Gbor; Maza, Norbert; Pankovics, Pter; Boros, Akos

    2014-09-01

    Non-primate hepacivirus (NPHV) is a recently identified hepacivirus (family Flaviviridae) in dog and horse; however, the disease associations remain unknown. This study reports the detection of natural NPHV infection in a horse with apparent hepatitis, liver damage and high-level viraemia. NPHV could be hepatotropic and associated with hepatitis in horses. PMID:25038950

  14. Erythropoietic and hepatic porphyrias.

    PubMed

    Gross, U; Hoffmann, G F; Doss, M O

    2000-11-01

    Porphyrias are divided into erythropoietic and hepatic manifestations. Erythropoietic porphyrias are characterized by cutaneous symptoms and appear in early childhood. Erythropoietic protoporphyria is complicated by cholestatic liver cirrhosis and progressive hepatic failure in 10%, of patients. Acute hepatic porphyrias (delta-aminolaevulinic acid dehydratase deficiency porphyria, acute intermittent porphyria, hereditary coproporphyria and variegate porphyria) are characterized by variable extrahepatic gastrointestinal, neurological-psychiatric and cardiovascular manifestations requiring early diagnosis to avoid life-threatening complications. Acute hepatic porphyrias are pharmacogenetic and molecular regulatory diseases (without porphyrin accumulation) mainly induced by drugs, sex hormones, fasting or alcohol. The disease process depends on the derepression of hepatic delta-aminolaevulinic acid synthase following haem depletion. In contrast to the acute porphyrias, nonacute, chronic hepatic porphyrias such as porphyria cutanea tarda are porphyrin accumulation disorders leading to cutaneous symptoms associated with liver disease, especially caused by alcohol or viral hepatitis. Alcohol, oestrogens, haemodialysis, hepatitis C and AIDS are triggering factors. Porphyria cutanea tarda is the most common porphyria, followed by acute intermittent porphyria and erythropoietic protoporphyria. The molecular genetics of the porphyrias is very heterogenous. Nearly every family has its own mutation. The mutations identified account for the corresponding enzymatic deficiencies, which may remain clinically silent throughout life. Thus, the recognition of the overt disorder with extrahepatic manifestations depends on the demonstration of biochemical abnormalities due to these primary defects and compensatory hepatic overexpression of hepatic delta-aminolaevulinic acid synthase in the acute porphyrias. Consequently, haem precursors are synthesized in excess. The increased metabolites upstream of the enzymatic defect are excreted into urine and faeces. The diagnosis is based on their evaluation. Primary enzymatic or molecular analyses are noncontributary and may be misleading. Acute polysymptomatic exacerbations accompany a high excretory constellation of porphyrin precursors delta-aminolaevulinic acid and porphobilinogen. Homozygous or compound heterozygous variants of acute hepatic porphyrias may already manifest in childhood. PMID:11117426

  15. Therapy of Delta Hepatitis.

    PubMed

    Yurdaydin, Cihan; Idilman, Ramazan

    2015-10-01

    Delta hepatitis is the less frequently encountered but most severe form of viral hepatitis. Acute delta hepatitis, as a result of coinfection with hepatitis B and hepatitis delta, is rare, but may lead to fulminant hepatitis, and no therapy exists for this form. Chronic delta hepatitis (CDH) mostly develops as a result of superinfection of a hepatitis B surface antigen (HBsAg) carrier with hepatitis delta virus (HDV). In general, HDV is the dominant virus. However, a dynamic shift of the dominant virus may occur with time in rare instances, and hepatitis B virus (HBV) may become the dominant virus, at which time nucleos(t)ide analog therapy may be indicated. Otherwise, the only established management of CDH consists of conventional or pegylated interferon therapy, which has to be administered at doses used for hepatitis B for a duration of at least 1 year. Posttreatment week-24 virologic response is the most widely used surrogate marker of treatment efficacy, but it does not represent a sustained virologic response, and late relapse can occur. As an easy-to-use simple serological test, anti-HDV-immunoglobulin M (IgM) correlates with histological inflammatory activity and clinical long-term outcome; however, it is not as sensitive as HDV RNA in assessing treatment response. No evidence-based rules for treating CDH exist, and treatment duration needs to be individualized based on virologic response at end of treatment or end of follow-up. Effective treatment may decrease liver-related complications, such as decompensation or liver-related mortality. In patients with decompensated cirrhosis, interferons are contraindicated and liver transplantation has to be considered. Alternative treatment options are an urgent need in CDH. New treatment strategies targeting different steps of the HDV life cycle, such as hepatocyte entry inhibitors or prenylation inhibitors, are emerging and provide hope for the future. PMID:26253093

  16. Update on Autoimmune Hepatitis

    PubMed Central

    Liberal, Rodrigo; Vergani, Diego; Mieli-Vergani, Giorgina

    2015-01-01

    Autoimmune hepatitis (AIH), a liver disorder affecting both children and adults, is characterized by inflammatory liver histology, elevated transaminase levels, circulating nonorganspecific autoantibodies, and increased levels of immunoglobulin G, in the absence of a known etiology. Two types of AIH are recognized according to seropositivity: smooth muscle antibody and/or antinuclear antibody define AIH type 1 and antibodies to liver-kidney microsome type 1 and/or liver cytosol type 1 define AIH type 2. AIH type 1 affects both adults and children, while AIH type 2 is mainly a paediatric disease, though it does occasionally affects young adults. AIH should be considered during the diagnostic workup of any patient with increased liver enzyme levels. AIH is exquisitely responsive to immunosuppressive treatment with prednisolone with or without azathioprine, with symptom free long-term survival for the majority of patients. For those who do not respond to standard treatment, or who are difficult-to-treat, mycophenolate mofetil and, in the absence of a response, calcineurin inhibitors should be tried in addition to steroids. The pathogenesis of AIH is not fully understood, although there is mounting evidence that genetic susceptibility, molecular mimicry and impaired immunoregulatory networks contribute to the initiation and perpetuation of the autoimmune attack. Liver damage is thought to be mediated primarily by CD4 T-cells, although recent studies support the involvement of diverse populations, including Th17 cells. A deeper understanding of the pathogenesis of AIH is likely to contribute to the development of novel treatments, such as the adoptive transfer of autologous expanded antigenspecific regulatory T-cells, which ultimately aim at restoring tolerance to liver-derived antigens. PMID:26357634

  17. [Viral hepatitis during pregnancy].

    PubMed

    Gutkowski, Krzysztof; Gutkowska, Dorota; Lepiech, Jacek

    2006-10-01

    Viral hepatitis is one of the most common liver diseases appearing during pregnancy. Prevention against hepatotropic viruses is restricted due to lack of vaccines being effective in induction of efficient immunization in the majority of these microorganisms. In general, there is no possibility of active immunization against hepatotropic viruses except type A and B viral hepatitis. An issue of viral hepatitis in pregnancy as an aspect of potential risk factor connected with infection of pregnant women and a fetus has been described in this paper. Furthermore, the most important topics in the field of the epidemiology, prophylaxis and possible treatment options of viral hepatitis A, B, C, D, E and G have been discussed. The newest reports of pregnant women lamivudine therapy as a preventive treatment against vertical transmission during delivery have been reviewed. Rarly diagnosed viral hepatitis caused by herpes simplex virus, cytomegalovirus, Epstein-Barr virus and adenoviruses have been characterized as well. PMID:17219815

  18. What kind of hepatitis?

    PubMed

    Santolamazza, M; Marinelli, R M; Bacosi, M; D'Innocenzo, S; Miglioresi, L; Patrizi, F; Delle Monache, M; Ricci, G L

    2001-01-01

    Finding one major hepatotropic virus may not be enough to identify the aetiology of liver disease when risk factors are present, particularly in patients with past or present infection with other viral agents, or chronic liver disease. The pathogenic process in these cases is often complex. In the five cases we report, acute hepatitis (initiated by halothane, cytomegalovirus or Epstein-Barr virus) preceded the reactivation of hepatitis B infection, and these events occurred in patients with chronic hepatitis C infection. Each case demonstrates how several viruses can be implicated in the development of hepatitis, either as single agents or via cross-activation of T cells. The nosography of hepatitis, therefore, and the optimum therapeutic choices, can puzzle the clinical team. PMID:11725833

  19. Hepatitis E in Transplantation.

    PubMed

    Marion, Olivier; Abravanel, Florence; Lhomme, Sebastien; Izopet, Jacques; Kamar, Nassim

    2016-03-01

    Hepatitis E virus (HEV) has a worldwide distribution and is known to cause acute and fulminant hepatitis. However, over the last few years, it has been shown to also cause chronic hepatitis and cirrhosis in immunosuppressed patients, especially solid-organ-transplant patients. In immunocompetent and immunosuppressed patients, HEV is also associated with extra-hepatic manifestations, such as neurological symptoms and kidney injury. Unfortunately, a diagnostic assay for HEV infection is still not available in all countries. Reduction of immunosuppression is the first-line therapeutic option for organ-transplant patients with chronic hepatitis. In addition, ribavirin is highly efficient at treating chronic HEV infection. In this comprehensive review, we summarize the current knowledge regarding HEV diagnosis, its natural history, clinical manifestations, and treatments in patients with a solid-organ transplant. PMID:26838163

  20. Update on Alcoholic Hepatitis

    PubMed Central

    Torok, Natalie J.

    2015-01-01

    Alcoholic liver disease is one of the most prevalent liver diseases worldwide, and a major cause of morbidity and mortality. Alcoholic hepatitis is a severe form of liver injury in patients with alcohol abuse, can present as an acute on chronic liver failure associated with a rapid decline in liver synthetic function, and consequent increase in mortality. Despite therapy, about 30%–50% of patients with severe alcoholic hepatitis eventually die. The pathogenic pathways that lead to the development of alcoholic hepatitis are complex and involve oxidative stress, gut dysbiosis, and dysregulation of the innate and adaptive immune system with injury to the parenchymal cells and activation of hepatic stellate cells. As accepted treatment approaches are currently limited, a better understanding of the pathophysiology would be required to generate new approaches that improve outcomes. This review focuses on recent advances in the diagnosis, pathogenesis of alcoholic hepatitis and novel treatment strategies. PMID:26540078

  1. Aldehyde Dehydrogenase-2 (ALDH2) Ameliorates Chronic Alcohol Ingestion-Induced Hepatic Steatosis and Inflammation: Role of Autophagy

    PubMed Central

    Guo, Rui; Xu, Xihui; Babcock, Sara A.; Zhang, Yingmei; Ren, Jun

    2014-01-01

    Background & Aims Mitochondrial aldehyde dehydrogenase (ALDH2) plays a critical role in the detoxification of the ethanol metabolite acetaldehyde. This study was designed to examine the impact of global ALDH2 overexpression on alcohol-induced hepatic steatosis. Methods Wild-type friendly virus B (FVB) and ALDH2 transgenic mice were placed on a 4% alcohol or control diet for 12 weeks. Serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), bilirubin and cholesterol, hepatic triglyceride, steatosis, fat metabolism-related proteins, pro-inflammatory cytokines, glutathione (GSH), oxidized glutathione (GSSG), autophagy and autophagy signaling were examined. The role of autophagy was evaluated in ADH1-transfected human hepatocellular liver carcinoma cells (VA-13) treated with or without autophagy inducer rapamycin and lysosomal inhibitors. Results Chronic alcohol intake led to elevated AST, ALT, bilirubin, AST/ALT ratio, cholesterol, hepatic triglycerides, hepatic fat deposition as evidenced by H&E and oil Red O staining, associated with disturbed fat metabolism-related proteins (fatty acid synthase, SCD1), upregulated interleukin-6, TNF-α, cyclooxygenase, oxidative stress, and loss of autophagy, the effects of which were attenuated or ablated by ALDH2 transgene. Moreover, ethanol (100 mM) and acetaldehyde (100, 500 μM) increased levels of IL-6 and IFN-γ, and suppressed autophagy in VA-13 cells, the effects of which were markedly alleviated by rapamycin. In addition, lysosomal inhibitors mimicked ethanol-induced p62 accumulation with little additive effect with ethanol. Ethanol significantly suppressed LC3 conversion in the presence of lysosomal inhibitors. Conclusions In summary, our results revealed that ALDH2 plays a beneficial role in ameliorating chronic alcohol intake-induced hepatic steatosis and inflammation through regulation of autophagy. PMID:25457208

  2. Viral Hepatitis: Information for Gay and Bisexual Men

    MedlinePLUS

    VIRAL HEPATITIS Information for Gay and Bisexual Men What is viral hepatitis? Viral hepatitis is an infection of the liver caused by ... United States, the most common types of viral hepatitis are Hepatitis A, Hepatitis B, and Hepatitis C. ...

  3. BPC-15 reduces trinitrobenzene sulfonic acid-induced colonic damage in rats.

    PubMed

    Veljaca, M; Lesch, C A; Pllana, R; Sanchez, B; Chan, K; Guglietta, A

    1995-01-01

    The effect of BPC-15 (Booly Protection Compound-15) was evaluated in a rat model of colonic injury. A single intracolonic administration of trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol induces severe colonic damage, which is characterized by areas of necrosis surrounded by areas of acute inflammation. The damage is associated with high myeloperoxidase (MPO) activity, mainly as a reflection of neutrophilic infiltration into the damaged tissue. In this study, 1 hr before a single intracolonic administration of 50 mg/kg of TNBS in 50% ethanol, the animals were treated with one of the following doses of BPC-15: 0.0001, 0.001, 0.01, 0.1, 1 or 10 nmol/kg administered i.p. or with a dose of 10 nmol/kg administered intracolonically. The animals were sacrificed 3 days later and the extent of colonic necrosis and hyperemia was measured with an image analyzer. The i.p. administration of BPC-15 significantly reduced the extent of TNBS-induced colonic damage in a dose-dependent manner. This was associated with a statistically significant and dose-dependent reduction in colonic tissue MPO activity. At the dose tested (10 nmol/kg), intracolonic administration of BPC-15 did not significantly reduce either the extent of the colonic damage or the increase in MPO activity induced by TNBS. In conclusion, this study showed that i.p. administration of BPC-15 reduced TNBS-induced colonic damage in rats. PMID:7815358

  4. Ferret hepatitis E virus infection induces acute hepatitis and persistent infection in ferrets.

    PubMed

    Li, Tian-Cheng; Yang, Tingting; Yoshizaki, Sayaka; Ami, Yasushi; Suzaki, Yuriko; Ishii, Koji; Kishida, Noriko; Shirakura, Masayuki; Asanuma, Hideki; Takeda, Naokazu; Wakita, Takaji

    2016-02-01

    Ferret hepatitis E virus (HEV), a novel hepatitis E virus, has been identified in ferrets. However, the pathogenicity of ferret HEV remains unclear. In the present study, we compared the HEV RNA-positivity rates and alanine aminotransferase (ALT) levels of 63 ferrets between before and after import from the US to Japan. We found that the ferret HEV-RNA positivity rates were increased from 12.7% (8/63) to 60.3% (38/63), and ALT elevation was observed in 65.8% (25/38) of the ferret HEV RNA-positive ferrets, indicating that ferret HEV infection is responsible for liver damage. From long term-monitoring of ferret HEV infection we determined that this infection in ferrets exhibits three patterns: sub-clinical infection, acute hepatitis, and persistent infection. The ALT elevation was also observed in ferret HEV-infected ferrets in a primary infection experiment. These results indicate that the ferret HEV infection induced acute hepatitis and persistent infection in ferrets, suggesting that the ferrets are a candidate animal model for immunological as well as pathological studies of hepatitis E. PMID:26790932

  5. Hepatitis B and Hepatitis C in Pregnancy

    MedlinePLUS

    ... first dose of vaccine before you leave the hospital. If it cannot be given by then, it should be given within 2 months of birth. The remaining doses are given within the next 6–18 months. Can I be vaccinated against hepatitis C virus infection? There is no vaccine to protect against the ...

  6. Clinicopathological study on TTV infection in hepatitis of unknown etiology

    PubMed Central

    Hu, Zhong-Jie; Lang, Zhen-Wei; Zhou, Yu-Sen; Yan, Hui-Ping; Huang, De-Zhuang; Chen, Wan-Rong; Luo, Zhao-Xia

    2002-01-01

    AIM: To investigate the state of infection, replication site, pathogenicity and clinical significance of transfusion transmitted virus (TTV) in patients with hepatitis, especially in patients of unknown etiology. METHODS: Liver tissues taken from 136 cases of non-A non-G hepatitis were tested for TT virus antigen and nucleic acid by in situ hybridization (ISH) and nested-polymerase chain reaction (PCR). Among them, TT virus genome and its complemental strand were also detected in 24 cases of autopsy liver and extrahepatic tissues with ISH. Meanwhile, TTV DNA was detected in the sera of 187 hepatitis patients by nested-PCR. The pathological and clinical data of the cases infected with TTV only were analyzed. RESULTS: In liver, the total positive rate of TTV DNA was 32.4% and the positive signals were located in the nuclei of hepatocytes. In serus, TTV DNA was detected in 21.4% cases of hepatitis A-G, 34.4% of non-A non-G hepatitis and 15% of healthy donors. The correspondence rate of TTV DNA detection between liver tissue with ISH and sera with PCR was 63.2% and 89.3% in the same liver tissues by ISH and by PCR, respectively. Using double-strand probes and single-strand probes designed to detect TTV genome, the correspondence rate of TTV DNA detected in liver and extrahepatic tissues was 85.7%. Using single-strand probes, TTV genome could be detected in liver and extrahepatic tissues by PCR, but its complemental strands (replication strands) could be observed only in livers. The liver function of most cases infected with TTV alone was abnormal and the liver tissues had different pathological damage such as ballooning, acidophilia degeneration, formation of apoptosis bodies and focus of necrosis, but the inflammation in the lobule and portal area was mild. CONCLUSION: The positive rate of TTV DNA among cases of hepatitis was higher than that of donors, especially in patients with non-A non-G hepatitis, but most of them were coinfected with other hepatitis viruses. TTV can infect not only hepatocytes, but also extrahepatic tissues. However, the chief replication place may be liver. The infection of TTV may have some pathogenicity. Although the pathogenicity is comparatively weak, it can still damage the liver tissues. The lesions in acute hepatitis (AH) and chronic hepatitis (CH) are mild, but in severe hepatitis (SH), it can be very serious and cause liver function failure, therefore, we should pay more attention to TTV when studying the possible pathogens of so-called Liver hepatitis of unknown etiology. PMID:11925609

  7. ALLYLISOPROPYLACETAMIDE INDUCES RAT HEPATIC ORNITHINE DECARBOXYLASE (JOURNAL VERSION)

    EPA Science Inventory

    Allylisopropylacetamide (AIA) did not cause DNA damage in rat liver. The porphyrinogenic research drug did strongly induce the activity (25-fold) of rat hepatic enzyme ornithine decarboxylase (ODC). By either the oral or the subcutaneous route AIA produced a long lasting inductio...

  8. The Anticancer Drug Ellipticine Activated with Cytochrome P450 Mediates DNA Damage Determining Its Pharmacological Efficiencies: Studies with Rats, Hepatic Cytochrome P450 Reductase Null (HRN) Mice and Pure Enzymes

    PubMed Central

    Stiborov, Marie; ?ern, V?ra; Moserov, Michaela; Mrzov, Iveta; Arlt, Volker M.; Frei, Eva

    2014-01-01

    Ellipticine is a DNA-damaging agent acting as a prodrug whose pharmacological efficiencies and genotoxic side effects are dictated by activation with cytochrome P450 (CYP). Over the last decade we have gained extensive experience in using pure enzymes and various animal models that helped to identify CYPs metabolizing ellipticine. In this review we focus on comparison between the in vitro and in vivo studies and show a necessity of both approaches to obtain valid information on CYP enzymes contributing to ellipticine metabolism. Discrepancies were found between the CYP enzymes activating ellipticine to 13-hydroxy- and 12-hydroxyellipticine generating covalent DNA adducts and those detoxifying this drug to 9-hydroxy- and 7-hydroellipticine in vitro and in vivo. In vivo, formation of ellipticine-DNA adducts is dependent not only on expression levels of CYP3A, catalyzing ellipticine activation in vitro, but also on those of CYP1A that oxidize ellipticine in vitro mainly to the detoxification products. The finding showing that cytochrome b5 alters the ratio of ellipticine metabolites generated by CYP1A1/2 and 3A4 explained this paradox. Whereas the detoxification of ellipticine by CYP1A and 3A is either decreased or not changed by cytochrome b5, activation leading to ellipticine-DNA adducts increased considerably. We show that (I) the pharmacological effects of ellipticine mediated by covalent ellipticine-derived DNA adducts are dictated by expression levels of CYP1A, 3A and cytochrome b5, and its own potency to induce these enzymes in tumor tissues, (II) animal models, where levels of CYPs are either knocked out or induced are appropriate to identify CYPs metabolizing ellipticine in vivo, and (III) extrapolation from in vitro data to the situation in vivo is not always possible, confirming the need for these animal models. PMID:25547492

  9. Hepatitis Foundation International

    MedlinePLUS

    ... as, reducing the incidence of preventable liver-related chronic diseases and lifestyles that negatively impact the liver. Hepatitis Patient Registry Network (HepPRN) ENGAGING INDIVIDUALS. FINDING SOLUTIONS. SAVING ...

  10. Know More Hepatitis

    MedlinePLUS

    ... formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft ... February 11, 2015 Page last updated: March 5, 2015 Content source: Division of Viral Hepatitis and ...

  11. Chemoembolization of hepatic malignancy.

    PubMed

    Gonsalves, Carin F; Brown, Daniel B

    2009-01-01

    Treatment of primary and secondary hepatic malignancies with transarterial chemoembolization represents an essential component of interventional oncology. This article discusses patient selection, procedure technique, results, and complications associated with transarterial chemoembolization. PMID:18668189

  12. Hepatitis D in Children.

    PubMed

    Xue, Megan M; Glenn, Jeffrey S; Leung, Daniel H

    2015-09-01

    Hepatitis D virus (HDV) is an uncommon, defective, single-stranded circular RNA virus that is dependent on the hepatitis B virus' surface antigen envelope proteins for transmission. It is highly pathogenic and associated with high rates of progression to cirrhosis and associated complications. HDV continues to ravage endemic parts of Asia and Europe, and its prevalence in the United States, although low, has not decreased in frequency, despite universal hepatitis B virus vaccination, because of lack of testing and underrecognition. There are few reports on the prevalence and characteristics of HDV infection in the pediatric population. We present 2 patients with HDV infection at our institution; both were from eastern Europe and were treated with pegylated interferon-?. The present standard of care treatment for HDV yields suboptimal results, but insights into the virology of hepatitis D are stimulating the search for novel therapeutic approaches, particularly the development of prenylation inhibitors and viral entry inhibitors. PMID:25988557

  13. Hepatitis Risk Assessment

    MedlinePLUS

    ... About the Division of Viral Hepatitis Contact Us File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  14. Travelers' Health: Hepatitis C

    MedlinePLUS

    ... Zika risk at high elevations Find a Clinic Yellow Fever Vaccinations Clinics FAQ Disease Directory Resources Resources for Travelers Adventure Travel Animal Safety Blood Clots Bug Bites Business ... Book Contents Chapter 3 (81) Hepatitis C more ...

  15. Travelers' Health: Hepatitis B

    MedlinePLUS

    ... Zika risk at high elevations Find a Clinic Yellow Fever Vaccinations Clinics FAQ Disease Directory Resources Resources for Travelers Adventure Travel Animal Safety Blood Clots Bug Bites Business ... Book Contents Chapter 3 (81) Hepatitis B more ...

  16. Hepatitis B Vaccination Protection

    MedlinePLUS

    ... the time the procedure takes place. To ensure immunity, it is important for individuals to complete the ... great majority of those vaccinated will devel- op immunity to the hepatitis B virus. The vaccine causes ...

  17. Drug-induced hepatitis

    MedlinePLUS

    ... induced hepatitis. Painkillers and fever reducers that contain acetaminophen are a common cause of liver inflammation. These ... problem. However, if you took high doses of acetaminophen , treatment should be started as soon as possible ...

  18. Right Hemisphere Brain Damage

    MedlinePLUS

    ... Language and Swallowing / Disorders and Diseases Right Hemisphere Brain Damage [ en Español ] What is right hemisphere brain ... right hemisphere brain damage ? What is right hemisphere brain damage? Right hemisphere brain damage (RHD) is damage ...

  19. Regulation of Hepatic Lipin-1 by Ethanol: Role of AMPK-SREBP-1 Signaling

    PubMed Central

    Hu, Ming; Wang, Fengming; Li, Xin; Rogers, Christopher Q.; Liang, Xiaomei; Finck, Brian N.; Mitra, Mayurranjan S.; Zhang, Ray; Mitchell, Dave A.; You, Min

    2011-01-01

    Lipin-1 is a protein that exhibits dual functions as a phosphatidic acid phosphohydrolase (PAP) enzyme in the triglyceride synthesis pathways and a transcriptional co-regulator. Our previous studies have shown that ethanol causes fatty liver by activation of sterol regulatory element-binding protein 1 (SREBP-1) and inhibition of hepatic AMP-activated kinase (AMPK) in mice. Here, we tested the hypothesis that AMPK-SREBP-1 signaling may be involved in ethanol-mediated up-regulation of lipin-1 gene expression. The effects of ethanol on lipin-1 were investigated in cultured hepatic cells and in the livers of chronic ethanol-fed mice. Ethanol exposure robustly induced activity of a mouse lipin-1 promoter, promoted cytoplasmic localization of lipin-1 and caused excess lipid accumulation both in cultured hepatic cells and in mouse livers. Mechanistic studies showed that ethanol-mediated induction of lipin-1 gene expression was inhibited by a known activator of AMPK or overexpression of a constitutively active form of AMPK. Importantly, overexpression of processed nuclear form of SREBP-1c (nSREBP-1c) abolished the ability of AICAR to suppress ethanol-mediated induction of lipin-1 gene expression level. Chromatin immunoprecipitation (ChIP) assays further revealed that ethanol exposure significantly increased association of acetylated Histone H3 at lysine 9 (Lys9) with the SRE-containing region in the promoter of the lipin-1 gene. In conclusion, ethanol-induced up-regulation of lipin-1 gene expression is mediated through inhibition of AMPK and activation of SREBP-1. PMID:21953514

  20. Inhibition of testosterone biosynthesis by ethanol. Relation to hepatic and testicular acetaldehyde, ketone bodies and cytosolic redox state in rats.

    PubMed Central

    Eriksson, C J; Widenius, T V; Ylikahri, R H; Hrknen, M; Leinonen, P

    1983-01-01

    In experiments in which liver and testis freeze-stops were performed on pentobarbital-anaesthetized rats, ethanol (1.5 g/kg body wt.) reduced plasma testosterone concentration from 13.1 to 3.2 nmol/litre. 4-Methylpyrazole abolished the ethanol-induced hepatic and testicular increase in the lactate/pyruvate ratio, and the testicular acetaldehyde level, but did not diminish the reduction in plasma testosterone concentration. In testes, but not in liver, ethanol decreased the 3-hydroxybutyrate/acetoacetate ratio, and 4-methylpyrazole did not prevent this effect. In experiments in which freeze-stop was performed after cervical dislocation, ethanol decreased the testis testosterone concentration from 590 to 220 pmol per g wet wt. The effects of ethanol and 4-methylpyrazole on testis acetaldehyde, lactate/pyruvate and 3-hydroxybutyrate/acetoacetate ratios were the same as found during anaesthesia. The NAD+-dependent ethanol oxidation capacity in testis ranged from 0.1 to 0.2 mumol/min per g wet wt. and seemed to be inhibited by 4-methylpyrazole both in vivo and in vitro. In additional experiments, ethanol doses between 0.3 and 0.9 g/kg body wt. did not alter the plasma testosterone concentration in rats treated, or not treated, with cyanamide, which induced elevated acetaldehyde levels in blood and testes. The results suggest that ethanol-induced inhibition of testosterone biosynthesis was not caused by extratesticular redox increases, or by extra- or intra-testicular acetaldehyde per se. The inhibition is accompanied by changes in testicular ketone-body metabolism. PMID:6847648

  1. Moderate, chronic ethanol feeding exacerbates carbon tetrachlorideinduced hepatic fibrosis via hepatocyte-specific hypoxia-inducible factor 1?

    PubMed Central

    Roychowdhury, Sanjoy; Chiang, Dian J; McMullen, Megan R; Nagy, Laura E

    2014-01-01

    The hypoxia-sensing transcriptional factor HIF1? is implicated in a variety of hepato-pathological conditions; however, the contribution of hepatocyte-derived HIF1? during progression of alcoholic liver injury is still controversial. HIF1? induces a variety of genes including those involved in apoptosis via p53 activation. Increased hepatocyte apoptosis is critical for progression of liver inflammation, stellate cell activation, and fibrosis. Using hepatocyte-specific HIF1?-deficient mice (?HepHIF1??/?), here we investigated the contribution of HIF1? to ethanol-induced hepatocyte apoptosis and its role in amplification of fibrosis after carbon tetrachloride (CCl4) exposure. Moderate ethanol feeding (11% of kcal) induced accumulation of hypoxia-sensitive pimonidazole adducts and HIF1? expression in the liver within 4 days of ethanol feeding. Chronic CCl4 treatment increased M30-positive cells, a marker of hepatocyte apoptosis in pair-fed control mice. Concomitant ethanol feeding (11% of kcal) amplified CCl4-induced hepatocyte apoptosis in livers of wild-type mice, associated with elevated p53K386 acetylation, PUMA expression, and Ly6c+ cell infiltration. Subsequent to increased apoptosis, ethanol-enhanced induction of profibrotic markers, including stellate cell activation, collagen 1 expression, and extracellular matrix deposition following CCl4 exposure. Ethanol-induced exacerbation of hepatocyte apoptosis, p53K386 acetylation, and PUMA expression following CCl4 exposure was attenuated in livers of ?HepHIF1??/? mice. This protection was also associated with a reduction in Ly6c+ cell infiltration and decreased fibrosis in livers of ?HepHIF1??/? mice. In summary, these results indicate that moderate ethanol exposure leads to hypoxia/HIF1?-mediated signaling in hepatocytes and induction of p53-dependent apoptosis of hepatocytes, resulting in increased hepatic fibrosis during chronic CCl4 exposure. PMID:25089199

  2. Hepatitis D virus coinfection and superinfection.

    PubMed

    Negro, Francesco

    2014-11-01

    HDV is a defective RNA pathogen requiring the simultaneous presence of HBV to complete its life cycle. Two major specific patterns of infection have been described: the coinfection with HDV and HBV of a susceptible, anti-HBs-negative individual, or the HDV superinfection of a chronic HBV carrier. Coinfection mostly leads to the eradication of both agents, whereas the majority of patients with HDV superinfection evolve to chronic HDV infection and hepatitis. Chronic HDV infection worsens the preexisting HBV-related liver damage. HDV-associated chronic liver disease (chronic hepatitis D) is characterized by necroinflammation and the relentless deposition of collagen culminating, within a few decades, into the development of cirrhosis and hepatocellular carcinoma. PMID:25368018

  3. Effects of zinc L-carnosine on gastric mucosal and cell damage caused by ethanol in rats. Correlation with endogenous prostaglandin E2.

    PubMed

    Arakawa, T; Satoh, H; Nakamura, A; Nebiki, H; Fukuda, T; Sakuma, H; Nakamura, H; Ishikawa, M; Seiki, M; Kobayashi, K

    1990-05-01

    The effects of zinc L-carnosine on ethanol-induced damage and the correlation of these effects with endogenous prostaglandin E2 were evaluated in rat gastric mucosa in vivo and in vitro. When given either intragastrically or intraperitoneally, zinc L-carnosine (10 or 30 mg/kg) prevented gross visible damage to gastric mucosa caused by ethanol without affecting the mucosal prostaglandin E2 level. This protective effect of zinc L-carnosine was not inhibited by indomethacin. Histological assessment showed that zinc L-carnosine inhibited deep mucosal necrosis, as did 16,16-dimethyl prostaglandin E2. Zinc L-carnosine (10(-6) or 10(-5) M) inhibited the damage caused by ethanol to gastric cells isolated from rat gastric mucosa in vitro; this effect was not inhibited by indomethacin. The results suggested that zinc L-carnosine protects the gastric mucosa and enhances cellular resistance to ethanol without the mediation of endogenous prostaglandins. PMID:2331952

  4. Immigration and viral hepatitis.

    PubMed

    Sharma, Suraj; Carballo, Manuel; Feld, Jordan J; Janssen, Harry L A

    2015-08-01

    WHO estimates reveal that the global prevalence of viral hepatitis may be as high as 500 million, with an annual mortality rate of up to 1.3 million individuals. The majority of this global burden of disease is borne by nations of the developing world with high rates of vertical and iatrogenic transmission of HBV and HCV, as well as poor access to healthcare. In 2013, 3.2% of the global population (231 million individuals) migrated into a new host nation. Migrants predominantly originate from the developing countries of the south, into the developed economies of North America and Western Europe. This mass migration of individuals from areas of high-prevalence of viral hepatitis poses a unique challenge to the healthcare systems of the host nations. Due to a lack of universal standards for screening, vaccination and treatment of viral hepatitis, the burden of chronic liver disease and hepatocellular carcinoma continues to increase among migrant populations globally. Efforts to increase case identification and treatment among migrants have largely been limited to small outreach programs in urban centers, such that the majority of migrants with viral hepatitis continue to remain unaware of their infection. This review summarizes the data on prevalence of viral hepatitis and burden of chronic liver disease among migrants, current standards for screening and treatment of immigrants and refugees, and efforts to improve the identification and treatment of viral hepatitis among migrants. PMID:25962882

  5. Mechanisms of Hepatic Fibrogenesis

    PubMed Central

    Friedman, Scott L.

    2010-01-01

    Substantial improvements in the treatment of chronic liver disease have accelerated interest in uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a dominant theme driving the field. However, several new areas of rapid progress in the past 5–10 years also have taken root, including: (1) identification of different fibrogenic populations apart from resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow– derived cells, as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple pathways controlling gene expression during stellate cell activation including transcriptional, post-transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior, cancer, and regeneration. Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease. PMID:18471545

  6. Genetics Home Reference: Congenital hepatic fibrosis

    MedlinePLUS

    ... congenital hepatic fibrosis? autosomal ; autosomal recessive ; bile ; cancer ; cell ; chromosome ; congenital ; embryonic ; esophagus ; fibrosis ; gallbladder ; gastrointestinal ; gene ; hepatic ; hepatosplenomegaly ; hypertension ; ...

  7. Hepatic BOLSA a novel method of perihepatic wrapping for hepatic hemorrhage BOLSA

    PubMed Central

    Ng, Nathaniel; McLean, Susan F.; Ghaleb, Melhem R.; Tyroch, Alan H.

    2015-01-01

    Introduction Severe traumatic liver hemorrhage quickly leads to exsanguination. Perihepatic packing is frequently used in damage control surgery. This method can be unsuccessful and accompanied by complications. Vicryl mesh wraps have been described in the treatment of liver hemorrhage. In this report, we describe an enhanced technique of hepatic wrapping in a case of hepatic bleeding after liver biopsy in a coagulopathic patient. The technique is called the hepatic BOLSA (Bag on Liver Supporting Anti-Hemorrhage). Presentation of case A 59 year old male presented in the recovery room after liver biopsy of a mass, followed by angio-embolization of the hepatic mass 9h earlier. The patient was acidotic, coagulopathic, and demonstrated intra-abdominal hypertension. Computed tomography demonstrated perihepatic fluid. The patient continued hemorrhaging despite attempts to correct coagulopathy by transfusion. Multiple operating room visits were required where a combination of packing and hemostatic agents could not stop hepatic venous parenchymal hemorrhage. Mesh wrap consisting of Vicryl and PDS suture were used to create the BOLSA to achieve hemostasis. Discussion Perihepatic packing compromises pulmonary excursion, elevates intra-abdominal pressure, is a risk factor for sepsis, and requires an additional trip to the operating room for removal. The use of Vicryl mesh wrap obviates these complications. Previously described mesh wraps require anchoring. The self-supporting structure of the BOLSA simplifies construction and application. Conclusion The BOLSA is an effective tool in treatment of severe liver hemorrhage in coagulopathic patients. It is the modern simplification of hepatic wrapping and the solution to the side effects of perihepatic packing. PMID:26188978

  8. Two immune boosters against hepatitis C.

    PubMed

    1998-11-01

    Hepatitis C (HCV) can cause liver damage or liver cancer, and it is doubtful that antiviral drugs alone will be able to cure HCV. Because of the limitations of antiviral drugs, researchers are studying ways to enhance the immune system's ability to fight HCV. The current standard therapy for treating HCV is to use Interferon-alpha, although this may change to a combination of Interferon-alpha and Ribavirin. However, Ribavirin can have detrimental effects on bone marrow and may not be tolerated by some patients. Results of a study are presented. PMID:11365926

  9. Classical and Modern Approaches Used for Viral Hepatitis Diagnosis

    PubMed Central

    Heiat, Mohammad; Ranjbar, Reza; Alavian, Seyed Moayed

    2014-01-01

    Context: Viral hepatitis diagnosis is an important issue in the treatment procedure of this infection. Late diagnosis and delayed treatment of viral hepatitis infections can lead to irreversible liver damages and occurrence of liver cirrhosis and hepatocellular carcinoma. A variety of laboratory methods including old and new technologies are being applied to detect hepatitis viruses. Here we have tried to review, categorize, compare and illustrate the classical and modern approaches used for diagnosis of viral hepatitis. Evidence Acquisition: In order to achieve a comprehensive aspect in viral hepatitis detection methods, an extensive search using related keywords was done in major medical library and data were collected, categorized and summarized in different sections. Results: Analyzing of collected data resulted in the wrapping up the hepatitis virus detection methods in separate sections including 1) immunological methods such as enzyme immunoassay (EIA), radio-immunoassay (RIA) immuno-chromatographic assay (ICA), and immuno-chemiluminescence 2) molecular approaches including non-amplification and amplification based methods, and finally 3) advanced biosensors such as mass-sensitive, electrical, electrochemical and optical based biosensors and also new generation of detection methods. Conclusions: Detection procedures in the clinical laboratories possess a large diversity; each has their individual advantages and facilities' differences. PMID:24829586

  10. Hepatic intraductal oncocytic papillary carcinoma.

    PubMed

    Cocieru, Andrei; Kesha, Kilak; El-Fanek, Hani; Saldinger, Pierre F

    2010-05-01

    The authors report a case of hepatic intraductal oncocytic papillary carcinoma, a very rare subtype of hepatic papillary cholangiocarcinoma with only 8 cases reported so far in the English literature. PMID:19944406

  11. Hepatic cysticercosis: a rare entity.

    PubMed

    Chaudhary, Vikas; Bano, Shahina; Kumar, Praveen; Narula, Mahender Kaur; Anand, Rama

    2014-12-01

    Hepatic cysticercosis is a very rare entity; only four cases have been reported to date. High-resolution ultrasonography of the abdomen is the initial and most reliable modality for evaluation of hepatic cysticercosis. Medical therapy is the mainstay of treatment. We report a case of hepatic cysticercosis in a 28-year-old male who presented with right upper quadrant pain, fever, and jaundice. The article also describes the imaging patterns of hepatic cysticercosis based on different stages of evolution. PMID:24806312

  12. Rare Case of Vasculitis of the Hepatic Artery

    PubMed Central

    Mali, Padmavathi; Muduganti, Sudheer R.; Goldberg, Jerry

    2015-01-01

    Vasculitis is an accumulation of inflammatory leucocytes in the blood vessels with reactive damage to mural structures. Isolated vasculitis of the gastrointestinal tract without systemic involvement is rare. We report a unique case of a female patient who presented with abdominal pain, and was found, on serology, to have elevated inflammatory markers without autoantibodies. A computed tomography scan of the abdomen and pelvis was suggestive of vasculitis of the hepatic artery. To the best of our knowledge, this is the first case, to date, of vasculitis of hepatic artery. PMID:26387709

  13. Rare Case of Vasculitis of the Hepatic Artery.

    PubMed

    Mali, Padmavathi; Muduganti, Sudheer R; Goldberg, Jerry

    2015-12-01

    Vasculitis is an accumulation of inflammatory leucocytes in the blood vessels with reactive damage to mural structures. Isolated vasculitis of the gastrointestinal tract without systemic involvement is rare. We report a unique case of a female patient who presented with abdominal pain, and was found, on serology, to have elevated inflammatory markers without autoantibodies. A computed tomography scan of the abdomen and pelvis was suggestive of vasculitis of the hepatic artery. To the best of our knowledge, this is the first case, to date, of vasculitis of hepatic artery. PMID:26387709

  14. Diabetes after infectious hepatitis: a follow-up study.

    PubMed Central

    Oli, J M; Nwokolo, C

    1979-01-01

    Eleven patients (nine men, one woman, and one girl) aged 11-62 years who developed diabetes mellitus after an attack of infectious hepatitis during the Eastern Nigerian epidemic of 1970-2 were followed up for two to nine years. One patient aged 60 years remained diabetic after the original illness. In the remaining 10 patients the diabetes remitted after three to nine months (mean 6.7 months) but in four it recurred after a remission lasting one and a half to four years (mean 2.6 years). Results of this follow-up study seem to confirm that the pancreas is sometimes permanently damaged during infectious hepatitis. PMID:435884

  15. Rescue of Lethal Hepatic Failure by Hepatized Lymph Nodes in Mice

    PubMed Central

    Hoppo, Toshitaka; Komori, Junji; Manohar, Rohan; Stolz, Donna Beer; Lagasse, Eric

    2010-01-01

    BACKGROUND & AIMS Hepatocyte transplantation is a potential therapeutic approach for liver disease. However, most patients with chronic hepatic damage have cirrhosis and fibrosis, which limit the potential for cell-based therapy of the liver. The development of an ectopic liver as an additional site of hepatic function represents a new approach for patients with an end-stage liver disease. We investigated the development and function of liver tissue in lymph nodes in mice with liver failure. METHODS Hepatocytes were isolated from 8 to 12-week-old mice and transplanted by intraperitoneal injection into 8- to 12-week-old Fah-/- mice, a model of the human liver disease tyrosinemia type I. Survival was monitored and the locations and functions of the engrafted liver cells were determined. RESULTS Lymph nodes of Fah-/- mice were colonized by transplanted hepatocytes; Fah+ hepatocytes were detected adjacent to the CD45+ lymphoid cells of the lymphatic system. Ten weeks after transplantation, these mice had substantial improvements in serum levels of transaminases, bilirubin, and amino acids. Homeostatic expansion of donor hepatocytes in lymph nodes rescued the mice from lethal hepatic failure. CONCLUSIONS Functional ectopic liver tissue in lymph nodes rescues mice from lethal hepatic disease; lymph nodes might therefore be used as sites for hepatocyte transplantation. PMID:21070777

  16. Role of occult hepatitis B virus infection in chronic hepatitis C

    PubMed Central

    Coppola, Nicola; Onorato, Lorenzo; Pisaturo, Mariantonietta; Macera, Margherita; Sagnelli, Caterina; Martini, Salvatore; Sagnelli, Evangelista

    2015-01-01

    The development of sensitive assays to detect small amounts of hepatitis B virus (HBV) DNA has favored the identification of occult hepatitis B infection (OBI), a virological condition characterized by a low level of HBV replication with detectable levels of HBV DNA in liver tissue but an absence of detectable surface antigen of HBV (HBsAg) in serum. The gold standard to diagnose OBI is the detection of HBV DNA in the hepatocytes by highly sensitive and specific techniques, a diagnostic procedure requiring liver tissue to be tested and the use of non-standardized non-commercially available techniques. Consequently, in everyday clinical practice, the detection of anti-hepatitis B core antibody (anti-HBc) in serum of HBsAg-negative subjects is used as a surrogate marker to identify patients with OBI. In patients with chronic hepatitis C (CHC), OBI has been identified in nearly one-third of these cases. Considerable data suggest that OBI favors the increase of liver damage and the development of hepatocellular carcinoma (HCC) in patients with CHC. The data from other studies, however, indicate no influence of OBI on the natural history of CHC, particularly regarding the risk of developing HCC. PMID:26576082

  17. Effect of chronic ethanol feeding on endotoxin-induced hepatic injury: role of adhesion molecules on leukocytes and hepatic sinusoid.

    PubMed

    Ohki, E; Kato, S; Ohgo, H; Mizukami, T; Fukuda, M; Tamai, H; Okamura, Y; Matsumoto, M; Suzuki, H; Yokoyama, H; Ishii, H

    1998-05-01

    Endotoxin is postulated to be an important aggravating factor for alcoholic liver disease. We have previously reported that rats fed ethanol are more vulnerable to endotoxin-induced liver damage, and hepatic microcirculatory disturbance plays an important role for this liver damage by observation with an intravital microscopy. In this study, we have investigated the role of adhesion molecules in endotoxin-induced microcirculatory disturbance in chronic ethanol-fed rats. Male Wistar rats were pair-fed with ethanol liquid diet (ethanol group) or an isocaloric control diet (control group) for 6 weeks. Leukocyte adherence to the hepatic sinusoid by stimulation with lipopolysaccharides (1 mg/kg of body weight) was observed by an inverted fluorescence microscopy equipped with a silicon-intensified target camera and was found to be enhanced in ethanol-fed rats. Tumor necrosis factor-alpha and GRO/CINC-1 (rat counterpart of interleukin-8) was increased in the blood in these animals. Subsequent expression of adhesion molecules, LFA-1 beta-chain on leukocytes were demonstrated by flow cytometry, which suggests a possible involvement of leukocyte adherence to the hepatic damage in ethanol-fed animals. Preadministration of anti-rat LFA-1 beta-chain monoclonal antibody effectively suppressed leukocyte adherence to the hepatic sinusoid. These results suggest that the enhanced sequestration of neutrophils to the liver with these adhesion molecules may play a significant role in the pathogenesis of alcoholic liver disease. PMID:9622389

  18. Hepatic angiomyolipoma: what management?

    PubMed

    Barbier, L; Torrents, J; Hardwigsen, J

    2014-01-01

    An 80-year-old woman was referred for the surgical treatment of a 110-mm right hepatic tumor. The biopsy revealed an adenoma, and a right hepatectomy was performed. Histopathology indicated a major fat component with epitheliod cells, immunoreactivity for HMB45, Melan A, and smooth muscle actin, describing a hepatic epithelioid angiomyolipoma (AML). The AML belongs to the group of tumors with a Perivascular Epithelioid Cell differentiation. Its diagnosis is based on imaging and biopsy, and therefore might be difficult. Hepatic AML are mainly benign tumors; however, some tend to behave in a malignant manner. In case of histological proof, close clinical and radiological monitoring can be proposed if its size is less than 5 cm and no pejorative histological features are found. Nevertheless, follow-up is still required if resection is performed in search of recurrence or metastatic spread. PMID:25073214

  19. Adipocytokines and Hepatic Fibrosis

    PubMed Central

    Saxena, Neeraj K.; Anania, Frank A.

    2015-01-01

    Obesity and metabolic syndrome pose significant risk for progression of many types of chronic illnesses, including liver disease. Hormones released from adipocytes, adipocytokines, associated with obesity and metabolic syndrome, have been shown to control hepatic inflammation and fibrosis. Hepatic fibrosis is the final common pathway that can result in cirrhosis, and can ultimately require liver transplantation. Initially, two key adipocytokines, leptin and adiponectin, appeared to control many fundamental aspects of the cell and molecular biology related to hepatic fibrosis and its resolution. Leptin appears to act as a profibrogenic molecule while adiponectin possesses strong-anti-fibrotic properties. In this review, we emphasize pertinent data associated with these, and recently discovered, adipocytokines that may drive or halt the fibrogenic response in the liver. PMID:25656826

  20. [Diagnostics and therapy of hepatitis].

    PubMed

    Strassburg, C P; Cornberg, M

    2009-12-01

    In Germany, around 800.000 to 1 million individuals are chronically infected with either the hepatitis B or the hepatitis C virus. Viral hepatitis is therefore highly relevant for the everyday management in clinical practice. For the treatment of hepatitis B, potent antiviral drugs have become available that, in the majority of patients, induce viral suppression. This requires a strategic therapeutic planning in view of a likelihood of long term administration and the prevention of viral resistance. Recent advances in the treatment of hepatitis C are based on a therapeutic individualization based upon viral kinetics and genotypes that also requires strategic planning. In contrast to hepatitis B, viral elimination can be reached in 50-90% of hepatitis C patients. Hepatitis D is associated with a migration background, is most likely under diagnosed and does not yet have a satisfactory curative treatment option. An effective vaccine exists for hepatitis A that offers protection lasting decades. Hepatitis A does not lead to chronic infection. This was also assumed for hepatitis E. However, reports indicate chronic courses in selected patient groups. A vaccine for hepatitis E is currently not yet available. PMID:19921110

  1. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Institutes of Biomedical Science, Fudan University, Shanghai 200032 ; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin; Institutes of Biomedical Science, Fudan University, Shanghai 200032

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  2. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease.

    PubMed

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients. PMID:24269813

  3. Hepatitis G virus: is it a hepatitis virus?

    PubMed Central

    Cheung, R C; Keeffe, E B; Greenberg, H B

    1997-01-01

    Hepatitis G virus (HGV) and GB virus C (GBV-C) are two newly discovered viral agents, different isolates of a positive-sense RNA virus that represents a new genus of Flaviviridae. The purpose of this review is to analyze new data that have recently been published on the epidemiology and associations between HGV and liver diseases such as posttransfusion hepatitis, acute and chronic non-A-E hepatitis, fulminant hepatitis, cryptogenic cirrhosis, and hepatocellular carcinoma. The role of HGV in coinfection with other hepatitis viruses, the response to antiviral therapy, and the impact of HGV on liver transplantation are also discussed. HGV is a transmissible blood-borne viral agent that frequently occurs as a coinfection with other hepatitis viruses due to common modes of transmission. The prevalence of HGV ranges from 0.9 to 10% among blood donors throughout the world and is found in 1.7% of volunteer blood donors in the United States. The majority of patients infected with HGV by blood transfusion do not develop chronic hepatitis, but hepatitis G viremia frequently persists without biochemical evidence of hepatitis. Serum HGV RNA has been found in 0 to 50% of patients with fulminant hepatitis of unknown etiology and 14 to 36% of patients with cryptogenic cirrhosis. The association between HGV and chronic non-A-E hepatitis remains unclear. Although HGV appears to be a hepatotrophic virus, its role in independently causing acute and chronic liver diseases remains uncertain. PMID:9265860

  4. Prevention and Management of Chronic Hepatitis B

    PubMed Central

    Bhat, Mamatha; Ghali, Peter; Deschenes, Marc; Wong, Philip

    2014-01-01

    Chronic hepatitis B virus (HBV) infection affects an estimated 370 million people worldwide. HBV is endemic throughout the world, and insidiously causes liver damage over years and decades without any warning symptoms or signs. Up to 2535% of infected individuals eventually die due to complications of liver cirrhosis and hepatocellular carcinoma (HCC) induced by HBV. Screening those individuals at risk of acquiring hepatitis B, and universal vaccination for prevention, would help in limiting the spread and public health repercussions of the virus. Although many new antiviral therapies have been developed for the management of hepatitis B, they still do not offer the possibility of cure. Most individuals who begin oral suppressive therapy will be indefinitely treated. Continuous suppression of HBV replication in individuals with advanced liver disease prolongs life, decreases the need for liver transplantation, and potentially reduces the risk for HCC. In this clinical review, we present a practical approach to prevention of HBV, its natural history and life cycle, as well as its management. PMID:26622990

  5. [Hepatic reactions in erythropoietic protoporphyria (author's transl)].

    PubMed

    Klinge, O; Alexandrakis, E

    1981-01-01

    The main hepatic change in erythropoietic protoporphyria is the deposition of protoporphyrin. Brown deposits of this pigment occur in bile canaliculi and ductules, discretely in hepatocytes, and secondarily in macrophages and Kupffer cells. The pigment is deposited in a crystalline form. Under the fluorescence microscope with a mercury maximum pressure burner (HO 50) at a wave length of 380--500 nm, it shows a typical red fluorescence even after paraffin embedding. Its crystalline structure results in a characteristic double refraction under the polarising microscope. Light-microscopically, hepatocellular reactions are characterised mainly by discrete alterations in the ergastoplasm. However, cell damage is indicated by diffusely distributed, hyaline single cell necrosis and by cytolytic piecemeal necrosis at the peripheries of hepatic lobules. Numerous, often disturbed mitoses produce binuclear and multinuclear hepatocytes. The obligatory secretion of protoporphyrin into the bile ducts leads to an alteration in the canalicular and ductular excretion apparatus which involves distinct ductular proliferation and accompanying fibrosis. Piecemeal necrosis is a further consequence of this process. The resulting histological picture is similar to sclerosing cholangitis with which it also has in common the slowly progressive development of hepatic cirrhosis. PMID:6117981

  6. Prevention and Management of Chronic Hepatitis B.

    PubMed

    Bhat, Mamatha; Ghali, Peter; Deschenes, Marc; Wong, Philip

    2014-12-01

    Chronic hepatitis B virus (HBV) infection affects an estimated 370 million people worldwide. HBV is endemic throughout the world, and insidiously causes liver damage over years and decades without any warning symptoms or signs. Up to 25-35% of infected individuals eventually die due to complications of liver cirrhosis and hepatocellular carcinoma (HCC) induced by HBV. Screening those individuals at risk of acquiring hepatitis B, and universal vaccination for prevention, would help in limiting the spread and public health repercussions of the virus. Although many new antiviral therapies have been developed for the management of hepatitis B, they still do not offer the possibility of cure. Most individuals who begin oral suppressive therapy will be indefinitely treated. Continuous suppression of HBV replication in individuals with advanced liver disease prolongs life, decreases the need for liver transplantation, and potentially reduces the risk for HCC. In this clinical review, we present a practical approach to prevention of HBV, its natural history and life cycle, as well as its management. PMID:26622990

  7. Prevalence of HIV, hepatitis B, and hepatitis C in people with severe mental illness.

    PubMed Central

    Rosenberg, S D; Goodman, L A; Osher, F C; Swartz, M S; Essock, S M; Butterfield, M I; Constantine, N T; Wolford, G L; Salyers, M P

    2001-01-01

    OBJECTIVES: This study assessed seroprevalence rates of HIV, hepatitis B virus (HBV), and hepatitis C virus (HCV) among individuals with severe mental illness. METHODS: Participants (n = 931) were patients undergoing inpatient or outpatient treatment in Connecticut, Maryland, New Hampshire, or North Carolina. RESULTS: The prevalence of HIV infection in this sample (3.1%) was approximately 8 times the estimated US population rate but lower than rates reported in previous studies of people with severe mental illness. Prevalence rates of HBV (23.4%) and HCV (19.6%) were approximately 5 and 11 times the overall estimated population rates for these infections, respectively. CONCLUSIONS: Elevated rates of HIV, HBV, and HCV were found. Of particular concern are the high rates of HCV infection, which are frequently undetected. Individuals with HCV infection commonly fail to receive appropriate treatment to limit liver damage and unknowingly may be a source of infection to others. PMID:11189820

  8. Damaged Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Saturn V vehicle, carrying the unmarned orbital workshop for the Skylab-1 mission, lifted off successfully and all systems performed normally. Sixty-three seconds into the flight, engineers in the operation support and control center saw an unexpected telemetry indication that signalled that damages occurred on one solar array and the micrometeoroid shield during the launch. The micrometeoroid shield, a thin protective cylinder surrounding the workshop protecting it from tiny space particles and the sun's scorching heat, ripped loose from its position around the workshop. This caused the loss of one solar wing and jammed the other. Still unoccupied, the Skylab was stricken with the loss of the heat shield and sunlight beat mercilessly on the lab's sensitive skin. Internal temperatures soared, rendering the station uninhabitable, threatening foods, medicines, films, and experiments. This image, taken during a fly-around inspection by the Skylab-2 crew, shows a crippled Skylab in orbit. The crew found their home in space to be in serious shape; the heat shield gone, one solar wing gone, and the other jammed. The Marshall Space Flight Center (MSFC) developed, tested, rehearsed, and approved three repair options. These options included a parasol sunshade and a twin-pole sunshade to restore the temperature inside the workshop, and a set of metal cutting tools to free the jammed solar panel.

  9. Damaged Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Saturn V vehicle, carrying the unmarned orbital workshop for the Skylab-1 mission, lifted off successfully and all systems performed normally. Sixty-three seconds into the flight, engineers in the operation support and control center saw an unexpected telemetry indication that signalled that damages occurred on one solar array and the micrometeoroid shield during the launch. The micrometeoroid shield, a thin protective cylinder surrounding the workshop, that protected it from tiny space particles and the sun's scorching heat, ripped loose from its position around the workshop. This caused the loss of one solar wing and jammed the other. Still unoccupied, the Skylab was stricken with the loss of the heat shield and sunlight beat mercilessly on the lab's sensitive skin. Internal temperatures soared, rendering the station uninhabitable, threatening foods, medicines, films, and experiments. This image, taken during a fly-around inspection by the Skylab-2 crew, shows the exterior skin of the workshop discolored by solar radiation. The Marshall Space Flight Center (MSFC) developed, tested, rehearsed, and approved three repair options. These options included a parasol sunshade and a twin-pole sunshade to restore the temperature inside the workshop, and a set of metal cutting tools to free the jammed solar panel.

  10. Hepatitis B (HBV)

    MedlinePLUS

    ... from Nemours for Parents for Kids for Teens Teens Home Body Mind Sexual Health Food & Fitness Diseases & Conditions Infections Q&A School & Jobs Drugs & Alcohol Staying Safe Recipes En Espaol Making a Change Your Personal ... For Teens > Hepatitis B (HBV) Print A A A Text ...

  11. Management of Hepatic Encephalopathy

    PubMed Central

    Wright, G.; Chattree, A.; Jalan, R.

    2011-01-01

    Hepatic encephalopathy (HE), the neuropsychiatric presentation of liver disease, is associated with high morbidity and mortality. Reduction of plasma ammonia remains the central therapeutic strategy, but there is a need for newer novel therapies. We discuss current evidence supporting the use of interventions for both the general management of chronic HE and that necessary for more acute and advanced disease. PMID:21994873

  12. Azathioprine induced cholestatic hepatitis

    PubMed Central

    Moses, Viju; Ramakrishna, Banumathi; Thomas, Kurien

    2011-01-01

    We report a case of cholestatic hepatitis developed one week after exposure to azathioprine. The subsequent prolonged cholestatic phase was followed by full clinical remission. Current knowledge on pathogenesis and epidemiology and the diagnostic challenges presented by this rare complication are discussed, followed by recommendations for monitoring and management. PMID:22144788

  13. Hyperalimentation in alcoholic hepatitis.

    PubMed

    Galambos, J T; Hersh, T; Fulenwider, J T; Ansley, J D; Rudman, D

    1979-11-01

    Enteral hyperalimentation in four patients with severe alcoholic hepatitis and anorexia increased spontaneous food intake, increased their nitrogen balance and the patients improved clinically. Seven patients with alcoholic hepatitis, who were clinically ill and able to eat only 410-1,100 calories per day, were given a 900 mosM/l. parenteral "hyperalimentation" solution by a peripheral vein (P-900). The intravenous nutrition provided daily 51.6-77.4 gm. amino acids in addition to oral intake. All patients improved. None developed detectable encephalopathy after 16-42 days of P-900 therapy. Five additional patients had ascites and alcoholic hepatitis. The daily infusion of 2,000 ml. P-900 was not associated with hyponatremia, renal failure or encephalopathy in four of these five patients who improved and continued their diuresis. P-900 therapy was discontinued in one because of progressive hyponatremia. The observations indicate that over and above the maximum tolerable oral nutrition, intravenous nutrition can be effectively utilized by clinically ill, jaundiced patients with alcoholic hepatitis without precipitating encephalopathy or interference with standard therapy of ascites. PMID:119434

  14. [Hepatitis C in Mexico].

    PubMed

    Uribe, Misael; Mndez-Snchez, Nahum

    2002-10-01

    There are at least five Mexican studies which analyze HCV prevalence. As far as seroprevalence is concerned, it's clear that it's closely related to transfusion history and sexual promiscuity. Based on data provided by the censuses and previous prevalence studies, it has been inferred that today there are nearly 1.2 million Mexicans infected with hepatitis C virus. PMID:12712842

  15. Minimally Invasive Hepatic Surgery.

    PubMed

    Ocuin, Lee M; Tsung, Allan

    2016-04-01

    This review provides an overview of the background and progress that has been made in minimally invasive liver surgery. The essential steps of minimally invasive right and left lobectomy as well as left lateral sectionectomy are reviewed. In addition, existing data regarding the feasibility and oncologic outcomes of minimally invasive hepatic resection for malignancy are discussed. PMID:27017866

  16. Mitochondrial Dysfunction and Autophagy in Hepatic Ischemia/Reperfusion Injury

    PubMed Central

    Go, Kristina L.; Lee, Sooyeon; Zendejas, Ivan; Behrns, Kevin E.; Kim, Jae-Sung

    2015-01-01

    Ischemia/reperfusion (I/R) injury remains a major complication of liver resection, transplantation, and hemorrhagic shock. Although the mechanisms that contribute to hepatic I/R are complex and diverse involving the interaction of cell injury in hepatocytes, immune cells, and endothelium, mitochondrial dysfunction is a cardinal event culminating in hepatic reperfusion injury. Mitochondrial autophagy, so-called mitophagy, is a key cellular process that regulates mitochondrial homeostasis and eliminates damaged mitochondria in a timely manner. Growing evidence accumulates that I/R injury is attributed to defective mitophagy. This review aims to summarize the current understanding of autophagy and its role in hepatic I/R injury and highlight the various therapeutic approaches that have been studied to ameliorate injury. PMID:26770970

  17. Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways

    PubMed Central

    Seki, Ekihiro; Schwabe, Robert F.

    2014-01-01

    Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty and autoimmune origin. Inflammation is typically present in all disease stages, and associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T- and B-lymphocytes, NK cells and platelets, as well as key effectors such as cytokines, chemokines, and damage-associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of anti-fibrogenic strategies. PMID:25066777

  18. Gastric secretion and basal gastrin concentration in bilharzial hepatic fibrosis.

    PubMed Central

    Boulos, P B; Okosdonossian, E T; Elmunshid, H A; Elmasri, S H; Hassan, M A; Hobsley, M

    1978-01-01

    Gastric secretion and fasting plasma gastrin levels were investigated in 26 patients with bilharzial hepatic fibrosis and 26 controls. The groups did not differ in their basal secretion. When stimulated by intravenous infusion of histamine the maximal acid output in patients with bilharzial hepatic fibrosis was significantly less than in the control group. This was unlikely to be a result of neutralisation by reflux of alkaline duodenal contents as the volumes of reflux were not different from control subjects, but was compatible with a true reduction in gastric secretion as assessed by two-component hypothesis. Neither the lowered gastric acidity nor the liver damage in patients with bilharzial hepatic fibrosis correlated with circulating gastrin. The fasting levels of plasma gastrin in these patients were not different from controls. As in other liver diseases the cause of diminished gastric secretion remains unclear. PMID:30681

  19. The effects of insulin pre-administration in mice exposed to ethanol: alleviating hepatic oxidative injury through anti-oxidative, anti-apoptotic activities and deteriorating hepatic steatosis through SRBEP-1c activation.

    PubMed

    Liu, Jiangzheng; Wang, Xin; Peng, Zhengwu; Zhang, Tao; Wu, Hao; Yu, Weihua; Kong, Deqing; Liu, Ying; Bai, Hua; Liu, Rui; Zhang, Xiaodi; Hai, Chunxu

    2015-01-01

    Alcoholic liver disease (ALD) has become an important liver disease hazard to public and personal health. Oxidative stress is believed to be responsible for the pathological changes in ALD. Previous studies have showed that insulin, a classic regulator of glucose metabolism, has significant anti-oxidative function and plays an important role in maintaining the redox balance. For addressing the effects and mechanisms of insulin pre-administration on ethanol-induced liver oxidative injury, we investigated histopathology, inflammatory factors, apoptosis, mitochondrial dysfunction, oxidative stress, antioxidant defense system, ethanol metabolic enzymes and lipid disorder in liver of ethanol-exposed mice pretreatment with insulin or not. There are several novel findings in our study. First, we found insulin pre-administration alleviated acute ethanol exposure-induced liver injury and inflammation reflected by the decrease of serum AST and ALT activities, the improvement of pathological alteration and the inhibition of TNF-? and IL-6 expressions. Second, insulin pre-administration could significantly reduce apoptosis and ameliorate mitochondrial dysfunction in liver of mice exposed to ethanol, supporting by decreasing caspases-3 activities and the ratio of Bax/Bcl-2, increasing mitochondrial viability and mitochondrial oxygen consumption, inhibition of the decline of ATP levels and mitochondrial ROS accumulation. Third, insulin pre-administration prevented ethanol-mediated oxidative stress and enhance antioxidant defense system, which is evaluated by the decline of MDA levels and the rise of GSH/GSSG, the up-regulations of antioxidant enzymes CAT, SOD, GR through Nrf-2 dependent pathway. Forth, the modification of ethanol metabolism pathway such as the inhibition of CYP2E1, the activation of ALDH might be involved in the anti-oxidative and protective effects exerted by insulin pre-administration against acute ethanol exposure in mice. Finally, insulin pre-administration deteriorated hepatic steatosis in mice exposed to ethanol might be through SRBEP-1c activation. In summary, these results indicated that insulin pre-administration effectively alleviated liver oxidative injury through anti-inflammatory, anti-oxidative and anti-apoptotic activities but also deteriorated hepatic steatosis through SRBEP-1c activation in mice exposed to ethanol. Our study provided novel insight about the effects and mechanisms of insulin on ethanol-induced liver injury. PMID:25892964

  20. The effects of Insulin Pre-Administration in Mice Exposed to Ethanol: Alleviating Hepatic Oxidative Injury through Anti-Oxidative, Anti-Apoptotic Activities and Deteriorating Hepatic Steatosis through SRBEP-1c Activation

    PubMed Central

    Liu, Jiangzheng; Wang, Xin; Peng, Zhengwu; Zhang, Tao; Wu, Hao; Yu, Weihua; Kong, Deqing; Liu, Ying; Bai, Hua; Liu, Rui; Zhang, Xiaodi; Hai, Chunxu

    2015-01-01

    Alcoholic liver disease (ALD) has become an important liver disease hazard to public and personal health. Oxidative stress is believed to be responsible for the pathological changes in ALD. Previous studies have showed that insulin, a classic regulator of glucose metabolism, has significant anti-oxidative function and plays an important role in maintaining the redox balance. For addressing the effects and mechanisms of insulin pre-administration on ethanol-induced liver oxidative injury, we investigated histopathology, inflammatory factors, apoptosis, mitochondrial dysfunction, oxidative stress, antioxidant defense system, ethanol metabolic enzymes and lipid disorder in liver of ethanol-exposed mice pretreatment with insulin or not. There are several novel findings in our study. First, we found insulin pre-administration alleviated acute ethanol exposure-induced liver injury and inflammation reflected by the decrease of serum AST and ALT activities, the improvement of pathological alteration and the inhibition of TNF-? and IL-6 expressions. Second, insulin pre-administration could significantly reduce apoptosis and ameliorate mitochondrial dysfunction in liver of mice exposed to ethanol, supporting by decreasing caspases-3 activities and the ratio of Bax/Bcl-2, increasing mitochondrial viability and mitochondrial oxygen consumption, inhibition of the decline of ATP levels and mitochondrial ROS accumulation. Third, insulin pre-administration prevented ethanol-mediated oxidative stress and enhance antioxidant defense system, which is evaluated by the decline of MDA levels and the rise of GSH/GSSG, the up-regulations of antioxidant enzymes CAT, SOD, GR through Nrf-2 dependent pathway. Forth, the modification of ethanol metabolism pathway such as the inhibition of CYP2E1, the activation of ALDH might be involved in the anti-oxidative and protective effects exerted by insulin pre-administration against acute ethanol exposure in mice. Finally, insulin pre-administration deteriorated hepatic steatosis in mice exposed to ethanol might be through SRBEP-1c activation. In summary, these results indicated that insulin pre-administration effectively alleviated liver oxidative injury through anti-inflammatory, anti-oxidative and anti-apoptotic activities but also deteriorated hepatic steatosis through SRBEP-1c activation in mice exposed to ethanol. Our study provided novel insight about the effects and mechanisms of insulin on ethanol-induced liver injury. PMID:25892964

  1. Maintaining Hepatic Stem Cell Gene Expression on Biological and Synthetic Substrata

    PubMed Central

    Lucendo-Villarin, Baltasar; Khan, Ferdous; Pernagallo, Salvatore; Bradley, Mark; Iredale, John P.

    2012-01-01

    Abstract The liver is a highly resilient organ that possesses enormous regenerative capacity. This is mediated mainly through the most abundant cell type found in the liver, the hepatocyte. When the regenerative capacity of the hepatocyte is compromised, during chronic or acute liver injury, hepatic progenitor cells (HPCs) are activated to replace the damaged tissue. The HPC resides in a laminin-rich environment; as HPCs differentiate toward a hepatic or biliary fate, the extracellular matrix (ECM) composition changes, influencing cell behavior. To assess the impact that the biological ECM and the synthetic ECM have on the maintenance of hepatic stem cell gene expression, a murine hepatic stem cell line was employed. We demonstrate that hepatic stem cell gene expression could be maintained using a biological or synthetic substratum, but not on plastic alone. PMID:23515003

  2. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    SciTech Connect

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-08-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup -}) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH{sup -} and hepatic ADH-normal (ADH{sup +}) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was {approx} 1.5-fold greater in ADH{sup -} vs. ADH{sup +} deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH{sup -} deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  3. Acute liver damage and ecstasy ingestion.

    PubMed Central

    Ellis, A J; Wendon, J A; Portmann, B; Williams, R

    1996-01-01

    Eight cases of ecstasy related acute liver damage referred to a specialised liver unit are described. Two patients presented after collapse within six hours of ecstasy ingestion with hyperthermia, hypotension, fitting, and subsequently disseminated intravascular coagulation with rhabdomyolysis together with biochemical evidence of severe hepatic damage. One patient recovered and the other with evidence of hyperacute liver failure was transplanted but subsequently died, histological examination showing widespread microvesicular fatty change. Four patients presented with acute liver failure without hyperthermia. All four fulfilled criteria for transplantation, one died before a donor organ became available, and two died within one month post-transplantation of overwhelming sepsis. Histological examination showed submassive lobular collapse. Two patients presented with abdominal pain and jaundice and recovered over a period of three weeks; histological examination showed a lobular hepatitis with cholestasis. Patients developing jaundice or with evidence of hepatic failure particularly encephalopathy and prolongation of the international normalised ratio, or both, whether or not preceded by hyperthermia, should be referred to a specialised liver unit as liver transplantation probably provides the only chance of recovery. Images Figure 1 Figure 2 Figure 3 PMID:8675102

  4. Isolated liver damage in chemical workers.

    PubMed Central

    Dssing, M; Ranek, L

    1984-01-01

    During a period of 18 months three workers were admitted to hospital with jaundice that had developed two to four months after beginning work at a chemical plant. Liver biopsies showed severe centrilobular, haemorrhagic liver cell necrosis. The pathological changes resolved within six to 18 months. No damage to other organs was observed. The only worker who resumed work at the plant developed clinical and biochemical evidence of relapse of liver damage. Exposure to carbon disulphide, isopropanol, toluene, and acrylonitrile among others was shown, but liver damage may have been caused by a synergistic, hepatotoxic reaction mediated through the hepatic microsomal enzyme system. It was not possible to decide which chemical was responsible. Images PMID:6691931

  5. Serum Fibronectin Levels in Acute and Chronic Viral Hepatitis Patients

    PubMed Central

    ERTURK, Ayse; CURE, Erkan; OZKURT, Zulal; PARLAK, Emine; CURE, Medine Cumhur

    2014-01-01

    Background: The aim of this study was to investigate the serum fibronectin (FN) levels and liver enzyme activities in patients with acute hepatitis (A, B, C) and chronic viral hepatitis (B, C); determine whether the virus types correlated with disease severity; and assess whether FN could be used as a marker of virus type or disease severity in patients. Methods: A total of 60 subjects were enrolled in the study, including 20 patients with acute hepatitis (A, B, C), 20 with chronic hepatitis (B, C), and 20 healthy controls. Serum fibronectin (FN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transpeptidase (GGT), and albumin were measured in all patients from blood samples. Results: Serum FN levels were significantly lower in acute (122.9 ?g/mL (SD 43.1), P < 0.001) and chronic hepatitis patients (135.7 ?g/mL (SD 46.0), P < 0 .001) compared to controls 221.4 ?g/mL (SD 32.5). A negative correlation was found between serum FN and AST (r2 = 0.528, P < 0.001), ALT (r2 = 0.425, P < 0.001), and GGT (r2 = 0.339, P < 0.001). Additionally, high serum GGT levels (? = 0.375, P = 0.010), and low serum albumin levels (? = 0.305, P = 0.008) were associated with low serum FN levels. Conclusion: Serum FN levels were lower in both acute and chronic hepatitis patients, and an inverse relationship between serum FN and serum AST, ALT, and GGT levels was found. A decrease in serum FN levels may indicate hepatitis severity as AST and ALT represent hepatocyte damage. PMID:24639609

  6. Hepatic oxidative stress in an animal model of sleep apnoea: effects of different duration of exposure

    PubMed Central

    2011-01-01

    Background Repeated apnoea events cause intermittent hypoxia (IH), which alters the function of various systems and produces free radicals and oxidative stress. Methods We investigated hepatic oxidative stress in adult mice subjected to intermittent hypoxia, simulating sleep apnoea. Three groups were submitted to 21 days of IH (IH-21), 35 days of IH (IH-35), or 35 days of sham IH. We assessed the oxidative damage to lipids by TBARS and to DNA by comet assay; hepatic tissue inflammation was assessed in HE-stained slides. Antioxidants were gauged by catalase, superoxide dismutase, glutathione peroxidase activity and by total glutathione. Results After IH-21, no significant change was observed in hepatic oxidative stress. After IH-35, significant oxidative stress, lipid peroxidation, DNA damage and reduction of endogenous antioxidants were detected. Conclusions In an animal model of sleep apnoea, intermittent hypoxia causes liver damage due to oxidative stress after 35 days, but not after 21 days. PMID:21729291

  7. Iron Deficiency Impairs Intra-Hepatic Lymphocyte Mediated Immune Response

    PubMed Central

    Lozano, Juan Jos; Martinez-Picola, Marta; Kodela, Elisavet; Mas-Malavila, Roser; Bruguera, Miquel; Collins, Helen L.; Hider, Robert C.; Martinez-Llordella, Marc; Sanchez-Fueyo, Alberto

    2015-01-01

    Hepatic expression of iron homeostasis genes and serum iron parameters predict the success of immunosuppression withdrawal following clinical liver transplantation, a phenomenon known as spontaneous operational tolerance. In experimental animal models, spontaneous liver allograft tolerance is established through a process that requires intra-hepatic lymphocyte activation and deletion. Our aim was to determine if changes in systemic iron status regulate intra-hepatic lymphocyte responses. We used a murine model of lymphocyte-mediated acute liver inflammation induced by Concanavalin A (ConA) injection employing mice fed with an iron-deficient (IrDef) or an iron-balanced diet (IrRepl). While the mild iron deficiency induced by the IrDef diet did not significantly modify the steady state immune cell repertoire and systemic cytokine levels, it significantly dampened inflammatory liver damage after ConA challenge. These findings were associated with a marked decrease in T cell and NKT cell activation following ConA injection in IrDef mice. The decreased liver injury observed in IrDef mice was independent from changes in the gut microflora, and was replicated employing an iron specific chelator that did not modify intra-hepatic hepcidin secretion. Furthermore, low-dose iron chelation markedly impaired the activation of isolated T cells in vitro. All together, these results suggest that small changes in iron homeostasis can have a major effect in the regulation of intra-hepatic lymphocyte mediated responses. PMID:26287688

  8. The concanavalin A model of acute hepatitis in mice.

    PubMed

    Heymann, F; Hamesch, K; Weiskirchen, R; Tacke, F

    2015-04-01

    The intravenous injection of the plant lectin concanavalin A (ConA) is a widely used model for acute immune-mediated hepatitis in mice. In contrast to several other models for acute hepatic damage, ConA-induced injury is primarily driven by the activation and recruitment of T cells to the liver. Hence, the ConA model has unique features with respect to its pathogenesis and important similarities to immune-mediated hepatitis in humans, such as autoimmune hepatitis, acute viral hepatitis or distinct entities of drug toxicity leading to immune activation. However, the ConA model has considerable variability, depending on the preparation of the compound, genetic background of the mice, sex, age and microbial environment of the animal facility barrier. This standard operating procedure (SOP) comprises a detailed protocol for the ConA application, including preparation of ConA working solution, handling of the animals, choice of the appropriate conditions and endpoints, as well as efficient dose-finding. PMID:25835734

  9. Hepatitis B and human immunodeficiency virus co-infection

    PubMed Central

    Phung, Bao-Chau; Sogni, Philippe; Launay, Odile

    2014-01-01

    Hepatitis B and human immunodeficiency virus (HBV and HIV) infection share transmission patterns and risk factors, which explains high prevalence of chronic HBV infection in HIV infected patients. The natural course of HBV disease is altered by the HIV infection with less chance to clear acute HBV infection, faster progression to cirrhosis and higher risk of liver-related death in HIV-HBV co-infected patients than in HBV mono-infected ones. HIV infected patients with chronic hepatitis B should be counseled for liver damage and surveillance of chronic hepatitis B should be performed to screen early hepatocellular carcinoma. Noninvasive tools are now available to evaluate liver fibrosis. Isolated hepatitis B core antibodies (anti-HBc) are a good predictive marker of occult HBV infection. Still the prevalence and significance of occult HBV infection is controversial, but its screening may be important in the management of antiretroviral therapy. Vaccination against HBV infection is recommended in non-immune HIV patients. The optimal treatment for almost all HIV-HBV co-infected patients should contain tenofovir plus lamivudine or emtricitabine and treatment should not be stopped to avoid HBV reactivation. Long term tenofovir therapy may lead to significant decline in hepatitis B surface Antigen. The emergence of resistant HBV strains may compromise the HBV therapy and vaccine therapy. PMID:25516647

  10. Hepatic Tissue Engineering Using Scaffolds: State of the Art

    PubMed Central

    Kazemnejad, Somaieh

    2009-01-01

    Severe hepatic failure accounts for many deaths and raises medical costs each year worldwide. Currently, liver transplantation is the most common therapeutic option for patients with end-stage chronic liver disease. Due to decrease in the number of organ donors, many in need of transplantation continue to remain on the waiting list. Hepatic Tissue Engineering is a step toward alleviating the need for organ donors. Regenerative medicine and tissue engineering require two complementary key ingredients as follows: 1) biologically compatible scaffolds that can be readily adopted by the body system without harm, and 2) suitable cells including various stem cells or primary cells that effectively replace the damaged tissues without adverse consequences. Yet many challenges must be overcome such as scaffold choice, cell source and immunological barriers. Today, hepatogenic differentiation of stem cells has created trust and promise for use of these cells in hepatic tissue engineering and liver replacement. However, using suitable scaffolds is an important key to achieving the necessary functions required for hepatic replacement. In recent years, different scaffolds have been used for liver tissue engineering. In this review, we have presented different concepts in using cell /scaffold constructs to guide hepatic tissue engineering. PMID:23408654

  11. Fulminant Hepatic Failure Secondary to Primary Hepatic Angiosarcoma

    PubMed Central

    Abegunde, Ayokunle T.; Aisien, Efe; Mba, Benjamin; Chennuri, Rohini; Sekosan, Marin

    2015-01-01

    Background. Hepatic angiosarcoma is a rare and aggressive tumor that often presents at an advanced stage with nonspecific symptoms. Objective. To report a case of primary hepatic angiosarcoma in an otherwise healthy man with normal liver function tests two months prior to presenting with a short period of jaundice that progressed to fulminant hepatic failure. Methods. Case report and review of literature. Conclusion. This case illustrates the rapidity of progression to death after the onset of symptoms in a patient with hepatic angiosarcoma. Research on early diagnostic strategies and newer therapies are needed to improve prognosis in this rare and poorly understood malignancy with limited treatment options. PMID:25815217

  12. Prevention of hepatitis B.

    PubMed

    Chang, Mei-Hwei; Chen, Ding-Shinn

    2015-03-01

    Hepatitis B virus (HBV) causes life-threatening liver disease. It is transmitted through a horizontal route or a mother-to-infant route, and the latter is the major route in endemic areas. Prevention of HBV infection by immunization is the best way to eliminate HBV-related diseases. The HBV vaccine is the first human vaccine using a viral antigen from infected persons, which is safe and effective. Either passive immunization by hepatitis B immunoglobulin (HBIG) or active immunization by HBV vaccine is effective, and a combination of both yields the best efficacy in preventing HBV infection. The impact of universal HBV immunization is huge, with 90%-95% effectiveness in preventing chronic HBV infection. It is the first cancer preventive vaccine with a protective efficacy against hepatocellular carcinoma (HCC) of ? 70%. Nevertheless, further effort is still needed to avoid vaccine failure and to increase the global coverage rate. PMID:25732034

  13. Management of Covert Hepatic Encephalopathy

    PubMed Central

    Waghray, Abhijeet; Waghray, Nisheet; Mullen, Kevin

    2015-01-01

    Hepatic encephalopathy is a reversible progressive neuropsychiatric disorder that encompasses a wide clinical spectrum. Covert hepatic encephalopathy is defined as patients with minimal hepatic encephalopathy and Grade I encephalopathy by West-Haven Criteria. Terminology such as sub-clinical, latent, and minimal appear to trivialize the disease and have been replaced by the term covert. The lack of clinical signs means that covert hepatic encephalopathy is rarely recognized or treated outside of clinical trials with options for therapy based on patients with episodic hepatic encephalopathy. This review discusses the current available options for therapy in covert hepatic encephalopathy and focuses on non-absorbable disacharides (lactulose or lactitol), antibiotics (rifaximin), probiotics/synbiotics and l-ornithine-l-aspartate. PMID:26041963

  14. Hepatitis E Virus Infection

    PubMed Central

    Dalton, Harry R.; Abravanel, Florence; Izopet, Jacques

    2014-01-01

    SUMMARY Hepatitis E virus (HEV) infection is a worldwide disease. An improved understanding of the natural history of HEV infection has been achieved within the last decade. Several reservoirs and transmission modes have been identified. Hepatitis E is an underdiagnosed disease, in part due to the use of serological assays with low sensitivity. However, diagnostic tools, including nucleic acid-based tests, have been improved. The epidemiology and clinical features of hepatitis E differ between developing and developed countries. HEV infection is usually an acute self-limiting disease, but in developed countries it causes chronic infection with rapidly progressive cirrhosis in organ transplant recipients, patients with hematological malignancy requiring chemotherapy, and individuals with HIV. HEV also causes extrahepatic manifestations, including a number of neurological syndromes and renal injury. Acute infection usually requires no treatment, but chronic infection should be treated by reducing immunosuppression in transplant patients and/or the use of antiviral therapy. In this comprehensive review, we summarize the current knowledge about the virus itself, as well as the epidemiology, diagnostics, natural history, and management of HEV infection in developing and developed countries. PMID:24396139

  15. Prolonged hepatitis B surface antigenemia after vaccination.

    PubMed

    Lunn, E R; Hoggarth, B J; Cook, W J

    2000-06-01

    Infection with hepatitis B virus can lead to serious long-term complications including chronic hepatitis B virus infection leading to hepatocellular carcinoma, liver failure, and death. We report a case of prolonged hepatitis B antigenemia after routine vaccination with Engerix B. A positive hepatitis B surface antigen was found when the individual donated blood 18 days after vaccination. This resulted in rejection of the donated blood and permanent deferral from further donation. It also led to referral to a physician, creating anxiety in the individual and additional unnecessary testing. Additional studies are needed to identify the length to time of hepatitis B surface antigenemia after hepatitis B vaccination, and blood collection centers should be aware of the potential for donors to have a prolonged false-positive hepatitis B surface antigen after vaccination against hepatitis B. hepatitis B, hepatitis B vaccine, hepatitis B surface antigen, vaccine-induced positive hepatitis B surface antigen, Engerix B. PMID:10835094

  16. Zepatier Approved for Chronic Hepatitis C

    MedlinePLUS

    ... fullstory_156989.html Zepatier Approved for Chronic Hepatitis C Liver disease affects some 3 million Americans To ... Administration to treat chronic infection with the hepatitis C virus, genotypes 1 and 4. Hepatitis C causes ...

  17. Hepatitis A Also Known As Hep A

    MedlinePLUS

    ... with hep