Note: This page contains sample records for the topic ethyl glucuronide determination from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Ethyl glucuronide  

Microsoft Academic Search

A marker with a specific time spectrum of detection and both high sensitivity and specificity is required to diminish the clinically as well as forensically important gap on the time axis between short- and long-term markers of alcohol consumption like ethanol and CDT, GGT or MCV, respectively. Ethyl glucuronide (EtG) is a non-volatile, water-soluble, stable upon storage, direct metabolite of

Friedrich Martin Wurst; Christoph Kempter; Joerg Metzger; Stephan Seidl; Andreas Alt

2000-01-01

2

Segmental determination of ethyl glucuronide in hair: A pilot study  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a minor metabolite of ethanol. Its detection in hair is more and more studied in both clinical and forensic context for the purpose of alcohol abuse monitoring. In this pilot study, hair specimens from 15 patients included in a treatment program after alcohol abuse cessation, were segmented and analyzed for EtG. The results were then compared

Brice M. R. Appenzeller; Resmi Agirman; Paul Neuberg; Michel Yegles; Robert Wennig

2007-01-01

3

Ethyl glucuronide and ethyl sulphate determination in serum by liquid chromatography–electrospray tandem mass spectrometry  

Microsoft Academic Search

BackgroundEthyl glucuronide (EtG) and ethyl sulphate (EtS) are two ethanol metabolites that can be detected in serum up to 8 h after ethanol elimination. Their presence is therefore indicative of recent ethanol consumption in case of delayed sampling after an event (e.g. car crash).

Luca Morini; Lucia Politi; Alessandra Zucchella; Aldo Polettini

2007-01-01

4

Segmental determination of ethyl glucuronide in hair: a pilot study.  

PubMed

Ethyl glucuronide (EtG) is a minor metabolite of ethanol. Its detection in hair is more and more studied in both clinical and forensic context for the purpose of alcohol abuse monitoring. In this pilot study, hair specimens from 15 patients included in a treatment program after alcohol abuse cessation, were segmented and analyzed for EtG. The results were then compared to their self-reported past alcohol consumption and to their blood biomarkers values (GGT, MCV, ASAT, ALAT). EtG concentrations measured in hair varied from 8 to 261 pg/mg. The pattern of EtG concentration detected in the different hair segments matched with the drinking history of patients, displaying variations (increase and decrease) in alcohol consumption and also time of cessation. Results also demonstrated the existence of a significant correlation (r(p)=0.5357; p=0.0390) between EtG concentration in hair and the amount of alcohol intake. Variations in the EtG concentrations with respect to hair segments may provide an overview of the drinking history of patients. Moreover, EtG concentration in hair may help to estimate the daily alcohol intake. PMID:17337139

Appenzeller, Brice M R; Agirman, Resmi; Neuberg, Paul; Yegles, Michel; Wennig, Robert

2007-12-20

5

A novel and an effective analytical approach for the LCMS determination of ethyl glucuronide and ethyl sulfate in urine  

Microsoft Academic Search

An alternative liquid chromatography-mass spectrometry (LC-MS) method based on no discharge (ND) atmospheric pressure chemical ionization (APCI) was developed for the simultaneous determination of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in urine in negative ion conditions. Abundant [M-H] - species of EtG and EtS were obtained, allowing to reach limits of quantification (0.1 ?g\\/ml for both analytes), accuracy, and

Donata Favretto; Alessandro Nalesso; Giampietro Frison; Guido Viel; Pietro Traldi; Santo Davide Ferrara

2010-01-01

6

Determination of ethyl glucuronide in human hair by SPE and LC–MS\\/MS  

Microsoft Academic Search

A method for the sensitive and selective determination of ethyl glucuronide (EtG) in hair has been developed using solid-phase extraction (SPE) and liquid chromatography–tandem mass spectrometry (LC–MS\\/MS). Washed and cut hair segments were extracted by ultrasonication (3h, 50°C) and the extracts were cleaned-up with aminopropyl SPE columns. LC–MS\\/MS analysis was performed using a polar-endcapped phenyl-hexyl-RP-phase with negative mode electrospray ionisation

Ines Janda; Wolfgang Weinmann; Thorsten Kuehnle; Martina Lahode; Andreas Alt

2002-01-01

7

Improvement of ethyl glucuronide determination in human urine and serum samples by solid-phase extraction  

Microsoft Academic Search

An improved method for the determination of ethyl glucuronide (EtG) in human serum and urine was developed using solid-phase extraction (SPE) and gas chromatography (GC) with mass spectrometric detection (MS). EtG was isolated from serum and urine using aminopropyl SPE columns after deproteination with perchloric acid and hydrochloric acid, respectively. The chromatographic separation was performed on a DB 1701 fused-silica

Ines Janda; Andreas Alt

2001-01-01

8

Determination of ethyl glucuronide in urine using reversed-phase HPLC and pulsed electrochemical detection (Part II)  

Microsoft Academic Search

A direct, versatile method for the determination of ethyl glucuronide (EtG), a biomarker of ethanol consumption, in urine has been developed using reversed-phase liquid chromatography with pulsed electrochemical detection (PED). EtG and methyl glucuronide (MetG), which serves as an internal standard, are readily separated using a mobile phase consisting of 1% acetic acid\\/acetonitrile (98\\/2, v\\/v). Post-column addition of NaOH allows

Romina Kaushik; William R. LaCourse; Barry Levine

2006-01-01

9

Proton nuclear magnetic resonance spectroscopic determination of ethanol-induced formation of ethyl glucuronide in liver  

Microsoft Academic Search

Ethyl glucuronide (ethyl-?-d-6-glucosiduronic acid, EtG), a unique metabolite of ethanol, has received much recent attention as a sensitive and specific biological marker of ethanol consumption. Formed in the liver via conjugation of ethanol with activated glucuronate, EtG remains detectable in serum, plasma, and hair for days after ethanol abuse. Thus far, gas chromatography–mass spectrometry and enzyme-linked immunosorbent assays have been

Peter C. Nicholas; Daniel Kim; Fulton T. Crews; Jeffrey M. Macdonald

2006-01-01

10

Proton nuclear magnetic resonance spectroscopic determination of ethanol-induced formation of ethyl glucuronide in liver.  

PubMed

Ethyl glucuronide (ethyl-beta-D-6-glucosiduronic acid, EtG), a unique metabolite of ethanol, has received much recent attention as a sensitive and specific biological marker of ethanol consumption. Formed in the liver via conjugation of ethanol with activated glucuronate, EtG remains detectable in serum, plasma, and hair for days after ethanol abuse. Thus far, gas chromatography-mass spectrometry and enzyme-linked immunosorbent assays have been developed to detect trace quantities of EtG for forensic purposes, but reports of the nuclear magnetic resonance (NMR) properties of EtG have been scarce. Herein we present the first report of EtG determination using proton NMR spectroscopy. We collected 700-MHz proton spectra of liver extracts from rats treated with a 4-day binge ethanol protocol (average ethanol dose: 8.6g/kg/day). An unexpected signal (triplet, 1.24 ppm) appeared in ethanol-treated liver extracts but not in control samples; based on chemical shift and multiplicity, we suspected EtG. We observed quantitative hydrolysis of the unknown species to ethanol while incubating our samples with beta-glucuronidase, confirming that the methyl protons of EtG were responsible for the triplet at 1.24 ppm. This study demonstrates that proton NMR spectroscopy is capable of detecting EtG and that future NMR-based metabolomic studies may encounter this metabolite of ethanol. PMID:17027904

Nicholas, Peter C; Kim, Daniel; Crews, Fulton T; Macdonald, Jeffrey M

2006-11-15

11

Ethyl glucuronide determination in meconium and hair by hydrophilic interaction liquid chromatography–tandem mass spectrometry  

Microsoft Academic Search

Ethyl glucuronide (EtG) detection in non-conventional matrices, such as hair and meconium, can provide useful information on alcohol abuse over a long time frame, for example during pregnancy or after a withdrawal treatment. This study reports on the development, validation and application of a new hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC–MS\\/MS) method for the analysis of EtG in meconium

Isabela Tarcomnicu; Alexander L. N. van Nuijs; Katrien Aerts; Mireille De Doncker; Adrian Covaci; Hugo Neels

2010-01-01

12

Determination of ethyl glucuronide, a minor metabolite of ethanol, in human serum by liquid chromatography–electrospray ionization mass spectrometry  

Microsoft Academic Search

A rapid and sensitive determination procedure using liquid chromatography–electrospray ionization mass spectrometry (LC–ESI-MS) has been developed for the determination of ethyl glucuronide (EtG) in human serum. Samples were precipitated with methanol, centrifuged and the supernatant was evaporated to dryness followed by reconstitution with distilled water. As mobile phase 30 mM ammonium acetate–acetonitrile (30:70, v\\/v) was utilized. The base peak observed

M Nishikawa; H Tsuchihashi; A Miki; M Katagi; G Schmitt; H Zimmer; Th Keller; R Aderjan

1999-01-01

13

Can ethyl glucuronide in hair be determined only in 3 cm hair strands?  

PubMed

This paper addresses the suitability of ethyl glucuronide in hair (EtGH) strands other than 3cm for alcohol consumption. This issue will be addressed (a) by statistically comparing the distribution of EtGH results for 3cm hair strands to other hair strands analysed from 4126 cases and (b) by examining the stability of EtGH in an 8cm hair strand and two 12cm hair samples of two volunteers and a post-mortem case using 1cm segmental analysis. For 3464 driving license re-granting Medical and Psychological Assessment (MPA) cases, the detection of alcohol consumption using hair lengths longer than 3cm was never significantly less than for 3cm hair lengths, even up to 12cm hair lengths analysed non-segmented. For 662 non-MPA cases, where, in contrast to MPA cases, generally no abstinence was required, an increase in the EtGH positivity rate was observed with increasing hair length analysed up to 9cm, indicating that EtG-washout effects seem to play a minor role if any. For both MPA and non-MPA hair samples less than 3cm, a drastic, significant increase in the number of positive EtGH samples were observed, compared to 3cm hair lengths, strongly supportive of EtGH incorporation from sweat after a recent alcohol consumption. Segmental studies indicated that EtG is stable in the hair matrix up to 12cm long, hence supporting the above results. Even though both the statistical and the stability studies are preliminary results which need to be confirmed by other studies, they both provide evidence for the determination of alcohol consumption using EtGH in hair lengths longer than 3cm. Amendments to the Consensus of the Society of Hair Testing, the German driving license re-granting guidelines and EWDTS hair guidelines with respect to testing for abstinence and/or alcoholism are proposed for the benefit of the donors. PMID:22019395

Agius, Ronald; Ferreira, Liliane Martins; Yegles, Michel

2012-05-10

14

Determination of ethyl glucuronide in hair: a rapid sample pretreatment involving simultaneous milling and extraction.  

PubMed

A combination of simultaneous milling and extraction known as micropulverized extraction was developed for the quantification of the alcohol marker ethyl glucuronide (EtG) in hair samples using a homogeneous reference material and a mixer mill. Best extraction results from 50 mg of hair were obtained with 2-mL plastic tubes containing two steel balls (? = 5 mm), 0.5 mL of water and with an oscillating frequency of 30 s(-1) over a period of 30 min. EtG was quantified employing a validated GC-MS procedure involving derivatization with pentafluoropropionic acid anhydride. This micropulverization procedure was compared with dry milling followed by separate aqueous extraction and with aqueous extraction after manual cutting to millimeter-size snippets. Micropulverization yielded 28.0?±?1.70 pg/mg and was seen to be superior to manually cutting (23.0?±?0.83 pg/mg) and equivalent to dry grinding (27.7?±?1.71 pg/mg) with regard to completeness of EtG extraction. The option to process up to 20 samples simultaneously makes micropulverization especially valuable for the high throughput of urgent samples. PMID:24221575

Mönch, Bettina; Becker, Roland; Nehls, Irene

2014-01-01

15

Determination of ethyl glucuronide in human hair by hydrophilic interaction liquid chromatography-tandem mass spectrometry.  

PubMed

Ethyl glucuronide (EtG) is a direct metabolite of ethanol and has been utilized as a marker for alcohol intake. This study presents development, validation and application of a new hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the analysis of EtG in human hair samples. The linearity was assessed in the range of 5-2000 pg/mg hair, with a correlation coefficient of >0.99. The method was selective and sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 0.05 pg/mg and 0.18 pg/mg in hair, respectively. Differently from the extraction procedures in the literature, a fast and simple liquid-liquid method was used and highest recoveries and cleanest extracts were obtained. The method was successfully applied to 30 human hair samples which were taken from those who state they consume alcohol. EtG concentrations in the hair samples of alcohol users participated in this study, ranged between 1.34 and 82.73 pg/mg. From the concentration of EtG in hair strands 20 of the 30 subjects can be considered regular moderate drinkers. PMID:24112322

Yaldiz, Fadile; Daglioglu, Nebile; Hilal, Ahmet; Keten, Alper; Gülmen, Mete Korkut

2013-10-01

16

Ethyl glucuronide determination in meconium and hair by hydrophilic interaction liquid chromatography-tandem mass spectrometry.  

PubMed

Ethyl glucuronide (EtG) detection in non-conventional matrices, such as hair and meconium, can provide useful information on alcohol abuse over a long time frame, for example during pregnancy or after a withdrawal treatment. This study reports on the development, validation and application of a new hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the analysis of EtG in meconium and hair. For each matrix, the sample preparation and the chromatographic separation were thoroughly optimised. Additionally, experiments with reversed-phase liquid chromatography were also performed in the development stages. Analyses were carried out using a Phenomenex Luna HILIC column (150 mm x 3 mm, 5 microm) and a mobile phase composed by ammonium acetate 2mM and acetonitrile, in gradient. Different SPE cartridges (Oasis MAX, Oasis WAX, aminopropyl silica) and solvents were tested in order to obtain the highest recoveries and cleanest extracts. Optimal results were obtained for meconium with aminopropyl cartridges, while for hair an incubation of 16 h with 2 mL of water and acetonitrile (50/50, v/v) provided good results. The analytical method was validated for both matrices (meconium and hair) by assessing linearity, precision, accuracy, recovery and limit of quantification. The calibration curve concentrations ranged from 50 to 1200 pg/mg for meconium and from 20 to 1000 pg/mg for hair. Real meconium and hair samples were analyzed and results were consistent with literature. PMID:20061101

Tarcomnicu, Isabela; van Nuijs, Alexander L N; Aerts, Katrien; De Doncker, Mireille; Covaci, Adrian; Neels, Hugo

2010-03-20

17

A fully validated high-performance liquid chromatography-tandem mass spectrometry method for the determination of ethyl glucuronide in hair for the proof of strict alcohol abstinence  

Microsoft Academic Search

Hair analysis has become a powerful tool for the detection of chronic and past drug consumption. For several years, it has\\u000a been possible to determine even the intake of ethanol in hair samples by detecting the ethanol metabolites ethyl glucuronide\\u000a or fatty acid ethyl esters. Recently, new requirements were published for the use of EtG as an abstinence test (c

Maria Elena Albermann; F. Musshoff; B. Madea

2010-01-01

18

Disappearance of ethyl glucuronide during heavy putrefaction  

Microsoft Academic Search

IntroductionThere are previous publications showing the use of ethyl glucuronide (EtG), a non-oxidative metabolite of ethanol, as a marker of ante-mortem ingestion of alcohol in forensic autopsy cases. The problem of possible degradation or formation of EtG during putrefaction is however not well studied and the aim of this study was to investigate the possibility of false negative and false

Gudrun Høiseth; Ritva Karinen; Lene Johnsen; Per Trygve Normann; Asbjørg S. Christophersen; Jørg Mørland

2008-01-01

19

A High-Performance Liquid Chromatographic-Tandem Mass Spectrometric Method for the Determination of Ethyl Glucuronide and Ethyl Sulfate in Urine Validated According to Forensic Guidelines  

PubMed Central

Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are powerful markers for alcohol intake and abuse. Several analytical procedures for the quantification of EtG and EtG in serum and urine have been developed so far. Many of the published methods show limits of detections (LODs) or limits of quantifications (LOQs) for EtG in urine within the range of 0.1 mg/L or higher. Since this is the actual cutoff value for proving abstinence in Germany, problems may occur if urine samples are highly diluted. In this paper, the validation of a highly sensitive, fast and simple LC–MS–MS for the determination of EtG and EtS in urine is described. The calibration curves for EtG and EtS is linear over the whole range (0.025–2.0 mg/L). Very low detection limits can be achieved (LOD: EtG 0.005 mg/L, EtS 0.005 mg/L; and LOQ: EtG 0.019 mg/L, EtS 0.015 mg/L). All data for selectivity, precision and accuracy, recovery, as well as for the processed sample and the freeze/thaw stability, comply with the guidelines of the German Society of Toxicological and Forensic Chemistry. Strong matrix-related effects can be compensated for by using an internal standard. Finally, the applicability of the procedure is proven by analysis of 87 human urine samples and by successful participation in interlaboratory comparison tests.

Albermann, M.E.; Musshoff, F.; Madea, B.

2012-01-01

20

Detection of ethyl glucuronide in blood spotted on different surfaces  

Microsoft Academic Search

This study aims to show that sensitive detection of ethyl glucuronide in dried blood spotted onto various surfaces after a period of 24h is feasible. At present, there is insufficient information how tightly ethyl glucuronide (EtG) binds to various materials and how easily it can be eluted. 4ml aliquots of blood samples obtained from seven volunteers after consumption of alcoholic

M. Winkler; E. Kaufmann; D. Thoma; A. Thierauf; W. Weinmann; G. Skopp; A. Alt

2011-01-01

21

Ethyl glucuronide concentration in hair is not influenced by pigmentation.  

PubMed

This work shows that the concentration of ethyl glucuronide (EtG) in hair, a marker for the evaluation of the alcohol consumption, is not influenced by the presence or absence of melanin. The results confirm that, unlike many other substances, the EtG determination in hair has not to take into account the hair colour for the correct interpretation of hair testing results. PMID:17517821

Appenzeller, Brice M R; Schuman, Marc; Yegles, Michel; Wennig, Robert

2007-01-01

22

EVALUATION OF A NEW IMMUNOASSAY FOR URINARY ETHYL GLUCURONIDE TESTING  

Microsoft Academic Search

Aims: The minor ethanol metabolite ethyl glucuronide (EtG) is used as a sensitive and specific test for recent alcohol consumption with clinical and forensic applications. This study evaluated a new enzyme immunoassay (DRI-EtG EIA, Microgenics Corp.) for determination of the EtG concentration in urine samples. Methods: Evaluation was done using the kit calibrators (range 0-5.0 mg\\/L) and controls, an external

OLOF BECK; ANDERS HELANDER

2007-01-01

23

Detection Times for Urinary Ethyl Glucuronide and Ethyl Sulfate in Heavy Drinkers during Alcohol Detoxification  

Microsoft Academic Search

Aims: Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are conjugated ethanol metabolites formed in low amounts after alcohol consumption. Compared with ethanol, EtG and EtS are excreted in urine for a prolonged time, making them useful as sensitive alcohol biomarkers. This study determined the detection times for EtG and EtS in alcoholic patients undergoing alcohol detoxification. Methods: Alcohol-dependent patients (n

Anders Helander; Christoph Fehr; Norbert Dahmen; Olof Beck

2008-01-01

24

Determination of ethyl glucuronide levels in hair for the assessment of alcohol abstinence.  

PubMed

This study examined the potential of a highly sensitive LC-MS/MS method for the determination of EtG in head hair (i) to ascertain alcohol abstinence, (ii) to estimate the basal level of EtG (sub-ppb concentrations) in head hair in a population of alcohol abstainers and (iii) to suggest a revision of cut-off values for assessing alcohol abstinence. An UHPLC-MS/MS protocol previously developed was modified and validated again to detect low EtG levels in head hair samples from a population of 44 certain abstainers and teetotalers. Basal level of EtG in hair was determined by a standard addition quantification method. The validated UHPLC-MS/MS method allowed detecting and quantifying 0.5 and 1.0 pg/mg of EtG in hair, respectively. EtG concentrations lower than 1.0 pg/mg were determined for 95% of abstainers; 30% of them had non-detectable (<0.5 pg/mg) EtG values. Two samples evidenced EtG concentrations higher than 1.0 pg/mg that were subsequently explained by unintentional ethanol exposure. The method's feature of high analytical sensitivity makes it particularly suitable for alcohol abstinence ascertainment and, in the same time, allows to tentatively estimate basal EtG concentrations in hair around 0.8±0.4 pg/mg. This finding opens a discussion on the possible origin of basal EtG concentration and potential sources of bias in the evaluation of alcohol abstinence. Cut-off value in the range of 1.0-2.0 pg/mg can be reliably proposed to support alcohol abstinence. PMID:24053885

Pirro, V; Di Corcia, D; Seganti, F; Salomone, A; Vincenti, M

2013-10-10

25

A kinetic model describing the pharmacokinetics of ethyl glucuronide in humans  

Microsoft Academic Search

The glucuronide conjugation is a minor pathway of ethanol metabolism. The determination of ethyl glucuronide (EG) in serum and urine has gained importance in forensic and other legal decisions. To prospectively calculate the serum concentration of this non-oxidative ethanol metabolite, the computer program developed includes a parameter fitting routine. Multiple ethanol doses can be handled.The mathematical modeling was based on

Peter Droenner; Georg Schmitt; Rolf Aderjan; Holger Zimmer

2002-01-01

26

Detection of ethyl glucuronide in dried human blood using LCMS\\/MS  

Microsoft Academic Search

Ethyl glucuronide, as a direct metabolite of ethanol degradation, has proven useful as a long-term marker in many forensic\\u000a applications. The inability to determine ethyl glucuronide in dried blood left a missing link in many investigations. Here,\\u000a we describe a new method based on mass spectrometry in a Pauli-type ion trap in order to determine this substance in dried\\u000a blood

Eckhard Kaufmann; Andreas Alt

2008-01-01

27

Microwave-assisted extraction: a simpler and faster method for the determination of ethyl glucuronide in hair by gas chromatography–mass spectrometry  

Microsoft Academic Search

Alcohol is the most frequently abused “addictive substance” that causes serious social problems throughout the world; thus,\\u000a alcoholism is of particular interest in clinical and forensic medicine. Alcohol biomarkers are physiological indicators of\\u000a alcohol exposure or ingestion and may reflect the presence of an alcohol use disorder. The glucuronide conjugation is a minor\\u000a pathway of ethanol metabolism. Ethyl glucuronide (EtG)

Iván Álvarez; Ana María Bermejo; María Jesús Tabernero; Purificación Fernández; Pamela Cabarcos; Patricia López

2009-01-01

28

An evaluation of the DRI-ETG EIA method for the determination of ethyl glucuronide concentrations in clinical and post-mortem urine.  

PubMed

A commercial enzyme immunoassay for the qualitative and semi-quantitative measurement of ethyl glucuronide (EtG) in urine was evaluated. Post-mortem (n=800), and clinical urine (n=200) samples were assayed using a Hitachi 902 analyzer. The determined concentrations were compared with those obtained using a previously published liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of EtG and ethyl sulfate. Using a cut-off of 0.5?µg/ml and LC-MS/MS limit of reporting of 0.1?µg/ml, there was a sensitivity of 60.8% and a specificity of 100% for clinical samples. For post-mortem samples, sensitivity and specificity were 82.4% and 97.1%, respectively. When reducing the cut-off to 0.1?µg/ml, the sensitivity and specificity were 83.3% and 100% for clinical samples whereas for post-mortem samples the sensitivity and specificity were 90.3 % and 88.3 %, respectively. The best trade-offs between sensitivity and specificity for LC-MS/MS limits of reporting of 0.5 and 0.1?µg/ml were achieved when using immunoassay cut-offs of 0.3 and 0.092?µg/ml, respectively. There was good correlation between quantitative results obtained by both methods but analysis of samples by LC-MS/MS gave higher concentrations than by enzyme immunoassay (EIA), with a statistically significant proportional bias (P<0.0001, Deming regression) for both sample types. The immunoassay is reliable for the qualitative and semi-quantitative presumptive detection of ethyl glucuronide in urine. PMID:22374825

Turfus, Sophie C; Vo, Tu; Niehaus, Nadia; Gerostamoulos, Dimitri; Beyer, Jochen

2013-06-01

29

Validation of a headspace solid-phase microextraction–GC–MS\\/MS for the determination of ethyl glucuronide in hair according to forensic guidelines  

Microsoft Academic Search

The analysis of ethyl glucuronide (EtG) in hair is a powerful tool for chronic alcohol abuse control because of the typical wide detection window of the hair matrix and due to the possibility of segmentation, allowing evaluation of alcohol consumption in different periods. Additionally, EtG in hair is often the only diagnostic parameter of choice for alcohol abuse when other

Ronald Agius; Thomas Nadulski; Hans-Gerhard Kahl; Johannes Schräder; Bertin Dufaux; Michel Yegles; Fritz Pragst

2010-01-01

30

Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium from newborns for detection of alcohol abuse in a maternal health evaluation study  

Microsoft Academic Search

Fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) were determined in 602 meconium samples in a maternal health evaluation\\u000a study for detection of gestational alcohol consumption. A validated headspace solid phase microextraction method in combination\\u000a with GC-MS was used for FAEE and the cumulative concentration of ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl\\u000a stearate with a cut-off of

Abdulsallam Bakdash; Pascal Burger; Tamme W. Goecke; Peter A. Fasching; Udo Reulbach; Stefan Bleich; Martin Hastedt; Michael Rothe; Matthias W. Beckmann; Fritz Pragst; Johannes Kornhuber

2010-01-01

31

Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain  

PubMed Central

We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects.

Lewis, Susannah S.; Hutchinson, Mark R.; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R.

2013-01-01

32

Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain.  

PubMed

We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects. PMID:23348028

Lewis, Susannah S; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K; Maier, Steven F; Rice, Kenner C; Watkins, Linda R

2013-05-01

33

Ethyl glucuronide: Unusual distribution between head hair and pubic hair  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a minor metabolite of ethanol that can be detected in hair. In some specific situations, head hair can be missing, and therefore, alternative anatomical locations of hair are of interest. In this study, paired hair specimens (head hair and pubic hair) from eight social drinkers were analyzed for EtG. Each sample was decontaminated by two dichloromethane

Pascal Kintz; Marion Villain; Emilie Vallet; Mathieu Etter; Guillaume Salquebre; Vincent Cirimele

2008-01-01

34

A comparison of two alcohol biomarkers in clinical practice: ethyl glucuronide versus ethyl sulfate.  

PubMed

This study compared the characteristics of two direct alcohol biomarkers, ethyl glucuronide and ethyl sulfate. Both biomarkers were analyzed from urine specimens submitted by 58 active duty service members at Walter Reed National Military Medical Center's Addiction Treatment Service. These 58 individuals, as a result of serial testing, submitted a total of 374 urine specimens for laboratory analysis. Of 374 specimens, the paired tests were most often negative (n = 295, 78.9%).The paired tests were both positive less frequently (n = 38, 10.2%). In an interesting development ethyl sulfate produced more positive results than ethyl glucuronide (n = 32, 8.6%). PMID:24074194

Lande, R Gregory; Marin, Barbara

2013-01-01

35

Ethyl-glucuronide and ethyl-sulfate in placental and fetal tissues by liquid chromatography coupled with tandem mass spectrometry  

Microsoft Academic Search

The aim of this study was to develop a method for the determination of ethyl-glucuronide (EtG) and ethyl-sulfate (EtS), two direct ethanol metabolites, in early placental and fetal human tissues, as potential biomarkers of transplacental ethanol transfer from the mother to the fetus. Placental and fetal tissue samples were obtained from women undergoing voluntary termination of pregnancy at 12weeks of

Luca Morini; Maria Falcón; Simona Pichini; Oscar Garcia-Algar; Paolo Danesino; Angelo Groppi; Aurelio Luna

2011-01-01

36

Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence marker for ethanol consumption prior to death  

Microsoft Academic Search

To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable

Annette Thierauf; Jürgen Kempf; Markus Große Perdekamp; Volker Auwärter; Heike Gnann; Ariane Wohlfarth; Wolfgang Weinmann

2011-01-01

37

Validation of a headspace solid-phase microextraction-GC-MS/MS for the determination of ethyl glucuronide in hair according to forensic guidelines.  

PubMed

The analysis of ethyl glucuronide (EtG) in hair is a powerful tool for chronic alcohol abuse control because of the typical wide detection window of the hair matrix and due to the possibility of segmentation, allowing evaluation of alcohol consumption in different periods. Additionally, EtG in hair is often the only diagnostic parameter of choice for alcohol abuse when other clinical parameters such as ALT, AST, gammaGT and CDT (asialotransferrin and disialotransferrin) are in the normal range and EtG in urine negative. In this paper, we describe the development, optimization and validation of a new method based on hair extraction with water, clean-up by solid phase extraction (SPE), derivatization with heptafluorobutyric anhydride and headspace solid-phase microextraction (HS-SPME) in combination with GC-MS/MS according to forensic guidelines. The assay linearity of EtG was confirmed over the range from 2.8 to 1000 pg/mg hair, with a coefficient of determination (r(2)) above 0.999. The LLOQ was 2.8 pg/mg and the LLOD was 0.6 pg/mg. An error profile calculated according to the "Guide to the Expression of Uncertainty in Measurement" (GUM) at 99% confidence intervals for the range 5-750 pg/mg hair did not exceed 10%. This range corresponds to more than 98% of the positive samples analysed. PMID:20061100

Agius, Ronald; Nadulski, Thomas; Kahl, Hans-Gerhard; Schräder, Johannes; Dufaux, Bertin; Yegles, Michel; Pragst, Fritz

2010-03-20

38

Influence of ethanol dose and pigmentation on the incorporation of ethyl glucuronide into rat hair  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and

Hicham Kharbouche; Nadia Steiner; Marie Morelato; Christian Staub; Benjamin Boutrel; Patrice Mangin; Frank Sporkert; Marc Augsburger

2010-01-01

39

Determination of ethyl-glucuronide in hair for heavy drinking detection using liquid chromatography-tandem mass spectrometry following solid-phase extraction  

Microsoft Academic Search

The detection of ethyl-?-d-6-glucuronide (EtG), a stable phase II metabolite of ethanol, is of interest in both clinical and forensic contexts with\\u000a the aim of monitoring alcohol abuse. We present a liquid chromatography-electrospray ionisation-tandem mass spectrometry method\\u000a for the detection and quantification of EtG in hair. Thirty milligrams of washed and cut hair were cleaned up using solid-phase\\u000a extraction graphite

Fabien Lamoureux; Jean-michel Gaulier; François-Ludovic Sauvage; Magali Mercerolle; Christine Vallejo; Gérard Lachâtre

2009-01-01

40

Influence of preservatives on the stability of ethyl glucuronide and ethyl sulphate in urine  

Microsoft Academic Search

BackgroundEthyl glucuronide (EtG) and ethyl sulphate (EtS) are specific and sensitive markers of ethanol consumption well established in monitoring withdrawal treatment in patients with chronic alcoholism. Recently, bacterial decomposition as well as in vitro and post-mortem formation of EtG was reported. The aim of this study was to investigate the influence of different preservatives on the stability of EtG and

Annette Thierauf; Annerose Serr; Claudia C. Halter; Ali Al-Ahmad; Sumandeep Rana; Wolfgang Weinmann

2008-01-01

41

In vitro study of bacterial degradation of ethyl glucuronide and ethyl sulphate  

Microsoft Academic Search

Recent studies show that ethyl glucuronide (EtG) can be decomposed by bacteria; whilst so far no degradation of ethyl sulphate\\u000a (EtS) has been observed. In the present study, in vitro experiments with bacterial colonies were performed. Bacteria (Escherichia coli, Klebsiella pneumoniae, Clostridium sordellii) were isolated from autopsy material (liver, heart blood, urine, ascites, pericardial fluid, pleural fluid) tested for ?-glucuronidase

Stefanie Baranowski; Annerose Serr; Annette Thierauf; Wolfgang Weinmann; Markus Gro?e Perdekamp; Friedrich M. Wurst; Claudia C. Halter

2008-01-01

42

Blood kinetics of ethyl glucuronide and ethyl sulphate in heavy drinkers during alcohol detoxification  

Microsoft Academic Search

Studies of ethyl glucuronide (EtG) blood kinetics have so far been performed on healthy volunteers with ingestion of low to moderate doses of ethanol. These data are not necessarily transferable to heavy drinkers where the consumed doses of ethanol are much higher. The aim of this study was to investigate the pharmacokinetics of EtG and ethyl sulphate (EtS) in blood

Gudrun Høiseth; Luca Morini; Aldo Polettini; Asbjørg Christophersen; Jørg Mørland

2009-01-01

43

Practical use of ethyl glucuronide and ethyl sulfate in postmortem cases as markers of antemortem alcohol ingestion  

Microsoft Academic Search

In postmortem toxicology, it could be difficult to determine whether a positive blood ethanol concentration reflects antemortem\\u000a ingestion or postmortem synthesis of alcohol. Measurement of the nonoxidative ethanol metabolite ethyl glucuronide (EtG) has\\u000a been suggested as a marker of antemortem ingestion of alcohol, but EtG might degrade postmortem which could make interpretation\\u000a difficult. So far, the published articles concern EtG

Gudrun Høiseth; Ritva Karinen; Asbjørg Christophersen; Jørg Mørland

2010-01-01

44

Improved liquid chromatography-tandem mass spectrometric method for the determination of ethyl glucuronide concentrations in hair: applications to forensic cases.  

PubMed

Ethyl glucuronide (EtG) is a direct marker of ethanol consumption, and its assay in hair is an efficient tool for chronic alcoholism diagnosis. In 2012, the Society of Hair Testing proposed a new consensus for hair concentrations interpretation, strongly advising the use of analytical methods providing a limit of quantification of less than 3 pg/mg. The present work describes the optimization and validation of a previously developed liquid chromatography-tandem mass spectrometric method in order to comply with this recommendation. The concentration range of this improved method is from 3 to 1,000 pg/mg. Some cases are then described to illustrate the usefulness of hair EtG: a forensic post-mortem case and two cases of suspension of driving licences. Finally, hair samples of some teetotallers (n?=?10) have been analyzed, which allowed neither to quantitate nor to detect any trace of EtG. PMID:23824336

Imbert, Laurent; Gaulier, Jean-Michel; Dulaurent, Sylvain; Morichon, Julien; Bevalot, Fabien; Izac, Paul; Lachâtre, Gérard

2014-01-01

45

Abstinence Monitoring of Suspected Drinking Drivers: Ethyl Glucuronide in Hair Versus CDT  

Microsoft Academic Search

Objective: Ethyl glucuronide (EtG) determinations in the hair of self-reported teetotalers were reviewed and compared with carbohydrate-deficient transferrin (CDT) blood tests (by immunochemistry and high-performance liquid chromatography [HPLC]).Methods: A retrospective study was carried out on 154 people whose fitness to drive had to be assessed because of the suspicion of relevant alcohol problems.Results: EtG was detected in 55 percent of

Bruno Liniger; Ariane Nguyen; Andrea Friedrich-Koch; Michel Yegles

2010-01-01

46

A study of distribution of ethyl glucuronide in different keratin matrices  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a direct metabolite of ethanol, frequently used as a biomarker of alcohol abuse. To this purpose, EtG is preferentially determined in hair samples, using a cut-off value of 30pg\\/mg to discriminate between social and heavy drinkers, as recently fixed by an international consensus conference. Although this cut-off value is assumed for head hair, alternative matrices, such

V. Pirro; D. Di Corcia; S. Pellegrino; M. Vincenti; B. Sciutteri; A. Salomone

2011-01-01

47

Markers of chronic alcohol use in hair: Comparison of ethyl glucuronide and cocaethylene in cocaine users  

Microsoft Academic Search

Two direct ethanol metabolites, namely ethyl glucuronide (EtG) and cocaethylene (CE), in the hair of cocaine (COC) users were compared in this study.Hair samples (n=68) were submitted to the determination of EtG (by liquid chromatography-electrospray-tandem mass spectrometry) and of COC and metabolites, including CE (by gas chromatography-mass spectrometry). Quantitative and qualitative results were compared.No quantitative correlation was found between EtG

Lucia Politi; Alessandra Zucchella; Luca Morini; Cristiana Stramesi; Aldo Polettini

2007-01-01

48

Determination of ethyl glucuronide in nails by liquid chromatography tandem mass spectrometry as a potential new biomarker for chronic alcohol abuse and binge drinking behavior.  

PubMed

A liquid chromatography tandem mass spectrometry method for ethyl glucuronide (EtG) detection and quantification in nails was developed and fully validated. Nails were extracted in 700 ?L double-distilled water. EtG-d(5) was used as an internal standard. Reversed-phase separation was obtained with an isocratic mobile phase composed of 0.1% formic acid and acetonitrile (99:1) for 10 min. Quantification was performed by multiple reaction monitoring of two transitions per compound (EtG and internal standard). The assay was linear from 10 to 500 pg/mg. Validation parameters were studied at three different quality control levels (10, 50, and 300 pg/mg). Intraday, interday, and total imprecision had a coefficient of variation of less than 9.5%. Ion suppression and ion enhancement were negligible (less than 20%). No carryover was detected. The method was applied to several real cases, among teetotalers, social drinkers, and heavy drinkers. A questionnaire, together with the informed consent form, was given to all the participants in order to evaluate alcohol intake in the one month before sample collection. Nail EtG levels in a social drinker were much higher than the concentrations of EtG in hair provided by the same subject, thus suggesting potential high sensitivity in evaluating both chronic excessive alcohol consumption and binge drinking habits. PMID:22193819

Morini, Luca; Colucci, Mario; Ruberto, Maria Giovanna; Groppi, Angelo

2012-02-01

49

SENSITIVITY AND SPECIFICITY OF URINARY ETHYL GLUCURONIDE AND ETHYL SULFATE IN LIVER DISEASE PATIENTS  

PubMed Central

Background It is important to monitor alcohol use in the care of liver disease patients, but patient self-report can be unreliable. We therefore evaluated the performance of urine ethyl glucuronide (EtG) and ethyl sulfate (EtS) in detecting alcohol use in the days preceding a clinical encounter. Methods Subjects (n=120) were recruited at a university-based Hepatology clinic or during hospitalization. Alcohol consumption was ascertained by validated self-report measures. Urine EtG (cutoff 100 ng/mL) and EtS (cutoff 25 ng/mL) concentrations were assayed by a contracted laboratory using tandem mass spectrometry. The sensitivity and specificity of each biomarker in the detection of drinking during the 3 and 7 days preceding the clinic visit were determined, as well as the influence of liver disease severity on these results. Results Urine EtG (sensitivity 76%, specificity 93%) and urine EtS (sensitivity 82%, specificity 86%) performed well in identifying recent drinking, and liver disease severity does not affect biomarker performance. After elimination of one false negative self-report, urine EtG > 100 ng/mL was 100% specific for drinking within the past week, whereas 9% of the subjects without evidence of alcohol drinking for at least one week had EtS > 25 ng/mL. Conclusions Urine EtG and EtS can objectively supplement the detection of recent alcohol use in patients with liver disease. Additional research may determine optimal methods for integrating these tests into clinical care.

Stewart, Scott H.; Koch, David G.; Burgess, Douglas M.; Willner, Ira R.; Reuben, Adrian

2012-01-01

50

Ethyl glucuronide in human hair after daily consumption of 16 or 32 g of ethanol for 3 months  

Microsoft Academic Search

The overall objectives of the study were to develop a sensitive method for ethyl glucuronide (EtG) determination in hair and then investigate if a low or moderate intake of ethanol could be differentiated from total abstinence. Forty-four subjects were included in the study, 12 males (7 drinkers and 5 abstinent) and 32 females (14 drinkers and 18 abstinent). The study

Robert Kronstrand; Linda Brinkhagen; Fredrik H. Nyström

51

Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers  

Microsoft Academic Search

In previous investigations hair analysis for ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE) proved to be suitable for the detection of excessive alcohol consumption. The aim of this study was to compare EtG and FAEE concentrations in hair of alcoholics, social drinkers and teetotallers. Hair samples from 10 alcoholics in withdrawal treatment, 11 fatalities with documented excessive alcohol

M. Yegles; A. Labarthe; V. Auwärter; S. Hartwig; H. Vater; R. Wennig; F. Pragst

2004-01-01

52

[Carbohydrate deficient transferrin and ethyl glucuronide: markers for alcohol use].  

PubMed

In this article, we report on the usefulness of physicians testing for carbohydrate deficient transferrin (CDT) and ethyl glucuronide (EtG) when there are doubts about alcohol use by their patients. A 44-year-old male consulted his general practitioner with depressive symptoms and denied using alcohol. Laboratory examination revealed an elevated CDT value. The latter was caused by chronic alcohol use. The second patient, a 32-year-old female with known alcohol dependence and receiving inpatient treatment at an addiction clinic, came back from leave. She denied having consumed alcohol and her blood alcohol concentration was zero. Examination of her urine showed an elevated EtG/creatinine ratio. This was caused by having had a few drinks during her leave and could not have been caused by using mouthwash or disinfection soap. We describe how to use the results of CDT and EtG testing in the therapeutic process and give recommendations for patient communication before performing these two tests. PMID:23739598

Paling, Erik P; Mostert, Leendert J

2013-01-01

53

Ethyl glucuronide and ethyl sulfate in meconium and hair-potential biomarkers of intrauterine exposure to ethanol  

Microsoft Academic Search

This study investigated ethyl glucuronide (EtG) and ethyl sulfate (EtS) concentration in meconium and in maternal and neonatal hair (HEtG and HFAEEs, respectively) as potential markers of intrauterine exposure to ethanol together with meconium fatty acid ethyl esters (FAEEs) in a cohort of 99 mother–infant dyads, 49 coming from the Arcispedale of Reggio Emilia (Italy) and 50 from the Hospital

L. Morini; E. Marchei; F. Vagnarelli; O. Garcia Algar; A. Groppi; L. Mastrobattista; S. Pichini

2010-01-01

54

Examination of sex differences in fatty acid ethyl ester and ethyl glucuronide hair analysis.  

PubMed

Clinical studies examining performance of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in identifying excessive alcohol consumption have been primarily conducted in male populations. An impact of hair cosmetics in producing both false-negative EtG results and false-positive FAEE results has been demonstrated, suggesting a possible bias in female populations. This study evaluates FAEE-positive hair samples (>0.50?ng/mg) from n?=?199 female and n?=?73 male subjects for EtG. Higher FAEE/EtG concordance was observed amongst male over female subjects. Performance of multiple proposed EtG cut-off levels were assessed; amongst female samples, FAEE/EtG concordance was 36.2% (30?pg/mg), 36.7% (27?pg/mg), and 43.7% (20?pg/mg). Non-coloured hair demonstrated a two-fold increase in concordance (41.8 v. 20.8%) over coloured hair in the female cohort. FAEE levels did not differ between male and female subjects; however they were lower in coloured samples (p?=?0.046). EtG was lower in female subjects (p?=?0.019) and coloured samples (p?=?0.026). A total of n?=?111 female samples were discordant. Amongst discordant samples (EtG-negative), 26% had evidence of recent alcohol use including consultation histories (n?=?20) and detectable cocaethylene (n?=?9); 29% of discordant samples were coloured. False-negative risk with ethyl glucuronide analysis in females was mediated by cosmetic colouring. These findings suggest that combined analysis of FAEE and EtG is optimal when assessing a female population and an EtG cut-off of 20?pg/mg is warranted when using combined analysis. While concordant FAEE/EtG-positive findings constitute clear evidence, discordant FAEE/EtG findings should still be considered suggestive evidence of chronic excessive alcohol consumption. PMID:24817046

Gareri, Joey; Rao, Chitra; Koren, Gideon

2014-06-01

55

Development and validation of a gas chromatography–negative chemical ionization tandem mass spectrometry method for the determination of ethyl glucuronide in hair and its application to forensic toxicology  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a minor and direct metabolite of ethanol. EtG is incorporated into the growing hair allowing retrospective investigation of chronic alcohol abuse. In this study, we report the development and the validation of a method using gas chromatography–negative chemical ionization tandem mass spectrometry (GC–NCI-MS\\/MS) for the quantification of EtG in hair. EtG was extracted from about 30mg

Hicham Kharbouche; Frank Sporkert; Stéphanie Troxler; Marc Augsburger; Patrice Mangin; Christian Staub

2009-01-01

56

Kinetics in serum and urinary excretion of ethyl sulfate and ethyl glucuronide after medium dose ethanol intake  

Microsoft Academic Search

The direct ethanol metabolites, ethyl glucuronide (EtG) and ethyl sulfate (EtS), are of increasing importance for clinical\\u000a and forensic applications, but there are only few studies on the kinetics of EtG in serum and none on EtS. In this study,\\u000a 13 volunteers (social drinkers) drank ethanol in the form of white wine to reach a blood alcohol concentration of 0.51?±?0.17 g\\/kg,

Claudia C. Halter; Sebastian Dresen; Volker Auwaerter; Friedrich M. Wurst; Wolfgang Weinmann

2008-01-01

57

Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: Interpretation and advantages  

Microsoft Academic Search

In this study the combined use of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for diagnoses of chronically excessive alcohol abuse is investigated at 174 hair samples from driving ability examination, workplace testing and child custody cases for family courts and evaluated with respect to the basics of interpretation. Using the cut-off values of 0.50ng\\/mg for FAEE and

F. Pragst; M. Rothe; B. Moench; M. Hastedt; S. Herre; D. Simmert

2010-01-01

58

Assessment of UDP-glucuronosyltransferase catalyzed formation of ethyl glucuronide in human liver microsomes and recombinant UGTs  

Microsoft Academic Search

While ethanol is primarily metabolized to acetaldehyde and acetic acid via alcohol dehydrogenase, a minor but increasingly important pathway in the field of forensic science involves the conjugation of glucuronic acid to form an ethyl glucuronide (EtG) metabolite. The kinetics of ethyl glucuronide formation were examined in human liver microsomes (HLM) and recombinant UDP-glucuronosyltransferases (UGTs). The metabolite exhibited a relatively

Robert S. Foti; Michael B. Fisher

2005-01-01

59

Distribution of ethyl glucuronide in rib bone marrow, other tissues and body liquids as proof of alcohol consumption before death  

Microsoft Academic Search

Postmortem ethyl glucuronide (EtG) concentrations in rib bone marrow, liver, muscle, fat tissue, urine, blood and bile have been determined by LC–MS\\/MS. Samples have been taken from twelve corpses during autopsies. In nine corpses EtG could be detected, corresponding blood ethanol concentrations (BAC) were 0.04–0.37g%. In three cases, no EtG was found; two of these cases showed postmortem BACs –

Haiko Schloegl; Thomas Rost; Wolfgang Schmidt; Friedrich Martin Wurst; Wolfgang Weinmann

2006-01-01

60

Comparison of ethyl glucuronide and fatty acid ethyl ester concentrations in hair of alcoholics, social drinkers and teetotallers.  

PubMed

In previous investigations hair analysis for ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE) proved to be suitable for the detection of excessive alcohol consumption. The aim of this study was to compare EtG and FAEE concentrations in hair of alcoholics, social drinkers and teetotallers. Hair samples from 10 alcoholics in withdrawal treatment, 11 fatalities with documented excessive alcohol consumption, four moderate social drinkers who consumed up to 20 g ethanol per day, and three strict teetotallers were analysed. After external degreasing with n-heptane, extraction with a dimethyl sulfoxide/n-heptane mixture and headspace solid-phase microextraction of the extracts, four fatty acid ethyl esters (FAEEs) (ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate) were analysed by gas chromatography-mass spectrometry (GC-MS) with deuterated internal standards. EtG was determined by GC-MS/NCI after ultrasonication of the samples with H2O, cleanup by SPE with aminopropyl columns and PFP derivatisation. The following concentrations were measured for the four groups: teetotallers EtG < 0.002 ng/mg, FAEE 0.05-0.37 ng/mg, moderate social drinkers EtG < 0.002 ng/mg, FAEE 0.26-0.50 ng/mg, alcoholic patients EtG 0.030-0.415 ng/mg, FAEE 0.65-20.50 ng/mg and the fatalities with alcohol history EtG 0.072-3.380 ng/mg, FAEE 1.30-30.60 ng/mg. The results confirm that by using a cut-off value of the sum of FAEE > 1 ng/mg and/or a positive EtG result in hair, excessive alcohol consumption can be identified using hair analysis. However, no significant correlation between the EtG and FAEE concentrations in the positive cases could be shown. Segmental analysis of some of the specimens did not reveal the same distribution for EtG compared to FAEE in hair, and no chronological accordance compared to the self-reported alcohol consumption could be observed for both parameters. These different results of both methods are discussed in terms of differences between EtG and FAEE in mechanism of formation and incorporation into hair and elimination from hair. PMID:15451089

Yegles, M; Labarthe, A; Auwärter, V; Hartwig, S; Vater, H; Wennig, R; Pragst, F

2004-10-29

61

Measurement of ethyl glucuronide in vitreous humor with liquid chromatography–mass spectrometry  

Microsoft Academic Search

BackgroundIt is important to detect alcohol intake in postmortem investigations. However it can be difficult to interpret the results of alcohol analysis in putrefied corpses. To avoid this difficulty, there have been studies on detection of ethyl glucuronide (EtG), a non-oxidative metabolite of ethyl alcohol. The aim of this study was investigate EtG levels in vitreous humor (VH), a valuable

Alper Keten; Ali Riza Tumer; Aysun Balseven-Odabasi

2009-01-01

62

Voucher-Based Reinforcement for Alcohol Abstinence Using the Ethyl-Glucuronide Alcohol Biomarker  

ERIC Educational Resources Information Center

This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase.…

McDonell, Michael G.; Howell, Donelle N,; McPherson, Sterling; Cameron, Jennifer M.; Srebnik, Debra; Roll, John M.; Ries, Richard K.

2012-01-01

63

Effect of bleaching on ethyl glucuronide in hair: An in vitro experiment  

Microsoft Academic Search

IntroductionEthyl glucuronide in hair (HEtG) has recently gained great attention, because of its high sensitivity and specificity in the diagnosis of chronic alcohol abuse. Due to its high polarity hydrophilicity, a strong hair treatment followed by a shampooing may lead to removal\\/degradation of this molecule from hair matrix.

Luca Morini; Alessandra Zucchella; Aldo Polettini; Lucia Politi; Angelo Groppi

2010-01-01

64

Ethyl glucuronide: on the time course of excretion in urine during detoxification  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a promising new biological state marker of recent alcohol consumption that detects alcohol use reliably over a definite time period. Other currently available markers lack acceptable sensitivity and specificity. Our aim is to elucidate under naturalistic conditions the time course of EtG excretion in urine following alcohol consumption and to show how this can be utilized

Friedrich Martin Wurst; Stephan Seidl; Dieter Ladewig; Franz Müller-Spahn; Andreas Alt

2002-01-01

65

SENSITIVITY OF COMMERCIAL ETHYL GLUCURONIDE (ETG) TESTING IN SCREENING FOR ALCOHOL ABSTINENCE  

Microsoft Academic Search

The '80 h Ethyl Glucuronide (EtG) test' has become an idiom of the alcohol testing community, a review of the literature shows this window of detection applies only to extreme cases. EtG testing is becoming more common as a method to test for alcohol consumption in individuals who have been ordered to abstain from alcohol consumption. We tested 19 subjects

MARK H. WOJCIK; JEFFREY S. HAWTHORNE

2007-01-01

66

A pharmacokinetic study of ethyl glucuronide in blood and urine: Applications to forensic toxicology  

Microsoft Academic Search

This pharmacokinetic study investigated the kinetics of ethanol and its metabolite ethyl glucuronide (EtG) in blood and urine during the whole time course of absorption and elimination. There are few previous studies on the kinetics of EtG in blood, and we wanted to evaluate whether such knowledge could yield valuable information regarding the time of ethanol ingestion in forensic cases,

Gudrun Høiseth; Jean Paul Bernard; Ritva Karinen; Lene Johnsen; Anders Helander; Asbjørg S. Christophersen; Jørg Mørland

2007-01-01

67

Ethyl Glucuronide Discloses Recent Covert Alcohol Use Not Detected by Standard Testing in Forensic Psychiatric Inpatients  

Microsoft Academic Search

Background: Considerable lives and money could be saved if one could detect early stages of lapsing\\/ relapsing behavior in addicted persons (e.g., in safety-sensitive workplaces) and could disclose harmful drinking in social drinkers. Due to the serious public health problem of alcohol use and abuse worldwide, markers of alcohol use have been sought. Both ethyl glucuronide (EtG) and phosphatidyl ethanol

Friedrich Martin Wurst; Katja Jachau; Arthur Varga; Christer Alling; Andreas Alt; Gregory E. Skipper

2003-01-01

68

ETHYL GLUCURONIDE — A MARKER OF ALCOHOL CONSUMPTION AND A RELAPSE MARKER WITH CLINICAL AND FORENSIC IMPLICATIONS  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a non-volatile, water-soluble, direct metabolite of ethanol that can be detected in body fluids and hair. We investigated urine and serum samples from three patient groups: (1) 33 in-patients in acute alcohol withdrawal; (2) 30 detoxified in-patients (treated for at least 4 weeks) from a 'motivation station'; and (3) 43 neuro-rehabilitation patients (non-alcoholics; most of them

FRIEDRICH MARTIN WURST; CHRISTOPH KEMPTER; STEPHAN SEIDL; ANDREAS ALT

69

Ethyl-glucuronide and ethyl-sulfate in placental and fetal tissues by liquid chromatography coupled with tandem mass spectrometry.  

PubMed

The aim of this study was to develop a method for the determination of ethyl-glucuronide (EtG) and ethyl-sulfate (EtS), two direct ethanol metabolites, in early placental and fetal human tissues, as potential biomarkers of transplacental ethanol transfer from the mother to the fetus. Placental and fetal tissue samples were obtained from women undergoing voluntary termination of pregnancy at 12 weeks of gestation. Samples were deproteinized and directly injected into a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) system. Limits of detection of 13.0 and 23.0 pmol/g and lower limits of quantification of 22.0 and 40.0 pmol/g were reached for EtG and EtS, respectively. Inter- and intraday imprecision and accuracy were always lower than 15%. The method was applied to 70 samples (35 placentas and 35 fetal tissues). Of 35 samples, 4 samples collected from 4 women tested positive for EtG and EtS, always showing higher concentrations for EtG. The placenta/fetal tissue ratio for EtG was 2.9 ± 0.9, whereas EtS showed a ratio of 1.7 ± 0.7. Preliminary results suggest that these metabolites are present in both tissues. Further studies should now corroborate the hypothesis, not yet confirmed, that transplacental transfer of ethanol takes place not only for the parent compound but also for EtG and EtS. PMID:21787742

Morini, Luca; Falcón, Maria; Pichini, Simona; Garcia-Algar, Oscar; Danesino, Paolo; Groppi, Angelo; Luna, Aurelio

2011-11-01

70

Practical experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for detection of chronic alcohol abuse in forensic cases  

Microsoft Academic Search

This article presents results from 1872 hair samples, which were analyzed for fatty acid ethyl esters (FAEEs) and ethyl glucuronide (EtG). The results were evaluated in the context of self-reported drinking behavior, the use of hair cosmetics, the gender of the sample donors and hair sample length. For comparison, CDT and GGT in serum were available in 477 and 454

S. Suesse; F. Pragst; T. Mieczkowski; C. M. Selavka; A. Elian; H. Sachs; M. Hastedt; M. Rothe; J. Campbell

71

Ethyl glucuronide findings in hair samples from the mummies of the Capuchin Catacombs of Palermo.  

PubMed

The Capuchin Catacombs of Palermo contain over 1800 preserved bodies: friars, priests and laypeople including men, women, and children. The bodies were accessible to family members who could visit the deceased and commemorate them through prayers. The "Sicily Mummy Project" analyzed hair samples from 38 mummies to determine the presence of ethyl glucuronide (EtG) using a routine procedure in our accredited laboratory of liquid chromatography coupled with mass spectrometry. The limit of quantification was 2.3 pg/mg. The hair samples were from 1.5 to 12 cm in length. All samples were analyzed in 2 segments (seg. A 0-3 cm and seg. B the remainder). Samples <4 cm in length were cut in half. In 31 out of 76 segments positive results were obtained for EtG, with concentrations between 2.5 and 531.3 pg/mg (mean 73.8, median 13.3 pg/mg). In 14 cases positive results were obtained for both segments. In one sample a positive result was obtained for segment A but not for segment B and in a further two samples only for segment B. The results indicate that EtG analyses can be performed on mummy hair samples even several hundred years after death to identify evidence for significant alcohol consumption during life. PMID:24053883

Musshoff, Frank; Brockmann, Christopher; Madea, Burkhard; Rosendahl, Wilfried; Piombino-Mascali, Dario

2013-10-10

72

The influence of ethanol containing cosmetics on ethyl glucuronide concentration in hair.  

PubMed

Ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEE), non-volatile, direct metabolites of ethanol have been shown to be suitable markers for the evaluation of social and chronic excessive alcohol consumption. Previous investigations have shown that the regular use of hair-care products with high alcohol content lead to an increase of FAEE concentration and consequently gave false-positive results for the determination of FAEE in hair. In this study we investigated the influence of a long-term hair treatment with EtOH containing lotion, on the EtG concentrations in hair. In this study 7 volunteer subjects (classified as either rare, social or heavy drinkers) treated the right side of their scalp every day during a one or two month period with a commercial hair tonic (Seborin), which contains 44.0% ethanol (vol%). Collection of hair specimens from both sides of the scalp was done one day before hair treatment, one week and one month after treatment (for 5 subjects also after two months of treatment). A hair segment of 3 centimeters (cm) was cut and then washed with water and acetone, and then pulverized. EtG was quantified by GC/MS after pulverization and 2h of ultrasonication in water, extraction by solid phase extraction using Oasis MAX columns and derivatization with HFBA. Measurements were done in negative chemical ionization mode using EtG-D5 as internal standard. Comparison of EtG concentration in the treated and in the non-treated hair specimens did not show any increase at the different dates of collection for the 7 subjects. In conclusion, these results show that there is no indication for an increase of EtG after use of ethanol containing hair cosmetics. PMID:22051770

Martins Ferreira, Liliane; Binz, Tina; Yegles, Michel

2012-05-10

73

Ethyl sulphate and ethyl glucuronide in vitreous humor as postmortem evidence marker for ethanol consumption prior to death.  

PubMed

To clarify the circumstances of death, the degree of inebriation is of importance in many cases, but for several reasons the determination of the ethanol concentration in post-mortem samples can be challenging and the synopsis of ethanol and the direct consumption markers ethyl glucuronide (EtG) and ethyl sulphate (EtS) has proved to be useful. The use of a rather stable matrix like vitreous humor offers further advantages. The aim of this study was to determine the concentrations of ethanol and the biomarkers in the robust matrix of vitreous humor and to compare them with the respective levels in peripheral venous blood and urine. Samples of urine, blood from the femoral vein and vitreous humor were taken from 26 deceased with suspected ethanol consumption prior to death and analyzed for ethanol, EtS and EtG. In the urine samples creatinine was also determined. The personal data, the circumstances of death, the post-mortem interval and the information about ethanol consumption prior to death were recorded. EtG and EtS analysis in urine was performed by LC-ESI-MS/MS, creatinine concentration was determined using the Jaffé reaction and ethanol was detected by HS-GC-FID and by an ADH-based method. In general, the highest concentrations of the analytes were found in urine and showed statistical significance. The mean concentrations of EtG were 62.8mg/L (EtG100 206.5mg/L) in urine, 4.3mg/L in blood and 2.1mg/L in vitreous humor. EtS was found in the following mean concentrations: 54.6mg/L in urine (EtS100 123.1mg/L), 1.8mg/L in blood and 0.9mg/L in vitreous humor. Ethanol was detected in more vitreous humor samples (mean concentration 2.0g/kg) than in blood and urine (mean concentration 1.6g/kg and 2.1g/kg respectively). There was no correlation between the ethanol and the marker concentrations and no statistical conclusions could be drawn between the markers and matrices. PMID:21367549

Thierauf, Annette; Kempf, Jürgen; Perdekamp, Markus Grosse; Auwärter, Volker; Gnann, Heike; Wohlfarth, Ariane; Weinmann, Wolfgang

2011-07-15

74

A study of distribution of ethyl glucuronide in different keratin matrices.  

PubMed

Ethyl glucuronide (EtG) is a direct metabolite of ethanol, frequently used as a biomarker of alcohol abuse. To this purpose, EtG is preferentially determined in hair samples, using a cut-off value of 30pg/mg to discriminate between social and heavy drinkers, as recently fixed by an international consensus conference. Although this cut-off value is assumed for head hair, alternative matrices, such as pubic, axillary and chest hair, are often analyzed when head hair is not available. Previous studies suggested that determination of EtG in various keratin matrices may lead to different results; growth cycle and rate, urine contamination, distribution of sebum glands and other environmental factors are likely to contribute to these differences. We analyzed more than 2700 samples (head, pubic, chest and axillary hair) to evaluate the inter- and intra-individual distribution of the EtG concentration in the different keratin matrices. The data were interpreted on a statistical basis, on the assumption that large population data-sets will level off the average alcohol consumption of each group. From both inter- and intra-individual distribution data, significant differences were observed in EtG concentrations recorded in head, axillary and pubic hair samples. It is concluded that pubic hair cannot be utilized alternatively to head hair to prove chronic alcohol abuse, nor is axillary hair, since positive and negative biases respectively affect these determinations. In contrast, for chest hair, EtG distributions similar to head hair were found, although the large discrepancy between the examined population dimensions presently prevents any definitive conclusion. Thus, chest hair represents a promising alternative to head hair for EtG determinations, deserving further investigation on samples collected from the same individuals, in order to establish a clear correlation between their respective EtG concentrations. PMID:21511419

Pirro, V; Di Corcia, D; Pellegrino, S; Vincenti, M; Sciutteri, B; Salomone, A

2011-07-15

75

Stability of ethyl glucuronide in urine, post-mortem tissue and blood samples  

Microsoft Academic Search

The stability of ethyl glucuronide (EtG) under conditions of degradation was examined in urine samples of nine volunteers\\u000a and in post-mortem tissue (liver, skeletal muscle) and blood taken from seven corpses at autopsies. Analysis was performed\\u000a via LC-MS\\/MS. EtG concentrations in urine samples ranged from 2.5 to 296.5 mg\\/l. When stored at 4°C in airtight test tubes,\\u000a EtG concentrations remained relatively

Haiko Schloegl; Sebastian Dresen; Karin Spaczynski; Mylène Stoertzel; Friedrich Martin Wurst; Wolfgang Weinmann

2006-01-01

76

VOUCHER-BASED REINFORCEMENT FOR ALCOHOL ABSTINENCE USING THE ETHYL-GLUCURONIDE ALCOHOL BIOMARKER  

PubMed Central

This study assessed the effects of a contingency management (CM) intervention for alcohol consumption in 10 alcohol-dependent participants. An ABCA design was used. Vouchers were provided contingent on results of ethyl glucuronide (EtG) urine tests (an alcohol biomarker with a 2-day detection period) and alcohol breath tests during the C phase. The percentage of negative urines was 35% during the first baseline phase, 69% during the C phase, and 20% during the return-to-baseline phase. Results suggest that EtG urine tests may be a feasible method to deliver CM to promote alcohol abstinence.

McDonell, Michael G; Howell, Donelle N; McPherson, Sterling; Cameron, Jennifer M; Srebnik, Debra; Roll, John M; Ries, Richard K

2012-01-01

77

Ethyl glucuronide and ethyl sulfate in meconium and hair-potential biomarkers of intrauterine exposure to ethanol.  

PubMed

This study investigated ethyl glucuronide (EtG) and ethyl sulfate (EtS) concentration in meconium and in maternal and neonatal hair (HEtG and HFAEEs, respectively) as potential markers of intrauterine exposure to ethanol together with meconium fatty acid ethyl esters (FAEEs) in a cohort of 99 mother-infant dyads, 49 coming from the Arcispedale of Reggio Emilia (Italy) and 50 from the Hospital del Mar of Barcelona (Spain). FAEEs, EtG and EtS were measured in meconium samples using liquid chromatography-tandem mass spectrometry. A head space-solid phase microextraction-gas chromatography-mass spectrometry was used to test HEtG and HFAEEs in hair samples from mothers and their newborns. Eighty-two meconium samples (82.8%) tested positive for EtG, 19 (19.2%) for EtS while 22 (22.2%) showed FAEEs levels higher than 2 nmol/g, the cut-off used to differentiate daily maternal ethanol consumption during pregnancy from occasional or no use. Although EtG and EtS in meconium did not correlate with total FAEEs concentration, a good correlation between EtG, EtS and ethyl stearate was observed. Moreover, EtG correlated well with ethyl palmitoleate, while EtS with ethyl laurate, myristate and linolenate. Neither maternal nor neonatal hair appears as good predictors of gestational ethanol consumption and subsequent fetal exposure in these mother-infant dyads. In conclusion, these data show that meconium is so far the best matrix in evaluating intrauterine exposure to ethanol, with EtG and EtS being potentially good alternative biomarkers to FAEEs. PMID:20060246

Morini, L; Marchei, E; Vagnarelli, F; Garcia Algar, O; Groppi, A; Mastrobattista, L; Pichini, S

2010-03-20

78

False-positive ethyl glucuronide immunoassay screening associated with chloral hydrate medication as confirmed by LC–MS\\/MS and self-medication  

Microsoft Academic Search

BackgroundUrine-ethyl glucuronide (EtG) concentrations are considered as a specific marker of recent alcohol consumption. We describe false-positive EtG screening results by the DRI® ethyl glucuronide enzyme immunoassay caused by chloral hydrate intake.

Torsten Arndt; Birgit Gierten; Brunhilde Güssregen; Annika Werle; Joachim Grüner

2009-01-01

79

Identification and preliminary characterization of UDP-glucuronosyltransferases catalyzing formation of ethyl glucuronide.  

PubMed

Ethyl glucuronide (EtG), a minor metabolite of ethanol, is used as a marker of alcohol consumption in a variety of clinical and forensic settings. At present there are very few studies of UDP-glucuronosyltransferases (UGT), responsible for catalyzing EtG formation, and the possible effect of nutritional components, e.g. flavonoids, which are extensively glucuronidated, on EtG formation has not been addressed at all. The following incubation conditions were optimized with regard to previously published conditions: buffer, substrate concentration, and incubation time. Isolation of EtG from the incubation mixture was also optimized. Recombinant UGT enzymes (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B10, 2B15) were screened for their activity towards ethanol, and kinetic data were then established for all enzymes. It was decided to study the effect of the flavonoids quercetin and kaempferol on glucuronidation of ethanol. Isolation was by solid-phase extraction (SPE) to minimize matrix effects. Analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS-MS), with EtG-d5 as the internal standard. SPE was vital to avoid severe ion suppression after direct injection of the incubation solution. EtG formation was observed for all enzymes under investigation; their kinetics followed the Michaelis-Menten model, meaning the maximum reaction rate achieved at saturating substrate concentrations (V(max)) and the substrate concentration at which the reaction rate is half of V(max) (Michaelis-Menten constant, K(m)) could be calculated. The highest rate of glucuronidation was observed with UGT1A9 and 2B7. After co-incubation with both flavonoids, formation of EtG was significantly reduced for all enzymes except for UGT2B15, whose activity did not seem to be affected. Results reveal that multiple UGT isoforms are capable of catalyzing glucuronidation of ethanol; nevertheless, the effect of UGT polymorphism on glucuronidation of ethanol needs further study. Formation of EtG is inhibited by the flavonoids under investigation. Obviously, nutritional components affect conversion of ethanol to EtG. This observation may serve as a partial explanation of its variable formation in man. PMID:24553666

Schwab, Nicole; Skopp, Gisela

2014-04-01

80

Comparison of ethyl glucuronide in hair with carbohydrate-deficient transferrin in serum as markers of chronic high levels of alcohol consumption  

Microsoft Academic Search

This study was designed with the aim to compare sensitivity and specificity of ethyl glucuronide in hair (HEtG) and carbohydrate-deficient transferrin (CDT) in serum as markers of heavy drinking. Eighty-six volunteers, including teetotalers, social, and heavy drinkers, were interviewed to evaluate their ethanol daily intake (EDI) during the last 2-week and 3-month periods. HEtG determination was performed by a fully

Luca Morini; Lucia Politi; Silvia Acito; Angelo Groppi; Aldo Polettini

2009-01-01

81

Immunoassay for ethyl glucuronide in vitreous humor: a new tool for postmortem diagnostics of alcohol use.  

PubMed

Although excessive alcohol consumption plays a major role in fatal events, the role of alcohol use as a possible contributing factor at the time of death is not easy to establish due to lack of suitable biomarkers for postmortem analyses. We used an immunological approach to measure ethyl glucuronide (EtG) concentrations from vitreous humor (VH) and serum from 58 individuals representing a forensic autopsy population of cases with either a well-documented history of excessive alcohol use (n=37) or cases without such history (n=21), according to medical and police records and blood alcohol determinations (BAC). The immunoassay was based on the Microgenics DRI-EtG EIA reagents applied on an automated Abbott Architect c8000 clinical chemistry analyzer. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination of EtG and ethyl sulfate (EtS) was used as a reference method. At a cut-off of 0.3mg/l for VH-EtG, the immunoassay correctly identified 92% of the cases with a history of excessive alcohol use, whereas the BAC was positive (cut-off 10mg/dl) in 68% of the cases. A significant correlation emerged between VH-EtG and serum EtG (r=0.77, p<0.001) and between VH-EtG and BAC (r=0.62, p<0.001), although VH-EtG was frequently elevated also in cases with no detectable BAC. The EtG immunoassay showed a strong correlation with the LC-MS/MS reference method (r=0.94, p<0.001) and there was 100% agreement in the frequency of marker positive and negative findings between the immunoassay EtG results and the LC-MS/MS analysis of EtG and EtS. The present data indicate that the immunoassay for VH-EtG is a useful forensic tool for screening of antemortem alcohol use. PMID:23415594

Rainio, Juha; Kultti, Johanna; Kangastupa, Päivikki; Tuomi, Heidi; Ahola, Sanna; Karhunen, Pekka J; Helander, Anders; Niemelä, Onni

2013-03-10

82

Influence of thermal hair straightening on ethyl glucuronide content in hair.  

PubMed

Hair analysis of ethyl glucuronide (EtG) has become a valuable marker for the detection of moderate and chronic alcohol consumption. It has been shown that bleaching and perming may decrease EtG content in hair. So far, no studies exist about the influence of thermal hair straightening on EtG content in hair. Forty-one positive EtG hair samples were treated in vitro with a hair straightener at 200°C. Duration of treatment of 1 min was chosen for this study. After washing, pulverization, incubation in ultrasonic bath, solid-phase extraction, and derivatization with heptafluorobutyric anhydride, EtG was determined by gas chromatography-mass spectrometry - negative ion chemical ionization (GC-MS-NICI). The EtG contents in straightened hair strands were then compared with those in the corresponding untreated strands. In 20 of 41 hair samples, a decrease of EtG content was found ranging from 0.7% to 79.3% (average 20%) whereas in 21 cases an increase was shown ranging from 2.0% to 50.9% (average 15%). The variation of the results seems to depend on hair colour. The decrease may be explained by thermic in vitro destruction of EtG. The increase may be explained by denaturation of the hair matrix by thermal treatment possibly causing a better extraction of EtG during incubation in ultrasonic bath. This in vitro study indicates that thermal hair straightening has an impact on the EtG content in hair. This has to be considered for a correct interpretation of EtG results in hair. However, these results should be confirmed by in vivo studies. PMID:24817051

Ettlinger, Jana; Kirchen, Luc; Yegles, Michel

2014-06-01

83

An improved method to detect ethyl glucuronide in urine using reversed-phase liquid chromatography and pulsed electrochemical detection  

Microsoft Academic Search

Pulsed electrochemical detection (PED) following reversed-phase liquid chromatography (LC) has been applied recently to the detection of ethyl glucuronide (EtG) in the urine of live and deceased individuals. In this paper, several key improvements to the method are made to enhance sensitivity, reproducibility, and accuracy. These improvements include (i) further optimization of the sample preparation procedure that has increased the

Romina Shah; William R. LaCourse

2006-01-01

84

Ethyl glucuronide, ethyl sulfate, and ethanol in urine after sustained exposure to an ethanol-based hand sanitizer.  

PubMed

To assess the degree of ethanol absorption and subsequent formation of urinary ethyl glucuronide (EtG) and ethyl sulfate (EtS) following sustained application of hand sanitizer, 11 volunteers cleansed their hands with Purell(™) hand sanitizer (62% ethanol) every 5 min for 10 h on three consecutive days. Urine specimens were obtained at the beginning and end of each day of the study, and on the morning of the fourth day. Urinary creatinine, ethanol, EtG, and EtS concentrations were measured. EtG was undetectable in all pre-study urine specimens, but two pre-study specimens had detectable EtS (73 and 37 ng/mL). None of the pre-study specimens had detectable ethanol. The maximum EtG and EtS concentrations over the course of the study were 2001 and 84 ng/mL, respectively, and nearly all EtG- and EtS-positive urine specimens were collected at the conclusion of the individual study days. Only two specimens had detectable EtG at the beginning of any study day (96 and 139 ng/mL), and only one specimen had detectable EtS at the beginning of a study day (64 ng/mL), in addition to the two with detectable EtS prior to the study. Creatinine-adjusted maximum EtG and EtS concentrations were 1998 and 94 ?g/g creatinine, respectively. In patients being monitored for ethanol use by urinary EtG concentrations, currently accepted EtG cutoffs do not distinguish between ethanol consumption and incidental exposures, particularly when urine specimens are obtained shortly after sustained use of ethanolcontaining hand sanitizer. Our data suggest that EtS may be an important complementary biomarker in distinguishing ethanol consumption from dermal exposure. PMID:21396227

Reisfield, Gary M; Goldberger, Bruce A; Crews, Bridgit O; Pesce, Amadeo J; Wilson, George R; Teitelbaum, Scott A; Bertholf, Roger L

2011-03-01

85

Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium from newborns for detection of alcohol abuse in a maternal health evaluation study.  

PubMed

Fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) were determined in 602 meconium samples in a maternal health evaluation study for detection of gestational alcohol consumption. A validated headspace solid phase microextraction method in combination with GC-MS was used for FAEE and the cumulative concentration of ethyl palmitate, ethyl linoleate, ethyl oleate, and ethyl stearate with a cut-off of 500 ng/g was applied for interpretation. A new and simple method was developed and validated for quantification of EtG from 10-20 mg meconium with D(5)-EtG as internal standard consisting of 30 min. extraction with methanol/water (1:1, v/v), evaporation of methanol, filtration of the aqueous solution through a cellulose filter and injection into LC-MS-MS. The limits of detection and quantification for EtG were 10 and 30 ng/g, the recovery 86.6 to 106.4% and the standard deviation of the concentrations ranged from 13% at 37 ng/g to 5% at 46,700 ng/g (N = 6). FAEE above the cut-off were found in 43 cases (7.1%) with cumulative concentrations between 507 and 22,580 ng/g and with one outlier of about 150,000 ng/g (EtG not detected). EtG was detected in 97 cases (16.3%) and concentrations between LOD and 10,200 ng/g with another outlier of 82,000 ng/g (FAEE 10,500 ng/g). Optimal agreement between the two markers was obtained with a cut-off for EtG of 274 ng/g and 547 cases with both FAEE- and EtG-negative, 33 cases with both FAEE- and EtG-positive, nine cases with FAEE-positive and EtG-negative, and seven cases with FAEE-negative and EtG-positive. Differences in physical, chemical, and biochemical properties and in the pharmacokinetic behavior are discussed as reasons for the deviating cases. In none of the 602 cases, serious alcohol consumption was reported by the mothers and no evidence for gestational ethanol exposure was observed in the medical investigation of the newborns. It is concluded that the combined use of FAEE and EtG in meconium as markers for fetal alcohol exposure essentially increases the accuracy of the interpretation and helps to avoid false positive and false-negative results. PMID:20145912

Bakdash, Abdulsallam; Burger, Pascal; Goecke, Tamme W; Fasching, Peter A; Reulbach, Udo; Bleich, Stefan; Hastedt, Martin; Rothe, Michael; Beckmann, Matthias W; Pragst, Fritz; Kornhuber, Johannes

2010-04-01

86

Population Baseline of Meconium Ethyl Glucuronide and Ethyl Sulfate Concentrations in Newborns of Nondrinking Women in 2 Mediterranean Cohorts.  

PubMed

The detection of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in meconium has been investigated recently as an alternative to meconium fatty acid ethyl esters (FAEEs) measurement as an objective estimate of prenatal alcohol exposure, independent of maternal self-reporting. We report the results of the first study conducted to investigate the concentrations of EtG and EtS in meconium from newborns with and without intrauterine exposure to ethanol, defined by questionnaire and meconium FAEEs concentration. FAEEs, EtG, and EtS were quantified by liquid chromatography tandem mass spectrometry in meconium samples obtained from the Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (n = 80) and from the Hospital del Mar in Barcelona, Spain (n = 105). Median EtG and EtS values in meconium from newborns without intrauterine exposure to ethanol varied between 0.100 and 0.140 nmol/g and 0.010 and 0.020 nmol/g in Reggio Emilia and Barcelona samples, respectively. In meconium from newborns with uncertain prenatal ethanol exposure, the EtG median value was 0.160 nmol/g in the Italian cohort and 0.250 nmol/g in the Spanish one. The median EtS concentration was 0.020 in both cohorts. EtG and EtS median values in 5 meconium samples from newborns of heavily drinking mothers were 7.240 nmol/g and 0.033 nmol/g, respectively. A positive cutoff of 2.0 nmol/g for EtG yielded the best sensitivity and specificity (100%) to discriminate for true prenatal exposure to ethanol. It was not possible to establish a proper cutoff for EtS because of the low number of positive samples. Based on our results, meconium EtG can be proposed as an alternate biomarker for intrauterine alcohol exposure. In contrast to the 7 FAEEs, EtG is just one molecule that could be screened in meconium samples from all newborns by a simple, low-cost, easy-to-perform immunoassay, which can be routinely applied in neonatology wards for the early diagnosis of prenatal exposure to ethanol. PMID:20335828

Morini, Luca; Groppi, Angelo; Marchei, Emilia; Vagnarelli, Federica; Garcia Algar, Oscar; Zuccaro, Piergiorgio; Pichini, Simona

2010-03-23

87

Direct determination of estriol 3- and 16-glucuronides in pregnancy urine by column-switching high-performance liquid chromatography with fluorescence detection  

Microsoft Academic Search

An HPLC method for the direct and simultaneous determination of estriol 3- and 16-glucuronides in pregnancy urine is described. The method is based on direct derivatization of the glucuronic acid moiety in estriol glucuronides in urine with 6,7-dimethoxy-1-methyl-2(1H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution (or urine sample) in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide at 37°C.

Tetsuharu Iwata; Tsuyoshi Hirose; Masatoshi Yamaguchi

1997-01-01

88

Analysis of ethyl glucuronide in human serum by capillary electrophoresis with sample self-stacking and indirect detection  

Microsoft Academic Search

Ethyl glucuronide (EtG), a metabolite of ethanol, is a marker of recent alcohol consumption. In the past few years, its analysis in body fluids has attracted considerable attention because it closes a gap between short time and long time alcohol markers such as ethanol and carbohydrate-deficient transferrin, respectively. The capillary zone electrophoresis (CZE) analysis of EtG in model mixtures and

L. K?ivánková; J. Caslavska; H. Malášková; P. Gebauer; W. Thormann

2005-01-01

89

Comparison of ethyl glucuronide in hair with phosphatidylethanol in whole blood as post-mortem markers of alcohol abuse  

Microsoft Academic Search

Ethyl glucuronide (EtG) is a direct metabolite of ethanol and has been used as a marker of alcohol abuse in both urine and hair. This study investigated the value of EtG testing in post-mortem hair for diagnostic improvement of alcohol abuse in forensic medicine. Material from 70 consecutive medico-legal autopsies was collected in accordance with the recommendations on ethics by

Peter Bendroth; Robert Kronstrand; Anders Helander; Jesper Greby; Nikolai Stephanson; Peter Krantz

2008-01-01

90

Ethyl glucuronide in hair - A highly effective test for the monitoring of alcohol consumption.  

PubMed

In Germany drink driving offenders lose their license and must prove abstinence for one year in order to regain it. In this paper we assess the newly introduced ethyl glucuronide (EtG) tests in urine and hair in this alcohol abstinence monitoring. 20% (80 out of 386) of the 3cm long hair samples were tested positive for EtG in hair, compared to only 2% (92 out of 4248 samples) in urine in the same time period. Additionally 50% of the samples positive for EtG in hair had EtG values greater than 30pg/mg hair, indicating chronic alcohol consumption in the last three months. This study shows that four EtG tests in 3cm hair lengths reveal a significantly higher percentage of drink driving offenders who fail to be sober in the rehabilitation period, than do six random EtG tests in urine. Presumably, the hair test is more adequate to monitor long term alcohol abstinence than the urine test as defined by the new driving license re-granting medical and psychological assessment (MPA) in Germany. PMID:22019393

Agius, Ronald; Nadulski, Thomas; Kahl, Hans-Gerhard; Dufaux, Bertin

2012-05-10

91

Ethyl glucuronide excretion in humans following oral administration of and dermal exposure to ethanol.  

PubMed

Ethyl glucuronide (EtG) is a direct ethanol biomarker and U.S. Department of Health and Human Services has advised that specificity studies at low EtG levels are needed for distinction of ethanol consumption and incidental exposure. The authors report urinary EtG excretion with ethanol abstinence, dermal exposure and oral consumption. EtG concentration by sensitive liquid chromatography-tandem mass spectrometry measurement in 39 urine specimens from adult alcohol abstainers (< 10-62 microg/L) and in urine from 13 children (< 10-80 microg/L) indicates either unrecognized ethanol exposure or endogenous ethanol metabolism. With repetitive daily dermal exposure to hand sanitizer (60% ethanol) by 9 adults, EtG concentration ranged from < 10 to 114 microg/L in 88 first-morning void specimens. EtG excretion following a 24 g ethanol drink by 4 adults revealed maximum urine EtG concentration (12,200-83,200 microg/L) at 3 to 8 h postdose and an EtG detection window up to 25-39 h, compared to an ethanol window of only 2 to 4 h. Oral ethanol use also showed an increase in the percent (molar equivalent) ethanol excreted as EtG with increasing oral ethanol doses. Human excretion studies show 1. EtG detectable at low concentration (< 100 microg/L) when ethanol use or exposures is not evident, 2. EtG concentration less than 120 microg/L in first morning specimens from adults with repeated dermal exposure to ethanol, 3. EtG levels maximally elevated within 3-8 h and above baseline for up to 39 h after a 24 g ethanol drink, and 4. a dose-dependent increase in the percentage of ethanol excreted as EtG with increasing oral ethanol use. PMID:19007508

Rosano, Thomas G; Lin, Jing

2008-10-01

92

Utility of urinary ethyl glucuronide analysis in post-mortem toxicology when investigating alcohol-related deaths.  

PubMed

Use and abuse of alcohol are common findings when unnatural deaths are investigated as evidenced by high blood- and urine- alcohol concentrations (BAC and UAC) at autopsy. Because ethanol is metabolized in the liver until the time of death, the autopsy BAC or UAC might be negative even though the deceased had consumed alcohol in the immediate ante-mortem period. Analysis of the non-oxidative metabolite of ethanol [ethyl glucuronide (EtG)] offers a more sensitive test of recent drinking. In this paper, we determined the concentrations of ethanol and EtG in urine samples from 972 consecutive forensic autopsies. In 425 cases (44%) both EtG and ethanol were positive, which supports ante-mortem drinking. In 342 cases (35%), both EtG and ethanol was negative, which speaks against any consumption of alcohol just before death. In 181cases, ethanol was negative in urine (<0.2g/kg), whereas EtG was positive (>0.5mg/L), which points towards ingestion of alcohol some time before death. In these cases, mean and median concentrations of EtG were 53.2mg/L and 23.7mg/L, respectively, although there was no mention of alcohol on 131 of the death certificates. Alcohol was mentioned on death certificates as an underlying or immediate cause of death or a contributing factor in 435 (45%) cases, which rose to 566 (58%) cases when positive EtG results were included. This article demonstrates the usefulness of EtG analysis in routine post-mortem toxicology when ante-mortem drinking and alcohol-related deaths are investigated. PMID:24954799

Sundström, M; Jones, A W; Ojanperä, I

2014-08-01

93

A comparison of the performance of quality controls prepared from spiked, fortified and authentic hair for ethyl glucuronide analysis.  

PubMed

Ethyl glucuronide (EtG) quantification in hair was assessed using quality controls prepared by three methods: (a) spiking hair samples with known concentrations of EtG, (b) fortifying hair by incubation of blank hair with EtG for several days or (c) use of authentic hair samples positive for EtG. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed on a Shimadzu model 8030 instrument and validated for the quantification of EtG. For two concentration levels, approximately 50 and 500 pg/mg QCs, EtG concentrations were measured in duplicate (N=2) on 8 days (N=16) and intra-assay precision (repeatability) and inter-assay precision determined using one-way analysis of variance. EtG concentrations measured in authentic hair exhibited poor intra-assay precision, with coefficients of variation of 25.1 and 20.9%, compared with 17.7 and 18.5% for fortified hair and 17.4 and 11.3% for spiked hair, for the lower and higher concentrations respectively. The inter-assay precision for authentic hair was also poorer, 35.7 and 22.5%, compared with fortified (28.2 and 19.8%) and spiked (18.4 and 13.2%) hair for the lower and higher concentrations. Although spiked QCs resulted in a better repeatability and inter-assay precision, the values obtained for QCs prepared from fortified and authentic hair are likely to be more representative of case specimens. These results have implications on the interpretation of EtG concentrations when spiked QCs are used to validate methods. PMID:24053866

Turfus, Sophie C; Beyer, Jochen; Gerostamoulos, Dimitri; Drummer, Olaf H

2013-10-10

94

Preliminary investigations on ethyl glucuronide and ethyl sulfate cutoffs for detecting alcohol consumption on the basis of an ingestion experiment and on data from withdrawal treatment.  

PubMed

Ethyl glucuronide (EtG) and ethyl sulfate (EtS) are commonly used alcohol markers for previous alcohol consumption. Nevertheless, the optimum EtG cutoff for urinary abstinence tests is still being discussed, and no cutoff has been recommended for EtS yet. The aim of this study was to verify cutoffs by investigating EtG and EtS concentrations (c(EtG) and c(EtS)) in the urine of healthy persons after drinking small, but realistic amounts of alcohol (one or two glasses of beer or white wine), and to look for the window of detection in strongly alcohol-intoxicated patients who were beginning withdrawal treatment. Very high EtG and EtS concentrations were measured in the first urine samples of patients under withdrawal treatment. However, 24 h later, concentrations decreased considerably, and c (EtG)?determined in 26.7 % (4/13) and 13.3 % (2/13) of the samples, respectively. Concentrations above 0.1 mg/l (EtG) and 0.05 mg/l (EtS) were measured for 23.5 and 20.5 h after consuming 0.1 l of white wine or 0.33 l of beer, and 24 h after the experiment, 75 % (9/12) of the urine samples were tested negative for EtG and EtS using the following cutoffs: EtG 0.5 mg/l and EtS 0.1 mg/l. In half of the samples, concentrations below 0.1 mg/l (EtG) and 0.05 mg/l (EtS) were detected. Urinary cutoffs for EtG of 0.5 mg/l or higher are not suitable for testing abstinence. Even 0.1 mg/l is not effective to detect the intake of small amounts of alcohol in the context of abstinence tests. For EtS, 0.05 mg/l were found to be a potential cutoff to exclude the repeated intake of alcohol. Yet, further research is required to verify this cutoff. For a limited time period, EtG and EtS concentrations within the range of these cutoffs are also detectable after unintentional consumption of alcohol. Participants of abstinence programs have to be informed about the alcohol content of certain foods and beverages whose consumption is in conflict with strict abstinence. PMID:22752748

Albermann, Maria Elena; Musshoff, Frank; Doberentz, Elke; Heese, Peter; Banger, Markus; Madea, Burkhard

2012-09-01

95

Detecting alcohol abuse: traditional blood alcohol markers compared to ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) measurement in hair.  

PubMed

Alcohol abuse is a common problem in society; however, the technical capabilities of evaluating individual alcohol consumption using objective biomarkers are rather limited at present. In recent years research has focused on alcohol markers using hair analysis but data on performance and reliable cut-off values are still lacking. In this study 169 candidates were tested to compare traditional biomarkers, such as carbohydrate-deficient-transferrin (CDT), gamma glutamyl transferase (GGT), aspartate amino transferase, alanine amino transferase and the mean corpuscular volume of the erythrocytes, with alcohol markers detectable in hair such as ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs). This study revealed that EtG, GGT and CDT showed the best results, demonstrating areas under the curve calculated from receiver operating characteristics of 0.941, 0.943 and 0.899 respectively. The lowest false-negative and false-positive rates were obtained by using a combined interpretation system for hair EtG and FAEEs. All markers demonstrated only low to moderate correlations. Optimum cut-off values for differentiation between social and chronic excessive drinking calculated for hair EtG and FAEEs were 28 pg/mg and 0.675 ng/mg, respectively. The critical values published in the "Consensus on Alcohol Markers 2012" by the Society of Hair Testing were confirmed. PMID:23504201

Hastedt, Martin; Büchner, Mara; Rothe, Michael; Gapert, René; Herre, Sieglinde; Krumbiegel, Franziska; Tsokos, Michael; Kienast, Thorsten; Heinz, Andreas; Hartwig, Sven

2013-12-01

96

Do drug users use less alcohol than non-drug users? A comparison of ethyl glucuronide concentrations in hair between the two groups in medico-legal cases  

Microsoft Academic Search

Two groups were selected from the remainder of hair samples that had been tested for drugs at TrichoTech for medico-legal cases: samples that tested negative (drug-negative group; N=42, age 33.4±7.2 years) and samples that tested positive for drugs (drug-positive group; N=57, age 32.5±8.8 years).A rapid, simple method to detect the ethanol metabolite, ethyl glucuronide (EtG) in hair has been developed.

Richard Paul; Robert Kingston; Lolita Tsanaclis; Anthony Berry; Alan Guwy

2008-01-01

97

Ethyl glucuronide concentrations in two successive urinary voids from drinking drivers: relationship to creatinine content and blood and urine ethanol concentrations  

Microsoft Academic Search

The concentrations of alcohol in blood (BAC) and two successive urine voids (UAC) from 100 drunk drivers were compared with the concentration of ethyl glucuronide (EtG), a minor metabolite of ethanol in urine, and the urinary creatinine content as an indicator of dilution. The subjects consisted of 87 men with mean age 42.2±14.2 years (±standard deviation, S.D.) and 13 women

J Bergström; A Helander; A. W Jones

2003-01-01

98

An evaluation of washing and extraction techniques in the analysis of ethyl glucuronide and fatty acid ethyl esters from hair samples.  

PubMed

Ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) are alcohol metabolites measured in hair and are after a decade of research thought to be the best markers in hair to indicate alcoholism and abstinence Forensic Sci. Int. 218 (2012) 2. A great body of work concerning EtG and FAEEs detection in hair has been performed. However, no recent extensive comparison has been made concerning washing and extraction procedures. This work shows that the washing procedure of dichloromethane followed by a methanol rinse of the hair sample removes more than 16% of the FAEEs and 50% of the total EtG that is present in and on the hair. A review of ten washing protocols (where the removal is categorised: high, medium or low) showed that a relatively high percentage of FAEEs was removed and "medium" amount of EtG compared to the other washing protocols. This work shows promising results for the extraction of the FAEEs and the combined extraction of FAEEs and EtG by using 30min of sonication with methanol. More FAEEs were recovered from hair with methanol than with any other extraction solvent including the commonly used dimethyl sulfoxide/heptane mixture. When the sonication time was increased a higher percentage of transesterification of the FAEEs was observed, the extraction was "dirtier" as solids and a colour change was observed whereas the extraction efficiency did not increase. Therefore, washing the hair sample with dichloromethane and methanol followed by an addition of 1ml of methanol and sonication for 30min to extract the FAEEs and EtG from hair is recommended for FAEEs as well as for the combined analysis of EtG and FAEEs. A linear calibration curve (r(2)>0.99) was obtained for all analytes. PMID:24590191

Bossers, L C A M; Paul, R; Berry, A J; Kingston, R; Middendorp, C; Guwy, A J

2014-03-15

99

Hair Ethyl Glucuronide is Highly Sensitive and Specific for Detecting Moderate-to-Heavy Drinking in Patients with Liver Disease  

PubMed Central

Aims: Hair ethyl glucuronide (EtG) is a promising biomarker of moderate-to-heavy alcohol consumption and may have utility in detecting and monitoring alcohol use in clinical populations where alcohol use is of particular importance. This study evaluated the relationship between hair EtG and drinking in patients with liver disease. Methods: The subjects (n = 200) were patients with liver disease who presented for care at a university medical center. Alcohol use during the 3 months preceding participation in the study was assessed, and a sample of hair was obtained for EtG testing. Classification of drinking status (any drinking or averaging at least 28 g per day) by hair EtG was evaluated, as well as the effects of liver disease severity and demographic and hair care factors. Results: The area under the receiver operating characteristic curve for detecting an average of 28 g or more per day during the prior 90 days was 0.93. The corresponding sensitivity and specificity of hair EtG ?8 pg/mg for averaging at least 28 g of ethanol per day were 92 and 87%, respectively. Cirrhosis and gender may have a modest influence on the relationship between drinking and hair EtG. Conclusion: Hair EtG was highly accurate in differentiating subjects with liver disease averaging at least 28 g of ethanol per day from abstainers and lighter drinkers.

Stewart, Scott H.; Koch, David G.; Willner, Ira R.; Randall, Patrick K.; Reuben, Adrian

2013-01-01

100

Ethyl glucuronide concentration in hair for detecting heavy drinking and/or abstinence: a meta-analysis.  

PubMed

In both clinical and forensic settings, hair analysis for ethyl glucuronide (HEtG) has been increasingly employed for diagnosing chronic excessive drinking and, more recently, for monitoring abstinence. This paper aims at meta-analysing published data on HEtG concentrations in teetotallers, social drinkers and heavy drinkers in order to evaluate the use of this marker in hair for identifying chronic excessive drinking and for monitoring abstinence. In May 2012, a systematic multi-database search retrieved 366 records related to HEtG and further screened for relevant publications in the field. Fifteen (4.1 %) records matched the selection criteria and were included in the meta-analysis. The mean and 95 % confidence intervals (CI) of HEtG concentrations in social drinkers (mean 7.5 pg/mg; 95 % CI 4.7-10.2 pg/mg; p < 0.001), heavy drinkers (mean 142.7 pg/mg; 95 % CI 99.9-185.5 pg/mg; p < 0.001) and deceased subjects with a known history of chronic excessive drinking (mean 586.1 pg/mg; 95 % CI 177.2-995.0 pg/mg; p < 0.01) were calculated. The ranges of mean values and 95 % confidence intervals for single studies involving teetotallers/social or social/heavy drinkers showed a partial overlap with a down-trespassing of both the 7 and 30 pg/mg thresholds for social and heavy drinkers, respectively. Although larger and well-designed population studies are required to draw any definitive conclusion, our data show that the cut-off of 30 pg/mg limits the false-negative effect in differentiating heavy from social drinkers, whereas the recently proposed 7 pg/mg cut-off value might only be used for suspecting an active alcohol use, and not for proving complete abstinence. PMID:23250386

Boscolo-Berto, Rafael; Viel, Guido; Montisci, Massimo; Terranova, Claudio; Favretto, Donata; Ferrara, Santo Davide

2013-05-01

101

Measurement of ethyl glucuronide, ethyl sulphate and their ratio in the urine and serum of healthy volunteers after two doses of alcohol.  

PubMed

Aims: Ethyl glucuronide (EtG) and ethyl sulphate (EtS) are minor metabolites of ethanol, and their presence in urine provides a strong indication of recent alcohol administration. In this study, we performed a drinking experiment to investigate the kinetics of EtG and EtS formation and elimination after the administration of two doses of alcohol. Methods: Nineteen volunteers provided urine and serum (only 18) after administration of 4 and 8 units of alcohol (1 unit corresponds to 10 ml or ?8 g of pure ethanol). The analysis was performed using a validated ultra-performance liquid chromatography-mass spectrometry (UPLC(®)-MS/MS) method. Results: After 4 units, the median EtG maximum concentration (C(max)) was 0.4 µg/ml and the interquartile range (0.3 µg/ml) in serum and 3.5 mg/h (1.2 mg/h) in urine and were reached (T(max)) after 2.0 h (0.8 h) and 3.0 h (1.0 h), respectively. EtS C(max) was 0.2 µg/ml (0.1 µg/ml) in serum and 1.3 mg/h (0.6 mg/h) in urine, and the corresponding T(max) were 1.0 h (1.0 h) and 2.0 h (0.5 h). After 8 units, EtG C(max) was 1.3 µg/ml (0.4 µg/ml) in serum and 10 mg/h (3.4 mg/h) in urine and was reached after 4.0 h (1.8 h) and 4.0 h (2.0 h), respectively. EtS C(max) was 0.6 µg/ml (0.1 µg/ml) in serum and 3.5 mg/h (1.1 mg/h) in urine, the corresponding T(max) were 3.0 h (1.0 h) and 3.0 h (1.0 h). The EtG/EtS ratio increased as a function of the time after alcohol administration in both serum and urine samples but to a lesser extent after 8 units than 4. Conclusion: These results correlate with values obtained in previous studies. T(max) of EtG and EtS increased between 4 and 8 units. The EtG:EtS ratio increased in the serum and urine samples of all volunteers as a function of time at least up to 4 h after alcohol administration. PMID:23043120

Lostia, Alfonso Maria; Vicente, Joana Lobo; Cowan, David A

2013-01-01

102

Practical experiences in application of hair fatty acid ethyl esters and ethyl glucuronide for detection of chronic alcohol abuse in forensic cases.  

PubMed

This article presents results from 1872 hair samples, which were analyzed for fatty acid ethyl esters (FAEEs) and ethyl glucuronide (EtG). The results were evaluated in the context of self-reported drinking behavior, the use of hair cosmetics, the gender of the sample donors and hair sample length. For comparison, CDT and GGT in serum were available in 477 and 454 cases, respectively. A number of alcohol abstainers or low moderate drinkers and excessive drinkers were selected for assessment of cut-offs for FAEEs in the proximal 6cm hair segments and for EtG in the proximal 3cm hair segments. Cut-off values were assessed by ROC analysis. It was found that the cut-offs of 1.0ng/mg FAEE and 30pg/mg EtG presently used for excessive drinking lead to a low portion of false positives (4% and 3% respectively) but to a higher portion of false negatives (23% and 25% respectively). Comparison of the mean and medium concentrations in samples without any reported hair cosmetics (N=1079) and in samples with reported use of hair spray (N=79) showed an increase by the factor of about two for FAEE but no significant difference for EtG. Mean values of EtG were decreased by 80% in bleached samples (N=164) and by 63% in dyed samples (N=96). There was no significant effect of bleaching and dyeing on FAEE. Hair gel and hair wax, oil or grease showed no significant effect on both FAEE and EtG. With respect to gender and investigated hair length ambiguous results were obtained because of major differences in the compared subpopulations of male with higher alcohol consumption and mainly shorter hair, and less drinking female with longer hair. For excessive drinkers FAEEs in the 0-6cm hair segment and EtG in the 0-3cm segment decreased with increasing time of reported abstinence before sample collection. These drinkers attain the level of teetotalers only after more than 10 months of abstinence. In comparison to scalp hair, FAEEs recovered from armpit hair and leg hair were lower and from chest hair were higher. EtG in armpit hair was lower and in leg hair higher than in scalp hair. It is concluded that the combined use of FAEE and EtG essentially increases the accuracy of interpretation since both markers complement each other by a different sensitivity to sources of error. PMID:22036309

Suesse, S; Pragst, F; Mieczkowski, T; Selavka, C M; Elian, A; Sachs, H; Hastedt, M; Rothe, M; Campbell, J

2012-05-10

103

Validation of a novel method to identify in utero ethanol exposure: simultaneous meconium extraction of fatty acid ethyl esters, ethyl glucuronide, and ethyl sulfate followed by LC-MS/MS quantification.  

PubMed

Presence of fatty acid ethyl esters (FAEE), ethyl glucuronide (EtG), and ethyl sulfate (EtS) in meconium, the first neonatal feces, identifies maternal alcohol consumption during pregnancy. Current meconium alcohol marker assays require separate analyses for FAEE and EtG/EtS. We describe development and validation of the first quantitative liquid chromatography tandem mass spectrometry assay for 9 FAEEs, EtG, and EtS in 100 mg meconium. For the first time, these alcohol markers are analyzed in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. 100 mg meconium was homogenized in methanol and centrifuged. The supernatant was divided, and applied to two different solid phase extraction columns for optimized analyte recovery. Limits of quantification for ethyl laurate, myristate, linolenate, palmitoleate, arachidonate, linoleate, palmitate, oleate, and stearate ranged from 25-50 ng/g, with calibration curves to 2,500-5,000 ng/g. EtG and EtS linear dynamic ranges were 5-1,000 and 2.5-500 ng/g, respectively. Mean bias and between-day imprecision were <15 %. Extraction efficiencies were 51.2-96.5 %. Matrix effects ranged from -84.7 to 16.0 %, but were compensated for by matched deuterated internal standards when available. All analytes were stable (within ±20 % change from baseline) in 3 authentic positive specimens, analyzed in triplicate, after 3 freeze/thaw cycles (-20 °C). Authentic EtG and EtS also were stable after 12 h at room temperature and 72 h at 4 °C; some FAEE showed instability under these conditions, although there was large inter-subject variability. This novel method accurately detects multiple alcohol meconium markers and enables comparison of markers for maternal alcohol consumption. PMID:24408304

Himes, Sarah K; Concheiro, Marta; Scheidweiler, Karl B; Huestis, Marilyn A

2014-03-01

104

Analysis of ethyl glucuronide in hair samples by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS).  

PubMed

Many different biomarkers can be used to evaluate ethanol intake. Ethyl glucuronide (EtG) is a direct phase II and minor metabolite of ethanol formed through the UDP-glucuronosyl transferase-catalyzed conjugation of ethanol with glucuronic acid. Its investigation is of interest in both clinical and forensic contexts because of the wide window of detection. A sensitive LC-MS/MS procedure has been developed and fully validated according to the guidelines of forensic toxicology for the analysis of EtG in hair. Sample preparation and chromatographic separation were thoroughly optimized. The analysis was performed in the multiple reaction monitoring mode using the transitions m/z 221 ? 203 (for the quantification) and 221 ? 85 or 75 (for the qualification) for EtG, and m/z 226 ? 208 (for quantification) and 226 ? 75 or 85 (for qualification) for EtG-D5, used as the internal standard. Analyses were carried out using an Inertsil ODS-3 column (100 × 3 mm i.d., 3 µm particle size) and a mobile phase composed of formic acid and acetonitrile. Various SPE cartridges and solvents were tested in order to obtain the highest recoveries and cleanest extracts. The assay linearity of EtG was confirmed over the range from 20 to 2500 pg mg(-1), with a coefficient of determination (R(2) ) above 0.99. The lower limit of quantitation (LLOQ) was 20 pg mg(-1) and the limit of detection was 10 pg mg(-1). Intra- and inter-day assays were less than 15% except at the LLOQ (20%). The analytical method was applied to 72 post-mortem hair samples. EtG concentration in the hair ranged from 0 to 653 pg mg(-1) hair. PMID:22234871

Cabarcos, Pamela; Hassan, Huda M; Tabernero, María Jesús; Scott, Karen S

2013-07-01

105

Development of a new immunoassay for the detection of ethyl glucuronide (EtG) in meconium: validation with authentic specimens analyzed using LC-MS/MS. Preliminary results.  

PubMed

Abstract Background: Ethyl glucuronide (EtG) measurement in neonatal meconium has emerged as a reliable marker to objectively assess prenatal exposure to maternal ethanol complementary to fatty acid ethyl ester (FAEEs) measurement. The detection of EtG in meconium is currently a lengthy, difficult and expensive process using liquid chromatography tandem mass spectrometry (LC-MS/MS) as the analytical procedure. An enzyme-linked immunosorbent assay (ELISA) for the identification of EtG in meconium was developed, validated and applied to authentic meconium specimens from newborns collected in Europe. Methods: The ELISA procedure was calibrated using 0.45, 0.9, 1.35 and 1.8 nmol/g (100, 200 300 and 400 ng/g) standards. Meconium (0.25 g) was mixed thoroughly, with extraction buffer (pH 7.3; 0.5 mL). The tube was capped, sonicated, centrifuged and the supernatant was decanted. An aliquot of the extract (50 ?L) was placed in the well of the microplate followed by enzyme conjugate (150 ?L). The plate was incubated for 1 h, washed with deionized water, dried and substrate (200 ?L) was added. After 30 min incubation, stop solution was added and the plate was read at 450 nm and 650 nm. Samples were also analyzed for EtG and FAEEs by validated LC-MS/MS assays. Results: Using an EtG cut-off of 0.9 nmol/g for both ELISA screening test and confirmatory LC-MS/MS, immunoassay sensitivity was 100%; specificity 78%; positive-predictive value (PPV) 29% and negative-predictive value (NPV) 100%. Conclusions: The assay is proposed as a preliminary screening test for the meconium of newborns suspected of being born to mothers drinking alcohol during pregnancy. PMID:24607921

Pichini, Simona; Morini, Luca; Pacifici, Roberta; Tuyay, James; Rodrigues, Warren; Solimini, Renata; Garcia-Algar, Oscar; Ramis, Juan; Moore, Christine

2014-08-01

106

Regiospecificity of Human UDP-glucuronosyltransferase Isoforms in Chalcone and Flavanone Glucuronidation Determined by Metal Complexation and Tandem Mass Spectrometry  

PubMed Central

The glucuronidation of a series of chalcones (2'-hydroxychalcone, 2',4'-dihydroxychalcone, 3,2'-dihydroxychalcone, 4,2'-dihydroxychalcone, and cardamonin) and their corresponding cyclized flavanones (7-hydroxyflavanone, 3'-hydroxyflavanone, 4'-hydroxyflavanone, and alpinetin) by nine human UDP-glucuronosyltransferase (UGT) 1A enzymes was evaluated. A post-column metal complexation LC-MS/MS strategy was used successfully to produce characteristic mass spectrometric product ions that were utilized in combination with elution order trends to identify chalcone and flavanone monoglucuronides unambiguously, thus allowing determination of the regioselectivities of the UGT1A isoforms. The presence of hydroxy groups on the A or B-ring had a significant effect on the glucuronide product yield and the site where glucuronidation occurred. For example, for reaction with UGT1A9, formation of the 2'-O-glucuronide was increased for dihydroxychalcones with A-ring hydroxy substituents. In contrast, although UGT1A8 reacted with 3,2'-dihydroxychalcone and 4,2'-dihydroxychalcone to yield 2'-O-glucuronide products, the presence of a B-ring hydroxy group at the 4' position on cardamonin and 2',4'-dihydroxychalcone quenched the reaction at the OH-2' position. Moreover, the A-ring OH-4 group promoted glucuronidation at the 2' position for the reaction of 4,2'-dihydroxychalcone with UGT1A1 and 1A3. For UGT1A7, hydroxy group substituents on the chalcone A-ring also promoted cyclization and formation of the corresponding flavanone glucuronide.

Niemeyer, Emily D.; Brodbelt, Jennifer S.

2013-01-01

107

Determination of morphine and its 3- and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry  

Microsoft Academic Search

A selective assay of morphine-3-glucuronide (M3G), morphine-6-glucuronide (M6G), morphine, codeine, codeine-6-glucuronide (C6G) and 6-monoacetylmorphine (6-MAM) based on liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC–APCI–MS) is described. The drugs were extracted from serum, autopsy blood, urine, cerebrospinal fluid or vitreous humor using C18 solid-phase extraction cartridges and subjected to LC–APCI–MS analysis. The separation was performed on an ODS column

Maciej J Bogusz; Rolf-Dieter Maier; Manfred Erkens; Sarah Driessen

1997-01-01

108

A fully validated method for the quantification of ethyl glucuronide and ethyl sulphate in urine by UPLC-ESI-MS/MS applied in a prospective alcohol self-monitoring study.  

PubMed

A method for the quantification of ethyl glucuronide (EtG) and ethyl sulphate (EtS) in human urine is developed and fully validated according to international guidelines. Protein precipitation is used as sample preparation. During the development of the method on an UPLC-ESI-MS/MS system using a CSH C18 column, special attention was paid to reduce matrix effects to improve assay sensitivity and to improve detection of the second transition for EtS for specificity purposes. The method was linear from 0.1 to 10?g/mL for both analytes. Ion suppression less than 24% (RSD<15%) was observed for EtG and no significant matrix effect was measured for EtS. The recovery was around 80% (RSD<14%) for both compounds. This method provides good precision (RSDr and RSDt<10%) and bias (<15%) for internal and external quality control samples. The reproducibility of the method was demonstrated by the successful participation to proficiency tests (z-score<0.86). This method was finally used to analyze urine samples obtained from twenty-seven volunteers whose alcohol consumption during the 5 days before sampling was monitored. Concentrations between 0.5 and 101.9?g/mL (mean 10.9, median 1.4) for EtG and between 0.1 and 37.9?g/mL (mean 3.6, median 0.3) for EtS were detected in urine samples of volunteers who declared having consumed alcohol the day before the sampling. EtG and EtS concentrations in urine were highly correlated (r=0.996, p<0.001). A moderate correlation between the number of drinks the day before sampling and the concentration of EtG (r=0.448, p<0.02) or EtS (r=0.406, p<0.04) was observed. Using a cut-off value at 0.1?g/mL for EtG and EtS, this method is able to detect social alcohol consumption approximately 24h after the intake, without showing any false positive result. PMID:23685426

Kummer, Natalie; Wille, Sarah; Di Fazio, Vincent; Lambert, Willy; Samyn, Nele

2013-06-15

109

Autism and phthalate metabolite glucuronidation.  

PubMed

Exposure to environmental chemicals may precipitate autism spectrum disorders (ASD) in genetically susceptible children. Differences in the efficiency of the glucuronidation process may substantially modulate substrate concentrations and effects. To determine whether the efficiency of this pathway is compromised in children with ASD, we measured the efficiency of glucuronidation for a series of metabolites derived from the commonly used plasticizer, diethylhexyl phthalate. Spot urines were collected and analyzed for the fraction of each metabolite conjugated by isotope dilution-liquid chromatography mass spectrometry-mass spectrometry. The degree of glucuronidation was lower with the ASD group. The glucuronidation pathway may differ in some children with ASD. PMID:23575644

Stein, T Peter; Schluter, Margaret D; Steer, Robert A; Ming, Xue

2013-11-01

110

Determination of Coumarin, 7HydroxyCoumarin, 7Hydroxycoumarin-Glucuronide, and 3Hydroxycoumarin by High-Performance Liquid Chromatography  

Microsoft Academic Search

A selective and sensitive method for the determination of coumarin and its main metabolites 7-hydroxycoumarin, 7-hydroxycoumarin-glucuronide and 3-hydroxycoumarin in human plasma and\\/or urine is described. Coumarin and 7-hydroxycoumarin were extracted from plasma with n-hexane\\/chloroform and with chloroform. After evaporation under vacuum, the residue was redissolved in methanol\\/water and injected onto the HPLC column (LiChroCART 250-4, RP 8e 5 ?m; Merck,

Sheida Sharifi; Hans Christoph Michaelis; Erich Lotterer; Johannes Bircher

1993-01-01

111

Quantitative Determination of Common Urinary Odorants and Their Glucuronide Conjugates in Human Urine  

PubMed Central

Our previous study on the identification of common odorants and their conjugates in human urine demonstrated that this substance fraction is a little-understood but nonetheless a promising medium for analysis and diagnostics in this easily accessible physiological medium. Smell as an indicator for diseases, or volatile excretion in the course of dietary processes bares high potential for a series of physiological insights. Still, little is known today about the quantitative composition of odorous or volatile targets, as well as their non-volatile conjugates, both with regard to their common occurrence in urine of healthy subjects, as well as in that of individuals suffering from diseases or other physiological misbalancing. Accordingly, the aim of our study was to develop a highly sensitive and selective approach to determine the common quantitative composition of selected odorant markers in healthy human subjects, as well as their corresponding glucuronide conjugates. We used one- and two-dimensional high resolution gas chromatography-mass spectrometry in combination with stable isotope dilution assays to quantify commonly occurring and potent odorants in human urine. The studies were carried out on both native urine and on urine that had been treated by glucuronidase assays, with analysis of the liberated odor-active compounds using the same techniques. Analytical data are discussed with regard to their potential translation as future diagnostic tool.

Wagenstaller, Maria; Buettner, Andrea

2013-01-01

112

Sensitive determination of estriol-16-glucuronide using surface plasmon resonance sensing.  

PubMed

For the quantitative evaluation of low levels of an estriol metabolite of estriol (estriol-16-glucuronide (E3-16G)) in liquid media, we developed a simple and highly sensitive immunoassay using a surface plasmon resonance (SPR) biosensor which did not require any time-consuming sample pretreatment steps. E3-16G was conjugated to ovalbumin (OVA) through an oligoethylene glycol (OEG) linker to form protein conjugates (E3-16G-OEG-OVA), which were then immobilized on a carboxymethyl dextran-coated sensor chip via amine coupling to develop inhibition immunoassays. A limit of detection (LOD) of 76 pg/mL was achieved using a rabbit anti-sheep primary antibody as a binding agent. The detection limit was further improved by using synthesized gold colloids (15 nm) as high mass labels conjugated to the primary antibody. In this Au nanoparticle-enhanced assay, the concentration of E3-16G in aqueous samples could be determined in 7.5 min at a level as low as 14 pg/mL. In addition, the high stability of the E3-16G-OEG-OVA surface gave no obvious drop in antibody-binding capability after more than 1000 binding/regeneration cycles which significantly lowered the research cost. PMID:19465041

Jiang, Xiuqian; Waterland, Mark; Blackwell, Len; Wu, Yinqiu; Jayasundera, Krishanthi P; Partridge, Ashton

2009-10-01

113

Sensitive determination of estriol-16-glucuronide using surface plasmon resonance sensing  

Microsoft Academic Search

For the quantitative evaluation of low levels of an estriol metabolite of estriol (estriol-16-glucuronide (E3-16G)) in liquid media, we developed a simple and highly sensitive immunoassay using a surface plasmon resonance (SPR) biosensor which did not require any time-consuming sample pretreatment steps. E3-16G was conjugated to ovalbumin (OVA) through an oligoethylene glycol (OEG) linker to form protein conjugates (E3-16G-OEG-OVA), which

Xiuqian Jiang; Mark Waterland; Len Blackwell; Yinqiu Wu; Krishanthi P. Jayasundera; Ashton Partridge

2008-01-01

114

Rapid and sensitive determination of propofol glucuronide in hair by liquid chromatography and tandem mass spectrometry.  

PubMed

A fast, sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantitation of propofol glucuronide in human hair has been developed and validated. Propofol glucuronide was extracted from 10mg of hair using a simple methanol extraction method, with recovery greater than 91% at 3 quality control samples (15, 100, 4000 pg/mg). A reversed phase column (C8) was used to analyze and the mobile phase was composed of ammonium formate and acetonitrile gradient at a flow rate of 0.2 mL/min. The lower limit of quantitation (LLOQ) was 5 pg/mg and the assay was linear to 5000 pg/mg. The intra- and inter-day precision (% CV, coefficient of variation) ranged from 1.26 to 4.50% while the accuracy (% RE, relative error) were -4.24 to 4.4%. The matrix effects were monitored at 3 different concentrations and the %CV of the results for these concentrations was less than 10.6%. Propofol glucuronide was stable during processing and analysis in human hair. The procedure was validated and applied to the analysis of hair samples in human subjects previously administered in propofol. PMID:23872469

Kim, Hee Seung; Cheong, Jae Chul; Lee, Jae Il; In, Moon Kyo

2013-11-01

115

Use of Isoform-Specific UGT Metabolism to Determine and Describe Rates and Profiles of Glucuronidation of Wogonin and Oroxylin A by Human Liver and Intestinal Microsomes  

PubMed Central

Purposes Glucuronidation via UDP-glucuronosyltransferases (or UGTs) is a major metabolic pathway. The purposes of this study are to determine the UGT-isoform specific metabolic fingerprint (or GSMF) of wogonin and oroxylin A, and to use isoform-specific metabolism rates and kinetics to determine and describe their glucuronidation behaviors in tissue microsomes. Methods In vitro glucuronidation rates and profiles were measured using expressed UGTs and human intestinal and liver microsomes. Results GSMF experiments indicated that both flavonoids were metabolized mainly by UGT1As, with major contributions from UGT1A3 and UGT1A7-1A10. Isoform-specific metabolism showed that kinetic profiles obtained using expressed UGT1A3 and UGT1A7-1A10 could fit to known kinetic models. Glucuronidation of both flavonoids in human intestinal and liver microsomes followed simple Michaelis-Menten kinetics. A comparison of the kinetic parameters and profiles suggests that UGT1A9 is likely the main isoform responsible for liver metabolism. In contrast, a combination of UGT1As with a major contribution from UGT1A10 contributed to their intestinal metabolism. Correlation studies clearly showed that UGT isoform-specific metabolism could describe their metabolism rates and profiles in human liver and intestinal microsomes. Conclusion GSMF and isoform-specific metabolism profiles can determine and describe glucuronidation rates and profiles in human tissue microsomes.

Zhou, Qiong; Zheng, Zhijie; Xia, Bijun; Tang, Lan; Lv, Chang; Liu, Wei; Liu, Zhongqiu; Hu, Ming

2010-01-01

116

Simultaneous determination of morphine and its glucuronides in rat hair and rat plasma by reversed-phase liquid chromatography with electrospray ionization mass spectrometry.  

PubMed

The simultaneous determination of morphine and the glucuronide metabolites [morphine-3-beta-D-glucuronide (M3G) and morphine-6-beta-D-glucuronide (M6G)] in rat hair and rat plasma was carried out using reversed-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS). The chromatographic separation of the analytes was achieved using a semi-micro-HPLC column (3 microm particle size; 100 x 2.0 mm id) by gradient elution with 50 mM ammonium acetate and acetonitrile as eluents. After separation, morphine and the glucuronides were determined by selected ion monitoring (SIM) of ESI-MS using the quasi-molecular ions [M + H]+ at m/z = 286 and 462, respectively. The calibration curves were linear between the concentration of the analytes and the deuterium-labelled morphine (M-d3) selected as internal standard. The method was applied for the determination of the incorporation of morphine and the glucuronides into the hair shafts and hair roots of Dark Agouti rats after single intraperitoneal administration of morphine hydrochloride. Plasma concentrations of morphine and glucuronides were simultaneously determined after administration. Morphine and M3G were detected in the hair shafts and the hair roots. The concentrations of M3G in the hair root were lower than those of morphine in all sampling periods. In contrast, M3G concentrations in plasma were relatively higher at each sampling time. Small quantities of M6G were also identified in the plasma up to 4 h after administration. The concentration difference between the hair root and plasma seems to be due to the incorporation ratio of morphine and glucuronide into hair. As M3G was also identified in the hair shaft 1 week after administration, the incorporation of glucuronide metabolites into hair is obvious. This is the first report of the identification of morphine glucuronide in hair samples without the use of acid hydrolysis or enzyme digestion. PMID:11534602

Toyo'oka, T; Yano, M; Kato, M; Nakahara, Y

2001-08-01

117

Steroid and steroid glucuronide profiles in urine during pregnancy determined by liquid chromatography-electrospray ionization-tandem mass spectrometry.  

PubMed

An ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-MS/MS) method was developed for the analysis of steroids and their glucuronides in urine samples. The method provides high sensitivity and fast analysis, as both steroids and their glucuronides can be analyzed directly without hydrolysis or complex sample preparation. The method was applied in profiling of targeted and nontargeted steroids and steroid glucuronides during pregnancy. The concentrations of 11 of 27 targeted steroids and steroid glucuronides and the concentrations of 25 nontargeted steroid glucuronides increased about 10-400 fold during the pregnancy. The concentrations of most of these 36 compounds began to increase in the first days of the pregnancy, increased gradually during the pregnancy, achieved a maximum in late pregnancy, and decreased sharply after delivery. Exceptionally, the concentrations of allopregnanolone and 17-hydroxypregnenolone started to increase later than those of the other steroids. Moreover, the concentrations of E2 glucuronides began to decrease one week before the delivery, in contrast to most of the steroids and steroid glucuronides, whose concentrations dropped sharply during the delivery. Concentrations of 34 compounds decreased noticeably when the subject was on sick leave owing a series of painful contractions. The results suggest that steroids and especially steroid glucuronides may provide a valuable diagnostic tool to follow the course of pregnancy. PMID:24176505

Jäntti, Sirkku E; Hartonen, Minna; Hilvo, Mika; Nygren, Heli; Hyötyläinen, Tuulia; Ketola, Raimo A; Kostiainen, Risto

2013-11-13

118

Efflux transport is an important determinant of ethinylestradiol glucuronide and ethinylestradiol sulfate pharmacokinetics.  

PubMed

17?-ethinylestradiol (EE) undergoes extensive conjugation to 17?-ethinylestradiol-3-O-glucuronide (EEG) and 17?-ethinylestradiol-3-O-sulfate (EES). Thus, oral contraceptive drug-drug interaction (DDI) studies usually characterize metabolite pharmacokinetics, with changes typically attributed to modulation of metabolism. EE passively diffuses through plasma membranes, but its conjugates are hydrophilic and require active transport. Unlike EE metabolism, EEG and EES transport has not been explored in vivo as a potential mechanism of DDIs. Recent in vitro studies demonstrated that EEG is transported by multidrug resistance-associated protein (MRP) 2 and MRP3 and EES is a breast cancer resistance protein (BCRP) substrate. In the study presented here, pharmacokinetics of EE and conjugates were studied in TR? rats, which lack Mrp2, have marginal hepatic Bcrp expression, and overexpress hepatic Mrp3. EE pharmacokinetics in TR? rats were comparable to wild type; however, EEG and EES systemic exposures were altered markedly. EEG exposure was greatly increased: 20-fold and >100-fold after intravenous and oral EE administration, respectively. In contrast, EES exposure was lower in TR? rats: 65% decreased (intravenously) and 83% decreased (orally). In intestinal and liver perfusions, EE intestinal permeability and metabolism and hepatic clearance were unchanged in TR? rats; however, secretion of EEG into intestinal lumen was halved, EEG was not detected in TR? bile, and EES biliary excretion was 98% decreased. After oral EE administration to Mrp2- and Bcrp-knockout mice, EEG exposure increased 46- and 2-fold, respectively, whereas EES concentrations were decreased modestly. In conclusion, altered efflux transport resulted in major alterations of EEG and EES pharmacokinetics, highlighting transport as a potential site of DDIs with EE conjugates. PMID:21708882

Zamek-Gliszczynski, Maciej J; Day, Jeffrey S; Hillgren, Kathleen M; Phillips, Diane L

2011-10-01

119

Enzymic synthesis of two glucuronides of the hydroxyisoxazole GABA-agonist, THIP, and the in vivo glucuronidation of THIP in rat.  

PubMed

1. A method for preparative enzymic synthesis of two glucuronides of THIP (3-hydroxy-4,5,6,7-tetrahydro-isoxazolo[5,4-c]pyridine) is described. 2. Using FAB mass spectrometry, u.v. and 1H- and 13C-n.m.r. spectroscopy, the two glucuronides were identified as N- and O-glucuronides respectively. 3. An h.p.l.c. method for determination of THIP and the two intact glucuronides in urine has been developed. 4. The glucuronidation pattern of THIP in rats has been examined; THIP was excreted as a THIP-O-glucuronide but not as a THIP-N-glucuronide. PMID:2618090

Andersen, J V; Dalgaard, L; Hansen, S H

1989-12-01

120

Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates  

PubMed Central

An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain.

Suominen, Tina; Uutela, Paivi; Ketola, Raimo A.; Bergquist, Jonas; Hillered, Lars; Finel, Moshe; Zhang, Hongbo; Laakso, Aki; Kostiainen, Risto

2013-01-01

121

Simultaneous determination of THC-COOH and THC-COOH-glucuronide in urine samples by LC\\/MS\\/MS  

Microsoft Academic Search

A fast method using liquid–liquid extraction and HPLC\\/tandem-mass spectrometry (LC\\/MS\\/MS) was developed for the simultaneous detection of 11-Nor-?9-tetrahydrocannabinol-9-carboxylic acid ?-glucuronide (THC-COOH-glucuronide) and 11-Nor-?9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in urine samples. This highly specific method, which combines chromatographic separation and MS\\/MS analysis, can be used for the confirmation of positive immunoassay results even without hydrolysis of the sample or derivatisation of extracts. Liquid–liquid

Wolfgang Weinmann; Susanne Vogt; Rolf Goerke; Claudia Müller; Andreas Bromberger

2000-01-01

122

Simultaneous determination of three glucuronide conjugates of scutellarein in rat plasma by LC-MS/MS for pharmacokinetic study of breviscapine.  

PubMed

A selective and sensitive LC-MS/MS method was developed and validated for simultaneous determination of three glucuronide conjugates of scutellarein in rat plasma. Plasma samples were pretreated by protein precipitation with acetonitrile. The analytes (scutellarin, scutellarein-6,7-di-O-?-d-glucuronide and scutellarein-6-O-?-d-glucuronide), together with internal standard (IS, baicalin) were separated on a Diamonsil C18 column (150mm×4.6mm, 5?m) with an isocratic mobile phase consisting of methanol-water-formic acid (55:45:0.2, v/v/v). Mass spectrometric detection was performed by selected reaction monitoring (SRM) mode via electrospray ionization source operating in negative ionization mode. The method was linear for all the analytes over the investigated concentration ranges with correlation coefficients greater than 0.9954. The intra- and inter-day precisions were less than 9.1% and the relative error was between -1.7% and 4.2%. The extraction recoveries of the analytes and IS from rat plasma were over 63%. The validated method has been successfully applied to a pharmacokinetic study of breviscapine in rats after intragastric administration at a dose of 20mg/kg. The pharmacokinetic results would be helpful to better understand the pharmacological actions of breviscapine. PMID:24999248

Wang, Xin; Xia, Hongjun; Liu, Youping; Qiu, Feng; Di, Xin

2014-08-15

123

Rapid determination of chloramphenicol and its glucuronide in food products by liquid chromatography-electrospray negative ionization tandem mass spectrometry.  

PubMed

Chloramphenicol (CAP) is subjected to monitoring in food products, with a minimum required performance level set at 0.3 ng/g. CAP was isolated from chicken meat and seafood by very simple solvent extraction procedure. For honey, a fast SPE procedure was applied. CAP-D5 was used as internal standard. HPLC separation was done on RP18 123 mm x 3 mm column in acetonitrile-ammonium formate 10 mM, pH 3.0 (40:60) at flow rate of 0.3 ml/min. A TSQ Quantum instrument with ESI source has been used in negative ionization mode. A MRM procedure has been applied and following transitions were monitored: m/z 321 > 152 (quantifier), 321 > 194, 321 > 257(qualifiers), 326 > 157 (IS). CAP peak was eluted at around 5 min; the total run time was 7 min. LOD was around 0.1 ng/g meat or 0.05 ng/g honey. Matrix effects were studied for all materials used, involving injection of blank extracts with post-column infusion of CAP, as well as checking the influence of the co-injected blank extracts on the signal intensity of CAP. No influence of matrix on the results of CAP determination were observed. The method allows analyzing up to 30 duplicate samples per day, including all calibration standards. Additionally, the method for determination of CAP glucuronide (CAP-G) was established, using urine from rats that were given this drug as a source of the metabolite. Full validation of the metabolite was not possible, due to the unavailability of reference standard. PMID:15203049

Bogusz, Maciej J; Hassan, Huda; Al-Enazi, Eid; Ibrahim, Zuhour; Al-Tufail, Mohammed

2004-08-01

124

Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry.  

PubMed

Bisphenol A (BPA) is a widely used industrial chemical in the manufacturing of polycarbonate plastic bottles, food and beverage can linings, thermal receipts, and dental sealants. Animal and human studies suggest that BPA may disrupt normal hormonal function and hence, potentially, have negative effects on the human health. While total BPA is frequently reported, it is recognized that free BPA is the biologically active form and is rarely reported in the literature. The objective of this study was to develop a sensitive and improved method for the measurement of free and total BPA in human urine. Use of a labeled conjugated BPA (bisphenol A-d6 ?-D-glucuronide) allowed for the optimization of the enzymatic reaction and permitted an accurate determination of the conjugated BPA concentration in urine samples. In addition, a (13)C12-BPA internal standard was used to account for the analytical recoveries and performance of the isotope dilution method. Solid-phase extraction (SPE) combined with derivatization and analysis using a triple quadrupole GC-EI/MS/MS system achieved very low method detection limit of 0.027 ng/mL. BPA concentrations were measured in urine samples collected during the second and third trimesters of pregnancy in 36 Canadian women. Total maternal BPA concentrations in urine samples ranged from not detected to 9.40 ng/mL (median, 1.21 ng/mL), and free BPA concentrations ranged from not detected to 0.950 ng/mL (median, 0.185 ng/mL). Eighty-six percent of the women had detectable levels of conjugated BPA, whereas only 22 % had detectable levels of free BPA in their urine. BPA levels measured in this study agreed well with data reported internationally. PMID:24817354

Kubwabo, Cariton; Kosarac, Ivana; Lalonde, Kaela; Foster, Warren G

2014-07-01

125

Determination of Uranium by the TBP Method after Extraction with Ethyl Acetate.  

National Technical Information Service (NTIS)

The method involves the fusion of the sample with potassium pyrosulphate and precipitation of the uranium with ammonium hydroxide. The precipitate is redissolved in nitric acid, and the uranium is extracted into ethyl acetate. The uranium is determined on...

B. T. Eddy J. D. Spangenberg B. G. Russell T. W. Steele

1968-01-01

126

Use of a sensitive and robust UPLC-MS/MS method to determine the gender-dependent pharmacokinetics in rats of emodin and its glucuronide  

PubMed Central

The purpose of this research was to set up a sensitive and consistent UPLC-UV and UPLCMS/MS method to analyze emodin and its glucuronidated metabolite, and to determine how gender differences affect its pharmacokinetic behaviors. In addition, a breast cancer resistance protein inhibitor dipyridamole was used to test how significant the absolute oral biovailabilty of emodin or its glucuronide is increased. A sensitive and fast UPLC-MS/MS method was successfully applied to determine emodin and its metabolite in male and female SD rat plasma. The absolute oral bioavailability of emodin was extremely low whether in male rats (7.5%) and female rats (5%). Following a single intravenous injection of 4 mg/kg emodin, the emodin plasma concentration-time data fit for a good two-compartment model either in male or female SD rats. The t1/2? were 13.26±6.28min (male rats) and 13.52±7.28min (female rats). The t1/2? were 187.38±0.16min (male rats) and 118.50±83.09min (female rats). Emodin showed significant gender differences in i.v. PK profiles with higher AUC values in male (422.71 ± 163.40 mg*?g/ml) than female (282.52 ± 98.42 mg*?g/ml) SD rats (n=6). Emodin glucuronide was suggested a good fit for single compartmental model for the plasma emodin metabolite concentrations. The t1/2Ke were 167.40±50.91min(male rats) and 251.31±114.20min (female rats), the area under the curve (AUC0-?, i.v.) were 2210.02 ± 950.09 mg*?g/ml and 1054.42 ± 290.31 mg*?g/ml (female rats)(n=6). There was no good fit for any PK compartmental model for the plasma concentration-time data for single dose oral administration of emodin (8mg/kg) and its metabolite. Analyzing the oral PK data using non-compartmental model, Cmax, Tmax and AUC0-?, p.o. of emodin in male rats were: 0.31±0.094 were ?g/ml, 18.00±6.71min and 65.76±34.77 mg*?g/ml respectively; whereas Cmax, Tmax and AUC0-?, p.o. of emodin in female rats were: 0.039±0.011 ?g/ml, 18.75±7.51min and 33.82±4.09 mg*?g/ml respectively. The parameters of emodin glucuronide were significant different with emodin, the Cmax, Tmax and AUC0-?, p.o of emodin glucuronide in male rats were 6.69±1.06 ?g/ml, 240min and 2261.89±655.87 mg*?g/ml respectively, in female rats, the Cmax, Tmax and AUC0-?, p.o. were 1.81±0.58 ?g/ml, 60min and 458.50±373.29 mg*?g/ml respectively. The absolute bioavailability of emodin glucuronide was 60% (male rats) and 15% (female rats). The absolute bioavailability of emodin was no significant changed (7.3%) in male rats by using dipyridamole, the bioavailability of metabolite of emodin was significant declined to 14.6%.

Liu, Wei; Gao, Song; Zheng, Zhijie; Liu, Xi; Ye, Ling; Yang, Zhen; Hu, Ming; Liu, Zhongqiu

2014-01-01

127

Determination of resveratrol and its sulfate and glucuronide metabolites in plasma by LC-MS/MS and their pharmacokinetics in dogs  

PubMed Central

An analytical approach for the determination of trans-resveratrol (3,5,4?-trihydroxy-trans-stilbene) and its glucuronide and sulfate conjugates in dog plasma by LC-MS/MS (without enzymatic hydrolysis of the conjugates) was validated to support pre-clinical toxicological and pharmacological studies. The approach required two independent sample extractions and consequent instrument runs. Samples for resveratrol determination were prepared by protein precipitation with acetonitrile; acetonitrile-methanol was used instead for resveratrol metabolites. Chromatographic separation was performed using a C18 column (30 × 2.0 mm) at a flow rate of 0.25 mL/min. For resveratrol the mobile phase consisted of A: 5 mM ammonium acetate in water-isopropanol (98:2, v/v) and B: methanol-isopropanol (98:2, v/v) and for metabolites the mobile phase was modified as follows: A: 0.1% (v/v) formic acid in water and B: 0.1% (v/v) formic acid in acetonitrile. Total run time was 12 min for each run with retention times of about 4-5 min for all analytes. A turbo ion spray source was used operating in negative mode for resveratrol and resveratrol sulfate and in positive mode for resveratrol glucuronide. Calibration curves were linear from 5 to 1000 ng/mL for resveratrol and its glucuronide, and 10 to 2000 ng/mL for resveratrol sulfate. Linearity was assessed using the internal standard method for resveratrol and the external standard method for the metabolites. Method accuracy was 90 to 112% of the true value for all analytes with precision of 9 %RSD or less for all validation experiments. The validated method was applied to a preclinical toxicology study in dogs after oral administration (200 to 1200 mg/kg) of the agent. Peak plasma resveratrol concentration (Cmax) for most animals was observed within 1 to 5 h of dosing, with group mean values in the 1.7 to 9.9 ?g/mL (7.5 to 43 ?M) range. Area under the plasma concentration-time curve (AUC) mean values for resveratrol ranged from 3.6 to 44 h*?g/mL for all study groups and were generally proportional to the dose, with no consistent statistically significant changes observed for gender or number of doses. Mean molecular-weight adjusted ratios of resveratrol metabolites to resveratrol for AUC ranged from 1 to 9 for resveratrol glucuronide and from 2 to 11 for resveratrol sulfate.

Muzzio, Miguel; Huang, Zhihua; Hu, Shu-Chieh; Johnson, William D.; McCormick, David L.; Kapetanovic, Izet M.

2011-01-01

128

Determination of opiates in whole blood and vitreous humor: a study of the matrix effect and an experimental design to optimize conditions for the enzymatic hydrolysis of glucuronides.  

PubMed

Undoubtedly, whole blood and vitreous humor have been biological samples of great importance in forensic toxicology. The determination of opiates and their metabolites has been essential for better interpretation of toxicological findings. This report describes the application of experimental design and response surface methodology to optimize conditions for enzymatic hydrolysis of morphine-3-glucuronide and morphine-6-glucuronide. The analytes (free morphine, 6-acetylmorphine and codeine) were extracted from the samples using solid-phase extraction on mixed-mode cartridges, followed by derivatization to their trimethylsilyl derivatives. The extracts were analysed by gas chromatography-mass spectrometry with electron ionization and full scan mode. The method was validated for both specimens (whole blood and vitreous humor). A significant matrix effect was found by applying the F-test. Different recovery values were also found (82% on average for whole blood and 100% on average for vitreous humor). The calibration curves were linear for all analytes in the concentration range of 10-1,500 ng/mL. The limits of detection ranged from 2.0 to 5.0 ng/mL. The method was applied to a case in which a victim presented with a previous history of opiate use. PMID:22417831

Sanches, Livia Rentas; Seulin, Saskia Carolina; Leyton, Vilma; Paranhos, Beatriz Aparecida Passos Bismara; Pasqualucci, Carlos Augusto; Muñoz, Daniel Romero; Osselton, Michael David; Yonamine, Mauricio

2012-04-01

129

Involvement of UDP-glucuronosyltransferases UGT1A9 and UGT2B7 in ethanol glucuronidation, and interactions with common drugs of abuse.  

PubMed

Ethyl glucuronide (EtG) determination is increasingly used in clinical and forensic toxicology to document ethanol consumption. The enzymes involved in EtG production, as well as potential interactions with common drugs of abuse, have not been extensively studied. Activities of human liver (HLM), kidney (HKM), and intestinal (HIM) microsomes, as well as of 12 major human recombinant UDP-glucuronosyltransferases (UGTs), toward ethanol (50 and 500 mM) were evaluated in vitro using liquid chromatography-tandem mass spectrometry. Enzyme kinetic parameters were determined for pooled microsomes and recombinant UGTs with significant activity. Individual contributions of UGTs were estimated using the relative activity factor approach, proposed for scaling activities obtained with cDNA-expressed enzymes to HLM. Interaction of morphine, codeine, lorazepam, oxazepam, nicotine, cotinine, cannabinol, and cannabidiol (5, 10, 15 mg/l) with ethanol (1.15, 4.6, 11.5 g/l; i.e., 25, 100, 250 mM) glucuronidation was assessed using pooled HLM. Ethanol glucuronidation intrinsic clearance (Cl(int)) was 4 and 12.7 times higher for HLM than for HKM and HIM, respectively. All recombinant UGTs, except UGT1A1, 1A6, and 1A10, produced EtG in detectable amounts. UGT1A9 and 2B7 were the most active enzymes, each accounting for 17 and 33% of HLM Cl(int), respectively. Only cannabinol and cannabidiol significantly affected ethanol glucuronidation. Cannabinol increased ethanol glucuronidation in a concentration-dependent manner, whereas cannabidiol significantly inhibited EtG formation in a noncompetitive manner (IC(50) = 1.17 mg/l; inhibition constant (K(i)) = 3.1 mg/l). UGT1A9 and 2B7 are the main enzymes involved in ethanol glucuronidation. In addition, our results suggest that cannabinol and cannabidiol could significantly alter ethanol glucuronidation. PMID:23230132

Al Saabi, Alaa; Allorge, Delphine; Sauvage, François-Ludovic; Tournel, Gilles; Gaulier, Jean-Michel; Marquet, Pierre; Picard, Nicolas

2013-03-01

130

DETERMINATION OF LITHIUM AND SODIUM CHLORIDES BY POTENTIOMETRIC TITRATION FOLLOWING 2ETHYL1HEXANOL SEPARATION  

Microsoft Academic Search

Sodium and lithium chlorides are titrated potentiometrically with silver ; nitrate following two extractions of the lithium chloride with 2-ethyl-1-hexanol. ; Using glass and silver- silver chloride electrodes, the detection of the end ; point is enhanced in the organic medium. For 17 determinations, an average of ; 99.99% was obtained for lithium, with a standard deviation of 0.16%, and

G. R. Waterbury; E. H. Van Kooten; Bruno Morosin

1958-01-01

131

Determination of peroxide values using ethyl acetate as solvent. Analytical methods in respect to environmental and economical concern, part 21.  

PubMed

Peroxide values of fixed oils can be determined in ethyl acetate, an easily biodegredable solvent instead of chloroform according to PH. EUR. 2002, method A. Potentiometric indication is recommended. Further investigations are necessary to explain the high blank values obtained, when ethyl acetate is used. PMID:15497757

Hilp, M

2004-09-01

132

Impact of anti-cancer drugs and other determinants on serum protein binding of morphine 6-glucuronide  

PubMed Central

Background and the purpose of the study The aim of the present study was to examine factors that may influence the protein binding of morphine 6-glucuronide (M6G), the most active metabolite of morphine. Methods An enzyme-linked immunoabsorbent assay technique was used to measure the M6G concentration in serum of 18 healthy adults, 18 neonatal and 7 children with cancer. Total and free M6G concentrations were measured following equilibrium dialysis for 3 hrs and at physiological pH at 37°C. The influence of vincristine, methotrexate, 6-mercaptopurine, morphine, human albumin, alpha-1-acid glycoprotein, palmitic acid, oleic acid and pH on M6G protein binding was examined. Results M6G was 66.87±0.73 percent free in human serum at physiological pH and temperature. The percentage free (unbound) was increased significantly by vincristine (4.33%) and methotrexate (9.68%), but 6- mercaptopurine and morphine had no significant effect on it. Free percentages of M6G was reduced by decreasing serum albumin concentration but was unaffected by the presence of alpa-1-acid glycoprotein (AAG) or changes in serum pH. Similar results were obtained in human serum albumin (HAS) solutions. Addition of palmitic acid and oleic acid reduced protein binding significantly by 6.3% and 7.4%, respectively. Major conclusion Although M6G in this study was not highly bounded, but because of its high analgesic potency, any change in its free concentration due to concurrent medication or disease caused significant changes in its effects. This dearth of evidence has been implicated in the reluctance of professionals to be cautious in prescribing them to children, particularly in the neonatal period.

Mashayekhi, S.O.; Ghandforoush-Sattari, M.; Buss, D.C.; Routledge, P.A.; Hain, R.DW.

2010-01-01

133

Correlation between Bilirubin Glucuronidation and Estradiol-3-Gluronidation in the Presence of Model UDP-Glucuronosyltransferase 1A1 Substrates/Inhibitors  

PubMed Central

Inhibition of UDP-glucuronosyltransferase (UGT) 1A1-catalyzed bilirubin glucuronidation by drug compounds may potentially be of clinical concern. However, in drug discovery and development settings, bilirubin is less than an ideal in vitro probe for assessing the potential of a chemical entity to inhibit bilirubin glucuronidation. In part, this is due to the propensity of bilirubin to photodegrade and to the instability of its metabolites. To this end, the utility of estradiol-3-glucuronidation as a surrogate in vitro predictor for interactions with bilirubin was evaluated. The glucuronidation kinetics of bilirubin and estradiol were carefully characterized with recombinant UGT1A1 expressed in human embryonic kidney 293 cells. Consistent with previous reports, estradiol-3-glucuronidation displayed sigmoidal kinetics, whereas bilirubin glucuronidation exhibited typical hyperbolic kinetics. The two compounds also mutually inhibited the metabolism of the other. Sixteen UGT1A1 substrates/inhibitors were evaluated as effectors of each reaction. Fourteen compounds inhibited both bilirubin and estradiol glucuronidation. However, two compounds (ethinylestradiol and daidzein) exhibited mixed effects (concentration-dependent activation and inhibition) on estradiol-3-glucuronidation, whereas bilirubin glucuronidation was inhibited by both compounds. In addition, 7-ethyl-10-hydroxycamptothecin, a substrate of UGT1A1 (reported Km = 24 ?M) seemed to be a weak inhibitor of bilirubin glucuronidation (IC50 = 356.4 ?M) but a partial inhibitor of estradiol-3-glucuronidation. The IC50 values of the inhibitors against estradiol-3-glucuronidation were strongly correlated with IC50 values against bilirubin glucuronidation, resulting in an R2 value of 0.9604 (activator excluded) or 0.8287 (activator included). Thus, estradiol-3-glucuronidation can serve as a good surrogate for predicting inhibition of bilirubin glucuronidation with the caveat that occasionally compounds may demonstrate activation of estradiol-3-glucuronidation.

Zhou, Jin; Tracy, Timothy S.

2011-01-01

134

Polycyclic aromatic hydrocarbons: determinants of urinary 1-hydroxypyrene glucuronide concentration and risk of colorectal cancer in the Shanghai Women's Health Study  

PubMed Central

Background Associations between polycyclic aromatic hydrocarbons (PAHs) and colorectal cancer have been reported previously but few studies have characterized PAH exposure using biological measurements. We evaluated colorectal cancer risk in relation to urinary concentration of 1-hydroxypyrene glucuronide (1-OHPG), a polycyclic aromatic hydrocarbon (PAH) metabolite, and assessed determinants of PAH exposure among controls in the Shanghai Women’s Health Study (SWHS). Methods Concentrations of 1-OHPG were measured in spot urine samples collected from 343 colorectal cancer cases and 343 individually matched controls. Questionnaires were administered to collect information on demographic characteristics and reported exposures. Odds ratios were calculated for risk of colorectal cancer in relation to quartiles of urinary 1-OHPG concentration. Potential determinants of natural log-transformed urinary 1-OHPG concentration were evaluated among a combined sample of controls from this study and another nested case–control study in the SWHS (Ntotal=652). Results No statistically significant differences in risk of colorectal cancer by urinary 1-OHPG levels were observed. Among controls, the median (interquartile range) urinary 1-OHPG concentration was 2.01 pmol/mL (0.95-4.09). Active and passive smoking, using coal as a cooking fuel, eating foods that were cooked well done, and recent consumption of fried dough (e.g., yóutiáo) were associated with elevated levels of 1-OHPG, though only active smoking and fried dough consumption achieved statistical significance in multivariate analyses. Conclusions This study does not provide evidence of an association between urinary levels of 1-OHPG and risk of colorectal cancer among women. Several environmental and dietary sources of PAH exposure were identified. Overall, the levels of 1-OHPG in this population of predominantly non-smoking women were considerably higher than levels typically observed among non-smokers in Europe, North America, and other developed regions.

2013-01-01

135

Conjugation position of quercetin glucuronides and effect on biological activity  

Microsoft Academic Search

Quercetin glycosides are common dietary antioxidants. In general, however, potential biological effects of the circulating plasma metabolites (e.g., glucuronide conjugates) have not been measured. We have determined the rate of glucuronidation of quercetin at each position on the polyphenol ring by human liver cell-free extracts containing UDP-glucuronosyltransferases. The apparent affinity of UDP-glucuronosyltransferase followed the order 4?- > 3?- > 7-

Andrea J Day; Yongping Bao; Michael R. A Morgan; Gary Williamson

2000-01-01

136

Identification, Ki determination and CoMFA analysis of nuclear receptor ligands as competitive inhibitors of OATP1B1-mediated estradiol-17?-glucuronide transport  

PubMed Central

Evidence shows that drug-drug interactions can occur at the level of drug transporters such as the organic anion transporting polypeptides (OATPs), a group of membrane solute carriers that mediate the sodium-independent transport of a wide range of amphipathic organic compounds. The polyspecific OATP1B1 is exclusively expressed at the basolateral membrane of hepatocytes and mediates uptake of amphipathic organic compounds from blood into hepatocytes. Nuclear receptors are ligand-activated transcription factors that play an important role in xenobiotic disposition and human diseases. Quite a few nuclear receptor ligands interact with transport proteins. A high-resolution three-dimensional structure is critical to understand the polyspecificity of OATP1B1 to predict and prevent adverse drug-drug interactions. Unfortunately there are no crystal structures of OATPs/Oatps available to date. Therefore, in this study we attempted to elucidate the characteristics of the substrate binding site of OATP1B1 based on small molecules interacting with it. First, we identified inhibitors of the OATP1B1 model substrate estradiol-17?-glucuronide from about forty nuclear receptor ligands. Among them, GW1929, paclitaxel and troglitazone were strong inhibitors, while 5?-androstane, 5?-androstane-3?, 17?-diol-17-hexahydrobenzoate and estradiol-3-benzoate were weak inhibitors. Then, we selected 25 compounds and performed inhibition kinetic studies to identify competitive inhibitors and determine their Ki values which ranged from submicromolar to submillimolar. Finally, we performed CoMFA analysis on the identified competitive inhibitors. The CoMFA results indicate that the substrate binding site of OATP1B1 consists of a large hydrophobic middle part with basic residues at both ends that could be very important for substrate binding.

Gui, Chunshan; Wahlgren, Brett; Lushington, Gerald H.; Hagenbuch, Bruno

2009-01-01

137

The structure of the glucuronide of sulphadimethoxine formed in man  

PubMed Central

1. The major metabolite of 2,4-dimethoxy-6-sulphanilamidopyrimidine (sulphadimethoxine) in urine in man is a non-reducing glucuronide, which has been isolated and characterized as its S-benzylthiouronium salt. 2. The same compound was made synthetically by standard methods from sodium sulphadimethoxine and methyl 2,3,4-tri-O-acetyl-1-bromoglucuronate. 3. On hydrolysis with acid, the glucuronide yielded sulphanilic acid, glucuronic acid and barbituric acid, and with ?-glucuronidase it slowly yielded sulphadimethoxine and glucuronic acid. 4. Evidence based on infrared spectra and other data showed that the urinary and synthetic glucuronide was 1-deoxy-1-[N1?-(2?,4?-dimethoxypyrimidin-6? -yl)sulphanilamido-?-d-glucosid]uronic acid or sulphadimethoxine N1-glucuronide. 5. N1-Methyl- and Nring-methyl derivatives of sulphadimethoxine and 4-methoxy-6-sulphanilamidopyrimidine were prepared and their infrared and ultraviolet spectra determined for comparison.

Bridges, J. W.; Kibby, M. R.; Williams, R. T.

1965-01-01

138

Demethylzeylasteral exhibits dose-dependent inhibitory behaviour towards estradiol glucuronidation.  

PubMed

The disturbance of estradiol level might induce the occurence of some diseases, including cancer. Estradiol is mainly metabolized through the conjugation reactions, including the sulfation and glucuronidation reactions. The present study tried to evaluate the inhibition of estradiol glucuronidation by the major ingredients of Tripterygium wilfordii Hook F. demethylzeylasteral. Selective ion monitoring at negative ion mode ([M + H](-) = 447) was employed to monitor the two glucuronides of estradiol. The reaction rate was determined through comparison of peak area of these two glucuronides. Lineweaver-Burk plot and Dixon plot were utilized to determine the inhibition kinetic type, and the inhibition kinetic parameters (K i ) were calculated using the second plot. Competitive inhibition of demethylzeylasteral towards the formation of two glucuronides of estradiol was demonstrated, and the K i values were calculated to be 453.3 and 110.9 ?M, respectively. All these results will remind us the risk of elevated serum concentrations of estradiol due to the inhibition of estradiol glucuronidation by demethylzeylasteral. PMID:23807732

Liu, Su-Lin; Zhang, Shu-Yao; Wang, Miao-Jun; Jiang, Hong; Yang, Yu-Xian; Chen, Lei

2014-06-01

139

Tequila volatile characterization and ethyl ester determination by solid phase microextraction gas chromatography/mass spectrometry analysis.  

PubMed

Solid phase microextraction (SPME) and gas chromatography were used for tequila volatile characterization and ethyl ester quantitation. Several factors determined the differences in tequila volatile profiles obtained by the SPME technique, namely, sampling mode, fiber coating, and fiber exposure time. Each of these factors determined the most suitable conditions for the analysis of volatile profiles in tequila. Volatile extraction consisted of placing 40 mL of tequila in a sealed vial kept at 40 degrees C. A poly(dimethylsiloxane) fiber was immersed in the liquid for 60 min and desorbed for 5 min into the gas chromatograph. The identified volatiles by mass spectrometry were mainly alcohols, esters, and ketones. The calibration curves for ethyl hexanoate, octanoate, and decanoate followed linear relationships with highly significant (p < 0.001) determination coefficients (R2 = 0.99). The coefficients of variation of less than 10% for ethyl ester concentrations indicated that the technique was reproducible. The limits of quantitation for ethyl esters were 0.05 parts per million, which were below the concentration range (0.27-15.03 ppm) found for different tequila samples. Quantitative differences in ethyl esters were found for the four most commonly known tequila types: silver, gold, aged, and extra-aged. PMID:15373393

Vallejo-Cordoba, Belinda; González-Córdova, Aarón Fernando; del Carmen Estrada-Montoya, María

2004-09-01

140

Characterization of Rat and Human UDP-Glucuronosyltransferases Responsible for the in Vitro Glucuronidation of Diclofenac  

Microsoft Academic Search

In the current study, the identification of the rat and human UDP-glucuronosyltransferase (UGT) isoforms responsible for the glucuronidation of diclofenac was determined. Recombinant hu- man UGT1A9 catalyzed the glucuronidation of diclofenac at a moderate rate of 166-pmol\\/min\\/mg protein, while UGT1A6 and 2B15 catalyzed the glucuronidation of diclofenac at low rates (<20-pmol\\/min\\/mg protein). Conversely, human UGT2B7 dis- played a high rate

C. King; W. Tang; J. Ngui; T. Tephly; M. Braun

2001-01-01

141

Gas chromatographic method for the determination of residual monomers, 2-(acryloyloxy)ethyl isocyanate and 2-(methacryloyloxy)ethyl isocyanate, as curing agents in an ultraviolet curable adhesive.  

PubMed

A gas chromatographic method is described for the determination of residual 2-(acryloyloxy)ethyl isocyanate (AOI) and 2-(methacryloyloxy)ethyl isocyanate (MOI) as curing agents in an ultraviolet curable adhesive. Pre-column derivatization was employed in the determination of AOI and MOI as a means of enhancing the response of the flame ionization detector. Urethane derivatives of AOI and MOI were derived using methanol for 30 min at room temperature. The accuracies (n = 5, three concentration levels) were in the range of 113.4 to 126.7%, and precisions (n = 5, three concentration levels) were in the range of 0.8 to 4.3% for AOI-OMe. Furthermore, the accuracies were in the range of 79.5 to 108.6% and the precisions were in the range of 1.0 to 2.4% for MOI-OMe. The correlation coefficients of six calibration standards were all greater than 0.9999 for AOI-OMe and greater than 0.9998 for MOI-OMe over the range from 10 to 100 µg/mL. PMID:23357043

Kim, Byoung-Hyoun; Kim, Nosun; Moon, Dong Cheul

2014-02-01

142

Liquid chromatographic determination of irinotecan and three major metabolites in human plasma, urine and feces  

Microsoft Academic Search

A new simple reversed-phase high-performance liquid chromatographic method was developed for the determination of irinotecan (CPT-11) and three metabolites in human plasma, urine and feces homogenate. The metabolites of interest were 7-ethyl-10-hydroxycamptothecin (SN-38), its ?-glucuronide derivative (SN-38G) and 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin (RPR 121056A; also referred to as APC). Sample pretreatment from the various biological matrices involved a rapid protein precipitation with

Alex Sparreboom; Peter de Bruijn; Maja J. A de Jonge; Walter J Loos; Gerrit Stoter; Jaap Verweij; Kees Nooter

1998-01-01

143

[Determination of dextran sulfate sodium with ethyl violet by resonance Rayleigh scattering].  

PubMed

In the Britton Robinson buffer medium (pH 9.0-10.5), either dextran sulfate sodium (DSS) or ethyl violet (EV) showed very faint resonance Rayleigh scattering (RRS) spectra. However, when DSS and EV were mixed together, the interaction between DSS and EV by virtue of electrostatic and hydrophobic forces occurred, which greatly enhanced the RRS intensity and a new RRS spectrum for the DSS-EV system appeared with three obvious scattering wavelengths at 348.0, 509.8 and 680.0 nm, respectively. All these RRS peaks increased with the increase in DSS concentration. The maximum scattering wavelength appeared at 509.8 nm; and therefore was selected as the determination wavelength for the system. The RRS intensity was directly proportional to the concentration of DSS in the range of 0.005-2.4 microg x mL(-1), and the detection limit was 3.25 ng x mL(-1). The characteristics of RRS and absorption spectra of the DSS-EV system, the influencing factors, such as solution pH, EV concentration, reaction time, temperature, and ion strength, and the optimum conditions for the reaction were investigated. The influence of foreign substances on the DSS-EV system was also studied. The method was sensitive and selective, and has been applied to the determination of DSS in synthetic samples with satisfactory results. A new method for the determination of trace amounts of DSS based on the RRS method has been developed. PMID:19271512

Wang, Xiao-Zhou; Li, Nian-Bing; Luo, Hong-Qun

2008-11-01

144

Correction: Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS.  

PubMed

This is a correction to the following paper: Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS, Wen-Hsin Chung, Chung-Shin Lu, Wan-Yu Lin, Jian-Xun Wang, Chia-Wei Wu, Chiing-Chang Chen, Chemistry Central Journal 2012, 6:63 (30 June 2012). PMID:24735461

Lu, Chung-Shin; Lin, Wan-Yu; Wang, Jian-Xun; Wu, Chia-Wei; Chen, Chiing-Chang

2014-01-01

145

Determination of eight fatty acid ethyl esters in meconium samples by headspace solid-phase microextraction and gas chromatography-mass spectrometry.  

PubMed

A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ-2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns (>600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases. PMID:20549668

Roehsig, Marli; de Paula, Daniela Mendes Louzada; Moura, Sidnei; Diniz, Edna Maria de Albuquerque; Yonamine, Mauricio

2010-07-01

146

The radioimmunoassay of steroid glucuronides. The oestrogen C-3 glucuronides as haptens.  

PubMed Central

Antisera were prepared against three related oestrogen ring-A glucuronides, oestrone 3-glucuronide, oestradiol 3-glucuronide and oestriol 3-glucuronide. The corresponding 6,7-3H-labelled conjugates were synthesized as radioligands and the cross-reactions of the antisera against ring-A oestrogen glucuronides and other steroid conjugates were examined. The specificity of the antiserum against oestriol 3-glucuronide was compared with that raised against oestriol 16alpha-glucuronide, and the measurement of the former conjugate in late-pregnancy urine is discussed.

Samarajeewa, P; Kellie, A E

1975-01-01

147

Glucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes.  

PubMed

Nonsteroidal anti-inflammatory drugs (NSAIDs), used for the treatment of pain and inflammation, are eliminated primarily through conjugation with polar sugar moieties to form glucuronides. Glucuronidation is catalyzed by the UDP-glucuronosyltransferases (UGT) superfamily. An inverse relationship may exist between glucuronidation activity and NSAID efficacy; however, specific UGTs catalyzing conjugation of the structurally diverse NSAIDs have yet to be identified systematically. Therefore, NSAID glucuronidation activity by 12 individually expressed UGTs was investigated by liquid chromatography-tandem mass spectrometry. The relative rates of NSAID glucuronidation varied among UGT enzymes examined, demonstrating specificity of the individual UGTs toward selected NSAIDs. Kinetic parameters were determined for expressed UGT Supersomes and compared with parameters determined in pooled human liver microsomes (HLMs). Comparison of K(m) values suggested roles for UGTs 1A3 and 2B7 in indene glucuronidation and UGTs 1A9, 2B4, and 2B7 in profen glucuronidation. Inhibitory studies in pooled HLMs support the role of UGTs 1A1, 1A3, 1A9, 2B4, and 2B7 in the glucuronidation of ibuprofen, flurbiprofen, and ketoprofen. Bilirubin did not inhibit indomethacin or diclofenac glucuronidation, suggesting that UGT1A1 was not involved in catalysis. Imipramine did not inhibit glucuronidation of sulindac, sulindac sulfone, indomethacin, or naproxen in pooled HLMs, suggesting that UGT1A3 was not a principal hepatic catalyst. Nevertheless, multiple UGT enzymes, most notably UGTs 1A1, 1A9, 2B4, and 2B7, seem to be involved in the hepatic catalysis of NSAID glucuronidation. PMID:15843492

Kuehl, Gwendolyn E; Lampe, Johanna W; Potter, John D; Bigler, Jeannette

2005-07-01

148

High performance liquid chromatographic determination of methyl ethyl ketone in urine as its 3-methyl-2-benzothiazolinone hydrazone derivative  

Microsoft Academic Search

Summary  A HPLC method for the determination of methyl ethyl ketone (MEK) in urine after derivatization with 3-methyl-2-benzothiazolinone hydrazone is proposed. The calibration curve for the ketone was linear, ranging between 0.23–10 mg\\/L, with a detection limit of 0.025 mg\\/L. The results were compared to those obtained by GC-MS, coupled to the headspace technique. MEK derivatization and the derivative purification processes

G. Gori; P. Meneghetti; A. Sturaro; G. Parvoli; L. Doretti; G. B. Bartolucci

1995-01-01

149

Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities.  

PubMed

Uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A1 is a major phase II metabolism enzyme responsible for glucuronidation of drugs and endogenous compounds. The purpose of this study was to determine the expression level of UGT1A1 in human liver microsomes and human cell lines by using an isotope label-free LC-MS/MS method. A Waters Ultra performance liquid chromatography (UPLC) system coupled with an API 5500Qtrap mass spectrometer was used for the analysis. Two signature peptides (Pep-1, and Pep-2) were employed to quantify UGT1A1 by multiple reaction monitoring (MRM) approach. Standard addition method was used to validate the assay to account for the matrix effect. 17?-Estradiol was used as the marker substrate to determine UGT1A1 activities. The validated method has a linear range of 200-0.0195nM for both signature peptides. The precision, accuracy, and matrix effect were in acceptable ranges. UGT1A1 expression levels were then determined using 8 individual human liver microsomes, a pooled human liver microsomes, three UGT1A1 genotyped human liver microsomes, and four cell lines (Caco-2, MCF-7, Hela, and HepG2). The correlations study showed that the UGT1A1 protein levels were strongly correlated with its glucuronidation activities in human liver microsomes (R(2)=0.85) and in microsomes prepared from cell lines (R(2)=0.95). Isotope-labeled peptides were not necessary for LC-MS/MS quantitation of proteins. The isotope label-free absolute quantification method used here had good accuracy, sensitivity, linear range, and reproducibility, and were used successfully for the accurate determination of UGT1A1 from tissues and cell lines. PMID:24055854

Xu, Beibei; Gao, Song; Wu, Baojian; Yin, Taijun; Hu, Ming

2014-01-01

150

Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography mass spectrometry method development and validation studies.  

PubMed

A LC-MS method was developed for the determination of coumarin, vanillin, and ethyl vanillin in vanilla products. Samples were analyzed using LC-electrospray ionization (ESI)-MS in the positive ionization mode. Limits of detection for the method ranged from 0.051 to 0.073 microg mL(-1). Using the optimized method, 24 vanilla products were analyzed. All samples tested negative for coumarin. Concentrations ranged from 0.38 to 8.59 mg mL(-1) (x =3.73) for vanillin and 0.33 to 2.27 mg mL(-1) (x =1.03) for ethyl vanillin. The measured concentrations are compared to values calculated using UV monitoring and to results reported in a similar survey in 1988. Analytical results, method precision, and accuracy data are presented. PMID:17250844

de Jager, Lowri S; Perfetti, Gracia A; Diachenko, Gregory W

2007-03-23

151

Phenotype-genotype correlation of in vitro SN38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism  

Microsoft Academic Search

Background: Hepatic uridine diphosphate glucuronosyltransferase (UGT) isoform 1A1 (UGT1A1) is primarily responsible for the glucuronidation of SN-38 (7-ethyl-10-hydroxycamptothecin), the active metabolite of the anticancer agent irinotecan. UGT1A1, also catalyzing the glucuronidation of bilirubin, has been shown to have reduced activity in Gilbert's syndrome. The presence of an additional TA repeat [(TA)7 TAA] in the TATA sequence of UGT1A1 has been

Lalitha Iyer; Diana Hall; Soma Das; Melissa A. Mortell; Jacqueline Ramírez; Sarang Kim; Anna Di Rienzo; Mark J. Ratain

1999-01-01

152

Reactivity ratios and microstructure determination of vinyl acetate-ethyl methacrylate copolymers  

Microsoft Academic Search

Vinyl acetate-ethyl methacrylate (VAc-EMA, V\\/E) copolymers have been prepared by solution polymerization using benzoyl peroxide as initiator. The composition of the copolymers has been calculated using 1H nuclear magnetic resonance (n.m.r.) spectroscopy. Comonomer reactivity ratios have been calculated from the Kelen-Tüdös method, error-in-variables method and p13Cp1H n.m.r. spectra of copolymers. The triad sequence distributions in terms of V- and E-centred

A. S. Brar; Shiv Charan

1996-01-01

153

Gas chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine  

SciTech Connect

Circulating melatonin is hydroxylated to 6-hydroxymelatonin and excreted in urine as the sulfate and glucuronide conjugates. We extracted these two compounds from urine by using octadecylsilane-bonded silica cartridges to eliminate most of the urea and electrolytes, and silica cartridges to separate the sulfate and glucuronide conjugates. After hydrolyzing the separated conjugates enzymically, we determined the free hydroxymelatonin by gas chromatography-mass spectrometry. Though recoveries were low and variable, we were able to quantify the analyte in the original sample by adding deuterated sulfate and glucuronide conjugates to the urines before extraction.

Francis, P.L.; Leone, A.M.; Young, I.M.; Stovell, P.; Silman, R.E.

1987-04-01

154

In Vitro Stability of Free and Glucuronidated Cannabinoids in Blood and Plasma Following Controlled Smoked Cannabis  

PubMed Central

BACKGROUND Blood and plasma cannabinoid stability is important for test interpretation and is best studied in authentic rather than fortified samples. METHODS Low and high blood and plasma pools were created for each of 10 participants after they smoked a cannabis cigarette. The stabilities of ?9-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), cannabinol (CBN), THC-glucuronide, and THCCOOH-glucuronide were determined after 1 week at room temperature; 1, 2, 4, 12, and 26 (±2) weeks at 4 °C; and 1, 2, 4, 12, 26 (±2), and 52 (±4) weeks at ?20 °C. Stability was assessed by Friedman test. RESULTS Numbers of THC-glucuronide and CBD-positive blood samples were insufficient to assess stability. In blood, 11-OH-THC and CBN were stable for 1 week at room temperature, whereas THC and THCCOOH-glucuronide decreased and THCCOOH increased. In blood, THC, THCCOOH-glucuronide, THCCOOH, 11-OH-THC, and CBN were stable for 12, 4, 4, 12, and 26 weeks, respectively, at 4 °C and 12, 12, 26, 26, and 52 weeks at ?20 °C. In plasma, THC-glucuronide, THC, CBN, and CBD were stable for 1 week at room temperature, whereas THCCOOH-glucuronide and 11-OH-THC decreased and THCCOOH increased. In plasma, THC-glucuronide, THC, THCCOOH-glucuronide, THCCOOH, 11-OH-THC, CBN, and CBD were stable for 26, 26, 2, 2, 26, 12, and 26 weeks, respectively, at 4 °C and 52, 52, 26, 26, 52, 52, and 52 weeks, respectively, at ?20 °C. CONCLUSIONS Blood and plasma samples should be stored at ?20 °C for no more than 3 and 6 months, respectively, to assure accurate cannabinoid quantitative results.

Karschner, Erin L.; Desrosiers, Nathalie A.; Gorelick, David A.; Huestis, Marilyn A.

2013-01-01

155

Improved detection of opioid use in chronic pain patients through monitoring of opioid glucuronides in urine.  

PubMed

When chronic pain patients are suspected of being non-compliant, their therapy can be withdrawn. Therefore, sensitive and specific confirmatory testing is important for identifying diversion and adherence. This work aimed to develop a novel liquid chromatography tandem mass spectrometry (LC-MS-MS) method to detect 14 opioids and six opioid glucuronide metabolites in urine with minimal sample preparation. Analytes included were morphine, oxymorphone, hydromorphone, oxycodone, hydrocodone, codeine, fentanyl, norfentanyl, 6-monoacetylmorphine, meperidine, normeperidine, propoxyphene, methadone, buprenorphine, morphine-3-glucuronide, morphine-6-glucuronide, oxymorphone glucuronide, hydromorphone glucuronide, codeine-6-glucuronide and norbuprenorphine glucuronide. Samples were processed by centrifugation and diluted in equal volume with a deuterated internal standard containing 14 opioids and four opioid glucuronides. The separation of all compounds was complete in nine minutes. The assay was linear between 10 and 1,000 ng/mL (fentanyl 0.25-25 ng/mL). Intra-assay imprecision (500 ng/mL, fentanyl 12.5 ng/mL) ranged from 1.0 to 8.4% coefficient of variation. Inter-assay precision ranged from 2.9 to 6.0%. Recovery was determined by spiking five patient specimens with opioid and opioid glucuronide standards at 100 ng/mL (fentanyl 2.5 ng/mL). Recoveries ranged from 82 to 107% (median 98.9%). The method correlated with our current quantitative LC-MS-MS assay for opioids, which employs different chromatography. Internal standards were not available for every analyte to critically evaluate for ion suppression. Instead, a novel approach was designed to achieve the most rigorous quality control possible, in which the recovery of each analyte was evaluated in each negative sample. PMID:22833646

Dickerson, Jane A; Laha, Thomas J; Pagano, Monica B; O'Donnell, Brendan R; Hoofnagle, Andrew N

2012-10-01

156

Development of a rapid method for the simultaneous separation and determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its N- and O-glucuronides in human urine by liquid chromatography-tandem mass spectrometry.  

PubMed

Determination of the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its N- and O-glucuronides (NNAL-N-Gluc and NNAL-O-Gluc) is important for toxicology analysis of tobacco smoke induced carcinogenicity and the understanding of detoxification mechanisms of the carcinogenic nitrosamine in humans. But previously reported indirect measurement methods involving enzymolysis and base treatment steps were tedious and time-consuming. In this work, a direct measurement method for simultaneous determination of urinary NNAL, NNAL-N-Gluc and NNAL-O-Gluc by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a single run was developed for the first time without the need to perform enzymatic or base hydrolysis. Urine samples were purified using dichloromethane and further extracted by solid-phase extraction. Then they were analyzed by LC-MS/MS operated in electrospray positive ionization mode. Chromatographic separation was achieved on a Phenomenex Kinetex PFP column within 6 min. The proposed method was validated and the results demonstrated that the method can produce satisfactory recoveries and reproducibility for the analytes. The applicability of this newly developed method was investigated for the simultaneous analysis of the three metabolites in smokers' urine and the obtained results were comparable to those detected using the conventional enzymolysis method. PMID:23845482

Yao, Li; Zheng, Saijing; Guan, Yafeng; Yang, Jun; Liu, Baizhan; Wang, Weimiao; Zhu, Xiaolan

2013-07-25

157

Microstructure determination of 2-hydroxy ethyl methacrylate and methyl acrylate copolymers by NMR spectroscopy  

NASA Astrophysics Data System (ADS)

Copolymers of 2-Hydroxy ethyl methacrylate and methyl acrylate (H/M) of different compositions were synthesized by free radical bulk polymerization using azobisisobutyronitrile (AIBN) as an initiator under nitrogen atmosphere. The copolymers compositions were calculated from 1H NMR spectra. The reactivity ratios for H/M copolymers obtained from a linear Kelen-Tudos method (KT) and nonlinear error-in-variables method (EVM) are rH = 3.31 ± 0.08, rM = 0.23 ± 0.00 and rH = 3.32, rM = 0.23, respectively. The complete spectral assignment of methine, methylene, methyl and carbonyl carbon regions in terms of compositional and configurational sequences of H/M copolymers was done with the help of 13C{ 1H} NMR, distortionless enhancement by polarization transfer (DEPT), two-dimensional heteronuclear single quantum coherence (HSQC) along with total correlated spectroscopy (TOCSY). Further, the assignments of carbonyl region were made with the help of heteronuclear multiple bond coherence (HMBC) spectrum.

Brar, A. S.; Hooda, Sunita; Goyal, Ashok Kumar

2007-02-01

158

Determination of methylmercury in environmental samples using static headspace gas chromatography and atomic fluorescence detection after aqueous phase ethylation.  

PubMed

A rapid and automated method for the determination of monomethylmercury (MMHg) in environmental samples was developed using headspace gas chromatography with atomic fluorescence detection in combination with aqueous phase ethylation. Sample preparation steps were optimized for sediments, biological samples, and water samples using certified reference materials and real samples with a broad range of MMHg concentrations. Different extraction procedures were compared for both sediments and biological samples. The methods were applied in the intercomparison exercises for the certification of MMHg in sediments (IAEA 405) and in Oyster tissue (BCR 710) and the results were accepted for certification. The detection limits for MMHg are 0.002 ng Hg/g for sediments and biological samples and 0.01 ng Hg/L for water samples. The method was tested for methylation artifacts; no artifact was observed in the sediment samples and CRMs tested. PMID:12898107

Leermakers, M; Nguyen, H L; Kurunczi, S; Vanneste, B; Galletti, S; Baeyens, W

2003-09-01

159

Simultaneous determination of ethyl carbamate and urea in alcoholic beverages by high-performance liquid chromatography coupled with fluorescence detection.  

PubMed

On the basis of the similar fluorescence of ethyl carbamate (EC) and urea derivatives, a high-performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous determination of EC and urea in alcoholic beverages. The chromatographic separation and derivatization conditions of EC and urea were optimized. Under the established conditions, the detection limit, relative standard deviation, linear range, and recovery were 4.8 ?g/L, 1.0-4.2%, 10-500 ?g/L, and 93.8-104.6%, respectively, for EC; the corresponding values were 0.003 mg/L, 1.2-4.8%, 0.01-100 mg/L, and 90.7-104.8%, respectively, for urea. The method showed satisfactory values for precision, recovery, and sensitivity for both analytes and is well-suited for routine analysis and kinetic studies of the formation of EC from urea alcoholysis in alcoholic beverages. PMID:24611619

Zhang, Jian; Liu, Guoxin; Zhang, Ying; Gao, Qiang; Wang, Depei; Liu, Hao

2014-04-01

160

UGT2B10 genotype influences nicotine glucuronidation, oxidation and consumption  

PubMed Central

Background Tobacco exposure is routinely assessed by quantifying nicotine metabolites in plasma or urine. On average, 80% of nicotine undergoes C-oxidation to cotinine. However, interindividual variation in nicotine glucuronidation is substantial and glucuronidation accounts for from 0 to 40% of total nicotine metabolism. We report here the effect of a polymorphism in a UDP-glucuronsyl transferase, UGT2B10, on nicotine metabolism and consumption. Methods Nicotine, cotinine, their N-glucuronide conjugates, and total trans-3'-hydroxycotinine were quantified in the urine (n=327) and plasma (n =115) of smokers. Urinary nicotine N-oxide was quantified in 105 smokers. Nicotine equivalents, the sum of nicotine and all major metabolites, were calculated for each smoker. The relationship of the UGT2B10 Asp67Tyr allele to nicotine equivalents, N-glucuronidation, and C-oxidation was determined. Results Individuals heterozygous for the Asp67Tyr allele excreted less nicotine or cotinine as their glucuronide conjugates than wild-type, resulting in a 60% lower ratio of cotinine glucuronide:cotinine, a 50% lower ratio of nicotine glucuronide:nicotine and increased cotinine and trans-3'-hydroxycotinine. Nicotine equivalents, a robust biomarker of nicotine intake, were lower among Asp67Tyr heterozygotes compared to individuals without this allele; 58.2 nmol/ml (95% CI, 48.9 – 68.2) versus 69.2 nmol/ml (95% CI, 64.3 – 74.5). Conclusions Individuals heterozygous for UGT2B10 Asp67Tyr consume less nicotine than do wild type smokers. This striking observation suggests that variations in nicotine N-glucuronidation, as reported for nicotine C-oxidation, may influence smoking behavior. Impact UGT2B10 genotype influences nicotine metabolism and should be taken into account when characterizing the role of nicotine metabolism on smoking.

Berg, Jeannette Zinggeler; von Weymarn, Linda; Thompson, Elizabeth A.; Wickham, Katherine M.; Weisensel, Natalie A.; Hatsukami, Dorothy K.; Murphy, Sharon E.

2010-01-01

161

[Direct determination of ethyl carbamate in Chinese rice wine and grape wine by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry].  

PubMed

An ultra performance liquid chromatography-electrospray ionization tandem mass spectrometric (UPLC-ESI-MS/MS) method was established for the direct determination of ethyl carbamate in Chinese rice wine and grape wine. The Chinese rice wine and grape wine samples were diluted with distilled water, filtered through 0. 22 microm microporous membrane. The LC separation was performed on a Waters Acquity UPLC system with a BEH C18 column, acetonitrile and 0. 1% (v/v) acetic acid aqueous solution as the mobile phase. The ethyl carbamate was determined in the mode of electrospray positive ionization (ESI+) and multiple reaction monitoring (MRM). The butyl carbamate (BC) was used as the internal standard for the quantitative determination. The calibration curve showed good linearity in the range of 2 - 500 microg/L with the correlation coefficient greater than 0.995. The limit of detection (LOD) was 1.7 microg/L and the limit of quantification (LOQ) was 5.0 microg/L. The recoveries of the ethyl carbamate in Chinese rice wine and grape wine was in the range of 90% - 102%. The relative standard deviations (RSDs) of intra-day and inter-day determinations were 0. 8% - 4.5% and 1.4% - 5.6% (n = 6). The results indicated that the proposed method is easy, fast, sensitive, and suitable for the determination of ethyl carbamate in Chinese rice wine and grape wine. PMID:23285971

Wang, Lijuan; Ke, Runhui; Wang, Bing; Yin, Jianjun; Song, Quanhou

2012-09-01

162

Ethyl glucuronide and ethyl sulfate in autopsy samples 27 years after death  

Microsoft Academic Search

The unique case of a 50-year-old known alcoholic whose corpse was exhumed 27 years after death is reported. The man apparently\\u000a committed suicide by hanging, but many years later the case was questioned and homicide—linked to a long-lasting serial killer\\u000a case—was suspected. Thus, the corpse was exhumed, and at the autopsy it was found to be naturally mummified. This fact permitted

Lucia Politi; Luca Morini; Francesco Mari; Angelo Groppi; Elisabetta Bertol

2008-01-01

163

Comparing the glucuronidation capacity of the feline liver with substrate-specific glucuronidation in dogs.  

PubMed

This study aimed to assess the overall glucuronidation capacity of cats, using prototypic substrates identified for human UDP-glucuronosyltransferases (UGTs). To this end, Michaelis-Menten kinetics were established for the substrates using feline hepatic microsomal fractions, and results were compared with similar experiments carried out with dog liver microsomes. Cats are known for their low capacity of glucuronide formation, and UGT1A6 was found to be a pseudogene. However, functional studies with typical substrates were not performed and knowledge of the enzymology and genetics of other glucuronidation enzymes in felidae is lacking. The results of this study showed extremely low formation of naphthol-1-glucuronide (1.7 ± 0.4 nmol/mg protein/min), estradiol-17-glucuronide (<0.7 nmol/mg protein/min), and morphine-3-glucuronide (0.2 ± 0.03 nmol/mg protein/min), suggesting a lack of functional UGT1A6 and UGT2B7 homologues in the cat's liver. Dog liver microsomes were producing these glucuronides in much higher amounts. Glucuronide capacity was present for the substrates 17?-estradiol (estradiol-3-glucuronide, 2.9 ± 0.2 nmol/mg protein/min) and 4-methylumbelliferone (31.3 ± 3.3 nmol/mg protein/min), assuming that cats have functional homologue enzymes to at least the human UGT1A1 and probably other UGT1A isozymes. This implies that for new drugs, glucuronidation capacity has to be investigated on a substance-to-substance base. Knowledge of the glucuronidation rate of a drug provides the basis for pharmacokinetic modeling and as a result proper dosage regimens can be established to avoid undesirable drug toxicity in cats. PMID:23888985

van Beusekom, C D; Fink-Gremmels, J; Schrickx, J A

2014-02-01

164

A New Strategy to Rapidly Evaluate Kinetics of Glucuronide Efflux by Breast Cancer Resistance Protein (BCRP/ABCG2)  

PubMed Central

Purpose The efflux transporter breast cancer resistance protein (BCRP/ABCG2) plays an important role in excretion of anionic drugs and metabolites including glucuronides in humans. Methods In this article, our recently published cell model (i.e., HeLa cells over-expressing UGT1A9 (HeLa1A9)) is used to determine the kinetic parameters of BCRP-mediated transport of glucuronides. Results After incubation of the aglycone with the cells, a steady-state (i.e., zero-order or near zero-order) excretion of its glucuronide is rapidly achieved and then maintained. Kinetic profiling with different (intracellular) glucuronide concentrations and their corresponding excretion rates is enabled by varying the concentration of the aglycone, which allows for the determination of kinetic parameters responsible for BCRP-mediated efflux of glucuronides. This approach was validated theoretically using a cellular pharmacokinetic model incorporating various enzymatic and transporter-mediated kinetic processes. It was also validated experimentally in that kinetic parameters of efflux of glucuronides of 6-hydroxyflavone and 4-methylumberiferone in the HeLa1A9 cell model were shown to be consistent with those derived with BCRP-overexpressing membrane vesicles. Conclusion This study provides a new strategy for rapidly evaluating the kinetics of glucuronide efflux by BCRP.

Wu, Baojian; Jiang, Wen; Yin, Taijun; Gao, Song

2013-01-01

165

Glucuronidation by UGT1A1 Is the Dominant Pathway of the Metabolic Disposition of Belinostat in Liver Cancer Patients  

PubMed Central

Belinostat is a hydroxamate class HDAC inhibitor that has demonstrated activity in peripheral T-cell lymphoma and is undergoing clinical trials for non-hematologic malignancies. We studied the pharmacokinetics of belinostat in hepatocellular carcinoma patients to determine the main pathway of metabolism of belinostat. The pharmacokinetics of belinostat in liver cancer patients were characterized by rapid plasma clearance of belinostat with extensive metabolism with more than 4-fold greater relative systemic exposure of major metabolite, belinostat glucuronide than that of belinostat. There was significant interindividual variability of belinostat glucuronidation. The major pathway of metabolism involves UGT1A1-mediated glucuronidation and a good correlation has been identified between belinostat glucuronide formation and glucuronidation of known UGT1A1 substrates. In addition, liver microsomes harboring UGT1A1*28 alleles have lower glucuronidation activity for belinostat compared to those with wildtype UGT1A1. The main metabolic pathway of belinostat is through glucuronidation mediated primarily by UGT1A1, a highly polymorphic enzyme. The clinical significance of this finding remains to be determined. Trial Registration ClinicalTrials.gov NCT00321594

Wang, Ling-Zhi; Ramirez, Jacqueline; Yeo, Winnie; Chan, Mei-Yi Michelle; Thuya, Win-Lwin; Lau, Jie-Ying Amelia; Wan, Seow-Ching; Wong, Andrea Li-Ann; Zee, Ying-Kiat; Lim, Robert; Lee, Soo-Chin; Ho, Paul C.; Lee, How-Sung; Chan, Anthony; Ansher, Sherry; Ratain, Mark J.; Goh, Boon-Cher

2013-01-01

166

Ethyl chloroformate as a derivatizing reagent for the gas chromatographic determination of isoniazid and hydrazine in pharmaceutical preparations.  

PubMed

Ethyl chloroformate was examined as a precolumn derivatizing reagent for the gas chromatographic (GC) determination of isoniazid (INH) and hydrazine (HZ). Phenylhydrazine (PHZ) was used as an internal standard. GC separation was carried out on an HP-5 column (30 m x 0.32 mm i.d.) with flame ionization detection. The elution was carried out at an initial column temperature of 150 degrees C for 1 min at a heating rate of 10 degrees C/min up to 250 degrees C, nitrogen flow rate of 4 ml/min and a split ratio of 10:1, v/v. The linear calibration ranges for INH and HZ were observed between 3.5-37.5 and 3.5-35 microg/ml with corresponding detection limits of 0.18 and 0.17 ng reaching the detector. The method was subsequently applied to the determination of INH and HZ in pharmaceutical preparations, achieving a relative standard deviation (RSD) of 3.8-5.8%. The recovery percentage of INH from isoniazid syrup was 98% with an RSD of 5.2%. PMID:18997381

Khuhawar, Mohammad Yar; Zardari, Liaquat Ali

2008-01-01

167

Simultaneous quantification of buprenorphine, norbuprenorphine, buprenorphine glucuronide, and norbuprenorphine glucuronide in human placenta by liquid chromatography mass spectrometry  

PubMed Central

A LCMS method was developed and validated for the determination of buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc), and norbuprenorphine glucuronide (NBUP-Gluc) in placenta. Quantification was achieved by selected ion monitoring of m/z 468.4 (BUP), 414.3 (NBUP), 644.4 (BUP-Gluc), and 590 (NBUP-Gluc). BUP and NBUP were identified monitoring MS2 fragments m/z 396, 414 and 426 for BUP, and 340, 364 and 382 for NBUP, and glucuronide conjugates monitoring MS3 fragments m/z 396 and 414 for BUP-Gluc, and 340 and 382 for NBUP-Gluc. Linearity was 1–50 ng/g. Intra-day, inter-day and total assay imprecision (% RSD) were <13.4%, and analytical recoveries were 96.2–113.1%. Extraction efficiencies ranged from 40.7–68%, process efficiencies 38.8–70.5%, and matrix effect 1.3–15.4%. Limits of detection were 0.8 ng/g for all compounds. An authentic placenta from an opioid-dependent pregnant woman receiving BUP pharmacotherapy was analyzed. BUP was not detected but metabolite concentrations were NBUP-Gluc 46.6, NBUP 15.7 and BUP-Gluc 3.2 ng/g.

Concheiro-Guisan, Marta; Shakleya, Diaa M.; Huestis, Marilyn A.

2011-01-01

168

Determination of ethyl carbamate in alcoholic beverages and soy sauce by gas chromatography with mass selective detection: collaborative study.  

PubMed

A method using gas chromatography with mass selective detection for the determination of ethyl carbamate (EC; also known as urethane) in alcoholic beverages and soy sauce was collaboratively studied by 17 laboratories including authors' laboratories. The method uses prepacked columns for extraction of liquids with methylene chloride, and n-propyl carbamate as the internal standard. A practice sample and 6 samples of distilled spirits, fortified wines, table wines, and soy sauces were analyzed by each collaborator. Each matrix included blind duplicates of incurred and fortified EC at 3 levels. Distilled spirits contained 50-330 ng EC/g (ppb), fortified wine 40-160 ppb, table wine 10-50 ppb, and soy sauce 15-70 ppb. The ranges of the repeatability relative standard deviations, excluding outliers, were 4.03-6.63% for distilled spirits, 4.01-5.05% for fortified wine, 3.94-6.73% for table wine, and 4.70-8.49% for soy sauce. The ranges of the reproducibility relative standard deviations, excluding outliers, were 8.53-9.49% for distilled spirits, 6.84-12.02% for fortified wine, 8.86-18.47% for table wine, and 13.87-27.37% for soy sauce. Recoveries of added EC ranged from 87 to 93%. Recoveries relative to reference values, labeled as the internal standard, obtained by using gas chromatography/tandem mass spectrometry with a triple quadrupole mass spectrometer ranged from 89 to 100%. PMID:7819763

Canas, B J; Joe, F L; Diachenko, G W; Burns, G

1994-01-01

169

Glucuronidation and Covalent Protein Binding of Benoxaprofen and Flunoxaprofen in Sandwich-Cultured Rat and Human Hepatocytes  

PubMed Central

Benoxaprofen (BNX), a nonsteroidal anti-inflammatory drug (NSAID) that was withdrawn because of hepatotoxicity, is more toxic than its structural analog flunoxaprofen (FLX) in humans and rats. Acyl glucuronides have been hypothesized to be reactive metabolites and may be associated with toxicity. Both time- and concentration-dependent glucuronidation and covalent binding of BNX, FLX, and ibuprofen (IBP) were determined by exposing sandwich-cultured rat hepatocytes to each NSAID. The levels of glucuronide and covalent protein adduct measured in cells followed the order BNX > FLX > IBP. These results indicate that 1) BNX-glucuronide (G) is more reactive than FLX-G, and 2) IBP-G is the least reactive metabolite, which support previous in vivo studies in rats. The proportional increases of protein adduct formation for BNX, FLX, and IBP as acyl glucuronidation increased also support the hypothesis that part of the covalent binding of all three NSAIDs to hepatic proteins is acyl glucuronide-dependent. Moreover, theses studies confirmed the feasibility of using sandwich-cultured rat hepatocytes for studying glucuronidation and covalent binding to hepatocellular proteins. These studies also showed that these in vitro methods can be applied using human tissues for the study of acyl glucuronide reactivity. More BNX-protein adduct was formed in sandwich-cultured human hepatocytes than FLX-protein adduct, which not only agreed with its relative toxicity in humans but also was consistent with the in vitro findings using rat hepatocyte cultures. These data support the use of sandwich-cultured human hepatocytes as an in vitro screening model of acyl glucuronide exposure and reactivity.

Dong, Jennifer Q.

2009-01-01

170

The Human UGT1A3 Enzyme Conjugates Norursodeoxycholic Acid into a C23-ester Glucuronide in the Liver*  

PubMed Central

Norursodeoxycholic acid (norUDCA) exhibits efficient anti-cholestatic properties in an animal model of sclerosing cholangitis. norUDCA is eliminated as a C23-ester glucuronide (norUDCA-23G) in humans. The present study aimed at identifying the human UDP-glucuronosyltransferase (UGT) enzyme(s) involved in hepatic norUDCA glucuronidation and at evaluating the consequences of single nucleotide polymorphisms in the coding region of UGT genes on norUDCA-23G formation. The effects of norUDCA on the formation of the cholestatic lithocholic acid-glucuronide derivative and of rifampicin on hepatic norUDCA glucuronidation were also explored. In vitro glucuronidation assays were performed with microsomes from human tissues (liver and intestine) and HEK293 cells expressing human UGT enzymes and variant allozymes. UGT1A3 was identified as the major hepatic UGT enzyme catalyzing the formation of norUDCA-23G. Correlation studies using samples from a human liver bank (n = 16) indicated that the level of UGT1A3 protein is a strong determinant of in vitro norUDCA glucuronidation. Analyses of the norUDCA-conjugating activity by 11 UGT1A3 variant allozymes identified three phenotypes with high, low, and intermediate capacity. norUDCA is also identified as a competitive inhibitor for the hepatic formation of the pro-cholestatic lithocholic acid-glucuronide derivative, whereas norUDCA glucuronidation is weakly stimulated by rifampicin. This study identifies human UGT1A3 as the major enzyme for the hepatic norUDCA glucuronidation and supports that some coding polymorphisms affecting the conjugating activity of UGT1A3 in vitro may alter the pharmacokinetic properties of norUDCA in cholestasis treatment.

Trottier, Jocelyn; El Husseini, Diala; Perreault, Martin; Paquet, Sophie; Caron, Patrick; Bourassa, Sylvie; Verreault, Melanie; Inaba, Ted T.; Poirier, Guy G.; Belanger, Alain; Guillemette, Chantal; Trauner, Michael; Barbier, Olivier

2010-01-01

171

Rapid method for the determination of coumarin, vanillin, and ethyl vanillin in vanilla extract by reversed-phase liquid chromatography with ultraviolet detection.  

PubMed

A method is described for determining coumarin, vanillin, and ethyl vanillin in vanilla extract products. A product is diluted one-thousand-fold and then analyzed by reversed-phase liquid chromatography using a C18 column and a mobile phase consisting of 55% acetonitrile-45% aqueous acetic acid (1%) solution at a flow rate of 1.0 mL/min. Peaks are detected with a UV detector set at 275 nm. Vanilla extracts were spiked with 250, 500, and 1000 microg/g each of coumarin, vanillin, and ethyl vanillin. Recoveries averaged 97.4, 97.8, and 99.8% for coumarin, vanillin, and ethyl vanillin, respectively, with coefficient of variation values of 1.8, 1.3, and 1.3%, respectively. No significant difference was observed among the 3 spiking levels. A survey of 23 domestic and imported vanilla extract products was conducted using the method. None of the samples contained coumarin. The surveyed samples contained between 0.4 to 13.1 and 0.4 to 2.2 mg/g vanillin and ethyl vanillin, respectively. PMID:18476352

Ali, Laila; Perfetti, Gracia; Diachenko, Gregory

2008-01-01

172

In silico prediction of acyl glucuronide reactivity.  

PubMed

Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted (13)C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs. PMID:22042375

Potter, Tim; Lewis, Richard; Luker, Tim; Bonnert, Roger; Bernstein, Michael A; Birkinshaw, Timothy N; Thom, Stephen; Wenlock, Mark; Paine, Stuart

2011-11-01

173

Determination of Solvent Basicity Scale, ?, of Mixed Solvents for Three Chromatographic Solvent Systems: 2Propanol\\/Hexane, Ethyl Acetate\\/Hexane, and Methanol\\/Water  

Microsoft Academic Search

We have determined ? values of mixed solvents for the 2-propanol\\/hexane, ethyl acetate\\/hexane, and methanol\\/water systems using totally 5 indicator pairs (10 dyes) three of which were synthesized in this study. The variations of ? vs. solvent composition for the RPLC solvent system are in a striking constrast with those for the NPLC systems. While a definite maximum was recognized

Won Jo Cheong; Sung Hyun Chun; Gong Yeal Lee

1996-01-01

174

Revolving Door Action of BCRP Facilitates or Controls the Efflux of Flavone Glucuronides from UGT1A9-Overexpressing HeLa Cells  

PubMed Central

Cellular production of flavonoid glucuronides requires the action of both UDP-glucuronosyltransferases (UGT) and efflux transporters since glucuronides are too hydrophilic to diffuse across the cellular membrane. We determined the kinetics of efflux of 13 flavonoid glucuronides using the newly developed HeLa-UGT1A9 cells and correlated them with kinetic parameters derived using expressed UGT1A9. The results indicated that among the seven monohydroxyflavones (HFs), there was moderately good correlation (r2?0.65) between fraction metabolized (fmet) derived from HeLa-UGT1A9 cells and CLint derived from the UGT1A9-mediated metabolism. However, there was weak or no correlation between these two parameters for six dihyroxylflavones (DHFs). Furthermore, there was weak no correlation between various kinetic parameters (Km, Vmax or CLint) for the efflux and the metabolism regardless if we were using 7 HFs, 6 DHFs or a combination thereof. Instead, cellular excretion of many flavonoids glucuronides appears to be controlled by the efflux transporter, and poor affinity of glucuronide to the efflux transporter resulted in major intracellular accumulation of glucuronides to a level that is above the dosing concentration of its aglycone. Hence, the efflux transporters appear to act as the “Revolving Door” to control the cellular excretion of glucuronides. In conclusion, the determination of a flavonoid's susceptibility to glucuronidation must be based on both its susceptibility to glucuronidation by the enzyme and resulting glucuronide's affinity to the relevant efflux transporters, which act as the “Revolving Door(s)” to facilitate or control its removal from the cells.

Wei, Yingjie; Wu, Baojian; Jiang, Wen; Yin, Taijun; Jia, Xiaobin; Basu, Sumit; Yang, Guangyi; Hu, Ming

2013-01-01

175

Species and Gender Differences Affect the Metabolism of Emodin via Glucuronidation  

PubMed Central

The aim of the present study was to define the mechanisms responsible for poor bioavailability of emodin by determining its metabolism using in vitro and in situ disposition models of the intestine and liver. Liver microsomes of mice, rats, guinea pigs, dogs, and humans were used along with the rat intestinal perfusion model and the rat intestinal microsomes. In the rat intestine, excretion rates of emodin-3-O-glucuronide were significantly different (p?glucuronidation in liver microsomes was species-dependent, and Km values varied 5.7-fold (3.2–18.2 ?M) in males and 2.8-fold (4.6–13.0 ?M) in females. The male intrinsic clearance (CLint) values differed by 5-fold (27.6–138.3 mL h?1?mg?1 protein), and female CLint values differed by 4.3-fold (24.3–103.5 mL h?1?mg?1 protein). Since CLint values of emodin glucuronidation were 10-fold higher than that of isoflavones, emodin was considered rapidly glucuronidated. In contrast to the large species-dependent effects on Km and CLint values, gender had a smaller effect on these kinetic parameters (2-fold, p?glucuronidation rates obtained using liver microsomes from various experimental animals of the same gender correlated well with those in human liver microsomes. In conclusion, Rapid metabolism by UDP-glucuronosyltransferase is the major reason why emodin has poor bioavailability. Species and gender affected emodin metabolism to a different degree, and experimental animals are expected to be useful in predicting emodin glucuronidation in humans.

Liu, Wei; Tang, Lan; Ye, Ling; Cai, Zheng; Xia, Bijun; Zhang, Jiajie

2010-01-01

176

Ethyl-carbamate determination by gas chromatography–mass spectrometry at different stages of production of a traditional Brazilian spirit  

Microsoft Academic Search

Ethyl carbamate (EC), which is probably carcinogenic to humans, can be produced during the alcoholic fermentation of sugar-cane juice to give cachaça. The stages to produce cachaça are obtainment of sugar-cane juice, sugar-cane fermentation to wine, and obtainment of distilled fractions and residue. In order to investigate the presence of EC in the wine and in the fractions of the

José Carlos Baffa Júnior; Regina Célia Santos Mendonça; Joesse Maria de Assis Teixeira Kluge Pereira; José Antonio Marques Pereira; Nilda de Fátima Ferreira Soares

2011-01-01

177

In Vitro Glucuronidation of 2,2-Bis(bromomethyl)-1,3-propanediol by Microsomes and Hepatocytes from Rats and Humans  

PubMed Central

2,2-Bis(bromomethyl)-1,3-propanediol (BMP) is a brominated flame retardant used in unsaturated polyester resins. In a 2-year bioassay BMP was shown to be a multisite carcinogen in rats and mice. Because glucuronidation is the key metabolic transformation of BMP by rats, in this study the in vitro hepatic glucuronidation of BMP was compared across several species. In addition, the glucuronidation activities of human intestinal microsomes and specific human hepatic UDP-glucuronosyltransferase (UGT) enzymes for BMP were determined. To explore other possible routes of metabolism for BMP, studies were conducted with rat and human hepatocytes. Incubation of hepatic microsomes with BMP in the presence of UDP-glucuronic acid resulted in the formation of a BMP monoglucuronide. The order of hepatic microsomal glucuronidation activity of BMP was rats, mice ? hamsters > monkeys ? humans. The rate of glucuronidation by rat hepatic microsomes was 90-fold greater than that of human hepatic microsomes. Human intestinal microsomes converted BMP to BMP glucuronide at a rate even lower than that of human hepatic microsomes. Among the human UGT enzymes tested, only UGT2B7 had detectable glucuronidation activity for BMP. BMP monoglucuronide was the only metabolite formed when BMP was incubated with suspensions of freshly isolated hepatocytes from male F-344 rats or with cryopreserved human hepatocytes. Glucuronidation of BMP in human hepatocytes was extremely low. Overall, the results support in vivo studies in rats in which BMP glucuronide was the only metabolite found. The poor glucuronidation capacity of humans for BMP suggests that the pharmacokinetic profile of BMP in humans will be dramatically different from that of rodents.

Rad, Golriz; Hoehle, Simone I.; Kuester, Robert K.

2010-01-01

178

Simultaneous determination of plasma epinephrine and norepinephrine using an integrated strategy of a fully automated protein precipitation technique, reductive ethylation labeling and UPLC-MS/MS.  

PubMed

A novel, automated, simple, sensitive, specific, accurate, precise and high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS)-based method has been developed for simultaneous determination of epinephrine (E) and norepinephrine (NE) in plasma by using the combination of a fully automated protein precipitation technique for plasma sample preparation, reductive ethylation labeling with UPLC-MS/MS. A simple protein precipitation procedure was used to clean up 50 microL calibration samples prepared in stripped human plasma and 50 microL quality control plasma samples containing 25 microL plasma and 25 microL stabilizing additives. The supernatants were subsequently dried down and then reconstituted with commercially available and cost-effective reductive ethylation labeling reagents, followed by UPLC-MS/MS analysis. All liquid handling during sample preparation was automated using a Hamilton MicroLab Star Robotic workstation, which included the preparation of standards and quality control samples, shaking of 96-well plates, adding and transferring liquids. Processing time, which included the preparation of standards and quality control samples, protein precipitation and reductive ethylation labeling, is less than 2 h per 96-well plate. The chromatographic run time is 3.5 min per sample. The limits of detection of UPLC-MS/MS-based methods for E and NE, with/without reductive ethylation labeling, are 0.025/0.40 and 0.025/2.00 ng mL(-1), respectively. Reductive ethylation labeling of amino groups of E and NE affords 16 and 80 times increased detection sensitivity of corresponding native counterparts during the UPLC-MS/MS analysis. The linearity of this method was established from 0.05 to 25 ng mL(-1) for E and NE with accuracy and precision within 15% at all concentrations. The intra-run and inter-run assay accuracy (%RE) and coefficient of variations (CV%) are all within 15% for all QC samples prepared in commercially purchased plasma samples. PMID:20685421

Ji, Chengjie; Walton, Justin; Su, Yi; Tella, Max

2010-06-18

179

A highly toxic morphine-3-glucuronide derivative.  

PubMed

By the coupling of octylamine to the uronic acid function of morphine-3-glucuronide (M3G) a new glycoconjugate (morphine-3-octylglucuronamide, M3GOAM) was prepared. When assayed in both rats and mice up to ng/kg (i.p.) doses none of the animals survived. The aliphatic octyl chain may be the lethal factor since a closely related derivative (M3GNH2), was not toxic and showed similar opioid antagonist properties than naloxone. PMID:15012991

Salvatella, Mariona; Arsequell, Gemma; Valencia, Gregorio; Rodríguez, Raquel E

2004-02-23

180

Migrants determination and bioaccessibility study of ethyl lauroyl arginate (LAE) from a LAE based antimicrobial food packaging material.  

PubMed

Ethyl lauroyl arginate (LAE, ethyl-N-dodecanoyl-L-arginate hydrochloride) is a strong antimicrobial agent that was included as an active compound in an antimicrobial food packaging material. The potential existence of non-intentionally added substances (NIASs) such as impurities must therefore be checked before launching any food contact material onto the market. For this reason, an untargeted analysis of the migration was performed in both food simulants and fresh chicken breast fillets wrapped with the active material. The analysis was performed by liquid chromatography coupled to mass spectrometry detection with a quadrupole-time-of-flight analyzer, LC-MS(QTOF), for the identification of nonvolatile substances. The migration values found for LAE were 0.94±0.14 and 1.62±0.70 ?g/g in ethanol 10% v/v (simulant A) and in ethanol 95% v/v (simulant D), respectively, and 0.93±0.17 ?g/g in chicken. Other migrants such as dipropylene glycol methyl ether or tributyl-o-acetylcitrate, both coming from the coating were also found, but none of them have potential adverse effects. Bioaccessibility studies showed that after a simulated gastrointestinal digestion, LAE was not available anymore for subsequent intestinal absorption and new toxic compounds were not formed. PMID:23485618

Aznar, M; Gómez-Estaca, J; Vélez, D; Devesa, V; Nerín, C

2013-06-01

181

Differences in the glucuronidation of resveratrol and pterostilbene: altered enzyme specificity and potential gender differences.  

PubMed

  Resveratrol, a natural polyphenol found in grapes, berries and other plants, has been proposed as an ideal chemopreventative agent due to its plethora of health promoting activities. However, despite its lofty promise as a cancer prevention agent its success in human clinical trials has been limited due to its poor bioavailability. Thus, interest in other natural polyphenols is intensifying including the naturally occurring dimethylated analog of resveratrol, pterostilbene. The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the metabolism of both resveratrol and pterostilbene. The current study sought to elucidate the UGT family members responsible for the metabolism of pterostilbene and to examine gender differences in the glucuronidation of resveratrol and pterostilbene. We demonstrate that UGT1A1 and UGT1A3 are mainly responsible for pterostilbene glucuronidation although UGT1A8, UGT1A9 and UGT1A10 also had detectable activity. Intriguingly, UGT1A1 exhibits the highest activity against both resveratrol and pterostilbene despite altered hydroxyl group specificity. Using pooled human liver microsomes, enzyme kinetics were determined for pterostilbene and resveratrol glucuronides. In all cases females were more efficient than males, indicating potential gender differences in stilbene metabolism. Importantly, the glucuronidation of pterostilbene is much less efficient than that of resveratrol, indicating that pterostilbene will have dramatically decreased metabolism in humans. PMID:23965644

Dellinger, Ryan W; Garcia, Angela M Gomez; Meyskens, Frank L

2014-04-25

182

21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.  

Code of Federal Regulations, 2013 CFR

...1520. (1) Specifications â(i) Infrared identification. Ethylene-ethyl acrylate...be identified by their characteristic infrared spectra. (ii) Quantitative determination...ethyl acrylate can be determined by the infrared spectra. Prepare a scan from...

2013-04-01

183

Serum/whole blood concentration ratio for ethylglucuronide and ethyl sulfate.  

PubMed

Serum/blood (S/B) concentration ratios for ethyl glucuronide (EtG) and ethyl sulfate (EtS) are missing from the literature, and the aim of this study was to determine these ratios in samples from patients at admission to an alcohol rehabilitation clinic. Two blood samples were collected simultaneously, and EtG and EtS were analyzed in whole blood and serum, respectively, using a liquid chromatography-mass spectrometry method. Separate calibration standards were prepared in both whole blood and serum for the calculation of whole blood and serum concentrations, respectively. Thirteen pairs of serum and whole blood were analyzed. The median S/B value for EtG was 1.69, and the range was 1.33-1.90. For EtS, the median S/B ratio was 1.30, and the range was 1.08-1.47. The S/B ratio was significantly lower for EtS than for EtG (p < 0.001). The higher concentrations of EtG and EtS in serum than in whole blood have to be considered when whole blood results obtained from forensic toxicology are compared to serum or plasma results from clinical laboratories. PMID:19470223

Høiseth, Gudrun; Morini, Luca; Polettini, Aldo; Christophersen, Asbjørg S; Johnsen, Lene; Karinen, Ritva; Mørland, Jørg

2009-05-01

184

Characterization of UGTs Active against SAHA and Association between SAHA Glucuronidation Activity Phenotype with UGT Genotype  

PubMed Central

Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase inhibitor used in the treatment of cutaneous T-cell lymphoma and in clinical trials for treatment of multiple other cancers. A major mode of SAHA metabolism is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To characterize the UGTs active against SAHA, homogenates from HEK293 cell lines overexpressing UGT wild-type or variant UGT were used. The hepatic UGTs 2B17 and 1A9 and the extrahepatic UGTs 1A8 and 1A10 exhibited the highest overall activity against SAHA as determined by Vmax/KM (16 ± 6.5, 7.1 ± 2.2, 33 ± 6.3, and 24 ± 2.4 nL·min?1.?g UGT protein?1, respectively), with UGT2B17 exhibiting the lowest KM (300 ?mol/L) against SAHA of any UGT in vitro. Whereas the UGT1A8p.Ala173Gly variant exhibited a 3-fold (P < 0.005) decrease in glucuronidation activity against SAHA compared with wild-type UGT1A8, the UGT1A8p.Cys277Tyr variant exhibited no detectable glucuronidation activity; a similar lack of detectable glucuronidation activity was observed for the UGT1A10p.Gly139Lys variant. To analyze the effects of the UGT2B17 gene deletion variant (UGT2B17*2) on SAHA glucuronidation phenotype, human liver microsomes (HLM) were analyzed for glucuronidation activity against SAHA and compared with UGT2B17 genotype. HLM from subjects homozygous for UGT2B17*2 exhibited a 45% (P < 0.01) decrease in glucuronidation activity and a 75% (P < 0.002) increase in KM compared with HLMs from subjects homozygous for the wild-type UGT2B17*1 allele. Overall, these results suggest that several UGTs play an important role in the metabolism of SAHA and that UGT2B17-null individuals could potentially exhibit altered SAHA clearance rates with differences in overall response.

Balliet, Renee M.; Chen, Gang; Gallagher, Carla J.; Dellinger, Ryan W.; Sun, Dongxiao; Lazarus, Philip

2009-01-01

185

Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples.  

PubMed

A simple and rapid analytical method based on in-matrix ethyl chloroformate (ECF) derivatization has been developed for the quantitative determination of bisphenol-A (BPA) in milk and water samples. The samples containing BPA were derivatised with ECF in the presence of pyridine for 20 s at room temperature, and the non-polar derivative thus formed was extracted using polydimethylsiloxane solid-phase microextraction (SPME) fibres with thicknesses of 100 ?m followed by analysis using gas chromatography-mass spectrometry. Three alkyl chloroformates (methyl, ethyl and isobutyl chloroformate) were tested for optimum derivatisation yields, and ECF has been found to be optimum for the derivatisation of BPA. Several parameters such as amount of ECF, pyridine and reaction time as well as SPME parameters were studied and optimised in the present work. The limit of detection for BPA in milk and water samples was found to be 0.1 and 0.01 ?g L(-1), respectively, with a signal-to-noise ratio of 3:1. The limit of quantitation for BPA in milk and water was found to be 0.38 and 0.052 ?g L(-1), respectively, with a signal-to-noise ratio of 10:1. In conclusion, the method developed was found to be rapid, reliable and cost-effective in comparison to silylation and highly suitable for the routine analysis of BPA by various food and environmental laboratories. PMID:21744235

Mudiam, Mohana Krishna Reddy; Jain, Rajeev; Dua, Virendra K; Singh, Amit Kumar; Sharma, V P; Murthy, R C

2011-09-01

186

Spectrophotometric determination of copper in pharmaceutical and biological samples with 3-[2-[2-(2-hydroxyimino-1-methyl-propylideneamino)-(ethylamino]-ethyl-imino]-butan-2-one oxime).  

PubMed

3-[2-[2-(2-hydroxyimino-1-methyl-propylideneamino)-ethylamino]-ethyl-imino]-butan-2-one oxime, (H(2)mdo) reacts with copper(II) to form a highly stable 1:1 complex in alkaline medium at room temperature. The complex gives a maximum absorption at 570 nm with a molar absorptivity coefficient of 0.16 x 10(4) l mol(-1) cm(-1). A spectrophotometric method using this ligand was developed and optimized in terms of pH, stability of the complex, amount of reagent required, sensitivity, linearity and tolerance limits of various foreign ions. The linear range for copper determination is 0.2-225 mg l(-1). The method is sensitive, accurate and tolerant to many foreign substances, and, all the reagents used are stable under the conditions. Moreover, the method is easy to perform for the determination of copper in pharmaceutical and biological samples. PMID:11682225

Dalman, Omer; Tüfekçi, Mehmet; Nohut, Sinan; Güner, Saadettin; Karaböcek, Serdar

2002-01-01

187

Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.  

PubMed Central

Irinotecan (CPT-11) is a promising antitumor agent, recently approved for use in patients with metastatic colorectal cancer. Its active metabolite, SN-38, is glucuronidated by hepatic uridine diphosphate glucuronosyltransferases (UGTs). The major dose-limiting toxicity of irinotecan therapy is diarrhea, which is believed to be secondary to the biliary excretion of SN-38, the extent of which is determined by SN-38 glucuronidation. The purpose of this study was to identify the specific isoform of UGT involved in SN-38 glucuronidation. In vitro glucuronidation of SN-38 was screened in hepatic microsomes from normal rats (n = 4), normal humans (n = 25), Gunn rats (n = 3), and patients (n = 4) with Crigler-Najjar type I (CN-I) syndrome. A wide intersubject variability in in vitro SN-38 glucuronide formation rates was found in humans. Gunn rats and CN-I patients lacked SN-38 glucuronidating activity, indicating the role of UGT1 isoform in SN-38 glucuronidation. A significant correlation was observed between SN-38 and bilirubin glucuronidation (r = 0.89; P = 0.001), whereas there was a poor relationship between para-nitrophenol and SN-38 glucuronidation (r = 0.08; P = 0.703). Intact SN-38 glucuronidation was observed only in HK293 cells transfected with the UGT1A1 isozyme. These results demonstrate that UGT1A1 is the isoform responsible for SN-38 glucuronidation. These findings indicate a genetic predisposition to the metabolism of irinotecan, suggesting that patients with low UGT1A1 activity, such as those with Gilbert's syndrome, may be at an increased risk for irinotecan toxicity.

Iyer, L; King, C D; Whitington, P F; Green, M D; Roy, S K; Tephly, T R; Coffman, B L; Ratain, M J

1998-01-01

188

Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes.  

PubMed

Irinotecan (CPT-11) is a promising antitumor agent, recently approved for use in patients with metastatic colorectal cancer. Its active metabolite, SN-38, is glucuronidated by hepatic uridine diphosphate glucuronosyltransferases (UGTs). The major dose-limiting toxicity of irinotecan therapy is diarrhea, which is believed to be secondary to the biliary excretion of SN-38, the extent of which is determined by SN-38 glucuronidation. The purpose of this study was to identify the specific isoform of UGT involved in SN-38 glucuronidation. In vitro glucuronidation of SN-38 was screened in hepatic microsomes from normal rats (n = 4), normal humans (n = 25), Gunn rats (n = 3), and patients (n = 4) with Crigler-Najjar type I (CN-I) syndrome. A wide intersubject variability in in vitro SN-38 glucuronide formation rates was found in humans. Gunn rats and CN-I patients lacked SN-38 glucuronidating activity, indicating the role of UGT1 isoform in SN-38 glucuronidation. A significant correlation was observed between SN-38 and bilirubin glucuronidation (r = 0.89; P = 0.001), whereas there was a poor relationship between para-nitrophenol and SN-38 glucuronidation (r = 0.08; P = 0.703). Intact SN-38 glucuronidation was observed only in HK293 cells transfected with the UGT1A1 isozyme. These results demonstrate that UGT1A1 is the isoform responsible for SN-38 glucuronidation. These findings indicate a genetic predisposition to the metabolism of irinotecan, suggesting that patients with low UGT1A1 activity, such as those with Gilbert's syndrome, may be at an increased risk for irinotecan toxicity. PMID:9466980

Iyer, L; King, C D; Whitington, P F; Green, M D; Roy, S K; Tephly, T R; Coffman, B L; Ratain, M J

1998-02-15

189

Determining the degradation efficiency and mechanisms of ethyl violet using HPLC-PDA-ESI-MS and GC-MS  

PubMed Central

Background The discharge of wastewater that contains high concentrations of reactive dyes is a well-known problem associated with dyestuff activities. In recent years, semiconductor photocatalysis has become more and more attractive and important since it has a great potential to contribute to such environmental problems. One of the most important aspects of environmental photocatalysis is in the selection of semiconductor materials like ZnO and TiO2, which are close to being two of the ideal photocatalysts in several respects. For example, they are relatively inexpensive, and they provide photo-generated holes with high oxidizing power due to their wide band gap energy. In this work, nanostructural ZnO film on the Zn foil of the Alkaline-Manganese Dioxide-Zinc Cell was fabricated to degrade EV dye. The major innovation of this paper is to obtain the degradation mechanism of ethyl violet dyes resulting from the HPLC-PDA-ESI-MS analyses. Results The fabrication of ZnO nanostructures on zinc foils with a simple solution-based corrosion strategy and the synthesis, characterization, application, and implication of Zn would be reported in this study. Other objectives of this research are to identify the reaction intermediates and to understand the detailed degradation mechanism of EV dye, as model compound of triphenylmethane dye, with active Zn metal, by HPLC-ESI-MS and GC-MS. Conclusions ZnO nanostructure/Zn-foils had an excellent potential for future applications on the photocatalytic degradation of the organic dye in the environmental remediation. The intermediates of the degradation process were separated and characterized by the HPLC-PDA-ESI-MS and GC-MS, and twenty-six intermediates were characterized in this study. Based on the variation of the amount of intermediates, possible degradation pathways for the decolorization of dyes are also proposed and discussed.

2012-01-01

190

Detection of pentachlorophenol and its glucuronide and sulfate conjugates in fish bile and exposure water  

SciTech Connect

The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposed to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.

Stehly, G.R.; Hayton, W.L.

1988-08-01

191

Methyl radical addition to methyl ethyl ketone  

Microsoft Academic Search

From relative rates of acetone formation in the azomethane sensitized decomposition of methyl ethyl ketone at 290 °C, log10(k\\/cm3mol?1s?1)=5.3±0.4 for the methyl radical addition to methyl ethyl ketone has been determined.

H. Knoll

1981-01-01

192

Overestimation of flavonoid aglycones as a result of the ex vivo deconjugation of glucuronides by the tissue ?-glucuronidase.  

PubMed

Flavonoid glucuronides are the main circulating metabolites of flavonoids in humans and animals. There has been a growing interest in the biological function of glucuronides. In order to differentiate biological activity and to assess efficacy it is essential to accurately determine the levels of flavonoid aglycone and metabolic conjugate in vivo. Many organs and body fluids of humans and animals exhibit ?-glucuronidase against flavonoid glucuronides. Studies have shown that ?-glucuronidase within the tissues hydrolyzes glucuronides to their aglycones during the tissue extraction, leading to artificially higher reported tissue levels of aglycone than actual in vivo concentrations. The aims of this study were to estimate the extent by which the aglycones were overestimated and to investigate the use of saccharo-1,4-lactone, a ?-glucuronidase inhibitor, to block the ex vivo hydrolysis of flavonoid glucuronides. Our data demonstrate that in mouse liver tissues and human tumor xenografts levels of quercetin and methylated quercetin aglycones could be over-estimated by 7-fold. The inhibition of deconjugation of quercetin and baicalein glucuronides by saccharo-1,4-lactone is dose-dependent. The amount of saccharo-1,4-lactone used to produce optimal inhibition of the enzyme activity is in the range of 15-24?mol per gram of liver tissue. The use of ?-glucuronidase inhibitor blocks the ex vivo deconjugation resulting in an accurate estimation of tissue levels of aglycone and conjugate. Our study described here can be extended to other animal models and human studies with different types of substrates of ?-glucuronidase. PMID:24176739

Lu, Qing-Yi; Zhang, Lifeng; Eibl, Guido; Go, Vay Liang W

2014-01-25

193

Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a  

Microsoft Academic Search

Background: The soy isoflavones genistein and daidzein are found in blood and tissues as aglycones, glucuronides, and sul- fates. Isoflavone conjugates may serve as sources of aglycones at specific target tissues and may have bioactivity. Yet, very little is known about the plasma pharmacokinetics of isoflavone conju- gates after soy ingestion. Objective: The objective of this study was to determine

Susan R Shelnutt; Carolyn O Cimino; Patricia A Wiggins; Martin JJ Ronis; Thomas M Badger

194

Investigation of Immobilized Enzymes for Hydrolysis of Glucuronides in Urine.  

National Technical Information Service (NTIS)

Metabolism of certain drugs leads to the formation of conjugation products with glucuronic acid prior to excretion in urine. Thus, heroin is converted to morphine, which after conjugation with glucuronic acid, appears in the urine as morphine glucuronide....

D. J. Fink M. K. Bean R. D. Falb

1975-01-01

195

On-line arsenic co-precipitation on ethyl vinyl acetate turning-packed mini-column followed by hydride generation-ICP OES determination.  

PubMed

An alternative and new system for on-line preconcentration of arsenic by sorption on a mini-column associated to hydride generation--inductively coupled plasma--optical emission spectrometry determination was studied. It is based on the sorption of arsenic on a column packed with ethyl vinyl acetate (EVA) turnings and the use of La(III) as co-precipitant reagent. This polymeric material was employed here for the first time as filling material for column preconcentration. It could work both as adsorbent and as sieve material. Sample and co-precipitant agent (lanthanum nitrate) were off-line mixed and merged with ammonium buffer solution (pH 10.0), which promoted precipitation and quantitative collection on the small EVA turnings. The arsenic preconcentrated by co-precipitation with lanthanum hydroxide precipitate was subsequently eluted with hydrochloric acid, which was the medium used for hydride generation. Considering a flow rate of 5 ml/min, three enrichment factors were obtained, 28-, 38- and 45-fold at three different sampling times, 60, 120 and 180s; respectively. The detection limits (3s) obtained for each case were 0.013, 0.009 and 0.007 microg/l. Additionally, the calculated precisions expressed as relatively standard deviation (R.S.D.) were 0.9, 1.3 and 1.1%. Satisfactory results were obtained for the determination of arsenic in standard reference material NIST 1643e Trace Elements in Water and drinking water samples. PMID:17055643

Gil, R A; Ferrúa, N; Salonia, J A; Olsina, R A; Martinez, L D

2007-05-01

196

Novel ethyl-derivatization approach for the determination of fluoride by headspace gas chromatography/mass spectrometry.  

PubMed

We report a novel derivatization chemistry for determination of fluoride based on the batch reaction of fluoride ions with triethyloxonium tetrachloroferrate(III) in a closed vessel to yield fluoroethane. Gaseous fluoroethane was readily separated from the matrix, sampled from the headspace, and determined by gas chromatography/mass spectrometry. The method was validated using rainwater certified reference material (IRMM CA408) and subsequently applied to the determination of fluoride in various matrixes, including tap water, seawater, and urine. An instrumental limit of detection of 3.2 ?g/L with a linear range up to 50 mg/L was achieved. The proposed derivatization is a one-step reaction, requires no organic solvents, and is safe, as the derivatizing agent is nonvolatile. Determination of fluoride is affected by common fluoride-complexing agents, such as Al(III) and Fe(III). The effect of large amounts of these interferences was studied, and the adverse effect of these ions was eliminated by use of the method of standard additions. PMID:23215254

Pagliano, Enea; Meija, Juris; Ding, Jianfu; Sturgeon, Ralph E; D'Ulivo, Alessandro; Mester, Zoltán

2013-01-15

197

The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes  

PubMed Central

Aims To estimate the relative contribution of liver, kidney and jejunum to MPA elimination via glucuronidation from in vitro kinetic data. Methods The kinetics of MPA glucuronidation by human liver, kidney and jejunum microsomes were characterized. Mycophenolic acid glucuronide (MPAG) concentrations in microsomal incubations were determined using a specific h.p.l.c. procedure. Non-specific microsomal binding of MPA was excluded using an equilibrium dialysis approach. Results Microsomes from all three tissues catalysed the conversion of MPA to MPAG. Mean microsomal intrinsic clearances for MPAG formation by liver, kidney and jejunum microsomes were 46.6, 73.5 and 24.5 µl (min mg)?1, respectively. When extrapolated to the whole organ, however, hepatic intrinsic clearance was 21- and 38-fold higher than the respective intrinsic clearances for kidney and small intestine. Conclusions The data suggest that the liver is the organ primarily responsible for the systemic clearance of MPA, with little contribution from the kidney, and that the small intestine would be expected to contribute to first-pass extraction to a minor extent only.

Bowalgaha, Kushari; Miners, John O

2001-01-01

198

Simultaneous determination of methyl- and ethyl-mercury by solid-phase microextraction followed by gas chromatography atomic fluorescence detection.  

PubMed

A method for trace level determination of organomercury species in different biota matrixes by using aqueous-phase propylation followed by headspace solid-phase microextraction (HS-SPME) and gas chromatography (GC) coupled to pyrolysis-atomic fluorescence spectrometry (Py-AFS) detection has been optimized. To maximize peak area and symmetry factors of methylmercury (MeHg) and ethylmercury (EtHg) analyzed as propyl derivatives, carrier and make-up flow rates were optimized by a user-defined experimental design. A multiple response simultaneous optimization was applied using the desirability function to achieve global optimal operating conditions. They were attained at 2 and 6 mL min(-1) as carrier and make-up gas flow rates, respectively. In addition, pyrolyser temperature was also optimized, yielding the best value at 750 degrees C. Limits of detection and quantification at the optimum conditions were 0.04 ng g(-1) and 0.13 ng g(-1) for both, MeHg and EtHg. The developed analytical procedure was validated with a certified reference material (DORM-2) and applied to the determination of organomercury incurred in waterfowl egg and fish samples. PMID:19913795

Carrasco, Luis; Díez, Sergi; Bayona, Josep M

2009-12-18

199

Low level determinations of methyl methanesulfonate and ethyl methanesulfonate impurities in Lopinavir and Ritonavir Active pharmaceutical ingredients by LC/MS/MS using electrospray ionization.  

PubMed

Methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been highlighted as potential genotoxic impurities (PGIs). A sensitive LC/MS/MS method is developed and validated for the determination of MMS and EMS impurities in both Lopinavir and Ritonavir Active pharmaceutical ingredient. Method utilizes, Atlantis T3 column with electrospray ionization in multiple reactions monitoring (MRM) mode for quantitation of impurities. The proposed method is specific, linear, accurate and precise. The calibration curves show good linearity over the concentration range of 0.01-0.23 ?g/mL for MMS and 0.005-0.23 ?g/mL for EMS. The correlation coefficient obtained is >0.99 in each case. Method has very low limit of detection (LOD) and quantification (LOQ). LOD and LOQ of MMS and EMS are as low as ?0.002 ?g/mL and ?0.01 ?g/mL respectively. Method has accuracy within 80-120% for both the analytes. This method is a good quality control tool for quantitation of MMS and EMS impurities at very low levels in Lopinavir and Ritonavir. PMID:21353429

Kakadiya, P R; Reddy, B Pratapa; Singh, V; Ganguly, S; Chandrashekhar, T G; Singh, D K

2011-05-15

200

Determination of gas-phase produced ethyl parathion and toluene 2,4-diisocyanate by ion mobility spectrometry, gas chromatography and liquid chromatography.  

PubMed

Ethyl parathion and toluene 2,4-diisocyanate (2,4-TDI) vapors were generated using a vapor generation system that was designed for the evaporation of liquid samples at known flow rates. The vapor generation of parathion and 2,4-TDI posed a challenge because of their low volatility and tendency to absorb into surfaces of the vapor generation system. Experimental concentration of parathion was determined using gas chromatography-mass spectrometry (GC-MS). 2,4-TDI was derivatized with 1-(2-pyridyl)piperazine to urea derivative which concentration was analyzed using high performance liquid chromatography (HPLC). In addition, in combination with vapor generator, aspiration IMS was used for monitoring ion mobility cell (IMCell) and semiconductor cell (SCCell) responses to parathion and 2,4-TDI vapors. The chromatographic results correlated well with the IMCell response data, showing high specificity of IMS to parathion and 2,4-TDI. The concentrations of parathion and 2,4-TDI at the detection limit of IMS were significantly lower than IDLH threshold values of parathion or 2,4-TDI, demonstrating high sensitivity of IMS to both compounds. The IMS patterns of both chemicals and the influence of humidity on IMCell and SCCell sensitivity were analyzed. PMID:19071713

Nousiainen, Marjaana; Peräkorpi, Kaleva; Sillanpää, Mika

2007-05-15

201

Synthesis, hydrolysis and stability of psilocin glucuronide.  

PubMed

A two-step synthesis of psilocin glucuronide (PCG), the main metabolite of psilocin, with methyl 2,3,4-tri-O-isobutyryl-1-O-trichloroacetimidoyl-?-d-glucopyranuronate is reported. With the synthesized PCG, hydrolysis conditions in serum and urine were optimized. Escherichia coli proved to be a better enzyme source for ?-glucuronidase than Helix pomatia. It was essential to add ascorbic acid to serum samples to protect psilocin during incubation. Furthermore the stability of PCG and psilocin was compared as stability data are the basis for forensic interpretation of measurements. PCG showed a greater long-term stability after six months in deep frozen serum and urine samples than psilocin. The short-term stability of PCG for one week in whole blood at room temperature and in deep frozen samples was also better than that of psilocin. Therefore, PCG can be considered to be more stable than the labile psilocin and should always be included if psilocin is analyzed in samples. PMID:24513688

Martin, Rafaela; Schürenkamp, Jennifer; Pfeiffer, Heidi; Lehr, Matthias; Köhler, Helga

2014-04-01

202

Discovery of dopamine glucuronide in rat and mouse brain microdialysis samples using liquid chromatography tandem mass spectrometry.  

PubMed

A liquid chromatographic-electrospray/tandem mass spectrometric (LC-ESI-MS/MS) method was developed for the analysis of dopamine and its phase I and phase II metabolites from brain microdialysis samples. The method provides for the first time the analysis of intact dopamine glucuronide and sulfate without hydrolysis. The paper describes also an enzymatic synthesis method using rat liver microsomes as biocatalysts and characterization of dopamine glucuronide as a reference compound. The method was validated for quantitative analysis by determining limits of detection and quantitation, linearity,repeatability, and specificity. Dopamine glucuronide was found for the first time in rat and mouse brain microdialysis samples. The concentrations of dopamine and its glucuronide in the microdialysates collected from the striatum of rat brains were approximately equal (2 nM).Dopamine sulfate was not detected in the microdialysates(limit of detection 0.8 nM). The main metabolites of dopamine were dihydroxyphenylacetic acid (DOPAC,1200 nM) and homovanillic acid (HVA, 700 nM). PMID:19125450

Uutela, Päivi; Karhu, Laura; Piepponen, Petteri; Käenmäki, Mikko; Ketola, Raimo A; Kostiainen, Risto

2009-01-01

203

Prediction of urinary sulphate and glucuronide conjugate excretion for substituted phenols in the rat using quantitative structure-metabolism relationships.  

PubMed

1. The quantitative urinary excretion of the sulphate and glucuronide metabolites of 15 substituted phenols dosed to rat has been determined using high resolution 19F-nmr spectroscopy. 2. The urinary metabolic fate of each of the compounds was related to a series of calculated physicochemical properties for each compound to produce quantitative structure-metabolism relationships (QSMRs). Using these calculated molecular properties it was possible to predict the urinary recovery of xenobiotic material as a percentage of the administered dose, to classify the compounds according to their 'dominant' metabolite pattern and to predict quantitatively the proportions of glucuronide and sulphate conjugates in the urine by the use of multiple linear regression. 3. The quantitative predictions were tested by cross-validation and good prediction of total xenobiotic urinary recovery as a percentage of the administered dose was achieved based on an equation involving the electrophilic superdelocalizability at C4 (para to the hydroxyl function), the smallest principal ellipsoid axis dimension and the heat of formation. The largest moment of inertia and the electrophilic superdelocalizability at C3 were found to be the most significant factors for the prediction of the percentage glucuronide in the urine, and the urinary excretion of sulphate conjugates as a percentage of total urinary recovery was negatively correlated with the glucuronide excretion as little parent compound was excreted. PMID:8719903

Holmes, E; Sweatman, B C; Bollard, M E; Blackledge, C A; Beddell, C R; Wilson, I D; Lindon, J C; Nicholson, J K

1995-12-01

204

ETHYL GLUCURONIDE: A BIOMARKER TO IDENTIFY ALCOHOL USE BY HEALTH PROFESSIONALS RECOVERING FROM SUBSTANCE USE DISORDERS  

Microsoft Academic Search

Aims: Physicians recovering from substance-related disorders are usually allowed to return to practice if they agree to remain abstinent from drugs, including alcohol, and to undergo random urine testing. Over 9000 physicians are currently involved in such monitoring programs in the US. To date, it has been difficult to adequately monitor abstinence from alcohol due to the short half- life

GREGORY E. SKIPPER; WOLFGANG WEINMANN; ANNETTE THIERAUF; PATRICK SCHAEFER; GERHARD WIESBECK; JOHN P ALLEN; MICHAEL MILLER; FRIEDRICH MARTIN WURST

205

Mutagenic Action of Ethyl Methanesulfonate in Maize.  

PubMed

Pollen of corn plants carrying three closely linked genes (alpha beta Sh(2)) on chromosome 3 were treated by ethyl methanesulfonate in order to determine the nature of genetic changes produced. In this genetic material the loss of the beta gene alone represents a discrete genetic change, possibly a point mutation, while the loss of two or more markers represents chromosome aberrations. Ethyl methanesulfonate, x-rays, and ultraviolet light all induced numerous chromosome aberrations, but only ultraviolet light and probably ethyl methanesulfonate induced discrete genetic changes. PMID:17757068

Neuffer, M G; Ficsor, G

1963-03-29

206

Simultaneous Quantification of Buprenorphine, Norbuprenorphine, Buprenorphine-Glucuronide and Norbuprenorphine-Glucuronide in Human Umbilical Cord by Liquid Chromatography Tandem Mass Spectrometry  

PubMed Central

A LCMS method was developed and validated for the simultaneous determination of buprenorphine (BUP), norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc) and norbuprenorphine glucuronide (NBUP-Gluc) in human umbilical cord. Quantification was achieved by selected ion monitoring of precursor ions m/z 468.4 for BUP; 414.3 for NBUP; 644.4 for BUP-Gluc and 590 for NBUP-Gluc. BUP and NBUP were identified by MS2, with m/z 396, 414 and 426 for BUP, and m/z 340, 364 and 382 for NBUP. Glucuronide conjugates were identified by MS3 with m/z 396 and 414 for BUP-Gluc and m/z 340 and 382 for NBUP-Gluc. The assay was linear 1–50 ng/g. Intra, inter-day and total assay imprecision (%RSD) were <14.5%, and analytical recovery ranged from 94.1% to 112.3% for all analytes. Extraction efficiencies were >66.3%, and process efficiency >73.4%. Matrix effect ranged, in absolute value, from 3.7% to 27.4% (CV<21.8%, n=8). The method was selective with no endogenous or exogenous interferences from 41 compounds evaluated. Sensitivity was high with limits of detection of 0.8 ng/g. In order to prove method applicability, an authentic umbilical cord obtained from an opioid-dependent pregnant woman receiving BUP pharmacotherapy was analyzed. Interestingly, BUP was not detected but concentrations of the other metabolites were NBUP-Gluc 13.4 ng/g, BUP-Gluc 3.5 ng/g and NBUP 1.2 ng/g.

Concheiro, Marta; Shakleya, Diaa M.; Huestis, Marilyn A.

2009-01-01

207

Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry.  

PubMed

A method for the analysis of intact glucuronides and sulfates of common neurotransmitters serotonin (5-HT) and dopamine (DA) as well as of 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in rat brain microdialysates by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Enzyme-assisted synthesis using rat liver microsomes as a biocatalyst was employed for the production of 5-HT-, 5-HIAA-, DOPAC-, and HVA-glucuronides for reference compounds. The sulfate conjugates were synthesized either chemically or enzymatically using a rat liver S9 fraction. The LC-MS/MS method was validated by determining the limits of detection and quantitation, linearity, and repeatability for the quantitative analysis of 5-HT and DA and their glucuronides, as well as of 5-HIAA, DOPAC, and HVA and their sulfate-conjugates. In this study, 5-HT-glucuronide was for the first time detected in rat brain. The concentration of 5-HT-glucuronide (1.0-1.7 nM) was up to 2.5 times higher than that of free 5-HT (0.4-2.1 nM) in rat brain microdialysates, whereas the concentration of DA-glucuronide (1.0-1.4 nM) was at the same level or lower than the free DA (1.2-2.4 nM). The acidic metabolites of neurotransmitters, 5-HIAA, HVA, and DOPAC, were found in free and sulfated form, whereas their glucuronidation was not observed. PMID:19772284

Uutela, Päivi; Reinilä, Ruut; Harju, Kirsi; Piepponen, Petteri; Ketola, Raimo A; Kostiainen, Risto

2009-10-15

208

A high throughput assay for the glucuronidation of 7-hydroxy-4-trifluoromethylcoumarin by recombinant human UDP-glucuronosyltransferases and liver microsomes.  

PubMed

1. UDP-glucuronosyltransferases (UGTs) are versatile and important conjugation enzymes in the metabolism of drugs and other xenobiotics. 2. We have developed a convenient quantitative multi-well plate assay to measure the glucuronidation rate of 7-hydroxy-4-trifluoromethylcoumarin (HFC) for several UGTs. 3. We have used this method to screen 11 recombinant human UGTs for HFC glucuronidation activity and studied the reaction kinetics with the most active enzymes. We have also examined the HFC glucuronidation activity of liver microsomes from human, pig, rabbit and rat. 4.? At a substrate concentration of 20?µM, the most active HFC glucuronidation catalysts were UGT1A10 followed by UGT1A6 >UGT1A7 >UGT2A1, whereas at 300?µM UGT1A6 was about 10 times better catalyst than the other recombinant UGTs. The activities of UGTs 1A3, 1A8, 1A9, 2B4 and 2B7 were low, whereas UGT1A1 and UGT2B17 exhibited no HFC glucuronidation activity. UGT1A6 exhibited a significantly higher Vmax and Km values toward both HFC and UDP-glucuronic acid than the other UGTs. 5. Human, pig and rabbit, but not rat liver microsomes, catalyzed HFC glucuronidation at high rates. 6. This new method is particularly suitable for fast activity screenings of UGTs 1A6, 1A7, 1A10 and 2A1 and HFC glucuronidation activity determination from various samples. PMID:23551063

Rahikainen, Tuomas; Häkkinen, Merja R; Finel, Moshe; Pasanen, Markku; Juvonen, Risto O

2013-10-01

209

Blood-brain distribution of morphine-6-glucuronide in sheep  

PubMed Central

Background and purpose: At present there are few data regarding the rate and extent of brain–blood partitioning of the opioid active metabolite of morphine, morphine-6-glucuronide (M6G). In this study the cerebral kinetics of M6G were determined, after a short-term intravenous infusion, in chronically instrumented conscious sheep. Experimental approach: Five sheep received an intravenous infusion of M6G 2.2 mg kg-1 over a four-minute period. Non-linear mixed-effects analysis, with hybrid physiologically based kinetic models, was used to estimate cerebral kinetics from the arterio-sagittal sinus concentration gradients and cerebral blood flow measurements. Key results: A membrane limited model was selected as the final model. The blood-brain equilibration of M6G was relatively slow (time to reach 50% equilibration of the deep compartment 5.8 min), with low membrane permeability (PS, population mean, 2.5 ml min-1) from the initial compartment (V1, 13.7 ml) to a small deep distribution volume (V2) of 18.4 ml. There was some between-animal variability (%CV) in the initial distribution volume (29%), but this was not identified for PS or V2. Conclusion and Implications: Pharmacokinetic modelling of M6G showed a delayed equilibration between brain and blood of a nature that is primarily limited by permeability across the blood-brain-barrier, in accordance with its physico-chemical properties.

Villesen, H H; Foster, D J R; Upton, R N; Christrup, L L; Somogyi, A A; Martinez, A; Grant, C

2006-01-01

210

Hepatocyte cotransport of taurocholate and bilirubin glucuronides: Role of microtubules  

SciTech Connect

Modulation of bile pigment excretion by bile salts has been attributed to modification of canalicular membrane transport or a physical interaction in bile. Based on the observation that a microtubule-dependent pathway is involved in the hepatocellular transport of bile salts, the authors investigated the possibility that bilirubin glucuronides are associated with bile salts during intracellular transport. Experiments were conducted in intact rats (basal) or after overnight biliary diversion and intravenous reinfusion of taurocholate (depleted/reinfused). All rats were pretreated with intravenous low-dose colchicine or its inactive isomer lumicolchicine. Biliary excretion of radiolabeled bilirubin glucuronides derived from tracer ({sup 14}C)bilirubin-({sup 3}H)bilirubin monoglucuronide (coinjected iv) was unchanged in basal rats but was consistently delayed in depleted/reinfused rats. This was accompanied by a significant shift toward bilirubin diglucuronide formation from both substrates. In basal Gunn rats, with deficient bilirubin glucuronidation, biliary excretion of intravenous ({sup 14}C)bilirubin monoglucuronide-({sup 3}H)bilirubin diglucuronide was unaffected by colchicine but was retarded in depleted/reinfused Gunn rats. Colchicine had no effect on the rate of bilirubin glucuronidation in vitro in rat liver microsomes. They conclude that a portion of the bilirubin glucuronides generated endogenously in hepatocytes or taken up directly from plasma may be cotransported with bile salts to the bile canalicular membrane via a microtubule-dependent mechanism.

Crawford, J.M.; Gollan, J.L. (Harvard Medical School, Boston, MA (USA))

1988-07-01

211

In Vitro Glucuronidation of Ochratoxin A by Rat Liver Microsomes  

PubMed Central

Ochratoxin A (OTA), one of the most toxic mycotoxins, can contaminate a wide range of food and feedstuff. To date, the data on its conjugates via glucuronidation request clarification and consolidation. In the present study, the combined approaches of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), UHPLC-Orbitrap-high resolution mass spectrometry (HRMS) and liquid chromatography-multiple stage mass spectrometry (LC-MSn) were utilized to investigate the metabolic profile of OTA in rat liver microsomes. Three conjugated products of OTA corresponding to amino-, phenol- and acyl-glucuronides were identified, and the related structures were confirmed by hydrolysis with ?-glucuronidase. Moreover, OTA methyl ester, OT? and OT?-glucuronide were also found in the reaction solution. Based on these results, an in vitro metabolic pathway of OTA has been proposed for the first time.

Han, Zheng; Tangni, Emmanuel K.; Diana Di Mavungu, Jose; Vanhaecke, Lynn; De Saeger, Sarah; Wu, Aibo; Callebaut, Alfons

2013-01-01

212

In vitro glucuronidation of ochratoxin a by rat liver microsomes.  

PubMed

Ochratoxin A (OTA), one of the most toxic mycotoxins, can contaminate a wide range of food and feedstuff. To date, the data on its conjugates via glucuronidation request clarification and consolidation. In the present study, the combined approaches of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), UHPLC-Orbitrap-high resolution mass spectrometry (HRMS) and liquid chromatography-multiple stage mass spectrometry (LC-MS(n)) were utilized to investigate the metabolic profile of OTA in rat liver microsomes. Three conjugated products of OTA corresponding to amino-, phenol- and acyl-glucuronides were identified, and the related structures were confirmed by hydrolysis with ?-glucuronidase. Moreover, OTA methyl ester, OT? and OT?-glucuronide were also found in the reaction solution. Based on these results, an in vitro metabolic pathway of OTA has been proposed for the first time. PMID:24351721

Han, Zheng; Tangni, Emmanuel K; Di Mavungu, José Diana; Vanhaecke, Lynn; De Saeger, Sarah; Wu, Aibo; Callebaut, Alfons

2013-12-01

213

DETERMINATION AND IDENTIFICATION OF FATTY ACIDS IN MICROULA SIKKIMENSIS SEED OIL USING 1,2-BENZOCARBAZOLE-9-ETHYL-P-TOLUENESULFONATE AS A NOVEL LABELING REAGENT BY HPLC WITH FLUORESCENCE DETECTION AND APCI-MS  

Microsoft Academic Search

Using 1,2-benzocarbazole-9-ethyl-p-toluenesulfonate (BCETS) as labeling reagent, a sensitive method for the determination of fatty acids by high performance liquid chromatography (HPLC) with fluorescence detection has been developed. BCETS could easily and quickly label fatty acids in the presence of the K2CO3 catalyst at 90°C for 30 min in N,N-dimethylformamide solvent. All the tested fatty acid derivatives were separated on a reversed-phase

Cuihua Song; Caiqing Zhang; Zhiwei Sun; Jinmao You; Yourui Suo

2012-01-01

214

Determination of total tiopronin in human plasma by LC–ESI–MS using tris (2-carboxy-ethyl) phosphine as reducing reagent and methyl acrylate as derivatization reagent for the thiol group  

Microsoft Academic Search

A quantitative method for the determination of total tiopronin (TP) in human plasma was developed by liquid chromatography with electrospray ionisation (ESI) mass spectrometric detection. After reduction with tris (2-carboxy-ethyl) phosphine (TCEP) and derivatization with methyl acrylate (MA) for the thiol group of TP, plasma samples were processed successively by deproteinization and solid phase extraction. N-acetyl-l-cysteine (NAC) was selected as

Jianfang Liu; Honghai Wu; Yanning Hou

2006-01-01

215

Development of a Sensitive Reagent, 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl- p -toluenesulfonate, for Determination of Bile Acids in Serum by HPLC with Fluorescence Detection, and Identification by Mass Spectrometry with an APCI Source  

Microsoft Academic Search

A pre-column derivatization method with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl- p-toluenesulfonate (BDETS) as labeling reagent followed by high-performance liquid chromatography with fluorescence detection has been developed for sensitive determination of bile acids (BA). Derivatives were sufficiently stable to be efficiently analyzed by high-performance liquid chromatography. The derivatives also formed an intense protonated molecular ion corresponding to m\\/ z (M + H) +, and fragment

Jinmao You; Yunwei Shi; Yongfei Ming; Zhangyu Yu; Yanjun Yi; Jiayao Liu

2004-01-01

216

The Impact of Glucuronidation on the Bioactivation and DNA Adduction of the Cooked-Food Carcinogen 2-Amino-1-methyl-6-phenylimidazo[4,5-b] pyridine in vivo  

SciTech Connect

UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of many different chemicals. Glucuronidation is especially important for detoxifying reactive intermediates from metabolic reactions, which otherwise can be biotransformed into highly reactive cytotoxic or carcinogenic species. Detoxification of certain food-borne carcinogenic heterocyclic amines (HAs) is highly dependent on UGT1A-mediated glucuronidation. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most mass abundant carcinogenic HA found in well-done cooked meat, is extensively glucuronidated by UGT1A proteins. In humans, CYP1A2 catalyzed N-hydroxylation and subsequent UGT1A-mediated glucuronidation is a dominant pathway in the metabolism of PhIP. Therefore, changes in glucuronidation rates could significantly alter PhIP metabolism. To determine the importance of UGT1A-mediated glucuronidation in the biotransformation of PhIP, UGT1A proficient Wistar and UGT1A deficient Gunn rats were exposed to a single 100 {micro}g/kg oral dose of [{sup 14}C]-PhIP. Urine was collected over 24 h and the PhIP urinary metabolite profiles were compared between the two strains. After the 24 h exposure, livers and colon were removed and analyzed for DNA adduct formation by accelerator mass spectrometry. Wistar rats produced several PhIP and N-hydroxy-PhIP glucuronides that accounted for {approx}25% of the total amount of recovered urinary metabolites. In the Gunn rats, PhIP and N-hydroxy-PhIP glucuronides were reduced by 68-92%, compared to the Wistar rats, and comprised only 4% of the total amount of recovered urinary metabolites. PhIP-DNA adduct analysis from the Gunn rats revealed a correlation between reduced PhIP and N-hydroxy-PhIP glucuronide levels in the urine and increased hepatic DNA adducts, compared to the Wistar rats. These results indicate that UGT1A-mediated glucuronidation of PhIP and N-hydroxy-PhIP is an important pathway for PhIP detoxification. Failure to form glucuronide conjugates results in increases in PhIP bioactivation and DNA adduct formation, which can potentially lead to increases in tumor formation. Therefore, diminished UGT1A activity could pose a significant risk for the development of certain cancers from exposure to PhIP.

Malfatti, M A; Ubick, E A; Felton, J S

2005-03-31

217

Microvascular protective activity of flavonoid glucuronides fraction from Tulipa gesneriana.  

PubMed

A mixture of flavonoid glucuronides, consisting of 7-O-glucuronides of kaempferol and quercetin 3-O-rutinosides, 3-O-gentiobiosides and 3-O-glucosides, was isolated from the perianths of Tulipa gesneriana L. var. 'Paradae'. It showed protective activity against the increased (both chloroform and histamine) skin vascular permeability in rabbits. The protective effect, measured as the reduction in leakage of Evans blue, was 59.8% after peritoneal treatment at a dose of 25 mg/kg, while that of troxerutin was 45.5%. PMID:10190195

Budzianowski, J; Korzeniowska, K; Chmara, E; Mrozikiewicz, A

1999-03-01

218

Experimental Design Methodology to Optimize the Solid Phase Micro-Extraction Procedure Prior to GC-MS Determination of Ethyl Carbamate in Samples of Homemade Cachaça  

Microsoft Academic Search

Seeking to improve the quality of cachaça, the Ministério da Agricultura, Pecuária e Abastecimento (Ministry of Agriculture, Livestock and Supply - MAPA), the body responsible for setting and approving regulations governing the Identity and Quality Standards (PIQs) for distilled sugar cane spirits and cachaça, through the Normative Instruction No. 13 of 2005 included some contaminants such as ethyl carbamate (EC),

Ana Maria de Resende Machado; Maria das Graças Cardoso; Elissandro Soares Emídio; Vanessa de Menezes Prata; Haroldo Silveira Dórea; Jeancarlo Pereira dos Anjos; Zuy Maria Magriotis; David Lee Nelson

2012-01-01

219

Disruption of thyroid hormone homeostasis in Ugt1a-deficient Gunn rats by microsomal enzyme inducers is not due to enhanced thyroxine glucuronidation  

SciTech Connect

Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) are thought to increase glucuronidation of thyroxine (T{sub 4}), thus reducing serum T{sub 4}, and subsequently increasing thyroid stimulating hormone (TSH). Ugt1a1 and Ugt1a6 mediate T{sub 4} glucuronidation. Therefore, this experiment determined the involvement of Ugt1a enzymes in increased T{sub 4} glucuronidation, decreased serum T{sub 4}, and increased TSH after MEI treatment. Male Wistar and Ugt1a-deficient Wistar (Gunn) rats were fed a control diet or diet containing pregnenolone-16{alpha}-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum T{sub 4}, triiodothyronine (T{sub 3}), and TSH concentrations, hepatic T{sub 4}/T{sub 3} glucuronidation, and thyroid histology and follicular cell proliferation were investigated. PCN, 3-MC, and PCB treatments decreased serum T{sub 4}, whereas serum T{sub 3} was maintained in both Gunn and Wistar rats (except for PCB treatment). TSH was increased in Wistar and Gunn rats after PCN (130 and 277%) or PCB treatment (72 and 60%). T{sub 4} glucuronidation in Wistar rats was increased after PCN (298%), 3-MC (85%), and PCB (450%), but was extremely low in Gunn rats, and unchanged after MEI. T{sub 3} glucuronidation was increased after PCN (121%) or PCB (58%) in Wistar rats, but only PCN increased T{sub 3} glucuronidation in Gunn rats (43%). PCN treatment induced thyroid morphological changes and increased follicular cell proliferation in both strains. These data demonstrate that T{sub 4} glucuronidation cannot be increased in Ugt1a-deficient Gunn rats. Thus, the decrease in serum T{sub 4}, increase in TSH, and increase in thyroid cell proliferation after MEI are not dependent on increased T{sub 4} glucuronidation, and cannot be attributed to Ugt1a enzymes.

Richardson, Terrilyn A.; Klaassen, Curtis D., E-mail: cklaasse@kumc.ed

2010-10-01

220

Resveratrol Is Absorbed in the Small Intestine as Resveratrol Glucuronide  

Microsoft Academic Search

We have studied the absorption and metabolism of resveratrol in the jejunum in an isolated rat small intestine model. Only small amounts of resveratrol were absorbed across the enterocytes of the jejunum and ileum unmetabolised. The major compound detected on the serosal side was the glucuronide conjugate of resveratrol (96.5% ± 4.6 of the amount absorbed) indicating the susceptibility of

Gunter Kuhnle; Jeremy P. E. Spencer; George Chowrimootoo; Hagen Schroeter; Edward S. Debnam; S. Kaila S. Srai; Catherine Rice-Evans; Ulrich Hahn

2000-01-01

221

Simple measurement of gluconeogenesis by direct2H NMR analysis of menthol glucuronide enrichment from2H2O  

Microsoft Academic Search

The contribution of gluconeogenesis to fasting glucose produc- tion was determined by a simple measurement of urinary men- thol glucuronide (MG) 2H enrichment from 2H2O. Following in- gestion of 2H2O (0.5% body water) during an overnight fast and a pharmacological dose (400 mg) of a commercial peppermint oil preparation the next morning, 364 mol MG was quantita- tively recovered from

Angela Ribeiro; M. Madalena Caldeira; Manuela Carvalheiro; Margarida Bastos; Carla Baptista; Ana Fagulha; Luisa Barros; Cristina Barosa; John G. Jones

2005-01-01

222

Partial characterization of biliary metabolites of pulegone by tandem mass spectrometry. Detection of glucuronide, glutathione, and glutathionyl glucuronide conjugates.  

PubMed

The hepatotoxic monoterpene pulegone is a major constituent of the herbal abortifacient pennyroyal oil. An approximately equimolar mixture of 2H3- and 14C-labeled pulegone was administered to rats to study its phase II metabolism. Radioactive conjugates that were excreted into the bile were isolated by selective derivatization and HPLC separation, and subsequently characterized from the daughter ion mass spectra of protio- and deutero-analogs of each metabolite. The biliary metabolites characterized were glucuronide and glutathione (GSH) conjugates, accounting for approximately 3% of the radioactivity excreted in bile. The glucuronides, which were 2-fold more abundant than GSH conjugates, were mainly of hydroxylated pulegone and hydroxylated, reduced pulegone. The three GSH conjugates contained xenobiotic moieties that varied in their oxidation state; one of these was tentatively identified as the GSH conjugate of the proximate oxygenated metabolite, menthofuran. The two other GSH conjugates apparently underwent subsequent glucuronidation since novel glutathionyl glucuronide conjugates were identified that contained nonhydroxylated xenobiotic moieties. The results indicate that pulegone is bioactivated via at least three distinct pathways, each marked by a different GSH conjugate. Characterization of these conjugates represents a first step in the identification of the reactive metabolites from which they are derived. PMID:1686249

Thomassen, D; Pearson, P G; Slattery, J T; Nelson, S D

1991-01-01

223

Three-Dimensional Quantitative Structure-Activity Relationship Studies on UGT1A9-Mediated 3-O-Glucuronidation of Natural Flavonols Using a Pharmacophore-Based Comparative Molecular Field Analysis ModelS?  

PubMed Central

Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., Km, Vmax, intrinsic clearance (CLint) = Vmax/Km] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (Km, Vmax, CLint) were obtained. The observed Km, Vmax, and CLint values of 3-O-glucuronidation ranged from 0.04 to 0.68 ?M, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of Vmax and CLint, respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (Vmax model: q2 = 0.738, r2 = 0.976, rpred2 = 0.735; CLint model: q2 = 0.561, r2 = 0.938, rpred2 = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.

Wu, Baojian; Morrow, John Kenneth; Singh, Rashim; Zhang, Shuxing

2011-01-01

224

GC\\/MS Determination of 11Nor9-Carboxy-?-tetrahydrocannabinol in Urine from Cannabis Users  

Microsoft Academic Search

A new method for detecting and quantifying 11-nor-9-carboxy-?-tetrahydrocannabinol (?-THC-COOH) in urine is proposed. The analyte is released as a glucuronide derivative into urine, so the glucuronide bond must be cleaved by alkaline hydrolysis prior to analysis. Subsequently, the sample is subjected to liquid-liquid extraction with n-hexane\\/ethyl acetate, followed by derivatization with a mixture of pentafluoropropionic anhydride (PFPA) and pentafluoropropanol (PFP-OH).

J. L. Villamor; A. M. Bermejo; M. J. Tabernero; P. Fernández; I. Sánchez

1998-01-01

225

Ethyl alcohol production  

SciTech Connect

Recent price increases and temporary shortages of petroleum products have caused farmers to search for alternate sources of fuel. The production of ethyl alcohol from grain is described and the processes involved include saccharification, fermentation and distillation. The resulting stillage has potential as a livestock feed.

Hofman, V.; Hauck, D.

1980-11-01

226

Omega-3-acid Ethyl Esters  

MedlinePLUS

Omega-3-acid ethyl esters are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... a fat-like substance) in your blood. Omega-3-acid ethyl esters are in a class of ...

227

Cross-adaptation of sweaty-smelling 3-methyl-2-hexenoic acid by its ethyl esters is determined by structural similarity  

Microsoft Academic Search

of (E)- and (Z)-3-methyl-2-hexenoic acid (3M2H), a principal component of human underarm odor, by a 3:1 mixture of the fruity-smelling (E)- and (Z)-ethyl esters of 3M2H (EE3M2H). To further explore the structural basis for this cross-adaptation, we synthesized and purified the individual E- and Z-isomers of EE3M2H and tested them separately for cross-adaptation to a 10E:1Z mixture and a 10Z:1E

EVGUENY V. ARONOV; ZHENRONG GUO; GEORGE PRETI; CHARLES J. WYSOCKI

228

Development and validation of a reversed-phase high-performance liquid chromatographic method for the determination of ethyl-3-( N- n-butyl- N-acetyl)aminopropionate in an insect repellent semi-solid formulation  

Microsoft Academic Search

A reversed-phase high-performance liquid chromatographic method with detection at 220 nm was developed and validated for the determination of ethyl-3-(N-n-butyl-N-acetyl)aminopropionate, IR 3535, in an insect repellent semi-solid product. A Hypersil ODS RP-C18 column (250×4.6 mm), 5 ?m particle size, was equilibrated with a mobile phase consisted of water–acetonitrile (60:40, v\\/v). Its flow-rate was 1.0 ml\\/min. Excipients did not interfere with

S. C Marselos; H. A Archontaki

2002-01-01

229

Morphine glucuronidation in human fetal and adult liver  

Microsoft Academic Search

Summary  The glucuronyltransferase activity towards morphine was measured in microsomes isolated from liver specimens obtained from\\u000a human fetuses and cancer patients. All the fetal livers investigated had measurable UDP-glucuronyltransferase activity towards\\u000a morphine. There was no correlation between the gestational age (15 to 27 weeks) and the glucuronidation rate. The mean value\\u000a of the enzymatic activities was higher in fetal livers obtained

G. M. Pacifici; J. Säwe; L. Kager; A. Rane

1982-01-01

230

Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases.  

PubMed

We have examined the glucuronidation of psilocin, a hallucinogenic indole alkaloid, by the 19 recombinant human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B. The glucuronidation of 4-hydroxyindole, a related indole that lacks the N,N-dimethylaminoethyl side chain, was studied as well. UGT1A10 exhibited the highest psilocin glucuronidation activity, whereas the activities of UGTs 1A9, 1A8, 1A7, and 1A6 were significantly lower. On the other hand, UGT1A6 was by far the most active enzyme mediating 4-hydroxyindole glucuronidation, whereas the activities of UGTs 1A7-1A10 toward 4-hydroxyindole resembled their respective psilocin glucuronidation rates. Psilocin glucuronidation by UGT1A10 followed Michaelis-Menten kinetics in which psilocin is a low-affinity high-turnover substrate (K(m) = 3.8 mM; V(max) = 2.5 nmol/min/mg). The kinetics of psilocin glucuronidation by UGT1A9 was more complex and may be best described by biphasic kinetics with both intermediate (K(m1) = 1.0 mM) and very low affinity components. The glucuronidation of 4-hydroxyindole by UGT1A6 exhibited higher affinity (K(m) = 178 microM) and strong substrate inhibition. Experiments with human liver and intestinal microsomes (HLM and HIM, respectively) revealed similar psilocin glucuronidation activity in both samples, but a much higher 4-hydroxyindole glucuronidation rate was found in HLM versus HIM. The expression levels of UGTs 1A6-1A10 in different tissues were studied by quantitative real-time-PCR, and the results, together with the activity assays findings, suggest that whereas psilocin may be subjected to extensive glucuronidation by UGT1A10 in the small intestine, UGT1A9 is likely the main contributor to its glucuronidation once it has been absorbed into the circulation. PMID:20007669

Manevski, Nenad; Kurkela, Mika; Höglund, Camilla; Mauriala, Timo; Court, Michael H; Yli-Kauhaluoma, Jari; Finel, Moshe

2010-03-01

231

DETERMINATION OF KOW VALUES FOR A SERIES OF ARYL GLUCURONIDES  

EPA Science Inventory

An important perameter in toxicokinetic modeling is the octanol/water partition coefficient (Kow). This parameter has often been used to predict the accumulation of contaminants from water to fish (Klamer and Beekman 1995); however, few Kow values are available for modeling the b...

232

Determination of amines using 2-(11H-benzo[a]carbazol-11-yl) ethyl chloroformate (BCEC-Cl) as labeling reagent by HPLC with fluorescence detection and identification with APCI/MS.  

PubMed

A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+H](+) under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH(2)O-CO and CH(2)-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate (FMOC-Cl) as labeling reagents. The ratios I(BCEC)/I(BCEOC)=1.94-2.17 and I(BCEC)/I(FMOC)=1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C(8) column. Detection limits calculated from 0.50pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4fmol. The relative standard deviations for within-day determination (n=11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were <3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of >0.9996. PMID:19071704

You, Jinmao; Zhao, Wenchen; Liu, Lingjun; Zhao, Xianen; Suo, Yourui; Wang, Honglun; Li, Yulin; Ding, Chenxu

2007-05-15

233

Determination of four metabolites of the plasticizer di(2-ethylhexyl)phthalate in human urine samples.  

PubMed

A method for biological monitoring of exposure to the plasticizer di(2-ethylhexyl)phthalate (DEHP) is described. In this method the four main metabolites of DEHP [i.e., mono(2-ethylhexyl)phthalate (MEHP), mono(5-carboxy-2-ethylpentyl)phthalate, mono(2-ethyl-5-oxohexyl)phthalate, and mono(2-ethyl-5-hydroxyhexyl)-phthalate] are determined in urine samples. The procedure includes enzymatic hydrolysis, ether extraction, and derivatization with triethyloxonium tetrafluoroborate. Analysis is performed by gas chromatography-electron impact mass spectrometry. The detection limit for all four metabolites is less than 25 micrograms/l urine. The coefficient of variation based on duplicate determinations of urine samples of workers occupationally exposed to DEHP was 16% for MEHP (mean concentration 0.157 mg/l) and 6%-9% for the other three metabolites (mean concentrations 0.130-0.175 mg/l). The method described here was used to study DEHP metabolism in man. Most persons excrete mono(2-ethyl-5-oxohexyl)-phthalate and mono(2-ethyl-5-hydroxyhexyl)phthalate as a (glucuronide) conjugate. Mono(5-carboxy-2-ethylpentyl)phthalate is mainly excreted in free form, while for MEHP a large interindividual variation in conjugation status was observed. Of the four metabolites quantified, 52% are products of a (omega-1)-hydroxylation reaction of MEHP [i.e., mono(2-ethyl-5-oxohexyl)phthalate and mono(2-ethyl-5-hydroxylation reaction of MEHP [i.e., mono(5-carboxy-2-ethylpentyl)phthalate], and 26% is not oxidized further (i.e., MEHP). A good correlation is obtained when the amount of MEHP omega-hydroxylation products is compared with the amount of MEHP (omega-1)-hydroxylation products in urine samples. When the internal dose of DEHP has to be established we recommend that the levels of all four metabolites of DEHP be studied in urine samples. PMID:8314613

Dirven, H A; van den Broek, P H; Jongeneelen, F J

1993-01-01

234

Stereoselective glucuronidation of ornidazole in humans: predominant contribution of UDP-glucuronosyltransferases 1A9 and 2B7.  

PubMed

Ornidazole [R,S-1-chloro-3-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol] is a chiral 5-nitroimidazole class antimicrobial agent. This study aimed to investigate the principal metabolic pathway of ornidazole in humans and identify the major enzymes involved. A total of 19 metabolites were identified in human urine collected from patients with hepatobiliary diseases after an intravenous drip infusion of 500 mg of racemic ornidazole. Stereoselective glucuronidation, followed by renal excretion, was the principal metabolic pathway of ornidazole in humans, accounting for 37.3% of the administered dose. Screening assays with 12 available human recombinant UDP-glucuronosyltransferases (UGTs) demonstrated that UGT1A9 was the predominant UGT isoform involved in R-ornidazole glucuronidation, whereas S-ornidazole glucuronidation was almost exclusively catalyzed by UGT2B7. Chemical inhibition study with niflumic acid and flurbiprofen supported these findings. Enzyme kinetic parameters were then determined in human liver microsomes (HLMs), human kidney microsomes (HKMs), UGT1A9, and 2B7. The K(m) values for UGT1A9 (15.6 ± 1.6 mM for R-ornidazole) and 2B7 (3.8 ± 0.9 mM for S-ornidazole) were quite similar to those determined in HLMs and HKMs (20.1 ± 1.4 and 17.7 ± 4.0 mM for R-ornidazole; 6.6 ± 1.3 and 3.2 ± 0.4 mM for S-ornidazole). The in vitro intrinsic clearance (CL(int)) ratios of S- to R-ornidazole were approximately 4.3 in HLMs and 6.5 in HKMs, respectively. The hepatic and renal clearances were estimated based on the well-stirred model. Overall, stereoselective glucuronidation was the principal metabolic pathway of ornidazole in humans. Furthermore, UGT1A9 and 2B7 were the predominant UGT isoforms responsible for R- and S-ornidazole glucuronidation in humans, respectively. PMID:23571427

Du, Jiangbo; You, Tiangeng; Chen, Xiaoyan; Zhong, Dafang

2013-07-01

235

Organochlorines inhibit acetaminophen glucuronidation by redirecting UDP-glucuronic acid towards the D-glucuronate pathway  

SciTech Connect

Industry-derived organochlorines are persistent environmental pollutants that are a continuing health concern. The effects of these compounds on drug metabolism are not well understood. In the current study we present evidence that the inhibition of acetaminophen (APAP) glucuronidation by minute concentrations of organochlorines correlates well with their ability to stimulate the D-glucuronate pathway leading to ascorbate synthesis. A set of 6 arylated organochlorines, including 5 PCB (polychlorinated biphenyl) congeners, were assessed for their effects on APAP glucuronidation in isolated hepatocytes from male Sprague-Dawley rats. The capacity of each organochlorine to inhibit APAP glucuronidation was found to be directly proportional to its capacity to stimulate ascorbate synthesis. PCB153, PCB28 and bis-(4-chlorophenyl sulfone) (BCPS) in increasing order were the most effective organochlorines for inhibiting APAP glucuronidation and stimulating the D-glucuronate pathway. None of the 3 inhibitors of APAP glucuronidation were able to alter the expression of UGT1A6, UGT1A7 and UGT1A8 (the major isoforms responsible for APAP glucuronidation in the rat), however, their efficacy at inhibiting APAP glucuronidation was proportional to their capacity to deplete UDP-glucuronic acid (UDPGA). BCPS-mediated inhibition of APAP glucuronidation in isolated hepatocytes had non-competitive characteristics and was insensitive to the inactivation of cytochrome P450. The effective organochlorines were also able to selectively stimulate the hydrolysis of UDPGA to UDP and glucuronate in isolated microsomes, but could not inhibit APAP glucuronidation in microsomes when UDPGA was in excess. We conclude that organochlorines are able to inhibit APAP glucuronidation in hepatocytes by depleting UDPGA via redirecting UDPGA towards the D-glucuronate pathway. Because the inhibition is non-competitive, low concentrations of these compounds could have long term inhibitory effects on the glucuronidating capacity of hepatocytes.

Chan, Tom S. [Centre Hospitalier de l'Universite de Montreal, 264 Rene Levesque E, Montreal, Quebec, H2X 1P1 (Canada)], E-mail: chatsy@gmail.com; Wilson, John X. [Department of Exercise and Nutritional Sciences, University at Buffalo, Buffalo, New York, 14214 (United States); Selliah, Subajini; Bilodeau, Marc; Zwingmann, Claudia [Centre Hospitalier de l'Universite de Montreal, 264 Rene Levesque E, Montreal, Quebec, H2X 1P1 (Canada); Poon, Raymond [Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9 (Canada); O'Brien, Peter J. [Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2 (Canada)

2008-11-01

236

Determination of iodine values using 1,3-dibromo-5,5-dimethylhydantoin (DBH) and ethyl acetate as solvent. Analytical methods with DBH in respect to environmental and economical concern, part 18.  

PubMed

Iodine values (iodine numbers) of several fixed oils and lard can be determined in ethyl acetate, an easily biodegredable solvent, instead of chloroform according to PH. EUR. 2002. Iodine monobromide has been replaced by 1,3-dibromo-5,5-dimethylhydantoin (DBH) and potassium iodide (KI) and the reaction time was reduced to 5 min only. However, cod-liver oil and linseed oil require a reaction time of 30 min and a smaller weight of sample. Longer reaction times are also necessary for soya oil and wheat germ oil. Iodine values of linseed oil determined according to method A of PH. EUR. 2002, are dependent on the amount of sample, even in the range prescribed by the pharmacopoeia. PMID:15378849

Hilp, M

2004-08-01

237

UDP-glucuronosyltransferases 1A6 and 1A10 catalyze reduced menadione glucuronidation  

SciTech Connect

Menadione (2-methyl-1,4-naphthoquine), also known as vitamin K3, has been widely used as a model compound in the field of oxidative stress-related research. The metabolism of menadione has been studied, and it is known that menadione undergoes a two-electron reduction by NAD(P)H:Quinone oxidoreductase 1 (NQO1) after which the reduced form of menadione (2-methyl-1,4-naphthalenediol, menadiol) is glucuronidated and excreted in urine. To investigate which human UDP-glucuronosyltransferase (UGT) isoforms participate in the glucuronidation of menadiol reduced by NQO1 from menadione, we first constructed heterologously expressed NQO1 in Sf9 cells and tested the menadiol glucuronidating activity of 16 human recombinant UGT isoforms. Of the 16 UGT isoforms, UGTs 1A6, 1A7, 1A8, 1A9, and 1A10 catalyzed menadiol glucuronidation, and, of these, UGTs 1A6 and 1A10 catalyzed menadiol glucuronidation at much higher rates than the other UGTs. Menadiol was regioselectively glucuronidated in the manner of 4-position > 1-position by UGTs 1A7, 1A8, 1A9, and 1A10. In contrast to these UGTs, only UGT1A6 exhibited 1-menadiol-preferential glucuronidating activity. The results suggest possible detoxification pathways for quinones via NQO1 reduction followed by UGT glucuronidation.

Nishiyama, Takahito; Ohnuma, Tomokazu; Inoue, Yuu; Kishi, Takehiko; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)], E-mail: hiratuka@ps.toyaku.ac.jp

2008-06-27

238

Immobilization of microsomes into alginate beads is a convenient method for producing glucuronides from drugs  

Microsoft Academic Search

The production of glucuronides from drugs by immobilized microsomal uridine diphosphate (UDP)-glucuronosyltransferase has been investigated. Of all the immobilization methods used (covalent binding, adsorption by ionic or hydrophobic interactions), only entrapment of microsomes into alginate beads in the presence of polyethyleneimine was effective in producing high glucuronidation rates, thus leading to the formation of large amounts of metabolites. The performance

Marc Haumont; Jacques Magdalou; Jean-Claude Ziegler; Roselyne Bidault; Jean-Pascal Siest; Gérard Siest

1991-01-01

239

Targeted delivery of vitamin D to the colon using ?-glucuronides of vitamin D: therapeutic effects in a murine model of inflammatory bowel disease.  

PubMed

1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D] has been shown to inhibit development of dextran sodium sulfate (DSS)-induced colitis in mice but can also cause hypercalcemia. The aim of this study was to evaluate whether ?-glucuronides of vitamin D could deliver 1,25(OH)(2)D to the colon to ameliorate colitis while reducing the risk of hypercalcemia. Initial studies demonstrated that bacteria residing in the lower intestinal tract were capable of liberating 1,25(OH)(2)D from 1,25-dihydroxyvitamin D(3)-25-?-glucuronide [?-gluc-1,25(OH)(2)D]. We also determined that a much greater upregulation of the vitamin D-dependent 24-hydroxylase gene (Cyp24) was induced in the colon by treatment of mice with an oral dose of ?-gluc-1,25(OH)(2)D than 1,25(OH)(2)D, demonstrating targeted delivery of 1,25(OH)(2)D to the colon. We then tested ?-glucuronides of vitamin D in the mouse DSS colitis model in two studies. In mice receiving DSS dissolved in distilled water and treated with 1,25(OH)(2)D or ?-gluc-1,25(OH)(2)D, severity of colitis was reduced. Combination of ?-gluc-1,25(OH)(2)D with 25-hydroxyvitamin D(3)-25-?-glucuronide [?-gluc-25(OH)D] resulted in the greatest reduction of colitis lesions and symptoms in DSS-treated mice. Plasma calcium concentrations were lower in mice treated with ?-gluc-1,25(OH)(2)D alone or in combination with ?-gluc-25(OH)D than in mice treated with 1,25(OH)(2)D, which were hypercalcemic at the time of death. ?-Glucuronides of vitamin D compounds can deliver 1,25(OH)(2)D to the lower intestine and can reduce symptoms and lesions of acute colitis in this model. PMID:22114117

Goff, Jesse P; Koszewski, Nicholas J; Haynes, Joseph S; Horst, Ronald L

2012-02-15

240

Determination of conformational and spectroscopic features of ethyl trans-alfa-cyano-3-indole-acrylate compound: An experimental and quantum chemical study  

NASA Astrophysics Data System (ADS)

The optimized geometrical structure, vibrational and electronic transitions, chemical shifts and non-linear optical properties of ethyl trans-alfa-cyano-3-indole-acrylate (C14H12N2O2) compound were presented in this study. The ground state geometrical structure and vibrational wavenumbers were carried out by using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The vibrational spectra of title compound were recorded in solid state with FT-IR and FT-Raman in the range of 4000-400 cm-1 and 4000-10 cm-1, respectively. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The 1H, 13C and DEPT NMR spectra were recorded in DMSO solution, and gauge-invariant atomic orbitals (GIAO) method was used to predict the isotropic chemical shifts. The UV-Vis absorption spectra of the compound were recorded in the range of 200-800 nm in various solvents of different polarity (acetone, benzene, chlorobenzene, chloroform, DMSO, ethanol, methanol and toluene). Solvent effects were calculated using TD-DFT and CIS method. To investigate the non-linear optical properties, the polarizability, anisotropy of polarizability and molecular first hyperpolarizability were computed. A detailed description of spectroscopic behaviors of compound was given based on the comparison of experimental measurements and theoretical computations.

Cinar, Mehmet; Karabacak, Mehmet

2013-03-01

241

Low level determination of 4-amino-2-ethoxy-cinnamic acid and its ethyl ester in a drug substance and its formulation prototypes by HPLC-UV-DAD.  

PubMed

A reversed-phase high-performance liquid chromatographic method (HPLC) with diode-array detection (DAD) has been evaluated for monitoring trace levels of impurities, such as 4-amino-2-ethoxy-cinnamic acid (impurity A), hydrochloride salt of 4-amino-2-ethoxy-ethyl cinnamate (impurity B), and 4-bromo-3-ethoxy-nitrobenzene (impurity C), in drug substance and 3 different formulation prototypes. These compounds have been highlighted as potential genotoxins and 2-ethoxy-4-amino-cinnamic acid (impurity A) as possible degradant isolated during the synthesis of BI drug substance. HPLC-UV-DAD was found to be more promising, and limits of quantification were between 0.09 and 0.6 microg/mL, which enabled detection limits in drug substance at 2-15 ppm for a 15 mg/mL solution. All three genotoxic impurities are completely resolved from each other as well as from diluent peaks, drug substance, and other related impurities within 40 min. The retention times of impurities A, B, and C were 3.4, 13.1, and 21.3 min. The results demonstrating the specificity, assay precision, recovery, linearity, and range achieved during the method validation experiments are presented in this paper. PMID:19406019

Soman, A; Jacob, S; Swanek, F

2009-04-01

242

Species differences in the formation of vabicaserin carbamoyl glucuronide.  

PubMed

Vabicaserin is a potent 5-hydroxtryptamine 2C full agonist with therapeutic potential for a wide array of psychiatric disorders. Metabolite profiles indicated that vabicaserin was extensively metabolized via carbamoyl glucuronidation after oral administration in humans. In the present study, the differences in the extent of vabicaserin carbamoyl glucuronide (CG) formation in humans and in animals used for safety assessment were investigated. After oral dosing, the systemic exposure ratios of CG to vabicaserin were approximately 12 and up to 29 in monkeys and humans, respectively, and the ratios of CG to vabicaserin were approximately 1.5 and 1.7 in mice and dogs, respectively. These differences in systemic levels of CG are likely related to species differences in the rate and extent of CG formation and elimination. Whereas CG was the predominant circulating metabolite in humans and a major metabolite in mice, dogs, and monkeys, it was a relatively minor metabolite in rats, in which oxidative metabolism was the major metabolic pathway. Although the CG was not detected in plasma or urine of rats, approximately 5% of the dose was excreted in bile as CG in the 24-h collection postdose, indicating the rat had the metabolic capability of producing the CG. In vitro, in a CO(2)-enriched environment, the CG was the predominant metabolite in dog and human liver microsomes, a major metabolite in monkey and mice, and only a very minor metabolite in rats. Carbamoyl glucuronidation and hydroxylation had similar contributions to vabicaserin metabolism in mouse and monkey liver microsomes. However, only trace amounts of CG were formed in rat liver microsomes, and other metabolites were more prominent than the CG. In conclusion, significant differences in the extent of formation of the CG were observed among the various species examined. The exposure ratios of CG to vabicaserin were highest in humans, followed by monkeys, then mice and dogs, and lowest in rats, and the in vitro metabolite profiles generally correlated well with the in vivo metabolites. PMID:20032194

Tong, Zeen; Chandrasekaran, Appavu; DeMaio, William; Jordan, Ronald; Li, Hongshan; Moore, Robin; Poola, Nagaraju; Burghart, Peter; Hultin, Theresa; Scatina, JoAnn

2010-04-01

243

Determination of total tiopronin in human plasma by LC-ESI-MS using tris (2-carboxy-ethyl) phosphine as reducing reagent and methyl acrylate as derivatization reagent for the thiol group.  

PubMed

A quantitative method for the determination of total tiopronin (TP) in human plasma was developed by liquid chromatography with electrospray ionisation (ESI) mass spectrometric detection. After reduction with tris (2-carboxy-ethyl) phosphine (TCEP) and derivatization with methyl acrylate (MA) for the thiol group of TP, plasma samples were processed successively by deproteinization and solid phase extraction. N-acetyl-l-cysteine (NAC) was selected as internal standard undergoing the same treatment as TP. The method was validated that it could meet the need of biological analysis. The lower limit of quantitation (LLOQ) of TP in plasma was 0.02microg/mL. Finally, the method was successfully applied to a pharmacokinetic study in 20 healthy Chinese male volunteers after an oral dose of 200mg TP tablets. PMID:16904957

Liu, Jianfang; Wu, Honghai; Hou, Yanning

2006-11-21

244

Rapid and sensitive methodology for determination of ethyl carbamate in fortified wines using microextraction by packed sorbent and gas chromatography with mass spectrometric detection.  

PubMed

This work presents a new methodology to quantify ethyl carbamate (EC) in fortified wines. The presented approach combines the microextraction by packed sorbent (MEPS), using a hand-held automated analytical syringe, with one-dimensional gas chromatography coupled with mass spectrometry detection (GC-MS). The performance of different MEPS sorbent materials was tested, namely SIL, C2, C8, C18, and M1. Also, several extraction solvents and the matrix effect were evaluated. Experimental data showed that C8 and dichloromethane were the best sorbent/solvent pair to extract EC. Concerning solvent and sample volumes optimization used in MEPS extraction an experimental design (DoE) was carried out. The best extraction yield was achieved passing 300 ?L of sample and 100 ?L of dichloromethane. The method validation was performed using a matrix-matched calibration using both sweet and dry fortified wines, to minimize the matrix effect. The proposed methodology presented good linearity (R(2)=0.9999) and high sensitivity, with quite low limits of detection (LOD) and quantification (LOQ), 1.5 ?g L(-1) and 4.5 ?g L(-1), respectively. The recoveries varied between 97% and 106%, while the method precision (repeatability and reproducibility) was lower than 7%. The applicability of the methodology was confirmed through the analysis of 16 fortified wines, with values ranging between 7.3 and 206 ?g L(-1). All chromatograms showed good peak resolution, confirming its selectivity. The developed MEPS/GC-MS methodology arises as an important tool to quantify EC in fortified wines, combining efficiency and effectiveness, with simpler, faster and affordable analytical procedures that provide great sensitivity without using sophisticated and expensive equipment. PMID:24456591

Leça, João M; Pereira, Vanda; Pereira, Ana C; Marques, José C

2014-02-01

245

49 CFR 173.322 - Ethyl chloride.  

Code of Federal Regulations, 2013 CFR

... 2013-10-01 2013-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation...Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be packaged in any of the following...

2013-10-01

246

Steviol glucuronidation and its potential interaction with UDP-glucuronosyltransferase 2B7 substrates.  

PubMed

Hydrolysis of stevioside and rebaudioside A in the gastrointestinal tract after oral intake leads to the formation of steviol, the aglycone, which is absorbed into the circulation. Although in vivo studies have shown that steviol is cleared from the body via glucuronidation, the role of liver vs. intestine in steviol glucuronidation has not been well defined and related UDP-glucuronosyltransferases (UGTs) have not been identified. The present study investigated steviol glucuronidation and obtained kinetic parameters in liver and intestinal microsomes of human and rat, as well as in recombinant human UGT systems. Results suggest that organ specificity exists in the intrinsic clearance of the glucuronidation reaction. Steviol glucuronidation was primarily mediated by UGT2B7 at low concentration and UGT2B7 and UGT1A3 at high concentration. Inhibition studies with selected UGT2B7 substrates indicate that diclofenac displayed a relatively strong inhibition (Ki, 4.2 ?M) against steviol glucuronidation in human liver microsomes. Taken together, the identification of the involvement of UGT2B7 in steviol glucuronidation would provide a mechanistic basis for the evaluation of the interaction between steviol and diclofenac. As metabolic clearance of botanical-derived products can be the objects (victims) of botanical-drug interactions, further studies are needed to investigate the in vivo relevance of such interactions. PMID:24296138

Wang, Meiyu; Lu, Jia; Li, Jiajun; Qi, Huixin; Wang, Yedong; Zhang, Hongjian

2014-02-01

247

The electroanalytical detection and determination of copper in heavily passivating media: ultrasonically enhanced solvent extraction by N-benzoyl-N-phenyl-hydroxylamine in ethyl acetate coupled with electrochemical detection by sono-square wave stripping voltammetry analysis.  

PubMed

N-benzoyl-N-phenyl-hydroxylamine dissolved in ethyl acetate was employed as a ligand for the solvent extraction of copper. Ultrasonic emulsification was shown to be effective both in the extraction of copper from an aqueous phase into ethyl acetate and its recovery or "back extraction" into a fresh clean aqueous solution. Experimental determination of thermodynamic parameters governing the extraction process via UV/visible spectroscopy is reported. This permitted theoretical predictions for the amount of copper transferred into the final aqueous solution to be fitted to experimental data. Quantitative analysis of copper removed via double sono-extraction from an aqueous medium hostile to voltammetric analysis proceeded via sono-square wave anodic stripping voltammetry analysis (sono-SWASV). This resulted in very high sensitivity in the relatively clean medium. The technique was then applied to the analysis of copper in the soft drink 'Ribena Light'. In the absence of sample preparation by solvent extraction sono-SWASV yields a measurable peak current for copper. However it is irreproducible and erratic due to passivating effects, possibly attributed to the sugars, natural flavourings and colourings present. Following sono-solvent extraction, the overall copper concentration could be obtained with a detection limit of 2 microg L(-1). Biphasic sono-extraction synergistically coupled with the recognized technique sono-SWASV presents an attractive technique for copper analysis in electrode passivating media. The technique necessarily removes contaminants present in the test solution since these will prefer to remain in the initial aqueous phase, or will transfer to the organic phase but are unlikely to be doubly transferred into the 'clean' final aqueous phase. PMID:11763086

Hardcastle, J L; Compton, R G

2001-11-01

248

The electroanalytical detection and determination of copper in heavily passivating media: ultrasonically enhanced solvent extraction by N-benzoyl-N-phenyl-hydroxylamine in ethyl acetate coupled with electrochemical detection by sono-square wave stripping voltammetry analysis  

Microsoft Academic Search

N-benzoyl-N-phenyl-hydroxylamine dissolved in ethyl acetate was employed as a ligand for the solvent extraction of copper. Ultrasonic emulsification was shown to be effective both in the extraction of copper from an aqueous phase into ethyl acetate and its recovery or \\

Joanna Lorraine Hardcastle; Richard G. Compton

2001-01-01

249

A novel reversed-phase HPLC method for the determination of urinary creatinine by pre-column derivatization with ethyl chloroformate: comparative studies with the standard Jaffé and isotope-dilution mass spectrometric assays.  

PubMed

Creatinine is an important biomarker for renal function diagnosis and normalizing variations in urinary drug/metabolites concentration. Quantification of creatinine in biological fluids such as urine and plasma is important for clinical diagnosis as well as in biomonitoring programs and urinary metabolomics/metabonomics research. Current methods for creatinine determination either are nonselective or involve the use of expensive mass spectrometers. In this paper, a novel reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of creatinine of high hydrophilicity by pre-column derivatization with ethyl chloroformate is presented. N-Ethyloxycarbonylation of creatinine significantly enhanced the hydrophobicity of creatinine, facilitating its chromatographic retention as well as quantification by HPLC. Factors governing the derivatization reaction were studied and optimized. The developed method was validated and applied for the determination of creatinine in rat urine samples. Comparative studies with isotope-dilution mass spectrometric method revealed that the two methods do not yield systematic differences in creatinine concentrations, indicating the HPLC method is suitable for the determination of creatinine in urine samples. PMID:24408302

Leung, Elvis M K; Chan, Wan

2014-02-01

250

Detection and identification of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide in nitrite adulterated urine specimens containing morphine and its glucuronides.  

PubMed

In vitro urine adulteration is a well-documented practice adopted by individuals aiming to evade detection of drug use, when required to undergo mandatory sports and workplace drug testing. Potassium nitrite is an effective urine adulterant due to its oxidizing potential, and has been shown to mask the presence of many drugs of abuse. However, limited research has been conducted to understand its mechanism of action, and to explore the possibility of the drugs undergoing direct oxidation to form stable reaction products. In this study, opiates including morphine, codeine, morphine-3-glucuronide and morphine-6-glucuronide were exposed to potassium nitrite in water and urine to mimic the process of nitrite adulteration. It was found that two stable reaction products were detected by liquid chromatography-mass spectrometry (LC-MS) when morphine and morphine-6-glucuronide were exposed to nitrite. Isolation and elucidation using spectrometric and spectroscopic techniques revealed that they were 2-nitro-morphine and 2-nitro-morphine-6-glucuronide, respectively. These reaction products were also formed when an authentic morphine-positive urine specimen was fortified with nitrite. 2-Nitro-morphine was found to be stable enough to undergo the enzymatic hydrolysis procedure and also detectable by gas chromatography-mass spectrometry (GC-MS) after forming a trimethylsilyl derivative. On the contrary, morphine-3-glucuronide did not appear to be chemically manipulated when exposed to potassium nitrite in urine. These reaction products are not endogenously produced, are relatively stable and can be monitored with both LC-MS and GC-MS confirmatory techniques. As a result, these findings have revealed the possibility for the use of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide as markers for the indirect monitoring of morphine and morphine-6-glucuronide in urine specimens adulterated with nitrite. PMID:23592389

Luong, Susan; Fu, Shanlin

2014-03-01

251

Characterization of UDP-glucuronosyltransferases involved in glucuronidation of diethylstilbestrol in human liver and intestine.  

PubMed

Diethylstilbestrol (DES), a synthetic estrogen, is famous for its carcinogenic effects. Human exposure to this compound can occur frequently through dietary ingestion and medical treatment. Glucuronidation has been demonstrated to be a predominant metabolic pathway for DES in human. Therefore, glucuronidation metabolism may have a significant impact on its toxicities, and it is essential to clarify this metabolic pathway. Accordingly, this in vitro study is designed to characterize the UGTs involved in DES glucuronidation and, furthermore, to identify the roles of individual isoforms in the reaction in liver and intestine. Human liver microsomes (HLM) displayed much higher potential for DES glucuronidation than human intestinal microsomes (HIM). The intrinsic clearances in HLM and HIM were demonstrated to be 459 and 14 ?L/min/mg protein, respectively. Assays with recombinant UGTs demonstrated that UGT1A1, -1A3, -1A8, and -2B7 could catalyze DES glucuronidation, among which UGT2B7 showed the highest affinity. Chemical inhibitors of UGT2B7 and UGT1A1/1A3 both displayed similar inhibition against the reaction in UGT2B7 and HLM. In addition, DES glucuronidation in individual HLM exhibited a large individual variability and strongly correlated to UGT2B7 activity. All evidence indicates that UGT2B7 may act as a major enzyme responsible for DES glucuronidation in human liver. For HIM, both UGT2B7 inhibitor and UGT1A1/1A3/1A8 inhibitor exerted moderate inhibition. It is suggested that although UGT2B7 contributes to DES glucuronidation in intestine, other UGTs may contribute equally. In summary, this study characterizes human UGTs involved in DES glucuronidation in human liver and intestine, which may be helpful for further study about DES-related toxicities. PMID:23126256

Zhu, Liangliang; Ge, Guangbo; Liu, Yong; Guo, Zhimou; Peng, Chengcheng; Zhang, Feng; Cao, Yunfeng; Wu, Jingjing; Fang, Zhongze; Liang, Xinmiao; Yang, Ling

2012-12-17

252

Variation in Trans-3?-Hydroxycotinine Glucuronidation Does Not Alter the Nicotine Metabolite Ratio or Nicotine Intake  

PubMed Central

Background CYP2A6 metabolizes nicotine to its primary metabolite cotinine and also mediates the metabolism of cotinine to trans-3?-hydroxycotinine (3HC). The ratio of 3HC to cotinine (the “nicotine metabolite ratio”, NMR) is an in vivo marker for the rate of CYP2A6 mediated nicotine metabolism, and total nicotine clearance, and has been associated with differences in numerous smoking behaviors. The clearance of 3HC, which affects the NMR, occurs via renal excretion and metabolism by UGT2B17, and possibly UGT2B10, to 3HC-glucuronide. We investigated whether slower 3HC glucuronidation alters NMR, altering its ability to predict CYP2A6 activity and reducing its clinical utility. Methods Plasma NMR, three urinary NMRs, three urinary 3HC glucuronidation phenotypes and total nicotine equivalents were examined in 540 African American smokers. The UGT2B17 gene deletion and UGT2B10*2 were genotyped. Results The UGT2B17 gene deletion, but not UGT2B10*2 genotype, was associated with slower 3HC glucuronidation (indicated by three 3HC-glucuronidation phenotypes), indicating its role in this glucuronidation pathway. However, neither lower rates of 3HC glucuronidation, nor the presence of a UGT2B17 and UGT2B10 reduced function allele, altered plasma or urinary NMRs or levels of smoking. Conclusions Variation in 3HC glucuronidation activity, including these caused by UGT2B17 gene deletions, did not significantly alter NMR and is therefore unlikely to affect the clinical utility of NMR in smoking behavior and cessation studies. This study demonstrates that NMR is not altered by differences in the rate of 3HC glucuronidation, providing further support that NMR is a reliable indicator of CYP2A6 mediated nicotine metabolism.

Zhu, Andy Z. X.; Zhou, Qian; Cox, Lisa Sanderson; Ahluwalia, Jasjit S.; Benowitz, Neal L.; Tyndale, Rachel F.

2013-01-01

253

BIOMARKERS TO DISCLOSE RECENT INTAKE OF ALCOHOL: POTENTIAL OF 5-HYDROXYTRYPTOPHOL GLUCURONIDE TESTING USING NEW DIRECT UPLC-TANDEM MS AND ELISA METHODS  

Microsoft Academic Search

Aims: This study compared two new methods for direct determination of 5-hydroxytryptophol glucuronide (GTOL) in urine, a biomarker for detection of recent alcohol consumption. Methods: Urine samples were collected from ten alcoholic patients during recovery from intoxication. A direct injection ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS\\/MS) method for measurement of the urinary GTOL to 5-hydroxyindoleacetic acid (5-HIAA) ratio, and an

OLOF BECK; NIKOLAI STEPHANSON; NORBERT DAHMEN

2007-01-01

254

Structure-activity relationships of the glucuronidation of flavonoids by human glucuronosyltransferases.  

PubMed

With the increasing intake of flavonoids in diet, supplements and herbal medicines, studies on the biotransformation and disposition have been dramatically expanded. The current review covers the findings on the relationships between flavonoid structural properties and their glucuronidation activities in in vivo trials and in vitro human UGTs or microsomes for the past 2 decades. Regioselectivity and substrate specificity on the glucuronidation of flavonoids are summarized. The findings reveal the inconsistency from different studies and indicate the importance of in silico modeling in the prediction of structure-glucuronidation relationship. PMID:19663742

Wong, Yin Cheong; Zhang, Li; Lin, Ge; Zuo, Zhong

2009-11-01

255

Ethyl`s MMT ready to hit the road  

Microsoft Academic Search

After spending two decades and about $30 million on the fight to sell the fuel octane booster methylcyclopentadienyl manganese tricarbonyl (MMT), Ethyl has started marketing the product. Ethyl president and chief operating officer Thomas Gottwald says he expects a profit from MMT from the outset. {open_quotes}MMT is a gangbuster new product,{close_quotes} says Paul Raman, an analyst with S.G. Warburg (New

1996-01-01

256

The UDP-Glucuronosyltransferase (UGT) 1A Polymorphism c.2042C>G (rs8330) Is Associated with Increased Human Liver Acetaminophen Glucuronidation, Increased UGT1A Exon 5a/5b Splice Variant mRNA Ratio, and Decreased Risk of Unintentional Acetaminophen-Induced Acute Liver FailureS?  

PubMed Central

Acetaminophen is cleared primarily by hepatic glucuronidation. Polymorphisms in genes encoding the acetaminophen UDP-glucuronosyltransferase (UGT) enzymes could explain interindividual variability in acetaminophen glucuronidation and variable risk for liver injury after acetaminophen overdose. In this study, human liver bank samples were phenotyped for acetaminophen glucuronidation activity and genotyped for the major acetaminophen-glucuronidating enzymes (UGTs 1A1, 1A6, 1A9, and 2B15). Of these, only three linked single nucleotide polymorphisms (SNPs) located in the shared UGT1A-3?UTR region (rs10929303, rs1042640, rs8330) were associated with acetaminophen glucuronidation activity, with rs8330 consistently showing higher acetaminophen glucuronidation at all the tested concentrations of acetaminophen. Mechanistic studies using luciferase-UGT1A-3?UTR reporters indicated that these SNPs do not alter mRNA stability or translation efficiency. However, there was evidence for allelic imbalance and a gene-dose proportional increase in the amount of exon 5a versus exon 5b containing UGT1A mRNA spliced transcripts in livers with the rs8330 variant allele. Cotransfection studies demonstrated an inhibitory effect of exon 5b containing cDNAs on acetaminophen glucuronidation by UGT1A1 and UGT1A6 cDNAs containing exon 5a. In silico analysis predicted that rs8330 creates an exon splice enhancer site that could favor exon 5a (over exon 5b) utilization during splicing. Finally, the prevalence of rs8330 was significantly lower (P = 0.027, ?2 test) in patients who had acute liver failure from unintentional acetaminophen overdose compared with patients with acute liver failure from other causes or a race- or ethnicity-matched population. Together, these findings suggest that rs8330 is an important determinant of acetaminophen glucuronidation and could affect an individual’s risk for acetaminophen-induced liver injury.

Freytsis, Marina; Wang, Xueding; Peter, Inga; Guillemette, Chantal; Hazarika, Suwagmani; Duan, Su X.; Greenblatt, David J.; Lee, William M.

2013-01-01

257

Determination of maternal-fetal biomarkers of prenatal exposure to ethanol: a review.  

PubMed

The deleterious effects exerted by prenatal ethanol exposure include physical, mental, behavioural and/or learning disabilities that are included in the term fetal alcohol spectrum disorder (FASD). Objective assessment of exposure to ethanol at both prenatal and postnatal stages is essential for early prevention and intervention. Since pregnant women tend to underreport alcohol drinking by questionnaires, a number of biological markers have been proposed and evaluated for their capability to highlight gestational drinking behaviour. These biomarkers include classical biomarkers (albeit indirect) of alcohol-induced pathology (mean corpuscular volume (MCV), gamma glutamyltransferase (GGT), aspartate aminotransferase (AST) and alanine aminotransferase (ALT)) acetaldehyde-derived conjugates, and finally derivatives of non-oxidative ethanol metabolism (fatty acid ethyl esters (FAEEs), ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphaditylethanol (PEth)). Since ethanol itself and acetaldehyde are only measured few hours after ethanol intake in conventional matrices such as blood, urine and sweat, they are only useful to detect recent ethanol exposure. In the past few years, the non-oxidative ethanol metabolites have received increasing attention because of their specificity and in some case wide time-window of detection in non-conventional matrices from the pregnant mother (oral fluid and hair) and fetus-newborn (neonatal hair, meconium, placenta and umbilical cord). This article reviews bioanalytical procedures for the determination of these markers of ethanol consumption during pregnancy and related prenatal exposure. In addition, clinical toxicological applications of these procedures are presented and discussed. PMID:22300909

Joya, X; Friguls, B; Ortigosa, S; Papaseit, E; Martínez, S E; Manich, A; Garcia-Algar, O; Pacifici, R; Vall, O; Pichini, S

2012-10-01

258

Simultaneous determination of GHB and EtG in hair using GCMS/MS.  

PubMed

A gas chromatographic tandem mass spectrometric (GCMS/MS) method for simultaneously determining trace concentrations of gamma-hydroxybutyrate (GHB) and ethyl glucuronide (EtG) in hair has been developed. Multiple reaction monitoring (MRM) was used to detect precursor and product ions of GHB, (233 and 147) and EtG (261 and 143) following anion exchange solid phase extraction and derivatization with N,O-bis[trimethylsilyl]trifluoroacetamide (BSTFA). Deuterated standards of GHB and EtG were used as internal standards. The assay produced excellent linearity (r(2) > 0.99) and sensitivity. The lower limit of quantitation (LLOQ) was 10 pg/mg for EtG assuming a 20 mg hair sample. The method has been used to investigate cases of suspected drug facilitated assault as well as being used to identify heavy alcohol consumption in a group of volunteers. PMID:21500364

Paul, R; Tsanaclis, L; Kingston, R; Berry, A; Guwy, A

2011-04-01

259

An in vitro experiment on the interaction of charcoal or wheat bran with 11-nor-9-carboxy-?(9)-tetrahydrocannabinol and its glucuronide.  

PubMed

The rather long yet variable terminal half-lives and detection times since last use of urinary cannabinoids may partly be attributed to their enterohepatic circulation which generally can be interrupted or restricted by chemical adsorbents. Therefore, an in vitro experiment was performed to study the adsorption/binding of 11-nor-9-carboxy-?9-tetrahydrocannabinol (THC-COOH) and its glucuronide to activated charcoal and wheat bran; remaining concentrations were determined by liquid chromatography/tandem mass spectrometry. Adsorption/binding of 1,000 ng/mL of free or conjugated THC-COOH was complete using as little as 5 mg of charcoal whereas adsorption/binding to wheat bran increased with increasing amounts. Taking of remedies affecting enterohepatic recycling of THC-COOH and its glucuronide may challenge interpretation of cannabinoid concentrations used to detect or assess frequency of drug use or the time since last drug consumption. PMID:24077855

Skopp, Gisela; Mikus, Gerd

2013-11-01

260

Simultaneous evaluation of six human glucuronidation activities in liver microsomes using liquid chromatography-tandem mass spectrometry.  

PubMed

This article describes the development of a procedure for the simultaneous evaluation of the activity of six different uridine diphosphate (UDP)-glucuronyltransferases (UGTs) in human liver microsomes (HLMs). The method consists of incubations of probe substrates for UGT1A1 (etoposide), UGT1A3 (chenodeoxycholic acid), UGT1A4 (trifluoperazine), UGT1A6 (serotonin), UGT1A9 (mefenamic acid), and UGT2B7 (azidothymidine) with HLMs. The six substrates were divided into three different incubations (etoposide + mefenamic acid; chenodeoxycholic acid + serotonin + azidothymidine; and trifluoperazine alone), the media of which were pooled before analysis. Glucuronide formation rates were determined in a single run of 20 min using a validated liquid chromatography-tandem mass spectrometry method. No significant difference was observed between glucuronidation activities measured using the current procedure and individual incubations of the probes. The method was used successfully for the determination of UGT activities in 44 individual HLM preparations and for the phenotyping of preparations predicted to have altered UGT1A1 and UGT2B7 activities because of known genetic polymorphisms. PMID:22579593

Gagez, Anne-Laure; Rouguieg-Malki, Koukeb; Sauvage, François-Ludovic; Marquet, Pierre; Picard, Nicolas

2012-08-01

261

Accurate Prediction of Glucuronidation of Structurally Diverse Phenolics by Human UGT1A9 Using Combined Experimental and In Silico Approaches  

PubMed Central

Purpose The catalytic selectivity of human UGT1A9, an important membrane-bound enzyme catalyzing glucuronidation of xenobiotics were determined experimentally using 145 phenolics, and analyzed by 3D-QSAR methods. Methods The catalytic efficiency of UGT1A9 was determined by kinetic profiling. Quantitative structure activity relationships were analyzed using the CoMFA and CoMSIA techniques. Molecular alignment of the substrate structures was made by superimposing the glucuronidation site and its adjacent aromatic ring to achieve maximal steric overlap. For a substrate with multiple active glucuronidation sites, each site was considered as a separate substrate. Results The 3D-QSAR analyses produced statistically reliable models with good predictive power (CoMFA: q2 = 0.548, r2= 0.949, r2pred = 0.775; CoMSIA: q2 = 0.579, r2= 0.876, r2pred = 0.700). The contour coefficient maps were applied to elucidate structural features among substrates that are responsible for the selectivity differences. Furthermore, the contour coefficient maps were overlaid in the catalytic pocket of a homology model of UGT1A9; this enabled us to identify the UGT1A9 catalytic pocket with a high degree of confidence. Conclusion The CoMFA/CoMSIA models can predict the substrate selectivity and in vitro clearance of UGT1A9. Our findings also provide a possible molecular basis for understanding UGT1A9 functions and its substrate selectivity.

Wu, Baojian; Wang, Xiaoqiang; Zhang, Shuxing; Hu, Ming

2012-01-01

262

A study of ethyl glucuronide in post-mortem blood as a marker of ante-mortem ingestion of alcohol  

Microsoft Academic Search

The possibility of post-mortem production of ethanol makes correct interpretation of ethanol detection in forensic autopsy samples difficult. Even though the levels of ethanol formed post-mortem are generally low, this may be highly relevant in cases where intake of alcohol was forbidden, for instance for pilots, professional drivers and countries with low legal alcohol limits for driving. Different criteria are

Gudrun Høiseth; Ritva Karinen; Asbjørg S. Christophersen; Linda Olsen; Per Trygve Normann; Jørg Mørland

2007-01-01

263

Glucuronidation of aurantio-obtusin: identification of human UDP-glucuronosyltransferases and species differences.  

PubMed

Abstract 1. The aurantio-obtusin's glucuronide was detected when aurantio-obtusin was incubated with human liver microsomes (HLMs). Recombinant UGT isoforms screening experiment showed that UGT1A8 was the major isoform contributed to the glucuronidation. 2. The metabolic profiles for aurantio-obtusin in liver microsomes from different species were similar, however, the intrinsic clearance values (Vmax/Km) among the species were: Monkey?>?Human?>?Rat?>?Rabbit?>?Dog?>?Pig?>?Mouse?>?Guinea pig. PMID:24618000

Mi, Bao-Li; Sun, Qi; Qu, Yan-Qing; Gao, Xiao-Xu; Yu, Zhen-Wen; Ge, Guang-Bo; Cai, Shan-Shan; Zhang, Jie; Zheng, Yan-Chao; Zhang, Zhen-Qiu

2014-08-01

264

Identification and Characterization of Human UDP-glucuronosyltransferases Responsible for the Glucuronidation of Fraxetin.  

PubMed

  Fraxetin, a major constituent of the traditional medicine plant Fraxinus rhynchophylla Hance (Oleaceae), has been found to possess multiple bioactivities. However, the metabolic pathway(s) of fraxetin in human tissues has not been reported yet. This study aimed to characterize the glucuronidation pathway(s) of fraxetin in human tissues. Fraxetin could be metabolized to two glucuronides in human liver microsomes (HLMs). These two glucuronides were biosynthesized and characterized as 7-O-glucuronide (7-O-G) and 8-O-glucuronide (8-O-G). UGT1A1, -1A6, -1A7, -1A8, -1A9 and -1A10 participated in the formation of 7-O-G, while the formation of 8-O-G was catalyzed selectively by UGT1A6 and UGT1A9. UGT1A9 showed the highest catalytic activities in the formation of 7-O-G and 8-O-G. Both kinetic characterization and inhibition assays demonstrated that UGT1A9 played important roles in fraxetin glucuronidations in HLMs, especially in the formation of the major metabolite 8-O-G. Furthermore, the intrinsic clearance of fraxetin in both human liver microsomes and UGT1A9 was greater than that of 7,8-dihydroxylcoumarin, revealing that the addition of a C-6 methoxy group led to the higher metabolic clearance. In summary, the glucuronidation pathways of fraxetin in human liver microsomes were well-characterized, and UGT1A9 was the major isoform responsible for the glucuronidations of fraxetin. PMID:24025985

Xia, Yang-Liu; Liang, Si-Cheng; Zhu, Liang-Liang; Ge, Guang-Bo; He, Gui-Yuan; Ning, Jing; Lv, Xia; Ma, Xiao-Chi; Yang, Ling; Yang, Sheng-Li

2014-04-25

265

Hormonal monitoring of early pregnancy by a direct radioimmunoassay of steroid glucuronides in first morning urine  

Microsoft Academic Search

The usefulness of the direct 4-hour radioimmunoassay of estriol-16-glucuronide (EâG) and pregnanediol-3-glucuronide (PâG) in first morning urine (FMU) for establishing a prognosis of the early pregnancy outcome was evaluated in 106 patients that became pregnant. Microaliquots of FMU were serially assayed from day 3 of the conception cycle until day 80 of pregnancy. The EâG and PâG profiles of 19

A. F. Mendizabal; S. Quiroga; Z. Farinati; M. Lahoz; C. Nagle

1984-01-01

266

Movement of Fluorescein and Its Glucuronide Across Retinal Pigment Epithelium-Choroid  

Microsoft Academic Search

Purpose. To characterize movement of fluorescein and its glucuronide across the blood-retinal barrier. Methods. Retinal pigment epithelium (RPE)-choroid preparations from New Zealand albino rabbit were sealed in an Ussing-type chamber in a stabilized condition for 3 hr, where move- ment of fluorescein and fluorescein glucuronide across the RPE-choroid was studied under a short circuit condition. Results. The outward (vitreous-choroid) permeability

Satoshi Koyano; Makoto Araie; Shuichiro Eguchi

267

A concise synthesis of glucuronide metabolites of urolithin-B, resveratrol, and hydroxytyrosol  

Microsoft Academic Search

A simple and direct strategy to chemically synthesize O-?-d-glucuronides of urolithin-B 4, resveratrol 5, and the corresponding hydroxytyrosol derivatives 6, 7 (as a regioisomeric mixture), and 8 is described. The critical glycosylation step has been optimized using a structurally simple phenol, urolithin-B, by modification of several reaction parameters (solvent, promoter, and glucuronide donor). Very high yields have been obtained in

Ricardo Lucas; David Alcantara; Juan Carlos Morales

2009-01-01

268

Affinity profiles of morphine, codeine, dihydrocodeine and their glucuronides at opioid receptor subtypes  

Microsoft Academic Search

The affinity of morphine, codeine, dihydrocodeine and their glucuronides for ?-, ?,- and ?-opioid receptors was investigated. Binding was studied on guinea-pig brain homogenates with [3H]DAMGO, [3H]DPDPE, and [3H]U69593. The substitution of the free phenolic group of morphine caused a decrease in binding at opioid receptors without affecting the ??-ratio nor that of ??. Glucuronidation of the 6-hydroxyl group of

Christian Mignat; Uta Wille; Albrecht Ziegler

1995-01-01

269

cis- and trans-Resveratrol Are Glucuronidated in Rat Brain, Olfactory Mucosa and Cultured Astrocytes  

Microsoft Academic Search

Background\\/Aims: Glucuronidation of cis- and trans-resveratrol (3,5,4’-trihydroxy-trans-stilbene), which is a naturally occurring phytoalexin known to exert a number of beneficial health effects, was investigated in rat brain, cultured astrocytes and olfactory mucosa. Methods: The isomers were incubated with tissue homogenates, microsomes, or rat liver recombinant UDP-glucuronosyltransferases in the presence of UDP-glucuronic acid. The glucuronides were separated by HPLC and quantitated.

Nicole Sabolovic; Tony Heurtaux; Anne-Claude Humbert; Stéphanie Krisa; Jacques Magdalou

2007-01-01

270

beta Glucuronidase Catalyzed Hydrolysis of Benzo[a]pyrene-3Glucuronide and Binding to DNA  

Microsoft Academic Search

beta -Glucuronidase catalyzes the hydrolysis of benzo[a]pyrene-3-glucuronide to 3-hydroxybenzo[a]pyrene. During the enzymatic hydrolysis, a benzo[a]pyrene derivative is formed which binds to DNA to a far greater extent than either the 3-hydroxybenzo[a]pyrene or its glucuronide. These results suggest that conjugates of benzo[a]pyrene may be converted by beta -glucuronidase at intracellular and organ sites distal to the initial sites of oxygenation and

Nadao Kinoshita; Harry V. Gelboin

1978-01-01

271

Glucuronidation of Drugs and Drug-Induced Toxicity in Humanized UDP-Glucuronosyltransferase 1 Mice.  

PubMed

UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various drugs. Although experimental rodents are used in preclinical studies to predict glucuronidation and toxicity of drugs in humans, species differences in glucuronidation and drug-induced toxicity have been reported. Humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) were recently developed. In this study, acyl-glucuronidations of etodolac, diclofenac, and ibuprofen in liver microsomes of hUGT1 mice were examined and compared with those of humans and regular mice. The kinetics of etodolac, diclofenac, and ibuprofen acyl-glucuronidation in hUGT1 mice were almost comparable to those in humans, rather than in mice. We further investigated the hepatotoxicity of ibuprofen in hUGT1 mice and regular mice by measuring serum alanine amino transferase (ALT) levels. Because ALT levels were increased at 6 hours after dosing in hUGT1 mice and at 24 hours after dosing in regular mice, the onset pattern of ibuprofen-induced liver toxicity in hUGT1 mice was different from that in regular mice. These data suggest that hUGT1 mice can be valuable tools for understanding glucuronidations of drugs and drug-induced toxicity in humans. PMID:24764149

Kutsuno, Yuki; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

2014-07-01

272

Sensitive determination method for mercury ion, methyl-, ethyl-, and phenyl-mercury in water and biological samples using high-performance liquid chromatography with chemiluminescence detection.  

PubMed

A sensitive determination method for mercury speciation analysis was developed. Four mercury species, mercury ion, methylmercury, ethylmercury, and phenylmercury, were complexed with emetine-dithiocarbamate (emetine-CS(2)), and then injected onto a HPLC instrument coupled with a tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection system. The emetine-CS(2) complexing agent was effectively used to measure the concentration in addition to serving as a separation and detection reagent. The calibration curves for these mercury complexes were linear in the range of 0.050 - 10 ?g L(-1) (as Hg). The limit of detection for (emetine-CS(2))(2)Hg, emetine-CS(2)-methylmercury, emetine-CS(2)-ethylmercury, and emetine-CS(2)-phenylmercury were 30, 17, 21, and 22 ng L(-1), respectively. The sensitivity of this method enables the determination of mercury species in water samples at sub-ppb levels. Furthermore, the method was applied to biological samples in combination with acid leaching and liquid-liquid extraction using emetine-CS(2) as an extraction reagent. The determination results were in good agreement with the values of the certified reference materials. PMID:23059991

Kodamatani, Hitoshi; Matsuyama, Akito; Saito, Keiitsu; Kono, Yuriko; Kanzaki, Ryo; Tomiyasu, Takashi

2012-01-01

273

Impact of structural differences on the in vitro glucuronidation kinetics of potentially dopaminergic hydroxy-2-aminotetralins and naphthoxazines using rat and human liver microsomes.  

PubMed

The in vitro glucuronidation of seven monohydroxy-2-aminotetralins and two naphthoxazines has been determined using human and rat liver microsomes. All these compounds stimulate the D2 dopamine receptor. The influence of the position of the phenolic hydroxyl group was studied with rat microsomes in monohydroxy-2-(N,N-dipropylamino)-tretralins. The highest activity and intrinsic clearance was found for 7-OH-DPAT, but the latter values for 5-OH-DPAT and 6-OH-DPAT were much lower by a factor of 9 and 30, respectively. The 8-OH-isomer was not glucuronidated at all. Substitution of a propyl side chain by a thienylethyl-, or phenylethyl side chain, in 5-hydroxy-DPAT, or in (+)-4-propyl-9-hydroxyhexahydronaphthoxazine (PHNO, N-0500), showed a large increase of the UDPGT affinity and intrinsic clearance especially for N-0437. It also resulted for N-0437 in a much higher affinity towards the dopaminergic D2 receptor. Although the glucuronidation activity of human microsomes was found to be considerably lower than that of rat microsomes, the latter phenomenon was clearly visible with human microsomes as well. These findings may have serious implications for the ability of these drugs to adequately reach the brain. PMID:1676161

Swart, P J; Jansman, F G; Drenth, B F; de Zeeuw, R A; Dijkstra, D; Horn, A S

1991-03-01

274

Development, validation and comparison of two microextraction techniques for the rapid and sensitive determination of pregabalin in urine and pharmaceutical formulations after ethyl chloroformate derivatization followed by gas chromatography-mass spectrometric analysis.  

PubMed

The present article reports first time the use of solid-phase microextraction (SPME) and dispersive liquid-liquid microextraction (DLLME) to extract pregabalin (PRG) from urine and pharmaceutical formulations followed by GC-MS analysis after ethyl chloroformate (ECF) derivatization. PRG is an antiepileptic and analgesic drug, which is a structural analogue of ?-amino-butyric acid (GABA). It is approved by Food and Drug Administration (FDA) for the treatment of central nervous system (CNS) disorders and neuropathic pain. Initially PRG was derivatized with ECF in the presence of pyridine at room temperature for 30s. Experimental parameters were investigated for derivatization, SPME and DLLME conditions. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 0.019 ?g/ml and 0.063 ?g/ml for SPME and 0.022 ?g/ml and 0.075 ?g/ml for DLLME respectively. The percentage recovery, in case of SPME was in the range of 83-98% while for DLLME it is in the range of 84-98%. The intra and inter-day precisions were found to be less than 6%. The developed methods after ECF derivatization were found to be simple, fast, efficient and inexpensive. DLLME has several advantages like lesser extraction time and cost effectiveness as compared to SPME. The developed methods may find wide application for the routine determination of PRG in biological as well as in quality control samples of pharmaceutical formulations. PMID:22677651

Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Jain, Rajeev; Ch, Ratnasekhar; Fatima, Ghizal; Malhotra, Ekta; Murthy, R C

2012-11-01

275

Familial resemblance for free androgens and androgen glucuronides in sedentary black and white individuals: the HERITAGE Family Study  

Microsoft Academic Search

Familial correlation analyses were used to evaluate the familial aggregation of plasma androgens and androgen glucuronides (testosterone (TESTO), dihydrotestos- terone (DHT), androstane-3,17-diol glucuronide (3-DIOL-G), and androsterone glucuronide (ADT-G)) in 505 members of 99 white families and 296 members of 111 black families participating in the Health, Risk Factors, Exercise Training and Genetics (HERITAGE) Family Study. Each of these four measures

Y Hong; J Gagnon; T Rice; L Pérusse; A S Leon; J S Skinner; J H Wilmore; D C Rao

2001-01-01

276

Low level determinations of methyl methanesulfonate and ethyl methanesulfonate impurities in emtricitabine active pharmaceutical ingredient by LC/MS/MS using electrospray ionization.  

PubMed

Alkyl methanesulfonates have been highlighted as potential genotoxic impurities (PGIs). A sensitive LC/MS/MS method was developed and validated for the determination of Alkyl methanesulfonate impurities in Emtricitabine API (active pharmaceutical ingredient). LC/MS/MS method on Zorbax SB C(18) column (150 × 4.6 mm i.d.), 3.5 ?m, with electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode was used. The proposed method was specific, linear, accurate, rugged and precise. The calibration curves showed good linearity over the concentration range of 0.0025 ?g/ml to 0.3 ?g/ml the correlation coefficient was >0.999 in each case. Method had very low limit of detection (LOD) and limit of quantification (LOQ) as 0.3 ?g/g and 0.4 ?g/g respectively for both the analytes. Accuracy was observed within 80%-120% for both the analytes. This method can be further extended a good quality control tool for low level quantitation of Alkyl methanesulfonate impurities in other API. PMID:21760706

Kakadiya, P R; Chandrashekhar, T G; Ganguly, S; Singh, D K; Singh, V

2011-01-01

277

Low Level Determinations of Methyl Methanesulfonate and Ethyl Methanesulfonate Impurities in Emtricitabine Active Pharmaceutical Ingredient by LC/MS/MS Using Electrospray Ionization  

PubMed Central

Alkyl methanesulfonates have been highlighted as potential genotoxic impurities (PGIs). A sensitive LC/MS/MS method was developed and validated for the determination of Alkyl methanesulfonate impurities in Emtricitabine API (active pharmaceutical ingredient). LC/MS/MS method on Zorbax SB C18 column (150 × 4.6 mm i.d.), 3.5 ?m, with electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode was used. The proposed method was specific, linear, accurate, rugged and precise. The calibration curves showed good linearity over the concentration range of 0.0025 ?g/ml to 0.3 ?g/ml the correlation coefficient was >0.999 in each case. Method had very low limit of detection (LOD) and limit of quantification (LOQ) as 0.3 ?g/g and 0.4 ?g/g respectively for both the analytes. Accuracy was observed within 80%–120% for both the analytes. This method can be further extended a good quality control tool for low level quantitation of Alkyl methanesulfonate impurities in other API.

Kakadiya, P.R.; Chandrashekhar, T.G.; Ganguly, S.; Singh, D.K.; Singh, V.

2011-01-01

278

Pharmacokinetics of mycophenolic acid and its phenyl glucuronide metabolite in kidney transplant recipients with renal impairment  

PubMed Central

Introduction The aim of the study was to analyse the influence of renal impairment on the pharmacokinetic parameters (PK) of mycophenolic acid (MPA) and its glucuronide metabolite (MPAG) in renal transplant recipients. Material and methods The study included 43 adult patients during the maintenance period (> 6 months) following renal transplantation, treated with mycophenolate mofetil (MMF), calcineurin inhibitors (CNI) (tacrolimus or cyclosporine) and steroids. The study compared patients with normal renal function (n = 17; creatinine clearance (Ccr) > 60 ml/min) and with renal impairment (n = 26; Ccr < 60 ml/min). Areas under the 4-h curve (AUC0-4 h) of MPA and MPAG were determined using a validated HPLC method. Results The renal impairment group showed significantly increased AUC0-4 h and pre-dose (C0) for MPAG compared to patients with normal renal function and increased MPA C0. However, there was no significant difference in MPA AUC0-4 h between patients with renal impairment and patients with normal renal function. In multivariate analysis some MPA and MPAG PK parameters were correlated with sex, CNI co-administered and body weight. Conclusions Although MPAG is an inactive metabolite, its accumulation in patients with renal impairment can be unfavourable. The results of our study indicate that solely MPA C0 determination in patients receiving MMF may be insufficient in clinical practice because of great inter-patient variability of this PK parameter caused mainly by enterohepatic recirculation.

Kaminska, Jolanta; Glyda, Maciej; Sobiak, Joanna

2012-01-01

279

Direct MS-MS identification of isoxsuprine-glucuronide in post-administration equine urine.  

PubMed Central

Isoxsuprine is routinely recovered from enzymatically-hydrolyzed, post-administration urine samples as parent isoxsuprine in equine forensic science. However, the specific identity of the material in horse urine from which isoxsuprine is recovered has never been established, although it has long been assumed to be a glucuronide conjugate (or conjugates) of isoxsuprine. Using ESI/MS/MS positive mode as an analytical tool, urine samples collected 4-8 h after isoxsuprine administration yielded a major peak at m/z 554 that was absent from control samples and resisted fragmentation to daughter ions. Titration of this material with increasing concentrations of sodium acetate yielded m/z peaks consistent with the presence of monosodium and disodium isoxsuprine-glucuronide complexes, suggesting that the starting material was a dipotassium-isoxsuprine-glucuronide complex. Electrospray ionization mass spectrometry negative mode disclosed the presence of a m/z 476 peak that declined following enzymatic hydrolysis and resulted in the concomitant appearance of peaks at m/z 300 and 175. The resulting peaks were consistent with the presence of isoxsuprine (m/z 300) and a glucuronic acid residue (m/z 175). Examination of the daughter ion spectrum of this putative isoxsuprine-glucuronide m/z 476 peak showed overlap of many peaks with those of similar spectra of authentic morphine-3- and morphine-6-glucuronides, suggesting they were derived from glucuronic acid conjugation. These data suggest that isoxsuprine occurs in post-administration urine samples as an isoxsuprine-glucuronide conjugate and also, under some circumstances, as an isoxsuprine-glucuronide-dipotassium complex.

Bosken, J M; Lehner, A F; Hunsucker, A; Harkins, J D; Woods, W E; Karpiesiuk, W; Carter, W G; Boyles, J; Fisher, M; Tobin, T

2000-01-01

280

Ion-pair reversed-phase liquid chromatography-quadrupole-time-of-flight and triple-quadrupole-mass spectrometry determination of ethyl sulfate in wastewater for alcohol consumption tracing.  

PubMed

Ethyl sulfate (EtS) is excreted in urine as a minor metabolite (0.010-0.016% on molar basis) after intake of alcoholic beverages, being a convenient biomarker for ethanol tracing after its determination in sewage. In this work, a new method for the direct determination of EtS in wastewater by liquid chromatography-(tandem) mass spectrometry (LC-MS(/MS)) has been developed. Different LC columns, mobile phases, and detection systems have been tested. Convenient retention by ion-pair reversed-phase LC was achieved by addition of 50mM tetrabutylamonium bromide to the sample. Also, a triple-quadrupole (QqQ) instrument and a quadrupole time-of-flight (QTOF) system were compared. The repeatability of both systems and linearity was comparable, with RSD?10% in sewage samples. The QqQ instrument provided a better limit of detection (LOD=0.1?gL(-1)) than the QTOF system LOD (0.2?gL(-1)). However, the LOD of this last instrument was still good enough for wastewater concentrations, while avoiding problems with interferences on the QqQ not permitting positive identification with this last system. The stability of EtS was tested and it has proven to be stable in wastewater for at least one week at room temperature and more than one month at -20°C. The application of the method to samples collected during a week in a Galician (NW Spain) city showed EtS concentrations between 4 and 12?gL(-1). This translated into a per capita consumption of pure ethanol in the range from 9 to 24mLday(-1)inh(-1), observing an increase during the weekend compared to weekdays. PMID:24438832

Rodríguez-Álvarez, Tania; Rodil, Rosario; Cela, Rafael; Quintana, José Benito

2014-02-01

281

21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.  

Code of Federal Regulations, 2013 CFR

...added the equivalent of 4.25 gallons of 100 percent ethyl acetate. It is used in accordance with good feeding practices in ruminant feed supplements as a source of added energy. [46 FR 52333, Oct. 27, 1981, as amended at 72 FR 41620, July 31,...

2013-04-01

282

Identification of human UDP-glucuronosyltransferases involved in N-carbamoyl glucuronidation of lorcaserin.  

PubMed

Lorcaserin, a selective serotonin 5-HT(2C) receptor agonist, is a weight management agent in clinical development. Lorcaserin N-carbamoyl glucuronidation governs the predominant excretory pathway of lorcaserin in humans. Human UDP-glucuronosyltransferases (UGTs) responsible for lorcaserin N-carbamoyl glucuronidation are identified herein. Lorcaserin N-carbamoyl glucuronide formation was characterized by the following approaches: metabolic screening using human tissues (liver, kidney, intestine, and lung) and recombinant enzymes, kinetic analyses, and inhibition studies. Whereas microsomes from all human tissues studied herein were found to be catalytically active for lorcaserin N-carbamoyl glucuronidation, liver microsomes were the most efficient. With recombinant UGT enzymes, lorcaserin N-carbamoyl glucuronidation was predominantly catalyzed by three UGT2Bs (UGT2B7, UGT2B15, and UGT2B17), whereas two UGT1As (UGT1A6 and UGT1A9) played a minor role. UGT2B15 was most efficient, with an apparent K(m) value of 51.6 ± 1.9 ?M and V(max) value of 237.4 ± 2.8 pmol/mg protein/min. The rank order of catalytic efficiency of human UGT enzymes for lorcaserin N-carbamoyl glucuronidation was UGT2B15 > UGT2B7 > UGT2B17 > UGT1A9 > UGT1A6. Inhibition of lorcaserin N-carbamoyl glucuronidation activities of UGT2B7, UGT2B15, and UGT2B17 in human liver microsomes by mefenamic acid, bisphenol A, and eugenol further substantiated the involvement of these UGT2B isoforms. In conclusion, multiple human UGT enzymes catalyze N-carbamoyl glucuronidation of lorcaserin; therefore, it is unlikely that inhibition of any one of these UGT activities will lead to significant inhibition of the lorcaserin N-carbamoyl glucuronidation pathway. Thus, the potential for drug-drug interaction by concomitant administration of a drug(s) that is metabolized by any of these UGTs is remote. PMID:22259019

Sadeque, Abu J M; Usmani, Khawja A; Palamar, Safet; Cerny, Matthew A; Chen, Weichao G

2012-04-01

283

Molecular Structure of Ethyl cyclotene  

NSDL National Science Digital Library

Ethyl Cyclotene has a similar odor and flavor to Cyclotene. It is naturally found in coffee and tobacco. As a food additive, this compound has a very strong maple odor and taste. It contributes to the fragrance of rum and whiskey.

2006-09-18

284

Detection of interstellar ethyl cyanide  

NASA Technical Reports Server (NTRS)

Twenty-four millimeter-wave emission lines of ethyl cyanide (CH3CH2CN) have been detected in the Orion Nebula (OMC-1) and seven in Sgr B2. To derive precise radial velocities from the astronomical data, a laboratory measurement of the rotational spectrum of ethyl cyanide has been made at frequencies above 41 GHz. In OMC-1, the rotational temperature of ethyl cyanide is 90 K (in good agreement with other molecules), the local-standard-of-rest radial velocity is 4.5 + or - 1.0 km/s (versus 8.5 km/s for most molecules), and the column density is 1.8 by 10 to the 14th power per sq cm (a surprisingly high figure for a complicated molecule). The high abundance of ethyl cyanide in the Orion Nebula suggests that ethane and perhaps larger saturated hydrocarbons may be common constituents of molecular clouds and have escaped detection only because they are nonpolar or only weakly polar.

Johnson, D. R.; Lovas, F. J.; Gottlieb, C. A.; Gottlieb, E. W.; Litvak, M. M.; Thaddeus, P.; Guelin, M.

1977-01-01

285

Separation and Purification of Two Flavone Glucuronides from Erigeron multiradiatus (Lindl.) Benth with Macroporous Resins  

PubMed Central

Scutellarein-7-O-?-D-glucuronide (SG) and apigenin-7-O-?-D-glucuronide (AG) are two major bioactive constituents with known pharmacological effects in Erigeron multiradiatus. In this study, a simple method for preparative separation of the two flavone glucuronides was established with macroporous resins. The performance and adsorption characteristics of eight macroporous resins including AB-8, HPD100, HPD450, HPD600, D100, D101, D141, and D160 have been evaluated. The results confirmed that D141 resin offered the best adsorption and desorption capacities and the highest desorption ratio for the two glucuronides among the tested resins. Sorption isotherms were constructed for D141 resin under optimal ethanol conditions and fitted well to the Freundlich and Langmuir models (R2 > 0.95). Dynamic adsorption and desorption tests was performed on column packed with D141 resin. After one-run treatment with D141 resin, the two-constituent content in the final product was increased from 2.14% and 1.34% in the crude extract of Erigeron multiradiatus to 24.63% and 18.42% in the final products with the recoveries of 82.5% and 85.4%, respectively. The preparative separation of SG and AG can be easily and effectively achieved via adsorption and desorption on D141 resin, and the method developed can be referenced for large-scale separation and purification of flavone glucuronides from herbal raw materials.

Zhang, Zhi-feng; Liu, Yuan; Luo, Pei; Zhang, Hao

2009-01-01

286

Genetic and environmental factors associated with variation of human xenobiotic glucuronidation and sulfation.  

PubMed Central

Glucuronidation and sulfation are phase 2 metabolic reactions catalyzed by large families of different isoenzymes in man. The textbook view that glucuronidation and sulfation lead to the production of harmless conjugates for simple excretion is not valid. Biologically active and toxic sulfates and glucuronides are produced and leed to adverse drug reactions, including immune hypersensitivity. Considerable variation in xenobiotic conjugation is observed as a result of altered expression of UDP-glucuronosyltransferases (UGTs) and sulfotransferases (STs). Recent cloning and expression of human cDNA encoding UGTs and STs has facilitated characterization of isoform substrate specificity, which has been further validated using specific antibodies and human tissue fractions. The availability of cloned/expressed human enzymes and specific antibodies has enabled the investigation of xenobiotic induction and metabolic disruption leeding to adverse responses. Genetic polymorphisms of glucuronidation and sulfation are known to exist although the characterization and assessment of the importance of these variations are hampered by appropriate ethical studies in men with suitable safe model compounds. Genetic analysis has allowed molecular identification of defects in well-known hyperbilirubinemias. However, full characterization of the specific functional roles of human UGTs and STs requires rigorous kinetic and molecular analyses of the role of each enzyme in vivo through the use of specific antibodies and inhibitors. This will leed to the better prediction of variation of xenobiotic glucuronidation and sulfation in man.

Burchell, B; Coughtrie, M W

1997-01-01

287

Effect of diethylether on the formation of paracetamol sulphate and glucuronide in isolated rat hepatocytes.  

PubMed

Diethylether has previously been shown to inhibit several pathways of drug metabolism, including conjugation of paracetamol in isolated rat hepatocytes. Since overall paracetamol conjugation consists of pathways of different subcellular localization (cytosolar sulphation and microsomal glucuronidation) the response of both pathways to diethylether was tested. The elimination of paracetamol (160 mumol/l, initial concentration) and the formation of paracetamol sulphate and glucuronide were measured (high-performance liquid chromatography) in suspensions of isolated rat hepatocytes from fasted and fed animals over 1 h in the absence and presence of diethylether (30 mmol/l). Approximately 90% of the paracetamol elimination was by sulphation and nearly 10% by glucuronidation both in the controls and in the presence of ether. The overall disposition of paracetamol and the formation of sulphate were both reduced by about 50% in the presence of ether compared to the controls while the formation of glucuronide was reduced by 70%. The results were not influenced by the nutritional state of the animals before sacrifice. It is concluded that the inhibitory effect of ether on total paracetamol metabolism was mainly caused by reduced sulphation. Since microsomal glucuronidation was also inhibited by ether, both cytosolar and microsomal enzyme systems were sensitive to diethylether. PMID:6709689

Aune, H; Hals, P A; Hansen, B I; Aarbakke, J

1984-01-01

288

Determination of t,t-muconic acid in urine samples using a molecular imprinted polymer combined with simultaneous ethyl chloroformate derivatization and pre-concentration by dispersive liquid-liquid microextraction.  

PubMed

The present communication describes the preparation and evaluation of a molecularly imprinted polymer (MIP) as a solid-phase extraction (SPE) sorbent and simultaneous ethyl chloroformate (ECF) derivatization and pre-concentration by dispersive liquid-liquid microextraction (DLLME) for the analysis of t,t-muconic acid (t,t-MA) in urine samples using gas chromatography-mass spectrometry. The imprinting polymer was prepared using methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, 2,2-azobisisobutyronitrile as the initiator and t,t-MA as a template molecule. The imprinted polymer was evaluated for its use as a SPE sorbent by comparing both imprinted and non-imprinted polymers in terms of the recovery of t,t-MA from urine samples. Molecular modelling studies were performed in order to estimate the binding energy and efficiency of the MIP complex formed between the monomer and the t,t-MA. Various factors that can affect the extraction efficiency of MIP, such as the loading, washing and eluting conditions, were optimized; other factors that can affect the derivatization and DLLME pre-concentration were also optimized. MIP in combination with ECF derivatization and DLLME pre-concentration for t,t-MA exhibits good linearity, ranging from 0.125 to 2 ?g mL(-1) (R(2) = 0.9971), with limit of detection of 0.037 ?g mL(-1) and limit of quantification of 0.109 ?g mL(-1). Intra- and inter-day precision was found to be <6%. The proposed method has been proven to be effective and sensitive for the selective pre-concentration and determination of t,t-MA in urine samples of cigarette smokers. PMID:23079953

Mudiam, Mohana Krishna Reddy; Chauhan, Abhishek; Singh, Krishna P; Gupta, Shailendra K; Jain, Rajeev; Ch, Ratnasekhar; Murthy, R C

2013-01-01

289

21 CFR 172.868 - Ethyl cellulose.  

Code of Federal Regulations, 2010 CFR

...2009-04-01 2009-04-01 false Ethyl cellulose. 172.868 Section 172.868 Food and...Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance...

2009-04-01

290

21 CFR 172.868 - Ethyl cellulose.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and...Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance...

2010-01-01

291

21 CFR 573.420 - Ethyl cellulose.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and...Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in...

2010-04-01

292

21 CFR 573.420 - Ethyl cellulose.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 2013-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and...Food Additive Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in...

2013-04-01

293

Expanded Utility of the ?-Glucuronide Linker: ADCs That Deliver Phenolic Cytotoxic Agents  

PubMed Central

The ?-glucuronide linker has been used for antibody?drug conjugates (ADCs) to deliver amine-containing cytotoxic agents. The linker is stable in circulation, hydrophilic and provides ADCs that are highly active in vitro and in vivo. To extend the utility of the ?-glucuronide linker toward phenol-containing drugs, an N,N?-dimethylethylene diamine self-immolative spacer was incorporated with the linker for release of the potent cytotoxic phenol psymberin A. Exposure of the drug-linker to ?-glucuronidase resulted in facile drug release. The corresponding ADCs were active and immunologically selective against CD30-positive L540cy and CD70-positive Caki-1 cell lines.

2010-01-01

294

Chemical synthesis and characterization of epicatechin glucuronides and sulfates: bioanalytical standards for epicatechin metabolite identification.  

PubMed

The monoglucuronides and sulfates of epicatechin, 3'-O-methylepicatechin, and 4'-O-methylepicatechin, respectively, were synthesized as authentic bioanalytical standards. Reversed-phase HPLC methods capable of baseline separation of the glucuronides and sulfates have been developed. Both the epicatechin glucuronides and sulfates were stable in the solid state when stored under ambient conditions and in aqueous solution when stored refrigerated. These results should prove invaluable to the research community as analytical standards as well as in future studies of the biological and pharmacological effects of epicatechin in humans. PMID:23356946

Zhang, Mingbao; Jagdmann, G Erik; Van Zandt, Michael; Sheeler, Ryan; Beckett, Paul; Schroeter, Hagen

2013-02-22

295

Urinary Excretion of Buprenorphine, Norbuprenorphine, Buprenorphine-Glucuronide, and Norbuprenorphine-Glucuronide in Pregnant Women Receiving Buprenorphine Maintenance Treatment  

PubMed Central

BACKGROUND Buprenorphine (BUP) is under investigation as a medication therapy for opioid-dependent pregnant women. We investigated BUP and metabolite disposition in urine from women maintained on BUP during the second and third trimesters of pregnancy and postpartum. METHODS We measured BUP, norbuprenorphine (NBUP), buprenorphine glucuronide (BUP-Gluc), and NBUP-Gluc concentrations in 515 urine specimens collected thrice weekly from 9 women during pregnancy and postpartum. Specimens were analyzed using a fully validated liquid chromatography-mass spectrometry method with limits of quantification of 5 µg/L for BUP and BUP-Gluc and 25 µg/L for NBUP and its conjugated metabolite. We examined ratios of metabolites across trimesters and postpartum to identify possible changes in metabolism during pregnancy. RESULTS NBUP-Gluc was the primary metabolite identified in urine and exceeded BUP-Gluc concentrations in 99% of specimens. Whereas BUP-Gluc was identified in more specimens than NBUP, NBUP exceeded BUP-Gluc concentrations in 77.9% of specimens that contained both analytes. Among all participants, the mean BUP-Gluc:NBUP-Gluc ratio was significantly higher in the second trimester compared to the third trimester, and there were significant intrasubject differences between trimesters in 71% of participants. In 3 women, the percent daily dose excreted was higher during pregnancy than postpregnancy, consistent with other data indicating increased renal elimination of drugs during pregnancy. CONCLUSIONS These data are the first to evaluate urinary disposition of BUP and metabolites in a cohort of pregnant women. Variable BUP excretion during pregnancy may indicate metabolic changes requiring dose adjustment during later stages of gestation.

Kacinko, Sherri L.; Jones, Hendree E.; Johnson, Rolley E.; Choo, Robin E.; Concheiro-Guisan, Marta; Huestis, Marilyn A.

2011-01-01

296

Ethyl acetate: X-ray, solvent and computed structures.  

PubMed

Ethyl acetate (ethyl ethanoate) was crystallized in situ and the crystal structure was determined. In the solid, the molecule is flat with trans conformation. The geometric details of ethyl acetate as a solvate are analyzed statistically using the Cambridge Structural Database, uncovering a high degree of hidden disorder. Despite the disorder, they exhibit a preference of the trans over the gauche isomer, with a negligible contribution of the cis isomer. These results are compared to ab initio calculations on both solid-state and molecular level. For the molecular structures, the computed energy differences of the isomers match the statistics found as a solvent. Several DFT-D2 methods used to calculate the solid state yield results that differ significantly from the experiment. PMID:23108979

Boese, A Daniel; Kirchner, Michael; Echeverria, Gustavo A; Boese, Roland

2013-03-18

297

Walk-Through Survey at Ethyl Corporation, Pasadena, Texas.  

National Technical Information Service (NTIS)

Worker exposure to vinyl-chloride (75014) (VC) were determined at the Ethyl Corporation (SIC-2824) in Pasadena, Texas on May 9, 1974. The survey was part of a NIOSH study of the health effects of occupational exposure to VC. Twenty workers were directly i...

J. H. Jones P. J. Bierbaum

1974-01-01

298

Syntheses and characterization of trigonal-bipyramidal rhodium(I) complexes of tris(2-(diphenylphosphino)ethyl) phosphine and determination of a spectroscopic trans-influence series by sup 31 P ( sup 1 H) NMR spectroscopy  

Microsoft Academic Search

A series of low-spin, five-coordinate rhodium(I) complexes of the tripod ligand tris(2-(diphenylphosphino)ethyl) phosphine, PPâ, were synthesized and characterized by elemental analyses, infrared spectra, and ³¹P(¹H) NMR spectra. The complexes have trigonal-bipyramidal geometries in which the PPâ ligand occupies four of the five sites of C{sub 3ν} symmetry and the variable fifth ligand is monodentate. The ³¹P NMR spectral patterns are

J. J. Gambaro; W. H. Hohman; D. W. Meek

1989-01-01

299

Determination of low level methyl tert-butyl ether, ethyl tert-butyl ether and methyl tert-amyl ether in human urine by HS-SPME gas chromatography\\/mass spectrometry  

Microsoft Academic Search

Methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME) are oxygenated compounds added to gasoline to enhance octane rating and to improve combustion. They may be found as pollutants of living and working environments. In this work a robotized method for the quantification of low level MTBE, ETBE and TAME in human urine was developed and

Licia Scibetta; Laura Campo; Rosa Mercadante; Vito Foà; Silvia Fustinoni

2007-01-01

300

The Escherichia coli glucuronylsynthase promoted synthesis of steroid glucuronides: improved practicality and broader scope.  

PubMed

A library of steroid glucuronides was prepared using the glucuronylsynthase derived from Escherichia coli?-glucuronidase, followed by purification using solid-phase extraction. A representative range of steroid substrates were screened for synthesis on the milligram scale under optimised conditions with conversions dependent on steroid substitution and stereochemistry. Epiandrosterone (3?-hydroxy-5?-androstan-17-one) provided the highest conversion of 90% (84% isolated yield). The previously unreported glucuronide conjugates of methandriol (17?-methylandrost-5-ene-3?,17?-diol), cholest-5-ene-3?,25-diol and the designer steroid trenazone (17?-hydroxyestra-4,9-dien-3-one) were prepared on a multi-milligram scale suitable for characterisation by (1)H and (13)C NMR spectroscopy. The glucuronide conjugate of d5-etiocholanolone (2,2,3,4,4-d5-3?-hydroxy-5?-androstan-17-one), a target developed by the World Anti-Doping Agency as a certified reference material, was also prepared on a milligram scale. The improved E. coli glucuronylsynthase method provides for the rapid synthesis and purification of steroid glucuronides on a scale suitable for a range of analytical applications. PMID:25001892

Ma, Paul; Kanizaj, Nicholas; Chan, Shu-Ann; Ollis, David L; McLeod, Malcolm D

2014-08-28

301

Diclofenac acyl glucuronide, a major biliary metabolite, is directly involved in small intestinal injury in rats  

Microsoft Academic Search

Background & Aims: Enterohepatic recirculation of nonsteroidal anti-inflammatory drugs is a critical factor in the pathogenesis of intestinal injury, but the underlying mechanism of toxicity remains obscure. The aim of this study was to examine the role of diclofenac acyl glucuronide, which is the major biliary metabolite and is chemically reactive, in the precipitation of small intestinal ulceration. Methods: Hepatocanalicular

Sven Seitz; Urs A. Boelsterli

1998-01-01

302

Glucuronidation and subsequent biliary excretion of mycophenolic acid in rat sandwich-cultured hepatocytes.  

PubMed

Rat sandwich-cultured hepatocytes (SCH) were used to correlate the in vitro hepatic disposition of mycophenolic acid (MPA) with published in vivo data, as well as mechanistic studies on drug-drug interaction. The major metabolite of MPA in SCH was 7-O-glucuronide (MPAG) followed by acyl-glucuronide (AcMPAG). MPAG and AcMPAG, but not MPA, showed significant in vitro biliary excretion with biliary excretion indexes (BEI) of 40% for MPAG and 45% for AcMPAG. While these BEIs were similar, the biliary excretion amount (BEA) of MPAG (120 pmol/mg protein) was orders of magnitude higher than that of AcMPAG (0.34 pmol/mg protein). Since MPAG is the major metabolite in in vivo bile, we propose that BEA is a better qualifier of biliary excretion. Quercetin inhibited MPAG and AcMPAG production, while chrysin inhibited only MPAG production, showing that chrysin is not a pan-glucuronidation inhibitor. Cyclosporin A (CysA) reduced the BEI of MPAG and increased intracellular MPA accumulation without changing MPAG amounts. These results suggest that CysA causes inhibition of biliary excretion of MPAG, as well as a mixed inhibition of glucuronidation of MPA and sinusoidal efflux of MPA/MPAG. In conclusion, the present study demonstrates a good agreement of hepatic MPA disposition between SCH and in vivo rats. PMID:24025987

Tetsuka, Kazuhiro; Gerst, Nicolas; Tamura, Kouichi; Masters, Jeffrey N

2014-01-01

303

EVALUATION OF INDOXYL-B-D GLUCURONIDE AS A CHROMOGEN IN MEDIA SPECIFIC FOR ESCHERICHIA COLI  

EPA Science Inventory

Indoxyl-beta D-glucuronide was evaluated as a specific chromogen for detection of Escherichia coli by the membrane filter method. n all 487 colonies were tested from the indoxyl supplemented media yielding 82.9% verification as E. coli. ompared to the indoxyl medium other media p...

304

Expression of ?-glucuronidase on the surface of bacteria enhances activation of glucuronide prodrugs.  

PubMed

Extracellular activation of hydrophilic glucuronide prodrugs by ?-glucuronidase (?G) was examined to increase the therapeutic efficacy of bacteria-directed enzyme prodrug therapy (BDEPT). ?G was expressed on the surface of Escherichia coli by fusion to either the bacterial autotransporter protein Adhesin (membrane ?G (m?G)/AIDA) or the lipoprotein (lpp) outermembrane protein A (m?G/lpp). Both m?G/AIDA and m?G/lpp were expressed on the bacterial surface, but only m?G/AIDA displayed enzymatic activity. The rate of substrate hydrolysis by m?G/AIDA-BL21cells was 2.6-fold greater than by p?G-BL21 cells, which express periplasmic ?G. Human colon cancer HCT116 cells that were incubated with m?G/AIDA-BL21 bacteria were sensitive to a glucuronide prodrug (p-hydroxy aniline mustard ?-D-glucuronide, HAMG) with an half maximal inhibitory concentration (IC50) value of 226.53±45.4??M, similar to the IC50 value of the active drug (p-hydroxy aniline mustard, pHAM; 70.6±6.75??M), indicating that m?G/AIDA on BL21 bacteria could rapidly and efficiently convert HAMG to an active anticancer agent. These results suggest that surface display of functional ?G on bacteria can enhance the hydrolysis of glucuronide prodrugs and may increase the effectiveness of BDEPT. PMID:23598434

Cheng, C-M; Chen, F M; Lu, Y-L; Tzou, S-C; Wang, J-Y; Kao, C-H; Liao, K-W; Cheng, T-C; Chuang, C-H; Chen, B-M; Roffler, S; Cheng, T-L

2013-05-01

305

Nitrosation of glycine ethyl ester and ethyl diazoacetate to give the alkylating agent and mutagen ethyl chloro(hydroximino)acetate.  

PubMed

Whereas nitrosation of secondary amines produces nitrosamines, amino acids with primary amino groups and glycine ethyl ester were reported to react with nitrite to give unidentified agents that alkylated 4-(p-nitrobenzyl)pyridine to produce purple dyes and be direct mutagens in the Ames test. We report here that treatment of glycine ethyl ester at 37 degrees C with excess nitrite acidified with HCl, followed by ether extraction, gave 30-40% yields of a product identified as ethyl chloro(hydroximino)acetate [ClC(=NOH)COOEt, ECHA] and a 9% yield of ethyl chloroacetate. The ECHA was identical to that synthesized by a known method from ethyl acetoacetate, strongly alkylated nitrobenzylpyridine, and may have arisen by N-nitrosation of glycine ethyl ester to give ethyl diazoacetate, which was C-nitrosated and reacted with chloride to give ECHA. Nitrosation of ethyl diazoacetate also yielded ECHA. Ethyl nitroacetate was not an intermediate as its nitrosation did not produce ECHA. ECHA reacted with aniline to give ethyl (hydroxamino)(phenylimino)acetate [PhN=C(NHOH)CO2Et]. This product was different from ethyl [(phenylamino)carbonyl]carbamate [PhNHC(=O)NHCO2Et], which was synthesized by reacting ethyl isocyanatoformate (OCN.CO2Et) with aniline. ECHA reacted with guanosine to give a derivative, which may have been a guanine-C(=NOH)CO2Et derivative. ECHA showed moderate toxicity and weak but significant mutagenicity without activation in Salmonella typhimurium TA-100 (mean, 1.31 x control value for 12-18 microg/plats) and for V79 mammalian cells (1.5-1.7 x control value for 60-100 microM). In conclusion, gastric nitrosation of glycine derivatives such as peptides with a N-terminal glycine might produce ECHA analogues that alkylate bases of gastric mucosal DNA and thereby initiate gastric cancer. PMID:15025513

Zhou, Lin; Haorah, James; Chen, Sheng C; Wang, Xiaojie; Kolar, Carol; Lawson, Terence A; Mirvish, Sidney S

2004-03-01

306

Development of an automated synthesis system for preparation of glucuronides using a solid-phase extraction column loaded with microsomes.  

PubMed

An automated synthesis system using a solid-phase extraction (SPE) system and column packed with octadecylsilica (ODS), which was coated with phospholipid and loaded with dog liver microsomes, was developed for synthesis of glucuronides. Preparation of the microsome-immobilized SPE column, glucuronidation of drugs to synthesize the glucuronides and elution of the products were performed by an automated synthesis system. The phospholipid-coated SPE column and then the microsome-immobilized SPE column were readily prepared by allowing a solution containing L-alpha-dipalmitoylphosphatidylcholine to flow through the SPE column, and then by recycling a buffer solution containing dog liver microsomes through the resulting phospholipid-coated SPE column. The microsome-immobilized SPE column exhibiting the uridine diphosphate (UDP)-glucuronosyltransferase activity catalyzed the glucuronidation of mefenamic acid and estradiol to the corresponding glucuronides in the presence of UDP-glucuronic acid, and three glucuronides of mefenamic acid and estradiol were synthesized using the automated synthesis system, by simply recycling a buffer solution containing UDP-glucuronic acid through the microsome-immobilized SPE column loaded with the substrate. We used beta-cyclodextrin as a solubilizing agent for the synthesis of the glucuronides of estradiol that is practically insoluble in aqueous solutions. The productivity of these glucuronides using the microsome-immobilized SPE column was higher than that using the free microsomes (batch method). Furthermore, we developed a fully automated synthesis-isolation system by coupling the automated synthesis system to an automated preparative HPLC system. The automated synthesis system as well as the fully automated synthesis-isolation system should be very useful for synthesizing glucuronides for drug development. PMID:20190440

Kashima, Yousuke; Kitade, Takashi; Kashima, Yuuko; Okabayashi, Yoshito

2010-03-01

307

Gemfibrozil and its glucuronide inhibit the hepatic uptake of pravastatin mediated by OATP1B1.  

PubMed

When pravastatin (40 mg/day) was co-administered with gemfibrozil (600 mg, b.i.d., 3 days) to man, the AUC of pravastatin increased approximately 2-fold. We have clarified that OATP1B1 is a key determinant of the hepatic uptake of pravastatin in humans. Thus, we hypothesized that gemfibrozil and the main plasma metabolites, a glucuronide (gem-glu) and a carboxylic acid metabolite (gem-M3), might inhibit the hepatic uptake of pravastatin and lead to the elevation of the plasma concentration of pravastatin. Gemfibrozil and gem-glu inhibited the uptake of (14)C-pravastatin by human hepatocytes with K(i) values of 31.7 microM and 15.7 microM, respectively and also inhibited pravastatin uptake by OATP1B1-expressing Xenopus laevis oocytes with K(i) values of 15.1 microM and 7.6 microM. Additionally, we examined the biliary transport of pravastatin and demonstrated that pravastatin was transported by MRP2 using both human canalicular membrane vesicles (hCMVs) and human MRP2-expressing vesicles. However, gemfibrozil, gem-glu and gem-M3 did not affect the biliary transport of pravastatin by MRP2. Considering the plasma concentrations of gemfibrozil and gem-glu in humans, the inhibition of OATP1B1-mediated hepatic uptake of pravastatin by gem-glu would contribute, at least in part, to the elevation of plasma concentration of pravastatin by the concomitant use of gemfibrozil. PMID:17523051

Nakagomi-Hagihara, R; Nakai, D; Tokui, T; Abe, T; Ikeda, T

2007-05-01

308

Biotransformation of bisphenol AF to its major glucuronide metabolite reduces estrogenic activity.  

PubMed

Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 ?M in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

Li, Ming; Yang, Yunjia; Yang, Yi; Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

2013-01-01

309

Role of Glucuronidation for Hepatic Detoxification and Urinary Elimination of Toxic Bile Acids during Biliary Obstruction  

PubMed Central

Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA) in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G), glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

Perreault, Martin; Bialek, Andrzej; Trottier, Jocelyn; Verreault, Melanie; Caron, Patrick; Milkiewicz, Piotr; Barbier, Olivier

2013-01-01

310

LC-MS/MS method for the simultaneous quantification of artesunate and its metabolites dihydroartemisinin and dihydroartemisinin glucuronide in human plasma.  

PubMed

Artesunate (AS), a hemisuccinate derivative of artemisinin, is readily soluble in water and can easily be used in formulations for parenteral treatment of severe malaria. AS is rapidly hydrolyzed to the active metabolite dihydroartemisinin (DHA) and primarily eliminated by biliary excretion after glucuronidation. To investigate systematically the AS metabolism and pharmacokinetics, a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of AS and its metabolites DHA and DHA glucuronide (DHAG) in human plasma samples was developed. Compared to previous methods, our method includes for the first time the quantification of the glucuronide metabolite using a newly synthesized stable isotope-labeled analogue as internal standard. Sample preparation was performed with only 50 ?L plasma by high-throughput solid-phase extraction in the 96-well plate format. Separation of the analytes was achieved on a Poroshell 120 EC-C18 column (50*2.1 mm, 2.7 ?m, Agilent Technologies, Waldbronn, Germany). The method was validated according to FDA guidelines. Calibration curves were linear over the entire range from 1 to 2,500 nM (0.4-961.1 ng/mL), 165 to 16,500 nM (46.9-4,691.8 ng/mL), and 4 to 10,000 nM (1.8-4,604.7 ng/mL) for AS, DHA, and DHAG, respectively. Intra- and interbatch accuracy, determined as a deviation between nominal and measured values, ranged from -5.7 to 3.5 % and from 2.7 to 5.8 %, respectively. The assay variability ranged from 1.5 to 10.9 % for intra- and interbatch approaches. All analytes showed extraction recoveries above 85 %. The method was successfully applied to plasma samples from patients under AS treatment. PMID:24760398

Geditz, Mirjam C K; Heinkele, Georg; Ahmed, Asma; Kremsner, Peter G; Kerb, Reinhold; Schwab, Matthias; Hofmann, Ute

2014-07-01

311

Enhanced ethyl butyrate production using immobilized lipase.  

PubMed

In this study, the production of ethyl butyrate was investigated by using immobilized lipase enzyme in shake flasks. In order to determine optimum conditions for the production, response surface methodology was used. The model indicated the optimum conditions for maximum conversion (9.1%) at the 0.31 M substrate concentration, acid- alcohol molar ratio of 0.49, immobilized enzyme 25% (w/v) at 35°C, for 3 hours which were in good agreement with the experimental value. At the end of the 55 hours conversion was obtained as 61.3%. When Na2HPO4 was used in reaction medium conversion increased to 90.3% for 55 hours. PMID:23305408

Ate?, Selma; Türk, Burcu; Bayraktar, Emine; Güvenç, Afife

2013-10-01

312

Phase Equilibria in the Systems Oxolane + Vinyl Acetate, Oxolane + Ethyl 1,1-Dimethylethyl Ether and Vinyl Acetate + Ethyl 1,1-Dimethylethyl Ether  

Microsoft Academic Search

Vapor-liquid equilibrium at 94kPa has been determined for the binary systems oxolane (THF) + vinyl acetate, oxolane + ethyl 1,1-dimethylethyl ether (ETBE) and vinyl acetate + ethyl 1,1-dimethylethyl ether. The three systems present slight to moderate positive deviations from ideal behavior and, to a first approximation, can be considered to behave like regular solutions. An azeotrope is present in the

Jaime Wisniak; Hugo Segura

2000-01-01

313

Prompt-NO formation in methane\\/oxygen\\/nitrogen flames seeded with oxygenated volatile organic compounds: Methyl ethyl ketone or ethyl acetate  

Microsoft Academic Search

In the present work, CH and NO profiles are determined using laser-induced fluorescence (LIF) measurements in eight low-pressure laminar flames of CH\\/O\\/N containing various amounts of methyl ethyl ketone or ethyl acetate with respect to the equivalence ratio. Relative CH LIF signals are calibrated using cavity ring-down spectroscopy (CRDS), while NO LIF calibration is performed in the burned gases of

N. Lamoureux; A. El-Bakali; L. Gasnot; J. F. Pauwels; P. Desgroux

2008-01-01

314

Prompt-NO formation in methane\\/oxygen\\/nitrogen flames seeded with oxygenated volatile organic compounds: Methyl ethyl ketone or ethyl acetate  

Microsoft Academic Search

In the present work, CH and NO profiles are determined using laser-induced fluorescence (LIF) measurements in eight low-pressure laminar flames of CH4\\/O2\\/N2 containing various amounts of methyl ethyl ketone or ethyl acetate with respect to the equivalence ratio. Relative CH LIF signals are calibrated using cavity ring-down spectroscopy (CRDS), while NO LIF calibration is performed in the burned gases of

N. Lamoureux; A. El-Bakali; L. Gasnot; J. F. Pauwels; P. Desgroux

2008-01-01

315

Morpholine-4-carboxamidinium ethyl carbonate  

PubMed Central

The asymmetric unit of the title salt, C5H12N3O+·C3H5O3 ?, contains two carboxamidinium and two ethyl carbonate ions. In the crystal, the C—N bond lengths in the central CN3 units of the cations range between 1.324?(2) and 1.352?(2)?Å, indicating partial double-bond character. The central C atoms are bonded to the three N atoms in a nearly ideal trigonal–planar geometry and the positive charges are delocalized in the CN3 planes. The morpholine rings are in chair conformations. The C—O bond lengths in both ethyl carbonate ions are characteristic for delocalized double bonds [1.243?(2)–1.251?(2)?Å] and typical single bonds [1.368?(2) and 1.375?(2)?Å]. In the crystal, N—H?O hydrogen bonds between cations and anions generate a two-dimensional network in the ac plane.

Tiritiris, Ioannis

2012-01-01

316

PERSISTENCE OF METHYL AND ETHYL PARATHION FOLLOWING SPILLAGE ON CONCRETE SURFACES  

EPA Science Inventory

Tests were carried out to determine the potential hazard of spillage of the pesticides, methyl parathion and ethyl parathion, on concrete surfaces. Results indicated that although a toxic hazard exists, especially for potential contamination of foodstuff, when liquid concentrates...

317

Determination of phase II drug metabolites in equine urine by micellar electrokinetic capillary chromatography.  

PubMed

Micellar electrokinetic capillary chromatography (MECC) using diode array detection has been investigated for the determination of phase I and phase II metabolites of drugs in biofluids. Methods were optimised for the determination of morphine, morphine-3-glucuronide, morphine-6-glucuronide, normorphine, meclofenamic acid and its metabolites in equine urine. Solid-phase extraction procedure were developed to concentrate and purify the analytes from spiked and post administration urines for MECC analysis. A simple on-line procedure for monitoring the kinetics of hydrolysis of morphine-glucuronide conjugates by beta-glucuronidase was demonstrated. PMID:8843684

Taylor, M R; Westwood, S A; Perrett, D

1996-09-20

318

Enantioselective Metabolism of Quizalofop-Ethyl in Rat  

PubMed Central

The pharmacokinetic and distribution of the enantiomers of quizalofop-ethyl and its metabolite quizalofop-acid were studied in Sprague-Dawley male rats. The two pairs of enantiomers were determined using a validated chiral high-performance liquid chromatography method. Animals were administered quizalofop-ethyl at 10 mg kg?1 orally and intravenously. It was found high concentration of quizalofop-acid in the blood and tissues by both intragastric and intravenous administration, and quizalofop-ethyl could not be detected through the whole study which indicated a quick metabolism of quizalofop-ethyl to quizalofop-acid in vivo. In almost all the samples, the concentrations of (+)-quizalofop-acid exceeded those of (?)-quizalofop-acid. Quizalofop-acid could still be detected in the samples even at 120 h except in brain due to the function of blood-brain barrier. Based on a rough calculation, about 8.77% and 2.16% of quizalofop-acid were excreted through urine and feces after intragastric administration. The oral bioavailability of (+)-quizalofop-acid and (?)-quizalofop-acid were 72.8% and 83.6%.

Liang, Yiran; Wang, Peng; Liu, Donghui; Shen, Zhigang; Liu, Hui; Jia, Zhixin; Zhou, Zhiqiang

2014-01-01

319

Glucuronidation of 3'-azido-3'-deoxythymidine in human liver microsomes: enzyme inhibition by drugs and steroid hormones.  

PubMed

The molecular form of UDP-glucuronosyltransferase involved in the catalysis of 3'-azido-3'-deoxythymidine (AZT)-5'-O-glucuronide was characterized in human liver microsomes. The specific activity (1.3 nmol/min per mg protein) in transplantable liver was more than 2-times higher than in post-mortem fragments. Liver microsomes from patients suffering Crigler-Najjar syndrome, who are genetically deficient in bilirubin UDP-glucuronosyltransferase, could also glucuronidate AZT to a similar extent, thus indicating that this protein was not involved in that process. A genetically engineered V79 cell line stably expressing a cDNA which encodes a human isozyme active towards 1-naphthol was unable to glucuronidate AZT. Clinically used drugs, most of them being glucuronidated, were tested as potential inhibitors of the glucuronidation of AZT in human liver microsomes. The drugs chemically related to 2-phenylpropionic acid, naproxen and flurbiprofen, and the steroid compounds testosterone, estrone and ethynylestradiol strongly inhibited AZT glucuronidation. Codeine and morphine also decreased the reaction rate although to a lower extent. Except estrone which elicited a partial competitive inhibition, ethynylestradiol, flurbiprofen naproxen and testosterone could competitively inhibit AZT glucuronidation with an apparent Ki of 38, 50, 172 and 250 microM, respectively. The results suggest that these drugs were substrates of the same isozyme(s) involved in AZT glucuronidation. Probenecid was a weak inhibitor of the reaction (Ki 900 microM), only when non-disrupted microsomes were used. This drug may compete with the anion carrier system involved in the microsomal uptake of UDP-glucuronic acid. PMID:1610916

Herber, R; Magdalou, J; Haumont, M; Bidault, R; van Es, H; Siest, G

1992-06-01

320

Hormonal monitoring of early pregnancy by a direct radioimmunoassay of steroid glucuronides in first morning urine  

SciTech Connect

The usefulness of the direct 4-hour radioimmunoassay of estriol-16-glucuronide (E/sub 3/G) and pregnanediol-3-glucuronide (P/sub 2/G) in first morning urine (FMU) for establishing a prognosis of the early pregnancy outcome was evaluated in 106 patients that became pregnant. Microaliquots of FMU were serially assayed from day 3 of the conception cycle until day 80 of pregnancy. The E/sub 3/G and P/sub 2/G profiles of 19 pregnancies which terminated in spontaneous abortion with either a diagnosis of the blighted ovum syndrome (n = 11) or presumption of a corpus luteum/trophoblast failure (n = 8) have been compared with those of clinically normal pregnancies (n = 87). Normal pregnancies displayed typical patterns of E/sub 3/G and P/sub 2/G development, while variations were observed in abortive events that reflected changes of the fetoplacental unit.

Mendizabal, A.F.; Quiroga, S.; Farinati, Z.; Lahoz, M.; Nagle, C.

1984-11-01

321

Mechanism of Peroxisome Proliferator-Activated Receptor Gamma (PPAR?) Transactivation by Hesperetin Glucuronides Is Distinct from That by a Thiazolidine-2,4-dione Agent.  

PubMed

Hesperidin, a flavanone glycoside present abundantly in citrus fruits, is predominantly metabolized to hesperetin-7-O-?-D-glucuronide (H7-OG) and hesperetin-3'-O-?-D-glucuronide (H3'-OG), which exhibit partial agonistic activity towards peroxisome proliferator-activated receptor gamma (PPAR?). Here, in order to understand the mechanism(s) of action of PPAR? transactivation elicited by hesperetin glucuronides, we compared the transactivation activities of PPAR? (ligand-binding domain (LBD)) mutants by hesperetin glucuronides and troglitazone, a thiazolidine-2,4-dione class PPAR? full agonist. The assay results indicated that the mechanisms of activation of PPAR? by hesperetin glucuronides and by troglitazone are distinct, probably due to a difference in the binding sites of these compounds on the PPAR? LBD. Flavanone-class PPAR? partial agonists, luteolin and hesperetin glucuronides, showed similar activation profiles of the PPAR? LBD mutants, even though they have different side chain functionalities. PMID:24789933

Gamo, Kanae; Shiraki, Takuma; Matsuura, Nobuyasu; Miyachi, Hiroyuki

2014-01-01

322

Biotransformation of diflunisal and renal excretion of its glucuronides in renal insufficiency  

PubMed Central

1 A single oral dose of 500 mg diflunisal was administered to control subjects and patients with varying degrees of renal insufficiency to estimate the disposition kinetics of this drug. 2 Diflunisal and the sum of its ester and ether glucuronides conjugates were measured fluorimetrically. 3 In normals terminal plasma half-lives (T½?) of diflunisal and its glucuronides were very similar: 10.8 h and 11.8 h respectively. The finding that plasma half-life was shortened with declining diflunisal plasma levels suggests capacity-limited elimination. 4 In subjects with normal renal function 78.6 ± 2.7% of the administered dose was recovered in 72 h urine, mainly as the glucuronide conjugates. 5 With increasing degree of renal function impairment T½? of diflunisal was progressively prolonged up to ten times normal probably due to slowed biotransformation. This was associated with increasing retention of the conjugated metabolites in plasma due to marked reduction of the urinary excretion of the glucuronide conjugates. 6 The apparent volume of distribution of diflunisal was very small in normals (7.3 ± 0.4 l) and was significantly increased in patients with renal insufficiency (up to 16.2 ± 2.2 l). 7 Diflunisal elimination studies performed during haemodialysis did not reveal any significant change in diflunisal plasma half-time. In vivo ultrafiltration studies during haemodialysis have shown that diflunisal is 98-99% plasma protein bound in uraemic patients. 8 The present study indicates that although diflunisal is primarily eliminated by biotransformation, T½? is prolonged in renal insufficiency and dose adjustment will accordingly be required in patients with renal function impairment.

Verbeeck, R.; Tjandramaga, T. B.; Mullie, A.; Verbesselt, R.; Verberckmoes, R.; De Schepper, P. J.

1979-01-01

323

Metabolic comparison of radiolabeled bleomycin and bleomycin-glucuronide labeled with 99mTc.  

PubMed

The metabolic comparison of bleomycin (BLM) and bleomycin-glucuronide (BLMG) radiolabeled with (99m)Tc ((99m)Tc-BLM and (99m)Tc-BLMG, respectively) has been investigated in this study. Quality control procedures were carried out using thin-layer radiochromatography and high-performance liquid chromatography. To compare the metabolic behavior of BLM and its glucuronide conjugate radiolabeled with (99m)Tc, scintigraphic, and biodistributional techniques were applied using male New Zealand rabbits and Albino Wistar rats. The results obtained have shown that these compounds were successfully radiolabeled with a labeling yield of about 100%. Maximum uptakes of (99m)Tc-BLM and (99m)Tc-BLMG metabolized as N-glucuronide were observed within 2 hours in the liver, the bladder, and the spinal cord for (99m)Tc-BLM and the lung, the liver, the kidney, the large intestine, and the spinal cord for (99m)Tc-BLMG, respectively. Scintigraphy and biodistributional studies performed on the experimental animals have shown that radiopharmaceutical potentials of these compounds are completely different. At the same time, uptake of the (99m)Tc-BLMG was found to be better than that of (99m)Tc-BLM. PMID:21950554

Koçan, Feray; Avc?ba??, Ugur; Unak, Perihan; Müftüler, Fazilet Zümrüt Biber; Içhedef, Cigdem A; Demiro?lu, Hasan; Gümü?er, Fikriye G

2011-10-01

324

?-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents  

PubMed Central

Epidemiological and experimental studies suggest that the consumption of flavonoid-rich diets decreases the risk of various chronic diseases such as cardiovascular diseases. Although studies on the bioavailability of flavonoids have been well-characterized, the tissue and cellular localizations underlying their biological mechanisms are largely unknown. The development and application of novel monoclonal antibodies revealed that macrophages could be the major target of dietary flavonoids in vivo. Using macrophage-like cell lines in vitro, we examined the molecular basis of the interaction between the macrophages and flavonoids, especially the glucuronide metabolites. We have found that extracellular ?-glucuronidase secreted from macrophages is essential for the bioactivation of the glucuronide conjugates into the aglycone, and that the enzymatic activity, which requires an acidic pH, is promoted by the increased secretion of lactate in response to the mitochondrial dysfunction. This review describes our recent findings indicating the molecular mechanisms responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. We propose that the extracellular activity of ?-glucuronidase associated with the status of the mitochondrial function in the target cells might be important biomarkers for the specific sites where the glucuronides of dietary flavonoids can act as anti-atherosclerotic and anti-inflammatory agents in vivo.

Kawai, Yoshichika

2014-01-01

325

?-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents.  

PubMed

Epidemiological and experimental studies suggest that the consumption of flavonoid-rich diets decreases the risk of various chronic diseases such as cardiovascular diseases. Although studies on the bioavailability of flavonoids have been well-characterized, the tissue and cellular localizations underlying their biological mechanisms are largely unknown. The development and application of novel monoclonal antibodies revealed that macrophages could be the major target of dietary flavonoids in vivo. Using macrophage-like cell lines in vitro, we examined the molecular basis of the interaction between the macrophages and flavonoids, especially the glucuronide metabolites. We have found that extracellular ?-glucuronidase secreted from macrophages is essential for the bioactivation of the glucuronide conjugates into the aglycone, and that the enzymatic activity, which requires an acidic pH, is promoted by the increased secretion of lactate in response to the mitochondrial dysfunction. This review describes our recent findings indicating the molecular mechanisms responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. We propose that the extracellular activity of ?-glucuronidase associated with the status of the mitochondrial function in the target cells might be important biomarkers for the specific sites where the glucuronides of dietary flavonoids can act as anti-atherosclerotic and anti-inflammatory agents in vivo. PMID:24895476

Kawai, Yoshichika

2014-05-01

326

Preparation and separation of the glucuronide and sulfate conjugates of thyroxine and triiodothyronine  

SciTech Connect

An enzymatic method for synthesis of labelled thyroxine glucuronide (T4G) and triiodothyronine glucuronide (T3G) from labelled thyroxine (T4) and triiodothyronine (T3) is presented. The synthetic glucuronides are completely digested by beta-glucuronidase, with recovery of the parent T4 or T3. They have distinctive elution patterns on HPLC and on Sephadex G25 chromatography, and can be clearly separated from T4 and T3 as well as from synthetic T4 sulfate (T4S) and T3 sulfate (T3S). On LH 20 chromatography, elution of T4G and T3G is intermediate between that of T4 and T3 and that of T4S and T3S. T3G can be well separated from other thyronines by HPLC alone, but T4G coelutes with rT3 on HPLC; these are then separated by adding a Sephadex G25 chromatography step. Biosynthetic /sup 131/I-T3G and /sup 125/I-T4G from the bile of a cat given /sup 131/I-T3 and /sup 125/I-T4 had similar HPLC chromatographic patterns to those of synthetic T3G and T4G. That the identified peaks from analysis of the bile were indeed T3G and T4G was confirmed by recovery of the parent T3 and T4 after beta-glucuronidase digestion.

Hays, M.T.; Hsu, L.

1987-01-01

327

Comparison of surface structures of poly(ethyl methacrylate) and poly(ethyl acrylate) in different chemical environments.  

PubMed

Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate and compare the chemical structures of poly(ethyl methacrylate) (PEMA) and poly(ethyl acrylate) (PEA) in air, in water, and in a non-polar solvent, FC-75. SFG spectra from both polymer surfaces in air are dominated by vibrational modes from the ester ethyl side groups. The average orientation of these ester ethyl groups on the two polymer surfaces is slightly different. In water, the two polymers show markedly different restructuring behavior. The ester ethyl side chains on the PEMA surface in water reorient to tilt more toward the surface, yet remain ordered. Such a restructuring of the PEMA surface in water is reversible. However, no SFG signal was detected from the PEA/water interface, showing that the surface of PEA becomes disordered upon contacting water, and this process is irreversible. SFG results collected from the C=O range indicate that hydrogen bonding is observed for both polymer/water interfaces, but the order of C=O at the PEA/water interface is much lower than that at the PEMA/water interface. Supplemental experiments support our hypothesis that the PEA surface becomes rough and loses order gradually as it interacts with water. We have demonstrated, for the first time, that the loss of surface structural order is due to the interaction between soft PEA chains with water molecules followed by reorganization of the polymer backbone. This causes the polymer surface to become rough and disordered. However, the surface structures of PEMA and PEA in FC-75 are similar and are also similar to those in air. This indicates that not only T(g), but also the contacting medium plays an important role in determining the surface restructuring behavior of polymer materials. PMID:19785122

Chen, Chunyan; Clarke, Matthew L; Wang, Jie; Chen, Zhan

2005-06-01

328

Development of a sensitive fluorescent derivatization reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) and its application for determination of amino acids from seeds and bryophyte plants using high-performance liquid chromatography with fluorescence detection and identification with electrospray ionization mass spectrometry.  

PubMed

A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M+H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of CO bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted derivatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono-1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC)=2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C(18) column. Detection limits were calculated from 1.0pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV<7.5. The mean interday precision for all standards was <10% of the expected concentration. Excellent linear responses were observed with coefficients of >0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. PMID:18970343

You, Jinmao; Ming, Yongfei; Shi, Yunwei; Zhao, Xianen; Suo, Yourui; Wang, Honglun; Li, Yulin; Sun, Jing

2005-12-15

329

21 CFR 172.868 - Ethyl cellulose.  

Code of Federal Regulations, 2013 CFR

...DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.868 Ethyl cellulose. The...

2013-04-01

330

HEALTH EFFECTS ASSESSMENT FOR ETHYL CHLORIDE  

EPA Science Inventory

The report summarizes and evaluates information relevant to a preliminary interim assessment of adverse health effects associated with ethyl chloride. All estimates of acceptable intakes and carcinogenic potency presented in this document should be considered as preliminary and r...

331

Analysis of 11-nor-?9 -tetrahydrocannabinol-9-carboxylic acid and its glucuronide in urine by capillary electrophoresis/mass spectrometry.  

PubMed

?(9) -Tetrahydrocannabinol is the primary psychoactive component in cannabis, one of the most commonly used illicit drugs in the world. This paper describes a simple and rapid method for direct analysis of major metabolites of ?(9) -tetrahydrocannabinol; 11-nor-?(9) -tetrahydrocannabinol-9-carboxylic acid and its glucuronide in urine by capillary electrophoresis/mass spectrometry. The only pretreatment needed for a urine sample was dilution with methanol containing an internal standard and centrifugation. Electrophoresis was carried out in an untreated fused-silica capillary (50 µm i.d. × 85 cm) filled with 40 m m ammonium formate (pH 6.4). An analysis could be completed within 10 min. For both compounds, the assay was linear over the range 0.1-10 µg/mL in urine with correlation coefficients (r(2) )?>0.99 and the limit of detection was 0.5 pg (10 nL injection). The detection yields and reproducibilities were determined at three different concentrations (0.1, 0.5 and 2 µg/mL in urine). The mean detection yields were 60-99%. The intra- and inter-day relative standard deviations of migration times were 0.063-0.19 and 0.18-0.36%, and those of peak areas were 4.2-18 and 5.9-25%, respectively. The proposed method successfully analyzed the urine samples of cannabis users. PMID:22419476

Iwamuro, Yoshiaki; Iio-Ishimaru, Reiko; Chinaka, Satoshi; Takayama, Nariaki; Hayakawa, Kazuichi

2012-11-01

332

Which hydroxy? Evidence for species differences in the regioselectivity of glucuronidation in rat, dog, and human in vitro systems and dog in vivo.  

PubMed

The glucuronidation of (1S,2R,3R,5R)-3-(hydroxymethyl)-5-[7-{[(1R,2S)-2-phenylcyclopropyl]amino}-5-(propylthio)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-3-yl]cyclopentane-1,2-diol (AZ11939714) was studied in UDP-glucuronic acid (UDPGA)-supplemented hepatic microsomes from rat, dog, and human liver. The major biliary metabolite of this compound after intraduodenal administration to a beagle dog was also studied. The techniques of HPLC, HPLC-MS and HPLC-NMR were used to characterize the glucuronides. An analysis of the proton NMR chemical shift differences between parent and metabolites was sufficient to deduce the sites of glucuronidation, although these were confirmed by 2D ROESY experiments. In dog microsomes, AZ11939714 was O-glucuronidated exclusively at the 1-position of the cyclopentanediol. This glucuronide was also the major metabolite in dog bile. In human microsomes, AZ11939714 was O-glucuronidated almost exclusively at the 3-hydroxymethyl position. Rat microsomes produced a mixture of glucuronides at the 2-position of the cyclopentanediol (major) and at the 3-hydroxymethyl position (minor). A clear qualitative species difference in the glucuronidation of AZ11939714 has been demonstrated in vitro. This may have implications for the choice of laboratory species to study the pharmacokinetics and safety of this compound. PMID:16763016

Martin, Iain J; Lewis, Richard J; Bernstein, Michael A; Beattie, Iain G; Martin, Craig A; Riley, Robert J; Springthorpe, Brian

2006-09-01

333

Hepatic clearance of reactive glucuronide metabolites of diclofenac in the mouse is dependent on multiple ATP-binding cassette efflux transporters.  

PubMed

Diclofenac is an important analgesic and anti-inflammatory drug that is widely used for the treatment of postoperative pain, rheumatoid arthritis, and chronic pain associated with cancer. Diclofenac is extensively metabolized in the liver, and the main metabolites are hydroxylated and/or glucuronidated conjugates. We show here that loss of multidrug resistance protein 2 (MRP2/ABCC2) and breast cancer resistance protein (BCRP/ABCG2) in mice results in highly increased plasma levels of diclofenac acyl glucuronide, after both oral and intravenous administration. The absence of Mrp2 and Bcrp1, localized at the canalicular membrane of hepatocytes, leads to impaired biliary excretion of acyl glucuronides and consequently to elevated liver and plasma levels. Mrp2 also mediates the biliary excretion of two hydroxylated diclofenac metabolites, 4'-hydroxydiclofenac and 5-hydroxydiclofenac. We further show that the sinusoidal efflux of diclofenac acyl glucuronide, from liver to blood, is largely dependent on multidrug resistance protein 3 (MRP3/ABCC3). Diclofenac acyl glucuronides are chemically instable and reactive, and in patients, these metabolites are associated with rare but serious idiosyncratic liver toxicity. This might explain why Mrp2/Mrp3/Bcrp1(-/-) mice, which have markedly elevated levels of diclofenac acyl glucuronides in their liver, display acute, albeit very mild, hepatotoxicity. We believe that the handling of diclofenac acyl glucuronides by ATP binding cassette transporters may be representative for the handling of acyl glucuronide metabolites of many other clinically relevant drugs. PMID:20086033

Lagas, Jurjen S; Sparidans, Rolf W; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

2010-04-01

334

Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11).  

PubMed

Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1(?Hep)) and the intestine (Ugt1(?GI)). Control (Ugt1(F/F)), Ugt1(?Hep), and Ugt1(?GI) adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11-treated Ugt1(?Hep) mice showed a similar lethality rate to the CPT-11-treated Ugt1(F/F) mice. However, Ugt1(?GI) mice were highly susceptible to CPT-11-induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment. PMID:24191041

Chen, Shujuan; Yueh, Mei-Fei; Bigo, Cyril; Barbier, Olivier; Wang, Kepeng; Karin, Michael; Nguyen, Nghia; Tukey, Robert H

2013-11-19

335

Intestinal glucuronidation protects against chemotherapy-induced toxicity by irinotecan (CPT-11)  

PubMed Central

Camptothecin (CPT)-11 (irinotecan) has been used widely for cancer treatment, particularly metastatic colorectal cancer. However, up to 40% of treated patients suffer from severe late diarrhea, which prevents CPT-11 dose intensification and efficacy. CPT-11 is a prodrug that is hydrolyzed by hepatic and intestinal carboxylesterase to form SN-38, which in turn is detoxified primarily through UDP-glucuronosyltransferase 1A1 (UGT1A1)-catalyzed glucuronidation. To better understand the mechanism associated with toxicity, we generated tissue-specific Ugt1 locus conditional knockout mouse models and examined the role of glucuronidation in protecting against irinotecan-induced toxicity. We targeted the deletion of the Ugt1 locus and the Ugt1a1 gene specifically in the liver (Ugt1?Hep) and the intestine (Ugt1?GI). Control (Ugt1F/F), Ugt1?Hep, and Ugt1?GI adult male mice were treated with different concentrations of CPT-11 daily for four consecutive days. Toxicities were evaluated with regard to tissue glucuronidation potential. CPT-11–treated Ugt1?Hep mice showed a similar lethality rate to the CPT-11–treated Ugt1F/F mice. However, Ugt1?GI mice were highly susceptible to CPT-11–induced diarrhea, developing severe and lethal mucositis at much lower CPT-11 doses, a result of the proliferative cell loss and inflammation in the intestinal tract. Comparative expression levels of UGT1A1 in intestinal tumors and normal surrounding tissue are dramatically different, providing for the opportunity to improve therapy by differential gene regulation. Intestinal expression of the UGT1A proteins is critical toward the detoxification of SN-38, whereas induction of the UGT1A1 gene may serve to limit toxicity and improve the efficacy associated with CPT-11 treatment.

Chen, Shujuan; Yueh, Mei-Fei; Bigo, Cyril; Barbier, Olivier; Wang, Kepeng; Karin, Michael; Nguyen, Nghia; Tukey, Robert H.

2013-01-01

336

Rapid stimulation of free glucuronate formation by non-glucuronidable xenobiotics in isolated rat hepatocytes.  

PubMed

Vitamin C synthesis in rat liver is enhanced by several xenobiotics, including aminopyrine and chloretone. The effect of these agents has been linked to induction of enzymes potentially involved in the formation of glucuronate, a precursor of vitamin C. Using isolated rat hepatocytes as a model, we show that a series of agents (aminopyrine, antipyrine, chloretone, clotrimazole, metyrapone, proadifen, and barbital) induced in a few minutes an up to 15-fold increase in the formation of glucuronate, which was best observed in the presence of sorbinil, an inhibitor of glucuronate reductase. They also caused an approximately 2-fold decrease in the concentration of UDP-glucuronate but little if any change in the concentration of UDP-glucose. Depletion of UDP-glucuronate with resorcinol or d-galactosamine markedly decreased the formation of glucuronate both in the presence and in the absence of aminopyrine, confirming the precursor-product relationship between UDP-glucuronate and free glucuronate. Most of the agents did not induce the formation of detectable amounts of glucuronides, indicating that the formation of glucuronate is not due to a glucuronidation-deglucuronidation cycle. With the exception of barbital (which inhibits glucuronate reductase), all of the above mentioned agents also caused an increase in the concentration of ascorbic acid. They had little effect on glutathione concentration, and their effect on glucuronate and vitamin C formation was not mimicked by glutathione-depleting agents such as diamide and buthionine sulfoximine. It is concluded that the stimulation of vitamin C synthesis exerted by some xenobiotics is mediated through a rapid increase in the conversion of UDP-glucuronate to glucuronate, which does not apparently involve a glucuronidation-deglucuronidation cycle. PMID:12865420

Linster, Carole L; Van Schaftingen, Emile

2003-09-19

337

Enzyme-assisted synthesis of the glucuronide conjugate of psilocin, an hallucinogenic component of magic mushrooms.  

PubMed

An enzyme-assisted synthesis of psilocin glucuronide (PCG), a metabolite excreted in the urine of magic mushroom (MM) users, is described. In the presence of Aroclor 1254 pretreated rat liver microsomes, psilocin and the cofactor UDPGA were incubated for 20 h. Purification by HPLC gave PCG in 19% yield (3.6 mg). The compound structure was characterized by MS and NMR. The milligram amounts of PCG produced by this method will allow the direct identification and quantification of PCG in the urine of MM users. PMID:21960543

Shoda, Takuji; Fukuhara, Kiyoshi; Goda, Yukihiro; Okuda, Haruhiro

2011-09-01

338

Effect of chronic undernutrition on glucuronide and glutathione conjugation in rat liver.  

PubMed

Glucuronide and glutathione conjugation reactions were studied in rats with varying degrees of diet restriction over a period of 15 weeks. No significant change in the UDP glucuronyl transferase activity with para-nitrophenol and chloramphenicol was observed under both native state and stimulated conditions. On the other hand, there was a progressive decrease in the glutathione S transferase activity with bromosulphthalein and chlorodinitrobenzene. The decrease in the glutathione S transferase activity was more pronounced with chlorodinitrobenzene and was due more to the diminished apparent Vmax than to any change in the Km values. The results suggest that there might be an overall decrease in the conjugation reactions in food restriction. PMID:3928312

Rajpurohit, R; Krishnaswamy, K

1985-01-01

339

In Vitro Glucuronidation of Fenofibric Acid by Human UDP-Glucuronosyltransferases and Liver Microsomes  

PubMed Central

Fenofibric acid (FA), the active moiety of fenofibrate, is an agonist of the peroxisome proliferator-activated nuclear receptor ? that modulates triglyceride and cholesterol profiles. Lipid response to fenofibrate and FA serum concentrations is highly variable. Although FA is reported to be almost exclusively inactivated by UDP-glucuronosyltransferases (UGTs) into FA-glucuronide (FA-G), the contribution of UGT isoenzymes has never been systematically assessed. Heterologously expressed human UGT1A and UGT2B and their coding variants were tested for FA glucuronidation using liquid chromatography/mass spectrometry. Recombinant UGT2B7 presented the highest Vmax/Km value (2.10 ?l/min/mg), 16-fold higher than the activity of other reactive UGTs, namely, UGT1A3, UGT1A6, and UGT1A9 (0.13, 0.09, and 0.02 ?l/min/mg, respectively). UGT2B7.1 (His268) and UGT2B7.2 (Tyr268) enzyme activity was similar, whereas UGT1A3.2 (R11A47), UGT1A3.3 (Trp11), and UGT1A9.3 (Thr33) showed 61 to 96% reduced Vmax/Km values compared with the respective (1) reference proteins. FA-G formation by a human liver bank (n = 48) varied by 10-fold, but the rate of formation was not associated with common genetic variations in UGT1A3, UGT1A6, UGT1A9, and UGT2B7. Correlation with activities for the probe substrates zidovudine (UGT2B7; r2 = 0.75), mycophenolic acid (UGT1A9; r2 = 0.42), fulvestrant (UGT1A3; r2 = 0.36), but not serotonin (UGT1A6; r2 = 0.06) indicated a primary role for UGT2B7 and lesser roles of UGT1A9 and UGT1A3 in hepatic FA glucuronidation. This was confirmed by a strong correlation of FA-G formation with UGT2B7 protein content and inhibition by fluconazole, a known UGT2B7 selective inhibitor. Additional studies are required to identify genetic factors contributing to the observed FA glucuronidation variability.

Tojcic, Jelena; Benoit-Biancamano, Marie-Odile; Court, Michael H.; Straka, Robert J.; Caron, Patrick

2009-01-01

340

Regiospecificity and stereospecificity of human UDP-glucuronosyltransferases in the glucuronidation of estriol, 16-epiestriol, 17-epiestriol, and 13-epiestradiol.  

PubMed

The glucuronidation of estriol, 16-epiestriol, and 17-epiestriol by the human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B was examined. UGT1A10 is highly active in the conjugation of the 3-OH in all these estriols, whereas UGT2B7 is the most active UGT toward one of the ring D hydroxyls, the 16-OH in estriol and 16-epiestriol, but the 17-OH in 17-epiestriol. Kinetic analyses indicated that the 17-OH configuration plays a major role in the affinity of UGT2B7 for estrogens. The glucuronidation of the different estriols by the human liver and intestine microsomes reflects the activity of UGT1A10 and UGT2B7 in combination with the tissues' difference in UGT1A10 expression. The UGT1A10 mutant 1A10-F93G exhibited much higher V(max) values than UGT1A10 in estriol and 17-epiestriol glucuronidation, but a significantly lower value in 16-epiestriol glucuronidation. To this study on estriol glucuronidation we have added experiments with 13-epiestradiol, a synthetic estradiol in which the spatial arrangement of the methyl on C18 and the hydroxyl on C17 is significantly different than in other estrogens. In comparison with estradiol glucuronidation, the C13 configuration change decreases the turnover of UGTs that conjugate the 3-OH, but increases it in UGTs that primarily conjugate the 17-OH. Unexpectedly, UGT2B17 exhibited similar conjugation rates of both the 17-OH and 3-OH of 13-espiestradiol. The combined results reveal the strong preference of UGT1A10 for the 3-OH of physiologic estrogens and the equivalently strong preference of UGT2B7 and UGT2B17 for the hydroxyls on ring D of such steroid hormones. PMID:23288867

Sneitz, Nina; Vahermo, Mikko; Mosorin, Johanna; Laakkonen, Liisa; Poirier, Donald; Finel, Moshe

2013-03-01

341

Characterization of a rat liver glucuronosyltransferase that glucuronidates the selective D1 antagonist, SCH 23390, and other benzazepines.  

PubMed

SCH 23390 is a novel benzazepine that selectively blocks dopamine receptors of the D1 subtype. Glucuronidation of this selective D1 antagonist was studied in vitro using rat liver microsomes. Methods to separate SCH 23390 glucuronide from SCH 23390 were developed which utilized either HPLC techniques or solvent extraction of SCH 23390 with 3-heptanone. Formation of a SCH 23390 glucuronide was confirmed upon incubation of SCH 23390 and UDPGA with naive rat liver microsomes. Liver enzyme activity for SCH 23390 glucuronidation was also enhanced after addition of the detergents, Lubrol or Triton X-100, to the naive liver microsomes. Kinetic analyses indicated an apparent Vmax and Km for UDPGA as 120.9 pmol/mg protein/min and 0.63 mM, and an apparent Vmax and Km for SCH 23390 as 282.4 pmol/mg protein/min and 0.41 microM. Further characterization of the liver enzyme responsible for the glucuronidation of SCH 23390 revealed a stereoselective substrate preference similar to that seen with the D1 dopamine receptor. Substrate inhibition studies indicated that SCH 23390, haloperidol, apomorphine, and alpha-naphthol demonstrated the highest affinity for the glucuronosyltransferase enzyme. However, (-)-sulpiride, raclopride, and endogenous substrates such as dopamine, serotonin, epinephrine, and norepinephrine demonstrated low affinity for the liver enzyme. These studies describe a rat liver glucuronosyltransferase with a unique substrate specificity toward selected dopaminergic agents. Finally, induction profiles revealed that neither phenobarbital (100 mg/kg, ip, for 3 days), beta-naphthoflavone (100 mg/kg, ip, for 4 days), nor 3-methylcholanthrene (80 mg/kg, ip, for 4 days) enhanced liver glucuronosyltransferase activity for SCH 23390 glucuronidation. PMID:1687024

Tedford, C E; Ruperto, V B; Barnett, A

1991-01-01

342

2D QSAR Study for Gemfibrozil Glucuronide as the Mechanism-based Inhibitor of CYP2C8.  

PubMed

Mechanism-based inhibition of cytochrome P450 involves the bioactivation of the drug to a reactive metabolite, which leads to cytochrome inhibition via various mechanisms. This is generally seen in the Phase I of drug metabolism. However, gemfibrozil (hypolipidemic drug) leads to mechanism-based inhibition after generating glucuronide conjugate (gemfibrozil acyl-?-glucuronide) in the Phase II metabolism reaction. The mechanism involves the covalent binding of the benzyl radical (generated from the oxidation of aromatic methyl group in conjugate) to the heme of CYP2C8. This article deals with the development of a 2D QSAR model based on the inhibitory potential of gemfibrozil, its analogues and corresponding glucuronide conjugates in inhibiting the CYP2C8-catalysed amodiaquine N-deethylation. The 2D QSAR model was developed using multiple linear regression analysis in Accelrys Discovery Studio 2.5 and helps in identifying the descriptors, which are actually contributing to the inhibitory potency of the molecules studied. The built model was further validated using leave one out method. The best quantitative structure activity relationship model was selected having a correlation coefficient (r) of 0.814 and cross-validated correlation coefficient (q(2)) of 0.799. 2D QSAR revealed the importance of volume descriptor (Mor15v), shape descriptor (SP09) and 3D matrix-based descriptor (SpMax_RG) in defining the activity for this series of molecules. It was observed that volume and 3D matrix-based descriptors were crucial in imparting higher potency to gemfibrozil glucuronide conjugate, as compared with other molecules. The results obtained from the present study may be useful in predicting the inhibitory potential (IC50 for CYP2C8 inhibition) of the glucuronide conjugates of new molecules and compare with the standard gemfibrozil acyl-?-glucuronide (in terms of pIC50 values) in early stages of drug discovery and development. PMID:24591743

Taxak, N; Bharatam, P V

2013-11-01

343

2D QSAR Study for Gemfibrozil Glucuronide as the Mechanism-based Inhibitor of CYP2C8  

PubMed Central

Mechanism-based inhibition of cytochrome P450 involves the bioactivation of the drug to a reactive metabolite, which leads to cytochrome inhibition via various mechanisms. This is generally seen in the Phase I of drug metabolism. However, gemfibrozil (hypolipidemic drug) leads to mechanism-based inhibition after generating glucuronide conjugate (gemfibrozil acyl-?-glucuronide) in the Phase II metabolism reaction. The mechanism involves the covalent binding of the benzyl radical (generated from the oxidation of aromatic methyl group in conjugate) to the heme of CYP2C8. This article deals with the development of a 2D QSAR model based on the inhibitory potential of gemfibrozil, its analogues and corresponding glucuronide conjugates in inhibiting the CYP2C8-catalysed amodiaquine N-deethylation. The 2D QSAR model was developed using multiple linear regression analysis in Accelrys Discovery Studio 2.5 and helps in identifying the descriptors, which are actually contributing to the inhibitory potency of the molecules studied. The built model was further validated using leave one out method. The best quantitative structure activity relationship model was selected having a correlation coefficient (r) of 0.814 and cross-validated correlation coefficient (q2) of 0.799. 2D QSAR revealed the importance of volume descriptor (Mor15v), shape descriptor (SP09) and 3D matrix-based descriptor (SpMax_RG) in defining the activity for this series of molecules. It was observed that volume and 3D matrix-based descriptors were crucial in imparting higher potency to gemfibrozil glucuronide conjugate, as compared with other molecules. The results obtained from the present study may be useful in predicting the inhibitory potential (IC50 for CYP2C8 inhibition) of the glucuronide conjugates of new molecules and compare with the standard gemfibrozil acyl-?-glucuronide (in terms of pIC50 values) in early stages of drug discovery and development.

Taxak, N.; Bharatam, P. V.

2013-01-01

344

Ethyl chloride improves antiseptic effect of betadine skin preparation for office procedures.  

PubMed

To determine if ethyl chloride is an effective disinfectant alone or combined with povidone iodine in a clinical setting, 35 volunteers had different portions of their knees swabbed with sterile cotton-tip applicators after an area of skin was prepared with either ethyl chloride alone, povidone iodine alone, or povidone iodine followed by ethyl chloride. An area with no preparation at all served as the control. Specimens were then cultured on agar plates and bacterial growth assessed. When the data was categorized as colony forming units (CFUs) or no CFUs, both ethyl chloride and povidone iodine used alone had significantly fewer specimens with CFUs (p=0.001) than controls, but were not significantly different from each other (p=0.18). Additionally, the combination of povidone iodine followed by ethyl chloride spray had significantly fewer samples with CFUs than either product used alone (p=0.001). In addition to its local anesthetic properties, ethyl chloride may be an effective disinfectant alone and may improve skin disinfection when used with povidone iodine compared to povidone iodine alone. PMID:22995356

Azar, Frederick M; Lake, Jason E; Grace, Sean P; Perkinson, Brian

2012-01-01

345

Uptake of the photosensitizer tin ethyl etiopupurin by the canine prostate and its tissue effects when combined with red light  

NASA Astrophysics Data System (ADS)

A series of experiments was undertaken to determine the uptake of the photosensitizer tin ethyl etiopurpurin in the canine prostate. At increasing time intervals after intravenous injection, tissue photosensitizer levels were determined for the prostate, urinary bladder and other selected sites. Tissue effects resulting from either transurethral or transperineal delivery of light to the prostate after tin ethyl etiopurpurin-photosensitization were then assessed by light microscopy. Both resulted in hemorrhagic necrosis of the target prostatic tissue. Photodynamic therapy of the prostate using tin ethyl etiopurpurin as photosensitizer for the treatment of both benign prostatic enlargement and adenocarcinoma is worth of further investigation.

Selman, Steven H.; Keck, Rick W.; Wittenberg, Aaron F.; Dehoratius, Sandra L.; Narciso, Hugh L.; Doiron, Daniel R.

1995-05-01

346

Infrared spectroscopic studies of the conformation in ethyl ?-haloacetates in the vapor, liquid and solid phases  

NASA Astrophysics Data System (ADS)

Infrared spectra of ethyl ?-fluoroacetate, ethyl ?-chloroacetate, ethyl ?-bromoacetate and ethyl ?-iodoacetate have been measured in the solid, liquid and vapor phases in the region 4000-200 cm -1. Vibrational frequency assignment of the observed bands to the appropriate modes of vibration was made. Calculations at DFT B3LYP/6-311+G** level, Job: conformer distribution, using Spartan program '08, release 132 was made to determine which conformers exist in which molecule. The results indicated that the first compound exists as an equilibrium mixture of cis and trans conformers and the other three compounds exist as equilibrium mixtures of cis and gauche conformers. Enthalpy differences between the conformers have been determined experimentally for each compound and for every phase. The values indicated that the trans of the first compound is more stable in the vapor phase, while the cis is the more stable in both the liquid and solid phases. In the other three compounds the gauche is more stable in the vapor and liquid phases, while the cis conformer is the more stable in the solid phase for each of the second and third compound, except for ethyl ?-iodoacetate, the gauche conformer is the more stable over the three phases. Molar energy of activation Ea and the pseudo-thermodynamic parameters of activation ? H‡, ? S‡ and ? G‡ were determined in the solid phase by applying Arrhenius equation; using bands arising from single conformers. The respective Ea values of these compounds are 5.1 ± 0.4, 6.7 ± 0.1, 7.5 ± 1.3 and 12.0 ± 0.6 kJ mol -1. Potential energy surface calculations were made at two levels; for ethyl ?-fluoroacetate and ethyl ?-chloroacetate; the calculations were established at DFT B3LYP/6-311+G** level and for ethyl ?-bromoacetate and ethyl ?-iodoacetate at DFT B3LYP/6-311G* level. The results showed no potential energy minimum exists for the gauche conformer in ethyl ?-fluoroacetate.

Jassem, Naserallah A.; El-Bermani, Muhsin F.

2010-07-01

347

Kinetic Studies of the Free Cationic Polymerization of Ethyl Vinyl Ether and Isobutyl Vinyl Ether Initiated by Triphenylmethyl Hexachloroantimonate.  

National Technical Information Service (NTIS)

The absolute rate constants for the cationic polymerization of ethyl and isobutyl vinyl ethers have been determined in methylene chloride solution. Under the conditions used, the polymerization proceeded by 'free ions'. Extremely rigorous drying procedure...

Y. J. Chung J. M. Rooney D. R. Squire V. Stannett

1974-01-01

348

Identification of a new metabolite of GHB: gamma-hydroxybutyric acid glucuronide.  

PubMed

Gamma-hydroxybutyric acid (GHB) is an important analyte in clinical and forensic toxicology with a narrow detection window of 3-6 h. In the search of improved detection methods, the existence in vivo of a glucuronated GHB metabolite (GHB-GLUC) was hypothesized. Chemically pure standards of GHB-GLUC and a deuterated analogue for chromatography were synthesized. Liquid chromatography and tandem mass spectrometry were used for targeted analysis in anonymous clinical urine samples (n = 50). GHB-GLUC was found in concentrations ranging from 0.11 to 5.0 µg/mL (mean: 1.3 ± 1.2 µg/mL). Thus far, this is the first report of a GHB glucuronide detected in biological samples. Given that glucuronides generally have longer half-life values than their corresponding free drugs, GHB-GLUC should theoretically be a biomarker of GHB intoxication. It is also proposed that the hitherto unexplained reports of elevated GHB concentrations in some biological samples, which has caused the setting of a relatively high cutoff value (10 µg/mL), represent total GHB measurements (sum of free GHB and actively chemically hydrolyzed GHB-GLUC). To address these challenges, the present study must be followed by comprehensive pharmacokinetic and stability studies after the controlled administration of GHB. PMID:23612681

Petersen, Ida Nymann; Tortzen, Christian; Kristensen, Jesper Langgaard; Pedersen, Daniel Sejer; Breindahl, Torben

2013-06-01

349

Regioselective Glucuronidation of Oxyresveratrol, a Natural Hydroxystilbene, by Human Liver and Intestinal Microsomes and Recombinant UGTs.  

PubMed

Oxyresveratrol (OXY) is a natural hydroxystilbene that shows similar bioactivity but better water solubility than resveratrol. This study aims to characterize its glucuronidation kinetics in human liver (HLMs) and intestinal (HIMs) microsomes and identify the main UDP-glucuronosyltransferase (UGT) isoforms involved. Three and four mono-glucuronides of OXY were generated in HIMs and HLMs, respectively, with oxyresveratrol-2-O-?-d-glucuronosyl (G4) as the major metabolite in both organs. The kinetics of G4 formation fit a sigmoidal model in HLMs and biphasic kinetics in HIMs. Multiple UGT isoforms catalyzed G4 formation with the highest activity observed with UGT1A9 followed by UGT1A1. G4 formation by both isoforms followed substrate inhibition kinetics. Propofol (UGT1A9 inhibitor) effectively blocked G4 generation in HLMs (IC50 63.7 ± 11.6 µM), whereas the UGT1A1 inhibitor bilirubin only produced partial inhibition in HLMs and HIMs. These findings shed light on the metabolic mechanism of OXY and arouse awareness of drug interactions. PMID:24256624

Hu, Nan; Mei, Mei; Ruan, Jianqing; Wu, Wenjin; Wang, Yitao; Yan, Ru

2014-06-25

350

Effects of menthol on tobacco smoke exposure, nicotine dependence, and NNAL glucuronidation  

PubMed Central

Menthol is a controversial cigarette additive because its’ physiological or pharmacologic effects may possibly increase the risk of cancer and its targeted market is the black community. In a community-based cross-sectional study of 525 black and white volunteers, we compared levels of urinary and plasma cotinine, plasma thiocyanate, urinary 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanol (NNAL) and its detoxified form NNAL-Gluc between menthol and nonmenthol smokers. In regression models that adjusted for daily cigarette intake, no significant differences were observed in the concentration of these biomarkers by menthol status in both races. There was no significant association between high Fagerstrom nicotine dependence scores and the use of menthol cigarettes (odds ratio [OR] = 1.1, 95% confidence intervals [CI] 0.6–2.0), but an increased risk was observed with smoking a cigarette soon (?30 minutes) after waking (OR = 2.1, 95% CI 1.0–3.8). The ratio of NNAL-Gluc to NNAL, a possible indicator of lung cancer risk, was significantly lower in menthol vs. nonmenthol smokers. The NNAL-Gluc/NNAL ratio was 34% lower in whites (P<0.01) and 22% lower in blacks. In subsequent human liver microsome studies, menthol inhibited the rate of both NNAL-O-glucuronidation and NNAL-N-glucuronidation. Collectively, these results show that menthol does not affect biological exposure to tobacco smoke constituents, but indicates that menthol might inhibit the detoxification of the potent lung carcinogen NNAL.

Muscat, Joshua E.; Chen, Gang; Knipe, Ashley; Stellman, Steven D.; Lazarus, Philip; Richie, John P.

2009-01-01

351

A fatal clomipramine intoxication case of a chronic alcoholic patient: Application of postmortem hair analysis method of clomipramine and ethyl glucuronide using LC\\/APCI\\/MS  

Microsoft Academic Search

Toxicological investigations of postmortem specimens of a 26-year-old man were performed with the use of LC\\/APCI\\/MS. They revealed in the blood of the deceased clomipramine (9.49?g\\/g) and its main metabolite norclomipramine (1.10?g\\/g) at concentrations explaining the fatal outcome. The presence of these xenobiotics in a 12-cm-long strand of hair (clomipramine, 7.60ng\\/mg in I segment; 4.19ng\\/mg in II segment; 1.86ng\\/mg in

Ma?gorzata K?ys; Mariusz ?cis?owski; Sebastian Rojek; Jan Ko?odziej

2005-01-01

352

Human and Rat ABC Transporter Efflux of Bisphenol A and Bisphenol A Glucuronide: Interspecies Comparison and Implications for Pharmacokinetic Assessment  

EPA Science Inventory

Significant interspecies differences exist between human and rodent with respect to absorption, distribution, and excretion of bisphenol A (BPA) and its primary metabolite, BPA-glucuronide (BPA-G). ATP-Binding Cassette (ABC) transporter enzymes play important roles in these physi...

353

Identification of Two Glucuronide Metabolites of Doxylamine via Thermospray/Mass Spectrometry and Thermospray/Mass Spectrometry/Mass Spectrometry.  

National Technical Information Service (NTIS)

Analysis of a high-pressure liquid chromatography fraction containing two urinary glucuronide metabolites of doxylamine by thermospray mass spectrometry (TSP/MS) provided (MH)+ ions for each metabolite. TSP/MS/MS of the (MH)+ ions provided a fragment ion ...

W. A. Korfmacher C. L. Holder L. D. Betowski R. K. Mitchum

1987-01-01

354

RELATIONSHIP BETWEEN HEPATIC MICROSOMAL THYROXINE GLUCURONIDATION AND TOTAL SERUM THYROXINE CONCENTRATIONS IN RATS TREATED WITH PCDDS, PCDFS AND PCBS  

EPA Science Inventory

RELATIONSHIP BETWEEN HEPATIC MICROSOMAL THYROXINE GLUCURONIDATION AND TOTAL SERUM THYROXINE CONCENTRATIONS IN RATS TREATED WITH PCDDs, PCDFs AND PCBs. D G Ross, K M Crofton, M J DeVito, NHEERL, ORD, USEPA, RTP, NC. Many PHAHs decrease thyroxine (T4), possibly due to inducti...

355

IDENTIFICATION OF TWO GLUCURONIDE METABOLITES OF DOXYLAMINE VIA THERMOSPRAY/MASS SPECTROMETRY AND THERMOSPRAY/MASS SPECTROMETRY/MASS SPECTROMETRY  

EPA Science Inventory

Analysis of a high-pressure liquid chromatography fraction containing two urinary glucuronide metabolites of doxylamine by thermospray mass spectrometry (TSP/MS) provided (MH)+ ions for each metabolite. TSP/MS/MS of the (MH)+ ions provided a fragment ion characteristic of these m...

356

Summary of Emissions Associated with Sources of Ethyl Chloride,  

National Technical Information Service (NTIS)

The potential ambient health impact of ethyl chloride emissions has been investigated. The document contains information on the sources of ethyl chloride emissions, estimates current emission levels, summarizes production trends and ambient monitoring res...

G. L. Hume

1988-01-01

357

Ethyl pyruvate improves survival in awake hemorrhage.  

PubMed

Classical experimental models of hemorrhage are characterized by the use of anesthetics that may interfere with the typical immune responses and pathology of hemorrhage/resuscitation. Thus, therapeutic strategies successful in anesthetized animals might not be beneficial in clinical trials. In this study, we analyzed whether ethyl pyruvate could provide therapeutic benefits during resuscitation in awake (unanesthetized) hemorrhage. Our results indicate that hemorrhage in unanesthetized animals required approximately 25% higher blood withdrawal than anesthetized animals to achieve the same targeted mean arterial blood pressure. Resuscitation with Hextend reestablished circulatory volume and improved survival during resuscitation of awake rodents. Yet, over 75% of the animals resuscitated with Hextend died within the first hours after hemorrhage. Resuscitation with Hextend containing 50 mM ethyl pyruvate protected over 87% of the animals. This survival benefit did not correlate with significant changes in the metabolic markers but with an anti-inflammatory potential during resuscitation. Unlike classical hemorrhage in anesthetized animals, ethyl pyruvate reestablished mean arterial blood pressure significantly earlier than Hextend in unanesthetized rodents. Unanesthetized animals showed twofold higher serum tumor necrosis factor (TNF)-alpha than anesthetized animals subjected to the same blood pressure. This process was not due to the response of a single organ, but affected all the analyzed organs including the lung, heart, spleen, and liver. Although resuscitation with Hextend failed to attenuate systemic TNF-alpha levels, it inhibited TNF-alpha levels in the lung, heart, and liver but not in the spleen. Unlike Hextend, resuscitation with ethyl pyruvate prevented high serum TNF-alpha levels and blunted TNF-alpha responses in all the organs including the spleen. These studies indicate that the inflammatory responses in anesthetized animals differ from that in unanesthetized animals and that awake hemorrhage can provide advantages in the study of anti-inflammatory strategies during resuscitation. Ethyl pyruvate may attenuate systemic inflammatory responses during resuscitation and improve survival in experimental models of awake hemorrhage. PMID:19172241

Cai, Bolin; Brunner, Michael; Wang, Haichao; Wang, Ping; Deitch, Edwin A; Ulloa, Luis

2009-04-01

358

Ethyl pyruvate improves survival in awake hemorrhage  

PubMed Central

Classical experimental models of hemorrhage are characterized by the use of anesthetics that may interfere with the typical immune responses and pathology of hemorrhage/resuscitation. Thus, therapeutic strategies successful in anesthetized animals might not be beneficial in clinical trials. In this study, we analyzed whether ethyl pyruvate could provide therapeutic benefits during resuscitation in awake (unanesthetized) hemorrhage. Our results indicate that hemorrhage in unanesthetized animals required approximately 25% higher blood withdrawal than anesthetized animals to achieve the same targeted mean arterial blood pressure. Resuscitation with Hextend reestablished circulatory volume and improved survival during resuscitation of awake rodents. Yet, over 75% of the animals resuscitated with Hextend died within the first hours after hemorrhage. Resuscitation with Hextend containing 50 mM ethyl pyruvate protected over 87% of the animals. This survival benefit did not correlate with significant changes in the metabolic markers but with an anti-inflammatory potential during resuscitation. Unlike classical hemorrhage in anesthetized animals, ethyl pyruvate reestablished mean arterial blood pressure significantly earlier than Hextend in unanesthetized rodents. Unanesthetized animals showed twofold higher serum tumor necrosis factor (TNF)-? than anesthetized animals subjected to the same blood pressure. This process was not due to the response of a single organ, but affected all the analyzed organs including the lung, heart, spleen, and liver. Although resuscitation with Hextend failed to attenuate systemic TNF-? levels, it inhibited TNF-? levels in the lung, heart, and liver but not in the spleen. Unlike Hextend, resuscitation with ethyl pyruvate prevented high serum TNF-? levels and blunted TNF-? responses in all the organs including the spleen. These studies indicate that the inflammatory responses in anesthetized animals differ from that in unanesthetized animals and that awake hemorrhage can provide advantages in the study of anti-inflammatory strategies during resuscitation. Ethyl pyruvate may attenuate systemic inflammatory responses during resuscitation and improve survival in experimental models of awake hemorrhage.

Cai, Bolin; Brunner, Michael; Wang, Haichao; Wang, Ping; Deitch, Edwin A.

2011-01-01

359

Rapid deconjugation of SN-38 glucuronide and adsorption of released free SN-38 by intestinal microorganisms in rat  

PubMed Central

One of the dose-limiting toxicities of irinotecan hydrochloride (CPT-11) is delayed-onset diarrhea. CPT-11 is converted to its active metabolite, SN-38, which is conjugated to SN-38 glucuronide (SN-38G). SN-38G excreted in the intestinal lumen is extensively deconjugated by bacterial ?-glucuronidase, resulting in the regeneration of SN-38, which causes diarrhea. However, the deconjugation of SN-38G by the intestinal microflora remains to be clarified. This study aimed to investigate the microbial transformation of SN-38G by an anaerobic mixed culture of rat cecal microorganisms. Concentrations of SN-38G and SN-38 were then determined using high-performance liquid chromatography. Complete deconjugation of SN-38G to SN-38 in the mixed cultures was observed within 1 h of incubation, with 62.7% of the added SN-38G being found in the supernatant. Approximately 80.4% of the SN-38 in the supernatant was bound to protein, and the remaining 19.6% was detected as active free SN-38. In total, only 12.3% (19.6 × 62.7%) of the SN-38G added to the test tube was found in the supernatant in the ultrafiltrable free form, indicating that approximately 90% of the SN-38G added to the growth medium either remained adsorbed onto the pelleted fraction or occurred in a protein-bound form in the supernatant. The remaining 10% of the SN-38G added to the growth medium existed in the unbound form, the form capable of causing damage to the intestinal membrane. In conclusion, these results indicated that the greater part of the SN-38 produced from SN-38G by the action of bacterial ?-glucuronidase is rapidly adsorbed onto intestinal bacterial cell walls or dietary fibers in pelleted fraction, and only 10% remains in the ultrafiltrable unbound form in the intestinal luminal fluid.

TAKAKURA, AKIRA; KURITA, AKINOBU; ASAHARA, TAKASHI; YOKOBA, MASANORI; YAMAMOTO, MICHIKO; RYUGE, SHINICHIRO; IGAWA, SATOSHI; YASUZAWA, YUKITOSHI; SASAKI, JIICHIRO; KOBAYASHI, HIROSUKE; MASUDA, NORIYUKI

2011-01-01

360

Association of Uridine Diphosphate-Glucuronosyltransferase 2B Gene Variants with Serum Glucuronide Levels and Prostate Cancer Risk  

PubMed Central

Aims: Uridine diphosphate-glucuronosyltransferase 2B (UGT2B) enzymes conjugate testosterone metabolites to enable their excretion in humans. The functional significance of the UGT2B genetic variants has never been described in humans. We evaluated UGT2B variants in relation to plasma androstane-3?,17?-diol-glucuronide (AAG) levels and the prostate cancer risk. Results: AAG levels were measured in sera from 150 controls and compared to the polymorphisms of UGT2B17, UGT2B15, and UGT2B7. Genomic DNA from controls (301) and cases (148) was genotyped for the polymorphisms, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analyses. Having two copies of UGT2B17 was associated with higher AAG levels in controls among Whites (p=0.02), but not Blacks (p=0.82). Logistic regression models adjusting for age and race revealed that homozygosity for the G allele of the UGT2B15D85Y polymorphism was directly associated with the prostate cancer risk (OR=2.70, 95% CI=1.28, 5.55). Conclusions: While the small sample size limits inference, our findings suggest that an association between the UGT2B17 copy number variant (CNV) and serum AAG levels in Whites, but unexpectedly not in Blacks. This novel observation suggests that genetic determinants of AAG levels in Blacks are unrelated to the UGT2B17 CNV. This study replicates the results that show an association of UGT215D85Y with an increased prostate cancer risk.

Hoyo, Cathrine; Oliver, Shannon D.; Gerber, Leah; Shuler, Katie; Calloway, Elizabeth; Gaines, Alexis R.; McPhail, Megan; Livingston, Jonathan N.; Richardson, Ricardo M.; Schildkraut, Joellen M.; Freedland, Stephen J.

2013-01-01

361

Mouse hepatoma cell lines differing in aryl hydrocarbon receptor-mediated signaling have different activities for glucuronidation.  

PubMed

For studies on the aryl hydrocarbon receptor (AhR)-dependent toxicity of the mycotoxins alternariol (AOH) and alternariol methyl ether (AME), three mouse hepatoma (Hepa-1) cell lines with intact and with compromised AhR signaling were compared with respect to their activities for hydroxylation, methylation, and glucuronidation. Whereas the activities of cytochrome P450-mediated monooxygenase and catechol-O-methyl transferase were very low and did not differ between the three cell lines, a pronounced difference was observed for UDP-glucuronosyl transferase activity, which was much higher in Hepa-1c1c4 than in c1c7 and c1c12 cells. In all three cell types, the rate of glucuronidation of AOH was about four times higher than that of AME. Whereas AME caused a concentration-dependent G2/M arrest in each cell line, AOH arrested Hepa-1c1c7 and c1c12 cells but not c1c4 cells. However, Hepa-1c1c4 cells were arrested by AOH when ?-glucuronidase was added to the incubation medium in order to reverse the formation of AOH glucuronides. We conclude that the failure of AOH to cause cell cycle inhibition in Hepa-1c1c4 cells is due to its efficient glucuronidation. The considerable UDP-glucuronosyl transferase activity of Hepa-1c1c4 cells should be taken into account when other compounds are studied in this cell line. Moreover, we demonstrate that differences in glucuronide formation between cell types can be overcome by the addition of ?-glucuronidase to the cell culture medium. PMID:22143556

Burkhardt, B; Jung, S A; Pfeiffer, E; Weiss, C; Metzler, M

2012-04-01

362

Analysis of R- and S-Hydroxywarfarin Glucuronidation Catalyzed by Human Liver Microsomes and Recombinant UDP-Glucuronosyltransferases  

PubMed Central

Coumadin (R-, S-warfarin) is a challenging drug to accurately dose, both initially and for maintenance, because of its narrow therapeutic range and wide interpatient variability and is typically administered as a racemic (Rac) mixture, which complicates the biotransformation pathways. The goal of the current work was to identify the human UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of the separated R- and S-enantiomers of 6-, 7-, and 8-hydroxywarfarin and the possible interactions between these enantiomers. The kinetic and inhibition constants for human recombinant 1A family UGTs toward these separated enantiomers have been assessed using high-performance liquid chromatography (HPLC)-UV-visible analysis, and product confirmations have been made using HPLC-mass spectrometry/mass spectrometry. We found that separated R- and S-enantiomers of 6-, 7-, and 8-hydroxywarfarin demonstrate significantly different glucuronidation kinetics and can be mutually inhibitory. In some cases significant substrate inhibition was observed, as shown by Km, Vmax, and Ki, comparisons. In particular, UGT1A1 and extrahepatic UGT1A10 have significantly higher capacities than other isoforms for S-7-hydroxywarfarin and R-7-hydroxywarfarin glucuronidation, respectively. Activity data generated using a set of well characterized human liver microsomes supported the recombinant enzyme data, suggesting an important (although not exclusive) role for UGT1A1 in glucuronidation of the main warfarin metabolites, including Rac-6- and 7-hydroxywarfarin and their R- and S-enantiomers in the liver. This is the first demonstration that the R- and S-enantiomers of hydroxywarfarins are glucuronidated, with significantly different enzymatic affinity and capacity, and supports the importance of UGT1A1 as the major hepatic isoform involved.

Bratton, Stacie M.; Mosher, Carrie M.; Khallouki, Farid; Finel, Moshe; Court, Michael H.; Moran, Jeffery H.

2012-01-01

363

Use of positive ion fast atom bombardment mass spectrometry for rapid identification of a bile alcohol glucuronide isolated from cerebrotendinous xanthomatosis patients  

SciTech Connect

The identification of a major biliary and plasma bile alcohol glucuronide, 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha, 25-tetrol-3-0-beta-D-glucuronide, present in cerebrotendinous xanthomatosis (CTX) patients, was investigated by positive ion fast atom bombardment mass spectrometry (FAB-MS). The spectrum was characterized by abundant ions formed by attachment of a proton, (M + H)+, or of alkali ions, (M + Na)+ and (M + 39K)+, to the glucuronide salt. These ions allowed an unambiguous deduction of the molecular weight of the sample. It is suggested that FAB-MS could be used in the rapid diagnosis of CTX.

Dayal, B.; Salen, G.; Tint, G.S.; Shefer, S.; Benz, S.W. (UMDNJ-New Jersey Medical School, Newark (USA))

1990-02-01

364

Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases.  

PubMed

The aim of this study was to elucidate the metabolic pathways for dihydroartemisinin (DHA), the active metabolite of the artemisinin derivative artesunate (ARTS). Urine was collected from 17 Vietnamese adults with falciparum malaria who had received 120 mg of ARTS i.v., and metabolites were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS). Human liver microsomes were incubated with [12-(3)H]DHA and cofactors for either glucuronidation or cytochrome P450-catalyzed oxidation. Human liver cytosol was incubated with cofactor for sulfation. Metabolites were detected by HPLC-MS and/or HPLC with radiochemical detection. Metabolism of DHA by recombinant human UDP-glucuronosyltransferases (UGTs) was studied. HPLC-MS analysis of urine identified alpha-DHA-beta-glucuronide (alpha-DHA-G) and a product characterized as the tetrahydrofuran isomer of alpha-DHA-G. DHA was present only in very small amounts. The ratio of the tetrahydrofuran isomer, alpha-DHA-G, was highly variable (median 0.75; range 0.09-64). Nevertheless, alpha-DHA-G was generally the major urinary product of DHA glucuronidation in patients. The tetrahydrofuran isomer appeared to be at least partly a product of nonenzymic reactions occurring in urine and was readily formed from alpha-DHA-G by iron-mediated isomerization. In human liver microsomal incubations, DHA-G (diastereomer unspecified) was the only metabolite found (V(max) 177 +/- 47 pmol min(-1) mg(-1), K(m) 90 +/- 16 microM). Alpha-DHA-G was formed in incubations of DHA with expressed UGT1A9 (K(m) 32 microM, V(max) 8.9 pmol min(-1) mg(-1)) or UGT2B7 (K(m) 438 microM, V(max) 10.9 pmol mg(-1) min(-1)) but not with UGT1A1 or UGT1A6. There was no significant metabolism of DHA by cytochrome-P450 oxidation or by cytosolic sulfotransferases. We conclude that alpha-DHA-G is an important metabolite of DHA in humans and that its formation is catalyzed by UGT1A9 and UGT2B7. PMID:12167566

Ilett, Kenneth F; Ethell, Brian T; Maggs, James L; Davis, Timothy M E; Batty, Kevin T; Burchell, Brian; Binh, Tran Quang; Thu, Le Thi Anh; Hung, Nguyen Canh; Pirmohamed, Munir; Park, B Kevin; Edwards, Geoffrey

2002-09-01

365

21 CFR 172.872 - Methyl ethyl cellulose.  

Code of Federal Regulations, 2010 CFR

...2009-04-01 2009-04-01 false Methyl ethyl cellulose. 172.872 Section 172.872 Food...Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose may be safely used in food in...

2009-04-01

366

Lipoxygenase inhibiting ethyl substituted glycoside from Symplocos racemosa  

Microsoft Academic Search

Phytochemical investigation of Symplocos racemosa resulted in the isolation of a new ethyl substituted glycoside, 1-ethyl brachiose-3?-acetate (1) along with four known compounds ketochaulmoogric acid (2), nonaeicosanol (3), triacontyl palmitate (4) and methyl triacontanoate (5). The substitution of ethyl group on 1 was natural because during the course of extraction and purification ethanol was not used. The structural elucidation of

Muhammad Athar Abbasi; Viqar Uddin Ahmad; Muhammad Zubair; Sarfraz A. Nawaz; Muhammad Arif Lodhi; Umar Farooq; M. Iqbal Choudhary

2005-01-01

367

21 CFR 172.872 - Methyl ethyl cellulose.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872...Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose may be safely used in food in...

2010-01-01

368

40 CFR 180.183 - O,O-Diethyl S-[2-(ethyl-thio)ethyl] phosphorodithioate; tolerances for residues.  

Code of Federal Regulations, 2010 CFR

...ethyl] phosphorothioate; disulfoton sulfone, O,O -diethyl S -[2-(ethylsulfonyl...phosphorodithioate; and disulfoton oxygen analog sulfone, O,O -diethyl S -[2-(ethylsulfonyl...ethyl] phosphorothioate; disulfoton sulfone, O,O -diethyl S...

2010-07-01

369

A sensitive fluorescence reagent, 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy]ethyl chloroformate, for amino acids determination in Saussurea involucrate and Artemisia capillaris Thunb using high-performance liquid chromatography with fluorescence detection and identification with mass spectroscopy/electrospray ionization source.  

PubMed

Recent researches shows that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. More precise analysis of AA composition is reckoned to be one of the most important applications in the biomedical and pharmaceutical fields. In this paper, we develop a sample, sensitive and mild method using 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy]ethyl chloroformate (DBCEC) as A labeling reagent for AA determination by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) and identification with mass spectroscopy. The maximum excitation and emission wavelengths for DBCEC-AA derivatives were 300 and 395 nm, respectively. This method, in conjunction with a gradient elution, offered a baseline resolution of 20 AA on a reversed-phase Hypersil BDS C(18) column. LC separation for the derivatized AA showed good reproducibility, and all AA were found to give excellent linear responses with correlation coefficients > 0.9993. The calculated detection limits with a 25.0 fmol injection of each AA (at a signal-to-noise ratio of 3:1) ranged from 2.62 to 22.6 fmol. This method was applied to determine the AA composition in Saussurea involucrate and Artemisia capillaris Thunb. Meanwhile, this method exhibits a powerful potential for trace analysis of AA from biomedicine, foodstuff and other complex samples. PMID:20878662

Li, Guoliang; Sun, Zhiwei; Song, Cuihua; Xia, Lian; Zheng, Jie; Suo, Yourui; You, Jinmao

2011-06-01

370

Vapor-Phase Infrared Spectral Study of Weapons-Grade O-Ethyl S- 2(diisopropylamino)ethyl methylphosphonothiolate (VX).  

National Technical Information Service (NTIS)

We report the infrared spectra of weapons-grade 0-ethyl-S-2- (diisopropylamino)ethyl methylphosphonothiolate in the mid-infrared (4000- 550/cm) region. The chemical used in the feedstock was obtained from a ton container and was analyzed by gas chromatogr...

A. C. Samuels B. R. Williams J. R. Miles M. S. Hulet

2012-01-01

371

Quercetin-3-O-glucuronide induces ABCA1 expression by LXR? activation in murine macrophages.  

PubMed

Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXR?), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXR? in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin. PMID:24216107

Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

2013-11-29

372

Sex-Dependent Disposition of Acetaminophen Sulfate and Glucuronide in the in Situ Perfused Mouse Liver  

PubMed Central

Breast cancer resistance protein (BCRP, ABCG2) is expressed in the hepatic canalicular membrane and mediates biliary excretion of xenobiotics including sulfate and glucuronide metabolites of some compounds. Hepatic Bcrp expression is sex-dependent, with higher expression in male mice. The hypothesis that sex-dependent Bcrp expression influences the hepatobiliary disposition of phase II metabolites was tested in the present study using acetaminophen (APAP) and the generated APAP glucuronide (AG) and sulfate (AS) metabolites in single-pass in situ perfused livers from male and female wild-type and Abcg–/– (Bcrp-deficient) mice. Pharmacokinetic modeling was used to estimate parameters governing the hepatobiliary disposition of APAP, AG, and AS. In wild-type mice, the biliary excretion rate constant was 2.5- and 7-fold higher in males than in females for AS and AG, respectively, reflecting male-predominant Bcrp expression. Sex-dependent differences in AG biliary excretion were not observed in Bcrp-deficient mice, and AS biliary excretion was negligible. Interestingly, sex-dependent basolateral excretion of AG (higher in males) and AS (higher in females) was noted in wild-type mice with a similar trend in Bcrp-deficient mouse livers, reflecting an increased rate constant for AG formation in male and AS formation in female mouse livers. In addition, the rate constant for AS basolateral excretion was increased significantly in female mouse livers compared with that in male mouse livers. It is interesting to note that multidrug resistance-associated protein 4 was higher in female than in male mouse livers. In conclusion, sex-dependent differences in conjugation and transporter expression result in profound differences in the hepatobiliary disposition of AG and AS in male and female mouse livers.

Lee, Jin Kyung; Abe, Koji; Bridges, Arlene S.; Patel, Nita J.; Raub, Thomas J.; Pollack, Gary M.; Brouwer, Kim L. R.

2009-01-01

373

Specific localization of quercetin-3-O-glucuronide in human brain.  

PubMed

In recent years, many papers have suggested that dietary flavonoids may exert beneficial effects in the brain tissue for the protection of neurons against oxidative stress and inflammation. However, the bioavailability of flavonoids across the blood-brain barrier and the localization in the brain remain controversial. Thus, we examined the localization of quercetin-3-O-glucuronide (Q3GA), a major phase-II metabolite of quercetin, in the human brain tissues with or without cerebral infarction by immunohistochemical staining using anti-Q3GA antibody. A significant immunoreactivity was observed in the epithelial cells of the choroid plexus, which constitute the structural basis of the blood-cerebrospinal fluid (CSF) barrier, and in the foamy macrophages of recent infarcts. The cellular accumulation of Q3GA was also reproduced in vitro in macrophage-like RAW264, microglial MG6, and brain capillary endothelial RBEC1. It is of interest that a common feature of these cell lines is the deconjugation of Q3GA, resulting in the cellular accumulation of non-conjugated quercetin and the methylated forms. We then examined the anti-inflammatory activity of Q3GA and the deconjugated forms in the lipopolysaccharide-stimulated macrophage cells and revealed that the deconjugated forms (quercetin and a methylated form isorhamnetin), but not Q3GA itself, exhibited inhibitory effects on the inflammatory responses through attenuation of the c-Jun N-terminal kinase pathway. These results suggested that a quercetin glucuronide can pass through the blood-brain barrier, perhaps the CSF barrier, accumulate in specific types of cells, such as macrophages, and act as anti-inflammatory agents in the brain through deconjugation into the bioactive non-conjugated forms. PMID:24893148

Ishisaka, Akari; Mukai, Rie; Terao, Junji; Shibata, Noriyuki; Kawai, Yoshichika

2014-09-01

374

Inhibitory effect of ciprofloxacin on ?-glucuronidase-mediated deconjugation of mycophenolic acid glucuronide.  

PubMed

The interaction between mycophenolate (MPA) and quinolone antibiotics such as ciprofloxacin is considered to reduce the enterohepatic recycling of MPA, which is biotransformed in the intestine from MPA glucuronide (MPAG) conjugate excreted via the biliary system; however, the molecular mechanism underlying this biotransformation of MPA is still unclear. In this study, an in vitro system was established to evaluate ?-glucuronidase-mediated deconjugation and to examine the influence of ciprofloxacin on the enzymatic deconjugation of MPAG and MPA resynthesis. Resynthesis of MPA via deconjugation of MPAG increased in a time-dependent manner from 5 to 60?min in the presence of ?-glucuronidase. Ciprofloxacin and phenolphthalein-?-d-glucuronide (PhePG), a typical ?-glucuronidase substrate, significantly decreased the production of MPA from MPAG in the ?-glucuronidase-mediated deconjugation system. In addition, enoxacin significantly inhibited the production of MPA from MPAG, while levofloxacin and ofloxacin had no inhibitory effect on MPA synthesis. Pharmacokinetic analysis revealed that ciprofloxacin showed a dose-dependent inhibitory effect on MPA production from MPAG via ?-glucuronidase with a half-maximal inhibitory concentration (IC50 ) value of 30.4?µm. While PhePG inhibited the ?-glucuronidase-mediated production of MPA from MPAG in a competitive manner, ciprofloxacin inhibited MPA synthesis via noncompetitive inhibition. These findings suggest that the reduction in the serum MPA concentration during the co-administration of ciprofloxacin is at least in part due to the decreased enterohepatic circulation of MPA because of noncompetitive inhibition of deconjugation of MPAG by intestinal ?-glucuronidase. Copyright © 2014 John Wiley & Sons, Ltd. PMID:24615849

Kodawara, Takaaki; Masuda, Satohiro; Yano, Yoshitaka; Matsubara, Kazuo; Nakamura, Toshiaki; Masada, Mikio

2014-07-01

375

Rotational spectra of methyl ethyl and methyl propyl nitrosamines. Conformational assignment, internal rotation and quadrupole coupling  

NASA Astrophysics Data System (ADS)

A structural determination of two carcinogenic nitrosamines, methyl ethyl and methyl propyl nitrosamine, was performed. Microwave spectra were gathered from both a Stark cell spectrometer and a pulsed jet Fabry-Perot Fourier transform microwave spectrometer. Each rotational transition is split into quadrupole hyperfine components by two nitrogen nuclei. This quadrupole pattern is doubled by a low barrier methyl rotor which produces resolvable A and E states. Rotational spectra were assigned for one conformer of methyl ethyl nitrosamine and two conformers of methyl propyl nitrosamine. The lowest energy conformers of each compound, according to empirical force field calculations, were assigned. The structure found for methyl ethyl nitrosamine has the nitrosyl oxygen on the methyl side with the terminal methyl group of the ethyl chain in the gauche position (OMG). Both conformers of methyl propyl nitrosamine have the same skeletal structure as the methyl ethyl compound; one conformer has the terminal methyl of the propyl group in the anti position (OMGA) while the other conformer has this methyl in the gauche position (OMGG -). Rotational constants and quadrupole coupling constants are reported for each assigned species. A barrier to internal rotation of the N-methyl group in each compound is also reported.

Walker, A. R. Hight; Lou, Qi; Bohn, Robert K.; Novick, Stewart E.

1995-02-01

376

Misidentification of ethyl chloride in the routine GC-FID analysis for alcohol.  

PubMed

GC-FID is the method of choice for alcohol screening and quantitative analysis in modern forensic medical practice. Although specific enough for routine use, some results could be misleading. In the current article we present a case of sexual asphyxia with drug and volatile substance abuse. Toxicological analysis revealed the presence of methamphetamine at a concentration of 1.3 microg/mL in blood. An ethanol-like peak was detected during our routine GC-FID test for alcohol (methylethylketone IS). Subsequent GC-MS analysis identified the peak as ethyl chloride. Levels of 0.05 mg/mL in blood and 0.01 mg/mL in urine were measured. Two facts proved misleading in our case. First: very small difference of 0.027 between the ethyl chloride and ethanol peaks in relative retention times at the GC-FID chromatograms. Second: missing evidence for the use of ethyl chloride at the scene-neither cans of the substance were found, nor such information was available otherwise. Conclusion: there is a substantial risk for mistaking ethyl chloride for ethanol, when ethyl chloride abuse is unanticipated. In the case of slightest uncertainty a GC-MS analysis should be employed to reliably determine the actual substance. PMID:19321278

Tarnovski, Georgi; Hayashi, Takeshi; Igarashi, Kazuo; Ochi, Hiroshi; Matoba, Ryoji

2009-07-01

377

Health Hazard Evaluation/Toxicity Determination. Trantex Corporation, Springfield, Massachusetts.  

National Technical Information Service (NTIS)

The National Institute for Occupational Safety and Health (NIOSH), conducted a health hazard survey to evaluate exposure to solvent vapors at Trantex Corporation, Springfield, Massachusetts. It was determined that ethyl acetate, n-propyl alcohol, ethyl al...

L. B. Larsen

1974-01-01

378

Bis(tri-ethyl-ammonium) chloranilate  

PubMed Central

In the crystal structure of the title compound [systematic name: bis­(tri­ethyl­ammonium) 2,5-di­chloro-3,6-dioxo­cyclo­hexa-1,4-diene-1,4-diolate], 2C6H16N+·C6Cl2O4 2?, the chloranilate anion lies on an inversion center. The tri­ethyl­ammonium cations are linked on both sides of the anion via bifurcated N—H?(O,O) and weak C—H?O hydrogen bonds to give a centrosymmetric 2:1 aggregate. The 2:1 aggregates are further linked by C—H?O hydrogen bonds into a zigzag chain running along [01-1].

Gotoh, Kazuma; Maruyama, Shinpei; Ishida, Hiroyuki

2013-01-01

379

Fatty acid ethyl esters: markers of alcohol abuse and alcoholism.  

PubMed

Chronic alcoholism, which is associated with hepatic, pancreatic, and myocardial diseases, is one of the major health problems in the United States with high morbidity and mortality. Many individuals who abuse alcohol chronically die even before reaching the clinical stage of the disease. Reliable biomarkers of the diseases induced by chronic alcohol abuse, as well as for alcoholism, currently are not available. In the current study, we measured plasma concentrations of fatty acid ethyl esters [(FAEEs), nonoxidative metabolites of ethanol] in 39 patients with a detectable concentration of alcohol in their blood samples. In turn, we determined the relation of FAEE concentrations with blood alcohol concentration (BAC). Of 39 patients in whom we evaluated this relation, only five had a history of chronic alcohol abuse, and six had a history of acute alcohol abuse. Patients' age ranged from 25 to 71 years. Within this age range, greater concentrations of FAEEs were found in the plasma samples obtained from patients in the 41- to 50-year age group. There were no sex-related differences in BAC, nor in FAEE concentrations. Thirteen patients had a BAC greater than 300 mg%. For 11 patients, the BAC ranged between 200 and 299 mg%, and, for 12 patients, the BAC ranged between 100 and 199 mg%. In comparison with findings for patients with a BAC that ranged between 100 and 299 mg%, the FAEE concentrations were approximately twofold higher in patients with a BAC greater than 300 mg%. Ethyl palmitate and ethyl oleate were the main FAEEs detected in most patients. In general, FAEE concentrations increased with increasing BAC. However, in comparison with patients with a history of acute alcohol abuse, a greater increase in total FAEE concentrations was observed in patients with a history of chronic alcohol abuse (4,250 ng/ml and 15,086 ng/ml, respectively). Fatty acid ethyl esters were either detected in trace amounts or not detectable in the plasma of control subjects with no known alcohol ingestion. These results support our hypothesis that nonoxidative metabolism of ethanol to FAEEs is an important pathway of ethanol disposition during chronic alcohol abuse, and that FAEE concentrations can be a more reliable biomarker of chronic alcohol abuse than a history of acute alcohol abuse. PMID:15902908

Kaphalia, Bhupendra S; Cai, Ping; Khan, M Firoze; Okorodudu, Anthony O; Ansari, G A S

2004-01-01

380

Ethyl ester production from (RBD) palm oil  

Microsoft Academic Search

This work develops a methodology for obtaining ethyl esters from RBD (refined, bleached and deodorised) palm oil by evaluating the oil's transesterification and separation. Two catalysts were first tested (KOH and NaOH) by studying the effect of water presence on the reaction. The separation process was then evaluated by using water and water-salt and water-acid mixtures, establishing the agent offering

Oscar Mauricio Martínez Ávila; Francisco José Sánchez Castellanos; Oscar Yesid; Suárez Palacios

381

Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment  

ERIC Educational Resources Information Center

The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

2005-01-01

382

Fatty acid ethyl esters are present in human serum after ethanol ingestion  

Microsoft Academic Search

The aim of the study was to determine whether fatty acid ethyl esters, nonoxidative products of ethanol metabolism selectively present in organs damaged by ethanol abuse, are de- tectable in the serum after ethanol ingestion. Serum samples of hospital emergency room patients with positive (n = 32) and negative (n = 5) blood ethanol levels were assayed for fatty acid

Kathleen M. Doyle; David A. Bird; Salih Al-Salihi; Youseff Hallaq; Joanne E. Cluette-Brown; Kendrick A. Goss; Michael Laposata

383

Stereoselectivity of the Honda-Reformatsky Reaction in Reactions with Ethyl Bromodifluoroacetate with ?-Oxygenated Sulfinylimines.  

PubMed

The Reformatsky reaction of ethyl bromodifluoroacetate to ?-oxygenated sulfinylimines is described. Using Honda-Reformatsky conditions, the reaction proceeds with double diastereodifferentiation, with the configuration of the sulfinyl group determining the stereochemical course of the reaction. Excellent diastereoselectivities (>94:6) are obtained for the matched cases. In contrast, reaction with sulfinylimines derived from unsubstituted alkanals proceeded with virtually no diastereoselectivity. PMID:24746314

Fontenelle, Clément Q; Conroy, Matthew; Light, Mark; Poisson, Thomas; Pannecoucke, Xavier; Linclau, Bruno

2014-05-01

384

Glucuronidation of Dihydrotestosterone and trans-Androsterone by Recombinant UDP-Glucuronosyltransferase (UGT) 1A4: Evidence for Multiple UGT1A4 Aglycone Binding Sites  

PubMed Central

UDP-glucuronosyltransferase (UGT) 1A4-catalyzed glucuronidation is an important drug elimination pathway. Although atypical kinetic profiles (nonhyperbolic, non-Michaelis-Menten) of UGT1A4-catalyzed glucuronidation have been reported occasionally, systematic kinetic studies to explore the existence of multiple aglycone binding sites in UGT1A4 have not been conducted. To this end, two positional isomers, dihydrotestosterone (DHT) and trans-androsterone (t-AND), were used as probe substrates, and their glucuronidation kinetics with HEK293-expressed UGT1A4 were evaluated both alone and in the presence of a UGT1A4 substrate [tamoxifen (TAM) or lamotrigine (LTG)]. Coincubation with TAM, a high-affinity UGT1A4 substrate, resulted in a concentration-dependent activation/inhibition effect on DHT and t-AND glucuronidation, whereas LTG, a low-affinity UGT1A4 substrate, noncompetitively inhibited both processes. The glucuronidation kinetics of TAM were then evaluated both alone and in the presence of different concentrations of DHT or t-AND. TAM displayed substrate inhibition kinetics, suggesting that TAM may have two binding sites in UGT1A4. However, the substrate inhibition kinetic profile of TAM became more hyperbolic as the DHT or t-AND concentration was increased. Various two-site kinetic models adequately explained the interactions between TAM and DHT or TAM and t-AND. In addition, the effect of TAM on LTG glucuronidation was evaluated. In contrast to the mixed effect of TAM on DHT and t-AND glucuronidation, TAM inhibited LTG glucuronidation. Our results suggest that multiple aglycone binding sites exist within UGT1A4, which may result in atypical kinetics (both homotropic and heterotropic) in a substrate-dependent fashion.

Zhou, Jin; Tracy, Timothy S.

2010-01-01

385

Determination of a peroxisome proliferator-activated receptor ? agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy-3-phenyl-1H-indene-2-carboxylic acid ethyl ester (KR-62980) in rat plasma by liquid chromatography-tandem mass spectrometry.  

PubMed

A novel peroxisome proliferator-activated receptor ? (PPAR?) agonist, KR-62980, was determined by liquid-liquid extraction with ethyl acetate and liquid chromatography-tandem mass spectrometry (LC/MS/MS) in rat plasma. In order to evaluate the pharmacokinetics of KR-62980, a reliable, selective and sensitive high-performance liquid chromatographic method with electrospray ionization tandem mass spectrometry was developed for the quantification of KR-62980 in rat plasma. KR-62980 and imipramine (IS) were separated on Hypersil GOLD C18 column with a mixture of acetonitrile-ammonium formate (10mM) (80:20, v/v) as mobile phase. The ion transitions monitored were m/z 437.2 ? 114.2 for KR-62980, m/z 281.3 ? 86.1 for imipramine in multiple reaction monitoring (MRM) mode. The percent recoveries of KR-62980 and imipramine were 90.1 and 98.4% from rat plasma, respectively. The linear dynamic range extended from 0.01 to 10 ?g/ml with a correlation coefficient (R(2)) greater than 0.99 and the lower limit of quantification was 0.01 ?g/ml. The mean of intra- and inter-assay precisions was 2.1 and 9.3%. The method was validated and successfully applied to the pharmacokinetic study of KR-62980 in rat. PMID:20729023

Kim, Min-Sun; Song, Jin Sook; Roh, Hyeongjin; Park, Jong-Shik; Ahn, Jin Hee; Ahn, Sung-Hoon; Bae, Myung Ae

2011-01-01

386

Identification of Flavone Glucuronide Isomers by Metal Complexation and Tandem Mass Spectrometry: Regioselectivity of UDP-Glucuronosyltransferase Isozymes in the Biotransformation of Flavones  

PubMed Central

Flavone Glucuronide isomers of five flavones (chrysin, apigenin, luteolin, baicalein, and scutellarein) were differentiated by collision induced dissociation (CID) of [Co(II) (flavone-H) (4,7-diphenyl-1,10-phenanthroline)2]+ complexes. The complexes were generated via post-column addition of a metal/ligand solution after separation of the glucuronide products generated upon incubation of each flavone with an array of UDP-glucuronosyl-transferase (UGT) isozymes. Elucidation of the glucuronide isomers allowed a systematic investigation of the regioselectivity of twelve human UDP-glucuronosyl-transferase (UGT) isozymes, including eight UGT1A and four UGT2B isozymes. Glucuronidation of the 7-OH position was the preferred site for all the flavones except for luteolin, which possessed adjacent hydroxyl groups on the B ring. For all flavones and UGT isozymes, glucuronidation of the 5-OH position was never observed. As confirmed by the metal complexation/MS/MS strategy, glucuronidation of the 6-OH position only occurred for baicalein and scutellarein when incubated with three of the UGT isozymes.

Robotham, Scott A.; Brodbelt, Jennifer S.

2013-01-01

387

Identification of flavone glucuronide isomers by metal complexation and tandem mass spectrometry: regioselectivity of uridine 5'-diphosphate-glucuronosyltransferase isozymes in the biotransformation of flavones.  

PubMed

Flavone glucuronide isomers of five flavones (chrysin, apigenin, luteolin, baicalein, and scutellarein) were differentiated by collision-induced dissociation of [Co(II) (flavone-H) (4,7-diphenyl-1,10-phenanthroline)(2)](+) complexes. The complexes were generated via postcolumn addition of a metal-ligand solution after separation of the glucuronide products generated upon incubation of each flavone with an array of uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) isozymes. Elucidation of the glucuronide isomers allowed a systematic investigation of the regioselectivity of 12 human UGT isozymes, including 8 UGT1A and 4 UGT2B isozymes. Glucuronidation of the 7-OH position was the preferred site for all the flavones except for luteolin, which possessed adjacent hydroxyl groups on the B ring. For all flavones and UGT isozymes, glucuronidation of the 5-OH position was never observed. As confirmed by the metal complexation/MS/MS strategy, glucuronidation of the 6-OH position only occurred for baicalein and scutellarein when incubated with three of the UGT isozymes. PMID:23362992

Robotham, Scott A; Brodbelt, Jennifer S

2013-02-20

388

Isotopic separations of the drug N-0437 and its diastereoisomeric glucuronides by high-performance liquid chromatography.  

PubMed

During the investigations of the metabolic pathways of the new dopaminergic drug N-0437 we encountered a substantial difference in HPLC-retention times between the metabolites, detected by a uv spectrophotometer, and their tritium-labeled markers, measured off-line by a scintillation counter. These distinct retention times can be ascribed to a phenomenon known as isotopic fractionation. In this article we quantified the isotopic separation by reversed-phase HPLC of the unlabeled N-0437, its deuterated and tritiated analogs, and their corresponding glucuronides, synthesized in vitro by rat liver microsomes. In the separation of the glucuronides we demonstrated that this isotope effect is dependent largely on the eluent pH. PMID:3407936

Gerding, T K; Drenth, B F; de Zeeuw, R A

1988-06-01

389

Use of progesterone 11-glucuronide-alkaline phosphatase conjugate in a sensitive microtitre-plate enzymeimmunoassay of progesterone in milk and its application to pregnancy testing in dairy cattle.  

PubMed

A simple direct-addition microtitre plate enzymeimmunoassay (EIA) for progesterone in whole milk is described. The assay used antiserum raised against 11 alpha-hydroxyprogesterone 11-hemisuccinate (progesterone 11-hemisuccinate) and a heterologous label prepared by conjugation of 11 alpha-hydroxyprogesterone 11-glucuronide (progesterone 11-glucuronide) with alkaline phosphatase using an active ester procedure. The sensitivity, analytical recovery, linearity of response and precision of the assay compared favourably with radioimmunoassay (RIA). Results from EIA of milk samples were compared with determinations made after isolation of progesterone by HPLC (r = 0.910). Milk samples (200) were assayed by RIA at both the Milk Marketing Board and the Cattle Breeding Centre and the results were correlated with EIA performed at the Cattle Breeding Centre (r = 0.890 and r = 0.833 respectively). Calving data were obtained from a further 110 cows for which the milk progesterone EIA had provided a pregnancy test 24 days after AI; 46 cows were correctly identified as non-pregnant and 58 as pregnant and there were 4 false positive and 2 inconclusive results. PMID:3511256

Sauer, M J; Foulkes, J A; Worsfold, A; Morris, B A

1986-01-01

390

EtG/EtS in Urine from sexual assault victims determined by UPLC-MS-MS.  

PubMed

In cases of sexual assault, victims often present too late for the detection of ethanol in biological samples. An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method was developed and validated for the determination of ethyl glucuronide (EtG) and ethyl sulfate (EtS) in urine. Sample preparation prior to UPLC-MS-MS analysis was a simple sample dilution. The calibration ranges were 0.2-20 mg/L, and between-assay relative standard deviations were in the range of 0.7-7.0% at concentrations of 0.3, 3.0 and 7.0 mg/L. Urine samples were analyzed from 59 female patients presenting to the Sexual Assault Centre at St. Olav University Hospital in Trondheim, Norway between November 2010 and October 2011. EtG and EtS results were fully concordant, and positive in 45 of the 48 cases with self-reported alcohol intake. In contrast, ethanol was detectable in only 20 of these cases, corresponding to sensitivities of 94 and 42%, respectively. Of the patients reporting no alcohol intake, none had positive EtG/EtS findings. These data show that analysis of EtG and EtS greatly increases the detection window of alcohol ingestion in cases of sexual assault, and may shed additional light on the involvement of ethanol in such cases. The victims' self-reported intake of alcohol seems to be reliable in this study, according to the EtG/EtS findings. PMID:23467259

Hegstad, Solfrid; Helland, Arne; Hagemann, Cecilie; Michelsen, Lisbeth; Spigset, Olav

2013-05-01

391

Glucuronidation of the red clover isoflavone irilone by liver microsomes from different species and human UDP-glucuronosyltransferases.  

PubMed

Red clover (Trifolium pratense L.) is used as a source for isoflavone (IF) dietary supplements. In this study, we focused on the red clover IF irilone (IRI), because of its reported comparatively high bioavailability. Because the conjugative metabolism plays a key role in the elimination of IF, we investigated the species-specific differences and glucuronidation kinetics of IRI using different liver microsomes as well as the recombinant UDP-glucuronosyltransferases (UGTs) 1A1, 1A7, 1A8, 1A9, 1A10, and 2B15. Both possible monoglucuronides, the IRI-O-4'-monoglucuronide (IRI-G4') and the IRI-O-5-monoglucuronide (IRI-G5), were detected. Human liver microsomes (HLM) as well as rat liver microsomes predominantly formed IRI-G5, whereas for porcine liver microsomes, IRI-G4' prevailed. HLM showed an apparent V(max) value of 0.43 nmol/min · mg and an apparent K(m) value of 9.8 ?M for the formation of IRI-G5 and a V(max) of 0.35 nmol/min · mg and a K(m) of 64.7 ?M in the case of IRI-G4'. Formation of both glucuronides was best fit using the substrate inhibition equation. The glucuronidation of IRI by UGTs led to values for the intrinsic clearance varying between 4 and 100 ml/min · mg, with UGT1A7 showing the lowest and UGT1A10 the highest IRI conversion rate. The results indicate that IRI undergoes an efficient glucuronidation, presumably in the intestine and liver, following atypical kinetic profiles. PMID:21177485

Maul, Ronald; Siegl, Diana; Kulling, Sabine E

2011-04-01

392

The Impact of Glucuronidation on the Bioactivation and DNA Adduction of the Cooked-Food Carcinogen 2Amino1-methyl-6-phenylimidazo[4,5-b] pyridine in vivo  

Microsoft Academic Search

UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of many different chemicals. Glucuronidation is especially important for detoxifying reactive intermediates from metabolic reactions, which otherwise can be biotransformed into highly reactive cytotoxic or carcinogenic species. Detoxification of certain food-borne carcinogenic heterocyclic amines (HAs) is highly dependent on UGT1A-mediated glucuronidation. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most mass abundant carcinogenic HA found in well-done cooked meat, is

M. A. Malfatti; E A Ubick; J S Felton

2005-01-01

393

Pallidol hexa-acetate ethyl acetate monosolvate  

PubMed Central

The entire mol­ecule of pallidol hexa­acetate {systematic name: (±)-(4bR,5R,9bR,10R)-5,10-bis­[4-(acet­yloxy)phen­yl]-4b,5,9b,10-tetra­hydro­indeno­[2,1-a]indene-1,3,6,8-tetrayl tetra­acetate} is completed by the application of twofold rotational symmetry in the title ethyl acetate solvate, C40H34O12·C4H8O2. The ethyl acetate mol­ecule was highly disordered and was treated with the SQUEEZE routine [Spek (2009 ?). Acta Cryst. D65, 148–155]; the crystallographic data take into account the presence of the solvent. In pallidol hexa­acetate, the dihedral angle between the fused five-membered rings (r.m.s. deviation = 0.100?Å) is 54.73?(6)°, indicating a significant fold in the mol­ecule. Significant twists between residues are also evident as seen in the dihedral angle of 80.70?(5)° between the five-membered ring and the pendent benzene ring to which it is attached. Similarly, the acetate residues are twisted with respect to the benzene ring to which they are attached [C—O(carb­oxy)—C—C torsion angles = ?70.24?(14), ?114.43?(10) and ?72.54?(13)°]. In the crystal, a three-dimensional architecture is sustained by C—H?O inter­actions which encompass channels in which the disordered ethyl acetate mol­ecules reside.

Mao, Qinyong; Taylor, Dennis K.; Ng, Seik Weng; Tiekink, Edward R. T.

2013-01-01

394

Respiratory depression following morphine and morphine-6-glucuronide in normal subjects.  

PubMed

1. Morphine 6-glucuronide (M6G) is a metabolite of morphine with analgesic activity. A double-blind, randomised comparison of the effects of morphine and M6G on respiratory function was carried out in 10 normal subjects after i.v. morphine (10 mg 70 kg-1) or M6G (1, 3.3 and 5 mg 70 kg-1). Analgesic potency was also assessed using an ischaemic pain test and other toxic effects were monitored. 2. Following morphine there was a significant increase in arterial PCO2, as measured by blood gases 45 min post dose (0.54 +/- 0.24 (s.d.) kPa, P < 0.001), and in transcutaneous PCO2 from 15 min post dose until the end of the study period (4 h), whereas blood gas and transcutaneous PCO2 were unchanged after M6G at 1.0, 3.3 and 5.0 mg 70 kg-1. This increased PCO2 following morphine was associated with an increase in expired CO2 concentration (FECO2) (0.20 +/- 0.14% expired air at 15 min post dose, P = 0.002), compared with small but significant reductions in FECO2 following morphine 6-glucuronide (-0.15 +/- 0.17% at 1 mg 70 kg-1 P = 0.030, -0.14 +/- 0.15% at 3.3 mg 70 kg-1 P = 0.017, -0.18 +/- 0.11% at 5 mg 70 kg-1 P = 0.024). Maximum transcutaneous PCO2 was significantly increased after morphine (0.63 +/- 0.28 kPa P = 0.009), but was not changed after M6G at 1 mg (0.10 +/- 0.34 kPa P = 0.11) 3.3 mg (0.06 +/- 0.37 kPa P = 0.34) or 5 mg (0.26 +/- 0.07 kPa P = 0.10).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8562297

Thompson, P I; Joel, S P; John, L; Wedzicha, J A; Maclean, M; Slevin, M L

1995-08-01

395

A comparison of postmortem heart blood and femoral blood ethyl alcohol concentrations.  

PubMed

Recent research has indicated that substantial differences may exist between the concentration of organic bases in heart blood specimens and that in peripheral blood specimens. This study was designed to determine the distribution characteristics of ethyl alcohol in postmortem blood. The heart blood/femoral blood ethyl alcohol ratio was determined for 100 cases. In the majority of cases exhibiting alcohol concentration differences greater than 0.02 mg/dL, the specimens were suspect because of their physical appearance, trauma to the decedent in the area of specimen collection, gross differences in hematocrits, or large volume differences in the two specimens. An additional set of experiments was conducted to illustrate that the volume of blood and the amount of sodium fluoride preservative placed in the collection tube can have a substantial effect upon the subsequently measured ethyl alcohol concentration. These factors can adversely affect the observed heart blood/femoral blood alcohol ratio and must be considered when evaluating the distribution characteristics of ethyl alcohol in postmortem specimens. PMID:3682778

Prouty, R W; Anderson, W H

1987-01-01

396

A simple and rapid ion-pair HPLC method for simultaneous quantitation of 4-nitrophenol and its glucuronide and sulfate conjugates.  

PubMed

Because of its simple and well characterized metabolic profile, 4-nitrophenol is widely used as a model substrate to investigate the influence of drug therapy, disease, nutrient deficiencies and other physiologically altered conditions on conjugative drug metabolism in animal studies. For simultaneous determination of 4-nitrophenol (PNP), 4-nitrophenyl-beta-D-glucuronide (PNP-G) and 4-nitrophenyl-sulfate (PNP-S) in samples generated in rat small intestine luminal perfusion experiments, an ion-pair HPLC assay coupled with UV detection was set up. The RP-HPLC separation was achieved with a methanol-water mixture (50:50, v/v) containing 0.01 M tetrabutyl-ammonium-bromide with UV detection of the analytes at 290 nm. The isocratic system was operated at ambient temperature and required less than 7 min of chromatographic time. The method provided good enough within-day precision, between-day precision and linearity in the target concentration ranges of 6-1200 microM (PNP) and 2.5-100 microM (PNP-G and PNP-S). The instrumental limit of quantification for PNP-G and PNP-S was found to be 2.7 microM and 2.1 microM, respectively. The assay was applied for determination of PNP, PNP-G and PNP-S in rat small intestine perfusates. PMID:16844228

Almási, Attila; Fischer, Emil; Perjési, Pál

2006-11-30

397

Ab initio quadratic configuration interaction calculation of the isotropic hyperfine coupling constants in the ethyl radical  

Microsoft Academic Search

The isotropic hyperfine coupling constraints in the electronic ground state of the ethyl radical have been determined by means of ab initio molecular orbital theory. Extensive inclusion of electron correlation in a single-determinant unrestricted Hartree-Fock (UHF) description is coupled with finite (Fermi contact) field perturbation theory to derive the required spin density distribution. Results obtained with a modest polarized double-ζ

Ian Carmichael

1991-01-01

398

Infrared spectroscopic studies of the conformation in ethyl alpha-haloacetates in the vapor, liquid and solid phases.  

PubMed

Infrared spectra of ethyl alpha-fluoroacetate, ethyl alpha-chloroacetate, ethyl alpha-bromoacetate and ethyl alpha-iodoacetate have been measured in the solid, liquid and vapor phases in the region 4000-200 cm(-1). Vibrational frequency assignment of the observed bands to the appropriate modes of vibration was made. Calculations at DFT B3LYP/6-311+G** level, Job: conformer distribution, using Spartan program '08, release 132 was made to determine which conformers exist in which molecule. The results indicated that the first compound exists as an equilibrium mixture of cis and trans conformers and the other three compounds exist as equilibrium mixtures of cis and gauche conformers. Enthalpy differences between the conformers have been determined experimentally for each compound and for every phase. The values indicated that the trans of the first compound is more stable in the vapor phase, while the cis is the more stable in both the liquid and solid phases. In the other three compounds the gauche is more stable in the vapor and liquid phases, while the cis conformer is the more stable in the solid phase for each of the second and third compound, except for ethyl alpha-iodoacetate, the gauche conformer is the more stable over the three phases. Molar energy of activation Ea and the pseudo-thermodynamic parameters of activation DeltaH(double dagger), DeltaS(double dagger) and DeltaG(double dagger) were determined in the solid phase by applying Arrhenius equation; using bands arising from single conformers. The respective E(a) values of these compounds are 5.1+/-0.4, 6.7+/-0.1, 7.5+/-1.3 and 12.0+/-0.6 kJ mol(-1). Potential energy surface calculations were made at two levels; for ethyl alpha-fluoroacetate and ethyl alpha-chloroacetate; the calculations were established at DFT B3LYP/6-311+G** level and for ethyl alpha-bromoacetate and ethyl alpha-iodoacetate at DFT B3LYP/6-311G* level. The results showed no potential energy minimum exists for the gauche conformer in ethyl alpha-fluoroacetate. PMID:20382068

Jassem, Naserallah A; El-Bermani, Muhsin F

2010-07-01

399

Quercetin-3-O-glucuronide induces ABCA1 expression by LXR? activation in murine macrophages  

SciTech Connect

Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXR?. •Q3GA induced ABCA1 via LXR? activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXR?), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXR? in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan)] [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan)] [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)] [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)

2013-11-29

400

The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation.  

PubMed

Drug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin. In a Phase II clinical trial in poor prognosis AML, ribavirin monotherapy yielded promising responses including remissions; however, all patients relapsed. Here we identify a novel form of drug resistance to ribavirin and Ara-C. We observe that the sonic hedgehog transcription factor glioma-associated protein 1 (GLI1) and the UDP glucuronosyltransferase (UGT1A) family of enzymes are elevated in resistant cells. UGT1As add glucuronic acid to many drugs, modifying their activity in diverse tissues. GLI1 alone is sufficient to drive UGT1A-dependent glucuronidation of ribavirin and Ara-C, and thus drug resistance. Resistance is overcome by genetic or pharmacological inhibition of GLI1, revealing a potential strategy to overcome drug resistance in some patients. PMID:24870236

Zahreddine, Hiba Ahmad; Culjkovic-Kraljacic, Biljana; Assouline, Sarit; Gendron, Patrick; Romeo, Andrea A; Morris, Stephen J; Cormack, Gregory; Jaquith, James B; Cerchietti, Leandro; Cocolakis, Eftihia; Amri, Abdellatif; Bergeron, Julie; Leber, Brian; Becker, Michael W; Pei, Shanshan; Jordan, Craig T; Miller, Wilson H; Borden, Katherine L B

2014-07-01

401

Chemical and Enzyme-Assisted Syntheses of Norbuprenorphine-3-?-D-Glucuronide  

PubMed Central

Norbuprenorphine-3-?-D-glucuronide (nBPN-3-?-D-G, 1) is a major phase II metabolite of buprenorphine, a pharmaceutical used for the treatment of opioid addiction. The pharmacological activity of compound 1 is not clear because investigations have been limited by the lack of chemically pure, well characterized 1 in sufficient quantities for in vitro and in vivo experiments. This work describes two concise, new methods of synthesis of 1, a chemical and an enzyme-assisted synthesis. The chemical synthesis used a strategy based on a combination of Koenig-Knorr coupling and amino-silyl protection. The enzyme-assisted synthesis used dog liver to convert substrate norbuprenorphine (nBPN, 2) to 1. Both methods provided 1, characterized by 1H NMR and tandem mass spectrometry, with purity >96%. The fractional yield of the enzyme-assisted synthesis was greater than that of the chemical synthesis (67% vs 5.3%), but due to larger reaction volumes, the chemical synth