Sample records for eu energy reform

  1. A System of Systems Approach to the EU Energy System

    NASA Astrophysics Data System (ADS)

    Jess, Tom; Madani, Kaveh; Mahlooji, Maral; Ristic, Bora

    2016-04-01

    Around the world, measures to prevent dangerous climate change are being adopted and may change energy systems fundamentally. The European Union (EU) is committed to reducing greenhouse gas emission by 20% by 2020 and by 80-95% by 2050. In order to achieve this, EU member states aim to increase the share of renewables in the energy mix to 20% by 2020. This commitment comes as part of a series of other aims, principles, and policies to reform the EU's energy system. Cost-efficiency in the emissions reductions measures as well as strategic goals under the Resource Efficient Europe flagship initiative which would include a more prudent approach to other natural resources such as water and land. Using the "System of Systems Approach", as from Hadian and Madani (2015), energy sources' Relative Aggregate Footprints (RAF) in the EU are evaluated. RAF aggregates across four criteria: carbon footprint, water footprint, land footprint, and economic cost. The four criteria are weighted by resource availability across the EU and for each Member State. This provides an evaluation of the overall resource use efficiency of the EU's energy portfolio and gives insight into the differences in the desirability of energy sources across Member States. Broadly, nuclear, onshore wind, and geothermal are most desirable under equal criteria weights and EU average weighting introduces only small changes in the relative performance of only few technologies. The member state specific weightings show that most countries have similar energy technology preferences. However, the UK deviates most strongly from the average, with an even stronger preference for nuclear and coal. Sweden, Malta and Finland also deviate from the typical preferences indicating the complexity in play in reforming the EU energy system. Reference Hadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All Renewables Really Green? Ecological Indicators, 52, 194-206.

  2. Policy challenges and reforms in small EU member state health systems: a narrative literature review.

    PubMed

    Azzopardi-Muscat, Natasha; Funk, Tjede; Buttigieg, Sandra C; Grech, Kenneth E; Brand, Helmut

    2016-12-01

    The EU directive on patients' rights and cross-border care is of particular interest to small states as it reinforces the concept of health system cooperation. An analysis of the challenges faced by small states, as well as a deep evaluation of their health system reform characteristics is timely and justified. This paper identifies areas in which EU level cooperation may bring added value to these countries' health systems. Literature search is based primarily on PUBMED and is limited to English-language papers published between January 2000 and September 2014. Results of 76 original research papers appearing in peer-reviewed journals are summarised in a literature map and narrative review. Primary care, health workforce and medicines emerge as the salient themes in the review. Lack of capacity and small market size are found to be the frequently encountered challenges in governance and delivery of services. These constraints appear to also impinge on the ability of small states to effectively implement health system reforms. The EU appears to play a marginal role in supporting small state health systems, albeit the stimulus for reform associated with EU accession. Small states face common health system challenges which could potentially be addressed through enhanced health system cooperation at EU level. The lessons learned from research on small states may be of relevance to health systems organized at regional level in larger European states. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  3. The EU sustainable energy policy indicators framework.

    PubMed

    Streimikiene, Dalia; Sivickas, Gintautas

    2008-11-01

    The article deals with indicators framework to monitor implementation of the main EU (European Union) directives and other policy documents targeting sustainable energy development. The main EU directives which have impact on sustainable energy development are directives promoting energy efficiency and use of renewable energy sources, directives implementing greenhouse gas mitigation and atmospheric pollution reduction policies and other policy documents and strategies targeting energy sector. Promotion of use of renewable energy sources and energy efficiency improvements are among priorities of EU energy policy because the use of renewable energy sources and energy efficiency improvements has positive impact on energy security and climate change mitigation. The framework of indicators can be developed to establish the main targets set by EU energy and environmental policies allowing to connect indicators via chain of mutual impacts and to define policies and measures necessary to achieve established targets based on assessment of their impact on the targeted indicators representing sustainable energy development aims. The article discusses the application of indicators framework for EU sustainable energy policy analysis and presents the case study of this policy tool application for Baltic States. The article also discusses the use of biomass in Baltic States and future considerations in this field.

  4. Does the EU sugar policy reform increase added sugar consumption? An empirical evidence on the soft drink market.

    PubMed

    Bonnet, Céline; Requillart, Vincent

    2011-09-01

    Whereas National Health authorities recommend a decrease in the consumption of 'added' sugar, a reform on the sugar market will lead to a 36% decrease of the sugar price in the EU. Using French data on soft drinks purchases, this paper investigates the anticipated impact of this reform on the consumption of sugar-sweetened beverages. The reform of the EU sugar policy leads to a decrease in regular soft drink prices by 3% and varies across brands. To assess substitution within this food category, we use a random-coefficients logit model that takes into account a large number of differentiated products and heterogeneity in consumers' behavior. Results suggest that price changes would lead to an increase in market shares of regular products by 7.5% and to substitutions between brands to the benefit of products with the highest sugar content. On the whole, it would raise consumption of regular soft drinks by more than 1 litre per person per year and consumption of added sugar by 124 g per person per year, this increase being larger in households composed of overweight and obese individuals. Copyright © 2011 John Wiley & Sons, Ltd.

  5. Analysis of Energy Intensive Enterprises under EU Emission Trading System in Latvia

    NASA Astrophysics Data System (ADS)

    Zahare, Dace; Rosa, Marika

    2011-01-01

    Climate change and global warming has become one of the main topics worldwide. The European Union Emission Trading System (EU ETS) was established to limit climate change, providing regulations which encourage companies to invest in cleaner production and more energy efficient production. Latvian energy intensive enterprises are operating under the EU ETS from the year 2005. The main goal of this paper is to provide an analysis of energy intensive installations in terms of their energy efficiency. Additionally, an analysis of EU ETS phase III which will start to operate in 2013 under new, more stringent rules has been conducted by modelling three Latvian energy intensive enterprise operations under this phase and estimating the barriers to meet the goal of the EU ETS phase III.

  6. [Better medical devices regulations for better health care: enlightenment for medical devices regulatory reform in China, from experiences of the E.U. and the U.S.A].

    PubMed

    Sun, Qin; Yan, Liang

    2006-01-01

    The expansion of applications of medical devices has attracted the increased attention of government regulatory bodies around the world to the safety and effectiveness of these products. Most developed countries, such as the United States and European Union, have developed well-established regulatory systems for medical devices, which have also consistently been amended to accommodate the changing requirements of safety and the trend of globalization.The current "Regulations for the Supervision and Administration of Medical Device (China)", established in 2000, has brought about great improvements for the safety and effectiveness of products, safeguarding public health. But there are still, at present, a lot of counterfeit and poor quality devices and device-related adverse events for lack of powerful post -market and in-use regulatory controls for products. It is therefore very urgent for the Chinese government to reform its medical device administration and management. This research paper analyses and compares the different requirements and executions of medical devices regulations in the EU, the US and China, to draw some experiences of the EU and US regimes that are very useful to China's regulatory reform. It is suggested that when developing a new scheme of medical devices regulatory reform in China, two prominent aspects have to be considered by policy makers and regulators. Firstly, the global trend of medical devices regulations has to be taken into account. Secondly, the experiences learned from the EU and US systems should be applied to the Chinese regulatory reform in combination with the concrete practice of China.

  7. The reform of energy subsidies for the enhancement of marine sustainability: An empirical analysis of energy subsidies worldwide and an in-depth case study of South Korea's energy subsidy policies

    NASA Astrophysics Data System (ADS)

    Shim, Jae Hyun

    This dissertation seeks to raise awareness about harmful effects of fossil fuel and nuclear energy subsidies that have blocked transition from conventional energy to a decarbonized, renewable energy system. Today, humans face daunting challenges in the form of global warming, which results mainly from the burning of fossil fuels. To avoid catastrophe, the transition to a renewable energy regime should be an urgent priority; however, the reality is that the progress of renewable energy is very slow due to the various political and economic factors when compared to conventional energy resources. A chief factor is that the energy subsidy for fossil fuel and nuclear energy obstructs the "level playing field" for renewable energy. Energy subsidies for conventional energy can be understood in the context of the commodification paradigm, which regards nature as an object of conquest and supports the principle of more is better. Although fossil fuel energy damages the environment, economy, and social equity, all countries subsidize such energy, no matter the country's state of development. This holds true as much in the U.S. and the EU as in China, India and South Korea. The oceans, which cover 71% of the earth, are threatened by the activities of conventional energy, which are underpinned by subsidies. These subsidies have contributed to the destruction of the marine ecosystem through increased GHG emissions like CO2 and NOx which cause a sea temperature increase and coral bleaching. Subsidies also significantly affect fishery overexploitation, oil pollution, and thermal pollution. In-depth empirical analysis of South Korea showed how fossil fuel and nuclear energy activities have threatened marine sustainability through thermal pollution, algae bloom (red tides), overexploitation, and oil-related marine pollution. Reforming subsidies of fossil fuel and nuclear energy should be a global priority because of imminent of global warming. As strategies for energy subsidy

  8. Study of energy transfer mechanism from ZnO nanocrystals to Eu(3+) ions.

    PubMed

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-12-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu(3+)) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative (5)D0 → (7)F2 de-excitation of the Eu(3+) ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu(3+) ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu(3+) ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu(3+) ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu(3+) concentration in the sample. The maximum red emission is observed with 12 mol% Eu(3+) annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu(3+) ions and is important for applications in photonics, especially for light emitting devices.

  9. Definition of an intramolecular Eu-to-Eu energy transfer within a discrete [Eu2L] complex in solution.

    PubMed

    Nonat, Aline; Regueiro-Figueroa, Martín; Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Platas-Iglesias, Carlos; Charbonnière, Loïc J

    2012-06-25

    Ligand L, based on two do3a moieties linked by the methylene groups of 6,6'-dimethyl-2,2'-bipyridine, was synthesized and characterized. The addition of Ln salts to an aqueous solution of L (0.01 M Tris-HCl, pH 7.4) led to the successive formation of [LnL] and [Ln(2)L] complexes, as evidenced by UV/Vis and fluorescence titration experiments. Homodinuclear [Ln(2)L] complexes (Ln = Eu, Gd, Tb, Yb, and Lu) were prepared and characterized. The (1)H and (13)C NMR spectra of the Lu and Yb complexes in D(2)O solution (pD = 7.0) showed C(1) symmetry of these species in solution, pointing to two different chemical environments for the two lanthanide cations. The analysis of the chemical shifts of the Yb complex indicated that the two coordination sites present square antiprismatic (SAP) coordination environments around the metal ions. The spectroscopic properties of the [Tb(2)L] complex upon ligand excitation revealed conventional behavior with τ(H2O) = 2.05(1) ms and ϕ(H2O) = 51%, except for the calculation of the hydration number obtained from the luminescent lifetimes in H(2)O and D(2)O, which pointed to a non-integer value of 0.6 water molecules per Tb(III) ion. In contrast, the Eu complex revealed surprising features such as: 1) the presence of two and up to five components in the (5)D(0)→(7)F(0) and (5)D(0)→(7)F(1) emission bands, respectively; 2) marked differences between the normalized spectra obtained in H(2)O and D(2)O solutions; and 3) unconventional temporal evolution of the luminescence intensity at certain wavelengths, the intensity profile first displaying a rising step before the occurrence of the expected decay. Additional spectroscopic experiments performed on [Gd(2-x)Eu(x)L] complexes (x = 0.1 and 1.9) confirmed the presence of two distinct Eu sites with hydration numbers of 0 (site I) and 2 (site II), and showed that the unconventional temporal evolution of the emission intensity is the result of an unprecedented intramolecular Eu-to-Eu

  10. Mexico`s economic reform: Energy and the Constitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio, L.

    1993-12-31

    Oil is a fundamental component of nationhood in Mexico. The 1938 expropriation of oil resources concluded a process of internal political consolidation and thus became the most important symbol of nationalism. Mexico has been undergoing a process of economic reform that has altered the country`s economic structure and has subjected it to international competition. Oil in particular and energy in general have been left untouched. There is recognition that without an equal reform of the energy industry, the potential for success will be significantly limited. While the Constitution allows private investment in the industry--with the exception of the resource propertiesmore » themselves--the Regulatory Law bans any private participation. Because of its political sensitivity, however, amending the law in order to reform the oil industry will necessitate a domestic initiative rather than foreign pressure. In this perspective, NAFTA served to slow and postpone the reform of the industry, rather than the opposite. Once NAFTA is well in place, the industry will have to face competition.« less

  11. Roadmap of retail electricity market reform in China: assisting in mitigating wind energy curtailment

    NASA Astrophysics Data System (ADS)

    Yu, Dezhao; Qiu, Huadong; Yuan, Xiang; Li, Yuan; Shao, Changzheng; Lin, You; Ding, Yi

    2017-01-01

    Among the renewable energies, wind energy has gained the rapidest development in China. Moreover wind power generation has been penetrated into power system in a large scale. However, the high level wind curtailment also indicates a low efficiency of wind energy utilization over the last decade in China. One of the primary constraints on the utilization of wind energy is the lack of an electricity market, in which renewable energies can compete equally with traditional fossil fuel generation. Thus the new round electric power industry reform is essential in China. The reform involves implementing new pricing mechanism, introducing retail-side competition, promoting the consumption of renewable energy. The new round reform can be a promising solution for promoting the development and consumption of wind energy generation in China. Based on proposed reform policies of electric power industry, this paper suggests a roadmap for retail electricity market reform of China, which consists of three stages. Barriers to the efficient utilization of wind energy are also analysed. Finally, this paper introduces several efficient measures for mitigating wind curtailment in each stage of reform.

  12. Reforms and Collaborations in Europe--China Doctoral Education

    ERIC Educational Resources Information Center

    Zhu, Chang; Cai, Yuzhuo; Shen, Wen-Qin; François, Karen

    2017-01-01

    This special issue focuses on the reforms and collaborations in Europe--China doctoral education. The articles in this special issue provide an insightful picture of the recent reforms in doctoral education in China and EU countries. Next to the structural reforms in Europe and China, the special issue papers have also specifically focused on…

  13. Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors

    NASA Astrophysics Data System (ADS)

    Thomas, Kukku; Alexander, Dinu; Sisira, S.; Gopi, Subash; Biju, P. R.; Unnikrishnan, N. V.; Joseph, Cyriac

    2018-06-01

    Tb3+/Eu3+ co-doped lanthanum molybdate nanophosphors were synthesized by conventional co-precipitation method. The Powder X-ray diffractogram revealed the formation of highly crystalline tetragonal nanocrystals with space group I41/a and the detailed analysis of the small variation of lattice parameters with Tb/Eu co-doping on the host lattice were carried out based on the ionic radii of the dopants. The FTIR spectra is employed to identify the fundamental vibrational modes in La2-x-y (MoO4)3:xTb, yEu nanocrystals. The formation of nanocrystals by oriented attachment was recognized from the HR TEM images and the d-spacing calculated was in accordance with that corresponding to highest intensity diffraction peak in the XRD patterns. The constituent elements present in the samples were identified with the aid of EDAX and elemental mapping analysis. The broad Mo6+- O2- CTB and the sharp excitation peaks of Tb and Eu identified from the UV-Vis absorption spectra facilitates the suitability of exciting the phosphors effectively over NUV and visible region of the spectra. The possibility of energy transfer from host to Tb3+/Eu3+ ions and from Tb3+ to Eu3+ ions were confirmed from the PL excitation spectra monitoring 5D0→7F2 transition of Eu3+ ions around 615 nm. The correlated analysis of PL emission spectra, life time measurements and CIE diagram, upon different excitation channels elucidate the excellent luminescent properties of La2-x-y (MoO4)3:xTb, yEu nanophosphors with tunable emission colours in a wide range varying from yellow green region to reddish orange region and the efficient energy transfer from Tb3+ to Eu3+ ions in lanthanum molybdate host lattice. The Tb→Eu energy transfer efficiency and probability were calculated from the decay measurements and the values were found to be satisfactory for exploiting the prepared nanophosphors for the development of multifunctional luminescent nanophosphors.

  14. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.

    PubMed

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2014-04-01

    The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Analysis of healthcare financing, supply and utilisation trends in the new EU countries.

    PubMed

    Ruseski, Jane E

    2006-01-01

    The EU expanded in 2004 to include eight transition countries, i.e. Central and Eastern European (CEE) and newly independent states of the former Soviet Union, and two other CEE countries are scheduled to join the EU in 2007. Each of these countries has undertaken substantial healthcare reform efforts over the past 15 years. The paths of healthcare reform are diverse for a number of reasons including differences in initial economic, political and structural conditions. The objective of this article is to evaluate the process and preliminary outcomes of healthcare reform in the new EU and candidate countries by analysing trends in aggregate financing, supply and utilisation indicators using data drawn from the WHO Health for All database. The analysis is done in the context of an analytical framework built around common healthcare reform themes. The key reform measures examined include implementing social insurance systems, implementing payment systems that promote efficiency, and removal of excess capacity. The trend analysis highlights the importance of the economic, political and social context in driving the direction and pace of healthcare reform. For example, the transition to social insurance systems was smoother in countries with stronger economies and political commitment to reform. Policies aimed at improving the efficiency of the healthcare system, reducing utilisation and reducing excess capacity were met with some success in all of the countries. However, the reform effort continues as the countries are still addressing the initial challenges of insufficient funding, informal payments, excess capacity and inefficiencies in the provision of healthcare.

  16. Observation of energy transfer phenomenon via up and down conversion in Eu3+ ions for BaMoO4:Er3+-Eu3+ nanophosphor

    NASA Astrophysics Data System (ADS)

    Soni, Abhishek Kumar; Ningthoujam, Raghumani Singh

    2018-04-01

    The Er3+-Eu3+ codoped BaMoO4 nanophosphor has been synthesized by using urea hydrolysis in ethylene glycol medium. The tetragonal phase formation of the codoped nanophosphor has been confirmed by the X-ray diffraction analysis. The up and down conversion emission spectra have been recorded via 980 and 270 nm excitation, respectively. The Eu3+ emission arising in the prepared Er3+-Eu3+ codoped BaMoO4 nanophosphor is basically due to the efficient energy transfer process. The energy level diagram has been sketched to show the energy transfer phenomenon in the Eu3+ ion from charge transfer band (host lattice absorption) and excited level of the Er3+ ion (multiphoton absorption). The values of colour co-ordinates suggest that materials can produce the red to yellow. The developed nanophosphor could be useful as an effective up and down converting optical material and lighting device applications.

  17. European hospital reforms in times of crisis: aligning cost containment needs with plans for structural redesign?

    PubMed

    Clemens, Timo; Michelsen, Kai; Commers, Matt; Garel, Pascal; Dowdeswell, Barrie; Brand, Helmut

    2014-07-01

    Hospitals have become a focal point for health care reform strategies in many European countries during the current financial crisis. It has been called for both, short-term reforms to reduce costs and long-term changes to improve the performance in the long run. On the basis of a literature and document analysis this study analyses how EU member states align short-term and long-term pressures for hospital reforms in times of the financial crisis and assesses the EU's influence on the national reform agenda. The results reveal that there has been an emphasis on cost containment measures rather than embarking on structural redesign of the hospital sector and its position within the broader health care system. The EU influences hospital reform efforts through its enhanced economic framework governance which determines key aspects of the financial context for hospitals in some countries. In addition, the EU health policy agenda which increasingly addresses health system questions stimulates the process of structural hospital reforms by knowledge generation, policy advice and financial incentives. We conclude that successful reforms in such a period would arguably need to address both the organisational and financing sides to hospital care. Moreover, critical to structural reform is a widely held acknowledgement of shortfalls in the current system and belief that new models of hospital care can deliver solutions to overcome these deficits. Advancing the structural redesign of the hospital sector while pressured to contain cost in the short-term is not an easy task and only slowly emerging in Europe. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Triple energy transfer and color tuning in Tb3+ and Eu3+-coactivated apatite-type gadolinium-containing phosphors

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Liang, Qimeng; Li, Shuo; Ouyang, Ruizhuo; Lü, Wei

    2017-11-01

    A family of apatite-type fluorophosphate phosphors with general formula Sr3Gd(1-m-n)Na(PO4)3F:mTb3+,nEu3+ (SGN:mTb3+,nEu3+) have been synthesized via the high-temperature solid-state reaction method. Triple energy transfer processes from Gd3+ in the host to both Tb3+ and Eu3+, as well as from Tb3+ to Eu3+ have been verified by the photoluminescence spectra. Under the excitation of UV light, both green line from the transitions of Tb3+ and red line origin from the transitions of Eu3+ have been simultaneously observed in a single phase phosphor, which makes a promise for tunable color emissions from yellowish-green through yellow and ultimately to reddish-orange by simply adjusting the Eu3+ content (n) in SGN:0.20Tb3+,nEu3+ phosphors. Additionally, the energy transfer from the Tb3+ to the Eu3+ ions has been demonstrated to be a resonant type via a quadrupole-quadrupole mechanism based on the Dexter's theoretical model, and the energy transfer efficiency increases with an increase in Eu3+ concentration.

  19. Academic Governance and Academic Reform: Legitimacy and Energy.

    ERIC Educational Resources Information Center

    Peter, Kenneth B.; Bain, Linda L.

    1998-01-01

    A thorough review and revision of curriculum at San Jose State University (California) illustrates that the modern university can achieve major internal academic reforms when two important conditions are met: legitimacy and energy. These two concepts are defined and practical illustrations are drawn from the institution's recent experience in…

  20. Dividing the common pond: regionalizing EU ocean governance.

    PubMed

    Maier, Nina; Markus, Till

    2013-02-15

    EU ocean policies increasingly incorporate regional measures. Under the long standing Common Fisheries Policy, such measures aim at improving and reforming existing policy, either by taking into account region specific social or ecologic requirements or by establishing procedures and institutions to achieve a regional fit. By contrast, the EU's emerging integrated Marine Environmental Policy was designed to draw heavily on regional procedural and institutional mechanisms from the outset. The developing regional measures raise the question whether they contribute to improving institutional structures governing the use and conservation of EU waters. This article analyzes the existing and future regional measures of the two policies and their varying purposes and scopes. It develops a typology for categorizing the regional aspects and examines the effects of regional measures on EU institutions and the theoretical EU integration debate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Does EU's energy dependence on Russia increase price volatility for consumers?

    NASA Astrophysics Data System (ADS)

    Yekeler, Zeynep

    Europe's dependence on natural gas imports from Russia has raised questions about energy risk and the vulnerability of the European countries, especially after the supply cuts in 2006, 2008, 2009, and 2012. The implementation of the Third Energy Package to finally unify European energy markets by linking the states located on the periphery to the well connected gas hubs in Northern Europe has been slow due to a lack of political will across Europe. This has enabled Russian Gazprom to retain its position as a major player in European markets and hinder any European effort to diversify the energy portfolio of the region. Using residential natural gas and electricity price data from 2000 through 2014, this paper analyzes the impact of EU's import reliance on natural gas from Russia and the supply disruptions on the volatility of natural gas and electricity prices through a fixed effects regression model. Results indicate that while the size of Russian natural gas imports does not significantly affect natural gas and electricity price volatility in EU countries, security supply measures such as natural gas stocks matter, especially for Southeast European countries that consistently pay more according to the results. The paper concludes by discussing the importance of formulating policies that not only aim to reduce overall EU dependence but minimize Southeastern Europe's vulnerabilities. Policy suggestions include increasing cross-border interconnectors and storage capacity as well as increasing LNG import capacity by building regasification terminals in periphery countries like Greece, Bulgaria, Romania and Slovenia.

  2. Mitigation of CO2 emissions from the EU-15 building stock: beyond the EU Directive on the Energy Performance of Buildings.

    PubMed

    Petersdorff, Carsten; Boermans, Thomas; Harnisch, Jochen

    2006-09-01

    GOAL SCOPE AND BACKGROUND: The European Directive on Energy Performance of Buildings which came into force 16 December 2002 will be implemented in the legislation of Member States by 4 January 2006. In addition to the aim of improving the overall energy efficiency of new buildings, large existing buildings will become a target for improvement, as soon as they undergo significant renovation. The building sector is responsible for about 40% of Europe's total end energy consumption and hence this Directive is an important step for the European Union in order that it should reach the level of saving required by the Kyoto Agreement. In this the EU is committed to reduce CO2 emissions relative to the base year of 1990 by 8 per cent, by 2010. But what will be the impact of the new Directive, how large could be the impacts of extending the obligation for energy efficiency retrofitting towards smaller buildings? Can improvement of the insulation offset or reduce the growing energy consumption from the increasing installation of cooling installations? EURIMA, the European Insulation Manufacturers Association and EuroACE, the European Alliance of Companies for Energy Efficiency in Buildings, asked Ecofys to address these questions. The effect of the EPB Directive on the emissions associated with the heating energy consumption of the total EU 15 building stock has been examined in a model calculation, using the Built Environment Analysis Model (BEAM), which was developed by Ecofys to investigate energy saving measures in the building stock. The great complexity of the EU-15 building stock had to be simplified by examining five standard buildings with eight insulation standards, which are assigned to building age and renovation status. Furthermore, three climatic regions (cold, moderate, warm) were distinguished for the calculation of the heating energy demand. This gave a basic 210 building types for which the heating energy demand and CO2 emissions from heating were

  3. Measurement and analysis of electronic energy transfer between Tb 3+ and Eu 3+ ions in Cs 2NaY 1-x-y Tb xEu yCl 6

    NASA Astrophysics Data System (ADS)

    Moran, Diane M.; May, P. Stanley; Richardson, F. S.

    1994-08-01

    Electronic energy-transfer processes between Tb 3+5D 4) and Eu 3+ ( 7F 0, 7F 1) ions in crystalline Cs 2NaY 1-x-yTb xEu yCl 6 compounds are examined over a wide range of relative Tb 3+ and Eu 3+ concentrations (at sample temperature of 77 and 295 K). In these systems, the Tb 3+ and Eu 3+ ions are located at centrosymmetric (O h) sites surrounded by six Cl - ions, and the minimum distance between these sites is ≈ 7.6 Å. The host lattice has a cubic structure (space group O h5-Fm3m), and the phonon spectrum of this lattice has a cut-off frequency of ≈ 300 cm -1. The optical spectra of Tb 3+ and Eu 3+ in Cs 2NaYCl 6 exhibit relatively sparse line structures, consisting almost entirely of magnetic-dipole origin lines and one-phonon-assisted electric-dipole vibronic lines that reflect O h selection rules and have relatively low oscillator strenghts. Overlap between Tb 3+ ( 5D 4) emission and Eu 3+ ( 7F 0, 7F 1) absorption spectra occurs only within the Tb 3+ ( 5D 4 → 7 F 4 and Eu 3+ ( 7F 0, 7F 1 → 5D 0 transition regions, and resonances between individual lines in these regions are used to identify possible pathways for Tb 3+ ( 5D 4)-to-Eu 3+ ( 7F 0, 7F 1) energy transfer. Rates of energy transfer are determined from time-resolved Tb 3+ ( 5D 4) luminescence intersity measurements, analyzed in terms of two different models for representing donor (Tb 3+)-acceptor (Eu 3+) site distributions in Cs 2NaY 1-x-yTb xEu yCl 6 systems. In one model, donor-accepator site distances are represented by a continuous radial distribution function, whereas in the second model, these distances are represented by a discrete distribution function. Both models are used to analyze donor luminescence decay data in terms of rate parameters that reflect specific mechanistic contributions to electronic energy transfer. Both electron-exchange and multipole-multipole mechanisms are considered in the analyses. Results from these analyses, combined with spectral overlap considerations and

  4. Synthesis, energy transfer and tunable emission properties of SrSb2O6:Eu3 +, Bi3 + phosphor

    NASA Astrophysics Data System (ADS)

    Cao, Renping; Fu, Ting; Peng, Dedong; Cao, Chunyan; Ruan, Wen; Yu, Xiaoguang

    2016-12-01

    Host SrSb2O6, SrSb2O6:Bi3 +, SrSb2O6:Eu3 +, and SrSb2O6:Eu3 +, Bi3 + phosphors are synthesized by solid state reaction method in air. Host SrSb2O6 with excitation 254 nm shows weak green-yellow emission in the range of 320-780 nm due to Sb5 + → O2- transition. SrSb2O6:Bi3 + phosphor with excitation 365 nm emits green light within the range 400-650 nm owing to the 3P1 → 1S0 transition of Bi3 + ion. SrSb2O6:Eu3 + phosphor with excitation 254 nm exhibits a systematically varied hue from green to orange-red light by increasing Eu3 + concentration from 0 to 7 mol%, and that with excitation 394 nm only shows orange-red light. The optimal Eu3 + concentration is 4 mol% in SrSb2O6:Eu3 + phosphor. SrSb2O6:Eu3 +, Bi3 + phosphor with excitation 254 and 394 nm emits orange-red light. Emission intensity of SrSb2O6:Eu3 + phosphor may be enhanced > 2 times by co-doping Bi3 + ion because of the fluxing agent and energy transfer roles of Bi3 + ion in SrSb2O6:Eu3 +, Bi3 + phosphor. The luminous mechanism of SrSb2O6:Eu3 +, Bi3 + phosphor is analyzed and explained by the simplified energy level diagrams of Sb2O62 - group, Bi3 + and Eu3 + ions, and energy transfer processes between them.

  5. Energy Transfer Efficiency from ZnO-Nanocrystals to Eu3+ Ions Embedded in SiO₂ Film for Emission at 614 nm.

    PubMed

    Mangalam, Vivek; Pita, Kantisara

    2017-08-10

    In this work, we study the energy transfer mechanism from ZnO nanocrystals (ZnO-nc) to Eu 3+ ions by fabricating thin-film samples of ZnO-nc and Eu 3+ ions embedded in a SiO₂ matrix using the low-cost sol-gel technique. The time-resolved photoluminescence (TRPL) measurements from the samples were analyzed to understand the contribution of energy transfer from the various ZnO-nc emission centers to Eu 3+ ions. The decay time obtained from the TRPL measurements was used to calculate the energy transfer efficiencies from the ZnO-nc emission centers, and these results were compared with the energy transfer efficiencies calculated from steady-state photoluminescence emission results. The results in this work show that high transfer efficiencies from the excitonic and Zn defect emission centers is mostly due to the energy transfer from ZnO-nc to Eu 3+ ions which results in the radiative emission from the Eu 3+ ions at 614 nm, while the energy transfer from the oxygen defect emissions is most probably due to the energy transfer from ZnO-nc to the new defects created due to the incorporation of the Eu 3+ ions.

  6. Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors.

    PubMed

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-05

    A group of color tunable Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369nm excitation, owing to efficient energy transfer of Tb 3+ →Eu 3+ , the emission spectra both have green emission of Tb 3+ and red emission of Eu 3+ . An efficient energy transfer occur in Tb 3+ , Eu 3+ co-doped Sr 3 LaNa(PO 4 ) 3 F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb 3+ and Eu 3+ was confirmed by the variations of emission and excitation spectra and Tb 3+ /Eu 3+ decay lifetimes in Sr 3 LaNa(PO 4 ) 3 F:Tb 3+ ,Eu 3+ . The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb 3+ content by changing Eu 3+ concentrations. The results show that the prepared Tb 3+ , Eu 3+ co-doped color tunable Sr 3 LaNa(PO 4 ) 3 F phosphor can be used for white LED. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Energy transfer and color tunable emission in Tb3 +,Eu3 + co-doped Sr3LaNa(PO4)3F phosphors

    NASA Astrophysics Data System (ADS)

    Li, Shuo; Guo, Ning; Liang, Qimeng; Ding, Yu; Zhou, Huitao; Ouyang, Ruizhuo; Lü, Wei

    2018-02-01

    A group of color tunable Sr3LaNa(PO4)3F:Tb3 +,Eu3 + phosphors were prepared by conventional high temperature solid state method. The phase structures, luminescence properties, fluorescence lifetimes and energy transfer were investigated in detail. Under 369 nm excitation, owing to efficient energy transfer of Tb3 + → Eu3 +, the emission spectra both have green emission of Tb3 + and red emission of Eu3 +. An efficient energy transfer occur in Tb3 +, Eu3 + co-doped Sr3LaNa(PO4)3F phosphors. The most possible mechanism of energy transfer is dipole-dipole interaction by Dexter's theoretical model. The energy transfer of Tb3 + and Eu3 + was confirmed by the variations of emission and excitation spectra and Tb3 +/Eu3 + decay lifetimes in Sr3LaNa(PO4)3F:Tb3 +,Eu3 +. The color tone can tuned from yellowish-green through yellow and eventually to reddish-orange with fixed Tb3 + content by changing Eu3 + concentrations. The results show that the prepared Tb3 +, Eu3 + co-doped color tunable Sr3LaNa(PO4)3F phosphor can be used for white LED.

  8. Tunable Luminescence in Sr2MgSi2O7:Tb3+, Eu3+Phosphors Based on Energy Transfer

    PubMed Central

    Li, Minhong; Wang, Lili; Ran, Weiguang; Deng, Zhihan; Shi, Jinsheng; Ren, Chunyan

    2017-01-01

    A series of Tb3+, Eu3+-doped Sr2MgSi2O7 (SMSO) phosphors were synthesized by high temperature solid-state reaction. X-ray diffraction (XRD) patterns, Rietveld refinement, photoluminescence spectra (PL), and luminescence decay curves were utilized to characterize each sample’s properties. Intense green emission due to Tb3+ 5D4→7F5 transition was observed in the Tb3+ single-doped SMSO sample, and the corresponding concentration quenching mechanism was demonstrated to be a diople-diople interaction. A wide overlap between Tb3+ emission and Eu3+ excitationspectraresults in energy transfer from Tb3+ to Eu3+. This has been demonstrated by the emission spectra and decay curves of Tb3+ in SMSO:Tb3+, Eu3+ phosphors. Energy transfer mechanism was determined to be a quadrupole-quadrupole interaction. And critical distance of energy transfer from Tb3+ to Eu3+ ions is calculated to be 6.7 Å on the basis of concentration quenching method. Moreover, white light emission was generated via adjusting concentration ratio of Tb3+ and Eu3+ in SMSO:Tb3+, Eu3+ phosphors. All the results indicate that SMSO:Tb3+, Eu3+ is a promising single-component white light emitting phosphor. PMID:28772587

  9. Study on Laws, Regulations and Standards on Energy Efficiency, Energy Conserving and Emission Reduction of Industrial Boilers in EU

    NASA Astrophysics Data System (ADS)

    Liu, Ren; Zhao, Yuejin; Chen, Haihong; Liang, Xiuying; Yang, Ming

    2017-12-01

    Industrial boilers are widely applied in such fields as factory power, building heating, and people’s lives; China is the world’s largest producer and user of industrial boilers, with very high annual energy consumption; clear requirements have been put forward by China on the energy efficiency since the “11th Five-year Plan” with the hope to save energy and reduce emission by means of energy efficiency standards and regulations on the supervision and control of various special equipment. So far, the energy efficiency of industrial boilers in China has been improved significantly but there is still a gap with the EU states. This paper analyzes the policies of energy efficiency, implementation models and methods of supervision and implementation at the EU level from laws, regulations, directives as well as standards; the paper also puts forward suggestions of energy conserving and emission reduction on the improvement of energy conserving capacity of industrial boilers in China through studying the legislations and measures of the developed countries in energy conserving of boilers.

  10. Ping Pong: Competing Leadership for Reform in EU Higher Education 1998-2006

    ERIC Educational Resources Information Center

    Corbett, Anne

    2011-01-01

    How effective is EU cooperation in higher education? This article treats the issue as one of effectiveness in policy-making. What are the policy ideas which the EU wishes to feed into a policy domain where it has to operate largely through political cooperation and a modest degree of incentive funding? What outcomes are possible? The question is…

  11. Eu 2+ –Eu 3+ valence transition in double, Eu-, and Na-doped PbSe from transport, magnetic, and electronic structure studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiendlocha, Bartlomiej; Kim, SunPhil; Lee, Yeseul

    The Eu atoms in Pb 1-xEu xSe have long been assumed to be divalent. We show that p-type doping of this magnetic semiconductor alloy with Na can modify the effective Eu valence: a mixed, Eu 2+–Eu 3+ state appears in Pb 1-x-yEu xNa ySe at particular values of y. Magnetization, carrier concentration, resistivity, and thermopower of Pb 1-x-yEu xNa ySe are reported for a number of samples with different x and y. A pronounced increase in thermopower at a given carrier concentration was identified and attributed to the presence of enhanced ionized impurity scattering. A strong decrease in the holemore » concentration is observed in Pb1-yNaySe when Eu is added to the system, which we attribute to a Eu 2+–Eu 3+ self-ionization process. This is evidenced by magnetization measurements, which reveal a significant reduction of the magnetic moment of Pb 1-xEu xSe upon alloying with Na. Further, a deviation of magnetization from a purely paramagnetic state, described by a Brillouin function, identifies antiferromagnetic interactions between the nearest-neighbor Eu atoms: a value of J ex/k B = -0.35 K was found for the exchange coupling parameter. The conclusion of a Eu 2+–Eu 3+ self-ionization process being in effect is supported further by the electronic structure calculations, which show that an instability of the 4f 7 configuration of the Eu 2+ ion appears with Na doping. In conclusion, schematically, it was found that the Eu 4f levels form states near enough to the Fermi energy that hole doping can lower the Fermi energy and trigger a reconfiguration of a 4f electronic shell.« less

  12. Eu 2+ –Eu 3+ valence transition in double, Eu-, and Na-doped PbSe from transport, magnetic, and electronic structure studies

    DOE PAGES

    Wiendlocha, Bartlomiej; Kim, SunPhil; Lee, Yeseul; ...

    2017-03-27

    The Eu atoms in Pb 1-xEu xSe have long been assumed to be divalent. We show that p-type doping of this magnetic semiconductor alloy with Na can modify the effective Eu valence: a mixed, Eu 2+–Eu 3+ state appears in Pb 1-x-yEu xNa ySe at particular values of y. Magnetization, carrier concentration, resistivity, and thermopower of Pb 1-x-yEu xNa ySe are reported for a number of samples with different x and y. A pronounced increase in thermopower at a given carrier concentration was identified and attributed to the presence of enhanced ionized impurity scattering. A strong decrease in the holemore » concentration is observed in Pb1-yNaySe when Eu is added to the system, which we attribute to a Eu 2+–Eu 3+ self-ionization process. This is evidenced by magnetization measurements, which reveal a significant reduction of the magnetic moment of Pb 1-xEu xSe upon alloying with Na. Further, a deviation of magnetization from a purely paramagnetic state, described by a Brillouin function, identifies antiferromagnetic interactions between the nearest-neighbor Eu atoms: a value of J ex/k B = -0.35 K was found for the exchange coupling parameter. The conclusion of a Eu 2+–Eu 3+ self-ionization process being in effect is supported further by the electronic structure calculations, which show that an instability of the 4f 7 configuration of the Eu 2+ ion appears with Na doping. In conclusion, schematically, it was found that the Eu 4f levels form states near enough to the Fermi energy that hole doping can lower the Fermi energy and trigger a reconfiguration of a 4f electronic shell.« less

  13. Photoluminescence and energy transfer process in Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvalakshmi, T.; Bose, A. Chandra, E-mail: acbose@nitt.edu

    2016-05-23

    Variation in photoluminescence (PL) properties of Eu{sup 3+} and Tb{sup 3+} as a function of co-dopant (Tb{sup 3+}) concentration are studied for Gd{sub 2-x-y}O{sub 3}: Eu{sup 3+}{sub x} Tb{sup 3+}{sub y} (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu{sup 3+} and Tb{sup 3+}. The bandgap calculated from Kubelka – Munk function is also reported. PL spectra are recorded at the excitation wavelength ofmore » 307 nm and the emission peak corresponding to Eu{sup 3+} confirms the energy transfer from Tb{sup 3+} to Eu{sup 3+}. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.« less

  14. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to themore » free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.« less

  15. Quantitative study of energy-transfer mechanism in Eu,O-codoped GaN by time-resolved photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Inaba, Tomohiro; Kojima, Takanori; Yamashita, Genki; Matsubara, Eiichi; Mitchell, Brandon; Miyagawa, Reina; Eryu, Osamu; Tatebayashi, Jun; Ashida, Masaaki; Fujiwara, Yasufumi

    2018-04-01

    In order to investigate the excitation processes in Eu,O-codoped GaN (GaN:Eu,O), the time-resolved photoluminescence signal including the rising part is analyzed. A rate equation is developed based upon a model for the excitation processes in GaN:Eu to fit the experimental data. The non-radiative recombination rate of the trap state in the GaN host, the energy transfer rate between the Eu3+ ions and the GaN host, the radiative transition probability of Eu3+ ion, as well as the ratio of the number of luminescent sites (OMVPE 4α and OMVPE 4β), are simultaneously determined. It is revealed and quantified that radiative transition probability of the Eu ion is the bottleneck for the enhancement of light output from GaN:Eu. We also evaluate the effect of the growth conditions on the luminescent efficiency of GaN:Eu quantitatively, and find the correlation between emission intensity of GaN:Eu and the fitting parameters introduced in our model.

  16. Methodology and estimation of the welfare impact of energy reforms on households in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Klytchnikova, Irina

    This dissertation develops a new approach that enables policy-makers to analyze welfare gains from improvements in the quality of infrastructure services in developing countries where data are limited and supply is subject to interruptions. An application of the proposed model in the former Soviet Republic of Azerbaijan demonstrates how this approach can be used in welfare assessment of energy sector reforms. The planned reforms in Azerbaijan include a set of measures that will result in a significant improvement in supply reliability, accompanied by a significant increase in the prices of energy services so that they reach the cost recovery level. Currently, households in rural areas receive electricity and gas for only a few hours a day because of a severe deterioration of the energy infrastructure following the collapse of the Soviet Union. The reforms that have recently been initiated will have far-reaching poverty and distributional consequences for the country as they result in an improvement in supply reliability and an increase in energy prices. The new model of intermittent supply developed in this dissertation is based on the household production function approach and draws on previous research in the energy reliability literature. Since modern energy sources (network gas and electricity) in Azerbaijan are cleaner and cheaper than the traditional fuels (fuel wood, etc.), households choose modern fuels whenever they are available. During outages, they rely on traditional fuels. Theoretical welfare measures are derived from a system of fuel demands that takes into account the intermittent availability of energy sources. The model is estimated with the data from the Azerbaijan Household Energy Survey, implemented by the World Bank in December 2003/January 2004. This survey includes an innovative contingent behavior module in which the respondents were asked about their energy consumption patterns in specified reform scenarios. Estimation results strongly

  17. Reforming Mexico’s Energy Sector to Enhance Stability

    DTIC Science & Technology

    2011-10-27

    requirement to reform Mexico’s energy sector. Subsequent analysis demonstrates government ownership of Petroleos Mexico (Pemex) is the fundamental...ownership of Petroleos Mexico (Pemex) is the fundamental destabilizing flaw in regulatory policy, by tracing various problems back to this root cause... Petroleos Mexico (Pemex) is the second largest company in Latin America and the seventh largest producer of oil in the world.1 The government of

  18. Photoluminescence, energy transfer and tunable color of Ce(3+), Tb(3+) and Eu(2+) activated oxynitride phosphors with high brightness.

    PubMed

    Lü, Wei; Huo, Jiansheng; Feng, Yang; Zhao, Shuang; You, Hongpeng

    2016-06-21

    New tuneable light-emitting Ca3Al8Si4O17N4:Ce(3+)/Tb(3+)/Eu(2+) oxynitride phosphors with high brightness have been prepared. When doped with trivalent cerium or divalent europium they present blue luminescence under UV excitation. The energy transfer from Ce(3+) to Tb(3+) and Ce(3+) to Eu(2+) ions is deduced from the spectral overlap between Ce(3+) emission and Tb(3+)/Eu(2+) excitation spectra. The energy-transfer efficiencies and corresponding mechanisms are discussed in detail, and the mechanisms of energy transfer from the Ce(3+) to Tb(3+) and Ce(3+) to Eu(2+) ions are demonstrated to be a dipole-quadrupole and dipole-dipole mechanism, respectively, by the Inokuti-Hirayama model. The International Commission on Illumination value of color tuneable emission as well as luminescence quantum yield (23.8-80.6%) can be tuned by controlling the content of Ce(3+), Tb(3+) and Eu(2+). All results suggest that they are suitable for UV light-emitting diode excitation.

  19. Fano Resonance of Eu2+ and Eu3+ in (Eu,Gd)Te MBE Layers

    NASA Astrophysics Data System (ADS)

    Orlowski, B. A.; Kowalski, B. J.; Dziawa, P.; Pietrzyk, M.; Mickievicius, S.; Osinniy, V.; Taliashvili, B.; Kowalik, I. A.; Story, T.; Johnson, R. L.

    2006-11-01

    Resonant photoemission spectroscopy, with application of synchrotron radiation, was used to study the valence band electronic structure of clean surface of (EuGd)Te layers. Fano-type resonant photoemission spectra corresponding to the Eu 4d-4f transition were measured to determine the contribution of 4f electrons of Eu2+ and Eu3+ ions to the valence band. The resonant and antiresonant photon energies of Eu2+ ions were found as equal to 141 V and 132 eV, respectively and for Eu3+ ions were found as equal to 146 eV and 132 eV, respectively. Contribution of Eu2+4f electrons was found at the valence band edge while for Eu3+ it was located in the region between 3.5 eV and 8.5 eV below the valence band edge.

  20. Converting Energy Subsidies to Investments: Scaling-Up Deep Energy Retrofit in Residential Sector of Ukraine

    NASA Astrophysics Data System (ADS)

    Denysenko, Artur

    After collapse of the Soviet Union, Ukraine inherited vast and inefficient infrastructure. Combination of historical lack of transparency, decades without reforms, chronical underinvestment and harmful cross-subsidization resulted in accumulation of energy problems, which possess significant threat to economic prosperity and national security. High energy intensity leads to excessive use of energy and heavy reliance on energy import to meet domestic demand. Energy import, in turn, results in high account balance deficit and heavy burden on the state finances. A residential sector, which accounts for one third of energy consumption and is the highest consumer of natural gas, is particularly challenging to reform. This thesis explores energy consumption of the residential sector of Ukraine. Using energy decomposition method, recent changes in energy use is analyzed. Energy intensity of space heating in the residential sector of Ukraine is compared with selected EU member states with similar climates. Energy efficiency potential is evaluated for whole residential sector in general and for multistory apartment buildings connected to the district heating in particular. Specifically, investments in thermal modernization of multistory residential buildings will result in almost 45TWh, or 3.81 Mtoe, of annual savings. Required investments for deep energy retrofit of multistory buildings is estimated as much as $19 billion in 2015 prices. Experience of energy subsidy reforms as well as lessons from energy retrofit policy from selected countries is analyzed. Policy recommendations to turn energy subsidies into investments in deep energy retrofit of residential sector of Ukraine are suggested. Regional dimension of existing energy subsidies and capital subsidies required for energy retrofit is presented.

  1. Energy transfer between Eu-Mn and photoluminescence properties of Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ solid solution

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Wang, Yuhua; Liu, Bitao; Li, Feng

    2010-08-01

    In order to evaluate the energy transfer between Eu-Mn in Ba0.75Al11O17.25-BaMgAl10O17 solid solution, Ba0.75Al11O17.25-BaMgAl10O17:Eu2+,Mn2+ phosphors were prepared by flux method. The crystal structure and the morphology of the solid solution were demonstrated by x-ray dirrfactometer and scanning electron microscopy. The photoluminescence mechanisms were explained by the energy transfer of Eu2+ to Mn2+ and the Dexter theory. A redshift of green emission peak and a decrease in decay time with the increase in Mn2+ concentration were observed. These phenomena are attributed to the formation of Mn2+ paired centers after analysis by a method of Pade approximations.

  2. Novel tunable green-red-emitting oxynitride phosphors co-activated with Ce3+, Tb3+, and Eu3+: photoluminescence and energy transfer.

    PubMed

    Huo, Jiansheng; Dong, Langping; Lü, Wei; Shao, Baiqi; You, Hongpeng

    2017-07-14

    A series of novel Ce 3+ , Tb 3+ and Eu 3+ ion doped Y 4 SiAlO 8 N-based oxynitride phosphors were synthesized by the solid-state method and characterized by X-ray powder diffraction, scanning electron microscopy, photoluminescence, lifetimes and thermo-luminescence. The excitation of the Ce 3+ /Tb 3+ co-doped and Ce 3+ /Tb 3+ /Eu 3+ tri-doped phosphor with near-UV radiation results in strong linear Tb 3+ green and Eu 3+ red emission. The occurrence of Ce 3+ -Tb 3+ and Ce 3+ -Tb 3+ -Eu 3+ energy transfer processes is responsible for the bright green or red luminescence. The Tb 3+ ion acting as an energy transfer bridge can alleviate MMCT quenching between the Ce 3+ -Eu 3+ ion pairs. The lifetime measurements demonstrated that the energy-transfer mechanisms of Ce 3+ → Tb 3+ and Tb 3+ → Eu 3+ are dipole-quadrupole and quadrupole-quadrupole interactions, respectively. The temperature dependent luminescence measurements showed that as-prepared green/red phosphors have good thermal stability against temperature quenching. The obtained results indicate that these phosphors might serve as promising candidates for n-UV LEDs.

  3. Energy transfer from Tb{sup 3+} to Eu{sup 2+} in Ga{sub 2}S{sub 3}:(Eu{sup 2+}, Tb{sup 3+}) crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagiev, O. B., E-mail: Oktay58@mail.ru; Ganbarova, Kh. B.

    2015-04-15

    The photoluminescence of Ga{sub 2}S{sub 3} crystals activated with Eu{sup 2+} and Tb{sup 3+} ions separately and with ions of both types is studied in the temperature range 77–300 K. It is established that, in the range 77–300 K, the observed broadband photoluminescence in (Ga{sub 2}S{sub 3}){sub 0.95}:(Eu{sub 2}O{sub 3}){sub 0.05} crystals with a peak at 545 nm is defined by 4f{sup 6}5d-4f{sup 7}({sup 8}S{sub 7/2}) intracenter transitions in Eu{sup 2+} ions and the photoluminescence with peaks at 492, 544, 584, 625, and 680 nm in (Ga{sub 2}S{sub 3}){sub 0.99}(Tb{sub 2}O{sub 3}){sub 0.01} crystals is due to the 5d →more » {sup 2}F{sub j} (j = 6−2) intracenter transitions in Tb{sup 3+} ions. It is shown that the photoluminescence bands of Tb{sup 3+} ions in the (Ga{sub 2}S{sub 3}){sub 0.94}(Eu{sub 2}O{sub 3}){sub 0.05}(Tb{sub 2}O{sub 3}){sub 0.01} crystals disappears because of excitation energy transfer from Tb{sup 3+} ions to Eu{sup 2+} ions; i.e., the Tb{sup 3+} ion is a sensitizer of the photoluminescence of the Eu{sup 2+} ion.« less

  4. Luminescent properties and energy transfer studies of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinguo, E-mail: sysuzxg@gmail.com; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004; Fu, Xionghui

    Highlights: • A series of color-tunable LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized. • Phosphors exhibit strong blue/green/red emission under UV excitation. • The reason of high Tb{sup 3+} content required for Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer is unveiled. • Green and red LED prototypes were fabricated and characterized. - Abstract: A series of LuBO{sub 3}: Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} phosphors were synthesized via solid state reaction. The Ce{sup 3+}/Tb{sup 3+} co-doped and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} tri-doped phosphors absorb near UV light through 4f-5d transitions of Ce{sup 3+}, followed by sensitized Tb{supmore » 3+} green and Eu{sup 3+} red emission. Decay curves investigations for samples with various Tb{sup 3+} and Eu{sup 3+} contents reveal the occurrence of Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. It is found that due to relative low Tb{sup 3+} → Eu{sup 3+} energy transfer rate, a high Tb{sup 3+} content (>40%) is required for efficient Ce{sup 3+} → Tb{sup 3+} → Eu{sup 3+} energy transfer. Emission color of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} varies from blue through green to red with Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} ratio. The quantum efficiency of LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+} green phosphor and LuBO{sub 3}: Ce{sup 3+}, Tb{sup 3+}, Eu{sup 3+} red phosphor is 50% and 30%, respectively. Green and red LED prototypes were fabricated. The results show that the obtained phosphors are potential candidates as down-converted phosphors for NUV LEDs.« less

  5. Less Developed Countries (LDCs) Facing Higher Education Curricula Reform Challenges in a "New World (Dis)Order"

    ERIC Educational Resources Information Center

    Gilder, Eric

    2011-01-01

    In a previous article for "EJHE," I detailed Curricula Reform (CR) efforts in Higher Education (HE) in four (relatively) well developed regional and national settings (The EU, the USA, Hong Kong SAR China, and Singapore). I detailed the backdrop motivating the moves by policymakers to reform the curricula in such "world class"…

  6. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Keigo, E-mail: ksuzuki@murata.com; Murayama, Koji; Tanaka, Nobuhiko

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnOmore » phosphors.« less

  7. Antiferromagnetic Interlayer Exchange Coupling in All-Semiconducting EuS/PbS/EuS Trilayers

    NASA Technical Reports Server (NTRS)

    Smits, C. J. P.; Filip, A. T.; Swagten, H. J. M.; Koopmans, B.; deJonge, W. J. M.; Chernyshova, M.; Kowalczyk, L.; Grasza, K.; Szczerbakow, A.; Story, T.

    2003-01-01

    A comprehensive experimental study on the antiferromagnetic interlayer exchange coupling in high quality epitaxial all-semiconducting EuSPbSEuS trilayers is reported. The influence of substrates, the thickness of the non-magnetic PbS spacer layer, and of temperature, was investigated by means of SQUID magnetometry. In trilayers with a PbS thickness between 4 and 12 deg A the low temperature hysteresis loops showed the signature of antiferromagnetic coupling. The value of the interlayer exchange coupling energy was determined by simulating the data with a modified Stoner model, including Zeeman, anisotropy, and exchange coupling energies. An important observation was of a strong dependence of the interlayer exchange coupling energy on temperature, consistent with a power law dependence of the exchange coupling constant on the saturation magnetization of the EuS layers. While no theoretical description is readily available, we conjecture that the observed behavior is due to a dependence of the interlayer exchange coupling energy on the exchange splitting of the EuS conduction band.

  8. A System of Systems (SoS) Approach to transforming to a low carbon resource-efficient energy system: Insights for the European Union (EU)

    NASA Astrophysics Data System (ADS)

    Madani, K.; Jess, T.; Mahlooji, M.; Ristic, B.

    2015-12-01

    The world's energy sector is experiencing a serious transition from reliance on fossil fuel energy sources to extensive reliance on renewable energies. Europe is leading the way in this transition to a low carbon economy in an attempt to keep climate change below 2oC. Member States have committed themselves to reducing greenhouse gas emissions by 20% and increasing the share of renewables in the EU's energy mix to 20% by 2020. The EU has now gone a step further with the objective of reducing greenhouse gas emissions by 80-95% by 2050. Nevertheless, the short-term focus of the European Commission is at "cost-efficient ways" to cut its greenhouse gas emissions which forgoes the unintended impacts of a large expansion of low-carbon energy technologies on major natural resources such as water and land. This study uses the "System of Systems (SoS) Approach to Energy Sustainability Assessment" (Hadian and Madani, 2015) to evaluate the Relative Aggregate Footprint (RAF) of energy sources in different European Union (EU) member states. RAF reflects the overall resource-use efficiency of energy sources with respect to four criteria: carbon footprint, water footprint, land footprint, and economic cost. Weights are assigned to the four resource use efficiency criteria based on each member state's varying natural and economic resources to examine the changes in the desirability of energy sources based on regional resource availability conditions, and to help evaluating the overall resource use efficiency of the EU's energy portfolio. A longer-term strategy in Europe has been devised under the "Resource Efficient Europe" flagship imitative intended to put the EU on course to using resources in a sustainable way. This study will highlight the resource efficiency of the EU's energy sector in order to assist in a sustainable transition to a low carbon economy in Europe. ReferenceHadian S, Madani K (2015) A System of Systems Approach to Energy Sustainability Assessment: Are All

  9. Quantum effect on the energy levels of Eu2+ doped K2Ca2(SO4)3 nanoparticles.

    PubMed

    Salah, Numan; Habib, Sami S; Khan, Zishan H

    2010-09-01

    Quantum confinement effect on the energy levels of Eu(2+) doped K(2)Ca(2)(SO(4))(3) nanoparticles has been observed. The broad photoluminescence (PL) emission band of Eu(2+) doped K(2)Ca(2)(SO(4))(3) microcrystalline sample observed at ∼436 nm is found to split into two narrow well resolved bands, located at 422 and 445 nm in the nanostructure form of this material. This has been attributed to the reduction in the crystal field strength of the nanomaterials, which results in widening the energy band gap and splitting the broad 4f(6)5d energy level of Eu(2+). Energy band gap values of the micro and nanocrystalline K(2)Ca(2)(SO(4))(3) samples were also determined by measuring the UV-visible absorption spectra. These values are 3.34 and 3.44 eV for the micro and nanocrystalline samples, respectively. These remarkable results suggest that activators having wide emission bands might be subjected to weak crystal strength via nanostructure materials to modify their electronic transitions. This might prove a powerful technique for producing new-advanced materials for use in the fields of solid state lasers and optoelectronic devises.

  10. Energy transfer mechanism of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors

    NASA Astrophysics Data System (ADS)

    Prasad, V. Reddy; Damodaraiah, S.; Ratnakaram, Y. C.

    2018-04-01

    Sm3+/Eu3+ co-doped calcium borophosphate phosphors were synthesized by solid state reaction method. 2CaO-B2O3-P2O5: Sm3+/Eu3+ co-doped phosphors were characterized by XRD, SEM, 31P solid state NMR, excitation, photoluminescence (PL) and decay profiles.. XRD profiles showed that the prepared phosphors exhibit a hexagonal phase in crystal structure and SEM results showed that the particles are more irregular morphologies. From 31P NMR spectra of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors, the chemical shifts located in the positive frequency region indicating the presence of mono-phosphate complexes Q0-(PO43 - ) . Photoluminescence spectra of Sm3+/Eu3+ co-doped 2CaO-B2O3-P2O5 phosphors show enhancement in emission intensity of Eu3+ ion due to co-doping with Sm3+ ions through energy transfer process. The energy level mechanism between Sm3+ and Eu3+ ions has been clearly explained. The energy transfer process has also been evidenced by lifetime decay profiles. These results suggest that the prepared phosphors are potential red luminescent optical materials.

  11. Effects of X-ray irradiation on the Eu3+ → Eu2+ conversion in CaAl2O4 phosphors

    NASA Astrophysics Data System (ADS)

    Gomes, Manassés A.; Carvalho, Jéssica C.; Andrade, Adriano B.; Rezende, Marcos V.; Macedo, Zélia S.; Valerio, Mário E. G.

    2018-01-01

    This paper reports structural and luminescence properties of Eu-doped CaAl2O4 produced by an alternative sol-gel method using coconut water. Results of differential thermal analysis (DTA), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) allowed us to identify the best synthesis conditions for sample preparation. Simultaneous measurements of X-ray absorption spectroscopy (XAS) and X-ray excited optical luminescence (XEOL) were also performed in the X-ray energy range of the Eu LIII edge. Results from photoluminescence (PL) showed only the characteristic Eu3+ emission. However, radioluminescence emission spectra from Eu-doped CaAl2O4 shows a process of conversion of Eu3+ to Eu2+, which is induced by X-ray irradiation and is dependent on the radiation dose energy. X-ray absorption near edge structure (XANES) measurements corroborate Eu reduction due to irradiation, showing that only the Eu3+ ion is present in stable form in the CaAl2O4.

  12. Tunable luminescence of the full-color-emitting LiGd5P2O13:Bi3+,Eu3+ phosphor based on energy transfers

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Qiao, Jianwei; Liu, Yongfu; Huang, Ping; Shi, Qiufeng; Tian, Yue; Cui, Cai'e.; Luo, Zhaohua

    2017-05-01

    A series of Bi3+ and/or Eu3+ doped LiGd5P2O13 (LGPO) were synthesized via a solid state reaction. In the LiGd5P2O13 lattice, Bi3+ shows a broad bluish-green emission around 500 nm and Eu3+ exhibits typical f-f red emissions. Based on the Bi3+ → Eu3+ energy transfers, the luminescence colors can be tuned from bluish-green to orange by altering the Bi3+/Eu3+ ratio. Under the 290 nm excitation, the sample with optimal composition of LGPO:0.1Bi3+,0.01Eu3+ exhibits a white light emission with a CRI of 82 and a CCT of 4250 K. The energy transfer mechanism from Bi3+ to Eu3+ in the LiGd5P2O13 host was ascribed to the dipole-dipole interaction.

  13. Crystal structure, energy transfer and tunable luminescence properties of Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphor

    NASA Astrophysics Data System (ADS)

    Ding, Chong; Tang, Wanjun

    2018-02-01

    Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.

  14. A Strategy to enhance Eu3+ emission from LiYF4:Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites

    PubMed Central

    Kim, Su Yeon; Won, Yu-Ho; Jang, Ho Seong

    2015-01-01

    LiYF4:Eu nanophosphors with a single tetragonal phase are synthesized, and various strategies to enhance the Eu3+ emission from the nanophosphors are investigated. The optimized Eu3+ concentration is 35 mol%, and the red emission peaks due to the 5D0 →7FJ (J = 1 and 2) transitions of Eu3+ ions are further enhanced by energy transfer from a sensitizer pair of Ce3+ and Tb3+. The triple doping of Ce, Tb, and Eu into the LiYF4 host more effectively enhances the Eu3+ emission than the core/shell strategies of LiYF4:Eu(35%)/LiYF4:Ce(15%), Tb(15%) and LiYF4:Ce(15%), Tb(15%)/LiYF4:Eu(35%) architectures. Efficient energy transfer from Ce3+ to Eu3+ through Tb3+ results in three times higher Eu3+ emission intensity from LiYF4:Ce(15%), Tb(15%), Eu(1%) nanophosphors compared with LiYF4:Eu(35%), which contains the optimized Eu3+ concentration. Owing to the energy transfer of Ce3+ → Tb3+ and Ce3+ → Tb3+ → Eu3+, intense green and red emission peaks are observed from LiYF4:Ce(13%), Tb(14%), Eu(1-5%) (LiYF4:Ce, Tb, Eu) nanophosphors, and the intensity ratio of green to red emission is controlled by adjusting the Eu3+ concentration. With increasing Eu3+ concentration, the LiYF4:Ce, Tb, Eu nanophosphors exhibit multicolor emission from green to orange. In addition, the successful incorporation of LiYF4:Ce, Tb, Eu nanophosphors into polydimethylsiloxane (PDMS) facilitates the preparation of highly transparent nanophosphor-PDMS composites that present excellent multicolor tunability. PMID:25597900

  15. Synthesis and photoluminescence properties of multicolor tunable GdNbO4: Tb3+, Eu3+ phosphors based on energy transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Yi, Shuangping; Hu, Xiaoxue; Liang, Boxin; Zhao, Weiren; Wang, Yinhai

    2017-03-01

    A color-tunable phosphor based on Tb3+/Eu3+ co-doped GdNbO4 were synthesized by a traditional solid-state reaction method. X-ray powder diffraction (XRD), diffuse reflectance spectra, photoluminescence spectra and decay curves were utilized to characterize the as-prepared phosphors. XRD result indicated that various concentrations Tb3+/Eu3+ single-doped and co-doped phosphors were well indexed to the pure GdNbO4 phase. The GdNbO4 host was proved to be a self-activated phosphor with broad absorption range from 200 nm to 325 nm. When Tb3+ ions were added into the host lattice, the energy transferring from host to Tb3+ was identified. And the broad absorption in the UV region was changed and enhanced. Therefore, we selected Tb3+ as the sensitizer ion, and adjusted red component from Eu3+ to control the emission color. The energy transfer from Tb3+ to Eu3+ was confirmed based on the luminescence spectra and decay curves. Furthermore, the energy transmission mechanism was deduced to be the dipole-quadrupole interaction. On the whole, the obtained GdNbO4, GdNbO4:Tb3+, and GdNbO4:Tb3+, Eu3+ phosphors may have potential application in the UV white-light-emitting diodes (w-LEDs) and display devices.

  16. The New Mode of Energy Transferring between Mn2+ and Eu2+ in Nitride Based Phosphor SrAlSi4N7 with Tunable Light and Excellent Thermal Stability.

    PubMed

    Ding, Jianyan; Seto, Takatoshi; Wang, Yichao; Cao, Yaxin; Li, Hua; Wang, YuHua

    2018-06-19

    In this work, energy transfers reciprocally between Mn2+ and Eu2+ ions in nitride SrAlSi4N7 have been found and investigated in detailed. In contrast to Mn2+ and Eu2+ activated oxide based phosphors, the red light centering at 608 nm is ascribed to 4f-5d transitions of Eu2+ ions and Mn2+ activated SrAlSi4N7 emits a cyan light peaked at 500 nm. Additionally, the special broad excitation band of SrAlSi4N7: Mn2+ centering at 362 nm has been covered by that of Eu2+ ions ranging from 300 to 550 nm. The overlap of energy level of Mn2+ and Eu2+ ions creates the condition for the energy transferring reciprocally between Eu2+ and Mn2+ ions. A series of SrAlSi4N7: 0.002Mn2+, xEu2+ (0 ≤x≤ 005) with tunable emission light have been synthesized and the decay curves of samples prove the happening of the energy transfer between Mn2+ and Eu2+ ions reciprocally. This mode of energy transfer not only prevents the loss of energy, but also improves the thermal stability and the intensity of SrAlSi4N7: Mn2+, Eu2+ at 150 °C is still beyond 92 % of the initial intensity. The results provide a new mode of energy transfer, which is expected to improve the drawback existing in energy transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. New high performing scintillators: RbSr2Br5:Eu and RbSr2I5:Eu

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Lukosi, E.; Melcher, C. L.

    2017-11-01

    We report the crystal growth and scintillation properties of two new ternary metal halide scintillators, RbSr2Br5 and RbSr2I5, activated with divalent europium. Transparent 7 mm diameter single crystals with 2.5% Eu2+ were grown in evacuated quartz ampoules via the Bridgman technique. RbSr2Br5 and RbSr2I5 have monoclinic crystal structures with densities of 4.18 g/cm3 and 4.55 g/cm3 respectively. These materials are hygroscopic and have some intrinsic radioactivity due to the presence of 87Rb. Luminescence properties typical of the 5d-4f radiative transition in Eu2+ were observed. The X-ray excited emissions consisted of singular peaks centered at 429 nm for RbSr2Br5:Eu 2.5% and 445 nm for RbSr2I4:Eu 2.5%. RbSr2Br5:Eu 2.5% had a light yield of 64,700 photons/MeV, with an energy resolution of 4.0%, and RbSr2I5:Eu 2.5% had a light yield of 90,400 ph/MeV with an energy resolution of 3.0% at 662 keV. Both crystals have an excellent proportional response over a wide range of gamma-ray energies.

  18. A novel greenish yellow-orange red Ba3Y4O9:Bi(3+),Eu(3+) phosphor with efficient energy transfer for UV-LEDs.

    PubMed

    Li, Kai; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2015-12-21

    A series of novel color-tunable Ba3Y4O9:Bi(3+),Eu(3+) phosphors were prepared for the first time via the high-temperature solid-state reaction route. The effect of Bi(3+) concentration on the emission intensity of Ba3Y4O9:Bi(3+) was investigated. The emission spectra of the Ba3Y4O9:Bi(3+),Eu(3+) phosphors present both a greenish yellow band of Bi(3+) emission centered at 523 nm, and many characteristic emission lines of Eu(3+), derived from the allowed (3)P1-(1)S0 transition of the Bi(3+) ion and the (5)D0-(7)FJ transition of the Eu(3+) ion, respectively. The energy transfer phenomenon from Bi(3+) to Eu(3+) ions is observed under UV excitation in Bi(3+), Eu(3+) co-doped Ba3Y4O9 phosphors, and their transfer mechanism is demonstrated to be a resonant type via dipole-quadrupole interaction. The critical distance between Bi(3+) and Eu(3+) for the energy transfer effect was calculated via the concentration quenching and spectral overlap methods. Results show that color tuning from greenish yellow to orange red can be realized by adjusting the mole ratio of Bi(3+) and Eu(3+) concentrations based on the principle of energy transfer. Moreover, temperature-dependent PL properties, CIE chromaticity coordinates and quantum yields of Ba3Y4O9:Bi(3+),Eu(3+) phosphors were also supplied. It is illustrated that the as-prepared Ba3Y4O9:Bi(3+),Eu(3+) phosphors can be potential candidates for color-tunable phosphors applied in UV-pumped LEDs.

  19. Sexism in School Textbooks Prepared under Education Reform in Turkey

    ERIC Educational Resources Information Center

    Esen, Yasemin

    2007-01-01

    The objective of this study is to analyze the new textbooks prepared under the framework of the "curriculum reform" realized in Turkey , as part of the EU harmonization process, in terms of gender representation. For this purpose, illustrations in the new ABC, Life Studies and Social Studies textbooks prepared under the new program were…

  20. Temperature dependent luminescence and energy transfer properties of Na2SrMg(PO4)2:Eu2+, Mn2+ phosphors.

    PubMed

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-11-21

    Eu(2+) singly and Eu(2+)/Mn(2+) co-doped Na2SrMg(PO4)2 (NSMP) phosphors have been prepared via a high-temperature solid-state reaction process. Upon UV excitation of 260-360 nm, the NSMP:xEu(2+) phosphors exhibit a violet band located at 399 nm and a blue band centered at 445 nm, which originate from Eu(2+) ions occupying two different crystallographic sites: Eu(2+)(I) and Eu(2+)(II), respectively. Excitation wavelengths longer than 380 nm can selectively excite Eu(2+)(II) to emit blue light. Energy transfer processes in the Eu(2+)(I)-Eu(2+)(II) and Eu(2+)-Mn(2+) pairs have been observed and investigated by luminescence spectra and decay curves. The emission color of as-prepared samples can be tuned by changing the relative concentrations of Eu(2+) and Mn(2+) ions and adjusting the excitation wavelength. Under UV excitation of 323 nm, the absolute quantum yield of NSMP:0.005Eu(2+) is 91%, which is higher than most of the other Eu(2+)-doped phosphors reported previously. The temperature dependent luminescence properties and decay curves (4.3-450 K) of NSMP:Eu(2+) and NSMP:Eu(2+), Mn(2+) phosphors have been studied in detail. Thermal quenching of Eu(2+) has been observed while the emission band of Mn(2+) shows a blue-shift and an abnormal increase of intensity with increasing temperature. The unusual thermal quenching behavior indicates that the NSMP compound can serve as a good lattice host for Mn(2+) ions which can be used as a red-emitting phosphor. Additionally, the lifetimes for Eu(2+)(I) and Eu(2+)(II) increase with increasing temperatures.

  1. UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4:Eu2+, Pr3+ suitable for solar spectral convertor.

    PubMed

    Chen, Yan; Wang, Jing; Liu, Chunmeng; Tang, Jinke; Kuang, Xiaojun; Wu, Mingmei; Su, Qiang

    2013-02-11

    An efficient near-infrared (NIR) phosphor LiSrPO(4):Eu(2+), Pr(3+) is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu(2+) can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr(3+) between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu(2+) with high oscillator strength. Eu(2+)/Pr(3+) may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

  2. European Education Reform and Its Impact on Curriculum and Admissions: Implications of the Bologna Process on United States Education

    ERIC Educational Resources Information Center

    Roper, Steven D.

    2007-01-01

    This article explores the European-wide educational reform known as the Bologna Process in order to provide an understanding of the methodology that will be used by European countries to assess course credit hours as well as degree programs. The Bologna Process is culmination of years of educational reform within the European Union (EU) and more…

  3. On the choice of farm management practices after the reform of the Common Agricultural Policy in 2003.

    PubMed

    Schmid, Erwin; Sinabell, Franz

    2007-02-01

    The Common Agricultural Policy (CAP) was fundamentally reformed in 2003. From 2005, farmers will receive decoupled income support payments instead of production premiums if basic standards for environment, food safety, animal health and welfare are met. Farmers are likely to adjust production and management practices to the new policy framework. We describe how this reform fits into the EU strategy of making agricultural production more environmentally friendly by concentrating on the financial aspects of the reforms. Using an agricultural sector model for Austria, we show that the reform will further decrease agricultural outputs, reduce farm inputs, lessen nitrogen surpluses and make environmentally friendly management practices more attractive for farmers.

  4. BaSO4:Eu as an energy independent thermoluminescent radiation dosimeter for gamma rays and C6+ ion beam

    NASA Astrophysics Data System (ADS)

    Sharma, Kanika; Bahl, Shaila; Singh, Birendra; Kumar, Pratik; Lochab, S. P.; Pandey, Anant

    2018-04-01

    BaSO4:Eu nanophosphor is delicately optimized by varying the concentration of the impurity element and compared to the commercially available thermoluminescent dosimeter (TLD) LiF:Mg,Ti (TLD-100) and by extension also to CaSO4:Dy (TLD-900) so as to achieve its maximum thermoluminescence (TL) sensitivity. Further, the energy dependence property of this barite nanophosphor is also explored at length by exposing the phosphor with 1.25 MeV of Co-60, 0.662 MeV of Cs-137, 85 MeV and 65 MeV of Carbon ion beams. Various batches of the phosphor at hand (with impurity concentrations being 0.05, 0.10, 0.20, 0.50 and 1.00 mol%) are prepared by the chemical co-precipitation method out of which BaSO4:Eu with 0.20 mol% Eu exhibits the maximum TL sensitivity. Further, the optimized nanophosphor exhibits a whopping 28.52 times higher TL sensitivity than the commercially available TLD-100 and 1.426 times higher sensitivity than TLD-900, a noteworthy linear response curve for an exceptionally wide range of doses i.e. 10 Gy to 2 kGy and a simple glow curve structure. Furthermore, when the newly optimized nanophosphor is exposed with two different energies of gamma radiations, namely 1.25 MeV of Co-60 (dose range- 10-300 Gy) and 0.662 MeV of Cs-137 (dose range- 1-300 Gy), it is observed that the shape and structure of the glow curves remain remarkably similar for different energies of radiation while the TL response curve shows little to no variation. When exposed to different energies of carbon ion beam BaSO4:Eu displays energy independence at lower doses i.e. from 6.059 to 14.497 kGy. Finally, even though energy independence is lost at higher doses, the material shows high sensitivity to higher energy (85 MeV) of carbon beam compared to the lower energy (65 MeV of C6+) and saturation is apparent only after 121.199 kGy. Therefore the present nanophosphor displays potential as an energy independent TLD.

  5. A new photoluminescence emission peak of ZnO SiO2 nanocomposites and its energy transfer to Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Hong, Jian-He; Cong, Chang-Jie; Zhang, Zhi-Guo; Zhang, Ke-Li

    2007-07-01

    This work reports a new photoluminescence (PL) emission peak at about 402 nm from amorphous ZnO nanoparticles in a silica matrix, and the energy transfer from it to Eu3+ ions. The amorphous ZnO SiO2 nanocomposites were prepared by the sol gel method, which is verified by X-ray diffraction (XRD) profiles and FT IR spectra. The luminescence emission spectra are fitted by four Gauss profiles, two of which at longer wavelength are due to the defects of the material and the others to amorphous ZnO nanoparticles and the Zn O Si interface state. With the reduction of Zn/Si ratio and diethanolamine, the relative intensities of visible emission decrease. The weak visible emission is due to the reduction of defects after calcined at high temperature. The new energy state at the Zn O Si interface results in strong emission at about 402 nm. When Eu3+ ions are co-doped, weak energy transfer from ZnO SiO2 nanocomposites to Eu3+ emission are observed in the excitation spectra.

  6. When Corruption Gets in the Way: Befriending Diaspora and EU-nionizing Bosnia's Higher Education

    ERIC Educational Resources Information Center

    Sabic-El-Rayess, Amra

    2013-01-01

    This article investigates the encounter of EU-unionization with a domesticated practice of corruption in Bosnian higher education. Relying on primary data collected in Bosnia's public higher education system, the study finds that the country's corrupt higher education is in conflict with the Bologna-themed reforms that would arguably help…

  7. The Development of the Market of the Production of Solar Energy in Poland and Selected EU Countries in the Years 2009-2014 - Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Dorozińska, Weronika; Gawron, Maciej; Stańko, Paulina; Stępień, Natalia; Świstak, Patrycja; Ji, Han Yeon

    2016-03-01

    The paper discusses issues related to the development of solar energy production in Poland and selected EU countries in the years 2009-2014. The analysis of data concerning the production of solar energy in Poland and selected EU countries is presented as well as the strategic goals of the Union in respect the development of the `solar energy industry'. The article discusses the benefits and costs of the transformation of energy engineering and development of the production of solar energy, which is one of the most widespread and popular technologies of the production of energy from renewable resources in view of environment protection or reduction of the costs of energy consumption.

  8. Energy transfer and colour tunability in UV light induced Tm3+/Tb3+/Eu3+: ZnB glasses generating white light emission.

    PubMed

    Naresh, V; Gupta, Kiran; Parthasaradhi Reddy, C; Ham, Byoung S

    2017-03-15

    A promising energy transfer (Tm 3+ →Tb 3+ →Eu 3+ ) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm 3+ /Tb 3+ /Eu 3+ ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II) x -[O(-II)] y centres in the ZnB glass matrix. At 360nm (UV) excitation, triply doped Tm 3+ /Tb 3+ /Eu 3+ : ZnB glasses simultaneously shown their characteristic emission bands in blue (454nm: 1 D 2 → 3 F 4 ), green (547nm: 5 D 4 → 7 F 5 ) and red (616nm: 5 D 0 → 7 F 2 ) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb 3+ in ET from Tm 3+ →Eu 3+ was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb 3+ , Eu 3+ ) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Energy transfer and colour tunability in UV light induced Tm3 +/Tb3 +/Eu3 +: ZnB glasses generating white light emission

    NASA Astrophysics Data System (ADS)

    Naresh, V.; Gupta, Kiran; Parthasaradhi Reddy, C.; Ham, Byoung S.

    2017-03-01

    A promising energy transfer (Tm3 + → Tb3 + → Eu3 +) approach is brought forward to generate white light emission under ultraviolet (UV) light excitation for solid state lightening. Tm3 +/Tb3 +/Eu3 + ions are combinedly doped in zinc borate glass system in view of understanding energy transfer process resulting in white light emission. Zinc borate (host) glass displayed optical and luminescence properties due to formation of Zn(II)x-[O(- II)]y centres in the ZnB glass matrix. At 360 nm (UV) excitation, triply doped Tm3 +/Tb3 +/Eu3 +: ZnB glasses simultaneously shown their characteristic emission bands in blue (454 nm: 1D2 → 3F4), green (547 nm: 5D4 → 7F5) and red (616 nm: 5D0 → 7F2) regions. In triple ions doped glasses, energy transfer dynamics is discussed in terms of Forster-Dexter theory, excitation & emission profiles, lifetime curves and from partial energy level diagram of three ions. The role of Tb3 + in ET from Tm3 + → Eu3 + was discussed using branch model. From emission decay analysis, energy transfer probability (P) and efficiency (η) were evaluated. Colour tunability from blue to white on varying (Tb3 +, Eu3 +) content is demonstrated from Commission Internationale de L'Eclairage (CIE) chromaticity coordinates. Based on chromaticity coordinates, other colour related parameters like correlated colour temperature (CCT) and colour purity are also computed for the studied glass samples. An appropriate blending of such combination of rare earth ions could show better suitability as potential candidates in achieving multi-colour and warm/cold white light emission for white LEDs application in the field of solid state lightening.

  10. Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3)(+)-Eu(3+) ions.

    PubMed

    Pisarska, Joanna; Kos, Agnieszka; Pisarski, Wojciech A

    2014-08-14

    Lead borate glasses doubly doped with Dy(3)(+)-Tb(3+) and Tb(3+)-Eu(3+) were investigated using optical spectroscopy. Luminescence spectra of rare earths were detected under various excitation wavelengths. The main green emission band due to (5)D4→(7)F5 transition of Tb(3+) is observed under excitation of Dy(3+), whereas the main red emission band related to (5)D0→(7)F2 transition of Eu(3+) is successfully observed under direct excitation of Tb(3+). In both cases, the energy transfer processes from Dy(3+) to Tb(3+) and from Tb(3+) to Eu(3+) in lead borate glasses occur through a nonradiative processes with efficiencies up to 16% and 18%, respectively. The presence of energy transfer process was also confirmed by excitation spectra measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. NaEuF4/Au@Ag2S nanoparticles-based fluorescence resonant transfer DNA sensor for ultrasensitive detection of DNA energy.

    PubMed

    Liu, Yuhong; Zhao, Linlin; Zhang, Jin; Zhang, Jinzha; Zhao, Wenbo; Mao, Chun

    2016-12-01

    The work investigates a new fluorescence resonance energy transfer (FRET) system using NaEuF 4 nanoparticles (NPs) and Au@Ag 2 S NPs as the energy donor-acceptor pair for the first time. The NaEuF 4 /Au@Ag 2 S NPs-based FRET DNA sensor was constructed with NaEuF 4 NPs as the fluorescence (FL) donor and Au@Ag 2 S core-shell NPs as FL acceptor. In order to find the matching energy acceptor, the amount of AgNO 3 and Na 2 S were controlled in the synthesis process to overlap the absorption spectrum of energy acceptor with the emission spectrum of energy donors. The sensitivity of FRET-based DNA sensor can be enhanced and the self-absorption of ligand as well as the background of signals can be decreased because of Eu 3+ which owns large Stokes shifts and narrow emission bands due to f-f electronic transitions of 4f shell. We obtained the efficient FRET system by studying suitable distance between the donor and acceptor. Then the FRET-based DNA sensor was used for the design of specific and sensitive detection of target DNA and the quenching efficiency (ΔFL/F 0 , ΔFL=F-F 0 ) of FL was logarithmically related to the concentration of the target DNA, ranging from 100aM to 100pM. We can realize an ultrasensitive detection of target DNA with a detection limit of 32 aM. This proposed method was feasible to analyse target DNA in real samples with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ternary complex formation of Eu(III) with o-phthalate in aqueous solutions.

    PubMed

    Park, K K; Jung, E C; Cho, H-R; Kim, W H

    2009-08-15

    Ternary hydroxo complex formation of Eu(III) with o-phthalate was investigated by potentiometry and fluorescence spectrophotometry. Curves of the equilibrium pH versus the amount of NaOH added showed that the pH value starting to form a Eu(III) precipitate was decreased due to the formation of a ternary hydroxo complex, EuOHL(s) (L = phthalate). The formation of EuOHL(s) was qualitatively confirmed by the enhancement of the fluorescence intensity of Eu(III) in the precipitate with the light absorbed by phthalate, and was quantitatively confirmed by the measurement of the amounts of Eu(III), OH(-) and phthalate included in the precipitate. The solubility product of EuOHL(s) was determined as pK(sp)(0) = 15.6+/-0.4. Characteristic features in the fluorescence spectra and the solubility product of the Eu(III)-phthalate complex were compared with those of the Eu(III)-PDA (PDA = pyridine-2,6-dicarboxylate) complex. The fluorescence intensity of the EuL(+) complex of L = PDA was about 11 times stronger than that of L = phthalate. The origin of the difference in the fluorescence intensity is discussed based on the intramolecular energy transfer effect from the lowest triplet energy level of the ligand to the resonance energy level of Eu(III).

  13. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the

  14. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013

  15. Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al(2)O(3): Eu(3) co-doped materials for temperature sensing.

    PubMed

    He, Youling; He, Jiangling; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu

    2017-06-15

    Owning to the hydrogen-band interactions, blue-light-emitting luminescent carbon dots (CDs) synthesized by one-pot hydrothermal treatment were successfully assembled into Eu 3+ doped mesoporous aluminas (MAs). Interesting, dual-emissive CDs/MAs co-doped materials with higher quantum yield (QY), long-term stability, mesoporous structure, high thermal stability, and large surface areas were obtained. Furthermore, the obtained CDs/MAs co-doped materials possessed tunable color, and excellent temperature sensitivity due to the existing of energy transfer between CDs and Eu 3+ ion. The energy transfer efficiency (η) and energy transfer probability (P) for CDs/Eu 3+ co-doped materials possessed a monotonous tendency with the change of Eu 3+ content. More importantly, the dual-emissive colors can be regularly adjusted through regulating their excitation wavelength or relative mass ratio. In addition, the emission intensity of the CDs/MAs co-doped materials gradually decreased with increasing temperature showing the clear temperature dependence, this dual-emissive thermometer was with high sensitivity, owning a great fitted curve in the range from 100 to 360K under a single wavelength excitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The European Common Agricultural Policy on fruits and vegetables: exploring potential health gain from reform.

    PubMed

    Veerman, J Lennert; Barendregt, Jan J; Mackenbach, Johan P

    2006-02-01

    Consumption of fruits and vegetables is associated with a reduced risk of cardiovascular disease and cancer. The European Union Common Agricultural Policy keeps prices high by limiting the availability of fruits and vegetables. This policy is at odds with public health interests. We assess the potential health gain for the Dutch population of discontinuing EU withdrawal support for fruits and vegetables. The maximum effect of the reform was estimated by assuming that a quantity equivalent to the amount of produce withdrawn in recent years would be brought onto the market. For the calculation of the effect of consumption change on health we constructed a multi-state life table model in which consumption of fruits and vegetables is linked to ischaemic heart disease, stroke, and cancer of the oesophagus, stomach, colorectum, lung and breast. Uncertainty is quantified using Monte Carlo simulation. The reform would maximally increase the average consumption of fruits and vegetables by 1.80% (95% uncertainty interval 1.12-2.73), with an ensuing increase in life expectancy of 3.8 (2.2-5.9) days for men and 2.6 (1.5-4.2) days for women. The reform is also likely to decrease socio-economic inequalities in health. Ending EU withdrawal support for fruits and vegetables could result in a modest health gain for the Dutch population, though uncertainty in the estimates is high. A more comprehensive examination of the health effects of the EU agricultural policy could help to ensure health is duly considered in decision-making.

  17. Optical spectroscopy and magnetic behaviour of Sm3+ and Eu3+ cations in Li6Eu1-xSmx(BO3)3 solid solution

    NASA Astrophysics Data System (ADS)

    Belhoucif, Rekia; Velázquez, Matias; Plantevin, Olivier; Aschehoug, Patrick; Goldner, Philippe; Christian, George

    2017-11-01

    A new borate solid solution series of powders, Li6Eu1-xSmx(BO3)3 (LSEBx, x = 0.35, 0.5, 0.6, 1), were synthesized by solid-state reaction, characterized and their luminescent properties were investigated. The absorption spectra indicate that absorption takes place mainly from the Sm3+6H5/2 ground state, with a strong band at 405 nm. The photoluminescence spectra reveal that the Eu3+ red emission intensity strongly depends on the Sm3+ content x. Judd-Ofelt theory was applied to experimental data for the quantitative determination of phenomenological parameters Ωi (i = 2, 4, 6) Judd Ofelt parameters, radiative transition rates and emission quantum efficiency. Owing to the energy transfer from Sm3+ to Eu3+ the intense red light detected at 613 nm at room temperature under UV or blue light excitation, was improved by ∼35% as compared with Sm3+-free samples. This energy transfer was confirmed by faster decay times of Sm3+ as energy donors. Moreover, the energy transfer between Sm3+ and Eu3+ is unidirectional and irreversible, implying that the energy transfer wastage between Sm3+ and Eu3+ is very low. Magnetic susceptibility (χ) measurements of LSEBx were carried out in the temperature range 2-320 K and are used to compare calculated and experimental energy levels.

  18. Energy from waste in Europe: an analysis and comparison of the EU 27.

    PubMed

    Sommer, Manuel; Ragossnig, Arne

    2011-10-01

    This article focuses on analysing the development of waste-generated energy in the countries of the European Union (EU 27). Besides elaborating the relevant legal and political framework in the waste and energy sector as well as climate protection, the results from correlation analyses based on the databases of the energy statistics from Eurostat are discussed. The share of energy from waste is correlated with macro-economic, waste- and energy-sector-related data, which have been defined as potentially relevant for energy recovery from waste in the countries of the European Union. The results show that a single factor influencing the extent of waste-generated energy could not be isolated as it is being influenced not only by the state of economic development and the state of development of waste management systems in the respective countries but also by energy-sector-related factors and the individual priority settings in those countries. Nevertheless the main driving force for an increase in the utilization of waste for energy generation can be seen in the legal and political framework of the European Union leading to the consequence that market conditions influence the realization of waste management infrastructure for waste-generated energy.

  19. Color-tunable photoluminescence and energy transfer properties of single-phase Ba{sub 10}(PO{sub 4}){sub 6}O:Eu{sup 2+}, Mn{sup 2+} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Qingfeng; Liao, Libing, E-mail: clayl@cugb.edu.cn; Mei, Lefu, E-mail: mlf@cugb.edu.cn

    2015-12-15

    Single-phase Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+},yMn{sup 2+} samples with apatite structure have been synthesized via a solid-state reaction method. The phase structure, luminescence properties, lifetime, PL thermal stability, as well as fluorescence decay curves of the samples were investigated. Effective energy transfer occurs from Eu{sup 2+} to Mn{sup 2+} in Ba{sub 10}(PO{sub 4}){sub 6}O and a possible mechanism of the energy-transfer from Eu{sup 2+} to Mn{sup 2+} is proposed. The critical distances R{sub c} was calculated by concentration quenching and turned out to be about 0.817 nm (x{sub c}=0.21). The CIE and thermally stable luminescence behaviors of Ba{sub 9.94}(PO{sub 4}){submore » 6}O:0.06Eu{sup 2+} phosphor were also studied in detail. All the results indicate that Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+}, yMn{sup 2+} phosphors have potential applications as near UV-convertible phosphors for white light-emitting diodes. - Graphical abstract: Crystal structure and luminescence property of Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+},yMn{sup 2+} have been discussed. - Highlights: • Ba{sub 10−x−y}(PO{sub 4}){sub 6}O:xEu{sup 2+},yMn{sup 2+} was firstly reported. • Ba{sub 9.94}(PO{sub 4}){sub 6}O:0.06Eu{sup 2+} exhibits high thermal quenching resistance. • The energy transfer between Eu{sup 2+} and Mn{sup 2+} was investigated.« less

  20. Solid oxide fuel cell steam reforming power system

    DOEpatents

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  1. Thermoluminescence response of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3} nanophosphor Co-doped with Eu and Ce for gamma ray dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, B. J.; Bhadane, Mahesh S.; Dahiwale, S. S.

    2015-06-24

    K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3} nanophosphors co-doped with Eu and Ce were synthesized by the chemical co-precipitation method. These samples were further annealed at 700 °C structural reformation. The structural and morphological characteristics were studied using XRD and TEM techniques. The particle size calculated from XRD spectra was around 35 nm. The as synthesized sample shows cubic structure annealed at 700 °C. The as synthesized and annealed sample of K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}: EuCe were irradiated with Co{sup 60} gamma rays for the doses from 2Gy to 1kGy. The TL characteristic sample of co-doped were studied for the dosimetric applicationmore » by gamma radiation. The TL spectrum of annealed sample has single peaked at 160 °C. The Eu doped sample has a high TL sensitivity than Ce doped sample. But after co-doping with Eu and Ce, TL intensity observed to be decreased. The decrees in TL peak intensity of the phosphor on co-doping of Eu and Ce gives an insight into the emission mechanism of the phosphor which involves energy transfer from Eu to Ce. The TL response of all the samples were found to be linear for the dose from 2 Gy to 1 KGy. Therefore, K{sub 2}Ca{sub 2}(SO{sub 4}){sub 3}: EuCe nanophosphor can be used for the measurement of high dose of gamma radiation.« less

  2. Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite

    NASA Astrophysics Data System (ADS)

    Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav

    2016-05-01

    TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.

  3. Intense infrared emission of Er(3+) in Ca(8)Mg(SiO(4))(4)Cl(2) phosphor from energy transfer of Eu(2+) by broadband down-conversion.

    PubMed

    Zhou, Jiajia; Teng, Yu; Liu, Xiaofeng; Ye, Song; Xu, Xiaoqiu; Ma, Zhijun; Qiu, Jianrong

    2010-10-11

    We report on conversion of near-ultraviolet and visible radiation ranging from 250 to 500 nm into near-infrared emission by a Ca(8)Mg(SiO(4))(4)Cl(2): Eu(2+), Er(3+) phosphor. Efficient 1530-1560 nm Er(3+) emission ((4)I(13/2)-->(4)I(15/2)) was detected under the excitation of Eu(2+) (4f?5d) absorption band as a result of energy transfer from Eu(2+) to Er(3+), which is confirmed by both steady state and time-resolved emission spectra. The laser power dependent emission intensity changes were investigated to analysis the energy transfer mechanism. Energy transfer from Eu(2+) to Er(3+) followed by a multi-photon quantum cutting of Er(3+) is proposed. The result indicates that the phosphor has potential application in enhancement of conversion efficient of germanium solar cells because the energy difference of Er(3+): (4)I(13/2)-->(4)I(15/2) transition matches well with the bandgap of Ge (Eg~0.785 eV).

  4. Antiferromagnetism in EuCu 2As 2 and EuCu 1.82Sb 2 single crystals

    DOE PAGES

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu 2As 2 and EuCu 2Sb 2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat C p(T), and electrical resistivity ρ(T) measurements. EuCu 2As 2 crystallizes in the body-centered tetragonal ThCr 2Si 2-type structure (space group I4/mmm), whereas EuCu 2Sb 2 crystallizes in the related primitive tetragonal CaBe 2Ge 2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for themore » EuCu 2Sb 2 crystals showed the presence of vacancies on the Cu sites, yielding the actual composition EuCu 1.82Sb 2. The ρ(T) and C p(T) data reveal metallic character for both EuCu 2As 2 and EuCu 1.82Sb 2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),C p(T), and ρ(T) data for both EuCu 2As 2 (T N = 17.5 K) and EuCu 1.82Sb 2 (T N = 5.1 K). In EuCu 1.82Sb 2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu +2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu 2As 2, also containing Eu +2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  5. Energy transfer in M₅(PO₄)₃  F:Eu²⁺,Ce³⁺ (M = Ca and Ba) phosphors.

    PubMed

    Shinde, K N; Dhoble, S J

    2014-08-01

    M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphors were successfully prepared by the combustion synthesis method. The introduction of co-dopant (Ce(3+)) into the host enhanced the luminescent intensity of the M5(PO4)3F:Eu(2+) (M = Ca and Ba) efficiently. Previously, we have reported the synthesis and photoluminescence properties of same phosphors. The aim of this article is to report energy transfer mechanism between Ce(3+) ➔Eu(2+) ions in M5(PO4)3F:Eu(2+) (M = Ca and Ba) phosphors, where Ce(3+) ions act as sensitizers and Eu(2+) ions act as activators. The M5(PO4)3F:Eu(2+) (M = Ca and Ba) co-doped with Ce(3+) phosphor exhibits great potential for use in white ultraviolet (UV) light-emitting diode applications to serve as a single-phased phosphor that can be pumped with near-UV or UV light-emitting diodes. Copyright © 2013 John Wiley & Sons, Ltd.

  6. High temperature ceramic-tubed reformer

    NASA Astrophysics Data System (ADS)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  7. Clean Energy Generation and Dispatch in Reformed Wholesale Electricity Markets: Experience in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shengru; Hurlbut, David J; Li, Ma

    In recent years, the US electricity market has undergone several stages of reform, and gradually formed the market where the wholesale electricity price is determined by the supply and demand. The US electricity market also changes along with the rapid development of clean energy, forming a number of the market mechanisms that is specifically developed for clean energy power generation characteristics. On the basis of discussing the pricing mechanism of US electricity market, this paper analyzes the experience and practice of encouraging renewable energy development policy and clean energy dispatch from the angle of market mechanism and dispatching decision, andmore » puts forward the reference for clean energy dispatching in China.« less

  8. Layered rare-earth hydroxide and oxide nanoplates of the Y/Tb/Eu system: phase-controlled processing, structure characterization and color-tunable photoluminescence via selective excitation and efficient energy transfer.

    PubMed

    Wu, Xiaoli; Li, Ji-Guang; Li, Jinkai; Zhu, Qi; Li, Xiaodong; Sun, Xudong; Sakka, Yoshio

    2013-02-01

    Well-crystallized (Y 0.97- x Tb 0.03 Eu x ) 2 (OH) 5 NO 3 · n H 2 O ( x = 0-0.03) layered rare-earth hydroxide (LRH) nanoflakes of a pure high-hydration phase have been produced by autoclaving from the nitrate/NH 4 OH reaction system under the optimized conditions of 100 °C and pH ∼7.0. The flakes were then converted into (Y 0.97- x Tb 0.03 Eu x ) 2 O 3 phosphor nanoplates with color-tunable photoluminescence. Detailed structural characterizations confirmed that LRH solid solutions contained NO 3 - anions intercalated between the layers. Characteristic Tb 3+ and Eu 3+ emissions were detected in the ternary LRHs by selectively exciting the two types of activators, and the energy transfer from Tb 3+ to Eu 3+ was observed. Annealing the LRHs at 1100 °C produced cubic-lattice (Y 0.97- x Tb 0.03 Eu x ) 2 O 3 solid-solution nanoplates with exposed 222 facets. Multicolor, intensity-adjustable luminescence was attained by varying the excitation wavelength from ∼249 nm (the charge transfer excitation band of Eu 3+ ) to 278 nm (the 4f 8 -4f 7 5d 1 transition of Tb 3+ ). Unitizing the efficient Tb 3+ to Eu 3+ energy transfer, the emission color of (Y 0.97- x Tb 0.03 Eu x ) 2 O 3 was tuned from approximately green to yellowish-orange by varying the Eu 3+ /Tb 3+ ratio. At the optimal Eu 3+ content of x = 0.01, the efficiency of energy transfer was ∼91% and the transfer mechanism was suggested to be electric multipole interactions. The phosphor nanoplates developed in this work may be incorporated in luminescent films and find various lighting and display applications.

  9. Study on photoluminescence and energy transfer of Eu3+/Sm3+ single-doped and co-doped BaB8O13 phosphors

    NASA Astrophysics Data System (ADS)

    Lephoto, Mantwa A.; Tshabalala, Kamohelo G.; Motloung, Selepe J.; Ahemen, Iorkyaa; Ntwaeaborwa, Odireleng M.

    2018-04-01

    A series of Sm3+, Eu3+ and Eu3+- Sm3+ doped BaB8O13 were synthesized by using a solution combustion method. When excited at 394 nm, BaB8O13: Eu3+ emits red light, and the strongest peak was located at 614 nm, which is attributed to the 5D0→7F2 transition of Eu3+. BaB8O13: Sm3+ produced red-orange light, and the major emission peak was located at 596 nm under the 402 nm radiation excitation, which is assigned to the 4G5/2→6H7/2 transition of Sm3+. When excited at 402 nm, the PL emission intensity from BaB8O13: 0.05Eu3+; 0.005Sm3+ at 614 nm was enhanced considerably compared to that of the sample without Sm3+, suggesting that energy was transferred from Sm3+ to Eu3+. The Commission International de I‧Eclairage (CIE) chromaticity coordinates of BaB8O13: 0.05Eu3+; 0.005Sm3+ powder phosphor (0.637, 0.362) are located in the red region indicating that the phosphor can serve as a source of red light in LEDs.

  10. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  11. Partnerships for disaster risk insurance in the EU

    NASA Astrophysics Data System (ADS)

    Mysiak, Jaroslav; Dionisio Pérez-Blanco, C.

    2016-11-01

    With increasing costs inflicted by natural hazard perils, and amidst state budget cuts, concerns are mounting about the capacity of governments to design sustainable, equitable and affordable risk management schemes. The participation of the private sector along with the public one through public-private partnerships (PPPs) has gained importance as a means of providing catastrophic natural hazard insurance to address these seemingly conflicting objectives. In 2013 the European Commission launched a wide-ranging consultation about what EU action could be appropriate to improve the performance of insurance markets. Simultaneously, the EU legislator instigated major reforms in the legislation and regulations that pertain to how PPPs are designed or operate. This paper has a dual objective: first, we review and summarize the manifold legal background that influences the provision of insurance against natural catastrophes. Second, we examine how PPPs designed for sharing and transferring risk operate within the European regulatory constraints, illustrated using the example of the UK Flood Reinsurance Scheme (Flood RE) between the state and the Association of British Insurers.

  12. White long-lasting phosphorescence generation in a CaAl2Si2O8 : Eu2+, Mn2+, Dy3+ system through persistent energy transfer

    NASA Astrophysics Data System (ADS)

    Zhang, Jinsu; Chen, Baojiu; Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang

    2012-08-01

    Based on the persistent energy transfer principle, Mn2+ was introduced into a CaAl2Si2O8 : Eu2+/Dy3+ phosphor to achieve white long-lasting emissions. Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors with various Mn2+ concentrations were prepared via a solid-state reaction, and the crystal structure of the phosphors was identified by the x-ray diffraction technique. The luminescent properties of the Eu2+, Mn2+ and Dy3+ tri-doped CaAl2Si2O8 phosphors were studied. The energy transfer behaviour from Eu2+ to Mn2+ was analysed within the framework of Dexter theory. The physical mechanism of energy transfer was assigned to the electric dipole-quadrupole interaction. It was also demonstrated that the colour coordinates of the phosphors can be tuned from the blue region to the white region in the colour space. Furthermore, the afterglow decay and thermoluminescence curves were measured, indicating excellent phosphorescence properties of the current phosphors.

  13. EU to review implications of tax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, A.

    1997-05-21

    The European Council of Ministers has postponed discussion of the European Commission`s proposed energy tax and has authorized a study to reevaluate the technical and legal implications and the costs and benefits of the tax. The reevaluation comes as a ray of hope to European chemical industry officials, who are concerned about the effects of the tax on the industry`s international competitiveness. The commission`s proposal would tax natural gas, electricity, and coal in the European Union (EU) for the first time. It would raise taxes throughout the EU to one level. In its current form the energy tax would devastatemore » the European industry`s competitiveness outside the region, says European Chemical Industry Council (Cefic) counsel Claude Culem. We`re willing to improve emissions to achieve environmental goals - we don`t need energy taxes, Culem tells CW. The whole project is dangerous, not necessarily in the short term, but certainly in the long term. European Parliament ministers are scheduled to debate the issue with the Dutch government, which holds the EU presidency, and hope to wrap up proceedings over the summer. The tax may only be adopted when ministers agree on it unanimously. If it is approved, it would be implemented in two stages, in 2000 and 2002.« less

  14. Energy transfer and tunable multicolor emission and paramagnetic properties of GdF3:Dy(3+),Tb(3+),Eu(3+) phosphors.

    PubMed

    Guan, Hongxia; Sheng, Ye; Xu, Chengyi; Dai, Yunzhi; Xie, Xiaoming; Zou, Haifeng

    2016-07-20

    A series of Dy(3+), Tb(3+), Eu(3+) singly or doubly or triply doped GdF3 phosphors were synthesized by a glutamic acid assisted one-step hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) spectroscopy. The results show that the synthesized samples are all pure GdF3. The obtained samples have a peanut-like morphology with a diameter of about 270 nm and a length of about 600 nm. Under UV excitation, GdF3:Dy(3+), GdF3:Tb(3+) and GdF3:Eu(3+) samples exhibit strong blue, green and red emissions, respectively. By adjusting their relative doping concentrations in the GdF3 host, the different color hues of green and red light are obtained by co-doped Dy(3+), Tb(3+) and Tb(3+), Eu(3+) ions in the GdF3 host, respectively. Besides, there exist two energy transfer pairs in the GdF3 host: (1) Dy(3+) → Tb(3+) and (2) Tb(3+) → Eu(3+). More significantly, in the Dy(3+), Tb(3+), and Eu(3+) tri-doped GdF3 phosphors, white light can also be achieved upon excitation of UV light by adjusting the doping concentration of Eu(3+). In addition, the obtained samples also exhibit paramagnetic properties at room temperature (300 K) and low temperature (2 K). It is obvious that multifunctional Dy(3+), Tb(3+), Eu(3+) tri-doped GdF3 materials including tunable multicolors and intrinsic paramagnetic properties may have potential applications in the field of full-color displays.

  15. Performance evaluation of newly developed SrI2(Eu) scintillator

    NASA Astrophysics Data System (ADS)

    Takabe, M.; Kishimoto, A.; Kataoka, J.; Sakuragi, S.; Yamasaki, Y.

    2016-09-01

    The development of europium-doped strontium iodide (SrI2(Eu)) has attracted considerable attention, because of its excellent material properties as regards gamma-ray scintillator applications. These include its excellent energy resolution, high light output (> 80 , 000 ph / MeV), and high effective atomic number (Z=49). Here we report on the performance of ϕ 1 in×1 in SrI2(Eu) cylindrical crystals newly fabricated by Union Materials Inc. In this study, we measured the energy resolution and light output at 10 °C temperature intervals between -40 and 40 °C, using an optically coupled 2-in photomultiplier tube (PMT) (Super Bialkali, Hamamatsu). The SrI2(Eu) light output increased by 0.12%/°C as the temperature decreased. At -40 °C, we obtained the optimal energy resolution recording 2.91±0.02% full width at half maximum (FWHM) for 662 keV gamma rays measured with 137Cs. For comparison, we also measured the same crystal using both a large-area (19×19 mm2) avalanche photodiode detector (APD) and 8×8 multi-pixel photon counter (MPPC) arrays of 3×3 mm2 pixels. The energy resolutions of 2.94±0.02%, 3.14±0.06% and 3.99±0.01% were obtained using PMT, APD, and MPPC, respectively, as measured at -20 °C. We also measured the inherent background of SrI2(Eu) in a cave composed of Cu-Pb blocks with their thickness of 5-10 cm confirming that SrI2(Eu) has an extremely low inherent background radiation. In this study, we have shown that SrI2(Eu) is a promising scintillator that can be utilized for radiation measurements incorporating low-energy X-rays to high-energy gamma rays, and can thus be applied in various medical, industrial, and environmental treatment fields in the near future.

  16. Tunable blue-green emission and energy transfer properties in β-Ca3(PO4)2:Eu(2+), Tb(3+) phosphors with high quantum efficiencies for UV-LEDs.

    PubMed

    Li, Kai; Zhang, Yang; Li, Xuejiao; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2015-03-14

    A series of Eu(2+) and Tb(3+) singly-doped and co-doped β-Ca3(PO4)2 phosphors have been synthesized via the high-temperature solid-state reaction method. Thermogravimetric (TG) analysis, fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD) patterns and Rietveld refinements, photoluminescence (PL) spectra including temperature-dependent PL and quantum efficiency, and fluorescence decay lifetimes have been used to characterise the as-prepared samples. Under UV excitation, β-Ca3(PO4)2:Eu(2+) presents a broad emission band centered at 415 nm, which can be decomposed into five symmetrical bands peaking at 390, 408, 421, 435 and 511 nm based on the substitution of five kinds of Ca(2+) sites by Eu(2+) ions. β-Ca3(PO4)2:Tb(3+) shows characteristic emission lines under Tb(3+) 4f-5d transition excitation around 223 nm. In β-Ca3(PO4)2:Eu(2+), Tb(3+) phosphors, similar excitation spectra monitored at 415 and 547 nm have been observed, which illustrates the possibility of energy transfer from Eu(2+) to Tb(3+) ions. The variations in the emission spectra and decay lifetimes further demonstrate the existence of energy transfer from Eu(2+) to Tb(3+) ions under UV excitation. The energy transfer mechanism has been confirmed to be dipole-quadrupole, which can be validated via the agreement of critical distances obtained from the concentration quenching (12.11 Å) and spectrum overlap methods (9.9-13.2 Å). The best quantum efficiency can reach 90% for the β-Ca3(PO4)2:0.01Eu(2+), 0.15Tb(3+) sample under 280 nm excitation. These results show that the developed phosphors may possess potential applications in UV-pumped white light-emitting diodes.

  17. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2018-01-26

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  18. Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies

    NASA Astrophysics Data System (ADS)

    Wangkhem, Ranjoy; Yaba, Takhe; Shanta Singh, N.; Ningthoujam, R. S.

    2018-03-01

    CaMoO4:Eu3+ (3 at. %)/Bi3+ (x at. %) nanophosphors were synthesized hydrothermally. All the samples can be excited by 280, 320, 393, and 464 nm (blue) wavelengths for generation of red color emission. Enhancement in 5D0 → 7F2 (615 nm) emission (f-f transition) of Eu3+ is observed when Bi3+ is incorporated in CaMoO4:Eu3+. This is due to the efficient energy transfer from Bi3+ to Eu3+ ions. Introduction of Bi3+ in the system does not lead to the change of emission wavelength of Eu3+. However, Bi3+ incorporation in the system induces a shift in Mo-O charge transfer band absorption from 295 to 270 nm. This may be due to the increase in electronegativity between Mo and O bond in the presence of Bi3+ leading to change in crystal field environment of Mo6+ in MoO42-. At the optimal concentration of Bi3+, an enhancement in emission by a factor of ˜10 and 4.2 in the respective excitation at 393 (7F0 → 5L6) and 464 nm (7F0 → 5D2) is observed. The energy transfer efficiency from Bi3+ to Eu3+ increases from 75% to 96%. The energy transfer is observed to occur mainly via dipole-dipole interactions. Maximum quantum yield value of 55% is observed from annealed CaMoO4:Eu3+ (3 at. %) when sensitized with Bi3+ (15 at. %) under 464 nm excitation. From Commission International de I'Eclairage chromaticity coordinates, the color (red) saturation is observed to be nearly 100%.

  19. Fuel cell integrated with steam reformer

    DOEpatents

    Beshty, Bahjat S.; Whelan, James A.

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  20. Strong Eu2+ light emission in Eu silicate through Eu3+ reduction in Eu2O3/Si multilayer deposited on Si substrates

    PubMed Central

    2013-01-01

    Eu2O3/Si multilayer nanostructured films are deposited on Si substrates by magnetron sputtering. Transmission electron microscopy and X-ray diffraction measurements demonstrate that multicrystalline Eu silicate is homogeneously distributed in the film after high-temperature treatment in N2. The Eu2+ silicate is formed by the reaction of Eu2O3 and Si layers, showing an intense and broad room-temperature photoluminescence peak centered at 610 nm. It is found that the Si layer thickness in nanostructures has great influence on Eu ion optical behavior by forming different Eu silicate crystalline phases. These findings open a promising way to prepare efficient Eu2+ materials for photonic application. PMID:23618344

  1. First-principle study of phosphors for white-LED applications : absorption and emission energies for Ce- and Eu-doped hosts.

    NASA Astrophysics Data System (ADS)

    Gonze, Xavier; Jia, Yongchao; Miglio, Anna; Giantomassi, Matteo; Ponce, Samuel; Mikami, Masayoshi

    After the invasion of compact fluorescent lamps, white LED lighting is becoming a major contender in ecofriendly light sources, with a combination of yellow-, green- and/or red-emitting phosphors partly absorbing the blue light emitted by an InGaN LED. After introducing the semi-empirical Dorenbos model for 4f' 5d transition energies of rare earth ions, I present a first-principle study of two dozen compounds, pristine as well as doped with Ce3+ or Eu2+ ions, in view of explaining their different emission color. The neutral excitation of the ions is simulated through a constrained density functional theory method coupled with a delta SCF analysis of total energies, yielding absorption energies. Then, atomic positions in the excited state are relaxed, yielding emission energies and Stokes shifts, and identification of luminescent centers. In case of the Ce doped materials, the first-principle approach matches experimental data within 0.3 eV for both absorption and emission energies, covering a range of values between 2.0 eV and 5.0 eV, and provides Stokes shifts within 30%, with two exceptions. This is significantly better than the semi-empirical Dorenbos model. A similar analysis is performed for Eu-doped materials, also examining the thermal quenching of two oxynitride hosts. The work was supported by the FRS-FNRS Belgium (PDR Grant T.0238.13 - AIXPHO).

  2. Exploring growth conditions and Eu2+ concentration effects for KSr2I5:Eu scintillator crystals

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Camarda, G.; Lindsey, A.; Johnson, J.; Hobbs, C.; Melcher, C. L.

    2016-04-01

    Our current research is focused on understanding dopant optimization, growth rate, homogeneity and their impact on the overall performance of KSr2I5:Eu2+ single crystal scintillators. In this work we have investigated the effects of Eu2+ concentration in the potassium strontium iodide matrix, and we found that the concentration needed to maximize the light yield was 4 mol%. In order to assess the effects of the pulling rate, we grew single crystals at 12, 24 and 120 mm/day via the vertical Bridgman technique. For the sample sizes measured (5×5×5 mm3), we found that the crystal grown at the fastest rate of 120 mm/day showed a light yield within ~7% of the more slowly grown boules, and no significant change was observed in the energy resolution. Therefore, light yields from 88,000 to 96,000 ph/MeV and energy resolutions from 2.4 to 3.0% (at 662 keV) were measured for KSr2I5:Eu 4% over a relatively wide range of growth conditions. In order to assess the homogeneity of KSr2I5:Eu 4%, a newly developed micro-resolution X-ray technique was used to map the light yield as a function of excitation position. In the crystals that we studied, we did not observe any significant inhomogeneity other than a smooth gradient due to light collection and self absorption effects.

  3. First-principles studies of Ce and Eu doped inorganic scintillator gamma ray detectors

    NASA Astrophysics Data System (ADS)

    Canning, Andrew; Chaudhry, Anurag; Boutchko, Rostyslav; Derenzo, Stephen

    2011-03-01

    We have performed DFT based band structure calculations for new Ce and Eu doped wide band gap inorganic materials to determine their potential as candidates for gamma ray scintillator detectors. These calculations are based on determining the 4f ground state level of the Ce and Eu relative to the valence band of the host as well as the position of the Ce and Eu 5d excited state relative to the conduction band of the host. Host hole and electron traps as well as STEs (self trapped excitons) can also limit the transfer of energy from the host to the Ce or Eu site and therefore limit the light output. We also present calculations for host hole traps and STEs to compare the energies to the Ce and Eu excited states. The work was supported by the U.S. Department of Homeland Security and carried out at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02- 05CH11231.

  4. Public service or commodity goods? Electricity reforms, access, and the politics of development in Tanzania

    NASA Astrophysics Data System (ADS)

    Ghanadan, Rebecca Hansing

    Since the 1990s, power sector reforms have become paramount in energy policy, catalyzing a debate in Africa about market-based service provision and the effects of reforms on access. My research seeks to move beyond the conceptual divide by grounding attention not in abstract 'market forces' but rather in how development institutions shape energy services and actually practice policy on the ground. Using the case of Tanzania, a country known for having instituted some of the most extensive reforms and a 'success story' in Africa, I find that reforms are creating large burdens and barriers for access and use of services, including: increasing costs, enforcement pressures, and measures to impose 'market' discipline. However, I also find that many of the most significant outcomes are not found in direct 'market' changes, but rather how reforms are selective, partial, and shaped by the wider needs and claims of the institutions driving reforms, so that questions of how reforms are implemented, how they are measured, and who tells the story become as important as the policies themselves. Using a multiple-arenas framework, including (i) a household and community level study of urban energy conditions, (ii) a study of service and management conditions at the national electric utility, (iii) an examination of the international policy process, and (iv) a study of the history of electricity services across colonial, post-independence, and reform periods, I show that African energy reforms are a technical and political project connecting energy to international investments, donor aid programs, and elite interests within national governments. Energy reforms also involve fundamental service changes that are reorganizing how the costs and benefits of energy systems are distributed, allocated, and managed. The effects of reform extend beyond formal services to have wide-reaching repercussions within natural resources, and uneven social dynamics on the ground. These features point

  5. Evaluation of Large Volume SrI2(Eu) Scintillator Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, B W; Cherepy, N J; Drury, O B

    2010-11-18

    There is an ever increasing demand for gamma-ray detectors which can achieve good energy resolution, high detection efficiency, and room-temperature operation. We are working to address each of these requirements through the development of large volume SrI{sub 2}(Eu) scintillator detectors. In this work, we have evaluated a variety of SrI{sub 2} crystals with volumes >10 cm{sup 3}. The goal of this research was to examine the causes of energy resolution degradation for larger detectors and to determine what can be done to mitigate these effects. Testing both packaged and unpackaged detectors, we have consistently achieved better resolution with the packagedmore » detectors. Using a collimated gamma-ray source, it was determined that better energy resolution for the packaged detectors is correlated with better light collection uniformity. A number of packaged detectors were fabricated and tested and the best spectroscopic performance was achieved for a 3% Eu doped crystal with an energy resolution of 2.93% FWHM at 662keV. Simulations of SrI{sub 2}(Eu) crystals were also performed to better understand the light transport physics in scintillators and are reported. This study has important implications for the development of SrI{sub 2}(Eu) detectors for national security purposes.« less

  6. Eu2+ -induced enhancement of defect luminescence of ZnS.

    PubMed

    Xiao-Bo, Zhang; Fu-Xiang, Wei

    2016-12-01

    The Eu 2 + -induced enhancement of defect luminescence of ZnS was studied in this work. While photoluminescence (PL) spectra exhibited 460 nm and 520 nm emissions in both ZnS and ZnS:Eu nanophosphors, different excitation characteristics were shown in their photoluminescence excitation (PLE) spectra. In ZnS nanophosphors, there was no excitation signal in the PLE spectra at the excitation wavelength λ ex  > 337 nm (the bandgap energy 3.68 eV of ZnS); while in ZnS:Eu nanophosphors, two excitation bands appeared that were centered at 365 nm and 410 nm. Compared with ZnS nanophosphors, the 520 nm emission in the PL spectra was relatively enhanced in ZnS:Eu nanophosphors and, furthermore, in ZnS:Eu nanophosphors the 460 nm and 520 nm emissions increased more than 10 times in intensity. The reasons for these differences were analyzed. It is believed that the absorption of Eu 2 + intra-ion transition and subsequent energy transfer to sulfur vacancy, led to the relative enhancement of the 520 nm emission in ZnS:Eu nanophosphors. In addition, more importantly, Eu 2 + acceptor-bound excitons are formed in ZnS:Eu nanophosphors and their excited levels serve as the intermediate state of electronic relaxation, which decreases non-radiative electronic relaxation and thus increases the intensity of the 460 nm and 520 nm emission dramatically. In summary, the results in this work indicate a new mechanism for the enhancement of defect luminescence of ZnS in Eu 2 + -doped ZnS nanophosphors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Dy:Eu doped CaBAl glasses for white light applications

    NASA Astrophysics Data System (ADS)

    Lodi, T. A.; Sandrini, M.; Medina, A. N.; Barboza, M. J.; Pedrochi, F.; Steimacher, A.

    2018-02-01

    The combination of Eu3+ and Dy3+ in co-doped glassy materials provides interesting applicability for white light emission devices. In this work, Dy:Eu doped Calcium Boroaluminate (CaBAl) glasses were prepared by conventional melting quenching, with 3 wt% of Dy2O3 and Eu2O3 content varying from 0 to 3 wt%, and results of absorption spectra, photoluminescence and photoluminescence lifetime are discussed in terms of Eu2O3 content. The photoluminescence of the samples was studied under excitation of 365 and 405 nm light source. The 365 nm excitation shows favor to the Dy3+ ion emission. The results of photoluminescence lifetime at 575 nm (Dy3+) shows a decrease due to Eu2O3 addition, which suggests an energy transfer from Dy3+ (donor) to the Eu3+ (acceptor). On the other hand, under excitation of 405 nm, the photoluminescence lifetime at 575 nm (Dy3+) shows no significant changes due to Eu2O3 amount, which indicates that the energy transfer from Dy3+ to Eu3+ (under λexc = 405 nm) is negligible. However, the results of photoluminescence under 405 nm excitation present a white yellowish emission in the CIE diagram, which shifts to red with Eu2O3 addition. The combination of a Blue LED (BL) emission with the emission of the samples was also studied in the CIE diagram, in order to improve light emission and to obtain ideal White Light (WL). The results show that by modifying the emission intensity of BL, it is possible to achieve a route for smart lighting, close to the circadian light cycle.

  8. Exploring growth conditions and Eu2+ concentration effects for KSr2I5:Eu scintillator crystals II: Ø 25 mm crystals

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Johnson, J.; Koschan, M.; Wu, Y.; Donnald, S.; Vaigneur, K.; Lukosi, E.; Melcher, C. L.

    2018-02-01

    Europium doped potassium strontium iodide is a very promising scintillator for national security applications due to its ease of growth and excellent scintillation properties. For this work the fast crystal growth and scintillation properties of 1-inch diameter single crystals of KSr2I5:Eu2+ (KSI:Eu) were investigated. We focused our efforts on optimizing the growth parameters required to produce one-inch diameter crystals without decreasing the previously reported fast pulling rate of 5 mm/h. Cracking was minimized by replacing the quartz ampoules with carbon coated quartz ampoules; thus, several crack free single crystals of KSI with varying Eu2+ concentrations were grown, including a Ø 1″ by 6″ long boule with 2.5% Eu. The maximum achievable performance of each crystal was measured using small 0.012 cm3 specimens. The volumetric dependencies of the light yield, energy resolution and decay time were evaluated using KSI:Eu 2% specimens with volumes ranging from 0.012 cm3 to 18 cm3. For large volumes (≥ 9 cm3), the performance was comparable to other high performing scintillators, with light yields up to 78,200 ph/MeV and energy resolutions as good as 3.2% at 662 keV. The initial version of a hermetic package has been developed, and the stability of the sealed crystal is promising.

  9. Activation cross section and isomeric cross-section ratio for the 151Eu(n,2n)150m,gEu process

    NASA Astrophysics Data System (ADS)

    Luo, Junhua; Li, Suyuan; Jiang, Li

    2018-07-01

    The cross sections of 151Eu(n,2n)150m,gEu reactions and their isomeric cross section ratios σm/σt have been measured experimentally. Cross sections are measured, relative to a reference 93Nb(n,2n)92mNb reaction cross section, by means of the activation technique at three neutron energies 13.5, 14.1, and 14.8 MeV. Monoenergetic neutron beams were formed via the 3H(d,n)4He reaction and both Eu2O3 samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The activities induced in the reaction products were measured using high-resolution gamma ray spectroscopy. Cross sections were also evaluated theoretically using the numerical nuclear model code, TALYS-1.8 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature.

  10. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  11. Single crystals of the fluorite nonstoichiometric phase Eu{0.916/2+}Eu{0.084/3+}F2.084 (conductivity, transmission, and hardness)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Turkina, T. M.; Sorokin, N. I.; Karimov, D. N.; Komar'kova, O. N.; Sulyanova, E. A.

    2010-07-01

    The nonstoichiometric phase EuF2+ x has been obtained via the partial reduction of EuF3 by elementary Si at 900-1100°C. Eu{0.916/2+}Eu{0.084/3+}F2.084 (EuF2.084) single crystals have been grown from melt by the Bridgman method in a fluorinating atmosphere. These crystals belong to the CaF2 structure type (sp. gr. Fm bar 3 m) with the cubic lattice parameter a = 5.8287(2) Å, are transparent in the spectral range of 0.5-11.3 μm, and have microhardness H μ = 3.12 ± 0.13 GPa and ionic conductivity σ = 1.4 × 10-5 S/cm at 400°C with the ion transport activation energy E a = 1.10 ± 0.05 eV. The physicochemical characteristics of the fluorite phases in the EuF2 - EuF3 systems are similar to those of the phases in the SrF2 - EuF3 and SrF2 - GdF3 systems due to the similar lattice parameters of the EuF2 and SrF2 components. Europium difluoride supplements the list of fluorite components MF2 ( M = Ca, Sr, Ba, Cd, Pb), which are crystal matrices for nonstoichiometric (nanostructured) fluoride materials M 1 - x R x F2 + x ( R are rare earth elements).

  12. 75 FR 28004 - Credit Reforms in Organized Wholesale Electric Markets; Notice Establishing Date for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... Proposed Rulemaking on Credit Reforms in Organized Wholesale Electric Markets.\\1\\ Specifically, the... counterparty to transactions in their markets \\1\\ Credit Reforms in Organized Wholesale Electric Markets, 130... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms...

  13. Luminescence properties and energy transfer of site-sensitive Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) phosphors and their application to near-UV LED-based white LEDs.

    PubMed

    Kwon, Ki Hyuk; Im, Won Bin; Jang, Ho Seong; Yoo, Hyoung Sun; Jeon, Duk Young

    2009-12-21

    On the basis of the structural information that the host material has excellent charge stabilization, blue-emitting Ca(6-x-y)Mg(x)(PO(4))(4):Eu(y)(2+) (CMP:Eu(2+)) phosphors were synthesized and systematically optimized, and their photoluminescence (PL) properties were evaluated. Depending upon the amount of Mg added, the emission efficiency of the phosphors could be enhanced. The substitution of Eu(2+) affected their maximum wavelength (lambda(max)) and thermal stability because the substitution site of Eu(2+) could be varied. To obtain single-phase two-color-emitting phosphors, we incorporated Mn(2+) into CMP:Eu(2+) phosphors. Weak red emission resulting from the forbidden transition of Mn(2+) could be enhanced by the energy transfer from Eu(2+) to Mn(2+) that occurs because of the spectral overlap between the photoluminescence excitation (PLE) spectrum of Mn(2+) and the PL spectrum of Eu(2+). The energy transfer process was confirmed by the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Finally, the optimized Ca(6-x-y)Mg(x-z)(PO(4))(4):Eu(y)(2+),Mn(z)(2+) (CMP:Eu(2+),Mn(2+)) phosphors were applied with green emitting Ca(2)MgSi(2)O(7):Eu(2+) (CMS:Eu(2+)) phosphors to ultraviolet (UV) light emitting diode (LED)-pumped white LEDs. The CMS:Eu(2+)-mixed CMP:Eu(2+), Mn(2+)-based white LEDs showed an excellent color rendering index (CRI) of 98 because of the broader emission band and more stable color coordinates than those of commercial Y(3)Al(5)O(12):Ce(3+) (YAG:Ce(3+))-based white LEDs under a forward bias current of 20 mA. The fabricated white LEDs showed very bright natural white light that had the color coordinate of (0.3288, 0.3401), and thus CMP:Eu(2+),Mn(2+) could be regarded as a good candidate for UV LED-based white LEDs.

  14. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies.more » The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft

  15. The Commission White Paper on a Strategy for a Future EU Chemicals Policy: the view of European companies of American parentage.

    PubMed

    Montfort, Jean-Philippe

    2003-04-01

    After years of good service, EU legislation on chemicals is currently subject to a major review. This process, initiated by the Council of Ministers at Chester in April 1998, will soon lead to new legislative proposals. In the meantime, a review of the Commission's White Paper on "Strategy for a Future Chemicals Policy," published in February 2001, clearly shows that the regulatory landscape in this area will be significantly reshaped and that a new burden will be imposed on industry to demonstrate that the production and use of chemicals indeed conform to high standards of protection of human health and the environment. In the view of industry, on both sides of the Atlantic, while the objectives of the proposed reform can be supported, the measures proposed in the White Paper to implement these objectives are not properly balanced and will lead to substantial societal and economic drawbacks, unless significant adjustments are made. The purpose of this article is to present the pitfalls and difficulties of the reform as they are perceived by the EU Committee of the American Chamber of Commerce in Brussels, an organization that regroups about 150 European companies of American parentage, belonging to a broad range of European business sectors, including producers and users of chemicals. In view of the transatlantic and cross-business character of its membership, the EU Committee offers a different perspective on the debate.

  16. Low-temperature solvothermal synthesis of EuS hollow microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yong; Wang, Hong; Li, Peng

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis,more » and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.« less

  17. Enhanced free energy of extraction of Eu3+ and Am3+ ions towards diglycolamide appended calix[4]arene: insights from DFT-D3 and COSMO-RS solvation models.

    PubMed

    Ali, Sk Musharaf

    2017-08-22

    Density functional theory in conjunction with COSMO and COSMO-RS solvation models employing dispersion correction (DFT-D3) has been applied to gain an insight into the complexation of Eu 3+ /Am 3+ with diglycolamide (DGA) and calix[4]arene appended diglycolamide (CAL4DGA) in ionic liquids by studying structures, energetics, thermodynamics and population analysis. The calculated Gibbs free energy for both Eu 3+ and Am 3+ ions with DGA was found to be smaller than that with CAL4DGA. The entropy of complexation was also found to be reduced to a large extent with DGA compared to complexation with CAL4DGA. The solution phase free energy was found to be negative and was higher for Eu 3+ ion. The entropy of complexation was not only found to be further reduced but also became negative in the case of DGA alone. Though the entropy was found to be negative it could not outweigh the high negative enthalpic contribution. The same trend was observed in the solution where the free energy of extraction, ΔG, for Eu 3+ ions was shown to be higher than that for Am 3+ ions towards free DGA. But the values of ΔG and ΔΔG(= ΔG Eu -ΔG Am ) were found to be much higher with CAL4DGA (-12.58 kcal mol -1 ) in the presence of nitrate ions compared to DGA (-1.69 kcal mol -1 ) due to enhanced electronic interaction and positive entropic contribution. Furthermore, both the COSMO and COSMO-RS models predict very close values of ΔΔΔG (= ΔΔG CAL4DGA - ΔΔG nDGA ), indicating that both solvation models could be applied for evaluating the metal ion selectivity. The value of the reaction free energy was found to be higher after dispersion correction. The charge on the Eu and Am atoms for the complexes with DGA and CAL4DGA indicates the charge-dipole type interaction leading to strong binding energy. The present theoretical results support the experimental findings and thus might be of importance in the design of functionalized ligands.

  18. Hydrogen-based power generation from bioethanol steam reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less

  19. Understanding the photoluminescence characteristics of Eu{sup 3+}-doped double-perovskite by electronic structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Binita; Halder, Saswata; Sinha, T. P.

    2016-05-23

    Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.

  20. European energy and transport: scenarios on energy efficiency and renewables

    DOT National Transportation Integrated Search

    2006-07-01

    Energy efficiency and renewables are central to the EU and Member State's energy and climate policies. Reducing CO2 emissions, curbing the energy demand and/or provide alternative carbon-free supplies. The EU energy policies have three main objective...

  1. Comparative study on Climate Change Policies in the EU and China

    NASA Astrophysics Data System (ADS)

    Bray, M.; Han, D.

    2012-04-01

    Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global

  2. Monitoring of hydroxyapatite conversion by luminescence intensity of Eu3+ ions during mineralization of Eu3+-doped β-Ca2SiO4

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Chen, Jie; Li, Yadong; Seo, Hyo Jin

    2014-11-01

    β-Dicalcium silicate (β-Ca2SiO4) doped with Eu3+ was synthesized by sol-gel method. The luminescence intensity of the mineralization products formed during the hydroxyapatite (Ca10(PO4)6(OH)2, HA) conversion of Eu3+-doped β-Ca2SiO4, in 0.25 M K2HPO4 solution, were detected using luminescence spectroscopy. The results indicated that the luminescence intensity of Eu3+ ion gradually depressed with prolonged mineralization time, and it could hardly be detected with the complete transformation from β-Ca2SiO4:Eu3+ to hydroxyapatite. The change of Eu3+ ionic concentrations in the mineralization products and the final solutions after conversion reaction, were further examined using energy-dispersive X-ray and inductively-coupled plasma mass spectrometry, respectively. This suggested that the process of mineralization can be monitored with the luminescence intensity of Eu3+ ions in the mineralization products. The current study will open up a new and simple in vivo avenue for in situ monitoring hydroxyapatite conversion with a fiber luminescence spectrometer.

  3. Remarkable high efficiency of red emitters using Eu(iii) ternary complexes.

    PubMed

    Kalyakina, Alena S; Utochnikova, Valentina V; Zimmer, Manuel; Dietrich, Fabian; Kaczmarek, Anna M; Van Deun, Rik; Vashchenko, Andrey A; Goloveshkin, Alexander S; Nieger, Martin; Gerhards, Markus; Schepers, Ute; Bräse, Stefan

    2018-05-17

    We have synthesized Eu(iii) ternary complexes possessing record photoluminescence yields up to 90%. This high luminescence performance resulted from the absence of quenching moieties in the Eu coordination environment and an efficient energy transfer between ligands, combined with a particular symmetry of the coordination environment.

  4. 76 FR 30869 - Promoting Transmission Investment Through Pricing Reform

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...] Promoting Transmission Investment Through Pricing Reform May 19, 2011. AGENCY: Federal Energy Regulatory... investment in over $50 billion in proposed transmission infrastructure to ensure reliability or to reduce the... varied. \\1\\ Promoting Transmission Investment through Pricing Reform, Order No. 679, 71 FR 43294 (Jul. 31...

  5. Reddish-orange, neutral and warm white emissions in Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carvajal, David A.; Meza-Rocha, A. N.; Caldiño, U.; Lozada-Morales, R.; Álvarez, E.; Zayas, Ma. E.

    2016-11-01

    Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with Tesbnd Osbnd Te and Gesbnd Osbnd Ge related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370-420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s-1, respectively.

  6. A novel energy transfer inducing strong enhancement of electric dipole transition in Na3Mo12PO40:xEu3+ phosphors

    NASA Astrophysics Data System (ADS)

    Long, Jinqiao; Wang, Tianman; Luo, Zhirong; Gao, Yong; Song, Baoling; Liang, Jing; Liao, Sen; Huang, Yingheng; Zhang, Huaxin

    2017-08-01

    A series of Na3Mo12PO40:xEu3+ phosphors have been successfully synthesized by a solid-state method, and characterized by powder x-ray diffraction (PXRD). The PXRD results confirm that the samples have crystal phases of Na3Mo12PO40. For PL spectra of Na3Mo12PO40:2.0Eu3+ excited by 394 and 465 nm, R (R is the peak area ratio of 5D0  →  7F2 to 5D0  →  7F1) is only 1.46 with an excitation of 394 nm, but increases to 3.03 with an excitation of 465 nm. Furthermore, a new enhancement of electric dipole transition is observed. Emission spectrum (PL) intensity at 617 nm excited by 465 nm is 1.95 times as high as the excitation spectrum (PLE) intensity at 465 nm. Thus, cooperative energy transfers from the magnetic dipole (MD) Eu3+ center to the electric dipole (ED) Eu3+ center when excited by 465 nm is demonstrated for the new fluorescent behavior.

  7. Quantitative megavoltage radiation therapy dosimetry using the storage phosphor KCl:Eu2+

    PubMed Central

    Han, Zhaohui; Driewer, Joseph P.; Zheng, Yuanshui; Low, Daniel A.; Li, H. Harold

    2009-01-01

    This work, for the first time, reports the use of europium doped potassium chloride (KCl:Eu2+) storage phosphor for quantitative megavoltage radiation therapy dosimetry. In principle, KCl:Eu2+ functions using the same photostimulatated luminescence (PSL) mechanism as commercially available BaFBr0.85I0.15:Eu2+ material that is used for computed radiography (CR) but features a significantly smaller effective atomic number—18 versus 49—making it a potentially useful material for nearly tissue-equivalent radiation dosimetry. Cylindrical KCl:Eu2+ dosimeters, 7 mm in diameter and 1 mm thick, were fabricated in-house. Dosimetric properties, including radiation hardness, response linearity, signal fading, dose rate sensitivity, and energy dependence, were studied with a laboratory optical reader after irradiation by a linear accelerator. The overall experimental uncertainty was estimated to be within ±2.5%. The findings were (1) KCl:Eu2+ showed satisfactory radiation hardness. There was no significant change in the stimulation spectra after irradiation up to 200 Gy when compared to a fresh dosimeter, indicating that this material could be reused at least 100 times if 2 Gy per use was assumed, e.g., for patient-specific IMRT QA. (2) KCl:Eu2+ exhibited supralinear response to dose after irradiation from 0 to 800 cGy. (3) After x ray irradiation, the PSL signal faded with time and eventually reached a fading rate of about 0.1%∕h after 12 h. (4) The sensitivity of the dosimeter was independent of the dose rate ranging from 15 to 1000 cGy∕min. (5) The sensitivity showed no beam energy dependence for either open x ray or megavoltage electron fields. (6) Over-response to low-energy scattered photons was comparable to radiographic film, e.g., Kodak EDR2 film. By sandwiching dosimeters between low-energy photon filters (0.3 mm thick lead foils) during irradiation, the over-response was reduced. The authors have demonstrated that KCl:Eu2+ dosimeters have many desirable

  8. 75 FR 27330 - Credit Reforms in Organized Wholesale Electric Markets; Notice of Agenda for Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Credit Reforms in Organized Wholesale Electric Markets Notice of Proposed Rulemaking\\1\\ regarding whether... Credit Reforms in Organized Electric Markets May 11, 2010 Commission Meeting Room Agenda 9-9:05 a.m... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms...

  9. From the ternary Eu(Au/In) 2 and EuAu 4(Au/In) 2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu 5Au 16(Au/In) 6 structure

    DOE PAGES

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  10. From the ternary Eu(Au/In) 2 and EuAu 4(Au/In) 2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu 5Au 16(Au/In) 6 structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  11. Structural and Magnetic Properties of {Eu}(3+) Eu 3 + -Doped {CdNb}_{2} {O}_{6} CdNb 2 O 6 Powders

    NASA Astrophysics Data System (ADS)

    Topkaya, Ramazan; Boyraz, Cihat; Ekmekçi, Mete Kaan

    2018-03-01

    Europium-doped CdNb2O6 powders with the molar concentration of Eu^{3+} (0.5, 3 and 6 mol%) were successfully prepared at 900°C by using molten salt synthesis method. The effect of europium (Eu) molar concentration on the structural and temperature-dependent magnetic properties of CdNb2O6 powders has been investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) techniques in the temperature range of 10-300 K. XRD results confirm that all the powders have orthorhombic crystal structure. It has been confirmed from VSM and FMR measurements that Eu^{3+}-doped CdNb2O6 powders have ferromagnetic behaviour for each Eu^{3+} molar concentration between 10 and 300 K. XRD and EDX analyses indicate that there is no magnetic impurity in Eu^{3+}-doped CdNb_2O_6 powders, supporting that the ferromagnetic behaviour of the powders arises from Eu^{3+} ions. The observed ferromagnetism was elucidated with the intrinsic exchange interactions between the magnetic moments associated with the unpaired 4 f electrons in Eu^{3+} ions. The saturation magnetization decreases with increasing Eu^{3+} molar concentration. The temperature-dependent magnetization behaviour was observed not to agree with Curie-Weiss law because europium obeys Van Vleck paramagnetism. Broad FMR spectra and a g-value higher than 2 were observed from FMR measurements, indicating the ferromagnetic behaviour of the powders. It was found that while the resonance field of FMR spectra decreases, the linewidth increases as a function of Eu^{3+} molar concentration.

  12. The greenGain project - Biomass from landscape conservation and maintenance work for renewable energy production in the EU

    NASA Astrophysics Data System (ADS)

    Clalüna, Aline; Baumgarten, Wibke; García Galindo, Daniel; Lenz, Klaus; Doležal, Jan; De Filippi, Federico; Lorenzo, Joaquín; Montagnoli, Louis

    2017-04-01

    The project greenGain is looking for solutions to increase the energy production with regional and local biomass from landscape conservation and maintenance work, which is performed in the public interest. The relevant resources analysed in the greenGain model regions are, among others, biomass residues from clearing invasive vegetation in marginal agricultural lands in Spain, and residues from abandoned vineyards and olive groves in landscape protected areas in Italy. The main target groups are regional and local players who are responsible for maintenance and conservation work and for the biomass residue management in their regions. Moreover, the focus will be on service providers - including farmers and forest owners, their associations, NGOs, energy providers and consumers. Local companies, municipalities and public authorities are collaborating to identify the still underutilised non-food biomass resources and to discuss the way to integrate them into the local and regional biomass markets. Since the start of the three year project in January 2015, the partners from Italy, Spain, Czech Republic and Germany analysed, among other, the biomass feedstock potential coming from landscape maintenance work, and assessed various technological options to utilise this type of biomass. Further, political, legal and environmental aspects as well as awareness raising and public acceptance actions regarding the energetic use of biomass from public areas were assessed. greenGain also facilitates the exchange between model regions and other similar relevant players in the EU and shares examples of good practice. General guidelines will be prepared to guarantee a wide dissemination to other regions in the EU. Thus, the project shows how to build-up reliable knowledge on local availability of this feedstock and provides know-how concerning planning, harvesting, pre-treatment, storage and sustainable conversion pathways to a wide range of stakeholders in the EU.

  13. Management of reforming of housing-and-communal services

    NASA Astrophysics Data System (ADS)

    Skripnik, Oksana

    2017-10-01

    The international experience of reforming of housing and communal services is considered. The main scientific and methodical approaches of system transformation of the housing sphere are analyzed in the article. The main models of reforming are pointed out, interaction of participants of structural change process from the point of view of their commercial and social importance is characterized, advantages and shortcomings are revealed, model elements of the reform transformations from the point of view of the formation of investment appeal, competitiveness, energy efficiency and social importance of the carried-out actions are allocated.

  14. Questioning the Role of Internationalization in the Nationalization of Higher Education: The Impact of the EU TEMPUS Programme on Higher Education in Syria

    ERIC Educational Resources Information Center

    Ayoubi, Rami M.; Massoud, Hiba K.

    2011-01-01

    Given the need for major reform of the higher education programmes in Syria, and answering the voices that question the role of European Union (EU) in assisting the development of the higher education sector, this study presents an analysis of the contribution of (TEMPUS) Programme in modernising higher education in Syria. The study compares the…

  15. Luminescence of BaBrI and SrBrI single crystals doped with Eu2+

    NASA Astrophysics Data System (ADS)

    Shalaev, A. A.; Shendrik, R.; Myasnikova, A. S.; Bogdanov, A.; Rusakov, A.; Vasilkovskyi, A.

    2018-05-01

    The crystal growth procedure and luminescence properties of pure and Eu2+-doped BaBrI and SrBrI crystals are reported. Emission and excitation spectra were recorded under ultraviolet and vacuum ultraviolet excitations. The energy of the first Eu2+ 4f-5d transition and SrBrI band gap are obtained. The electronic structure calculations were performed within GW approximation as implemented in the Vienna Ab Initio Simulation Package. The energy between lowest Eu2+ 5d state and the bottom of conduction band are found based on luminescence quenching parameters. The vacuum referred binding energy diagram of lanthanide levels was constructed using the chemical shift model.

  16. Plasma catalytic reforming of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can bemore » efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.« less

  17. Preferential Eu Site Occupation and Its Consequences in the Ternary Luminescent Halides AB 2 I 5 : Eu 2 + ( A = Li – Cs ; B = Sr , Ba)

    DOE PAGES

    Fang, C.  M.; Biswas, Koushik

    2015-07-22

    Several rare-earth-doped, heavy-metal halides have recently been identified as potential next-generation luminescent materials with high efficiency at low cost. AB 2I 5:Eu 2+ (A=Li–Cs; B=Sr, Ba) is one such family of halides. Its members, such as CsBa 2I 5:Eu 2+ and KSr 2I 5:Eu 2+, are currently being investigated as high-performance scintillators with improved sensitivity, light yield, and energy resolution less than 3% at 662 keV. Within the AB 2I 5 family, our first-principles-based calculations reveal two remarkably different trends in Eu site occupation. The substitutional Eu ions occupy both eightfold-coordinated B1(VIII) and the sevenfold-coordinated B2(VII) sites in the Sr-containingmore » compounds. However, in the Ba-containing crystals, Eu ions strongly prefer the B2(VII)sites. This random versus preferential distribution of Eu affects their electronic properties. The calculations also suggest that in the Ba-containing compounds one can expect the formation of Eu-rich domains. These results provide atomistic insight into recent experimental observations about the concentration and temperature effects in Eu-doped CsBa 2I 5. We discuss the implications of our results with respect to luminescent properties and applications. We also hypothesize Sr, Ba-mixed quaternary iodides ABa VIIISr VIII 5:Eu as scintillators having enhanced homogeneity and electronic properties.« less

  18. Luminomagnetic Eu3+- and Dy3+-doped hydroxyapatite for multimodal imaging.

    PubMed

    Tesch, Annemarie; Wenisch, Christoph; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Warncke, Paul; Fischer, Dagmar; Müller, Frank A

    2017-12-01

    Multimodal imaging has recently attracted much attention due to the advantageous combination of different imaging modalities, like photoluminescence (PL) and magnetic resonance imaging (MRI). In the present study, luminescent and magnetic hydroxyapatites (HAp) were prepared via doping with europium (Eu 3+ ) and dysprosium (Dy 3+ ), respectively. Co-doping of Eu 3+ and Dy 3+ was used to combine the desired physical properties. Both lanthanide ions were successfully incorporated in the HAp crystal lattice, where they preferentially occupied calcium(I) sites. While Eu-doped HAp (Eu:HAp) exhibits dopant concentration dependent persistent PL properties, Dy-doped HAp (Dy:HAp) shows paramagnetic behavior due to the high magnetic moment of Dy 3+ . Co-doped HAp (Eu:Dy:HAp) nanoparticles combine both properties in one single crystal. Remarkably, multimodal co-doped HAp features enhanced PL properties due to an energy transfer from Dy 3+ sensitizer to Eu 3+ activator ions. Eu:Dy:HAp exhibits strong transverse relaxation effects with a maximum transverse relaxivity of 83.3L/(mmol·s). Due to their tunable PL, magnetic properties and cytocompatibility Eu:-, Dy:- and Eu:Dy:HAp represent promising biocompatible ceramic materials for luminescence imaging that simultaneously may serve as a contrast agent for MRI in permanent implants or functional coatings. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Study of Eu{sup 3+} → Eu{sup 2+} reduction in BaAl{sub 2}O{sub 4}:Eu prepared in different gas atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezende, Marcos V. dos S., E-mail: mvsrezende@gmail.com; Valerio, Mário E.G.; Jackson, Robert A.

    2015-01-15

    Highlights: • The effect of different gas atmospheres on the Eu reduction process was studied. • The Eu reduction was monitored analyzing XANES region at the Eu L{sub III}-edge. • Hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization. • Only a part of the Eu ions can be stabilized in the divalent state. • A model of Eu reduction process is proposed. - Abstract: The effect of different gas atmospheres such as H{sub 2}(g), synthetic air, carbon monoxide (CO) and nitrogen (N{sub 2}) on the Eu{sup 3+} → Eu{sup 2+} reduction process during the synthesis ofmore » Eu-doped BaAl{sub 2}O{sub 4} was studied using synchrotron radiation. The Eu{sup 3+} → Eu{sup 2+} reduction was monitored analyzing XANES region when the sample are excited at the Eu L{sub III}-edge. The results show that the hydrogen reducing agent are the most appropriate gas for Eu{sup 2+} stabilization in BaAl{sub 2}O{sub 4} and that only a part of the Eu ions can be stabilized in the divalent state. A model of Eu reduction process, based on the incorporation of charge compensation defects, is proposed.« less

  20. Intelligence Reform in Albania: Its Relation to Democratization and Integration into the EU and NATO

    DTIC Science & Technology

    2008-03-01

    pdf (accessed December 20, 2007) 22 Owen Greene , “International Standards and Obligations: Norms and Criteria for DCAF in EU, OSCE, and OECD...History of Albania from Its Origins to the Present Day (London and Boston: Routledge and Kegan Paul, 1981), 197-222. 15 B. INTELLIGENCE SERVICES...February 2006.” http://www.mdlpl.ro/ _documente/engleza/dialog_ro_ue/2006/Annual_Extensive_Report.pdf (accessed December 29, 2007). Greene , Owen

  1. Scintillation properties of Eu 2+-doped KBa 2I 5 and K 2BaI 4

    DOE PAGES

    Stand, L.; Zhuravleva, M.; Chakoumakos, Bryan C.; ...

    2015-09-25

    We report two new ternary metal halide scintillators, KBa 2I 5 and K 2BaI 4, activated with divalent europium. Single crystal X-ray diffraction measurements confirmed that KBa 2I 5 has a monoclinic structure (P2 1/c) and that K 2BaI 4 has a rhombohedral structure (R3c). Differential scanning calorimetry showed singular melting and crystallization points, making these compounds viable candidates for melt growth. We grew 13 mm diameter single crystals of KBa 2I 5:Eu 2+ and K 2BaI 4:Eu2+ in evacuated quartz ampoules via the vertical Bridgman technique. The optimal Eu 2+ concentration was 4% for KBa 2I 5 and 7%more » for K 2BaI 4. The X-ray excited emissions at 444 nm for KBa 2I 5:Eu 4% and 448 nm for K 2BaI 4:Eu 7% arise from the 5d-4f radiative transition in Eu 2+. KBa 2I 5:Eu 4% has a light yield of 90,000 photons/MeV, with an energy resolution of 2.4% and K 2BaI 4:Eu 7% has a light yield of 63,000 ph/MeV, with an energy resolution of 2.9% at 662 keV. Both crystals have an excellent proportional response to a wide range of gamma-ray energies.« less

  2. 75 FR 27552 - Credit Reforms in Organized Wholesale Electric Markets; Further Notice Concerning Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms in Organized Wholesale Electric Markets; Further Notice Concerning Technical Conference May 10, 2010... technical conference related to the Commission's Notice of Proposed Rulemaking on Credit Reforms in...

  3. Low temperature magnetic characterization of EuO1-x

    NASA Astrophysics Data System (ADS)

    Rimal, Gaurab; Tang, Jinke

    EuO is a widely studied magnetic semiconductor. It is an ideal case of a Heisenberg ferromagnet as well as a model magnetic polaron system. The interesting aspect of this material is the existance of magnetic polarons in the low temperature region. We study the properties of oxygen deficient EuO prepared by pulsed laser deposition. Besides normal ferromagnetic transitions near 70K and 140K, we observe a different transition at 16K. We also observe a shift in the coercivity for field cooling versus zero field cooling. Possible mechanisms driving these behaviors will be discussed. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DEFG02-10ER46728) and by the School of Energy Resources of the University of Wyoming.

  4. Intrinsic radioactivity of KSr2I5:Eu2+

    NASA Astrophysics Data System (ADS)

    Rust, M.; Melcher, C.; Lukosi, E.

    2016-10-01

    A current need in nuclear security is an economical, yet high energy resolution (near 2%), scintillation detector suitable for gamma-ray spectroscopy. For current scintillators on the market, there is an inverse relationship between scintillator energy resolution and cost of production. A new promising scintillator, KSr2I5:Eu2+, under development at the University of Tennessee, has achieved an energy resolution of 2.4% at 662 keV at room temperature, with potential growth rates exceeding several millimeters per hour. However, the internal background due to the 40K content could present a hurdle for effective source detection/identification in nuclear security applications. As a first step in addressing this question, this paper reports on a computational investigation of the intrinsic differential pulse height spectrum (DPHS) generated by 40K within the KSr2I5:Eu2+ scintillator as a function of crystal geometry. It was found that the DPHS remains relatively equal to a constant multiplicative factor of the negatron emission spectrum with a direct increase of the 1.46 MeV photopeak relative height to the negatron spectrum with volume. Further, peak pileup does not readily manifest itself for practical KSr2I5:Eu2+ volumes.

  5. Synthesis and effect of Ce and Mn co-doping on photoluminescence characteristics of Ca6AlP5O20:Eu novel phosphors.

    PubMed

    Shinde, K N; Dhoble, S J

    2013-01-01

    A series of Ca6AlP5O20 doped with rare earths (Eu and Ce) and co-doped (Eu, Ce and Eu,Mn) were prepared by combustion synthesis. Under Hg-free excitation, Ca6AlP5O20:Eu exhibited Eu(2+) (486 nm) emission in the blue region of the spectrum and under near Hg excitation (245 nm), Ca6AlP5O20:Ce phosphor exhibited Ce(3+) emission (357 nm) in the UV range. Photoluminescence (PL) peak intensity increased in Ca6AlP5O20:Eu,Ce and Ca6AlP5O20:Eu, Mn phosphors due to co-activators of Ce(3+) and Mn(2+) ions. As a result, these ions played an important role in PL emission in the present matrix. Ca6AlP5O20:Eu, Ce and Ca6AlP5O20:Eu, Mn phosphors provided energy transfer mechanisms via Ce(3+) → Eu(2+) and Eu(2+) → Mn(2+), respectively. Eu ions acted as activators and Ce ions acted as sensitizers. Ce emission energy was well matched with Eu excitation energy in the case of Ca6AlP5O20:Eu, Ce and Eu ions acted as activators and Mn ions acted as sensitizers in Ca6AlP5O20:Eu, Mn. This study included synthesis of new and efficient phosphate phosphors. The impact of doping and co-doping on photoluminescence properties and energy transfer mechanisms were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Congressional Testimony: Testimony of Nikki Tinsley Before the Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs Committee on Government Reform United States House

    EPA Pesticide Factsheets

    Testimony of the Honorable Nikki Tinsley Inspector General U.S. EPA Before the Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs Committee on Government Reform United States House of Representatives

  7. Intermediate-valence state of the Sm and Eu in SmB6 and EuCu2Si2: neutron spectroscopy data and analysis

    NASA Astrophysics Data System (ADS)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; Kolesnikov, A. I.; Nemkovski, K. S.

    2018-02-01

    Magnetic neutron scattering data for Sm (SmB6, Sm(Y)S) and Eu (EuCu2Si2-x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion’s valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle of the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.

  8. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE PAGES

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; ...

    2018-01-11

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  9. Intermediate-valence state of the Sm and Eu in SmB 6 and EuCu 2 Si 2 : neutron spectroscopy data and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.

    For this study, magnetic neutron scattering data for Sm (SmB 6, Sm(Y)S) and Eu (EuCu 2Si 2- x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion's valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle ofmore » the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.« less

  10. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  11. Control of Eu Luminescence Centers by Codoping of Mg and Si into Eu-Doped GaN

    NASA Astrophysics Data System (ADS)

    Lee, Dong-gun; Wakamatsu, Ryuta; Koizumi, Atsushi; Terai, Yoshikazu; Fujiwara, Yasufumi

    2013-08-01

    The effects of Mg and Si codoping on Eu luminescence properties have been investigated in Eu-doped GaN (GaN:Eu). The Mg codoping into GaN:Eu produced novel luminescence centers consisting of Eu and Mg, and increased photoluminescence (PL) intensity in Eu,Mg-codoped GaN (GaN:Eu,Mg). However, this increased PL intensity was quenched by thermal annealing in N2 ambient, which is due to activation of Mg acceptors. In GaN:Eu,Mg codoped additionally with Si (GaN:Eu,Mg,Si), on the other hand, the Eu-Mg centers disappeared, while an additional luminescence center appeared. Furthermore, the additional luminescence center showed no quenching under N2 annealing because Si donors compensated for the Mg acceptors in GaN. Thermal quenching of the luminescence center was also approximately half of that in GaN:Eu. These results indicate that the codoping with additional impurities in GaN:Eu is a powerful technique to control Eu luminescence centers for realization of improved device performance in red light-emitting diodes using GaN:Eu.

  12. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, D.; Acharya, B. S.; Panda, N. R., E-mail: nihar@iitbbs.ac.in

    2016-05-06

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIRmore » studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.« less

  13. Ferromagnetic behavior in mixed valence europium (Eu2+/Eu3+) oxide EuTi1-xMxO3 (M = Al3+ and Ga3+)

    NASA Astrophysics Data System (ADS)

    Akahoshi, Daisuke; Horie, Hiroki; Sakai, Shingo; Saito, Toshiaki

    2013-10-01

    We have investigated the Ti-site substitution effect on the magnetic properties of antiferromagnetic insulator EuTiO3 with a Néel temperature of ˜5 K. Partial substitution of Ti4+ with heterovalent Al3+ or Ga3+ turns the corresponding amount of magnetic Eu2+ into non-magnetic Eu3+. Both EuTi1-xAlxO3 (0.05 ≤ x ≤ 0.10) and EuTi1-xGaxO3 (0.05 ≤ x ≤ 0.10) exhibit ferromagnetic (FM) insulating behavior below ˜4 K. The Eu2+/Eu3+ mixed valence state probably contributes to the emergence of the FM behavior. Fine control of the magneto-electric (ME) phases of EuTi1-xAlxO3 and EuTi1-xGaxO3 would lead to intriguing ME phenomena such as giant ME effect.

  14. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2018-06-01

    Eu-doped 70SiO2–23HfO2–7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦C, both, Eu2+ as well as Eu3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu3+ to Eu2+ takes place in such ZnO/HfO2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 65d \\to 4f 7 energy level transition of Eu2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm‑1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO2–23HfO2–7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  15. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications.

    PubMed

    Ghosh, Subhabrata; Bhaktha B N, Shivakiran

    2018-06-01

    Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO 2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦ C, both, Eu 2+ as well as Eu 3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦ C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu 3+ to Eu 2+ takes place in such ZnO/HfO 2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 6 5d [Formula: see text] 4f 7 energy level transition of Eu 2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm -1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  16. Influence of Gd3+ concentration on luminescence properties of Eu3+ ions in sol-gel materials

    NASA Astrophysics Data System (ADS)

    Szpikowska-Sroka, Barbara; Pawlik, Natalia; Pisarski, Wojciech A.

    2016-12-01

    The sol-gel powders doubly-doped with Gd3+/Eu3+ ions with different concentration of Gd3+ have been successfully obtained. The spectroscopic characterization of prepared samples was conducted based on excitation and emission spectra as well as luminescence decay analysis. Upon direct excitation of Eu3+ active ions, the characteristic 5D0 → 7F1 (orange) and 5D0 → 7F2 (red) emission bands were observed. The energy transfer from Gd3+ to Eu3+ ions was registered upon λexc = 273 nm excitation. An efficient conversion of ultraviolet radiation (UV) into visible luminescence was successfully observed. The energy transfer process from Gd3+ to Eu3+ led to longer luminescence decay from the 5D0 state in comparison to that obtained under direct excitation of Eu3+ ions (λexc = 393 nm). Generally, obtained results clearly indicated the beneficial influence of increasing concentration of Gd3+ ions on luminescence properties of Eu3+ in studied silica sol-gel phosphors.

  17. Education of EU Migrant Children in EU Member States. Research Report

    ERIC Educational Resources Information Center

    Harte, Emma; Herrera, Facundo; Stepanek, Martin

    2016-01-01

    This policy brief looks at the education of EU migrant children in the context of intra-EU mobility. It examines some of the literature and data on the topic in order to identify key differences between EU migrant children and non-migrant children. There are disparities in educational performance between migrants and non-migrants. The brief…

  18. Learning Organizations and Policy Transfer in the EU: Greece's State Scholarships Foundation in a Reform-Resistant Context

    ERIC Educational Resources Information Center

    Lavdas, Kostas A.; Papadakis, Nikos E.; Rigopoulou, Yiota G.

    2012-01-01

    In the context of policy change in the EU, lifelong-learning has acquired a growing significance due to its promise to foster both professional development and personal fulfillment and thus contribute to the enhancement of social inclusion, active citizenship, competitiveness, and employability. The need for developing a smart and sustainable…

  19. On the road to reform: a sociocultural interpretation of reform

    NASA Astrophysics Data System (ADS)

    Mensah, Felicia Moore

    2011-09-01

    In this paper I discuss how reform in science education is interpreted by Barma as she recounts the story of Catherine, a grade 9 biology teacher, who reforms her teaching practices in response to a national curriculum reform in Quebec, Canada. Unlike some cases in response to reform, this case is hopeful and positive. Also in this paper, I address some familiar areas that must be considered when teachers undertake curriculum reform and how science educators may fulfill the role of facilitator and advocate in the support of teachers on the road to reform. The commentary focuses on how Barma retells the story through the lens of activity theory.

  20. Theoretical and empirical investigations of KCl:Eu2+ for nearly water-equivalent radiotherapy dosimetry

    PubMed Central

    Zheng, Yuanshui; Han, Zhaohui; Driewer, Joseph P.; Low, Daniel A.; Li, H. Harold

    2010-01-01

    Purpose: The low effective atomic number, reusability, and other computed radiography-related advantages make europium doped potassium chloride (KCl:Eu2+) a promising dosimetry material. The purpose of this study is to model KCl:Eu2+ point dosimeters with a Monte Carlo (MC) method and, using this model, to investigate the dose responses of two-dimensional (2D) KCl:Eu2+ storage phosphor films (SPFs). Methods: KCl:Eu2+ point dosimeters were irradiated using a 6 MV beam at four depths (5–20 cm) for each of five square field sizes (5×5–25×25 cm2). The dose measured by KCl:Eu2+ was compared to that measured by an ionization chamber to obtain the magnitude of energy dependent dose measurement artifact. The measurements were simulated using DOSXYZnrc with phase space files generated by BEAMnrcMP. Simulations were also performed for KCl:Eu2+ films with thicknesses ranging from 1 μm to 1 mm. The work function of the prototype KCl:Eu2+ material was determined by comparing the sensitivity of a 150 μm thick KCl:Eu2+ film to a commercial BaFBr0.85I0.15:Eu2+-based SPF with a known work function. The work function was then used to estimate the sensitivity of a 1 μm thick KCl:Eu2+ film. Results: The simulated dose responses of prototype KCl:Eu2+ point dosimeters agree well with measurement data acquired by irradiating the dosimeters in the 6 MV beam with varying field size and depth. Furthermore, simulations with films demonstrate that an ultrathin KCl:Eu2+ film with thickness of the order of 1 μm would have nearly water-equivalent dose response. The simulation results can be understood using classic cavity theories. Finally, preliminary experiments and theoretical calculations show that ultrathin KCl:Eu2+ film could provide excellent signal in a 1 cGy dose-to-water irradiation. Conclusions: In conclusion, the authors demonstrate that KCl:Eu2+-based dosimeters can be accurately modeled by a MC method and that 2D KCl:Eu2+ films of the order of 1 μm thick would have

  1. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulopoulos, P., E-mail: poulop@upatras.gr; Materials Science Department, University of Patras, 26504 Patras; Goschew, A.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  2. Blue emission of Eu 2+-doped translucent alumina

    DOE PAGES

    Yang, Yan; Zhang, Lihua; Kisslinger, Kim; ...

    2015-08-21

    Inorganic scintillators are very important in medical and industrial measuring systems in the detection and measurement of ionizing radiation. In addition to Ce 3+, a widely used dopant ion in oxide scintillators, divalent Europium (Eu 2+) has shown promise as a high-luminescence, fast-response luminescence center useful in the detection of ionizing radiation. In this research, aluminum oxide (Al 2O 3) was studied as a host material for the divalent europium ion. Polycrystalline samples of Eu 2+-doped translucent Al 2O 3 were fabricated, and room temperature luminescence behavior was observed. Al 2O 3 ceramics doped with 0.1 at% Eu 2+ weremore » fabricated with a relative density of 99.75% theoretical density and in-line transmittance of 22% at a wavelength of 800 nm. The ceramics were processed by a gel-casting method, followed by sintering under high vacuum. The gelling agent, a copolymer of isobutylene and maleic anhydride, is marketed under the commercial name ISOBAM, and has the advantage of simultaneously acting as both a gelling agent and as a dispersant. The microstructure and composition of the vacuum-sintered Eu 2+:Al 2O 3 were characterized by Scanning Electric Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy-dispersive X-ray spectroscopy (EDS). The phase composition was determined by X-ray diffraction measurements (XRD) combined with Rietveld analysis. The photoluminescence behavior of the Eu 2+:Al 2O 3 was characterized using UV light as the excitation source, which emitted blue emission at 440 nm. The radio-luminescence of Eu 2+:Al 2O 3 was investigated by illumination with X-ray radiation, showing three emission bands at 376 nm, 575 nm and 698 nm. Furthermore, multiple level traps at different depths were detected in the Eu 2+:Al 2O 3 by employing thermoluminescence measurements.« less

  3. Relevance of the EU Structural Funds’ Allocation to the Needs of Combating Air Pollution in Poland. Analysis of the Operational Programmes of Regions Threatened With Critical Air Pollution from Distributed Energy Sources

    NASA Astrophysics Data System (ADS)

    Włodarski, Marcin; Martyniuk-Pęczek, Justyna

    2017-10-01

    Recent years, the European Environmental Agency, has been reporting air quality parameters in Poland, as the poorest among all the EU countries. Despite of adoption of the EU legislation on energy efficiency and energy performance of buildings, existing legal solutions occur insufficient in reducing air pollution in Polish regions. Lack of an effective schemes supporting complex thermal renovation of buildings, exchange of inefficient boilers, developing district heating based on clean and renewable fuels results in severe health problems and 40 000 of premature deaths related to air pollution. Availability of the EU structural funds may become a tremendous opportunity, especially for the residential sector, to conduct a massive scale modernization. Nevertheless, lack of a coordinated action involving all levels of governance may put the opportunity at risk. The article aims to answer the question on the readiness of the regional governments to effectively implement energy efficiency measures mitigating the problem of air pollution. Second objective is to analyse whether the Regional Operational Programmes allocating the ERDF funds to support specific development needs of the regions, have been constructed in a way that properly addresses the problems related to energy performance of residential buildings.

  4. X-ray excitation fluorescence spectra of the Eu2+-stabilized VK center in alkaline-earth fluoride mixed-crystal systems

    NASA Astrophysics Data System (ADS)

    Kawano, K.; Ohya, T.; Tsurumi, T.; Katoh, K.; Nakata, R.

    1999-11-01

    X-ray excitation fluorescence spectra were investigated for MF2:Eu (M=Ca, Sr, and Ba) and their mixed-crystal systems, Ca1-xSrxF2 and Sr1-xBaxF2 with the same fluorite structure. The UV recombination fluorescence band of the VK center associated with blue emission due to the f-d transition of Eu2+ ions was observed with changing mixture ratios x at room temperature. Two sets of weak spectra due to f-f transitions of Eu3+ ions also appeared in the 500-600-nm wavelength region. The peak wavelengths and the integrated intensities of the observed fluorescence were investigated as a function of the Eu concentration as well as the mixture ratio. For the blue emission of Eu2+, pulsed x-ray excitation resulted in shorter lifetimes (500-800 ns) than optical excitation, suggesting energy transfers between the excited states of VK centers and Eu2+. A kinematical fluorescence mechanism was proposed, taking into account the formation of a close pair of a hopping VK center and an immobile Eu2+ ion followed by an energy transfer from the former to the latter. Based on the calculated fluorescence decay curves best fitted to the response curves by x-ray pulse excitation, the energy transfer rates from VK centers to Eu2+ were estimated.

  5. Effects of Eu doping and O vacancy on the magnetic and optical properties of ZnO

    NASA Astrophysics Data System (ADS)

    Ling-Feng, Qu; Qing-Yu, Hou; Xiao-Fang, Jia; Zhen-Chao, Xu; Chun-Wang, Zhao

    2018-02-01

    We calculated the electronic structure and optical properties of Eu mono-doped ZnO systems with or without O vacancy. We also determined the relative energy of ferromagnetic and antiferromagnetic orders of Eu-double-doped ZnO systems. The double-doped systems possess high Curie temperature and achieve room temperature ferromagnetism. The magnetism in the Eu mono-doped system without O vacancy is caused by the -Eu3+-O2--Eu3+- bound magnetopolaron (BMP) model. The magnetism of Eu mono-doped ZnO systems with O vacancy is more stable than that without O vacancy, and such magnetism is attributed to the -Eu3+-VO++-Eu3+- BMP model. The absorption spectrum for mono-doped systems is red shifted, and this finding confirms that Eu-mono-doped ZnO is a candidate photocatalyst for various applications. Therefore, Eu-double-doped ZnO can be practically used as an unambiguous diluted magnetic semiconductor.

  6. Electricity reform and sustainable development in China

    NASA Astrophysics Data System (ADS)

    Williams, James H.; Kahrl, Fredrich

    2008-10-01

    Reducing the environmental impact of supplying electricity is a key to China's sustainable development, and a focus of both domestic and international concerns with greenhouse gas emissions. The environmental performance of the electricity sector is strongly affected by its institutional arrangements: regulatory frameworks, wholesale markets, pricing mechanisms, planning and coordination, and enforcement and incentive mechanisms. These arrangements are set to change as electricity reforms inaugurated in 2002, but sidetracked by several years of supply shortages, are being resumed. In this paper we examine the impact of electricity reform on environmental sustainability by analyzing case studies of four environmental initiatives in the electricity sector: retirement of inefficient generators, installation of pollution control equipment, renewable energy development, and efforts to promote energy efficiency. We find that implementation of these policies falls short of objectives for two main underlying reasons: conflicting priorities between central and provincial governments, and ineffective regulation. Sustainability will be best served not by redoubling short-term supply-oriented, market-based reforms, but by better aligning central and provincial government incentives, and by developing competent, independent regulation at the provincial level. China's central government and sub-national governments in industrialized countries can both contribute to the latter goal.

  7. Remote Control Effect of Li+, Na+, K+ Ions on the Super Energy Transfer Process in ZnMoO4:Eu3+, Bi3+ Phosphors

    PubMed Central

    Ran, Weiguang; Wang, Lili; Tan, Lingling; Qu, Dan; Shi, Jinsheng

    2016-01-01

    Luminescent properties are affected by lattice environment of luminescence centers. The lattice environment of emission centers can be effectively changed due to the diversity of lattice environment in multiple site structure. But how precisely control the doped ions enter into different sites is still very difficult. Here we proposed an example to demonstrate how to control the doped ions into the target site for the first time. Alkali metal ions doped ZnMoO4:Bi3+, Eu3+ phosphors were prepared by the conventional high temperature solid state reaction method. The influence of alkali metal ions as charge compensators and remote control devices were respectively observed. Li+ and K+ ions occupy the Zn(2) sites, which impede Eu and Bi enter the adjacent Zn(2) sites. However, Na+ ions lie in Zn(1) sites, which greatly promoted the Bi and Eu into the adjacent Zn(2) sites. The Bi3+ and Eu3+ ions which lie in the immediate vicinity Zn(2) sites set off intense exchange interaction due to their short relative distance. This mechanism provides a mode how to use remote control device to enhance the energy transfer efficiency which expected to be used to design efficient luminescent materials. PMID:27278286

  8. Eu3 + amidst ionic copper in glass: Enhancement through energy transfer from Cu+, or quenching by Cu2 +?

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.

    2017-02-01

    A barium-phosphate glass system doped with europium(III) and containing a high concentration of copper(I) together with a copper(II) remnant has been studied spectroscopically. The main object is to elucidate whether the orange-red emission of Eu3 + ions succeeds through sensitization via luminescent Cu+ ions or else is preferentially quenched by non-radiative transfer to Cu2 +. A characterization of the melt-quenched glass was first performed by UV/Vis optical absorption, 31P nuclear magnetic resonance and infrared absorption spectroscopy. A photoluminescence (PL) spectroscopy and emission decay dynamics assessment was subsequently performed. Despite the concentration of Cu+ being estimated to be much higher than that of Cu2 +, the data shows that quenching of Eu3 + PL by Cu2 + dominates. The lifetime analysis of emitting centers Cu+ and Eu3 + points to the origin of the manifestation being that the Eu3 + → Cu2 + non-radiative transfer rate responsible for the quenching is almost two times higher than that for the Cu+ → Eu3 + transfer accountable for the enhancement. Finally, an effort was made for the determination of Cu2 + in the glass containing Cu+, Cu2 + and Eu3 + ions based on the Eu3 + (5D0) emission decay rates. It was found to be in excellent agreement with the UV/Vis spectrophotometric approach, thus supporting the utility of Eu3 + ions for optical sensing of copper(II) in the solid state.

  9. Reforming Science: Structural Reforms

    PubMed Central

    2012-01-01

    Science has a critical role to play in addressing humanity's most important challenges in the twenty-first century. However, the contemporary scientific enterprise has developed in ways that prevent it from reaching maximum effectiveness and detract from the appeal of a research career. To be effective, the methodological and culture reforms discussed in the accompanying essay must be accompanied by fundamental structural reforms that include a renewed vigorous societal investment in science and scientists. PMID:22184420

  10. Persistent Luminescence in Non-Eu2+-Doped Compounds: A Review

    PubMed Central

    Van den Eeckhout, Koen; Poelman, Dirk; Smet, Philippe F.

    2013-01-01

    During the past few decades, the research on persistent luminescent materials has focused mainly on Eu2+-doped compounds. However, the yearly number of publications on non-Eu2+-based materials has also increased steadily. By now, the number of known persistent phosphors has increased to over 200, of which over 80% are not based on Eu2+, but rather, on intrinsic host defects, transition metals (manganese, chromium, copper, etc.) or trivalent rare earths (cerium, terbium, dysprosium, etc.). In this review, we present an overview of these non-Eu2+-based persistent luminescent materials and their afterglow properties. We also take a closer look at some remaining challenges, such as the excitability with visible light and the possibility of energy transfer between multiple luminescent centers. Finally, we summarize the necessary elements for a complete description of a persistent luminescent material, in order to allow a more objective comparison of these phosphors. PMID:28811409

  11. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    PubMed

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  12. Comparative study of nondoped and Eu-doped SrI2 scintillator

    NASA Astrophysics Data System (ADS)

    Yanagida, Takayuki; Koshimizu, Masanori; Okada, Go; Kojima, Takahiro; Osada, Junya; Kawaguchi, Noriaki

    2016-11-01

    Optical and scintillation properties of nondoped and Eu 3% doped SrI2 crystals grown by the Vertical Bridgman method were investigated. Eu-doped crystal showed an intense single band emission at 430 nm due to the Eu2+ 5d-4f transitions in both photoluminescence and scintillation while the nondoped crystal had a complex spectral shape. The latter emission consists of mainly four bands: 360 nm, 540 nm, 410 nm and 430 nm. The origins of 360 nm and 540 nm were self-trapped exciton and unexpected impurity, respectively. The origins of 410 and 430 nm lines were ascribed to F center in different I sites. Under 137Cs γ-ray irradiations, both crystals showed a clear photoabsorption peak. The scintillation light yields of the nondoped and Eu-doped SrI2 resulted 33,000 ph/MeV and 82,000 ph/MeV, respectively. The energy resolution at 662 keV of Eu-doped was 4% while that of the non-doped SrI2 was 8%.

  13. Tri-reforming and combined reforming of methane for producing syngas with desired hydrogen/carbon monoxide ratios

    NASA Astrophysics Data System (ADS)

    Pan, Wei

    This dissertation is an exploratory study of a new process concept for direct production of synthesis gas (CO + H2) with desired H 2/CO ratios (1.5--2.0) for methanol synthesis and F-T synthesis, using CO2 together with steam and unconverted O2 in flue gas from fossil fuel-fired electric power plants to react with methane or natural gas. This new process is called tri-reforming, referring to simultaneous CO2-steam-O2 reforming of methane or natural gas. This study included (1) The investigation of carbon formation in the tri-reforming process. For comparison, carbon formation in the combined reforming and CO2 reforming reaction was studied as well. (2) The effect of reaction conditions and feed compositions on equilibrium composition (e.g. H2/CO ratio) and equilibrium conversions in the tri-reforming process. (3) The role of catalysts in the tri-reforming process, especially the effect of catalysts on CO2 conversion in the presence of H 2O and O2. It was clearly evidenced from this study that CO in the product stream is probably the major source of carbon over Ni/Al2O3 in the equimolar CO2-CH4 reforming at 650°C and 1 atm. Addition of either O2 or H2O into the CO 2 reforming reaction system can suppress carbon formation. It was demonstrated that carbon-free operation can be achieved in the tri-reforming process. A thermodynamic comparison of tri-reforming with feed compositions of (H2O+CO2+0.5O2)/CH4 (mol ratio) = 1 showed that O2 improves equilibrium CH4 conversion, yet greatly decreases equilibrium CO2 conversion. H2O in tri-reforming has a significant effect on the H2/CO ratio in the products, while O2 has a minor effect. A kinetic study and catalytic performance tests indicated that the support in a supported catalyst has a significant role in enhancing CO2 conversion to CO in the presence of H2O and O2 in tri-reforming. The Ni/MgO catalyst showed superior performance with close to equilibrium CH4 and CO2 conversions at 850°C, 1 atm, and 32,000 ml

  14. NIR emitting K2SrCl4:Eu2+, Nd3+ phosphor as a spectral converter for CIGS solar cell

    NASA Astrophysics Data System (ADS)

    Tawalare, P. K.; Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V.

    2018-05-01

    Intense near-infrared emitting phosphor K2SrCl4:Eu2+,Nd3+ with various concentrations of Nd3+ were synthesized. These are characterized with X-ray diffraction, reflectance, photoluminescence emission and photoluminescence excitation spectroscopy, PL lifetime measurements. The emission can be excited by a broad band in near ultra violet region as a consequence of Eu2+→Nd3+ energy transfer. The efficiency of Eu2+→Nd3+ energy transfer is as high as 95%. Fluorescence decay curves for Eu2+ doped samples are almost exponential and described by τ = 500 ns. Eu2+ lifetimes are shortened after Nd3+ doping. Near infrared Emission intensity is limited by Nd3+→Nd3+ energy transfer and the consequent concentration quenching. Nd3+ emission matches well with the spectral response of CIGS and CIS solar cells. Absorption of near ultra violet radiations followed by conversion to near infrared indicates the potential application in solar photovoltaics.

  15. Non-catalytic recuperative reformer

    DOEpatents

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  16. Preparation, characterization and application of EVA film containing Eu3+ complex with 1-tridecanecarboxylic acid ligand

    NASA Astrophysics Data System (ADS)

    Dong, Jin; Lin, Baoping

    2017-11-01

    In this study, on the basis of complex Eu(DBM)3Phen which was widely applied in polymer matrices, quaternary complex Eu(DBM)2Phen(TA) was synthesized by the introduction of 1-tridecanecarboxylic acid (TA). XRD analyses show that Eu(DBM)2Phen(TA) inclines to amorphization compared with Eu(DBM)3Phen which is crystal. Ethylene-vinyl acetate (EVA) film doped with Eu(DBM)2Phen(TA) was prepared by casting method. SEM and AFM analyses show that the compatibility of Eu(DBM)2Phen(TA) with EVA is better than that of Eu(DBM)3Phen with EVA. Under the same addition amount of Eu3+ complexes, visible light transmittance of Eu(DBM)2Phen(TA)/EVA film is obviously greater than that of Eu(DBM)3Phen/EVA film, and the fluorescence intensity of Eu(DBM)2Phen(TA)/EVA film is only slightly lower than that of Eu(DBM)3Phen/EVA film. With the optimum addition amount of Eu3+ complexes, the energy conversion efficiency of the polycrystalline silicon solar cell coated with Eu(DBM)2Phen(TA)/EVA film is improved to 12.14%, and in comparison, that of the solar cell coated with Eu(DBM)3Phen/EVA film is only 11.98%. Hence Eu(DBM)2Phen(TA)/EVA film has a potential prospect as luminescent down-shifting material.

  17. Fitting the Pieces: Education Reform That Works. Studies of Education Reform.

    ERIC Educational Resources Information Center

    Klein, Steven; And Others

    Nearly all school reforms, regardless of their scope or intended target, share a number of characteristics. This report reviews the essential elements of planning, implementing, and sustaining school reform and presents eight key lessons to guide prospective reformers. The lessons are drawn from 12 major studies of education reform funded by the…

  18. IPTS/ESTO Studies on Reforms of Agriculture, Education and Social Systems within the Context of Enlargement and Demographic Change in the EU. Final Report.

    ERIC Educational Resources Information Center

    2002

    This document summarizes a comparative analysis of the interconnections between technological and socioeconomic developments in agriculture and rural development, human capital formation, and social systems in the 13 candidate countries (CCs) for admission into the European Union (EU) and in the 15 countries of the EU. Specific topics considered…

  19. Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators

    NASA Astrophysics Data System (ADS)

    Loyd, Matthew; Lindsey, Adam; Patel, Maulik; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya

    2018-01-01

    The distorted-perovskite scintillator materials CsCaI3:Eu and CsSrBr3:Eu prepared as single crystals have shown promising potential for use in radiation detection applications requiring a high light yield and excellent energy resolution. We present a study using high temperature powder X-ray diffraction experiments to examine a deleterious high temperature phase transition. High temperature phases were identified through sequential diffraction pattern Rietveld refinement in GSAS II. We report the linear coefficients of thermal expansion for both high and low temperature phases of each compound. Thermal expansion for both compositions is greatest in the [0 0 1] direction. As a result, Bridgman growth utilizing a seed oriented with the [0 0 1] along the growth direction should be used to mitigate thermal stress.

  20. Internal reforming of methane in solid oxide fuel cell systems

    NASA Astrophysics Data System (ADS)

    Peters, R.; Dahl, R.; Klüttgen, U.; Palm, C.; Stolten, D.

    Internal reforming is an attractive option offering a significant cost reduction, higher efficiencies and faster load response of a solid oxide fuel cell (SOFC) power plant. However, complete internal reforming may lead to several problems which can be avoided with partial pre-reforming of natural gas. In order to achieve high total plant efficiency associated with low energy consumption and low investment costs, a process concept has been developed based on all the components of the SOFC system. In the case of anode gas recycling an internal steam circuit exists. This has the advantage that there is no need for an external steam generator and the steam concentration in the anode gas is reduced. However, anode gas recycling has to be proven by experiments in a pre-reformer and for internal reforming. The addition of carbon dioxide clearly shows a decrease in catalyst activity, while for temperatures higher than 1000 K hydrogen leads to an increase of the measured methane conversion rates.

  1. The doping sites in Eu2+-doped AIBIIPO4 phosphors and their consequence on the photoluminescence excitation spectra

    NASA Astrophysics Data System (ADS)

    Amer, M.; Boutinaud, P.

    2018-02-01

    The energy corresponding to the excitation edge in Eu2+-doped phosphate phosphors of the type AIBIIPO4 (AI = monovalent cation, BII = divalent cation) is calculated from the knowledge of two crystal-structure-related factors he(X(i)) and Fc(X(i)) which are connected respectively to the crystal field splitting (CFS) and the centroid energy (Ec) of the excited 4f65d1 electron configuration of Eu2+. The calculation is carried out for each cation site X(i) available for Eu2+ in 25 different compositions of AIBIIPO4 including NaZnPO4-Eu2+ for which the luminescence is firstly reported. Our results indicate (1) that is it possible to identify the nature of the cation site that contributes to the excitation edge of Eu2+ in AIBIIPO4 within an accuracy of±1000 cm-1 and (2) that the method can be used as a tool for the predictive design of AIBIIPO4 - Eu2+ phosphors applicable in solid state LED-based lighting.

  2. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  3. An afterburner-powered methane/steam reformer for a solid oxide fuel cells application

    NASA Astrophysics Data System (ADS)

    Mozdzierz, Marcin; Chalusiak, Maciej; Kimijima, Shinji; Szmyd, Janusz S.; Brus, Grzegorz

    2018-04-01

    Solid oxide fuel cell (SOFC) systems can be fueled by natural gas when the reforming reaction is conducted in a stack. Due to its maturity and safety, indirect internal reforming is usually used. A strong endothermic methane/steam reforming process needs a large amount of heat, and it is convenient to provide thermal energy by burning the remainders of fuel from a cell. In this work, the mathematical model of afterburner-powered methane/steam reformer is proposed. To analyze the effect of a fuel composition on SOFC performance, the zero-dimensional model of a fuel cell connected with a reformer is formulated. It is shown that the highest efficiency of a solid oxide fuel cell is achieved when the steam-to-methane ratio at the reforming reactor inlet is high.

  4. Eu 3+-doped wide band gap Zn 2SnO 4 semiconductor nanoparticles: Structure and luminescence

    DOE PAGES

    Dimitrievska, Mirjana; Ivetić, Tamara B.; Litvinchuk, Alexander P.; ...

    2016-08-03

    Nanocrystalline Zn 2SnO 4 powders doped with Eu 3+ ions were synthesized via a mechanochemical solid-state reaction method followed by postannealing in air at 1200 °C. X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Raman and photoluminescence (PL) spectroscopies provide convincing evidence for the incorporation of Eu 3+ ions into the host matrix on noncentrosymmetric sites of the cubic inverse spinel lattice. Microstructural analysis shows that the crystalline grain size decreases with the addition of Eu 3+. Formation of a nanocrystalline Eu 2Sn 2O 7 secondary phase is also observed. Luminescence spectra of Eu 3+-doped samples show several emissions, including narrow-bandmore » magnetic dipole emission at 595 nm and electric dipole emission at 615 nm of the Eu 3+ ions. Excitation spectra and lifetime measurements suggest that Eu 3+ ions are incorporated at only one symmetry site. According to the crystal field theory, it is assumed that Eu 3+ ions participate at octahedral sites of Zn 2+ or Sn 4+ under a weak crystal field, rather than at the tetrahedral sites of Zn2+, because of the high octahedral stabilization energy for Eu 3+. Activation of symmetry forbidden (IR-active and silent) modes is observed in the Raman scattering spectra of both pure and doped samples, indicating a disorder of the cation sublattice of Zn 2SnO 4 nanocrystallites. These results were further supported by the first principle lattice dynamics calculations. The spinel-type Zn 2SnO 4 shows effectiveness in hosting Eu 3+ ions, which could be used as a prospective green/red emitter. As a result, this work also illustrates how sustainable and simple preparation methods could be used for effective engineering of material properties.« less

  5. Crystal structure and luminescent properties of Sr2SiO4:Eu2+ phosphor prepared by sol-gel method.

    PubMed

    Pan, Heng; Li, Xu; Zhang, Jinping; Guan, Li; Su, Hongxin; Yang, Zhiping; Teng, Feng

    2016-07-04

    A series of Eu2+ (0.0025≤ × ≤0.025) activated Sr2SiO4:xEu2+ (SSO:xEu2+) phosphors were synthesized via a sol-gel method. The phosphors were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. The differences between α' and β phase of SSO in the density of states and energy band gap were investigated. The energy gap of α'-SSO and β-SSO are 4.489 and 4.106 eV, respectively. While, two samples showed similar total and partial densities of states. Under the excitation by the ultra violet (UV) light (365 nm), the SSO:xEu2+ phosphor exhibited a green emission band from 400 to 700 nm, which was corresponding to the transition of 5d → 4f of Eu2+ ions. Two emission peaks at 464 and 532 nm could be obtained through Gauss fitting curves. The ratio of the blue to green emission peak decreased with the Eu2+ concentration and the peaks shifted regularly with it. The thermal quenching property was investigated and its activation energy was calculated. The results indicated that this phosphor could be a candidate of green phosphor for UV-based light-emitting diodes (LEDs).

  6. Growth of 1.5-In Eu : SrI2 Single Crystal and Scintillation Properties

    NASA Astrophysics Data System (ADS)

    Yokota, Yuui; Ito, Tomoki; Yasuhiro, Shoji; Kurosawa, Shunsuke; Ohashi, Yuji; Kamada, Kei; Yoshikawa, Akira

    2016-04-01

    We grew 1.5-in Eu doped SrI2 (Eu : SrI2) bulk single crystal by a modified vertical Bridgman (VB) method using a removable chamber and high-frequency induction heating. Asgrown 1.5-in Eu : SrI2 bulk single crystal had no visible crack and inclusion in the crystal. In the transmittance and α-ray radioluminescence spectra, large absorption below 433 nm and emission peak at 433 nm were observed, respectively. Each polished Eu : SrI2 specimen indicated 56 000 62 000 ph/MeV light yield and 3.3 3.9% energy resolution. The decay times of the specimens were 0.61 0.67 μs.

  7. Controlled synthesis and novel photoluminescence properties of BaTiO{sub 3}:Eu{sup 3+}/Eu{sup 2+} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Li; Li, Ying; Wang, Guofeng, E-mail: wanggf75@gmail.com

    2015-01-15

    Highlights: • Tetragonal phase BaTiO{sub 3}:Eu nanocrystals were successfully synthesized using a hydrothermal method. • Under 398 nm excitation, the emissions from Eu{sup 2+} and Eu{sup 3+} ions were observed. • The emission band of Eu{sup 2+} from BaTiO{sub 3}:Eu was observed to broaden with increasing Eu concentration. - Abstract: Tetragonal phase BaTiO{sub 3}:Eu nanocrystals were successfully synthesized using a hydrothermal method and a subsequent calcination treatment. The structures and morphologies of nanocrystals were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. The photoluminescence properties of BaTiO{sub 3}:Eu were investigated in detail. Under 398 nmmore » excitation, the emissions from Eu{sup 2+} and Eu{sup 3+} ions were observed, indicating that Eu{sup 2+} and Eu{sup 3+} ions coexisted in BaTiO{sub 3}:Eu nanocrystals. Especially, the emission band of Eu{sup 2+} from BaTiO{sub 3}:Eu was observed to broaden with increasing Eu concentration. When the Eu concentration was 0.5 mol%, the {sup 5}D{sub 0} → {sup 7}F{sub 0} and {sup 5}D{sub 1} → {sup 7}F{sub 0} emissions were observed. In addition, under 537 nm excitation, the emission intensity increased with increasing Eu concentration.« less

  8. Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A = Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors.

    PubMed

    Geng, Dongling; Shang, Mengmeng; Zhang, Yang; Lian, Hongzhou; Lin, Jun

    2013-12-02

    A series of single-phase phosphors based on KNaCa2(PO4)2 (KNCP):A (A = Ce(3+), Eu(2+), Tb(3+), Mn(2+), Sm(3+)) have been prepared via the Pechini-type sol-gel method. Photoluminescence (PL) and cathodoluminescence (CL) properties of Ce(3+)-, Eu(2+)-, Tb(3+)-, Mn(2+)-, and Sm(3+)-activated KNCP phosphors were investigated. For the A singly doped KNCP samples, they exhibit the characteristic emissions of the A activator. Na(+) ions exhibit the best charge compensation result among Li(+), Na(+), and K(+) ions for Ce(3+)-, Tb(3+)-, and Sm(3+)-doped KNCP samples. The energy transfers from Ce(3+) to Tb(3+) and Mn(2+) ions as well as Eu(2+) to Tb(3+) and Mn(2+) have been validated. The emission colors of KNCP:Ce(3+)/Eu(2+), Tb(3+)/Mn(2+), Na(+) samples can be adjusted by energy transfer process and changing the Tb(3+)/Mn(2+) concentration. More importantly, white light emission in KNCP:Eu(2+), Mn(2+) system has been obtained. The KNCP:Tb(3+), Na(+) sample shows tunable luminescence from blue to cyan and then to green with the change of Tb(3+) concentration due to the cross-relaxation from (5)D3 to (5)D4. A white emission can also be realized in the single-phase KNCP host by reasonably adjusting the doping concentrations of Tb(3+) and Sm(3+) (reddish-orange emission) under low-voltage electron beam excitation. Additionally, the temperature-dependent PL properties of as-prepared phosphors reveal that the KNCP host has good thermal stability. Therefore, the KNCP:A (A = Ce(3+), Eu(2+), Tb(3+), Mn(2+), Sm(3+)) phosphors could be regarded as good candidates for UV W-LEDs and FEDs.

  9. High-Precision Measurement of Eu/Eu* in Geological Glasses via LA-ICP-MS Analysis

    NASA Technical Reports Server (NTRS)

    Tang, Ming; McDonough, William F.; Arevalo, Ricardo, Jr.

    2014-01-01

    Elemental fractionation during laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis has been historically documented between refractory and volatile elements. In this work, however, we observed fractionation between light rare earth elements (LREEs) and heavy rare earth elements (HREEs) when using ablation strategies involving large spot sizes (greater than 100 millimeters) and line scanning mode. In addition: (1) ion yields decrease when using spot sizes above 100 millimeters; (2) (Eu/Eu*)(sub raw) (i.e. Europium anomaly) positively correlates with carrier gas (He) flow rate, which provides control over the particle size distribution of the aerosol reaching the ICP; (3) (Eu/Eu*)(sub raw) shows a positive correlation with spot size, and (4) the changes in REE signal intensity, induced by the He flow rate change, roughly correlate with REE condensation temperatures. The REE fractionation is likely driven by the slight but significant difference in their condensation temperatures. Large particles may not be completely dissociated in the ICP and result in preferential evaporation of the less refractory LREEs and thus non-stoichiometric particle-ion conversion. This mechanism may also be responsible for Sm-Eu-Gd fractionation as Eu is less refractory than Sm and Gd. The extent of fractionation depends upon the particle size distribution of the aerosol, which in turn is influenced by the laser parameters and matrix. Ablation pits and lines defined by low aspect ratios produce a higher proportion of large particles than high aspect ratio ablation, as confirmed by measurements of particle size distribution in the laser induced aerosol. Therefore, low aspect ratio ablation introduces particles that cannot be decomposed and/or atomized by the ICP and thus results in exacerbated elemental fractionation. Accurate quantification of REE concentrations and Eu/Eu* requires reduction of large particle production during laser ablation. For the reference

  10. A neutron scintillator based on transparent nanocrystalline CaF{sub 2}:Eu glass ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struebing, Christian; Kang, Zhitao, E-mail: zhitao.kang@gtri.gatech.edu; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

    2016-04-11

    There are no efficient Eu{sup 2+} doped glass neutron scintillators reported due to low doping concentrations of Eu{sup 2+} and the amorphous nature of the glass matrix. In this work, an efficient CaF{sub 2}:Eu glass ceramic neutron scintillator was prepared by forming CaF{sub 2}:Eu nanocrystals in a {sup 6}Li-containing glass matrix. Through appropriate thermal treatments, the scintillation light yield of the transparent glass ceramic was increased by a factor of at least 46 compared to the as-cast amorphous glass. This improvement was attributed to more efficient energy transfer from the CaF{sub 2} crystals to the Eu{sup 2+} emitting centers. Furthermore » light yield improvement is expected if the refractive index of the glass matrix can be matched to the CaF{sub 2} crystal.« less

  11. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  12. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.

    PubMed

    Neumann, Johannes; Meyer, Johannes; Ouadi, Miloud; Apfelbacher, Andreas; Binder, Samir; Hornung, Andreas

    2016-01-01

    Producing energy from biomass and other organic waste residues is essential for sustainable development. Fraunhofer UMSICHT has developed a novel reactor which introduces the Thermo-Catalytic Reforming (TCR®) process. The TCR® is a process which can convert any type of biomass and organic feedstocks into a variety of energy products (char, bio-oil and permanent gases). The aim of this work was to demonstrate this technology using digestate as the feedstock and to quantify the results from the post reforming step. The temperature of a post reformer was varied to achieve optimised fuel products. The hydrogen rich permanent gases produced were maximised at a post reforming temperature of 1023 K. The highly de-oxygenated liquid bio-oil produced contained a calorific value of 35.2 MJ/kg, with significantly improved fuel physical properties, low viscosity and acid number. Overall digestate showed a high potential as feedstock in the Thermo-Catalytic Reforming to produce pyrolysis fuel products of superior quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Health care reform 2010: a fresh view on tort reform.

    PubMed

    Stimson, C J; Dmochowski, Roger; Penson, David F

    2010-11-01

    We reviewed the state of medical malpractice tort reform in the context of a new political climate and the current debate over comprehensive health care reform. Specifically we asked whether medical malpractice tort reform is necessary, and evaluated the strengths and weaknesses of contemporary reform proposals. The medical, legal and public policy literature related to medical malpractice tort reform was reviewed and synthesized. We include a primer for understanding the current structure of medical malpractice law, identify the goals of the current system and analyze whether these goals are presently being met. Finally, we describe and evaluate the strengths and weaknesses of the current reform proposals including caps on damages, safe harbors and health care courts. Medical malpractice tort law is designed to improve health care quality and appropriately compensate patients for medical malpractice injuries, but is failing on both fronts. Of the 3 proposed remedies, caps on damages do little to advance the quality and compensatory goals, while safe harbors and health care courts represent important advancements in tort reform. Tort reform should be included in the current health policy debate because the current medical malpractice system is not adequately achieving the basic goals of tort law. While safe harbors and health care courts both represent reasonable remedies, health care courts may be preferred because they do not rely on jury determination in the absence of strong medical evidence. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    NASA Astrophysics Data System (ADS)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  15. Solar central receiver reformer system for ammonia plants

    NASA Astrophysics Data System (ADS)

    1980-07-01

    Details of the conceptual design, economic analysis, and development plan for a solar central receiver system for retrofitting the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant are presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system displaces natural gas presently used in the fossil reformer combustion chamber. The solar reformer retrofit system characteristics and its interface with the existing plant are simple, incorporating state of the art components with proven technology. A northfield composed of one thousand forty second generation heliostats provides solar energy to the receiver which is positioned on top of a 90 meter high steel tower. The overall economics of this system can provide over 20% discount cash flow rate of return with proper investment and market conditions.

  16. Thermoluminescence properties of Eu-doped and Eu/Dy-codoped Sr2 Al2 SiO7 phosphors.

    PubMed

    Jadhaw, Akhilesh; Sonwane, Vivek D; Gour, Anubha S; Jha, Piyush

    2017-11-01

    We report the thermoluminescence properties of Sr 1.96 Al 2 SiO 7 :Eu 0.04 and Sr 1.92 Al 2 SiO 7 :Eu 0.04 Dy 0.04 phosphors. These phosphors were prepared by a high-temperature solid-state reaction method. The prepared phosphors were characterized by X-ray diffraction. A 254 nm source was used for ultraviolet (UV) irradiation and a 60 Co source was used for γ-irradiation. The effect of heating rate and UV-exposure were examined. The thermoluminescence temperature shifts to higher values with increasing heating rate and thermoluminescence intensity increases with increasing UV exposure time. The trapping parameters such as activation energy (E), order of kinetics and frequency factor (s) were calculated by peak shape method. The effect of γ- and UV-irradiation on thermoluminescence studies was also examined. Copyright © 2017 John Wiley & Sons, Ltd.

  17. The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor

    PubMed Central

    Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing

    2018-01-01

    Novel LiLa1−x−y(MoO4)2:xSm3+,yEu3+ (in short: LL1−x−yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1−x(MoO4)2:xSm3+ (LL1−xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole—electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95−yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1−x−yM:xSm3+,yEu3+ is a promising WLED red phosphor. PMID:29443910

  18. The Preparation and Optical Properties of Novel LiLa(MoO4)2:Sm3+,Eu3+ Red Phosphor.

    PubMed

    Wang, Jiaxi; Luo, Li; Huang, Baoyu; He, Jingqi; Zhang, Wei; Zhao, Weiren; Wang, Jianqing

    2018-02-14

    Novel LiLa1-x-y(MoO4)2:xSm3+,yEu3+ (in short: LL1-x-yM:xSm3+,yEu3+) double molybdate red phosphors were synthesized by a solid-state reaction at as low temperature as 610 °C. The optimal doping concentration of Sm3+ in LiLa1-x(MoO4)2:xSm3+ (LL1-xM:xSm3+) phosphor is x = 0.05 and higher concentrations lead to emission quenching by the electric dipole-electric dipole mechanism. In the samples co-doped with Eu3+ ions, the absorption spectrum in the near ultraviolet and blue regions became broader and stronger than these of the Sm3+ single-doped samples. The efficient energy transfer from Sm3+ to Eu3+ was found and the energy transfer efficiency was calculated. Under the excitation at 403 nm, the chromaticity coordinates of LL0.95-yM:0.05Sm3+,yEu3+ approach to the NTSC standard values (0.670, 0.330) continuously with increasing Eu3+ doping concentration. The phosphor exhibits high luminous efficiency under near UV or blue light excitation and remarkable thermal stability. At 150 °C, the integrated emission intensity of the Eu3+ remained 85% of the initial intensity at room temperature and the activation energy is calculated to be 0.254 eV. The addition of the LL0.83M:0.05Sm3+,0.12Eu3+ red phosphors can improve the color purity and reduce the correlated color temperature of WLED lamps. Hence, LL1-x-yM:xSm3+,yEu3+ is a promising WLED red phosphor.

  19. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms.

    PubMed

    Masaeli, Reza; Zandsalimi, Kavosh; Tayebi, Lobat

    2018-01-01

    Regarding the widespread and ever-increasing applications of biomaterials in different medical fields, their accurate assessment is of great importance. Hence the safety and efficacy of biomaterials is confirmed only through the evaluation process, the way it is done has direct effects on public health. Although every biomaterial undergoes rigorous premarket evaluation, the regulatory agencies receive a considerable number of complications and adverse event reports annually. The main factors that challenge the process of biomaterials evaluation are dissimilar regulations, asynchrony of biomaterials evaluation and biomaterials development, inherent biases of postmarketing data, and cost and timing issues. Several pieces of evidence indicate that current medical device regulations need to be improved so that they can be used more effectively in the evaluation of biomaterials. This article provides suggested conceptual refinements and practical reforms to increase the efficiency and effectiveness of the existing regulations. The main focus of the article is on strategies for evaluating biomaterials in US, and then in EU.

  20. Effect of the PVA (polyvinyl alcohol) concentration on the optical properties of Eu-doped YAG phosphors

    NASA Astrophysics Data System (ADS)

    Hora, Daniela A.; Andrade, Adriano B.; Ferreira, Nilson S.; Teixeira, Verônica C.; dos S. Rezende, Marcos V.

    2016-10-01

    The influence of the polyvinyl alcohol (PVA) concentration on the synthesis and structural, morphological and optical properties of Y3Al5O13: Eu (Eu-doped YAG) was systematically investigated in this work. The final concentration of PVA in the preparation step influenced the crystallite size and also the degree of particle agglomeration in Eu-doped YAG phosphors. X-ray excited optical luminescence (XEOL) emission spectra results indicated typical Eu3+ emission lines and an abnormally intense 5D0 → 7F4. The intensity parameters Ω2 and Ω4 were calculated and indicated the PVA concentration affects the ratio Ω2:Ω4. X-ray absorption spectroscopy (XAS) results showed Eu valence did not change and the symmetry around the Eu3+ is influenced by the PVA concentration. XEOL-XAS showed the luminescence increases as a function of energy.

  1. Effect of annealing on structural and luminescence properties of Eu3+ doped NaYF4 phosphor

    NASA Astrophysics Data System (ADS)

    Pathak, Trilok K.; Kumar, Ashwini; Swart, H. C.; Kroon, R. E.

    2018-04-01

    Eu3+ doped NaYF4 phosphors have been synthesized by the combustion method. The effect of annealing on the structural, morphological and luminescence properties has been investigated. X-ray diffraction analysis revealed that the Eu3+ doped NaYF4 phosphors consisted of mixed phases: α-phase and β-phase which were affected by the annealing of the phosphor. The surface morphology showed a significant change with annealing in the Eu3+ doped NaYF4 phosphors. The elemental mapping and energy dispersive X-ray spectroscopy spectra proved the formation of the desired materials. The photoluminescence spectra illustrated the optical properties of Eu3+ in the as-prepared and annealed Eu3+ doped NaYF4 phosphors. The intensity of the peaks 5D0 → 7F2 and 5D0 → 7F1 varied in as-prepared and annealed samples. The lifetime of the Eu3+ luminescence at 615 nm was also weakly affected by the Eu3+ doping and annealing temperature.

  2. Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions.

    PubMed

    Graeve, Olivia A; Kanakala, Raghunath; Madadi, Abhiram; Williams, Brandon C; Glass, Katelyn C

    2010-05-01

    We present a detailed analysis of the luminescence behavior of europium-doped hydroxyapatite (HAp) and calcium-deficient hydroxyapatite (Ca-D HAp) nanopowders. The results show that, while both powders are similar in crystallite size, particle size, and morphology, the luminescence behavior differs significantly. For the HAp:Eu powders, the emission is clearly from Eu(3+) ions and corresponds to typical (5)D(0) --> (7)F(J) emissions, whereas for the Ca-D HAp:Eu powders, we also see a broad emission with two peaks at 420 and 445 nm, corresponding to the 4f(6)5d(1) --> 4f(7) ((8)S(7/2)) transition of Eu(2+). The powders are weakly luminescent in the as-synthesized state, as expected for combustion-synthesized materials and have higher emission intensities as the heat treatment temperature is increased. Luminescence spectra obtained using an excitation wavelength of 254 nm are weak for all samples. Excitation wavelengths of 305, 337, and 359 nm, are better at promoting the Eu(3+) and Eu(2+) emissions in hydroxyapatites. We propose that fluorescence measurements are an excellent way of qualitatively determining the phase composition of europium-doped hydroxyapatite powders, since powders that exhibit a blue emission contain substantial amounts of Ca-D HAp, allowing the determination of the presence of this phase in mixed-phase hydroxyapatites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Magnetic and Fermi Surface Properties of EuGa4

    NASA Astrophysics Data System (ADS)

    Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Miura, Yasunao; Tsutsumi, Hiroki; Mori, Akinobu; Ishida, Kazuhiro; Mitamura, Katsuya; Hirose, Yusuke; Sugiyama, Kiyohiro; Honda, Fuminori; Settai, Rikio; Takeuchi, Tetsuya; Hagiwara, Masayuki; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Harima, Hisatomo; Ōnuki, Yoshichika

    2013-10-01

    We grew a high-quality single crystal EuGa4 with the tetragonal structure by the Ga self-flux method, and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermoelectric power and de Haas--van Alphen (dHvA) effect, together with the electrical resistivity and thermoelectric power under pressure. EuGa4 is found to be a Eu-divalent compound without anisotropy of the magnetic susceptibility in the paramagnetic state and to reveal the same magnetization curve between H \\parallel [100] and [001] in the antiferromagnetic state, where the antiferromagnetic easy-axis is oriented along the [100] direction below a Néel temperature TN=16.5 K. The magnetization curve is discussed on the basis of a simple two-sublattice model. The Fermi surface in the paramagnetic state was clarified from the results of a dHvA experiment for EuGa4 and an energy band calculation for a non-4f reference compound SrGa4, which consists of a small ellipsoidal hole--Fermi surface and a compensated cube-like electron--Fermi surface with vacant space in center. We observed an anomaly in the temperature dependence of the electrical resistivity and thermoelectric power at TCDW=150 K under 2 GPa. This might correspond to an emergence of the charge density wave (CDW). The similar phenomenon was also observed in EuAl4 at ambient pressure. We discussed the CDW phenomenon on the basis of the present peculiar Fermi surfaces.

  4. Publicity as an Instrument of Reform.

    ERIC Educational Resources Information Center

    Caudill, Susan

    Albert Einstein and the Emergency Committee of Atomic Scientists (ECAS) conducted a reform-based public communication campaign for the international control of atomic energy after the Second World War. The Committee raised funds and sought publicity for its proposed solution to the problem of war and the management of peace. Its solution was the…

  5. Reforming Again: Now Teachers

    ERIC Educational Resources Information Center

    Marx, Ronald W.

    2014-01-01

    Background: Educational reform responds to local and national pressures to improve educational outcomes, and reform efforts cycle as similar pressures recur. Currently, reform efforts focus on teachers, even though confidence in a host of American social institutions is dropping. One of the most widespread reforms regarding teachers is the…

  6. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-06

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  7. Defect Engineering in SrI 2:Eu 2+ Single Crystal Scintillators

    DOE PAGES

    Wu, Yuntao; Boatner, Lynn A.; Lindsey, Adam C.; ...

    2015-06-23

    Eu 2+-activated strontium iodide is an excellent single crystal scintillator used for gamma-ray detection and significant effort is currently focused on the development of large-scale crystal growth techniques. A new approach of molten-salt pumping or so-called melt aging was recently applied to optimize the crystal quality and scintillation performance. Nevertheless, a detailed understanding of the underlying mechanism of this technique is still lacking. The main purpose of this paper is to conduct an in-depth study of the interplay between microstructure, trap centers and scintillation efficiency after melt aging treatment. Three SrI 2:2 mol% Eu2+ single crystals with 16 mm diametermore » were grown using the Bridgman method under identical growth conditions with the exception of the melt aging time (e.g. 0, 24 and 72 hours). Using energy-dispersive X-ray spectroscopy, it is found that the matrix composition of the finished crystal after melt aging treatment approaches the stoichiometric composition. The mechanism responsible for the formation of secondary phase inclusions in melt-aged SrI 2:Eu 2+ is discussed. Simultaneous improvement in light yield, energy resolution, scintillation decay-time and afterglow is achieved in melt-aged SrI 2:Eu 2+. The correlation between performance improvement and defect structure is addressed. The results of this paper lead to a better understanding of the effects of defect engineering in control and optimization of metal halide scintillators using the melt aging technique.« less

  8. Wood energy markets, 2010-2011

    Treesearch

    Francisco Aguilar; Christopher Gaston; Rens Hartkamp; Warren Mabee; Kenneth Skog

    2011-01-01

    Global wood energy markets continue to grow, driven primarily by demand in the EU and its commitment to meet 20% of energy consumption from renewable sources by 2020. Large investments in industrial pellet-production capacity have been made under expectations of a continuously growing demand, mainly from the EU. Concern about how energy and climate-change policies may...

  9. Reformer Fuel Injector

    NASA Technical Reports Server (NTRS)

    Suder, Jennifer L.

    2004-01-01

    Today's form of jet engine power comes from what is called a gas turbine engine. This engine is on average 14% efficient and emits great quantities of green house gas carbon dioxide and air pollutants, Le. nitrogen oxides and sulfur oxides. The alternate method being researched involves a reformer and a solid oxide fuel cell (SOFC). Reformers are becoming a popular area of research within the industry scale. NASA Glenn Research Center's approach is based on modifying the large aspects of industry reforming processes into a smaller jet fuel reformer. This process must not only be scaled down in size, but also decrease in weight and increase in efficiency. In comparison to today's method, the Jet A fuel reformer will be more efficient as well as reduce the amount of air pollutants discharged. The intent is to develop a 10kW process that can be used to satisfy the needs of commercial jet engines. Presently, commercial jets use Jet-A fuel, which is a kerosene based hydrocarbon fuel. Hydrocarbon fuels cannot be directly fed into a SOFC for the reason that the high temperature causes it to decompose into solid carbon and Hz. A reforming process converts fuel into hydrogen and supplies it to a fuel cell for power, as well as eliminating sulfur compounds. The SOFC produces electricity by converting H2 and CO2. The reformer contains a catalyst which is used to speed up the reaction rate and overall conversion. An outside company will perform a catalyst screening with our baseline Jet-A fuel to determine the most durable catalyst for this application. Our project team is focusing on the overall research of the reforming process. Eventually we will do a component evaluation on the different reformer designs and catalysts. The current status of the project is the completion of buildup in the test rig and check outs on all equipment and electronic signals to our data system. The objective is to test various reformer designs and catalysts in our test rig to determine the most

  10. Synthesis and characterization of Eu{sup 3+}-doped CaZrO{sub 3}-based perovskite-type phosphors. Part I: Determination of the Eu{sup 3+} occupied site using the ALCHEMI technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaida, Satoshi; Shimokawa, Yohei; Asaka, Toru

    2015-07-15

    Highlights: • Eu{sup 3+}-doped CaZrO{sub 3}-based compounds were synthesized by the solid state reaction. • PL emission intensity at 614 nm was changed by the second dopant cations. • The site substituted by Eu{sup 3+} cations was investigated by using XRD and ALCHEMI technique. • The dominant Eu{sup 3+} substitution site was found as the B site (Zr{sup 4+}) in the CaZrO{sub {sup 3}}. • The dominant Eu{sup 3+} substitution site could be strongly influenced by the co-dopants. - Abstract: Eu{sup 3+}-doped CaZrO{sub 3}, SrZrO{sub 3}, and Mg{sup 2+}- or Sr{sup 2+}-co-doped CaZrO{sub 3} were synthesized by conventional solid statemore » reaction and their photoluminescence (PL) properties were characterized. The Eu{sup 3+}-doped CaZrO{sub 3}-based compounds exhibited characteristic emissions of Eu{sup 3+} (f–f transition). The intensity of the main PL emission peak at 614 nm increased with Mg{sup 2+} co-doping, while it decreased with the amount of co-doped Sr{sup 2+}. The site substituted by Eu{sup 3+} cations in the CaZrO{sub 3}-based compounds was investigated by X-ray diffraction analysis and energy-dispersive X-ray analysis based on the electron channeling effects in transmission electron microscopy. The Eu{sup 3+} cations were determined to occupy mainly the B site (Zr{sup 4+}) in CaZrO{sub 3}. The dominant Eu{sup 3+} substitution site was also strongly influenced by the co-dopant, and the ionic radius of the co-dopant was identified as an important factor that determines the dominant Eu{sup 3+} substitution site.« less

  11. Photoluminescence and thermoluminescence properties of Eu2+ doped and Eu2+ ,Dy3+ co-doped Ba2 MgSi2 O7 phosphors.

    PubMed

    Sao, Sanjay Kumar; Brahme, Nameeta; Bisen, D P; Tiwari, Geetanjali

    2016-11-01

    In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu 2 + -doped and Eu 2 + ,Dy 3 + -co-doped Ba 2 MgSi 2 O 7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid-state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba 2 MgSi 2 O 7 :Eu 2 + showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba 2 MgSi 2 O 7 :Eu 2 + Dy 3 + showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f 6 5d 1 to 4f 7 transition of Eu 2 + . TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu 2 + doping in Ba 2 MgSi 2 O 7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy 3 + ions were co-doped in Ba 2 MgSi 2 O 7 :Eu 2 + and maximum TL intensity was observed for 2 mol% of Dy 3 + . TL emission spectra of Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co-doping. The trap depths were calculated to be 0.54 eV for Ba 1.95 MgSi 2 O 7 :0.05Eu 2 + and 0.54 eV and 0.75 eV for Ba 1.93 MgSi 2 O 7 :0.05Eu 2 + ,0.02Dy 3 + phosphors. It was observed that co-doping with small amounts of Dy 3 + enhanced the thermoluminescence properties of Ba 2 MgSi 2 O 7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The

  12. Sputnik Reform Revisited.

    ERIC Educational Resources Information Center

    Strickland, Charles E.

    1985-01-01

    Educational reforms being called for in the 1980's are compared to reforms of the 1950's. The Sputnik-inspired quest for quality called for reform in the content and structure of basic subjects. Current reports say that what educators are doing in the basic subjects is ok, but they need to do more. (RM)

  13. Payment Reform

    PubMed Central

    Schneider, Eric C.; Hussey, Peter S.; Schnyer, Christopher

    2011-01-01

    Abstract Insurers and purchasers of health care in the United States are on the verge of potentially revolutionary changes in the approaches they use to pay for health care. Recently, purchasers and insurers have been experimenting with payment approaches that include incentives to improve quality and reduce the use of unnecessary and costly services. The Patient Protection and Affordable Care Act of 2010 is likely to accelerate payment reform based on performance measurement. This article provides details of the results of a technical report that catalogues nearly 100 implemented and proposed payment reform programs, classifies each of these programs into one of 11 payment reform models, and identifies the performance measurement needs associated with each model. A synthesis of the results suggests near-term priorities for performance measure development and identifies pertinent challenges related to the use of performance measures as a basis for payment reform. The report is also intended to create a shared framework for analysis of future performance measurement opportunities. This report is intended for the many stakeholders tasked with outlining a national quality strategy in the wake of health care reform legislation. PMID:28083159

  14. Studying CaSO4:Eu as an OSL phosphor

    NASA Astrophysics Data System (ADS)

    Guckan, Veysi; Altunal, Volkan; Nur, Necmettin; Depci, Tolga; Ozdemir, Adnan; Kurt, Kasim; Yu, Yan; Yegingil, Ihami; Yegingil, Zehra

    2017-09-01

    This study was carried out to investigate the properties of the OSL signal from Eu-doped calcium sulfate (CaSO4:Eu) phosphor and study on its thermal behavior as a function of temperature under a series of luminescence experiments. The suitability of its usage as an optically stimulated luminescence (OSL) dosimeter was also checked. CaSO4:Eu was synthesized using the precipitation method and prepared in pellet form. The dopant concentration value was performed as 0.1 mol%. The synthesized CaSO4:Eu was analyzed by X-ray diffraction (XRD) method to confirm the product. To have an idea about the crystallography and microstructure morphology of the material, scanning electron microscope (SEM) analysis were carried out. It was found that the OSL signal is a resultant signal having three components and exhibits thermal quenching above 150 °C. The excitation spectrum of CaSO4:Eu showed different peaks in the region 220-360 nm with the highest one at 269 nm. Thermoluminescence (TL) signals of CaSO4:Eu pellets were obtained and compared with the TL signals obtained after OSL measurements of the same pellets by blue light stimulation. The low temperature peak near 180 °C did not show any significant change in TL after OSL measurement whereas the high temperature peak at 240 °C was bleached with the blue light illumination and might be responsible for the observed OSL signal. The dosimetric properties such as dose response, minimum detectable dose, energy response, reusability, fading properties, thermal stability and effect of reading temperatures on OSL signals were examined. OSL signals of CaSO4:Eu pellets were decreased by approximately 8% at the end of the 24 h and by about 7% at the end of 28 days when compared with the first readout. The thermal stability of the ∼240 °C TL peak and OSL signal using isothermal decay measurements were used to determine the trap parameters. The CaSO4:Eu OSL dosimeter in accordance with the presented study allows a high

  15. Synthesis and Optical Spectroscopy of YPO4:Eu3+ Orange-Red Phosphors

    NASA Astrophysics Data System (ADS)

    Yahiaoui, Z.; Hassairi, M. A.; Dammak, M.

    2017-08-01

    YPO4: x mol.% Eu3+ phosphors with different dopant concentrations ( x = 3, 5, 8, 11, 13) have been synthesized via high-temperature solid-state reaction. X-ray diffraction analysis and Raman and infrared (IR) spectroscopy were applied for detailed structural characterization. Under excitation at wavelength of 395 nm, the photoluminescence spectra displayed the 5D0 → 7F J ( J = 1, 2, 3, 4) intra-4 f shell transitions related to Eu3+ ion. The radiative lifetime was estimated using the Ω 2 and Ω 4 Judd-Ofelt intensity parameters. The highest luminescence intensity was achieved for an optimal europium concentration of 11 mol.%. The critical energy-transfer distance for Eu3+ ions was evaluated to be 10.74 Å. We also studied the temperature-dependent photoluminescence and Commission Internationale de l'Éclairage chromaticity diagram. It was found that Eu3+-doped YPO4 exhibited good thermal stability and its emission intensity decreased slightly above room temperature. In addition, the color purity of this phosphor was as high as 91% for the YPO4:13% Eu3+ sample, making it a potential orange-red phosphor for application in ultraviolet-pumped white light-emitting diodes.

  16. Beyond Reform: Transformation

    ERIC Educational Resources Information Center

    Davidson, Jill

    2007-01-01

    The Coalition of Essential Schools (CES) is not a reform movement. To reform is to make a thing again; reformation implies a stasis that doesn't deliver enough for the educational future. This issue of Horace demonstrates that Essential schools and the districts and networks that support them are at various points in the journey of transformation,…

  17. Health system reform.

    PubMed

    Ortolon, Ken

    2009-06-01

    A vote on reforming the nation's health care system seems likely this summer as President Obama makes good on a campaign pledge. Although the Democratic leadership in Congress appears ready to push through reform legislation before the next election, TMA and AMA leaders say very little is known about what that "reform" likely will look like.

  18. Concentration quenching of Eu{sup 2+} doped Ca{sub 2}BO{sub 3}Cl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seed Ahmed, H.A.A.; Department of Physics, University of Khartoum, Khartoum; Swart, H.C.

    2016-03-15

    Highlights: • Ca{sub 2}BO{sub 3}Cl doped with Eu{sup 2+} prepared by solid state reaction. • Concentration quenching studied by intensity and lifetime measurements. • Accurate determination of the critical transfer distance. • Interaction mechanism verified to be dipole–dipole interactions. - Abstract: With the aim of determining the concentration quenching mechanism of Eu{sup 2+} doped Ca{sub 2}BO{sub 3}Cl, a series of phosphors with a varied Eu{sup 2+} concentration (Ca{sub 2−x}BO{sub 3}Cl:xEu{sup 2+}) was synthesized by the solid state reaction method. The phase structure was determined by X-ray diffraction. Photoluminescence (PL) measurements showed broad excitation and emission signatures of the allowed f–dmore » transition of Eu{sup 2+} ions. The PL emission intensity was found to be increased by increasing the concentration of Eu{sup 2+} ions up to x = 0.03 and then decreased as a result of the concentration quenching effect. The lifetime of the emission from the Eu{sup 2+} ions was measured and the decrease in the lifetime with increasing Eu{sup 2+} concentration confirmed that non-radiative energy transfer occurred between Eu{sup 2+} ions. From the luminescence data, the value of the critical transfer distance was calculated as 1.5 nm and the corresponding concentration quenching mechanism was verified to be a dipole–dipole interaction.« less

  19. EuCo 2P 2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE PAGES

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; ...

    2016-07-19

    The metallic compound EuCo 2P 2 with the body-centered tetragonal ThCr 2Si 2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below T N=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo 2P 2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacitymore » of EuCo 2P 2 single crystals at temperature T≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo 2P 2 and the related compound BaCo 2P 2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo 2P 2 and BaCo 2P 2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χ ab(T≤TN).« less

  20. EuCo 2P 2: A Model Molecular-Field Helical Heisenberg Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek

    The metallic compound EuCo 2P 2 with the body-centered tetragonal ThCr 2Si 2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below T N=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo 2P 2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacitymore » of EuCo 2P 2 single crystals at temperature T≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T 3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo 2P 2 and the related compound BaCo 2P 2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo 2P 2 and BaCo 2P 2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. Additionally, the calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χ ab(T≤TN).« less

  1. Enhancing Photovoltaic Performance Using Broadband Luminescent Down-Shifting by Combining Multiple Species of Eu-Doped Silicate Phosphors

    PubMed Central

    Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung

    2017-01-01

    This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆η) of 19.39%, far exceeding the ∆η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors. PMID:29065487

  2. Enhancing Photovoltaic Performance Using Broadband Luminescent Down-Shifting by Combining Multiple Species of Eu-Doped Silicate Phosphors.

    PubMed

    Ho, Wen-Jeng; Shen, Yu-Tang; Liu, Jheng-Jie; You, Bang-Jin; Ho, Chun-Hung

    2017-10-21

    This paper demonstrates the application of a broadband luminescent downshifting (LDS) layer with multiple species of europium (Eu)-doped silicate phosphors using spin-on film technique to enhance the photovoltaic efficiency of crystalline silicon solar cells. The surface morphology of the deposited layer was examined using a scanning electron microscope (SEM). The chemical composition of the Eu-doped silicate phosphors was analyzed using energy-dispersive X-ray spectroscopy (EDS). The fluorescence emission of the Eu-doped silicate phosphors was characterized using photoluminescence (PL) measurements at room temperature. We also compared the optical reflectance and external quantum efficiency (EQE) response of cells with combinations of various Eu-doped phosphors species. The cell coated with two species of Eu-doped phosphors achieved a conversion efficiency enhancement (∆ η ) of 19.39%, far exceeding the ∆ η = 15.08% of the cell with one species of Eu-doped phosphors and the ∆ η = 8.51% of the reference cell with the same silicate layer without Eu-doped phosphors.

  3. Photoluminescence and Energy Transfer Properties with Y+SiO4 Substituting Ba+PO4 in Ba3Y(PO4)3:Ce(3+)/Tb(3+), Tb(3+)/Eu(3+) Phosphors for w-LEDs.

    PubMed

    Li, Kai; Liang, Sisi; Shang, Mengmeng; Lian, Hongzhou; Lin, Jun

    2016-08-01

    A series of Ce(3+), Tb(3+), Eu(3+) doped Ba2Y2(PO4)2(SiO4) (BYSPO) phosphors were synthesized via the high-temperature solid-state reaction route. X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared, solid-state NMR, photoluminescence (PL) including temperature-dependent PL, and fluorescent decay measurements were conducted to characterize and analyze as-prepared samples. BYSPO was obtained by the substitution of Y+SiO4 for Ba+PO4 in Ba3Y(PO4)3 (BYPO). The red shift of PL emission from 375 to 401 nm occurs by comparing BYSPO:0.14Ce(3+) with BYPO:0.14Ce(3+) under 323 nm UV excitation. More importantly, the excitation edge can be extended from 350 to 400 nm, which makes it be excited by UV/n-UV chips (330-410 nm). Tunable emission color from blue to green can be observed under 365 nm UV excitation based on the energy transfer from Ce(3+) to Tb(3+) ions after codoping Tb(3+) into BYSPO:0.14Ce(3+). Moreover, energy transfer from Tb(3+) to Eu(3+) ions also can be found in BYSPO:Tb(3+),Eu(3+) phosphors, resulting in the tunable color from green to orange red upon 377 nm UV excitation. Energy transfer properties were demonstrated by overlap of excitation spectra, variations of emission spectra, and decay times. In addition, energy transfer mechanisms from Ce(3+) to Tb(3+) and Tb(3+) to Eu(3+) in BYSPO were also discussed in detail. Quantum yields and CIE chromatic coordinates were also presented. Generally, the results suggest their potential applications in UV/n-UV pumped LEDs.

  4. Tunable photoluminescence and magnetic properties of Dy(3+) and Eu(3+) doped GdVO4 multifunctional phosphors.

    PubMed

    Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-10-28

    A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.

  5. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.

    2014-03-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.

  6. From stable divalent to valence-fluctuating behaviour in Eu(Rh1-xIrx)2Si2 single crystals

    NASA Astrophysics Data System (ADS)

    Seiro, Silvia; Geibel, Christoph

    2011-09-01

    We have succeeded in growing high-quality single crystals of the valence-fluctuating system EuIr2Si2, the divalent Eu system EuRh2Si2 and the substitutional alloy Eu(Rh1-xIrx)2Si2 across the range 0 < x < 1, which we characterized by means of x-ray diffraction, energy-dispersive x-ray spectroscopy, specific heat, magnetization and resistivity measurements. On increasing x, the divalent Eu ground state subsists up to x = 0.25 with a slight increase in Néel temperature, while for 0.3≤x < 0.7 a sharp hysteretic change in susceptibility and resistivity marks the first-order valence transition. For x≳0.7 the broad feature observed in the physical properties is characteristic of the continuous valence evolution beyond the critical end point of the valence transition line, and the resistivity is reminiscent of Kondo-like behaviour while the Sommerfeld coefficient indicates a mass renormalization of at least a factor of 8. The resulting phase diagram is similar to those reported for polycrystalline Eu(Pd1-xAux)2Si2 and EuNi2(Si1-xGex)2, confirming its generic character for Eu systems, and markedly different to those of homologue Ce and Yb systems, which present a continuous suppression of the antiferromagnetism accompanied by a very smooth evolution of the valence. We discuss these differences and suggest them to be related to the large polarization energy of the Eu half-filled 4f shell. We further argue that the changes in the rare earth valence between RRh2Si2 and RIr2Si2 (R = Ce, Eu, Yb) are governed by a purely electronic effect and not by a volume effect.

  7. Dual-Emitting UiO-66(Zr&Eu) Metal-Organic Framework Films for Ratiometric Temperature Sensing.

    PubMed

    Feng, Ji-Fei; Liu, Tian-Fu; Shi, Jianlin; Gao, Shui-Ying; Cao, Rong

    2018-06-20

    A novel dual-emitting metal-organic framework based on Zr and Eu, named as UiO-66(Zr&Eu), was built using a clever strategy based on secondary building units. With the use of polymers, the obtained UiO-66(Zr&Eu) was subsequently deposited as thin films that can be utilized as smart thermometers. The UiO-66(Zr&Eu) polymer films can be used for the detection of temperature changes in the range of 237-337 K due to the energy transfer between the lanthanide ions (Eu in clusters) and the luminescent ligands, and the relative sensitivity reaches 4.26% K -1 at 337 K. Moreover, the sensitivity can be improved to 19.67% K -1 by changing the film thickness. In addition, the temperature-sensing performance of the films is superior to that of the powders, and the sensor can be reused 3 times without loss of performance.

  8. The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission

    NASA Astrophysics Data System (ADS)

    Teng, Xin; Wang, Wenzhi; Cao, Zhentao; Li, Jinkai; Duan, Guangbin; Liu, Zongming

    2017-07-01

    The gadolinium aluminum garnets Gd3Al5O12 (GdAG) activated with Tb3+/Eu3+ were successfully prepared via co-precipitation method at 1500 °C in this work. The crystal structure stabilization, elements analysis, microphotograph, PL/PLE spectra, decay behavior and quantum efficiency were discussed in detail. The metastable GdAG compounds been effectively stabilized by doping with smaller 10 at.% Tb3+, which then allows the development of new phosphors of (Gd0.9-xTb0.1Eux)3Al5O12 (GdAG:Tb3+/Eu3+, x = 0-0.03) for opto-functionality explorations. The PLE/PL spectra displays that the strongest PLE peak was located at ∼276 nm, which overlaps the 8S7/2 → 6IJ transition of Gd3+. Under 276 nm excitation, the phosphors exhibited both Tb3+ and Eu3+ emissions at 548 nm (green, 5D4 → 7F5 transition of Tb3+) and 592 nm (orange-red, 5D0 → 7F1 transition of Eu3+), respectively. The emission intensities of Tb3+ and Eu3+ remarkably varied with the Eu3+ incorporation. As a consequence, the emission color can be readily tuned from approximately green to orange-red. Fluorescence decay analysis found that the lifetime for the Tb3+ emission rapidly decreased conforming to the Tb3+ → Eu3+ energy transfer, and the energy transfer efficiency was calculated. Owing to the Gd3+ → Eu3+ and Gd3+ → Tb3+ energy transfer, the emission intensities of Tb3+ and Eu3+ in (Gd0.9-xTb0.1Eux)AG phosphor were higher than (Y0.87Tb0.1Eu0.03)AG and (Lu0.87Tb0.1Eu0.03)AG system. The (Gd0.9-xTb0.1Eux)AG garnet phosphors developed in this work may serve as a new type of phosphor which hopefully meets the requirements of various lighting and optical display applications.

  9. First-principles calculation on electronic structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng

    The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eumore » concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state

  10. 77 FR 69754 - Promoting Transmission Investment Through Pricing Reform

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ...-26-000] Promoting Transmission Investment Through Pricing Reform AGENCY: Federal Energy Regulatory... necessary to encourage transmission infrastructure investment while maintaining just and reasonable rates... necessary to encourage transmission infrastructure investment while maintaining just and reasonable rates...

  11. Bi3+ sensitized Y2WO6:Ln3+ (Ln=Dy, Eu, and Sm) phosphors for solar spectral conversion.

    PubMed

    Huang, M N; Ma, Y Y; Xiao, F; Zhang, Q Y

    2014-01-01

    The phosphors of Y2WO6:Bi3+, Ln3+ (Ln=Dy, Eu and Sm) were synthesized by solid-state reaction in this study. The crystal structure, photoluminescence properties and energy transfer mechanism were investigated. By introducing Bi3+ ions, the excitation band of the phosphors was broadened to be 250-380 nm, which could be absorbed by the dye-sensitized solar cells (DSSCs). The overlap between excitation of W-O groups/Bi3+ and the emission of Ln3+ (Dy, Eu, and Sm) indicated that the probability of energy transfer from W-O groups and Bi3+ to Ln3+. The energy transfer efficiency from Bi3+ to Ln3+ (Ln=Dy, Eu and Sm) are calculated to be 16%, 20% and 58%. This work suggested that Y2WO6:Bi3+, Ln3+ (Ln=Dy, Eu and Sm) might be a promising ultraviolet-absorbing luminescent converter to enhance the photoelectrical conversion efficiency of dye-sensitized solar cells (DSSCs). Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Novel Red-Emitting Ba₃Y(BO₃)₃:Bi3+, Eu3+ Phosphors for N-UV White Light-Emitting Diodes.

    PubMed

    Maggay, Irish Valerie B; Liu, Wei-Ren

    2018-01-01

    Ba3Y(BO3)3:Eu3+, Bi3+ were successfully prepared via a solid-state reaction. The crystallinity, photoluminescence properties, energy transfer and thermal quenching properties were studied. Subjecting Ba3Y(BO3)3:Bi3+ samples to different excitation wavelengths (340-370 nm), obtained blue and green emission ascribed to Bi3+(II) and Bi3+(I) sites, respectively. The influence of these two sites were systematically investigated. Bi3+ efficiently transferred its absorbed energy to neighboring Eu3+ sites by enhancing its luminescence intensity. Moreover, Bi3+ greatly enhanced the excitation spectra of Eu3+ in the N-UV region by 2.26 times which indicates that Ba3Y(BO3)3:Eu3+, Bi3+ can be used as a phosphor for w-LEDs using N-UV LED chips.

  13. Host composition dependent tunable multicolor emission in the single-phase Ba2(Ln(1-z)Tb(z))(BO3)2Cl:Eu phosphors.

    PubMed

    Xia, Zhiguo; Zhuang, Jiaqing; Meijerink, Andries; Jing, Xiping

    2013-05-14

    A new strategy based on the host composition design has been adopted to obtain efficient color-tunable emission from Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu (Ln = Y, Gd and Lu, z = 0-0.97) phosphors. This study reveals that the single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl compounds can be applied to use allowed Eu(2+) absorption transitions to sensitize Eu(3+) emission via the energy transfer Eu(2+) → (Tb(3+))n → Eu(3+). The powder X-ray diffraction (XRD) and Rietveld refinement analysis shows single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl. As-prepared Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu phosphors show intense green, yellow, orange and red emission under 377 nm near ultraviolet (n-UV) excitation due to a variation in the relative intensities of the Eu(2+), Tb(3+) and Eu(3+) emission depending on the Tb content (z) in the host composition, allowing color tuning. The variation in emission color is explained by energy transfer and has been investigated by photoluminescence and lifetime measurements and is further characterized by the Commission Internationale de l'éclairage (CIE) chromaticity indexes. The quantum efficiencies of the phosphors are high, up to 74%, and show good thermal stabilities up to 150 °C. This investigation demonstrates the possibility to sensitize Eu(3+) line emission by Eu(2+)via energy migration over Tb(3+) resulting in efficient color tunable phosphors which are promising for use in solid-state white light-emitting diodes (w-LEDs).

  14. Relaxor-ferroelectric BaLnZT (Ln = La, Nd, Sm, Eu, and Sc) ceramics for actuator and energy storage application

    NASA Astrophysics Data System (ADS)

    Ghosh, Sarit K.; Mallick, Kaushik; Tiwari, B.; Sinha, E.; Rout, S. K.

    2018-01-01

    Lead free ceramics Ba1-x Ln2x/3Zr0.3Ti0.7O3 (Ln = La, Nd, Sm, Eu and Sc), x = 0.02-0.10 are investigated for electrostrictive effect and energy storage properties in the proximity of relaxor-paraelectric phase boundary. Relaxor phase evidence from slim hysteresis loop and low remnant polarization are the key parameters responsible for improve the electrostrictive effect and energy storage properties simultaneously. With increase in rare earth content negative strain disappeared and almost hysteresis free strain is achieved. Strain-hysteresis profile in term of S-E, S-E 2 and S-P 2 is used to analyze the electrostrictive behavior of these ceramics. An average strain (S%) ˜ 0.03%, is accomplished at initial concentrations of x = 0.02-0.04 and electrostrictive coefficients (Q 11, and M 11) as well as the energy storage density is improved by a factor of 1.2 and 2.6 respectively when compare with pure (x = 0.0) ceramic. Above x ≥ 0.06, all compositions show a stable behavior which suggested the possibilities of these relaxor ceramics towards high precision actuators and energy storage application.

  15. Equity in Reform: Case Studies of Five Middle Schools Involved in Systemic Reform

    NASA Astrophysics Data System (ADS)

    Kahle, Jane Butler; Kelly, Mary Kay

    Science and mathematics education reform documents of the last decade have called for improved teaching and learning for all children. To overcome inequalities, a systemic approach to reform has been adopted. The case studies synthesized in this analysis arc part of a larger effort to reform science and mathematics education systemically and assess the progress of systemic reform. The purpose of this study was to assess the progress toward achieving equitable systemic reform in five middle schools. A multiple-case study design was used, and qualitative data were collected. Kahle's Equity Metric was used to analyze the schools' progress toward achieving equitable systemic reform of mathematics and science. Two results occurred: Various equity issues were identified in the five case studies, and the metric proved efficacious in identifying barriers to or facilitators of equitable reform in the schools. Overall, the study illustrates how schools might assess their commitments to providing high-quality science and mathematics education to all students.

  16. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations

    PubMed Central

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    Abstract CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations. PMID:27877870

  17. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P.; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at 405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

  18. Luminescence of delafossite-type CuAlO2 fibers with Eu substitution for Al cations.

    PubMed

    Liu, Yin; Gong, Yuxuan; Mellott, Nathan P; Wang, Bu; Ye, Haitao; Wu, Yiquan

    2016-01-01

    CuAlO 2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO 2 :Eu 3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO 2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO 2 and the f-f transition of the Eu 3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO 2 :Eu 3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

  19. Controlled synthesis of Eu 2+ and Eu 3+ doped ZnS quantum dots and their photovoltaic and magnetic properties

    DOE PAGES

    Horoz, Sabit; Yakami, Baichhabi; Poudyal, Uma; ...

    2016-04-27

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu 2+ and Eu 3+ doped ZnS can be controllably synthesized. The Eu 2+ doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu2+ intra-ion transition of 4f 6d1 – 4f 7, while the Eu 3+ doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu 3+ doped samples exhibit signs of ferromagnetism, on the other hand, Eu 2+ dopedmore » samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.« less

  20. Growth and characterization of SrI2:Eu2+ single crystal for gamma ray detector applications

    NASA Astrophysics Data System (ADS)

    Raja, A.; Daniel, D. Joseph; Ramasamy, P.; Singh, S. G.; Sen, S.; Gadkari, S. C.

    2018-04-01

    Europium activated Strontium Iodide single crystal was grown by vertical Bridgman-stockbarger technique. The melting point and freezing point of SrI2:Eu2+ crystal was analyzed by TG/DTA. The Radioluminescence emission was recorded. The scintillation measurement was carried out for the grown SrI2:Eu2+ crystal under 137Cs gamma energy source.

  1. Let's make a deal: trading malpractice reform for health reform.

    PubMed

    Sage, William M; Hyman, David A

    2014-01-01

    Physician leadership is required to improve the efficiency and reliability of the US health care system, but many physicians remain lukewarm about the changes needed to attain these goals. Malpractice liability-a sore spot for decades-may exacerbate physician resistance. The politics of malpractice have become so lawyer-centric that recognizing the availability of broader gains from trade in tort reform is an important insight for health policy makers. To obtain relief from malpractice liability, physicians may be willing to accept other policy changes that more directly improve access to care and reduce costs. For example, the American Medical Association might broker an agreement between health reform proponents and physicians to enact federal legislation that limits malpractice liability and simultaneously restructures fee-for-service payment, heightens transparency regarding the quality and cost of health care services, and expands practice privileges for other health professionals. There are also reasons to believe that tort reform can make ongoing health care delivery reforms work better, in addition to buttressing health reform efforts that might otherwise fail politically.

  2. Role of Eu{sup 2+} on the blue‐green photoluminescence of In{sub 2}O{sub 3}:Eu{sup 2+} nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Konsam Reenabati, E-mail: reena.kay14@manipuruniv.ac.in; Meetei, Sanoujam Dhiren, E-mail: sdmdhiren@gmail.com; Department of Physics, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, Arunachal Pradesh

    Blue‐green light emitting undoped and europium doped indium oxide nanocrystal were synthesized by simple precipitation method. X-ray diffraction (XRD) pattern confirmed the cubic phase of undoped and europium doped samples. Further, transmission electron microscopy (TEM), scanning electron microscopy (SEM) , energy dispersive analysis of X-rays (EDAX), Fourier transform infra-red (FT-IR), photoluminescence (PL), electron paramagnetic resonance (EPR) studies were performed to characterise the samples. PL analysis of the samples is the core of the present research. It includes excitation, emission and CIE (Commission Internationale de l’e´ clairage) studies of the samples. On doping europium to In{sub 2}O{sub 3} lattice, ln{sup 3+}more » site is substituted by Eu{sup 2+} thereby increasing the concentration of singly ionized oxygen vacancy and hence blue–green emission from the host is found to increase. Further, this increase in blue–green emission after doping may also be attributed to 4f → 5d transitions of Eu{sup 2+}. However, the blue–green PL emission is found to decrease after an optimum dopant concentration (Eu{sup 2+} = 4%) due to luminescence and size quenching. CIE co-ordinates of the samples are calculated to know colour of light emitted from the samples. It suggests that this blue–green light emitting In{sub 2}O{sub 3}: Eu{sup 2+} nanocrystals may find application in lighting such as in generation of white light. - Highlight: • XRD and TEM study confirms the synthesis of cubic doped and europium doped nanocrystals. • EPR study reveals the doped europium is in + 2 oxidation state. • Enhance PL emission intensity of host material due to increase in singly ionized oxygen vacancy and 4f–5d transitions of Eu{sup 2+} • CIE co-ordinates suggest the blue–green colour of the samples.« less

  3. The challenge of carbon dioxide removal for EU policy-making

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Geden, Oliver

    2018-05-01

    Most scenarios to meet the Paris Agreement require negative emissions technologies. The EU has assumed a global leadership role in mitigation action and low-carbon energy technology development and deployment, but carbon dioxide removal presents a serious challenge to its low-carbon policy paradigm and experience.

  4. Pastors and the "Perpetuum Mobile": The Dynamics of Professional Learning in Times of Reform

    ERIC Educational Resources Information Center

    Reite, Ingrid Chr.

    2015-01-01

    In a changing knowledge society, many workplaces experience a great number of reforms, implying improvement, new ways of working and professional learning. When a reform is introduced, however, does a professional act as an ever-moving machine--a "perpetuum mobile"--always learning with full energy? In this article, I ask the following:…

  5. Multichannel Luminescence Properties of Mixed-Valent Eu2+/Eu3+ Coactivated SrAl3BO7 Nanocrystalline Phosphors for Near-UV LEDs.

    PubMed

    Liu, Xiaoming; Xie, Weijie; Lü, Ying; Feng, Jingchun; Tang, Xinghua; Lin, Jun; Dai, Yuhua; Xie, Yu; Yan, Liushui

    2017-11-20

    Up to now, orchestrating the coexistence of Eu 2+ and Eu 3+ activators in a single host lattice has been an extremely difficult task, especially for the appearance of the characteristic emission of Eu 2+ and Eu 3+ in order to generate white light. Nevertheless, here we demonstrate a new Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphor with abundant and excellent multichannel luminescence properties. A series of Eu 2+ /Eu 3+ coactivated SrAl 3 BO 7 nanocrystalline phosphors were prepared through a Pechini-type sol-gel method followed by a reduction process. With excitation of UV/NUV light, the prepared SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphors show not only the characteristic f-f transitions of Eu 3+ ion ( 5 D J → 7 F J,J' , J, J' = 0-3), but also the 5d → 4f transitions of Eu 2+ ion with comparable intensity from 400 to 700 nm in the whole visible spectral region. The luminescence color of the SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor can be tuned from blue, blue-green, white, and orange to orange-red by changing the excitation wavelength, the overall doping concentration of europium ions (Eu 2+ , Eu 3+ ), and the relative ratio of Eu 2+ to Eu 3+ ions to some extent. A single-phase white-light emission has been realized in SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor. The obtained SrAl 3 BO 7 :Eu 2+ ,Eu 3+ phosphor has potential application in the area of NUV white-light-emitting diodes.

  6. Using Eu(3+) as an atomic probe to investigate the local environment in LaPO4-GdPO4 monazite end-members.

    PubMed

    Huittinen, Nina; Arinicheva, Yulia; Schmidt, Moritz; Neumeier, Stefan; Stumpf, Thorsten

    2016-12-01

    In the present study, we have investigated the luminescent properties of Eu(3+) as a dopant in a series of synthetic lanthanide phosphates from the monazite group. Systematic trends in the spectroscopic properties of Eu(3+) depending on the size of the host cation and the dopant to ligand distance have been observed. Our results show that the increasing match between host and dopant radii when going from Eu(3+)-doped LaPO4 toward the smaller GdPO4 monazite decreases both the full width at half maximum of the Eu(3+) excitation peak, as well as the (7)F2/(7)F1 emission band intensity ratio. The decreasing Ln⋯O bond distance within the LnPO4 series causes a systematic bathochromic shift of the Eu(3+) excitation peak, showing a linear dependence of both the host cation size and the Ln⋯O distance. The linear relationship can be used to predict the energy band gap for Eu(3+)-doped monazites for which no Eu(3+) luminescent data is available. Finally, mechanisms for metal-metal energy transfer between host and dopant lanthanides have been explored based on recorded luminescence lifetime data. Luminescence lifetime data for Eu(3+) incorporated in the various monazite hosts clearly indicated that the energy band gap between the guest ion emission transition and the host ion absorption transition can be correlated to the degree of quenching observed in these materials with otherwise identical geometries and chemistries. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Social reform versus education reform: university nursing education in Canada, 1919-1960.

    PubMed

    Baumgart, A J; Kirkwood, R

    1990-05-01

    Nurses' struggle to attain educational parity with other professional groups is closely aligned with the struggle of women for social equality within Canadian institutions. The attempts of nursing educators to shift their perspective from social reform to educational reform and to develop nursing scholarship has been restricted by the cultural views of women. Consequently, nurses' gains in attaining higher education have been realized by reforms in social and health care policies thought suitable for women. With advancement in university nursing education closely tied to social reform, nurses were not expected, nor did they expect, to pursue scholarly enquiry or develop research endeavours. This paper suggests that the feminist movement offers nurses a social and psychological basis from which to complete the educational reform of nursing.

  8. Fabrication of Eu doped CdO [Al/Eu-nCdO/p-Si/Al] photodiodes by perfume atomizer based spray technique for opto-electronic applications

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Ganesh, V.; Shkir, Mohd; Chandramohan, R.; Arun Kumar, K. Deva; Valanarasu, S.; Kathalingam, A.; AlFaify, S.

    2018-05-01

    In this study, thin films of cadmium oxide (CdO) with different concentrations (0, 1, 3, and 5 wt%) of Eu doping were deposited onto Si and glass substrates by a novel and facile spray technique using simple perfume atomizer for the first time. Prepared films were characterized for structural, morphological, optical properties and the photo diode studies, using X-ray diffraction, scanning electron microscope, UV-Vis spectrophotometer, Isbnd V characteristics, and fundamental parameters are reported. All the prepared Eu:CdO films exhibit cubic structure. The preferential orientation is along (200) plane. Scanning electron microscopy study indicates the growth of smooth and pin-hole free films with clusters of homogeneous grains. The values of band gap energy are found to be varying from 2.42 to 2.33 eV for various Eu doping concentration from 0 to 5 wt%. EDAX studies revealed the presence of Eu, Cd and O elements without any other impurities. FTIR spectra showed a peak at 575 cm-1 confirming the stretching mode of Cdsbnd O. The resistivity (ρ), high carrier concentration (n) and carrier mobility (μ) for 3 wt% CdO thin film are found to be 0.452 × 10-3(Ω.cm), 17.82 × 1020 cm-3 and 7.757 cm2/V, respectively. Current-voltage measurements on the fabricated nanostructured Al/Eu-nCdO/p-Si/Al heterojunction device showed a non-linear electric characteristics indicating diode like behaviour.

  9. Optical third harmonic generation in the magnetic semiconductor EuSe

    NASA Astrophysics Data System (ADS)

    Lafrentz, M.; Brunne, D.; Kaminski, B.; Pavlov, V. V.; Pisarev, R. V.; Henriques, A. B.; Yakovlev, D. R.; Springholz, G.; Bauer, G.; Bayer, M.

    2012-01-01

    Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is a magnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4f7 to 4f65d1 bands, namely involving 5d(t2g) and 5d(eg) states.

  10. Europium gallium garnet (Eu3Ga5O12) and Eu3GaO6: Synthesis and material properties

    NASA Astrophysics Data System (ADS)

    Sawada, Kenji; Nakamura, Toshihiro; Adachi, Sadao

    2016-10-01

    Eu-Ga-O ternary compounds were synthesized from a mixture of cubic (c-) Eu2O3 and monoclinic Ga2O3 (β-Ga2O3) raw powders using the solid-state reaction method by calcination at Tc = 1200 °C. The structural and optical properties of the Eu-Ga-O ternary compounds were investigated using X-ray diffraction analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and Raman scattering measurements. Stoichiometric compounds such as cubic Eu3Ga5O12 (EGG) and orthorhombic Eu3GaO6 were synthesized using molar ratios of x = 0.375 and 0.75 [x≡Eu2O3/(Eu2O3 + Ga2O3)], respectively, together with the end-point binary compounds β-Ga2O3 (x = 0) and monoclinic (m-) Eu2O3 (x = 1.0). The structural change from "cubic" to "monoclinic" in Eu2O3 is due to the structural phase transition occurring at Tc ≥ 1050 °C. In principle, the perovskite-type EuGaO3 and monoclinic Eu4Ga2O9 can also be synthesized at x = 0.5 and 0.667, respectively; however, such stoichiometric compounds could not be synthesized in this study. The PL and PLE properties of EGG and Eu3GaO6 were studied in detail. The temperature dependence of the PL spectra was observed through measurements carried out between T = 20 and 300 K and explained using a newly developed model. Raman scattering measurements were also performed on the Eu-Ga-O ternary systems over the entire composition range from x = 0 (β-Ga2O3) to 1.0 (m-Eu2O3).

  11. Growth of EuO Single Crystals at Reduced Temperatures

    NASA Astrophysics Data System (ADS)

    Besara, Tiglet; Ramirez, Daniel; Whalen, Jeffrey; Siegrist, Theo

    Single crystals of Eu1-xBaxO have been grown in a barium-magnesium flux at moderate temperatures up to 1000°C, producing single crystals with barium doping levels ranging from x = 0 . 03 to x = 0 . 25 . Magnetic measurements show that the ferromagnetic Curie temperature TC correlates with the Ba doping levels, and a modified Heisenberg model is employed to describe the TC dependence on the stoichiometry. The decrease in TC is dominated by the Ba substitution on the Eu lattice with a small contribution arising from the lattice strain. Extrapolation of results indicates that a sample at x = 0 . 72 should have a TC = 0 K, potentially producing a quantum phase transition in this material. DOE SC-0008832, NSF DMR-1157490. This work was supported by the Department of Energy, Office of Basic Science, under contract DOE SC-0008832. This work has been performed at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Cooperative Agreement DMR-1157490, the State of Florida, and the U.S. Department of Energy.

  12. Tunable-color luminescence via energy transfer in NaCa13/18Mg5/18PO4:A (A = Eu2+/Tb3+/Mn2+, Dy3+) phosphors for solid state lighting.

    PubMed

    Li, Kai; Fan, Jian; Mi, Xiaoyun; Zhang, Yang; Lian, Hongzhou; Shang, Mengmeng; Lin, Jun

    2014-11-17

    A series of NaCa13/18Mg5/18PO4(NCMPO):A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) phosphors have been prepared by the high-temperature solid-state reaction method. The X-ray diffraction (XRD) and Rietveld refinement, X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), cathodoluminescence (CL), decay lifetimes, and PL quantum yields (QYs) were utilized to characterize the phosphors. The pure crystalline phase of as-prepared samples has been demonstrated via XRD measurement and Rietveld refinements. XPS reveals that the Eu(2+)/Tb(3+)/Mn(2+) can be efficiently doped into the crystal lattice. NCMPO:Eu(2+)/Tb(3+)/Mn(2+) phosphors can be effectively excited under UV radiation, which show tunable color from purple-blue to red including white emission based on energy transfer from Eu(2+) to Tb(3+)/Mn(2+) ions. Under low-voltage electron beam bombardment, the NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) display their, respectively, characteristic emissions with different colors, and the CL spectrum of NCMPO:0.04Tb(3+) has the comparable intensity to the ZnO:Zn commercial product. In addition, the calculated CIE coordinate of NCMPO:0.04Tb(3+) (0.252, 0.432) is more saturated than it (0.195, 0.417). These results reveal that NCMPO:A (A = Eu(2+)/Tb(3+)/Mn(2+), Dy(3+)) may be potential candidate phosphors for WLEDs and FEDs.

  13. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    NASA Astrophysics Data System (ADS)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  14. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.

    PubMed

    Cortright, R D; Davda, R R; Dumesic, J A

    2002-08-29

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  15. Fluorescence and room temperature activity of Y₂O₃:(Eu³⁺,Au³⁺)/palygorskite nanocomposite.

    PubMed

    He, Xi; Yang, Huaming

    2015-01-28

    The fluorescence and room temperature activity of a palygorskite supported Y2O3:(Eu(3+),Au(3+)) nanocomposite were investigated to design a fluorescence-indicated catalyst. The effects of Au(3+) doping on the structure and surface properties of the host material were systematically characterized. The fluorescence intensity of Y2O3:Eu(3+) was affected by Au(3+) doping, which was related to the crystallinity of Y2O3. Excess Au(3+) ions were segregated to the host surface and reduced to metallic Au. The local symmetry of Eu(3+) was reduced by Au(3+) doping, which benefited the energy transfer between Eu(3+) and Au(3+). Energy absorbed by Eu(3+) was transferred from Au(3+) to metallic Au, where electrons were produced. These electrons were absorbed by O2 to change into O2(-), which acted as the oxidant for ortho-dichlorobenzene (o-DCB). The variation of fluorescence intensity during the catalytic reaction was observed. The room temperature catalytic activity of the nanocomposite under UV irradiation was revealed. The as-synthesized nanocomposite might have potential applications in environmental fields.

  16. Reforming process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitsche, R.T.; Pope, G.N.

    A process for reforming a naphtha feedstock is disclosed. The reforming process is effected at reforming conditions in contact with a catalyst comprising a platinum group metal component and a group iv-a metal component composited with an alumina support wherein said support is prepared by admixing an alpha alumina monohydrate with an aqueous ammoniacal solution having a ph of at least about 7.5 to form a stable suspension. A salt of a strong acid, e.g., aluminum nitrate, is commingled with the suspension to form an extrudable paste or dough. On extrusion, the extrudate is dried and calcined to form saidmore » alumina support.« less

  17. Remarkably Enhancing Green-Excitation Efficiency for Solar Energy Utilization: Red Phosphors Ba2ZnS3:Eu2+, X- Co-Doped Halide Ions (X = Cl, Br, I).

    PubMed

    Luo, Tingting; Du, Yun; Qiu, Zhongxian; Li, Yanmei; Wang, Xiaofang; Zhou, Wenli; Zhang, Jilin; Yu, Liping; Lian, Shixun

    2017-05-15

    Eu 2+ -activated Ba 2 ZnS 3 has been reported as a red phosphor with a broad emission band peaking at 650 nm under blue excitation for white-LED. In this study, Ba 2 ZnS 3 :Eu 2+ , X - (X = F, Cl, Br, I) phosphors doped with halide ions were prepared by traditional high-temperature solid-state reaction. Phase identification of powders was performed by X-ray powder diffraction analysis, confirming the existence of single-phase Ba 2 ZnS 3 crystals without dopant. The corresponding excitation spectra showed an additional broad band in the green region peaking at 550 nm when the phosphor was halogenated except by the smallest F - . It was proved that the green-excitation efficiency successively strengthened from Cl - , to Br - , to I - , which suggested larger halide ions made a greater contribution to the further splitting of the t 2g energy level of the doped Eu 2+ ions in the host Ba 2 ZnS 3 , and the optimized formula Ba 1.995 ZnS 2.82 :Eu 2+ 0.005 , I - 0.18 showed a potential application in solar spectral conversion for agricultural greenhouse and solar cell. Defect chemistry theory and crystal field theory provided insights into the key role of halide ions in enhancing green-excitation efficiency.

  18. Synthesis and photoluminescence study in Eu3+:Y2WO6 phosphors

    NASA Astrophysics Data System (ADS)

    Sonali, Mondal, Manisha; Rai, Vineet Kumar

    2018-05-01

    Eu3+ doped Y2WO6 phosphors were synthesized by solid state reaction method. The photoluminescence properties of the Eu3+:Y2WO6 phosphors were studied for different concentration of Eu3+ ions. The luminescence intensity is found maximum at 0.3 mol% of Eu3+ ions. The excitation spectra monitored at ˜617 nm lies in the 220 - 350 nm region occurs due to charge transfer state (CTS) band of the europium-oxygen interactions, which is caused by an electron transfer from oxygen 2p orbital to an empty 4f shell of europium ions. The phosphors effectively excited by ˜393 nm near-ultraviolet (NUV) light gives efficient red emission band (˜ 617 nm) corresponding to 5D0 → 7F2 transition. The concentration dependence photoluminescence study and the mechanisms behind the photoluminescence properties have been explored with the help of suitable energy level diagram. Moreover, the CIE colour coordinate lie in the near white region so the prepared phosphors can be suitably use in making visible downconverter and in making visible light display devices.

  19. The impact of the EU Directive on patients' rights and cross border health care in Malta.

    PubMed

    Azzopardi-Muscat, Natasha; Aluttis, Christoph; Sorensen, Kristine; Pace, Roderick; Brand, Helmut

    2015-10-01

    The patients' rights and cross-border health care directive was implemented in Malta in 2013. Malta's transposition of the directive used the discretionary elements allowable to retain national control on cross-border care to the fullest extent. This paper seeks to analyse the underlying dynamics of this directive on the Maltese health care system through the lens of key health system stakeholders. Thirty-three interviews were conducted. Qualitative content analysis of the interviews reveals six key themes: fear from the potential impact of increased patient mobility, strategies employed for damage control, opportunities exploited for health system reform, moderate enhancement of patients' rights, negligible additional patient mobility and unforeseen health system reforms. The findings indicate that local stakeholders expected the directive to have significant negative effects and adopted measures to minimise these effects. In practice the directive has not affected patient mobility in Malta in the first months following its implementation. Government appears to have instrumentalised the implementation of the directive to implement certain reforms including legislation on patients' rights, a health benefits package and compulsory indemnity insurance. Whilst the Maltese geo-demographic situation precludes automatic generalisation of the conclusions from this case study to other Member States, the findings serve to advance our understanding of the mechanisms through which European legislation on health services is influencing health systems, particularly in small EU Member States. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. High Efficiency Solar-based Catalytic Structure for CO 2 Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menkara, Hisham

    Throughout this project, we developed and optimized various photocatalyst structures for CO 2 reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO 2 reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solutionmore » containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO 2 into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).« less

  1. Photoluminescence characteristics of Eu2O3 doped calcium fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Krishnapuram, Pavani; Jakka, Suresh Kumar; Thummala, Chengaiah; Lalapeta, Rama Moorthy

    2012-11-01

    The present work reports the preparation and characterization of calcium fluoroborate (CFB) glasses doped with different concentrations of Eu2O3. The spectroscopic free-ion parameters are evaluated from the experimentally observed energy levels of Eu3+ ions in CFB glasses by using the free-ion Hamiltonian model (HFI). The phenomenological Judd-Ofelt (J-O) parameters, Ω2, Ω4 and Ω6, are evaluated from the intensities of Eu3+ ion absorption bands by various constraints. From these J-O parameters (Ωλ), the radiative parameters such as transition probabilities (AR), branching ratios (βR), stimulated emission cross sections (σe) and radiative lifetimes (τR) are evaluated for 5D→7(4fASO+αL(L+1)+βG(G2)+γG(R7)+∑j=0,2,4 Mjmj+∑k=2,4,6 PKpK where Eavg includes the kinetic energy of the electrons and their interaction with the nucleus. It shifts only the barycentre of the whole 4fN configuration. Fk (k = 2, 4, 6) are free electron repulsion parameters, ξ4f is the spin-orbit coupling constant, α, β and γ are the three interaction parameters, Mj (j = 0, 2, 4) and Pk (k = 2, 4, 6) are magnetic interaction parameters. Among all the interactions, Fk and ξ4f are the main ones which give rise to the 2LJ levels. The rest only make corrections in the energies of these levels without removing their degeneracy. The parametric fits have been carried out as has been done in our earlier work [16]. The quality of the parametric fit is generally described in terms of the root mean square (rms) deviation, σrms between the experimental and calculated energies by the relation σrms=√{{∑}/{i=1N(Eiexp-Eical)2N}} where Eiexp and Eical are the experimental and calculated energies, respectively, for level 'i' and N denotes the total number of levels included in the energy level fit.

  2. Electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx investigated by laser photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Malaeb, Walid; Awad, Ramadan; Hibino, Taku; Kamihara, Yoichi; Kondo, Takeshi; Shin, Shik

    2018-05-01

    We have implemented laser photoemission spectroscopy (PES) to investigate the electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx (LaEu1111) which is an interesting compound in the "1111" family showing a high value of the superconducting (SC) transition temperature (Tc) due to Eu doping. At least two energy scales were observed from the PES data in the SC compound: One at ∼14 meV closing around Tc and thus corresponding to the SC gap. Another energy scale appears at ∼35 meV and survives at temperatures above Tc which represents the pseudogap (PG). The non-SC sample (La,Eu)FeAsO shows a PG at ∼ 41 meV. These observations in this new superconductor are consistent with the general trend followed by other compounds in the "1111" family.

  3. Educational Reform in Spain.

    ERIC Educational Resources Information Center

    Marchesi, Alvaro

    1992-01-01

    Reviews the Spanish educational system, focusing on reforms enacted in 1990. Discusses reform movement issues, including quality, curricular control, curricular homogeneity versus diversity, and influence of European context. Describes reform movement aims (i.e., extending basic education and modifying educational levels to improve quality) and…

  4. Atuarfitsialak: Greenland's Cultural Compatible Reform

    ERIC Educational Resources Information Center

    Wyatt, Tasha R.

    2012-01-01

    In 2002, Greenlandic reform leaders launched a comprehensive, nation-wide reform to create culturally compatible education. Greenland's reform work spans the entire educational system and includes preschool through higher education. To assist their efforts, reform leaders adopted the Standards for Effective Pedagogy developed at the Center for…

  5. Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy

    DOE PAGES

    Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.; ...

    2017-09-13

    In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny–Turner spectrometer within the wavelength range of 375–515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Finally, calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 andmore » 156 ppm, respectively.« less

  6. Measurement of Eu and Yb in aqueous solutions by underwater laser induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Chet R.; Jain, Jinesh C.; Goueguel, Christian L.

    In this paper, we report the use of laser induced breakdown spectroscopy (LIBS) to detect dissolved Eu and Yb in bulk aqueous solutions. Ten strong emission lines of Eu and one strong emission line of Yb were identified in the underwater LIBS spectra obtained by using Czerny–Turner spectrometer within the wavelength range of 375–515 nm. Temporal evolution of plasma and the effect of laser pulse energy on the spectral emission were studied. Finally, calibration curves using the concentration range from 500 to 10,000 ppm were developed and limits of detection for Eu and Yb were estimated to be 209 andmore » 156 ppm, respectively.« less

  7. Mandate-Based Health Reform and the Labor Market: Evidence from the Massachusetts Reform*

    PubMed Central

    Kolstad, Jonathan T.; Kowalski, Amanda E.

    2016-01-01

    We model the labor market impact of the key provisions of the national and Massachusetts “mandate-based” health reforms: individual mandates, employer mandates, and subsidies. We characterize the compensating differential for employer-sponsored health insurance (ESHI) and the welfare impact of reform in terms of “sufficient statistics.” We compare welfare under mandate-based reform to welfare in a counterfactual world where individuals do not value ESHI. Relying on the Massachusetts reform, we find that jobs with ESHI pay $2,812 less annually, somewhat less than the cost of ESHI to employers. Accordingly, the deadweight loss of mandate-based health reform was approximately 8 percent of its potential size. PMID:27037897

  8. Synthesis, characterization and luminescent properties of mixed phase bismuth molybdate-doped with Eu3+ ions

    NASA Astrophysics Data System (ADS)

    Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang

    2018-02-01

    Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.

  9. Designing effective power sector reform: A road map for the republic of Georgia

    NASA Astrophysics Data System (ADS)

    Kurdgelashvili, Lado

    to those in economies of transition. The dissertation provides a guide for policy makers in the energy sector for implementing power sector reform. At first the dissertation offers a general overview of different models of power sector organization, regulatory frameworks and market arrangements, and the potential impact of reform on social welfare. This knowledge is then applied for analysis of power sector reform in the Republic of Georgia. Social welfare analysis (SWA) is a major analytical tool used in the research for assessing the potential impacts of different power sector organization models on various stakeholders. Through the research it was identified that power industry arrangements in different countries have their particularities; however, after some level of simplification, power sector organization models can fit into one of three broad categories: (1) Government control and regulation of generation and retail segments of the power industry. (2) Full scale competition in the generation segment and retail choice. (3) Partial government control of the generation segment and limited retail choice. For SWA of different power market arrangement scenarios, electricity supply and demand curves had to be derived; for this purpose electricity demand forecasting and power supply evaluation methodologies were developed. This dissertation combines SWA, accepted demand forecasting methods and established power supply evaluation techniques to assess power sector performance under specified policy scenarios relevant to the circumstances of economies in transition such as the Republic of Georgia. Detailed analyses are performed for understanding possible outcomes with the introduction of different reform models. In addition, specific options for incorporating sustainable energy alternatives in the energy planning process are identified and assessed in economic, environmental and social terms. Special attention is given to market-based instruments for promoting

  10. Education Reforms: Lessons from History

    ERIC Educational Resources Information Center

    Hunt, Thomas C.

    2005-01-01

    Policy makers in education have long embraced reform. Unfortunately, education reforms have consistently been plagued by the reformers' lack of knowledge and appreciation of the history of education. Accordingly, the latest reform, touted as a panacea, meets with failure, and the search for the magic elixir begins anew. The ahistorical nature of…

  11. Enhanced moments of Eu in single crystals of the metallic helical antiferromagnet EuCo2 -yAs2

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Anand, V. K.; Cuervo-Reyes, Eduardo; Smetana, V.; Mudring, A.-V.; Johnston, D. C.

    2018-04-01

    The compound EuCo2 -yAs2 with the tetragonal ThCr2Si2 structure is known to contain Eu+2 ions with spin S =7/2 that order below a temperature TN≈47 K into an antiferromagnetic (AFM) proper helical structure with the ordered moments aligned in the tetragonal a b plane, perpendicular to the helix axis along the c axis, with no contribution from the Co atoms. Here we carry out a detailed investigation of the properties of single crystals. We consistently find about 5% vacancies on the Co site from energy-dispersive x-ray analysis and x-ray diffraction refinements. Enhanced ordered and effective moments of the Eu spins are found in most of our crystals. Electronic structure calculations indicate that the enhanced moments arise from polarization of the d bands, as occurs in ferromagnetic Gd metal. Electrical resistivity measurements indicate metallic behavior. The low-field in-plane magnetic susceptibilities χa b(T Eu-Eu exchange interactions Ji j are extracted from the fits. High-field magnetization M data for magnetic fields H ∥a b reveal what appears to be a first-order spin-flop transition followed at higher field by a second-order metamagnetic transition of unknown origin, and then by another second-order transition to the paramagnetic (PM) state. For H ∥c , the magnetization shows only a second-order transition from the canted AFM to the PM state, as expected. The critical fields for the AFM to PM transition are in approximate agreement with the predictions of MFT. Heat capacity Cp measurements in zero and high H are reported. Phase diagrams for H ∥c and H ∥a b versus T are constructed from the high-field M (H ,T ) and Cp(H ,T ) measurements. The magnetic part Cmag(T ,H =0 ) of Cp(T ,H =0 ) is extracted and is fitted rather well below TN by MFT, although dynamic short-range AFM order is apparent in Cmag(T ) up to about 70 K, where the molar

  12. Varying Eu2+ magnetic order by chemical pressure in EuFe2(As1-xPx)2

    NASA Astrophysics Data System (ADS)

    Zapf, S.; Wu, D.; Bogani, L.; Jeevan, H. S.; Gegenwart, P.; Dressel, M.

    2011-10-01

    Based on low-field magnetization measurements on a series of single crystals, we present a scheme of the Eu2+ spin alignment in EuFe2(As1-xPx)2. We explain observations of the Eu2+ ordering previously reported, reconciling different existing phase diagrams. The magnetic moments of the Eu2+ ions are slightly canted, yielding a ferromagnetic contribution along the c direction that becomes stronger with pressure, until superconductivity sets in. The spin-density wave as well as the superconducting phase coexist with an antiferromagnetic interlayer coupling of the canted spins. Reducing the interlayer distance finally leads to a ferromagnetic Eu2+ interlayer coupling and to the suppression of superconductivity.

  13. Influence of Tl+ activator ions on the luminescence characteristics of KCl0.5Br0.5:Eu2+ powder phosphors.

    PubMed

    Nagarajan, S; Sudarkodi, R

    2009-01-01

    Photoluminescence (PL) of thallium co-doped with KCl0.5Br0.5:Eu2+ powder phosphors display emission bands at 320 and 370 nm attributable to centres involving Tl+ ions in addition to characteristic Eu2+ emission around 420 nm. Additional PL excitation and emission bandS observed around 260 and 380 nm, respectively, were observed in the double-doped KCl0.5Br0.5:Eu2+, Tl+ powder phosphors and are attributed to complex centres involving Tl+ and Eu2+ ions. The enhancement observed in the intensity of Eu2+ emission around 420 nm with the addition of TlBr in KCl0.5Br0.5:Eu2+ powder phosphors is attributed to the energy transfer from Tl+ --> Eu2+ ions. Photostimulated luminescence (PSL) studies of gamma-irradiated KCl0.5Br0.5:Eu2+, Tl+ mixed phosphors are reported and a tentative PSL mechanism in the phosphors has been suggested.

  14. Measuring Reform Practices in Science and Mathematics Classrooms: The Reformed Teaching Observation Protocol.

    ERIC Educational Resources Information Center

    Sawada, Daiyo; Piburn, Michael D.; Judson, Eugene; Turley, Jeff; Falconer, Kathleen; Benford, Russell; Bloom, Irene

    2002-01-01

    Describes the Reformed Teaching Observation Protocol (RTOP), a 25-item classroom observation protocol that is standards-based, inquiry-oriented, and student-centered. Provides the definition for reform and the basis for evaluation of the Arizona Collaborative for Excellence in the Preparation of Teachers (ACEPT). Concludes that reform, as defined…

  15. Synthesis, luminescence, and energy-transfer properties of β-Na2Ca4(PO4)2(SiO4):A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors.

    PubMed

    Li, Kai; Shang, Mengmeng; Geng, Dongling; Lian, Hongzhou; Zhang, Yang; Fan, Jian; Lin, Jun

    2014-07-07

    A series of β-Na2Ca4(PO4)2(SiO4) (β-NCPS):A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors were prepared via a high-temperature solid-state reaction route. The X-ray diffraction, Fourier transform infrared, photoluminescence (PL), cathodoluminescence (CL) properties, fluorescent lifetimes, and absolute quantum yield were exploited to characterize the samples. Under UV radiation, the β-NCPS:Eu(2+) phosphors present bright green emissions, and the β-NCPS:Ce(3+) phosphors show strong blue emissions, which are attributed to their 4f(6)5d(1) → 4f(7) and 5d-4f allowed transitions, respectively. The β-NCPS:Ce(3+), Tb(3+) phosphors display intense tunable color from blue to green and high absolute quantum yields (81% for β-NCPS:0.12Ce(3+) and 83% for β-NCPS:0.12Ce(3+), 0.08Tb(3+)) when excited at 365 nm. Simultaneously, the energy transfer from Ce(3+) to Tb(3+) ions is deduced from the spectral overlap between Ce(3+) emission and Tb(3+) excitation spectra and demonstrated by the change of emission spectra and decay lifetimes. Moreover, the energy-transfer mechanism from Ce(3+) to Tb(3+) ions is confirmed to be exchange interaction according to the discussion of expression from Dexter and Reisfeld. Under a low-voltage electron-beam excitation, the β-NCPS:A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors exhibit their characteristic emissions, and the emission profiles of β-NCPS:Ce(3+),Tb(3+) phosphors are obviously different from those of the PL spectra; this difference might be ascribed to their different luminescence mechanisms. These results in PL and CL properties suggest that β-NCPS:A (A = Eu(2+), Dy(3+), Ce(3+)/Tb(3+)) phosphors are potential candidates for solid-state lighting and field-emission displays.

  16. Room temperature enhanced red emission from novel Eu(3+) doped ZnO nanocrystals uniformly dispersed in nanofibers.

    PubMed

    Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Wang, Qi Jie; Xie, Erqing

    2011-10-14

    Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu(3+) doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu(3+) is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu(3+) doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu(3+) doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.

  17. Implementation of the Energy Efficiency Directive: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Zīgurs, A.; Sarma, U.

    2015-12-01

    Discussions in Latvia are ongoing regarding the optimum solution to implementing Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC (Directive 2012/27/EU). Without a doubt, increased energy efficiency contributes significantly to energy supply security, competitive performance, increased quality of life, reduced energy dependence and greenhouse gas (GHG) emissions. However, Directive 2012/27/EU should be implemented with careful planning, evaluating every aspect of the process. This study analyses a scenario, where a significant fraction of target energy efficiency is achieved by obliging energy utilities to implement user-end energy efficiency measures. With implementation of this scheme towards energy end-use savings, user payments for energy should be reduced; on the other hand, these measures will require considerable investment. The energy efficiency obligation scheme stipulates that these investments must be paid by energy utilities; however, they will actually be covered by users, because the source of energy utilities' income is user payments for energy. Thus, expenses on such measures will be included in energy prices and service tariffs. The authors analyse the ways to achieve a balance between user gains from energy end-use savings and increased energy prices and tariffs as a result of obligations imposed upon energy utilities. Similarly, the suitability of the current regulatory regime for effective implementation of Directive 2012/27/EU is analysed in the energy supply sectors, where supply tariffs are regulated.

  18. Defect Engineering by Codoping in KCaI3 :Eu2 + Single-Crystalline Scintillators

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Li, Qi; Jones, Steven; Dun, Chaochao; Hu, Sheng; Zhuravleva, Mariya; Lindsey, Adam C.; Stand, Luis; Loyd, Matthew; Koschan, Merry; Auxier, John; Hall, Howard L.; Melcher, Charles L.

    2017-09-01

    Eu2 + -doped alkali or alkali earth iodide scintillators with energy resolutions ≤3 % at 662 keV promise the excellent discrimination ability for radioactive isotopes required for homeland-security and nuclear-nonproliferation applications. To extend their applications to x-ray imaging, such as computed tomography scans, the intense afterglow which delays the response time of such materials is an obstacle that needs to be overcome. However, a clear understanding of the origin of the afterglow and feasible solutions is still lacking. In this work, we present a combined experimental and theoretical investigation of the physical insights of codoping-based defect engineering which can reduce the afterglow effectively in KCaI3:Eu2 + single-crystal scintillators. We illustrate that Sc3 + codoping greatly suppresses the afterglow, whereas Y3 + , Gd3 + , or La3 + codoping enhances the afterglow. Meanwhile, a light yield of 57 000 photons / MeV and an energy resolution of 3.4% at 662 keV can be maintained with the appropriate concentration of Sc3 + codoping, which makes the material promising for medical-imaging applications. Through our thermoluminescence techniques and density-functional-theory calculations, we are able to identify the defect structures and understand the mechanism by which codoping affects the scintillation performance of KCaI3:Eu2 + crystals. The proposed defect-engineering strategy is further validated by achieving afterglow suppression in Mg2 + codoped KCaI3:Eu2 + single crystals.

  19. Big Data in medical research and EU data protection law: challenges to the consent or anonymise approach.

    PubMed

    Mostert, Menno; Bredenoord, Annelien L; Biesaart, Monique C I H; van Delden, Johannes J M

    2016-07-01

    Medical research is increasingly becoming data-intensive; sensitive data are being re-used, linked and analysed on an unprecedented scale. The current EU data protection law reform has led to an intense debate about its potential effect on this processing of data in medical research. To contribute to this evolving debate, this paper reviews how the dominant 'consent or anonymise approach' is challenged in a data-intensive medical research context, and discusses possible ways forwards within the EU legal framework on data protection. A large part of the debate in literature focuses on the acceptability of adapting consent or anonymisation mechanisms to overcome the challenges within these approaches. We however believe that the search for ways forward within the consent or anonymise paradigm will become increasingly difficult. Therefore, we underline the necessity of an appropriate research exemption from consent for the use of sensitive personal data in medical research to take account of all legitimate interests. The appropriate conditions of such a research exemption are however subject to debate, and we expect that there will be minimal harmonisation of these conditions in the forthcoming EU Data Protection Regulation. Further deliberation is required to determine when a shift away from consent as a legal basis is necessary and proportional in a data-intensive medical research context, and what safeguards should be put in place when such a research exemption from consent is provided.

  20. Big Data in medical research and EU data protection law: challenges to the consent or anonymise approach

    PubMed Central

    Mostert, Menno; Bredenoord, Annelien L; Biesaart, Monique C I H; van Delden, Johannes J M

    2016-01-01

    Medical research is increasingly becoming data-intensive; sensitive data are being re-used, linked and analysed on an unprecedented scale. The current EU data protection law reform has led to an intense debate about its potential effect on this processing of data in medical research. To contribute to this evolving debate, this paper reviews how the dominant ‘consent or anonymise approach' is challenged in a data-intensive medical research context, and discusses possible ways forwards within the EU legal framework on data protection. A large part of the debate in literature focuses on the acceptability of adapting consent or anonymisation mechanisms to overcome the challenges within these approaches. We however believe that the search for ways forward within the consent or anonymise paradigm will become increasingly difficult. Therefore, we underline the necessity of an appropriate research exemption from consent for the use of sensitive personal data in medical research to take account of all legitimate interests. The appropriate conditions of such a research exemption are however subject to debate, and we expect that there will be minimal harmonisation of these conditions in the forthcoming EU Data Protection Regulation. Further deliberation is required to determine when a shift away from consent as a legal basis is necessary and proportional in a data-intensive medical research context, and what safeguards should be put in place when such a research exemption from consent is provided. PMID:26554881

  1. Professionally responsible malpractice reform.

    PubMed

    Brody, Howard; Hermer, Laura D

    2011-07-01

    Medical malpractice reform is both necessary and desirable, yet certain types of reform are clearly preferable to others. We argue that "traditional" tort reform remedies such as stringent damage caps not only fail to address the root causes of negligence and the adverse effects that fear of suit can have on physicians, but also fail to address the needs of patients. Physicians ought to view themselves as professionals who are dedicated to putting patients' interests ahead of their own. Professionally responsible malpractice reform should therefore be at least as patient-centered as it is physician-centered. Examples of more professionally responsible malpractice reform exist where institutions take a pro-active approach to identification, investigation, and remediation of possible malpractice. Such programs should be implemented more generally, and state laws enacted to facilitate them.

  2. Secondary School Reform and Technology Planning: Lessons Learned from a Ten Year School Reform Initiative

    ERIC Educational Resources Information Center

    Bain, Alan

    2004-01-01

    The lessons learned from a decade long, site based school reform project are used to examine the relationship between technology integration and school reform. The nature of the reforms will be described along with implications and conclusions for technology planning. Six key school reform takeaways will be shared that are necessary to build a…

  3. Reforming Reforms: Changing Incentives in Education Finance in Vermont

    ERIC Educational Resources Information Center

    Schmidt, Stephen J.; Scott, Karen

    2006-01-01

    In 1997, Vermont passed Act 60, which reformed its education finance system to achieve greater equality of spending. The reform encouraged wealthy towns to reduce spending; it was politically unpopular and was replaced, in 2004, by Act 68. We analyze the spending incentives created by the two acts and estimate the effects the change will have on…

  4. Turkish Influence in the South Caucasus and Levant: The Consequences for NATO and the EU

    DTIC Science & Technology

    2013-09-01

    and Contemporary Context: “Frozen Conflicts” And Caspian Energy ..........................................................................22  2...by the waning fortunes of the western allies in their variety and complexity. Washington is shifting strategic resources and political energy to the...East energy .2 In both NATO and EU strategic documents energy is defined as an important element in European security. NATO’s Strategic Concept 2010

  5. TL and PL studies on cubic fluoroperovskite single crystal (KMgF3: Eu2+, Ce3+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Annalakshmi, O.; Ramasamy, P.

    2014-04-01

    The perovskite-like KMgF3 polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF3 and CeF3) Co-doped KMgF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF3 samples doped with Eu2+ and Ce3+ have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu2+ at 360 nm attributed to the f → f transition (6P7/2→8S7/2) could only be observed due to the energy transfer from Ce3+ to Eu2+.

  6. Evolution of Eu valence and superconductivity in layered Eu0.5La0.5FBiS2 -xSex system

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Y.; Paris, E.; Wakita, T.; Jinno, G.; Puri, A.; Terashima, K.; Joseph, B.; Miura, O.; Yokoya, T.; Saini, N. L.

    2017-02-01

    We have studied the effect of Se substitution on Eu valence in a layered Eu0.5La0.5FBiS2 -xSex superconductor using a combined analysis of x-ray absorption near-edge structure (XANES) and x-ray photoelectron spectroscopy (XPS) measurements. Eu L3-edge XANES spectra reveal that Eu is in the mixed valence state with coexisting Eu2 + and Eu3 +. The average Eu valence decreases sharply from ˜2.3 for x =0.0 to ˜2.1 for x =0.4 . Consistently, Eu 3 d XPS shows a clear decrease in the average valence by Se substitution. Bi 4 f XPS indicates that effective charge carriers in the BiCh2 (Ch = S, Se) layers are slightly increased by Se substitution. On the basis of the present results it has been discussed that the metallic character induced by Se substitution in Eu0.5La0.5FBiS2 -xSex is likely to be due to increased in-plane orbital overlap driven by reduced in-plane disorder that affects the carrier mobility.

  7. Tidal Waves of School Reform: Types of Reforms, Government Controls, and Community Advocates.

    ERIC Educational Resources Information Center

    Mitchell, Samuel

    The more revolutionary, drastic education reform efforts are usually supported by new governmental legislation. This book offers three case studies of drastic reform carried out in Kentucky, Alberta, and Chicago. The reforms can be visualized in terms of how close they are to the alternative aims of expert guidance, social activism, and an…

  8. Introducing Eu{sup 2+} into yellow phosphor LiBaB{sub 9}O{sub 15}:Ce{sup 3+}, Dy{sup 3+} as blue emitting source to realize white emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting; Li, Panlai, E-mail: li_panlai@126.com; Fu, Nian, E-mail: funian3678@163.com

    A series of Dy{sup 3+}, Ce{sup 3+}/Dy{sup 3+}, Eu{sup 2+}/Dy{sup 3+} and Ce{sup 3+}/Eu{sup 2+}/Dy{sup 3+} doping LiBaB{sub 9}O{sub 15} (LBB) phosphors were synthesized via a high temperature solid-state method. LBB:Dy{sup 3+} cannot create light under ultraviolet radiation, however, LBB:Ce{sup 3+}, Dy{sup 3+} can produce yellow emission under 295 nm excitation. The energy transfer occurs from Ce{sup 3+} to Dy{sup 3+} ions via electric dipole-dipole interaction and the critical distance is estimated to be 21.15 Å based on concentration quenching model. Generally, Eu{sup 2+} ion is a sensitizer to Dy{sup 3+} ion, however, there is only the emission of Eu{supmore » 2+} in LBB:Eu{sup 2+}, Dy{sup 3+}, which means there is no energy transfer from Eu{sup 2+} to Dy{sup 3+} ions. Interestingly enough, when doping Eu{sup 2+} ion into LBB:Ce{sup 3+}, Dy{sup 3+}, white emission can be achieved by increase the blue (350–425 nm) emission intensity. The spectral property, quantum efficiency, CIE chromaticity coordinates and thermal quenching property of LBB:Ce{sup 3+}, Eu{sup 2+}, Dy{sup 3+} are investigated. The results indicate that LBB:Ce{sup 3+}, Eu{sup 2+}, Dy{sup 3+} may be a potential application to white light emitting diodes. - Graphical abstract: LBB:Ce{sup 3+}, Dy{sup 3+} can create white emission by doping Eu{sup 2+} ions. - Highlights: • LBB:Ce{sup 3+}, Dy{sup 3+} can produce white emission by doping Eu{sup 2+} ion. • There is no energy transfer from Eu{sup 2+} to Dy{sup 3+} ions. • Energy transfer occurs from Ce{sup 3+} to Dy{sup 3+} ions. • LBB:Ce{sup 3+}, Eu{sup 2+}, Dy{sup 3+} may be a potential application for white LEDs.« less

  9. Evaluation of thermodynamically favourable operating conditions for production of hydrogen in three different reforming technologies

    NASA Astrophysics Data System (ADS)

    Seo, Y.-S.; Shirley, A.; Kolaczkowski, S. T.

    With the aid of thermodynamic analysis using AspenPlus™, the characteristics of three different types of reforming process are investigated. These include: steam-methane reforming (SMR), partial oxidation (POX) and autothermal reforming (ATR). Thereby, favourable operating conditions are identified for each process. The optimum steam-to-carbon (S:C) ratio of the SMR reactor is found to be 1.9. The optimum air ratio of the POX reactor is 0.3 at a preheat temperature of 312 °C. The optimum air ratio and S:C ratio of the ATR reactor are 0.29 and 0.35, respectively at a preheat temperature of 400 °C. Simulated material and energy balances show that the CH 4 flow rates required to generate 1 mol s -1 of hydrogen are 0.364 mol s -1 for POX, 0.367 mol s -1 for ATR and 0.385 mol s -1 for the SMR. These results demonstrate that the POX reforming system has the lowest energy cost to produce the same amount of hydrogen from CH 4.

  10. Common morality and moral reform.

    PubMed

    Wallace, K A

    2009-01-01

    The idea of moral reform requires that morality be more than a description of what people do value, for there has to be some measure against which to assess progress. Otherwise, any change is not reform, but simply difference. Therefore, I discuss moral reform in relation to two prescriptive approaches to common morality, which I distinguish as the foundational and the pragmatic. A foundational approach to common morality (e.g., Bernard Gert's) suggests that there is no reform of morality, but of beliefs, values, customs, and practices so as to conform with an unchanging, foundational morality. If, however, there were revision in its foundation (e.g., in rationality), then reform in morality itself would be possible. On a pragmatic view, on the other hand, common morality is relative to human flourishing, and its justification consists in its effectiveness in promoting flourishing. Morality is dependent on what in fact does promote human flourishing and therefore, could be reformed. However, a pragmatic approach, which appears more open to the possibility of moral reform, would need a more robust account of norms by which reform is measured.

  11. Near-infrared luminescence from Y2O3:Eu3+, Yb3+ prepared by sol-gel method.

    PubMed

    Xie, Ying; Xiao, Lin J; Yan, Feng Q; Chen, Yong J; Li, Wen Z; Geng, Xiu J

    2014-06-01

    Eu3+ and Yb3+ codoped Y2O3 phosphors were synthesized by the sol-gel method. The phosphors possess absorption in the region of 300-550 nm, exhibiting an intense NIR emission of Yb3+ around 1000 nm, which is suitable for matching the maximum spectral response of c-Si solar cells. The optimum composition of Eu3+ and Yb3+ codoped Y2O3 was (Y1.94Yb0.04Eu0.02)2O3. It is observed that two-step energy transfer occurs from the 5D2 level of Eu3+ situated around (466 nm) exciting two neighboring Yb3+ ions to the 2F5/2 level (1000 nm). The down-conversion material based on Eu(3+)- Yb3+ couple may have great potential applications in c-Si solar cells to enhance their photovoltaic conversion efficiency via spectral modification.

  12. On the energy scale involved in the metal to insulator transition of quadruple perovskite EuCu3Fe4O12: infrared spectroscopy and ab-initio calculations.

    PubMed

    Brière, B; Kalinko, A; Yamada, I; Roy, P; Brubach, J B; Sopracase, R; Zaghrioui, M; Phuoc, V Ta

    2016-06-27

    Optical measurements were carried out by infrared spectroscopy on AA'3B4O12 A-site ordered quadruple perovskite EuCu3Fe4O12 (microscopic sample) as function of temperature. At 240 K (=TMI), EuCu3Fe4O12 undergoes a very abrupt metal to insulator transition, a paramagnetic to antiferromagnetic transition and an isostructural transformation with an abrupt large volume expansion. Above TMI, optical conductivity reveals a bad metal behavior and below TMI, an insulating phase with an optical gap of 125 meV is observed. As temperature is decreased, a large and abrupt spectral weight transfer toward an energy scale larger than 1 eV is detected. Concurrently, electronic structure calculations for both high and low temperature phases were compared to the optical conductivity results giving a precise pattern of the transition. Density of states and computed optical conductivity analysis identified Cu3dxy, Fe3d and O2p orbitals as principal actors of the spectral weight transfer. The present work constitutes a first step to shed light on EuCu3Fe4O12 electronic properties with optical measurements and ab-initio calculations.

  13. On the energy scale involved in the metal to insulator transition of quadruple perovskite EuCu3Fe4O12: infrared spectroscopy and ab-initio calculations

    PubMed Central

    Brière, B.; Kalinko, A.; Yamada, I.; Roy, P.; Brubach, J. B.; Sopracase, R.; Zaghrioui, M.; Phuoc, V. Ta

    2016-01-01

    Optical measurements were carried out by infrared spectroscopy on AA′3B4O12 A-site ordered quadruple perovskite EuCu3Fe4O12 (microscopic sample) as function of temperature. At 240 K (=TMI), EuCu3Fe4O12 undergoes a very abrupt metal to insulator transition, a paramagnetic to antiferromagnetic transition and an isostructural transformation with an abrupt large volume expansion. Above TMI, optical conductivity reveals a bad metal behavior and below TMI, an insulating phase with an optical gap of 125 meV is observed. As temperature is decreased, a large and abrupt spectral weight transfer toward an energy scale larger than 1 eV is detected. Concurrently, electronic structure calculations for both high and low temperature phases were compared to the optical conductivity results giving a precise pattern of the transition. Density of states and computed optical conductivity analysis identified Cu3dxy, Fe3d and O2p orbitals as principal actors of the spectral weight transfer. The present work constitutes a first step to shed light on EuCu3Fe4O12 electronic properties with optical measurements and ab-initio calculations. PMID:27346212

  14. Structure and physical properties of EuTa{sub 2}O{sub 6} tungsten bronze polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodiazhnyi, T., E-mail: kolodiazhnyi.taras@nims.go.jp; Sakurai, H.; Vasylkiv, O.

    A tetragonal tungsten bronze (TTB) polymorph of EuTa{sub 2}O{sub 6} was prepared and analyzed. EuTa{sub 2}O{sub 6} crystallizes in the centrosymmetric Pnam space group (with unit cell: a = 12.3693, b = 12.4254, and c = 7.7228 Å) isomorphous with orthorhombic β-SrTa{sub 2}O{sub 6}. In contrast to early reports, we see no evidence of deviation from paramagnetic Curie-Weiss behavior among the Eu{sup 2+} 4f{sup 7}spins in EuTa{sub 2}O{sub 6} down to 2 K. Dielectric constant shows a broad peak at ca. 50 K with dielectric dispersion resembling diffuse phase transition. The relaxation time, however, follows a simple (non-freezing) thermally activated process with an activation energy of 92 meV and anmore » attempt frequency of f{sub 0} = 5.79 × 10{sup 12 }Hz. A thermal conductivity of EuTa{sub 2}O{sub 6} shows a low-temperature (T ≈ 30 K) “plateau” region reminiscent of a glass-like behaviour in Nb-based TTB compounds. This behaviour can be attributed to the loosely bound Eu{sup 2+} ions occupying large tricapped trigonal prismatic sites in the EuTa{sub 2}O{sub 6} structure.« less

  15. Factors affecting science reform: Bridging the gap between reform initiatives and teaching practices

    NASA Astrophysics Data System (ADS)

    Pensak, Karl John

    In response to the perceived deficiencies in science education today, and to the expressed need for research into the culture of schools (due primarily to the failure of many science reforms in the past), this study used a broad based approach to study the gap between science education research and science education practice. This study identified 47 factors that may encourage or inhibit science curriculum reform. A survey was conducted to determine which factors were perceived to be important by local and national K-12 classroom teachers, science supervisors/coordinators, and college/university professors. Continual staff development (scheduled as part of teachers' work day/week/month), funding (for long-term staff development, teacher training and support, science laboratory facilities and materials), teacher motivation and "ownership" of the reform, the need for collaborative opportunities for classroom teachers, teachers' college preparation, textbook reform, community support, and reform initiatives that are "in tune" with assessment, are major factors identified as having a substantial affect on the successful adoption, implementation, and institutionalization of science reforms.

  16. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  17. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. On the origin of temperature dependence of the emission maxima of Eu2+and Ce3+- activated phosphors

    NASA Astrophysics Data System (ADS)

    Yan, Shirun

    2018-05-01

    In this paper, temperature dependence of the emission maxima of Eu2+ and Ce3+-activated phosphors and various explanations for the thermal red-shift or blue-shift proposed by different authors are reviewed. Depending on the host lattice, doping concentration of Eu2+ or Ce3+, or the temperature range at which the PL spectrum was monitored, both the way and magnitude of emission spectrum shifting were quite different. Various explanations for the thermal shifts of the emission maxima were proposed. Nonetheless, a close inspection of a collection of the data indicates that some popular explanations seemingly plausible for the thermal red/blue-shifts of the emission maxima of Eu2+ and Ce3+-activated phosphors are highly questionable, because they either misused the Varshni equation or discussed the energy of the 5d-4f transitions of Eu2+ and Ce3+ in isolation without considering simultaneous change of the host lattice. An explanation of lattice dynamic induced thermal shifts of the emission maxima of Eu2+ and Ce3+-activated phosphors is proposed in this paper. By considering the dominant contribution to the energy of the 5d-4f transitions either from a lattice dilatation or from the interactions between the 5d electrons and phonons, the complex temperature dependences of the emission maxima of various Eu2+ and Ce3+-activated phosphors experimentally observed in literature could be explained reasonably.

  19. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  20. Li{sub 3}Gd{sub 3}Te{sub 2}O{sub 12}:Eu{sup 3+}- an intense red phosphor for solid state lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Hansnath; Asiri Naidu, S.; Varadaraju, U.V., E-mail: varada@iitm.ac.in

    Li{sub 3}Gd{sub 3−3x}Eu{sub 3x}Te{sub 2}O{sub 12} (x=0.05−1.0) phases with garnet structure were synthesized by high temperature solid state reaction and the photoluminescence properties were investigated. The appearance of bands due to intra 4 f transitions of Gd{sup 3+} in the excitation spectra recorded by monitoring the 612 nm emission line of the activator indicates Gd{sup 3+}→Eu{sup 3+} energy transfer in this host lattice. Under 395 nm excitation, the electric dipole transition is predominant in the emission spectrum of Eu{sup 3+} and is in agreement with the C{sub 2} point group (noncentrosymmetric) of the EuO{sub 8} polyhedron. The critical concentration ofmore » the Eu{sup 3+} activator in this series was found to be 0.6 (x=0.2) above which, concentration quenching occurs. The emission intensity of the phosphor composition, Li{sub 3}Gd{sub 2.4}Eu{sub 0.6}Te{sub 2}O{sub 12} is ~4 times that of the commercial sample of Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor. - Highlights: • New Eu{sup 3+} doped garnet. • Intense electric dipole emission. • Gd{sup 3+}→Eu{sup 3+} energy transfer.« less

  1. Integrated solar thermochemical reaction system for steam methane reforming

    DOE PAGES

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; ...

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  2. Phase stabilization in transparent Lu2O3:Eu ceramics by lattice expansion

    NASA Astrophysics Data System (ADS)

    Seeley, Z. M.; Dai, Z. R.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.

    2012-11-01

    Gadolinium lutetium oxide transparent ceramics doped with europium (Gd,Lu)2O3:Eu were fabricated via vacuum sintering and hot isostatic pressing (HIP). Nano-scale starting powder with the composition GdxLu1.9-xEu0.1O3 (x = 0, 0.3, 0.6, 0.9, 1.0, and 1.1) were uniaxially pressed and sintered under high vacuum at 1625 °C to obtain ˜97% dense structures with closed porosity. Sintered compacts were then subjected to 200 MPa argon gas at temperatures between 1750 and 1900 °C to reach full density. It was observed that a small portion of the Eu3+ ions were exsolved from the Lu2O3 cubic crystal lattice and concentrated at the grain boundaries, where they precipitated into a secondary monoclinic phase creating optical scattering defects. Addition of Gd3+ ions into the Lu2O3 cubic lattice formed the solid solution (Gd,Lu)2O3:Eu and stretched the lattice parameter allowing the larger Eu3+ ions to stay in solid solution, reducing the secondary phase and improving the transparency of the ceramics. Excess gadolinium, however, resulted in a complete phase transformation to monoclinic at pressures and temperatures sufficient for densification. Light yield performance was measured and all samples show equal amounts of the characteristic Eu3+ luminescence, indicating gadolinium addition had no adverse effect. This material has potential to improve the performance of high energy radiography devices.

  3. Controlled synthesis of Eu{sup 2+} and Eu{sup 3+} doped ZnS quantum dots and their photovoltaic and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horoz, Sabit; Poudyal, Uma; Wang, Wenyong

    2016-04-15

    Eu-doped ZnS quantum dots (QDs) have been synthesized by wet-chemical method and found to form in zinc blende (cubic) structure. Both Eu{sup 2+} and Eu{sup 3+} doped ZnS can be controllably synthesized. The Eu{sup 2+} doped ZnS QDs show broad photoluminescence emission peak around 512 nm, which is from the Eu{sup 2+} intra-ion transition of 4f{sup 6}d{sup 1} – 4f{sup 7}, while the Eu{sup 3+} doped samples exhibit narrow emission lines characteristic of transitions between the 4f levels. The investigation of the magnetic properties shows that the Eu{sup 3+} doped samples exhibit signs of ferromagnetism, on the other hand, Eu{supmore » 2+} doped samples are paramagnetic of Curie-Weiss type. The incident photon to electron conversion efficiency is increased with the Eu doping, which suggests the QD solar cell efficiency can be enhanced by Eu doping due to widened absorption windows. This is an attractive approach to utilize benign and environmentally friendly wide band gap ZnS QDs in solar cell technology.« less

  4. EU-Norsewind Using Envisat ASAR And Other Data For Offshore Wind Atlas

    NASA Astrophysics Data System (ADS)

    Hasager, Charlotte B.; Mouche, Alexis; Badger, Merete

    2010-04-01

    The EU project NORSEWIND - short for Northern Seas Wind Index Database - www.norsewind.eu has the aim to produce state-of-the-art wind atlas for the Baltic, Irish and North Seas using ground-based lidar, meteorological masts, satellite data and mesoscale modelling. So far CLS and Risø DTU have collected Envisat ASAR images for the area of interest and the first results: maps of wind statistics, Weibull scale and shape parameters, mean and energy density are presented. The results will be compared to a distributed network of high-quality in-situ observations and mesoscale model results during 2009-2011 as the in-situ data and model results become available. Wind energy is proportional with wind speed to the third power, thus even small improvements on wind speed mapping are important in this project. One challenge is to arrive at hub-height winds ~100 m above sea level.

  5. Spectroscopic study on the role of TiO{sub 2} in the adsorption of Eu(III) and U(VI) on silica surfaces in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Hee-Jung, E-mail: imhj@kaeri.re.kr; Park, Kyoung Kyun; Jung, Euo Chang

    2014-10-15

    Highlights: • Enhanced adsorption of Eu(III) and U(VI) onto TiO{sub 2}-coated silica. • Enhanced Eu(III) luminescence and lifetime on TiO{sub 2}-coated silica. • Energy transfer from TiO{sub 2} of TiO{sub 2}-coated silica to Eu(III) in solutions. - Abstract: To determine the effects of TiO{sub 2} on the adsorption of actinides onto mineral surfaces in groundwater, silica was partially coated with TiO{sub 2}, and Eu(III) and U(VI) were individually adsorbed from separate 0.1 mM concentration solutions. The TiO{sub 2}-coated silica showed higher Eu(III) and U(VI) adsorption capacities for increasing amounts of TiO{sub 2} coated on the silica surfaces, and thus themore » existence of TiO{sub 2} can decrease the mobility of Eu(III) and U(VI) contaminants. In luminescence studies, it was found that TiO{sub 2} considerably enhanced the luminescence of the adsorbed Eu(III) indicating that TiO{sub 2}–Eu(III) forms surface complexes which may decrease the number of water molecules at the inner sphere of Eu(III), but this was not observed for U(VI). An energy transfer from the TiO{sub 2} to the Eu(III) was confirmed in this case of amorphous TiO{sub 2}-coated silica in Eu(III) solutions, and an increase of the luminescence lifetime of Eu(III) for increasing concentrations of coated TiO{sub 2} was also observed.« less

  6. Eu(III) Complexes of Octadentate 1-Hydroxy-2-pyridinones: Stability and Improved Photophysical Performance[].

    PubMed

    Moore, Evan G; D'Aléo, Anthony; Xu, Jide; Raymond, Kenneth N

    2009-10-13

    The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV/visible and then efficiently transfer the energy to the lanthanoid center. The synthesis and the complexation of Ln(III) cations (Ln=Eu; Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu(III) complex ([Eu(3LI-bis-LYS-1,2-HOPO)](-)) has been evaluated in terms of its thermodynamic stability, UV/visible absorption and luminescence properties. For this complex the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid (DTPA) at pH= 7.4. This Eu(III) complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH= 7.4) when compared to other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)](-). This overall improvement was achieved by saturating the coordination sphere of the Eu(III) cation, yielding an increased metal centered efficiency by excluding solvent water molecules from the metal's inner sphere.

  7. Vibrationally induced center reconfiguration in co-doped GaN:Eu, Mg epitaxial layers: Local hydrogen migration vs. activation of non-radiative channels

    NASA Astrophysics Data System (ADS)

    Mitchell, B.; Lee, D.; Lee, D.; Fujiwara, Y.; Dierolf, V.

    2013-12-01

    Europium doped gallium nitride (GaN:Eu) is a promising candidate as a material for red light emitting diodes. When Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature and have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels.

  8. Support for EU fundraising in the field of Environment & Energy - BayFOR

    NASA Astrophysics Data System (ADS)

    Ammerl, Thomas; Baumann, Cornelia; Reiter, Andrea; Blume, Andreas; Just, Jana; Franke, Jan

    2013-04-01

    The Bavarian Research Alliance (BayFOR, http://www.bayfor.org) is a private company for the support of Bavaria (Free State in the South East of Germany) as a centre for science and innovation within the European Research Area. It was set up on the initiative of the Bavarian universities to strengthen their networking at regional, national and international level while helping them to prepare to meet the requirements for European research funding. The focus is directed at the current EU Framework Programme (FP7) and the forthcoming Framework Programme for Research and Innovation "Horizon 2020", but also comprises the wide range of European programmes (e.g. FP7, LIFE+, Interreg, COST, EUREKA, ERA-Nets, IEE (CIP), LLP, Calls for tender). BayFOR is also a partner institution in the Bavarian "Haus der Forschung" (www.hausderforschung.bayern.de/en). BayFORs overall aim is to strengthen and permanently anchor the science and innovation location of Bavaria in the European Research Area through: a) Initiation of national and in particular European innovation and science partnerships from academia and business b) Improvement of innovation potential of Bavarian universities and SME c) Support in acquisition, management and dissemination of results of European and international projects in the field of research and technological development The service portfolio of the EU Funding Advisory Service reaches from the first project idea to project implementation. The minimum condition for BayFOR support is at least one partner from Bavaria (Germany) must be part of the applying consortium: a) Recommendation of funding programmes/instruments (incl. integration of relevant EU policies & directives) b) Partner search c) Project development and proposal elaboration (Online platform, Creation of consortium, Attendance at meetings, Preparation of documents, Proposal structure elaboration, Provision of templates, Editorial support: Gantt, PERT, Impact, EU added value) d) Support in the

  9. Luminescence Spectroscopy and Crystal Field Simulations of Europium Propylenediphosphonate EuH[O 3P(CH 2) 3PO 3] and Europium Glutarate [Eu(H 2O)] 2[O 2C(CH 2) 3CO 2] 3·4H 2O

    NASA Astrophysics Data System (ADS)

    Serpaggi, F.; Férey, G.; Antic-Fidancev, E.

    1999-12-01

    The results of investigations on the photoluminescence of two europium hybrid compounds, EuH[O3P(CH2)3PO3] (Eu[diph]) and [Eu(H2O)]2[O2C(CH2)3CO2]3·4H2O (Eu[glut]), are presented. In both compounds one local environment is found for the rare earth (Re) ion and the symmetry of the Re polyhedron is low (Cs) as evidenced by the Eu3+ luminescence studies. The electrostatic crystal field (cf) parameters of the 7F multiplet are obtained by the application of the phenomenological cf theory. The simulations using C2v symmetry for the rare earth ion give good agreement between the calculated and the experimental 7F0-4 energy level schemes. The observed optical data are discussed in relation to the crystal structure of the compounds.

  10. Reforming Districts: How Districts Support School Reform. A Research Report. Document R-03-6

    ERIC Educational Resources Information Center

    McLaughlin, Milbrey; Talbert, Joan

    2003-01-01

    School districts have participated in multiple rounds of education reform activity in the past few decades, yet few have made headway on system-wide school improvement. This paper addresses the questions of whether districts matter for school reform progress and what successful "reforming" districts do to achieve system change and to…

  11. Unique Pressure versus Temperature Phase Diagram for Antiferromagnets Eu2Ni3Ge5 and EuRhSi3

    NASA Astrophysics Data System (ADS)

    Nakashima, Miho; Amako, Yasushi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Nada, Masato; Sugiyama, Kiyohiro; Hagiwara, Masayuki; Haga, Yoshinori; Takeuchi, Tetsuya; Nakamura, Ai; Akamine, Hiromu; Tomori, Keisuke; Yara, Tomoyuki; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2017-03-01

    We studied the magnetic properties of the antiferromagnets Eu2Ni3Ge5 and EuRhSi3 by measuring their electrical resistivity, specific heat, magnetic susceptibility, magnetization, and thermoelectric power, together with the electrical resistivities at high pressures of up to 15 GPa. These compounds have almost divalent Eu ions at ambient pressure and order antiferromagnetically with a successive change in the antiferromagnetic structure at TN = 19 K and T'N = 17 K in Eu2Ni3Ge5, and at TN = 49 K and T'N = 45 K in EuRhSi3. Magnetic field versus temperature (H-T) phase diagrams were constructed for both compounds from the magnetization measurements. The Néel temperature in Eu2Ni3Ge5 was found to increase up to 7 GPa but to decrease continuously with further increasing pressure, without the so-called valence transition. Under a high pressure of 15 GPa, Kondo-like behavior of the electrical resistivity was observed, suggesting the existence of the heavy-fermion state at low temperatures. A similar trend is likely to occur in EuRhSi3. The present P-T phase diagrams for both compounds are the first cases that are reminiscent of the phase diagram of EuCu2(SixGe1-x)2.

  12. Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4

    NASA Astrophysics Data System (ADS)

    Denisenko, Yu. G.; Khritokhin, N. A.; Andreev, O. V.; Basova, S. A.; Sal'nikova, E. I.; Polkovnikov, A. A.

    2017-11-01

    Reactions of europium sulfates Eu2(SO4)3·8H2O and EuSO4 complete decomposition were studied by Simultaneous Thermal Analysis. It was revealed that one-step dehydratation of Eu2(SO4)3·8H2O crystallohydrate is accompanied by the formation of amorphous anhydrous europium sulfate Eu2(SO4)3. Crystallization of amorphous europium (III) sulfate occurs at 381.1 °C (in argon) and 391.3 °C (in air). The average enthalpy values for dehydratation reaction of Eu2(SO4)3·8H2O (ΔH° = 141.1 kJ/mol), decomposition reactions of Eu2(SO4)3 (ΔH = 463.1 kJ/mol), Eu2O2SO4 (ΔH = 378.4 kJ/mol) and EuSO4 (ΔH = 124.1 kJ/mol) were determined. The step process mechanisms of thermal decomposition of europium (III) sulfate in air and europium (II) sulfate in inert atmosphere were established and justified. The kinetic parameters of complete thermal decomposition of europium (III) sulfate octahydrate were calculated by Kissinger model. The standard enthalpies of compound formation were calculated using thermal effects and formation enthalpy data for binary compounds.

  13. Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-type Y2SiO5:Eu(3+),Bi(3+) phosphor for ultraviolet converted LEDs.

    PubMed

    Kang, Fengwen; Zhang, Yi; Peng, Mingying

    2015-02-16

    So far, more than 1000 UV converted phosphors have been reported for potential application in white light-emitting diodes (WLEDs), but most of them (e.g., Y2O2S:Eu, YAG:Ce or CaAlSiN3:Eu) suffer from intrinsic problems such as thermal instability, color aging or re-absorption by commixed phosphors in the coating of the devices. In this case, it becomes significant to search a single-phased phosphor, which can efficiently convert UV light to white lights. Herein, we report a promising candidate of a white light emitting X2-type Y2SiO5:Eu(3+),Bi(3+) phosphor, which can be excitable by UV light and address the problems mentioned above. Single Bi(3+)-doped X2-type Y2SiO5 exhibits three discernible emission peaks at ∼355, ∼408, and ∼504 nm, respectively, upon UV excitation due to three types of bismuth emission centers, and their relative intensity depends tightly on the incident excitation wavelength. In this regard, proper selection of excitation wavelength can lead to tunable emissions of Y2SiO5:Bi(3+) between blue and green, which is partially due to the energy transfer among the Bi centers. As a red emission center Eu(3+) is codoped into Y2SiO5:Bi(3+), energy transfer has been confirmed happening from Bi(3+) to Eu(3+) via an electric dipole-dipole (d-d) interaction. Our experiments reveal that it is easily realizable to create the white or tunable emissions by adjusting the Eu(3+) content and the excitation schemes. Moreover, a single-phased white light emission phosphor, X2-type Y1.998SiO5:0.01Eu(3+),0.01 Bi(3+), has been achieved with excellent resistance against thermal quenching and a QE of 78%. At 200 °C, it preserves >90% emission intensity of that at 25 °C. Consequent three time yoyo experiments of heating-cooling prove no occurrence of thermal degradation. A WLED lamp has been successfully fabricated with a CIE chromaticity coordinate (0.3702, 0.2933), color temperature 4756 K, and color rendering index of 65 by applying the phosphor onto a UV LED

  14. Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes

    PubMed Central

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-01-01

    The KMg4(PO4)3:Eu2+ phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu2+ were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu2+ in the KMg4(PO4)3 host was determined to be 1mol% and the quenching mechanism was certified to be the dipole–dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24eV. Upon excitation at 365nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu2+ was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu2+, green-emitting (Ba,Sr)2SiO4:Eu2+, and red-emitting CaAlSiN3:Eu2+ phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu2+ is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs). PMID:25855866

  15. Crystal structure and temperature-dependent luminescence characteristics of KMg4(PO4)3:Eu(2+) phosphor for white light-emitting diodes.

    PubMed

    Chen, Jian; Liu, Yangai; Mei, Lefu; Liu, Haikun; Fang, Minghao; Huang, Zhaohui

    2015-04-09

    The KMg4(PO4)3:Eu(2+) phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu(2+) were confirmed from the powder X-ray diffraction and the Rietveld refinement. The concentration quenching of Eu(2+) in the KMg4(PO4)3 host was determined to be 1 mol% and the quenching mechanism was certified to be the dipole-dipole interaction. The energy transfer critical distance of as-prepared phosphor was calculated to be about 35.84 Å. Furthermore, the phosphor exhibited good thermal stability and the corresponding activation energy ΔE was reckoned to be 0.24 eV. Upon excitation at 365 nm, the internal quantum efficiency of the optimized KMg4(PO4)3:Eu(2+) was estimated to be 50.44%. The white N-UV LEDs was fabricated via KMg4(PO4)3:Eu(2+), green-emitting (Ba,Sr)2SiO4:Eu(2+), and red-emitting CaAlSiN3:Eu(2+) phosphors with a near-UV chip. The excellent color rendering index (Ra = 96) at a correlated color temperature (5227.08 K) with CIE coordinates of x = 0.34, y = 0.35 of the WLED device indicates that KMg4(PO4)3:Eu(2+) is a promising blue-emitting phosphor for white N-UV light emitting diodes (LEDs).

  16. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407

  17. Health reform through tax reform: a primer.

    PubMed

    Furman, Jason

    2008-01-01

    Tax incentives for employer-sponsored insurance and other medical spending cost about $200 billion annually and have pervasive effects on coverage and costs. This paper surveys a range of proposals to reform health care, either by adding new tax incentives or by limiting or replacing the existing tax incentives. Replacing the current tax preference for insurance with an income-related, refundable tax credit has the potential to expand coverage and reduce inefficient spending at no net federal cost. But such an approach by itself would entail substantial risks, so complementary reforms to the insurance market are essential to ensure success.

  18. Reform and Non-Reform in Education: The Political Costs and Benefits of Reform Policies in France and Japan.

    ERIC Educational Resources Information Center

    Weiler, Hans N.; Miyake, Eriko

    This paper examines how the perception and anticipation of political costs and benefits affects decisions about whether and how plans for educational reforms are to be pursued. Two case studies of major educational reform attempts are described: France and Japan. The study analyzes the two societies' underlying dilemmas, which manifest themselves…

  19. Ramifications of codoping SrI2:Eu with isovalent and aliovalent impurities

    NASA Astrophysics Data System (ADS)

    Feng, Qingguo; Biswas, Koushik

    2016-12-01

    Eu2+ doped SrI2 is an important scintillator having applications in the field of radiation detection. Codoping techniques are often useful to improve the electronic response of such insulators. Using first-principles based approach, we report on the properties of SrI2:Eu and the influence of codoping with aliovalent (Na, Cs) and isovalent (Mg, Ca, Ba, and Sn) impurities. These codopants do not preferably bind with Eu and are expected to remain as isolated impurities in the SrI2 host. As isolated defects they display amphoteric behavior having, in most cases, significant ionization energies of the donor and acceptor levels. Furthermore, the acceptor states of Na, Cs, and Mg can bind with I-vacancy forming charge compensated donor-acceptor pairs. Such pairs may also bind additional holes or electrons similar to the isolated defects. Lack of deep-to-shallow behavior upon codoping and its ramifications will be discussed.

  20. Tuning of "antenna effect" of Eu(III) in ternary systems in aqueous medium through binding with protein.

    PubMed

    Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Saha Sardar, Pinki; Ghosh, Sanjib

    2013-02-04

    A simple ternary system containing a protein [human serum albumin (HSA)/bovine serum albumin (BSA)], tetracycline hydrochloride (TC), and Eu(III) in suitable aqueous buffer medium at physiological pH (= 7.2) has been shown to exhibit highly efficient "antenna effect" compared to the binary complex of TC with Eu(III) (Eu(3)TC). The ternary system containing E. coli alkaline phosphatase (AP), TC, and Eu(III), however, shows a slight enhancement of Eu(III) emission, although the binding constant of AP with TC is 2 orders of magnitude greater than with BSA/HSA. The enhanced emission of bound TC in the binary systems containing proteins and TC gets quenched in the ternary systems containing HSA/BSA, showing the efficient energy transfer (ET) from TC to Eu(III). Steady state and time-resolved emission studies of each component in all the ternary systems in H(2)O and in D(2)O medium reveal that Eu(III) is very well protected from the O-H oscillator in the ternary system containing HSA/BSA compared to that containing AP. The docking studies locating the binding site of TC in the proteins suggest that TC binds near the surface of AP. In the case of HSA/BSA, TC resides in the interior of the protein resulting in a large shielding effect of Eu(III). The rotational correlation time (θ(c)) determined from the anisotropy decay of bound TC in the complexes and the accessible surface area (ASA) of the ligand in the complexes obtained from the docking studies also support the contention that Eu(3)TC is more exposed to solvent in the case of the ternary system consisting of AP, TC, and Eu(III). The calculated radiative lifetime and the sensitization efficiency ratio of Eu(III) in all the systems clearly demonstrate the protein mediated tuning of "antenna effect" in Eu(III).

  1. Synthesis of high-silica EU-1 zeolite in the presence of hexamethonium ions: a seeded approach for inhibiting ZSM-48.

    PubMed

    Xu, Qinghu; Gong, Yanjun; Xu, Wenjing; Xu, Jun; Deng, Feng; Dou, Tao

    2011-06-01

    A seeded approach was developed to synthesize high-silica EU-1 zeolite via inhibiting the co-crystallization of ZSM-48 in the presence of hexamethonium (HM) ions. A systematic study was carried out to determine factors such as seed content and SiO(2)/Al(2)O(3) ratio, which influenced the crystallization of high-silica EU-1 and transformation of EU-1 into ZSM-48. Using EU-1 seeds, not only well-crystallized pure EU-1 zeolites with SiO(2)/Al(2)O(3) ratios more than 500 were synthesized, but also the co-crystalline of ZSM-48/EU-1 or pure ZSM-48 was obtained in control from silica-rich mixture gels. Furthermore, the kinetic features of the seeded synthesis of EU-1 zeolites with SiO(2)/Al(2)O(3) ratios of 55, 190, and 500 were examined. It was found that seeds played crucial roles in the decrease of apparent activation energy of EU-1 nucleation and inhibiting the transformation of EU-1 into ZSM-48. The HM and Al species performed synergistic roles to inhibit the formation ZSM-48 during high-silica EU-1 nucleation and crystal growth. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Dual functions of YF3:Eu3+ for improving photovoltaic performance of dye-sensitized solar cells

    PubMed Central

    Wu, Jihuai; Wang, Jiangli; Lin, Jianming; Xiao, Yaoming; Yue, Gentian; Huang, Miaoliang; Lan, Zhang; Huang, Yunfang; Fan, Leqing; Yin, Shu; Sato, Tsugio

    2013-01-01

    In order to enhance the photovoltaic performance of dye-sensitized solar cell (DSSC), a novel design is demonstrated by introducing rare-earth compound europium ion doped yttrium fluoride (YF3:Eu3+) in TiO2 film in the DSSC. As a conversion luminescence medium, YF3:Eu3+ transfers ultraviolet light to visible light via down-conversion, and increases incident harvest and photocurrent of DSSC. As a p-type dopant, Eu3+ elevates the Fermi level of TiO2 film and thus heightens photovoltage of the DSSC. The conversion luminescence and p-type doping effect are demonstrated by photoluminescence spectra and Mott-Schottky plots. When the ratio of YF3:Eu3+/TiO2 in the doping layer is optimized as 5 wt.%, the light-to-electric energy conversion efficiency of the DSSC reaches 7.74%, which is increased by 32% compared to that of the DSSC without YF3:Eu3+ doping. Double functions of doped rare-earth compound provide a new route for enhancing the photovoltaic performance of solar cells. PMID:23792787

  3. Synthesis and luminescence properties of Eu3+-doped KLa(MoO4)2 red-emitting phosphor

    NASA Astrophysics Data System (ADS)

    Zuo, Haoqiang; Liu, Yun; Li, Jinyang; Shi, Xiaolei; Gao, Weiping

    2015-09-01

    Eu3+-doped KLa(MoO4)2 phosphors were synthesized by a simple hydrothermal method. X-ray diffraction (XRD) analysis demonstrated that the as-prepared products were pure monoclinic phase of KLa(MoO4)2. Field emission scanning electron microscopy (FE-SEM) images indicated that the morphology of the prepared phosphors evolved from uniform spherical-like to irregular elliposid-like with increase of the concentration. The photoluminescence (PL) spectra displayed that the phosphors show strong red light around 618 nm, attributed to 5D0 → 7F2 transition of Eu3+ ion under 465 nm excitation, and the optimal Eu3+ doping concentration was about 15 mol.% based on the concentration dependent emission spectra. According to Dexter's theory the electric dipole-dipole interaction (D-D) is the main mechanism for energy transfer between Eu3+ and Eu3+ ions. The CIE chromaticity (x, y) of the phosphors were about (0.65, 0.35) and it is close to the standard red chromaticity of NTSC. Therefore, the phosphors could be used as red phosphors for white light-emitting diodes.

  4. Enhancing the luminescence of Eu3+ /Eu2+ ion-doped hydroxyapatite by fluoridation and thermal annealing.

    PubMed

    Van, Hoang Nhu; Tam, Phuong Dinh; Kien, Nguyen Duc Trung; Huy, Pham Thanh; Pham, Vuong-Hung

    2017-08-01

    This paper reports a novel way for the synthesis of a europium (Eu)-doped fluor-hydroxyapatite (FHA) nanostructure to control the luminescence of hydroxyapatite nanophosphor, particularly, by applying optimum fluorine concentrations, annealed temperatures and pH value. The Eu-doped FHA was made using the co-precipitation method followed by thermal annealing in air and reducing in a H 2 atmosphere to control the visible light emission center of the nanophosphors. The intensities of the OH - group decreased with the increasing fluorine concentrations. For the specimens annealed in air, the light emission center of the nanophosphor was 615 nm, which was emission from the Eu 3 + ion. However, when they were annealed in reduced gas (Ar + 5% H 2 ), a 448 nm light emission center from the Eu 2 + ion of FHA was observed. The presence of fluorine in Eu-doped FHA resulted in a significant enhancement of nanophosphor luminescence, which has potential application in light emission and nanomedicine. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Health care reform: clarifying the concepts.

    PubMed

    Miller, A M

    1993-01-01

    Despite agreement about problems with the health care system, there is disagreement about the remedy. Like most health care reform debates, this article focuses on financing methods rather than service delivery. Reform strategies are intentionally oversimplified into four categories: employer-based or "play or pay"; single-payer and modifications, such as expanding Medicaid or Medicare; market competition; and managed competition, which appears to be favored by the Clinton administration. Cost-control mechanisms and insurance reforms are applicable to all four financing methods. Reform is inevitable. The challenge for nurses is to understand reform issues and then influence policymakers to initiate reforms that make essential medical and preventive services universally available.

  6. NiCo as catalyst for magnetically induced dry reforming of methane

    NASA Astrophysics Data System (ADS)

    Varsano, F.; Bellusci, M.; Provino, A.; Petrecca, M.

    2018-03-01

    In this paper we report the activation of the dry reforming reaction by induction heating of a NiCo alloy. The catalyst plays a double role, serving both as a promoter for the reforming reaction and producing the heat induced by dissipation of the electromagnetic energy. The elevated temperatures imposed by the reforming reaction suggest the choice of an alloy with a Curie temperature >800°C. In this respect Ni:Co ratio 60:40 was chosen. Alloy active sites for CH4and CO2activation are created by a mechanochemical treatment of the alloy that increases solid-state defects. The catalyst has been successfully tested in a continuous-flow reactor working under atmospheric pressure. Methane conversion and hydrogen production yields have been measured as a function of the applied magnetic field, reactant flow rate and time on stream.

  7. Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.

    2015-08-01

    This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.

  8. Letters to a Young Education Reformer

    ERIC Educational Resources Information Center

    Hess, Frederick M.

    2017-01-01

    In "Letters to a Young Education Reformer," Frederick M. Hess distills knowledge from twenty-five years of working in and around school reform. Inspired by his conversations with young, would-be reformers who are passionate about transforming education, the book offers a window into Hess's thinking about what education reform is and…

  9. Building state capacity in Russia: A case study of energy sector reform, 1992--1998

    NASA Astrophysics Data System (ADS)

    Kim, Younkyoo

    This study seeks an explanation for the neglect of state building in Russia. The major hypothesis is that dependence on external rent leads to the weakness of the state. Three intervening variables---transaction costs, bargaining power of the state, and discount rates---are posited to explain variance on the dependent variable, the weakness of the state. Based on the exploration of three dimensions of energy sector reform, the dissertation argues that in the short run resource rents may be the only reliable and adequate source of finance for the Russian government. The division of resource rents among the many claimants (state vs. business, state vs. society, Moscow vs. regions, and Russia vs. foreign companies), it submits, will pose a stringent test of the viability of democratic governance in Russia. The dissertation concludes that some evidence indicates that Russia has in fact met the characteristics of the rentier state. The greater reliance on a large resource sector for revenue has led to high transaction costs of tax collection, weak bargaining power of the state, and high discount rates of government officials in Russia.

  10. 75 FR 26749 - Credit Reforms in Organized Wholesale Electric Markets; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms... conference will be held from 9 a.m. to 12:30 p.m. (EDT), in the Commission Meeting Room at the Federal Energy... to attend. The conference is free and no registration is necessary. Further notices with detailed...

  11. 75 FR 20991 - Credit Reforms in Organized Wholesale Electric Markets; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM10-13-000] Credit Reforms... conference will be held from 9 a.m. to 12:30 p.m. (EDT), in the Commission Meeting Room at the Federal Energy... to attend. The conference is free and no registration is necessary. Further notices with detailed...

  12. Women, Class, and School Reform.

    ERIC Educational Resources Information Center

    Mickelson, Roslyn Arlin; Wadsworth, Angela L.

    1996-01-01

    Analyzes ordinary women's role in shaping school reform in their community, highlighting interplay of class conflict, regionalism, and gender roles in reform efforts. The women protesting the Odyssey Project framed the debate as a juncture between a national, elitist reform movement and a local grassroots countermovement protecting children,…

  13. Prospects for Health Care Reform.

    ERIC Educational Resources Information Center

    Kastner, Theodore

    1992-01-01

    This editorial reviews areas of health care reform including managed health care, diagnosis-related groups, and the Resource-Based Relative Value Scale for physician services. Relevance of such reforms to people with developmental disabilities is considered. Much needed insurance reform is not thought to be likely, however. (DB)

  14. Verification of antiferromagnetic exchange coupling at room temperature using polar magneto-optic Kerr effect in thin EuS/Co multilayers with perpendicular magnetic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goschew, A., E-mail: alexander.goschew@fu-berlin.de; Scott, M.; Fumagalli, P.

    2016-08-08

    We report on magneto-optic Kerr measurements in polar geometry carried out on a series of thin Co/EuS multilayers on suitable Co/Pd-multilayer substrates. Thin Co/EuS multilayers of a few nanometers individual layer thickness usually have their magnetization in plane. Co/Pd multilayers introduce a perpendicular magnetic anisotropy in the Co/EuS layers deposited on top, thus making it possible to measure magneto-optic signals in the polar geometry in remanence in order to study exchange coupling. Magneto-optic Kerr-effect spectra and hysteresis loops were recorded in the visible and ultraviolet photon-energy range at room temperature. The EuS contribution to the magneto-optic signal is extracted atmore » 4.1 eV by combining hysteresis loops measured at different photon energies with polar magneto-optic Kerr-effect spectra recorded in remanence and in an applied magnetic field of 2.2 T. The extracted EuS signal shows clear signs of antiferromagnetic coupling of the Eu magnetic moments to the Co layers. This implies that the ordering temperature of at least a fraction of the EuS layers is above room temperature proving that magneto-optic Kerr-effect spectroscopy can be used here as a quasi-element-specific method.« less

  15. Emerging food safety issues: An EU perspective.

    PubMed

    McEvoy, John D G

    2016-05-01

    Safe food is the right of every citizen of the European Union (EU). A comprehensive and dynamic framework of food and feed safety legislation has been put in place and the EU's executive arm - the European Commission - is responsible for ensuring that the EU member states apply food law consistently. Similarly, the Commission plays an important role in ensuring that imported food meets the EU's stringent food safety standards. Consumer perceptions of unsafe food tend to focus on acute outbreaks of bacterial or viral origin. In recent years there have been a number of diverse food crises associated with fraudulent activity which may (e.g. melamine in dairy products in China) or may not (e.g. the horse meat scandal in the EU) represent a genuine food safety risk. Well publicized incidents of chronic exposure to chemical contamination in the EU (e.g. dioxins in meat and mycotoxins in nuts) have required robust coordinated policy responses from the Commission. Despite the decreasing incidence of non-compliant residues of veterinary medicinal products and banned substances in animal products, EU consumers are increasingly concerned about the use of such products in food-producing animals, including in the context of the build-up of antimicrobial resistance in animals and transfer to humans. The Commission plays a key role in coordination of the EU member states' responses to such incidents, in risk management, and in preparation for emerging issues. This paper focuses on how the EU as a whole has dealt with a number of food crises, and what can be learned from past incidents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Luminescence Properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) Phosphors with Abundant Colors: Abnormal Coexistence of Ce4+/3+-Eu3+ and Energy Transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2.

    PubMed

    Shang, Mengmeng; Liang, Sisi; Lian, Hongzhou; Lin, Jun

    2017-06-05

    A series of Eu 3+ /Tb 3+ /Mn 2+ -ion-doped Ca 19 Ce(PO 4 ) 14 (CCPO) phosphors have been prepared via the conventional high-temperature solid-state reaction process. Under UV radiation, the CCPO host presents a broad blue emission band from Ce 3+ ions, which are generated during the preparation process because of the formation of deficiency. The Eu 3+ -doped CCPO phosphors can exhibit magenta to red-orange emission as a result of the abnormal coexistence of Ce 3+ /Ce 4+ /Eu 3+ and the metal-metal charge-transfer (MMCT) effect between Ce 3+ and Eu 3+ . When Tb 3+ /Mn 2+ are doped into the hosts, the samples excited with 300 nm UV light present multicolor emissions due to energy transfer (ET) from the host (Ce 3+ ) to the activators with increasing activator concentrations. The emitting colors of CCPO:Tb 3+ phosphors can be tuned from blue to green, and the CCPO:Mn 2+ phosphors can emit red light. The ET mechanism from the host (Ce 3+ ) to Tb 3+ /Mn 2+ is demonstrated to be a dipole-quadrapole interaction for Ce 3+ → Tb 3+ and an exchange interaction for Ce 3+ → Mn 2+ in CCPO:Tb 3+ /Mn 2+ . Abundant emission colors containing white emission were obtained in the Tb 3+ - and Mn 2+ -codoped CCPO phosphors through control of the levels of doped Tb 3+ and Mn 2+ ions. The white-emitted CCPO:Tb 3+ /Mn 2+ phosphor exhibited excellent thermal stability. The photoluminescence properties have shown that these materials might have potential for UV-pumped white-light-emitting diodes.

  17. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    PubMed

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  18. Accelerator infrastructure in Europe: EuCARD 2011

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the annual meeting of the EuCARD - European Coordination of Accelerator Research and Development. The conference concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics experiments. There are debated a few basic groups of such systems like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution.

  19. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  20. Liquid fuel reforming using microwave plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Miotk, Robert; Hrycak, Bartosz; Czylkowski, Dariusz; Dors, Miroslaw; Jasinski, Mariusz; Mizeraczyk, Jerzy

    2016-06-01

    Hydrogen is expected to be one of the most promising energy carriers. Due to the growing interest in hydrogen production technologies, in this paper we present the results of experimental investigations of thermal decomposition and dry reforming of two alcohols (ethanol and isopropanol) in the waveguide-supplied metal-cylinder-based nozzleless microwave (915 MHz) plasma source (MPS). The hydrogen production experiments were preceded by electrodynamics properties investigations of the used MPS and plasma spectroscopic diagnostics. All experimental tests were performed with the working gas (nitrogen or carbon dioxide) flow rate ranging from 1200 to 3900 normal litres per hour and an absorbed microwave power up to 5 kW. The alcohols were introduced into the plasma using an induction heating vaporizer. The ethanol thermal decomposition resulted in hydrogen selectivity up to 100%. The hydrogen production rate was up to 1150 NL(H2) h-1 and the energy yield was 267 NL(H2) kWh-1 of absorbed microwave energy. Due to intense soot production, the thermal decomposition process was not appropriate for isopropanol conversion. Considering the dry reforming process, using isopropanol was more efficient in hydrogen production than ethanol. The rate and energy yield of hydrogen production were up to 1116 NL(H2) h-1 and 223 NL(H2) kWh-1 of microwave energy used, respectively. However, the hydrogen selectivity was no greater than 37%. Selected results given by the experiment were compared with the results of numerical modeling.

  1. New localized/delocalized emitting state of Eu 2+ in orange-emitting hexagonal EuAl 2O 4

    DOE PAGES

    Liu, Feng; Meltzer, Richard S.; Li, Xufan; ...

    2014-11-18

    Eu 2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu 2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu 2+ ions in a new hexagonal EuAl 2O 4 phosphor whose Eu 2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emissionmore » exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f 65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu 2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less

  2. Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi2

    NASA Astrophysics Data System (ADS)

    May, Andrew F.; McGuire, Michael A.; Sales, Brian C.

    2014-08-01

    The crystal structure and physical properties of the layered material EuMnBi2 have been characterized by measurements on single crystals. EuMnBi2 is isostructural with the Dirac material SrMnBi2 based on single-crystal x-ray diffraction, crystallizing in the I4/mmm space group (No. 139). Magnetic susceptibility measurements suggest antiferromagnetic (AFM) ordering of moments on divalent Eu ions near TN=22 K. For low fields, the ordered Eu moments are aligned along the c axis, and a spin flop is observed near 5.4 T at 5 K. The moment is not saturated in an applied field of 13 T at 5 K, which is uncommon for compounds containing Eu2+. The magnetic behavior suggests an anisotropy enhancement via interaction between Eu and the Mn moments that appear to be ordered antiferromagnetically below ≈310 K. A large increase in the magnetoresistance is observed across the spin flop, with absolute magnetoresistance reaching ≈650% at 5 K and 12 T. Hall effect measurements reveal a decrease in the carrier density below TN, which implies a manipulation of the Fermi surface by magnetism on the sites surrounding the Bi square nets that lead to Dirac cones in this family of materials.

  3. The Effects of Educational Reform

    ERIC Educational Resources Information Center

    Vasquez-Martinez, Claudio-Rafael; Giron, Graciela; De-La-Luz-Arellano, Ivan; Ayon-Bañuelos, Antonio

    2013-01-01

    Educational reform implies questions of social production and of state regulation that are the key words in educational reform, education and educational policies. These reforms are always on the political agenda of countries and involve international organisms, since education is a vehicle of development for social progress. A point of departure…

  4. Reforming Our Expectations about Juvenile Justice

    ERIC Educational Resources Information Center

    Rodriguez, Pamela F.; Baille, Daphne M.

    2010-01-01

    Typing the term "juvenile justice reform" into a Google[TM] search will result in 60 pages of entries. But what is meant by juvenile justice reform? What does it look like? How will one know when it is achieved? This article defines juvenile justice reform, discusses the principles of effective reform, and describes the practice of…

  5. Phase transition and multicolor luminescence of Eu{sup 2+}/Mn{sup 2+}-activated Ca{sub 3}(PO{sub 4}){sub 2} phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn; Xu, Ju

    2014-01-01

    Graphical abstract: We have synthesized Eu{sup 2+} doped and Eu{sup 2+}/Mn{sup 2+} co-doped Ca{sub 3}(PO{sub 4}){sub 2} phosphors. The emitting color varies from blue to green with increasing of Eu{sup 2+} content for the Eu{sup 2+}-doped phosphor, and the quantum yield of the 0.05Eu{sup 2+}: Ca{sub 2.95}(PO{sub 4}){sub 2} sample reaches 56.7%. Interestingly, Mn{sup 2+} co-doping into Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi-color luminescence from green to red via Eu{sup 2+} → Mn{sup 2+} energy transfer. - Highlights: • A series of novel Eu{sup 2+}: Ca{submore » 3}(PO{sub 4}){sub 2} phosphors were successfully synthesized. • Phase transition of Ca{sub 3}(PO{sub 4}){sub 2} from orthorhombic to rhombohedral occurred when Mn{sup 2+} ions were doped. • The phosphors exhibited tunable multi-color luminescence. • The quantum yield of 0.05Eu{sup 2+}: Ca{sub 2.95}(PO{sub 4}){sub 2} phosphor can reach 56.7%. • The analyses of phosphors were carried out by many measurements. - Abstract: Intense blue-green-emitting Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} and tunable multicolor-emitting Eu{sup 2+}/Mn{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} phosphors are prepared via a solid-state reaction route. Eu{sup 2+}-doped orthorhombic Ca{sub 3}(PO{sub 4}){sub 2} phosphor exhibits a broad emission band in the wavelength range of 400–700 nm with a maximum quantum yield of 56.7%, and the emission peak red-shifts gradually from 479 to 520 nm with increase of Eu{sup 2+} doping content. Broad excitation spectrum (250–420 nm) of Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} matches well with the near-ultraviolet LED chip, indicating its potential applications as tri-color phosphors in white LEDs. Interestingly, Mn{sup 2+} co-doping into Eu{sup 2+}: Ca{sub 3}(PO{sub 4}){sub 2} leads to its phase transition from orthorhombic to rhombohedral, and subsequently generates tunable multi

  6. Adsorption of Eu(III) onto roots of water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, C.; Mielke, R.E.; Dimaquibo, D.

    1999-05-01

    The water hyacinth (Eichhornia crassipes) has drawn attention as a plant capable of removing pollutants, including toxic metals, from water. The authors are interested in the capacity of the water hyacinth to remediate aquatic environments that have been contaminated with the lanthanide metal, europium Eu(III). Using scanning electron microscopy (SEM) they have been able to determine that Eu(III) is adsorbed onto the surface of the roots from water and that the highest concentration of Eu(III) is on the root hairs. X-ray absorption spectroscopy (XAS) techniques were used to speciate the Eu(III) adsorbed onto the surface of the roots. The XASmore » data for Eu-contaminated water hyacinth roots provides evidence of a Eu-oxygen environment and establishes that Eu(III) is coordinated to 10--11 oxygen atoms at a distance of 2.44 {angstrom}. This likely involves binding of Eu(III) to the root via carboxylate groups and hydration of Eu(III) at the root surface.« less

  7. Blue emission in photoluminescence spectra of the red phosphor CaAlSiN3:Eu2+ at low Eu2+ concentration

    NASA Astrophysics Data System (ADS)

    Suda, Yoriko; Kamigaki, Yoshiaki; Yamamoto, Hajime

    2018-04-01

    In red phosphor CaAlSiN3:Eu2+, unintentional blue emission occurs with increasing intensity at low Eu2+ concentrations and also at low measurement temperatures. Time-resolved photoluminescence measurements were used to confirm the decrease in red emission and increase in blue emission with the decreasing Eu2+ concentration. The peak timing of blue emission occurred faster than that of red emission, and long lasting luminescence of red emission was observed as well as that of blue emission. The Eu2+ concentration dependences of the red and blue emissions were similar to those of the g values 4.75 (Eu2+) and 2.0025 (nitrogen vacancies), respectively, which were observed from electron spin resonance (ESR) measurements. The origin of the blue emission is proposed to be nitrogen vacancy defects, which had about the same ESR signal intensity as that of Eu2+ ions in CaAlSiN3:Eu2+ containing 0.01 at. % Eu2+. The possibility of red emission also arising from excited electron tunneling or thermal pathways via nitrogen vacancies is discussed. Long lasting red emission was observed, which is proposed to involve trapped electrons remaining at nitrogen vacancies, yielding blue emission and inducing red emission from Eu2+ ions.

  8. Working on reform. How workers' compensation medical care is affected by health care reform.

    PubMed

    Himmelstein, J; Rest, K

    1996-01-01

    The medical component of workers' compensation programs-now costing over $24 billion annually-and the rest of the nation's medical care system are linked. They share the same patients and providers. They provide similar benefits and services. And they struggle over who should pay for what. Clearly, health care reform and restructuring will have a major impact on the operation and expenditures of the workers' compensation system. For a brief period, during the 1994 national health care reform debate, these two systems were part of the same federal policy development and legislative process. With comprehensive health care reform no longer on the horizon, states now are tackling both workers' compensation and medical system reforms on their own. This paper reviews the major issues federal and state policy makers face as they consider reforms affecting the relationship between workers' compensation and traditional health insurance. What is the relationship of the workers' compensation cost crisis to that in general health care? What strategies are being considered by states involved in reforming the medical component of workers compensation? What are the major policy implications of these strategies?

  9. Education Reform and Students At Risk. Volume I: Findings and Recommendations. Studies of Education Reform.

    ERIC Educational Resources Information Center

    Rossi, Robert J.; Stringfield, Samuel C.

    Despite the widespread attention given to education reform, no substantial knowledge base has existed for identifying and implementing specific effective reforms. This document, the first of three volumes, presents findings of a study that sought to identify the essential mechanics of effective reforms for students at risk. The study also…

  10. Health care reforms.

    PubMed

    Marušič, Dorjan; Prevolnik Rupel, Valentina

    2016-09-01

    In large systems, such as health care, reforms are underway constantly. The article presents a definition of health care reform and factors that influence its success. The factors being discussed range from knowledgeable personnel, the role of involvement of international experts and all stakeholders in the country, the importance of electoral mandate and governmental support, leadership and clear and transparent communication. The goals set need to be clear, and it is helpful to have good data and analytical support in the process. Despite all debates and experiences, it is impossible to clearly define the best approach to tackle health care reform due to a different configuration of governance structure, political will and state of the economy in a country.

  11. Synthesis and characterization of Mg2SiO4:Tb3+, Eu3+ phosphors for white light generation

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2016-09-01

    The effect of Eu3+ codoping on the structural, morphological, and optical properties of Mg2SiO4:Tb3+ was investigated. The phosphor powders were synthesized by changing the molar concentration of Eu3+ at a fixed Tb3+ content of 5 mol% by using a conventional solid-state reaction. The X-ray diffraction patterns revealed that the crystal structure of all the phosphors, irrespective of the Eu3+ and the Tb3+ contents, showed an orthorhombic structure, and the surface morphology exhibited pebble-like crystalline grains. The emission spectra of Eu3+ and Tb3+-codoped Mg2SiO4 phosphors under an ultraviolet excitation of 252 nm consisted of one intense red band at 619 nm and five weak bands at 448, 488, 598, 658, and 707 nm originating from the transitions of Eu3+, in addition to the several emission bands located at 492, 552, 592, and 628 nm arising from the transitions of Tb3+. As the Eu3+ content was increased, the intensity of the main green emission band at 552 nm decreased markedly and disappeared at 10 mol% Eu3+, when complete energy transfer from Tb3+ to Eu3+ was observed. The results suggest that the emission wavelength and the luminescent intensity of the phosphors can be tuned by modulating the Eu3+ and the Tb3+ contents incorporated into the host matrix.

  12. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size, concentration and core-shell formation effects

    NASA Astrophysics Data System (ADS)

    Robindro Singh, L.; Ningthoujam, R. S.; Sudarsan, V.; Srivastava, Iti; Dorendrajit Singh, S.; Dey, G. K.; Kulshreshtha, S. K.

    2008-02-01

    Nanoparticles of Eu3+ doped Y2O3 (core) and Eu3+ doped Y2O3 covered with Y2O3 shell (core-shell) are prepared by urea hydrolysis for 3 h in ethylene glycol medium at a relatively low temperature of 140 °C, followed by heating at 500 and 900 °C. Particle sizes determined from x-ray diffraction and transmission electron microscopic studies are 11 and 18 nm for 500 and 900 °C heated samples respectively. Based on the luminescence studies of 500 and 900 °C heated samples, it is confirmed that there is no particle size effect on the peak positions of Eu3+ emission, and optimum luminescence intensity is observed from the nanoparticles with a Eu3+ concentration of 4-5 at.%. A luminescence study establishes that the Eu3+ environment in amorphous Y (OH)3 is different from that in crystalline Y2O3. For a fixed concentration of Eu3+ doping, there is a reduction in Eu3+ emission intensity for core-shell nanoparticles compared to that of core nanoparticles, and this has been attributed to the concentration dilution effect. Energy transfer from the host to Eu3+ increases with increase of crystallinity.

  13. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  14. Business Pattern of Distributed Energy in Electric Power System Reformation

    NASA Astrophysics Data System (ADS)

    Liang, YUE; Zhuochu, LIU; Jun, LI; Siwei, LI

    2017-05-01

    Under the trend of the electric power system revolution, the operation mode of micro power grid that including distributed power will be more diversified. User’s demand response and different strategies on electricity all have great influence on the operation of distributed power grid. This paper will not only research sensitive factors of micro power grid operation, but also analyze and calculate the cost and benefit of micro power grid operation upon different types. Then it will build a tech-economic calculation model, which applies to different types of micro power grid under the reformation of electric power system.

  15. Integrated hydrocarbon reforming system and controls

    DOEpatents

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  16. Reforming for "All" or for "Some": Misalignment in the Discourses of Education Reformers and Implementers

    ERIC Educational Resources Information Center

    Lenhoff, Sarah Winchell; Ulmer, Jasmine B.

    2016-01-01

    The ways in which the language of reformers intersects with and informs reform implementation is important to our understanding of how education policy impacts practice. To explore this issue, we employed critical discourse analysis (CDA) to analyze the language used by a 21st century skills-focused reform organization to promote its program…

  17. Eu oxidation state in fluorozirconate-based glass ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henke, B.; Passlick, C.; Keil, P.

    2009-12-01

    The influence of InF{sub 3} doping and remelting on Eu-doped fluorozirconate-based glass ceramics was investigated using near-edge x-ray absorption and optical spectroscopy. It was found that the addition of InF{sub 3} to the melt decreases the Eu{sup 2+}/Eu{sup 3+} mole ratio, while remelting leads to a significant change in the Eu{sup 2+}/Eu{sup 3+} ratio in favor of Eu{sup 2+}. Photoluminescence spectroscopy shows that additional annealing steps lead to the formation of BaCl{sub 2} nanoparticles in the glass. In as-made glass ceramics containing InF{sub 3}, a phase transition of the nanoparticles from hexagonal to orthorhombic structure is observed. This phase transitionmore » is not observed in the remelted glasses studied here.« less

  18. A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst

    PubMed Central

    Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian

    2014-01-01

    A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620

  19. Biogas reforming over multi walled carbon nanotubes with Co-Mo/MgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Khavarian, Mehrnoush; Mohamed, Abdul Rahman

    2017-12-01

    The utilization of biogas for the production of valuable chemicals is among the very important processes in the energy research field. The most suitable process for biogas reforming is dry reforming of methane. An obvious drawback is the variable composition of biogas rather than the stoichiometrically equimolar quantities of methane and carbon dioxide. Moreover, activating the methane and carbon dioxide molecules in the reforming reaction provides many challenges in exploring new concepts and opportunities for development of unique catalysts. In the present work, the catalytic activity behavior of Co-Mo-MgO/multi-walled carbon nanotubes (MWCNTs) nanocomposite in dry reforming was investigated with different CO2/CH4 feed ratio to evaluate the performance of this catalyst for biogas reforming reaction. It was found that conversions of methane and carbon dioxide were greatly influenced by the feed gas ratio. The CH4 and CO2 conversions are 83 % and 87 % at the reaction temperature of 825 °C, GHSV of 175 L/h.gcat and CO2/CH4 feed ratio of unity. The minimum carbon deposition rate is observed at the CO2/CH4 feed ratio of 0.6 which is 0.080 gc/gcat-h.

  20. Unpacking "Health Reform" and "Policy Capacity": Comment on "Health Reform Requires Policy Capacity".

    PubMed

    Legge, David; Gleeson, Deborah H

    2015-07-20

    Health reform is the outcome of dispersed policy initiatives in different sectors, at different levels and across time. Policy work which can drive coherent health reform needs to operate across the governance structures as well as the institutions that comprise healthcare systems. Building policy capacity to support health reform calls for clarity regarding the nature of such policy work and the elements of policy capacity involved; and for evidence regarding effective strategies for capacity building. © 2015 by Kerman University of Medical Sciences.

  1. Sol-gel synthesis and luminescent properties of red-emitting Y(P,V)O4:Eu(3+) phosphors.

    PubMed

    Zhang, Xinguo; Zhou, Fangxiang; He, Pei; Zhang, Min; Gong, Menglian

    2016-02-01

    Eu(3+)-activated Y(P,V)O4 phosphors were prepared by the EDTA sol-gel method, and the corresponding morphologies and luminescent properties were investigated. The sample particles were relatively spheroid with size of 2-3 µm and had a smooth surface. The excitation spectra for Y(P,V)O4:Eu(3+) consisted of three strong excitation bands in the 200-350 nm range, which were attributed to a Eu(3+)- O(2-) charge-transfer band and (1)A1-(1) T1/(1) T2 transitions in VO4(3-). The as-synthesized phosphors exhibited a highly efficient red luminescence at 613 nm due to the Eu(3+5) D0-(7) F2 electric dipole transition. With the increase in the V(5+)/P(5+) ratio, the luminescence intensity of the red phosphor under UV excitation was greatly improved due to enhanced VO4(3-) → Eu(3+) energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.

  2. A new LDMI decomposition approach to explain emission development in the EU: individual and set contribution.

    PubMed

    Madaleno, Mara; Moutinho, Victor

    2017-04-01

    This study breaks down carbon emissions into six effects within the current 28 European Union (EU) countries group, thereafter, they are divided into two different groups (the first 15 countries (EU-15) and the last 13 entering the EU (EU13)). Country-specific highlights are also examined. It analyses the evolution of the effects using a data span that runs from 1990 to 2014, to determine which of them had more impact on the intensity of emissions, while also breaking down the complete period into two distinct periods (before the Kyoto protocol (1990-2004) and after Kyoto (2005-2014)). In order to add more knowledge to the current literature, both the additive and multiplicative decomposition techniques were used to examine carbon dioxide (CO 2 ) emissions and the selected six components: carbon intensity, fossil fuel consumption, energy intensity, oil imports intensity, oil dependence, and population effect. Results point to different adapting velocities for Kyoto targets and necessary compromises. The different velocities were translated into different positive and negative impacts in the change of behavior of CO 2 emissions throughout Europe. A stress in the fluctuations in CO 2 variations before and after Kyoto and between the two different groups of EU countries could be noticed. Moreover, energy intensity and per capita dependence of oil products were identified as the major responsible components for the total and negative changes of emissions in recent years. A decrease in total changes of emissions is observed due to the fossil fuel energy consumption effect and total petroleum products effects. It is possible to infer from here that increased renewable capacity is contributing in a positive way to eco-efficiency, and should therefore be accounted for in national policymakers' decisions in the strongest way possible. Results also seem to indicate that per capita dependence of oil products has decreased, despite oil imports intensity constancy and increased

  3. Hydrogen Production via a High-Efficiency Low-Temperature Reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul KT Liu; Theo T. Tsotsis

    2006-05-31

    Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposedmore » to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18

  4. The magnetic structure of EuCu 2Sb 2

    DOE PAGES

    Ryan, D. H.; Cadogan, J. M.; Anand, V. K.; ...

    2015-05-06

    Antiferromagnetic ordering of EuCu 2Sb 2 which forms in the tetragonal CaBe 2Ge 2-type structure (space group P4/nmm #129) has been studied using neutron powder diffraction and 151Eu Mössbauer spectroscopy. The room temperature 151Eu isomer shift of –12.8(1) mm/s shows the Eu to be divalent, while the 151Eu hyperfine magnetic field (B hf) reaches 28.7(2) T at 2.1 K, indicating a full Eu 2+ magnetic moment. B hf(T) follows a smoothmore » $$S=\\frac{7}{2}$$ Brillouin function and yields an ordering temperature of 5.1(1) K. Refinement of the neutron diffraction data reveals a collinear A-type antiferromagnetic arrangement with the Eu moments perpendicular to the tetragonal c-axis. As a result, the refined Eu magnetic moment at 0.4 K is 7.08(15) μ B which is the full free-ion moment expected for the Eu 2+ ion with $$S=\\frac{7}{2}$$ and a spectroscopic splitting factor of g = 2.« less

  5. Effect of Eu substitution on superconductivity in Ba{sub 8−x}Eu{sub x}Al{sub 6}Si{sub 40} clathrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lihua; Bi, Shanli; Peng, Bailu

    2015-05-07

    The silicon clathrate superconductor is uncommon as its structure is dominated by strong Si-Si covalent bonds, rather than the metallic bond, that are more typical of traditional superconductors. To understand the influence of large magnetic moment of Eu on superconductivity for type-I clathrates, a series of samples with the chemical formula Ba{sub 8−x}Eu{sub x}Al{sub 6}Si{sub 40} (x = 0, 0.5, 1, and 2) were synthesised in which Eu occupied Ba sites in cage center. With the increase of Eu content, the cubic lattice parameter decreases monotonically signifying continuous shrinkage of the constituting (Ba/Eu)@Si{sub 20} and (Ba/Eu)@Si{sub 24} cages. The temperature dependence ofmore » magnetization at low temperature revealed that Ba{sub 8}Al{sub 6}Si{sub 40} is superconductive with transition temperature at T{sub C} = 5.6 K. The substitution of Eu for Ba results in a strong superconductivity suppression; Eu-doping largely decreases the superconducting volume and transition temperature T{sub C}. Eu atoms enter the clathrate lattice and their magnetic moments break paired electrons. The Curie-Weiss temperatures were observed at 3.9, 6.6, and 10.9 K, respectively, for samples with x = 0.5, 1.0, and 2.0. Such ferromagnetic interaction of Eu can destroy superconductivity.« less

  6. [Health reform in the USA].

    PubMed

    Ganduglia, Cecilia

    2010-01-01

    The United States of America passed early this year the bill enforcing their health reform. this reform aims at achieving universal insurance, cost containment and improving quality of care. The debate around this reform has been long and unable to arrive to an agreement between the parts. Even if the expansion in the medical coverage system does not reduce to zero the current degree of inaccessibility to the health system, these achievements could be considered a very important first step. Nonetheless, chances are that this reform will continue being as polemic as the negotiations previous to its conception.

  7. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects.

    PubMed

    Li, Di; Li, Xinyu; Gong, Jinlong

    2016-10-12

    This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.

  8. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  9. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  10. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  11. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1985-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  12. Multiple magnetic transitions in EuNiSi3

    NASA Astrophysics Data System (ADS)

    Patil, Sujata M.; Paulose, P. L.

    2018-04-01

    EuNiSi3 undergoes multiple magnetic transitions below 50K. We have studied this system using low field ac susceptibility and 151Eu Mössbauer spectroscopy to understand the nature of multiple magnetic transitions. The estimated hyperfine field (hf) at Eu site at 5K is 45 Tesla which is unusually large compared to the normal observed hf of 33T in most of the Eu intermetallics.

  13. Performance of KCl:Eu2+ storage phosphor dosimeters for low dose measurements

    PubMed Central

    Li, H. Harold; Hansel, Rachael; Knutson, Nels; Yang, Deshan

    2013-01-01

    Recent research has demonstrated that europium doped potassium chloride (KCl:Eu2+) storage phosphor material has the potential to become the physical foundation of a novel and reusable dosimetry system using either film-like devices or devices similar to thermoluminescent dosimeter (TLD) chips. The purposes of this work are to quantify the performance of KCl:Eu2+ prototype dosimeters for low dose measurements and to demonstrate how it can be incorporated into clinical application for in vivo peripheral dose measurements. Pellet-style KCl:Eu2+ dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The dosimeters were read using a laboratory photostimulated luminescence detection system. KCl:Eu2+ prototype storage phosphor dosimeter was capable of measuring a dose-to-water as low as 0.01 cGy from a 6 MV photon beam with a signal-to-noise ratio greater than 6. A pre-readout thermal annealing procedure enabled the dosimeter to be read within an hour post irradiation. After receiving large accumulated doses (~10 kGy), the dosimeters retained linear response in the low dose region with only a 20 percent loss of sensitivity comparing to a fresh sample (zero Gy history). The energy-dependence encountered during low dose peripheral measurements could be accounted for via a single point outside-field calibration per each beam quality. With further development the KCl:Eu2+− based dosimeter could become a versatile and durable dosimetry tool with large dynamic range (sub-cGy to 100 Gy). PMID:23735856

  14. A Policy Guide on Integrated Care (PGIC): Lessons Learned from EU Project INTEGRATE and Beyond

    PubMed Central

    Devroey, Dirk

    2017-01-01

    Efforts are underway in many European countries to channel efforts into creating improved integrated health and social care services. But most countries lack a strategic plan that is sustainable over time, and that reflects a comprehensive systems perspective. The Policy Guide on Integrated Care (PGIC) as presented in this paper resulted from experiences with the EU Project INTEGRATE and our own work with healthcare reform for patients with chronic conditions at the national and international level. This project is one of the largest EU funded projects on Integrated Care, conducted over a four-year period (2012–2016) and included partners from nine European countries. Project Integrate aimed to gain insights into the leadership, management and delivery of integrated care to support European care systems to respond to the challenges of ageing populations and the rise of people living with long-term conditions. The objective of this paper is to describe the PGIC as both a tool and a reasoning flow that aims at supporting policy makers at the national and international level with the development and implementation of integrated care. Any Policy Guide on Integrated should build upon three building blocks, being a mission, vision and a strategy that aim at capturing the large amount of factors that directly or indirectly influence the successful development of integrated care. PMID:29588631

  15. A Policy Guide on Integrated Care (PGIC): Lessons Learned from EU Project INTEGRATE and Beyond.

    PubMed

    Borgermans, Liesbeth; Devroey, Dirk

    2017-09-25

    Efforts are underway in many European countries to channel efforts into creating improved integrated health and social care services. But most countries lack a strategic plan that is sustainable over time, and that reflects a comprehensive systems perspective. The Policy Guide on Integrated Care (PGIC) as presented in this paper resulted from experiences with the EU Project INTEGRATE and our own work with healthcare reform for patients with chronic conditions at the national and international level. This project is one of the largest EU funded projects on Integrated Care, conducted over a four-year period (2012-2016) and included partners from nine European countries. Project Integrate aimed to gain insights into the leadership, management and delivery of integrated care to support European care systems to respond to the challenges of ageing populations and the rise of people living with long-term conditions. The objective of this paper is to describe the PGIC as both a tool and a reasoning flow that aims at supporting policy makers at the national and international level with the development and implementation of integrated care. Any Policy Guide on Integrated should build upon three building blocks, being a mission, vision and a strategy that aim at capturing the large amount of factors that directly or indirectly influence the successful development of integrated care.

  16. Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-performance Scintillator for Radiation Detection Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A

    2013-01-01

    Single-crystal strontium iodide (SrI2) doped with relatively high levels (e.g., 3 - 6 %) of Eu2+ exhibits characteristics that make this material superior, in a number of respects, to other scintillators that are currently used for radiation detection. Specifically, SrI2:Eu2+ has a light yield that is significantly higher than LaBr3:Ce3+ -a currently employed commercial high-performance scintillator. Additionally, SrI2:Eu2+ is characterized by an energy resolution as high as 2.6% at the 137Cs gamma-ray energy of 662 keV, and there is no radioactive component in SrI2:Eu2+ - unlike LaBr3:Ce3+ that contains 138La. The Ce3+-doped LaBr3 decay time is, however, faster (30 nsec)more » than the 1.2 sec decay time of SrI2:Eu2+. Due to the relatively low melting point of strontium iodide (~515 oC), crystal growth can be carried out in quartz crucibles by the vertical Bridgman technique. Materials-processing and crystal-growth techniques that are specific to the Bridgman growth of europium-doped strontium iodide scintillators are described here. These techniques include the use of a porous quartz frit to physically filter the molten salt from a quartz antechamber into the Bridgman growth crucible and the use of a bent or bulb grain selector design to suppress multiple grain growth. Single crystals of SrI2:Eu2+ scintillators with good optical quality and scintillation characteristics have been grown in sizes up to 5.0 cm in diameter by applying these techniques. Other aspects of the SrI2:Eu2+ crystal-growth methods and of the still unresolved crystal-growth issues are described here.« less

  17. Health Reform Redux: Learning From Experience and Politics

    PubMed Central

    2009-01-01

    The 2008 presidential campaign season featured health care reform proposals. I discuss 3 approaches to health care reform and the tools for bringing about reform, such as insurance market reforms, tax credits, subsidies, individual and employer mandates, and public program expansions. I also discuss the politics of past and current health care reform efforts. Market-based reforms and mandates have been less successful than public program expansions at expanding coverage and controlling costs. New divisions among special interest groups increase the likelihood that reform efforts will succeed. Federal support for state efforts may be necessary to achieve national health care reform. History suggests that state-level success precedes national reform. History also suggests that an organized social movement for reform is necessary to overcome opposition from special interest groups. PMID:19299668

  18. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transportedmore » and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.« less

  19. Improving Competition: Reforming the Requirements Process

    DTIC Science & Technology

    2016-07-01

    45 Defense AT&L: July-August 2016 Improving Competition Reforming the Requirements Process Roy Wood, Ph.D. Wood is the Acting Vice President...professional. T ypical acquisition reform efforts have been focused in the margins, achiev­ ing marginal results. The evidence of decades of...acquisition reform indicates that the marginal reforms typically taken are not making the funda­ mental changes needed by the Department of Defense (DoD

  20. European Energy Policy and Its Effects on Gas Security

    NASA Astrophysics Data System (ADS)

    Radu, Victorita Stefana Anda

    The goal of this study is to examine the effects of the energy policies of the European Union (EU) on its gas security in the period 2006 to 2016. While energy security is often given a broad meaning, this paper focuses on its external dimension: the EU?s relations with external gas suppliers. It is grounded on four pillars drawing from the compounded institutionalist and liberal theoretical frameworks: regulatory state, rational-choice, external governance, and regime effectiveness. The research question was investigated through a qualitative methodology with two main components: a legislative analysis and four case studies representing the main gas supply options--Russia, North African exporting countries, Norway, and liquefied natural gas (LNG). They highlighted that the EU framed the need for gas security mainly in the context of political risks associated with Russian gas supply, but it almost never took into account other equally important risks. Moreover, the research revealed two main issues. First, that the deeper and the more numerous EU?s energy policies were, the bigger was the magnitude of the effect. Specifically, competitiveness and infrastructure policies had the largest magnitude, while the sustainability and security of supply policies had the smallest effect. Second, EU energy policies only partially diminished the economic and political risks in relation to foreign gas suppliers. To conclude, to a certain extent the EU?s efforts made a positive contribution to the external dimension of the EU?s gas security, but the distinguishing trait remains that there is no consistency in terms of the magnitude of the effect and its nature.

  1. Working on reform. How workers' compensation medical care is affected by health care reform.

    PubMed Central

    Himmelstein, J; Rest, K

    1996-01-01

    The medical component of workers' compensation programs-now costing over $24 billion annually-and the rest of the nation's medical care system are linked. They share the same patients and providers. They provide similar benefits and services. And they struggle over who should pay for what. Clearly, health care reform and restructuring will have a major impact on the operation and expenditures of the workers' compensation system. For a brief period, during the 1994 national health care reform debate, these two systems were part of the same federal policy development and legislative process. With comprehensive health care reform no longer on the horizon, states now are tackling both workers' compensation and medical system reforms on their own. This paper reviews the major issues federal and state policy makers face as they consider reforms affecting the relationship between workers' compensation and traditional health insurance. What is the relationship of the workers' compensation cost crisis to that in general health care? What strategies are being considered by states involved in reforming the medical component of workers compensation? What are the major policy implications of these strategies? Images p13-a p14-a p15-a p16-a p18-a p19-a p20-a p22-a p24-a PMID:8610187

  2. Effects of composition modulation on the luminescence properties of Eu(3+) doped Li1-xAgxLu(MoO4)2 solid-solution phosphors.

    PubMed

    Cheng, Fangrui; Xia, Zhiguo; Molokeev, Maxim S; Jing, Xiping

    2015-11-07

    Double molybdate scheelite-type solid-solution phosphors Li1-xAgxLu1-y(MoO4)2:yEu(3+) were synthesized by the solid state reaction method, and their crystal structures and luminescence properties were investigated in detail. The composition modulation and structural evolution of this series of samples were studied and the selected AgEu(MoO4)2, AgLu(MoO4)2, LiLu(MoO4)2 and LiEu(MoO4)2 phases were analyzed based on the Rietveld refinement. Depending on the variation of the Li/Ag ratio in Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors, the difference in the luminescence properties of Li1-xAgxLu1-y(MoO4)2:yEu(3+) phosphors was ascribed to two factors, one reason could be assigned to the coupling effect and the nonradiative transition between the energy levels of LixAg1-xLu(MoO4)2 matrices and the activator Eu(3+), another could be due to the near ultraviolet energy absorption and transmission efficiency between the charge-transfer (CT) band of O(2-)-Mo(6+) and the 4f → 4f emissive transitions of Eu(3+). The ultraviolet-visible diffuse reflection spectra (UV-vis DRS) and Raman spectra analysis were also used to verify the above mechanism.

  3. Slab reformer

    DOEpatents

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  4. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE PAGES

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw; ...

    2018-03-15

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  5. Bulk electronic structure of non-centrosymmetric EuTGe 3 (T=Co, Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemys?aw

    Non-centrosymmetric EuTGe 3 ( T = Co, Ni, Rh, and Ir) possesses magnetic Eu 2+ ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge 3 ( T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3d core-level spectrum confirms the robust Eu 2+ valence state against the transition-metal substitutionmore » with a small contribution from Eu 3+ . The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2p spectrum shifts to higher binding energy upon cha nging the transition metal from 3d to 4d to 5d elements, hinting at a change in the Ge- T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.« less

  6. Health reform: a bipartisan view.

    PubMed

    Cooper, Jim; Castle, Michael

    2009-01-01

    This optimistic assessment of the prospects for health reform from senior Democratic and Republican congressmen spells out several reasons why reform can be achieved early in the first year of the Obama administration. Political and policy factors suggest that President-elect Barack Obama is in a much better position than his predecessors to achieve comprehensive health reform, including universal coverage. The Obama administration will have to overcome numerous obstacles and resistance to enact reform. Still, after decades of frustration and disappointment, policymakers should set aside their differences and enable the United States to join the ranks of developed nations by making sure every American has health insurance.

  7. Steam reformer with catalytic combustor

    DOEpatents

    Voecks, Gerald E.

    1990-03-20

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  8. Steam reformer with catalytic combustor

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  9. Synthesis and luminescence properties of KSrPO4:Eu2+ phosphor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Palan, C. B.; Bajaj, N. S.; Omanwar, S. K.

    2016-05-01

    The KSrPO4:Eu phosphor was synthesized via solid state method. The structural and morphological characterizations were done through XRD (X-ray diffraction) and SEM (Scanning Electronic Microscope). Additionally, the photoluminescence (PL), thermoluminescence (TL) and optically Stimulated luminescence (OSL) properties of powder KSrPO4:Eu were studied. The PL spectra show blue emission under near UV excitation. It was advocated that KSrPO4:Eu phosphor not only show OSL sensitivity (0.47 times) but also gives faster decay in OSL signals than that of Al2O3:C (BARC) phosphor. The TL glow curve consist of two shoulder peaks and the kinetics parameters such as activation energy and frequency factors were determined by using peak shape method and also photoionization cross-sections of prepared phosphor was calculated. The radiation dosimetry properties such as minimum detectable dose (MDD), dose response and reusability were reported.

  10. Metallic behavior induced by potassium doping of the trigonal antiferromagnetic insulator EuMn 2 As 2

    DOE PAGES

    Anand, V. K.; Johnston, D. C.

    2016-07-22

    Here, we report magnetic susceptibility χ, isothermal magnetization M, heat capacity C p, and electrical resistivity ρ measurements on undoped EuMn 2As 2 and K-doped Eu 0.96K 0.04Mn 2As 2 and Eu 0.93K 0.07Mn 2As 2 single crystals with the trigonal CaAl 2Si 2-type structure as a function of temperature T and magnetic field H. EuMn 2As 2 has an insulating ground state with an activation energy of 52 meV and exhibits antiferromagnetic (AFM) ordering of the Eu +2 spins S=7/2 at T N1=15 K from C p(T) and χ(T) data with a likely spin-reorientation transition at T N2=5.0 K.more » The Mn +2 3d 5 spins-5/2 exhibit AFM ordering at T N=142 K from all three types of measurements. The M(H) isotherm and χ(T) data indicate that the Eu AFM structure is both noncollinear and noncoplanar. The AFM structure of the Mn spins is also unclear. A 4% substitution of K for Eu in Eu 0.96K 0.04Mn 2As 2 is sufficient to induce a metallic ground state. We found evidence for a difference in the AFM structure of the Eu moments in the metallic crystals from that of undoped EuMn 2As 2 versus both T and H. For metallic Eu 0.96K 0.04Mn 2As 2 and Eu 0.93K 0.07Mn 2As 2, an anomalous S-shape T dependence of ρ related to the Mn magnetism is found. Upon cooling from 200 K, ρ exhibits a strong negative curvature, reaches maximum positive slope at the Mn T N≈150 K, and then continues to decrease but more slowly below T N. Finally, this suggests that dynamic short-range AFM order of the Mn spins above the Mn T N strongly suppresses the resistivity, contrary to the conventional decrease of ρ that is only observed upon cooling below T N of an antiferromagnet.« less

  11. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands

    NASA Astrophysics Data System (ADS)

    Kong, Deyong; Qin, Cui; Fan, Ping; Li, Bing; Wang, Jun

    2015-04-01

    An novel aromatic aminopolycarboxylic acid ligand, N-(2-N,N-Dicarboxymethylaminophenyl) ethylenediamine-N,N‧,N‧-triacetic acid (H5ph-dtpa), was synthesized by improving experimental method and its corresponding Eu(III) complex, Na2[EuIII(ph-dtpa)(H2O)]·6H2O, was successfully prepared through heat-refluxing method. As a comparison, the Eu(III) complex with diethylenetriamine-N,N,N‧,N‧,N″-pentaacetic acid (H5dtpa) ligand, Na2[EuIII(dtpa)(H2O)]·6H2O, was also prepared by the same method. And then, the interaction between prepared Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and bovine serum albumin (BSA) in aqueous solution were studied by the combination of ultraviolet-visible (UV-vis), fluorescence and circular dichroism (CD) spectroscopies. In addition, the binding sites of Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) to BSA molecules were also estimated by synchronous fluorescence. Moreover, the theoretical and experimental results show that the Van der Waals, hydrogen bond and π-π stacking interactions are the mainly impulse to the reaction. The binding distances (r) between Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and BSA were obtained according to Förster's non-radiative energy transfer theory. Also, the determined UV-vis absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) spectra showed that the conformation of BSA could be changed in the presence of Eu(III) complexes. The obtained results can help understand the action mode between rare earth metal complexes of aminopolycarboxylic acid ligands with BSA and they are also expected to provide important information of designs of new inspired drugs.

  12. Luminescence of Eu:Y3Al5O12, Eu:Lu3Al5O12, and Eu:GdAlO3 Nanocrystals Synthesized by Solution Combustion

    NASA Astrophysics Data System (ADS)

    Vilejshikova, E. V.; Khort, A. A.; Podbolotov, K. B.; Loiko, P. A.; Shimanski, V. I.; Shashkov, S. N.; Yumashev, K. V.

    2017-11-01

    Nanocrystals of rare-earth garnets Y3Al5O12 and Lu3Al5O12 and perovskite GdAlO3 highly doped (10-20 at%) with Eu3+ are synthesized by the solution combustion technique and subsequent annealing in air at 800 and 1300oC. Their structure, morphology, and phase composition are studied. These materials exhibit intense red luminescence under UV excitation. Eu:GdAlO3 luminescence has CIE 1931 color coordinates (0.632, 0.368); dominant wavelength, 599.6 nm; and color purity, >99%. Judd-Ofelt parameters, luminescence branching ratios, and lifetimes of the Eu3+ 5D0 state are determined. The luminescence quantum yield for Eu:GdAlO3 (10 at%) reaches 74% with a lifetime of 1.4 ms for the 5D0 state. The synthesized materials are promising for red ceramic phosphors.

  13. 25 years of European Union (EU) quality schemes for agricultural products and foodstuffs across EU Member States.

    PubMed

    Albuquerque, Tânia G; Oliveira, M Beatriz Pp; Costa, Helena S

    2018-05-01

    Consumers are increasingly turning their attention to the quality and origin of products that they consume. European Union (EU) quality schemes are associated with a label, which was introduced to allow consumers to perform an informed choice and to protect producers from unfair practices. This present study provides an overview of the last 25 years of EU quality schemes [Protected Designations of Origin (PDO), Protected Geographical Indications (PGI) and Traditional Specialities Guaranteed (TSG)] on agricultural products and foodstuffs across the 28 EU Member States. According to the results, it was possible to conclude that Southern European countries have the highest number of registered products. The most used EU quality scheme is PGI, followed by PDO. Concerning the analysis of the evolution in the last 25 years, the number of registered products among EU Member States has increased significantly. The fruit, vegetables and cereals (fresh or processed) category is the one that accounts for the highest percentage (26.8%) of registered products, followed by cheeses and meat products (cooked, salted, smoked) categories, with 17.2% and 13.5%, respectively. Further investigations should address consumer preferences, knowledge and attitudes, especially Northern European countries with a lower number of registered products. Moreover, the investigation and registration of products should be encouraged among all EU Member States to allow the maintenance of important elements of the history, culture and heritage of the local areas, regions and countries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Luminescence properties of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} (R{sup +}=Li{sup +}, Na{sup +}, and K{sup +}) red emission phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Renping, E-mail: jxcrp@163.com; Chen, Guo; Yu, Xiaoguang

    2014-12-15

    A series of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, R{sup +}, and Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} (R{sup +}=Li{sup +}, Na{sup +}, and K{sup +}) phosphors are synthesized by solid-state reaction method in air. All phosphors show bright red emissions centered at ∼617 nm upon excitation with UV light of 397 nm. Bi{sup 3+} is a sensitizer for the luminescence of Eu{sup 3+}, and can improve significantly the PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+} phosphor due to energy transfer between Bi{sup 3+} andmore » Eu{sup 3+} ions. The sensitization mechanism is investigated and discussed by energy level diagrams of Bi{sup 3+} and Eu{sup 3+} ions. R{sup +} ion is used as the charge compensator to improve the luminescence intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+} and Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphors, and their PL intensities are enhanced in the sequence K{sup +}→Na{sup +}→Li{sup +}. These phosphors can be promising red emitting candidate for white LED with a ∼397 nm near UV chip excitation owing to the high brightness. - Graphical abstract: Energy transfer and charge compensation can enhance PL intensity of phosphors obviously. - Highlights: • Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor is synthesized. • Energy transfer between Eu{sup 3+} and Bi{sup 3+} ions benefit PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor. • Alkaline metal ions can further improve the PL intensity of Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+} phosphor. • Ca{sub 3}Ti{sub 2}O{sub 7}:Eu{sup 3+}, Bi{sup 3+}, R{sup +} phosphor may be promising red emitting candidate for white LED.« less

  15. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.

    PubMed

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2015-02-01

    Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848  cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures.

  16. New ternary phosphides and arsenides. Syntheses, crystal structures, physical properties of Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Xia, Sheng-Qing, E-mail: shqxia@sdu.edu.cn; Tao, Xu-Tang

    2013-09-15

    Three new europium pnictides Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3} have been synthesized and their structures were determined by single-crystal X-ray diffraction. Eu{sub 2}ZnP{sub 2} is isotypic with Yb{sub 2}CdSb{sub 2} (Cmc2{sub 1} (No. 36); cell parameters a=4.1777(7) Å, b=15.925(3) Å, c=7.3008(12) Å), while the latter two compounds crystallize with the Ba{sub 2}Cd{sub 2}Sb{sub 3} structure type (C2/m (No. 12); cell parameters a=15.653(5)/16.402(1) Å, b=4.127(1)/4.445(4) Å, c=11.552(4)/12.311(1) Å and β=126.647(4)/126.515(7)° for Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}, respectively). Magnetic susceptibility measurements in the interval 5–300 K confirm paramagnetic behavior and effectivemore » magnetic moments characteristic of Eu{sup 2+} ([Xe] 4f{sup 7}) ground states. Temperature-dependent electrical conductivity measurements also prove that Eu{sub 2}Cd{sub 2}As{sub 3} is a semiconducting compound with a narrow band gap of 0.059 eV below 100 K. According to TG/DSC analyses, Eu{sub 2}Cd{sub 2}As{sub 3} starts to decompose at about 950 K. - Graphical abstract: A polyhedral view of the crystal structure of new pnictides Eu{sub 2}T{sub 2}Pn{sub 3} (T=Zn or Cd; Pn=P or As). Display Omitted - Highlights: • Three new ternary pnictide Zintl compounds, Eu{sub 2}ZnP{sub 2}, Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}, have been synthesized and characterized. • The europium cations are divalent and ferromagnetically coupled in both Eu{sub 2}Zn{sub 2}P{sub 3} and Eu{sub 2}Cd{sub 2}As{sub 3}. • Eu{sub 2}Cd{sub 2}As{sub 3} has a very small band gap of 0.06 eV and starts to decompose over 950 K.« less

  17. Russian Military Reform: Problems and Challenges

    DTIC Science & Technology

    2010-03-25

    RUSSIAN MILITARY REFORM : PROBLEMS AND CHALLENGES BY LIEUTENANT COLONEL ZURAB AGLADZE Georgian Army...USAWC STRATEGIC REASERCH PROJECT RUSSIAN MILITARY REFORM : PROBLEMS AND CHALLENGES by Lieutenant Colonel...noncommissioned officers still continue to be unsolved. Despite some successes, Russian military reform still faces many challenges that will

  18. Host-sensitized luminescence properties in CaNb2O6:Ln(3+) (Ln(3+) = Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+)) phosphors with abundant colors.

    PubMed

    Li, Kai; Liu, Xiaoming; Zhang, Yang; Li, Xuejiao; Lian, Hongzhou; Lin, Jun

    2015-01-05

    A series of Ln(3+) (Ln(3+) = Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+)) ion doped CaNb2O6 (CNO) phosphors have been prepared via the conventional high-temperature solid-state reaction route. The X-ray diffraction (XRD) and structure refinement, diffuse reflection, photoluminescence (PL), and fluorescent decay curves were used to characterize the as-prepared samples. Under UV radiation, the CNO host present a broad emission band from about 355 to 605 nm centered around 460 nm originating from the NbO6 octahedral groups, which has spectral overlaps with the excitation of f-f transitions of Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) in CNO:Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) samples. They show both host emission and respective emission lines derived from the characteristic f-f transitions of activators, which present different emission colors owing to the energy transfer from the NbO6 group in the host to Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) with increasing activator concentrations. The decreases of decay lifetimes of host emissions in CNO:Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+) demonstrate the energy transfer from the hosts to Eu(3+)/Tb(3+)/Dy(3+)/Sm(3+). The energy transfer mechanisms in CNO:Eu(3+)/Tb(3+)/Dy(3+) phosphors have been determined to be a resonant type via dipole-dipole mechanisms. For CNO:Sm(3+), the metal-metal charge transfer transition (MMCT) might contribute to the different variations of decay lifetimes and emission intensity from CNO:Eu(3+)/Tb(3+)/Dy(3+) samples. The best quantum efficiency is 71.2% for CNO:0.01/0.02Dy(3+). The PL properties of as-prepared materials indicate the promising application in UV-pumped white-emitting lighting diodes field.

  19. The Public Mind: Views of Pennsylvania Citizens. Smoking, Education, Tax Reform, Crime Control, Welfare Reform, Health Care Reform. Report No. 6.

    ERIC Educational Resources Information Center

    Mansfield Univ., PA. Rural Services Inst.

    The sixth annual survey conducted by the Rural Services Institute examined the opinions of Pennsylvania residents on crime control, welfare reform, smoking, and education reform proposals. Sixty percent of respondents believed that the most urgent issue facing Pennsylvania was violent crime and strongly supported measures to reduce the…

  20. Tunable photoluminescence properties of Ca{sub 8}NaLa(PO{sub 4}){sub 6}F{sub 2}:Eu{sup 2+},Mn{sup 2+} phosphor under UV excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fen; Lan, Tong; Tang, Wanjun, E-mail: tangmailbox@126.com

    2015-04-15

    Highlights: • Ca{sub 8}NaLa(PO{sub 4}){sub 6}F{sub 2}:Eu{sup 2+},Mn{sup 2+} was prepared by a combustion-assisted synthesis method. • The phosphor presents blue and yellow double color emissions. • Efficient energy transfer from Eu{sup 2+} to Mn{sup 2+} in this phosphor is observed obviously. • White emitting was realized in Ca{sub 8}NaGd(PO{sub 4}){sub 6}F{sub 2}:0.10Eu{sup 2+},0.32Mn{sup 2+},0.10B phosphor. - Abstract: A series of Eu{sup 2+} and Mn{sup 2+} coactivated Ca{sub 8}NaLa(PO{sub 4}){sub 6}F{sub 2} (CNLF) phosphors have been synthesized by a combustion-assisted synthesis method. The investigation revealed that Ca{sub 8}NaLa(PO{sub 4}){sub 6}F{sub 2} crystallized in a hexagonal crystal system with the spacemore » group P6{sub 3}/m (176). The Eu{sup 2+} activated phosphors can be efficiently excited in the range of 270–400 nm and give intense blue emission peaking at 451 nm. By codoping the Eu{sup 2+} and Mn{sup 2+} ions into the CNLF host and singly varying the doping content of the Mn{sup 2+} ion, tunable colors from blue to white and eventually to yellow are obtained in CNLF:Eu{sup 2+},Mn{sup 2+} phosphors under the irradiation of 330 nm. The energy transfer from Eu{sup 2+} to Mn{sup 2+} in CNLF:Eu{sup 2+},Mn{sup 2+} has been demonstrated to be a resonant type via a dipole–dipole mechanism and the critical distance of energy transfer from Eu{sup 2+} to Mn{sup 2+} was estimated to be about 11.9 Å. The investigation indicates that the obtained samples might have potential application in white LEDs.« less

  1. Physical, structural and luminescence investigation of Eu3+-doped lithium-gadolinium bismuth-borate glasses for LEDs

    NASA Astrophysics Data System (ADS)

    Zaman, F.; Rooh, G.; Srisittipokakun, N.; Wongdeeying, C.; Kim, H. J.; Kaewkhao, J.

    2018-06-01

    The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.

  2. Structure, thermal and luminescence properties of Eu/Tb(BA)3phen/PAN fibers fabricated by electrospinning

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Xie, Guangbo; Zhang, Jingjing; Zhang, Sen; Li, Tingju

    2018-04-01

    Novel high luminescence fibers often exhibit potential applications in the fields of color displays and sensor systems. In this study, Eu(BA)3phen and Tb(BA)3phen powders was successfully synthesized by solvothermal reactions, firstly. Then, three kinds of novel flexible Eu(BA)3phen/PAN, Tb(BA)3phen/PAN and Eu/Tb(BA)3phen/PAN (BA = benzoic acid, phen = phenanthroline, PAN = Polyacrylonitrile) fibers had been successfully prepared by electrospinning technology. The characterizations of the final products have been investigated in detail. It was found that the diameter of the as-prepared fibers were almost uniform with the fabricated complexes doping into PAN successfully. Thermogravimetric analysis indicates that the thermal stability of the pure PAN fiber could be improved by the incorporation of the complex, although only 1 wt % was added. Furthermore, in Eu/Tb(BA)3phen complex, the fluorescence intensity of Eu3+ ions was remarkably increased by adding Tb3+ ions. This is primarily due to an energy transfer from the 5D4 level of Tb (III) to the 5D0 level of Eu (III) ions, where Tb3+ acted as sensitizer. The corresponding luminescent fibers displayed the same regularity as the complexes. Moreover, with the increasing of the incorporation of complexes into PAN, the fluorescence intensities were significantly enhanced and reached its maximum value at 2.5 wt % for Eu(BA)3phen/PAN fibers and 2.0 wt% for Tb(BA)3phen/PAN fibers. The further intensity decreased with the increasing content of the complexes because of typical emission concentration quenching.

  3. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  4. The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes.

    PubMed

    Han, Xiumei; Feng, Xu; Qi, Xiwei; Wang, Xiaoqiang; Li, Mingya

    2014-05-01

    Bi3+, Eu3+, Dy3+ activated Y2O3 phosphors were prepared through the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, and photoluminescence (PL) spectra were used to characterize the resulting phosphors. The XRD patterns show the refined crystal structure of Y2O3. The energy transfer processes of Bi(3+)-Eu3+ occurred in the host lattices. The thermal stability of Y2O3:Bi3+, Eu3+, Dy3+ phosphors was studied. Under short wavelength UV excitation, the phosphors show excellent characteristic red, blue, and yellow emission with medium intensity.

  5. A Framework for Appraising Educational Reforms.

    ERIC Educational Resources Information Center

    House, Ernest R.

    1996-01-01

    Discusses the use of transaction-cost economics in measuring the impact of educational reforms and whether these reforms are likely to succeed in the "real life" of schools. Several current educational reforms are judged on the basis of their transaction costs and consequent prospects for success. (GR)

  6. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  7. Tuning the structure of CsCaI3:Eu via substitution of bromine for iodine

    NASA Astrophysics Data System (ADS)

    Loyd, M.; Lindsey, A.; Stand, L.; Zhuravleva, M.; Melcher, C. L.; Koschan, M.

    2017-06-01

    CsCaI3:Eu is a promising scintillator material that can be grown from the melt, but undergoes a tetragonal to orthorhombic phase transition upon cooling at 255 °C, causing twinning and cloudiness. The purpose of this work is to suppress this solid to solid phase transition in the CsCaI3:Eu scintillator, which has a light yield of ∼40000 ph/MeV and energy resolution at 662 keV of ∼4%, by halide replacement to form the compound CsCaBrxI3-x. Crystals 8 cm3 in volume were grown using the vertical Bridgman method with varying bromine content from x = 0.2 to x = 1, resulting in improved transparency for crystals with bromine content x > 0.6. Powder X-ray diffraction data coupled with differential scanning calorimetry and radioluminescence measurements were used to investigate structural modifications, melting point dependence and spectral emission dependence on the bromine/iodine ratio. Partial replacement of iodine by bromine improves optical quality and scintillation properties by stabilizing the structure, rendering it useful for isotope identification for national security applications. The composition CsCaBr0.8I2.2:Eu was determined to be the best combination of improved structure and performance, and larger 22 and 38 mm Ø crystals were grown for further evaluation. Large size slabs of these crystals showed good crystal quality and improved performance over CsCaI3Eu with 8.4% and 9.5% energy resolution at 662 keV, respectively.

  8. Tailoring the structure and thermoelectric properties of BaTiO3via Eu2+ substitution.

    PubMed

    Xiao, Xingxing; Widenmeyer, Marc; Xie, Wenjie; Zou, Tianhua; Yoon, Songhak; Scavini, Marco; Checchia, Stefano; Zhong, Zhicheng; Hansmann, Philipp; Kilper, Stefan; Kovalevsky, Andrei; Weidenkaff, Anke

    2017-05-31

    A series of Ba 1-x Eu x TiO 3-δ (0.1 ≤ x ≤ 0.9) phases with ∼40 nm particle size were synthesized via a Pechini method followed by annealing and sintering under a reducing atmosphere. The effects of Eu 2+ substitution on the BaTiO 3 crystal structure and the thermoelectric transport properties were systematically investigated. According to synchrotron X-ray diffraction data only cubic perovskite structures were observed. On the local scale below about 20 Å (equal to ∼5 unit cells) deviations from the cubic structure model (Pm3[combining macron]m) were detected by evaluation of the pair distribution function (PDF). These deviations cannot be explained by a simple symmetry breaking model like in EuTiO 3-δ . The best fit was achieved in the space group Amm2 allowing for a movement of Ti and Ba/Eu along 〈110〉 of the parent unit cell as observed for BaTiO 3 . Density functional calculations delivered an insight into the electronic structure of Ba 1-x Eu x TiO 3-δ . From the obtained density of states a significant reduction of the band gap by the presence of filled Eu 2+ 4f states at the top of the valence band was observed. The physical property measurements revealed that barium-europium titanates exhibit n-type semiconducting behavior and at high temperature the electrical conductivity strongly depended on the Eu 2+ content. Activation energies calculated from the electrical conductivity and Seebeck coefficient data indicate that at high temperatures (800 K < T < 1123 K) the conduction mechanism of Ba 1-x Eu x TiO 3-δ (0.1 ≤ x ≤ 0.9) is a polaron hopping when 0 < x ≤ 0.6 and is a thermally activated process when 0.6 < x < 1. Besides, the thermal conductivity increases with increasing Eu 2+ concentration. Due to a remarkable improvement of the power factor, Ba 0.1 Eu 0.9 TiO 3-δ showed a ZT value of 0.24 at 1123 K.

  9. Resonant TMR inversion in LiF/EuS based spin-filter tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fen; Chen, Aixi; Institute for Quantum Computing & Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada

    Resonant tunneling can lead to inverse tunnel magnetoresistance when impurity levels rather than direct tunneling dominate the transport process. We fabricated hybrid magnetic tunnel junctions of CoFe/LiF/EuS/Ti, with an epitaxial LiF energy barrier joined with a polycrystalline EuS spin-filter barrier. Due to the water solubility of LiF, the devices were fully packaged in situ. The devices showed sizeable positive TMR up to 16% at low bias voltages but clearly inverted TMR at higher bias voltages. The TMR inversion depends sensitively on the thickness of LiF, and the tendency of inversion disappears when LiF gets thick enough and recovers its intrinsicmore » properties.« less

  10. Bulk electronic structure of non-centrosymmetric Eu T Ge3 (T =Co , Ni, Rh, Ir) studied by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Utsumi, Yuki; Kasinathan, Deepa; Swatek, Przemysław; Bednarchuk, Oleksandr; Kaczorowski, Dariusz; Ablett, James M.; Rueff, Jean-Pascal

    2018-03-01

    Non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) possesses magnetic Eu2 + ions, and antiferromagnetic ordering appears at low temperatures. Transition-metal substitution leads to changes in the unit-cell volume and in the magnetic ordering. However, the magnetic ordering temperature does not scale with the volume change, and the Eu valence is expected to remain divalent. Here we study the bulk electronic structure of non-centrosymmetric Eu T Ge3 (T = Co, Ni, Rh, and Ir) by hard x-ray photoelectron spectroscopy. The Eu 3 d core-level spectrum confirms the robust Eu2 + valence state against the transition-metal substitution with a small contribution from Eu3 +. The estimated Eu mean valence is around 2.1 in these compounds, as confirmed by multiplet calculations. In contrast, the Ge 2 p spectrum shifts to higher binding energy upon changing the transition metal from 3 d to 4 d to 5 d elements, hinting at a change in the Ge-T bonding strength. The valence bands of the different compounds are found to be well reproduced by ab initio band structure calculations.

  11. Pesticide authorization in the EU-environment unprotected?

    PubMed

    Stehle, Sebastian; Schulz, Ralf

    2015-12-01

    Pesticides constitute an integral part of high-intensity European agriculture. Prior to their authorization, a highly elaborated environmental risk assessment is mandatory according to EU pesticide legislation, i.e., Regulation (EC) No. 1107/2009. However, no field data-based evaluation of the risk assessment outcome, i.e., the regulatory acceptable concentrations (RACs), and therefore of the overall protectiveness of EU pesticide regulations exists. We conducted here a comprehensive meta-analysis using peer-reviewed literature on agricultural insecticide concentrations in EU surface waters and evaluated associated risks using the RACs derived from official European pesticide registration documents. As a result, 44.7 % of the 1566 cases of measured insecticide concentrations (MICs) in EU surface waters exceeded their respective RACs. It follows that current EU pesticide regulations do not protect the aquatic environment and that insecticides threaten aquatic biodiversity. RAC exceedances were significantly higher for insecticides authorized using conservative tier-I RACs and for more recently developed insecticide classes, i.e., pyrethroids. In addition, we identified higher risks, e.g., for smaller surface waters that are specifically considered in the regulatory risk assessment schemes. We illustrate the shortcomings of the EU regulatory risk assessment using two case studies that contextualize the respective risk assessment outcomes to field exposure. Overall, our meta-analysis challenges the field relevance and protectiveness of the regulatory environmental risk assessment conducted for pesticide authorization in the EU and indicates that critical revisions of related pesticide regulations and effective mitigation measures are urgently needed to substantially reduce the environmental risks arising from agricultural insecticide use.

  12. EU-US ABWG AgENCODE Workshop

    USDA-ARS?s Scientific Manuscript database

    As considerable progress has been made on producing draft quality genomic sequence for many food animal species, the next goal for genomics research is a greater understanding of gene regulation and expression. The EU-US Animal Biotechnology Working Group (ABWG), established by the EU-US Biotechnolo...

  13. Pyrolytic synthesis and luminescence of porous lanthanide Eu-MOF.

    PubMed

    Jin, Guangya; Liu, Zhijian; Sun, Hongfa; Tian, Zhiyong

    2016-02-01

    A lanthanide metal coordination polymer [Eu2(BDC)3(DMSO)(H2O)] was synthesized by the reaction of europium oxide with benzene-1,3-dicarboxylic acid (H2BDC) in a mixed solution of dimethyl sulfoxide (DMSO) and water under hydrothermal conditions. The crystal structure of Eu2(BDC)3(DMSO)(H2O) was characterized by X-ray diffraction (XRD). Thermo-gravimetric analysis of Eu2(BDC)3(DMSO)(H2O) indicated that coordinated DMSO and H2O molecules could be removed to create Eu2(BDC)3(DMSO)(H2O)-py with permanent microporosity, which was also verified by powder XRD (PXRD) and elemental analysis. Both Eu2(BDC)3(DMSO)(H2O) and Eu2(BDC)3(DMSO)(H2O)-py showed mainly Eu-based luminescence and had characteristic emissions in the range 550-700 nm. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Metal Flux Growth, Structural Relations, and Physical Properties of EuCu2Ge2 and Eu3T2In9 (T = Cu and Ag).

    PubMed

    Subbarao, Udumula; Roy, Soumyabrata; Sarma, Saurav Ch; Sarkar, Sumanta; Mishra, Vidyanshu; Khulbe, Yatish; Peter, Sebastian C

    2016-10-17

    Single crystals (SCs) of the compounds Eu 3 Ag 2 In 9 and EuCu 2 Ge 2 were synthesized through the reactions run in liquid indium. Eu 3 Ag 2 In 9 crystallizes in the La 3 Al 11 structure type [orthorhombic space group (SG) Immm] with the lattice parameters: a = 4.8370(1) Å, b = 10.6078(3) Å, and c = 13.9195(4) Å. EuCu 2 Ge 2 crystallizes in the tetragonal ThCr 2 Si 2 structure type (SG I4/mmm) with the lattice parameters: a = b = 4.2218(1) Å, and c = 10.3394(5) Å. The crystal structure of Eu 3 Ag 2 In 9 is comprised of edge-shared hexagonal rings consisting of indium. The one-dimensional chains of In 6 rings are shared through the edges, which are further interconnected with other six-membered rings forming a three-dimensional (3D) stable crystal structure along the bc plane. The crystal structure of EuCu 2 Ge 2 can be explained as the complex [CuGe] (2+δ)- polyanionic network embedded with Eu ions. These polyanionic networks present in the crystal structure of EuCu 2 Ge 2 are shared through the edges of the 011 plane containing Cu and Ge atoms, resulting in a 3D network. The structural relationship between Eu 3 T 2 In 9 and EuCu 2 Ge 2 has been discussed in detail, and we conclude that Eu 3 T 2 In 9 is the metal deficient variant of EuCu 2 Ge 2 . The magnetic susceptibilities of Eu 3 T 2 In 9 (T = Cu and Ag) and EuCu 2 Ge 2 were measured between 2 and 300 K. In all cases, magnetic susceptibility data followed Curie-Weiss law above 150 K. Magnetic moment values obtained from the measurements indicate the probable mixed/intermediate valent behavior of the europium atoms, which was further confirmed by X-ray absorption studies and bond distances around the Eu atoms. Electrical resistivity measurements suggest that Eu 3 T 2 In 9 and EuCu 2 Ge 2 are metallic in nature.

  15. Gamma-radiation effects on luminescence properties of Eu3+ activated LaPO4 phosphor

    NASA Astrophysics Data System (ADS)

    Vujčić, Ivica; Gavrilović, Tamara; Sekulić, Milica; Mašić, Slobodan; Putić, Slaviša; Papan, Jelena; Dramićanin, Miroslav D.

    2018-05-01

    Eu3+ activated LaPO4 phosphors were prepared by a high-temperature solid-state method and irradiated to different high-doses gamma-radiation in the 0-4 MGy range. No effects of high-doses of high-energy radiation on phosphor's morphology and structure were observed, as documented by electron microscopy and X-ray diffraction measurements. On the other hand, photoluminescence measurements showed that emission properties of phosphor were affected by gamma-radiation; changes in radiative properties being prominent for absorbed radiation doses up to 250 kGy after which no additional changes are observed. Judd-Ofelt analysis of emission spectra is performed to thoroughly investigate radiative properties of phosphors. Analysis showed that radiative transition probability of Eu3+ emission decreases while non-radiative probability increases upon gamma-irradiation. Quantum efficiency of emission is decreased from about 46% to 35% when Eu3+ doped LaPO4 powders are exposed to gamma-radiation of 250 kGy dose, showing no additional decrease for higher gamma-radiation doses.

  16. Assessing Students' Conceptions of Reform Mathematics.

    ERIC Educational Resources Information Center

    Star, Jon R.; Hoffmann, Amanda J.

    As the use of National Science Foundation (NSF)-sponsored, reform- oriented mathematics curricula has become more prevalent across the U.S., an increasing number of researchers are attempting to study the "impact" of reform. In particular, mathematics educators are interested in determining whether reforms are having the desired effects on…

  17. 49 CFR 260.13 - Credit reform.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... appropriations, direct payment of a Credit Risk Premium by the Applicant or a non-Federal infrastructure partner... 49 Transportation 4 2010-10-01 2010-10-01 false Credit reform. 260.13 Section 260.13... REHABILITATION AND IMPROVEMENT FINANCING PROGRAM Overview § 260.13 Credit reform. The Federal Credit Reform Act...

  18. Laser action of Pr3+ in LiYF4 and spectroscopy of Eu2+-sensitized Pr in BaY2F8

    NASA Astrophysics Data System (ADS)

    Knowles, David S.; Gabbe, David; Jenssen, H. P.; Zhang, Z.

    1988-06-01

    Laser action in flashlamp-pumped Pr:LiYF4 at room temperature is observed at 640 nm with a 15-J threshold, but only about 0.01 percent slope efficiency. Increased efficiency from sensitizing the Pr with Eu2+ is explored in the system Eu,Pr:BaY2F8. Codoped samples have been grown by the Czochralski growth method, and energy transfer between 2+ and Pr3+ is observed to be very weak. This is probably due to the poor overlap of the Eu2+ emission with the Pr3+ absorption lines, leading to the conclusion that hosts with a stronger crystal field at the Eu2+ site need to be identified.

  19. Comparative adsorption of Eu(III) and Am(III) on TPD.

    PubMed

    Fan, Q H; Zhao, X L; Ma, X X; Yang, Y B; Wu, W S; Zheng, G D; Wang, D L

    2015-09-01

    Comparative adsorption behaviors of Eu(III) and Am(III) on thorium phosphate diphosphate (TPD), i.e., Th4(PO4)4P2O7, have been studied using a batch approach and surface complexation model (SCM) in this study. The results showed that Eu(III) and Am(III) adsorption increased to a large extent with the increase in TPD dose. Strong pH-dependence was observed in both Eu(III) and Am(III) adsorption processes, suggesting that inner-sphere complexes (ISCs) were possibly responsible for the adsorption of Eu(III) and Am(III). Meanwhile, the adsorption of Eu(III) and Am(III) decreased to a different extent with the increase in ion strength, which was possibly related to outer-sphere complexes and/or ion exchange. In the presence of fulvic acid (FA), the adsorption of Eu(III) and Am(III) showed high enhancement mainly due to the ternary surface complexes of TPD-FA-Eu(3+) and TPD-FA-Am(3+). The SCM showed that one ion exchange (≡S3Am/Eu) and two ISCs (≡(XO)2Am/EuNO3 and ≡(YO)2Am/EuNO3) seemed more reasonable to quantitatively describe the adsorption edges of both Eu(III) and Am(III). Our findings obviously showed that Eu(III) could be a good analogue to study actinide behaviors in practical terms. However, it should be kept in mind that there are still obvious differences between the characteristics of Eu(III) and Am(III) in some special cases, for instance, the complex ability with organic matter and adsorption affinity to a solid surface.

  20. Synthesis, structure, and photoluminescence properties of novel KBaSc2 (PO4 )3 :Ce(3+) /Eu(2+) /Tb(3+) phosphors for white-light-emitting diodes.

    PubMed

    Jiao, Mengmeng; Lü, Wei; Shao, Baiqi; Zhao, Lingfei; You, Hongpeng

    2015-08-24

    A series of novel KBaSc2 (PO4 )3 :Ce(3+) /Eu(2+) /Tb(3+) phosphors are prepared using a solid-state reaction. X-ray diffraction analysis and Rietveld structure refinement are used to check the phase purity and crystal structure of the prepared samples. Ce(3+) - and Eu(2+) -doped phosphors both have broad excitation and emission bands, owing to the spin- and orbital-allowed electron transition between the 4f and 5d energy levels. By co-doping the KBaSc2 (PO4 )3 :Eu(2+) and KBaSc2 (PO4 )3 :Ce(3+) phosphors with Tb(3+) ions, tunable colors from blue to green can be obtained. The critical distance between the Eu(2+) and Tb(3+) ions is calculated by a concentration quenching method and the energy-transfer mechanism for Eu(2+) →Tb(3+) is studied by utilizing the Inokuti-Hirayama model. In addition, the quantum efficiencies of the prepared samples are measured. The results indicate that KBaSc2 (PO4 )3 :Eu(2+) ,Tb(3+) and KBaSc2 (PO4 )3 :Ce(3+) ,Tb(3+) phosphors might have potential applications in UV-excited white-light-emitting diodes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Small Schools Reform Narratives

    ERIC Educational Resources Information Center

    Lehman, Beth M.; Berghoff, Beth

    2013-01-01

    This study explored complicated personal narratives of school reform generated by participants in response to a particular small schools reform initiative. Narrative data was dialogically generated in interviews with nine past participants of an urban high school conversion project planned and implemented over a span of five years toward the goal…

  2. Charge compensation mechanisms in favor of the incorporation of the Eu3+ ion into the ZnO host lattice

    NASA Astrophysics Data System (ADS)

    Baira, M.; Bekhti-Siad, A.; Hebali, K.; Bouhani-Benziane, H.; Sahnoun, M.

    2018-05-01

    Eu3+ doped phosphors with charge compensation are potential candidates of red emitting phosphors for lamp applications. Charge compensation improves the luminescence performance of the material. The charge compensation can most probably be achieved by three possible mechanisms: (a) two Zn2+ ions are replaced by one Eu3+ ions and one monovalent cation, 2Zn2+ →Eu3++ Li+, where Li+ is acting as a charge compensator; (b) the charge compensation is provided by a zinc vacancy (VZn) defects, 3Zn2+ → 2Eu3++ VZn, the subscript Zn denotes an ion in a normal zinc site in the lattice; (c) two Zn2+ ions are replaced by one Eu3+ ions with the presence of interstitial oxygen (Oi), 2Zn2+ → 2Eu3++ Oi. Electronic structures of the crystals corresponding to the three models are evaluated by the first-principles quantum mechanical calculations based on the density functional theory. It is found that the charge compensator defects make Eu3+ doping in ZnO energetically more favorable. They break the local symmetry around the Eu3+ ion and lead to deep states below the empty upper band, the conduction band that could facilitate intra-4f shell transitions, which can obviously improve the emission intensity of Eu3+-doped ZnO. Therefore, the effect of these defects on the host crystals electronic band states relative to the Eu3+ states is reported, since both electron transfer and electronically energy transfer processes enhance the performance of optoelectronic devices based on this material. These theoretical insights are helpful for designing rare-earth doped oxide materials with high photoluminescence (PL) performance.

  3. Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

    The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, andmore » operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of

  4. Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites

    NASA Astrophysics Data System (ADS)

    Zubair, Aiman; Ahmad, Zahoor; Mahmood, Azhar; Cheong, Weng-Chon; Ali, Irshad; Khan, Muhammad Azhar; Chughtai, Adeel Hussain; Ashiq, Muhammad Naeem

    Europium (Eu) doped spinel cobalt ferrites having composition CoEuxFe2-xO4 where x = 0.00, 0.03, 0.06, 0.09, 0.12 were fabricated by co-precipitation route. In order to observe the phase development of the ferrite samples, thermo-gravimetric analysis was carried out. The synthesized samples were subjected to X-ray diffraction analysis for structural investigation. All the samples were found to constitute face centered cubic (FCC) spinel structure belonging to Fd3m space group. Scanning electron microscopy revealed the formation of nanocrystalline grains with spherical shape. Energy dispersive X-ray spectra confirmed the presence of Co, Eu, Fe and O elements with no existence of any impurity. The magnetic hysteresis curves measured at room temperature exhibited ferrimagnetic behavior with maximum saturation magnetization (Ms) of 65 emu/g and coercivity (Hc) of 966 Oe. The origin of ferrimagnetism in Eu doped cobalt ferrites was discussed in detail with reverence to the allocation of Co2+ and Fe3+ ions within the spinel lattice. The overall coercivity was increased (944-966 Oe) and magnetization was decreased (65-46 emu/g) with the substitution of Eu3+. The enhancement of former is ascribed to the transition from multi domain to single domain state and reduction in lateral is attributed to the incorporation of nonmagnetic Eu ions for Fe, resulting in weak superexchange interactions.

  5. The EU Dimension to Soil Science in Schools

    ERIC Educational Resources Information Center

    Johnson, Sue

    2012-01-01

    The EU as a context for science lessons may be given scant attention but EU decision-making is a vital factor in everyday life. Lessons on the emergence of soil science with Charles Darwin's simple scientific experiments can be linked with competence through action, inclusion and argumentations in science lessons. Decisions about an EU Soil…

  6. Comprehensive Solutions for Urban Reform

    ERIC Educational Resources Information Center

    Kilgore, Sally

    2005-01-01

    The comprehensive school reform (CSR) models build consistency throughout a district while addressing the needs of individual schools. The high-quality CSR programs offer a most effective option for urban education reform.

  7. Reform Disconnection in China

    ERIC Educational Resources Information Center

    Walker, Allan; Qian, Haiyan

    2012-01-01

    This article examines many of the frustrations associated with implementing education reforms in mainland Chinese schools. Our basic argument is that when taken individually, many of the recent reforms are beneficial, but when parceled together and thrust hastily at schools, they are unwieldy and disconnected. We suggest that the inability of the…

  8. Thinking about Tax Reform.

    ERIC Educational Resources Information Center

    Boskin, Michael J.

    1985-01-01

    Providing pre-college teachers with an analysis of tax reform is the primary goal of this publication. The present tax system is both inefficient and inequitable. Three goals of tax reform proposals are detailed: (1) fairness--the dimensions of horizontal equity, or equal treatment of equals however defined, and vertical equity, reflecting the…

  9. Curriculum and Assessment Reform.

    ERIC Educational Resources Information Center

    Hargreaves, Andy

    Large-scale curriculum and assessment reform is neither a local peculiarity, nor a product of national political partisanship. It is a phenomenon of international dimensions. Divided into three sections and nine chapters, this book seeks to explain and interpret the nature, impact, and interrelatedness of recent important and far-reaching reforms.…

  10. The new Zintl phases Eu{sub 21}Cd{sub 4}Sb{sub 18} and Eu{sub 21}Mn{sub 4}Sb{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Darone, Gregory M.; Bobev, Svilen, E-mail: bobev@udel.edu

    Crystals of two new Zintl compounds, Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} have been synthesized using the molten metal flux method, and their structures have been established by single-crystal X-ray diffraction. Both compounds are isotypic and crystallize in the monoclinic space group C2/m (No. 12, Z=4). The structures are based on edge- and corner-shared MnSb{sub 4} or CdSb{sub 4} tetrahedra, which make octameric [Mn{sub 8}Sb{sub 22}] or [Cd{sub 8}Sb{sub 22}] polyanions. Homoatomic Sb–Sb bonds are present in both structures. The Eu atoms take the role of Eu{sup 2+}cations with seven unpaired 4f electrons, as suggested by themore » temperature-dependent magnetization measurements. The magnetic susceptibilities of Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} indicate that both phases order anti-ferromagnetically with Néel temperatures of ca. 7 K and ca. 10 K, respectively. The unpaired 3d electrons of the Mn atoms in Eu{sub 21}Mn{sub 4}Sb{sub 18} do contribute to the magnetic response, however, the bulk magnetization measurements do not provide evidence for long-range ordering of the Mn spins down to 5 K. Electrical resistivity measurements suggest that both compounds are narrow band gap semiconductors. - Graphical abstract: Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} have complex monoclinic structures, based on MnSb{sub 4} and CdSb{sub 4} tetrahedra, both edge- and corner-shared. A perspective of the crystal structure is shown, as viewed along the b axis. Display Omitted - Highlights: • Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} are novel compounds in the respective ternary phase diagrams. • For both structures, the Zintl-Klemm rules are followed, and both are small gap semiconductors. • Eu{sub 21}Mn{sub 4}Sb{sub 18} and Eu{sub 21}Cd{sub 4}Sb{sub 18} are air-stable Zintl phases and could be new thermoelectric materials.« less

  11. Global Citizenship and National (Re)formations: Analysis of Citizenship Education Reform in Spain

    ERIC Educational Resources Information Center

    Engel, Laura C.

    2014-01-01

    In recent years, many European education systems have embarked on a process of education policy and curriculum reform related to citizenship education. This article explores citizenship education reform in the context of Spain. It considers how and to what extent Spain's 2006 citizenship education addressed issues of national and global…

  12. Mn2+ concentration manipulated red emission in BaMg2Si2O7:Eu2+,Mn2+

    NASA Astrophysics Data System (ADS)

    Ye, Song; Zhang, Jiahua; Zhang, Xia; Lu, Shaozhe; Ren, Xinguang; Wang, Xiaojun

    2007-02-01

    The luminescent properties of concentration dependence are reported in BaMg2Si2O7:Eu2+,Mn2+ red phosphor. It is observed that the broad red emission of Mn2+ consists of two bands, located at 620 and 675 nm, respectively, which are attributed to two different Mn2+ centers [Mn2+(I) and Mn2+(II)] substituting for two nonidentical Mg2+ sites [Mg2+(I) and Mg2+(II)] in the host. It is also found that the relative emission intensity of the Mn2+(II) to the Mn2+(I) increases with increasing Mn2+ concentration, leading to a red-shift of the overall emission. A detail analysis on the energy transfer from Eu2+ to the two Mn2+ centers is presented, which indicates that the number ratio of Mn2+(II) to Mn2+(I) increases with increasing Mn2+ concentration. This result is interpreted by the preferential formation of Mn2+(I) substituting for Mg2+(I) site. Based on energy transfer, the emission intensity ratios of Mn2+(I) to Eu2+ and Mn2+(II) to Eu2+, which is Mn2+ concentration dependent, are calculated using related fluorescence lifetimes. The calculated results are in good agreement with that obtained experimentally in the emission spectra.

  13. Optical properties of Eu2+ ions in BaY2F8 for completely-solid-state cw UV laser emission

    NASA Astrophysics Data System (ADS)

    Toncelli, Alessandra; Moglia, Francesca; Tonelli, Mauro

    2010-11-01

    Eu-doped BaYF single crystals have been grown with two different Eu ion concentrations: 0.5%, 1% Eu doping levels. It was found that part of the Eu ions added in the melt were reduced during the growth process and the ratio between the Eu and Eu content in the crystal depends on the duration of the growth process. A complete room-temperature polarized spectroscopic characterization of the divalent Eu ions in this host crystal is presented with particular insights in the laser potentialities of the compound in the UV region. Polarized absorption, emission and excitation spectra are presented together with the lifetime measurement of the emitting level. It was found that due to the weak nephelauxetic effect the 4f7→4f65d1 band is located at higher energy than the 4f→4f(8S→6P) transition. As a result, when pumped in the 200- 300 nm range, this crystal shows an interesting emission that extends from 351 to 366 nm and has a decay-time as long as τ=(1.5±0.1) ms. This opens the possibility to obtain completely-solid-state laser emission in the UV region with potentialities for cw or mode-locked emission.

  14. Spectroscopic studies on interaction of BSA and Eu(III) complexes with H5ph-dtpa and H5dtpa ligands.

    PubMed

    Kong, Deyong; Qin, Cui; Fan, Ping; Li, Bing; Wang, Jun

    2015-04-05

    An novel aromatic aminopolycarboxylic acid ligand, N-(2-N,N-Dicarboxymethylaminophenyl) ethylenediamine-N,N',N'-triacetic acid (H5ph-dtpa), was synthesized by improving experimental method and its corresponding Eu(III) complex, Na2[EuIII(ph-dtpa)(H2O)]·6H2O, was successfully prepared through heat-refluxing method. As a comparison, the Eu(III) complex with diethylenetriamine-N,N,N',N',N″-pentaacetic acid (H5dtpa) ligand, Na2[Eu(III)(dtpa)(H2O)]·6H2O, was also prepared by the same method. And then, the interaction between prepared Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and bovine serum albumin (BSA) in aqueous solution were studied by the combination of ultraviolet-visible (UV-vis), fluorescence and circular dichroism (CD) spectroscopies. In addition, the binding sites of Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) to BSA molecules were also estimated by synchronous fluorescence. Moreover, the theoretical and experimental results show that the Van der Waals, hydrogen bond and π-π stacking interactions are the mainly impulse to the reaction. The binding distances (r) between Eu(III) complexes ([EuIII(dtpa)(H2O)]2- and [EuIII(ph-dtpa)(H2O)]2-) and BSA were obtained according to Förster's non-radiative energy transfer theory. Also, the determined UV-vis absorption spectroscopy, synchronous fluorescence and circular dichroism (CD) spectra showed that the conformation of BSA could be changed in the presence of Eu(III) complexes. The obtained results can help understand the action mode between rare earth metal complexes of aminopolycarboxylic acid ligands with BSA and they are also expected to provide important information of designs of new inspired drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. School Reform--Does It Really Matter?

    ERIC Educational Resources Information Center

    Bunting, Carolyn

    1999-01-01

    Looks at different waves of school reform beginning with Sputnik in the 1950s. Examines influences in today's reform, including industrial influences and school choice. Argues that the origins and outcomes of school reform have more to do with what is happening outside the school than within it, and that schools must think beyond objective indices…

  16. EU accession: A policy window opportunity for nursing?

    PubMed

    De Raeve, Paul; Rafferty, Anne-Marie; Bariball, Louise; Young, Ruth; Boiko, Olga

    2017-03-01

    European enlargement has been studied in a wide range of policy areas within and beyond health. Yet the impact of EU enlargement upon one of the largest health professions, nursing, has been largely neglected. This paper aims to explore nurse leadership using a comparative case study method in two former Communist countries, Romania and Croatia. Specifically, it considers the extent to which engagement in the EU accession policy-making process provided a policy window for the leaders to formulate and implement a professional agenda while negotiating EU accession. Findings of qualitative interviews and documentary analysis indicate that the mechanisms used to facilitate the accession process were not successful in achieving compliance with the education standards in the Community Acquis, as highlighted in the criteria on the mutual recognition of professional qualifications set out in Directive 2005/36/EC. EU accession capacity building and accession funds were not deployed efficiently to upgrade Romanian and Croatian nursing education towards meeting EU standards. Conflicting views on accession held by the various nursing stakeholders (nursing regulator, nursing union, governmental chief nurse and the professional association) inhibited the setting of a common policy agenda to achieve compliance with EU standards. The study findings suggest a need to critically review EU accession mechanisms and better align leadership at all governance levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Advanced Stirling Radioisotope Generator EU2 Anomaly Investigation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Dobbs, Michael W.; Oriti, Salvatore M.

    2016-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) Engineering Unit 2 (EU2) is the highest fidelity electrically-heated Stirling radioisotope generator built to date. NASA Glenn Research Center (GRC) completed the assembly of the ASRG EU2 in September, 2014 using hardware from the now cancelled ASRG flight development project. The ASRG EU2 integrated the first pair of Sunpower's ASC-E3 Stirling convertors (ASC-E3 #1 and #2) in an aluminum generator housing with Lockheed Martin's Engineering Development Unit (EDU) 4 controller. After just 179 hours of EU2 generator operation, the first power fluctuation occurred on ASC-E3 #1. The first power fluctuation occurred 175 hours later on ASC-E3 #2. Over time, the power fluctuations became more frequent on both convertors and larger in magnitude. Eventually the EU2 was shut down in January, 2015. An anomaly investigation was chartered to determine root cause of the power fluctuations and other anomalous observations. A team with members from GRC, Sunpower, and Lockheed Martin conducted a thorough investigation of the EU2 anomalies. Findings from the EU2 disassembly identified proximate causes of the anomalous observations. Discussion of the team's assessment of the primary possible failure theories, root cause, and conclusions is provided. Recommendations are made for future Stirling generator development to address the findings from the anomaly investigation. Additional findings from the investigation are also discussed.

  18. New observations on the pressure dependence of luminescence from Eu2+-doped MF2 (M = Ca, Sr, Ba) fluorides.

    PubMed

    Su, Fu Hai; Chen, Wei; Ding, Kun; Li, Guo Hua

    2008-05-29

    The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors.

  19. Implementing SDG 15.3 on Land Degradation Neutrality in the EU and EU Member States

    NASA Astrophysics Data System (ADS)

    Wunder, Stephanie; Starke, Sue Martina; Frelih-Larsen, Ana; Kaphengst, Timo

    2017-04-01

    The continuing degradation of land and soils is a severe threat to the provision of ecosystem services and economic development. Sustainable use of land and soils are therefore an integral part of the "Agenda 2030" with its 17 Sustainable Development Goals (SDGs) and 169 targets adopted by the UNGeneral Assembly in September 2015. The SDGs provide new opportunities for an ambitious and integrated environmental policy worldwide and in the EU. Among the many relevant targets that directly or indirectly address soils (such as goals on zero hunger, well being, clean energy, climate change, water and sustainable cities), target 15.3 that aims to achieve "a land degradation-neutral world" by 2030 is the most relevant. The concept of "Land Degradation Neutrality" (LDN) is not only about halting the loss of healthy and fertile land, but also actively reversing degradation by restoring land in order to counterbal-ance losses that cannot be avoided. It is a very ambitious target but due to a lack of balancing mechanisms for degradation and restoration in most countries also a new concept. Land Degra-dation Neutrality therefore both needs a scientific conceptual framework as well as a political debate about its implementation and development of instruments. In the EU and its Member States, this debate can also serve as a catalyst to revive the discussion on a common soil policy in Europe after the withdrawal of the proposal for a soil framework directive in 2014. To analyze options for the implementation of target 15.3 in Germany and Europe the research project "Implementing the Sustainable Development Goals on Soils in Germany" (http://ecologic.eu/12876) is currently carried out by the Ecologic Institute on behalf of the Ger-man Environment Agency (UBA) and the German Federal Environment Ministry (BMUB). The project will run until spring 2017 and the session "European Environmental Policies and Sustainability" at the EGU will be an ideal opportunity to present the final

  20. The Enhanced Red Emission and Improved Thermal Stability of CaAlSiN3:Eu2+ Phosphors by Using Nano-EuB6 as Raw Material

    PubMed Central

    Liu, Wen-Quan; Wu, Dan; Chang, Hugejile; Duan, Ru-Xia; Wu, Wen-Jie; Amu, Guleng; Bao, Fu-Quan; Tegus, Ojiyed

    2018-01-01

    Synthesizing phosphors with high performance is still a necessary work for phosphor-converted white light-emitting diodes (W-LEDs). In this paper, three series of CaAlSiN3:Eu2+ (denoted as CASN:Eu2+) phosphors using Eu2O3, EuN and EuB6 as raw materials respectively are fabricated by under the alloy precursor normal pressure nitridation synthesis condition. We demonstrate that CASN:Eu2+ using nano-EuB6 as raw material shows higher emission intensity than others, which is ascribed to the increment of Eu2+ ionic content entering into the crystal lattice. An improved thermal stability can also be obtained by using nano-EuB6 due to the structurally stable status, which is assigned to the partial substitution of Eu–O (Eu–N) bonds by more covalent Eu–B ones that leads to a higher structural rigidity. In addition, the W-LEDs lamp was fabricated to explore its possible application in W-LEDs based on blue LEDs. Our results indicate that using EuB6 as raw materials can provide an effective way of enhancing the red emission and improving the thermal stability of the CASN:Eu2+ red phosphor. PMID:29370148

  1. Structural, luminescence, thermodynamic and theoretical studies on mononuclear complexes of Eu(III) with pyridine monocarboxylate-N-oxides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dumpala, Rama Mohana Rao; Rawat, Neetika; Boda, Anil; Ali, Sk. Musharaf; Tomar, B. S.

    2018-02-01

    The mononuclear complexes formed by Eu(III) with three isomeric pyridine monocarboxylate-N-oxides namely picolinic acid-N-oxide (PANO), nicotinic acid-N-oxide (NANO) and isonicotinic acid-N-oxide (IANO) in aqueous solutions were studied by potentiometry, luminescence spectroscopy and isothermal titration calorimetry (ITC) to determine the speciation, coordination, luminescence properties and thermodynamic parameters of the complexes formed during the course of the reaction. More stable six membered chelate complexes with stoichiometry (MLi, i = 1-4) are formed by Eu(III) with PANO while non chelating ML and ML2 complexes are formed by NANO and IANO. The stability of Eu(III) complexes follow the order PANO > IANO > NANO. The ITC studies inferred an endothermic and innersphere complex formation of Eu(III)-PANO and Eu(III)-IANO whereas an exothermic and outer-sphere complex formation for Eu(III)-NANO. The luminescence life time data further supported the ITC results. Density functional theoretical calculations were carried out to optimize geometries of the complexes and to estimate the energies, structural parameters (bond distances, bond angles) and charges on individual atoms of the same. Theoretical approximations are found to be in good agreement with the experimental observations.

  2. Strategic Planning for Deepening the All-Around Structural Reform of Education: Issues of Structural Reform in the "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)"

    ERIC Educational Resources Information Center

    Songhua, Tan; Wang, Catherine Yan

    2012-01-01

    The "National Medium- and Long-Term Educational Reform and Development Guideline (2010-20)" (hereafter abbreviated as the "Guideline") posits that the development of education must be driven by reform and innovation. It devotes six chapters to mapping out the targets, tasks, and major policy measures for reforming the…

  3. TL and PL studies on cubic fluoroperovskite single crystal (KMgF{sub 3}: Eu{sup 2+}, Ce{sup 3+})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, D. Joseph, E-mail: josephd@ssn.edu.in; Ramasamy, P.; Madhusoodanan, U.

    2014-04-24

    The perovskite-like KMgF{sub 3} polycrystalline compounds were synthesized by standard solid state reaction technique. Phase purity of the synthesized compounds was analyzed by powder X-ray diffraction technique. Single crystals of (0.2 mol% of EuF{sub 3} and CeF{sub 3}) Co-doped KMgF{sub 3} have been grown from melt by using a vertical Bridgman-Stockbarger method. Thermoluminescence (TL) characteristics of KMgF{sub 3} samples doped with Eu{sub 2+} and Ce{sub 3+} have been studied after β-ray irradiation. At ambient conditions the photoluminescence spectra consisted of sharp line peaked of Eu{sub 2+} at 360 nm attributed to the f → f transition ({sup 6}P{sub 7/2}→{sup 8}S{submore » 7/2}) could only be observed due to the energy transfer from Ce{sub 3+} to Eu{sub 2+}.« less

  4. Synthesis and Photoluminescence Properties of BaWO4:RE3+ (RE = Eu or Sm) Phosphors

    NASA Astrophysics Data System (ADS)

    Cho, Shinho

    2018-04-01

    BaWO4:RE3+ (RE = Eu or Sm) phosphor powders were prepared with different doping concentrations of the activator ion by using the conventional solid-state reaction method. The dependences in the crystal structure, luminescence intensity, and morphology on the Eu3+ and the Sm3+ concentrations in BaWO4 were investigated using X-ray diffraction (XRD), photoluminescence spectrophotometry, and scanning electron microscopy (SEM), respectively. XRD analysis showed tetragonal BaWO4 structures for all the phosphors synthesized, regardless of the type and the doping concentration of the activator ion. SEM images indicated that as the concentration of activator ions was increased, the crystalline particles showed an increasing tendency to agglomerate irregularly. The room temperature excitation spectra of Eu3+- or Sm3+-doped BaWO4 phosphors consisted of a broad charge transfer band in the ultraviolet region and several sharp 4 f-4 f transitions. When Eu3+-doped BaWO4 phosphors were excited at 274 nm, the emission spectra exhibited sharp bands due to inner shell transitions occurring from the excited energy state 5 D 0 to the lower energy levels 7 F J ( J = 1, 2, 3, and 4). For Sm3+-doped BaWO4 phosphors, three intense emission peaks at 568, 603, and 649 nm and a very weak line at 712 nm were observed. The highest asymmetry ratio-the intensity ratio of the 4 G 5/2 → 6 H 9/2 electric dipole to the 4 G 5/2 → 6 H 5/2 magnetic dipole transitions-was obtained for 1 mol% doping of Sm3+, indicating that the Sm3+ ions occupied the non-inversion symmetry sites.

  5. Moving toward equitable, systemic science education reform: The synergy among science education and school-level reforms in an urban middle school

    NASA Astrophysics Data System (ADS)

    Kelly, Mary Kathryn

    The purpose of this study was to develop an understanding of the relationships among school-level and science education reform efforts and how, collectively, they contribute to the progress of equitable, systemic science education reform. A case study research design was employed to gather both qualitative and quantitative data between 1995 and 1999. The site of this study is a non-selective, urban middle school in a large district that participated in several reform efforts. These reforms include both efforts focused on school-level change and efforts focused on change in science teaching and learning. Its program incorporates aspects of several school-level reforms---from the underlying Paideia philosophy, to structural characteristics of middle schools, to site-based decision-making, to its status as a magnet school, to its participation as a professional development school. Further, the participation of all science teachers in the intensive, standards-based professional development offered by Ohio's systemic reform of mathematics and science created a critical mass of reform-oriented teachers who supported one another as they incorporated reform-based practices into their teaching. The interplay of the reform efforts has manifested in a high level of science achievement in comparison to the school's district. Addressing the third component of O'Day and Smith's model for systemic reform, the need for school-level change to enable implementation of curriculum frameworks and aligned policies, this study illustrates two important points. First, the high-quality teacher professional development increased teachers' capacity to change their practices by enhancing their knowledge of and skills in implementing standards-based teaching practices. Second, because of the synchrony among the school-level reforms and between the school-level and science education reforms, the context of Webster provided a supportive environment in which lasting changes in science teaching

  6. Electronic structure, optical and thermal/concentration quenching properties of Lu{sub 2−2x}Eu{sub 2x}WO{sub 6} (0 ≤ x ≤0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang-Yang; University of Chinese Academy of Science, Beijing 100039; Zhang, Zhi-Jun, E-mail: zhangzhijun@shu.edu.cn

    Highlights: • The band gap of Lu{sub 2}WO{sub 6} is calculated to be 3.13 eV using the CASTEP mode. • Valent state and occupation site of Eu are clarified by X-ray absorption fine structure (XAFS) spectra. • The thermal/concentration quenching mechanisms of Eu in Lu{sub 2}WO{sub 6} have been investigated in detail. - Abstract: Density functional theory calculations on monoclinic Lu{sub 2}WO{sub 6} is carried out using the Cambridge Sequential Total Energy Package code. The result indicates that Lu{sub 2}WO{sub 6} is a broad band gap semiconductor with an indirect band gap of 3.13 eV. Eu ions are trivalency and themore » average coordination number is 7.6(5), indicating that the site of Lu is occupied by Eu. The activation energy ΔE is calculated as 0.314 eV. In addiation, the thermal quenching mechnism of Eu-activated Lu{sub 2}WO{sub 6} and the different concentration quenching mechanisms for {sup 5}D{sub 0} and {sup 5}D{sub 1} emissions of Eu ions have been proposed.« less

  7. Hysteretic photochromic switching of Eu-Mg defects in GaN links the shallow transient and deep ground states of the Mg acceptor.

    PubMed

    Singh, A K; O'Donnell, K P; Edwards, P R; Lorenz, K; Kappers, M J; Boćkowski, M

    2017-02-03

    Although p-type activation of GaN by Mg underpins a mature commercial technology, the nature of the Mg acceptor in GaN is still controversial. Here, we use implanted Eu as a 'spectator ion' to probe the lattice location of Mg in doubly doped GaN(Mg):Eu. Photoluminescence spectroscopy of this material exemplifies hysteretic photochromic switching (HPS) between two configurations, Eu0 and Eu1(Mg), of the same Eu-Mg defect, with a hyperbolic time dependence on 'switchdown' from Eu0 to Eu1(Mg). The sample temperature and the incident light intensity at 355 nm tune the characteristic switching time over several orders of magnitude, from less than a second at 12.5 K, ~100 mW/cm 2 to (an estimated) several hours at 50 K, 1 mW/cm 2 . Linking the distinct Eu-Mg defect configurations with the shallow transient and deep ground states of the Mg acceptor in the Lany-Zunger model, we determine the energy barrier between the states to be 27.7(4) meV, in good agreement with the predictions of theory. The experimental results further suggest that at low temperatures holes in deep ground states are localized on N atoms axially bonded to Mg acceptors.

  8. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  9. Reformation of PURPA contracts: Strategies for success in power marketing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalzo, P.J.

    With the passage of the Energy Policy Act of 1992, real competition entered into the world of electric utilities. A slide presentations is given on reformation of Public Utility Regulatory Policies Act (PURPA) Contracts for success in power marketing strategies. Two ways to compete: Be the least cost provider or add value and `sell hard`. The PURPA vision was to increase efficiency in power generation, utilize renewable or waste fuels, and bolster the independent producers. Cogenerators and small power producers qualified. Utility planners predicted, avoided cost, utility loads, and oil and gas prices to increase. However, avoided costs, and oilmore » and gase prices declined. Two scenarios are discussed for contract reformation: Contract buyouts, and renegotiation of contracts. Options for for dealing with existing fuel agreements are presented.« less

  10. Enhanced energy storage density in lead free (Na0.5Bi0.48Eu0.02)Ti1-xNbxO3(x=0.00, 0.01 & 0.02) ceramics

    NASA Astrophysics Data System (ADS)

    Yanamandra, Radha; Kandula, Kumara Raja; Bandi, Posidevi; Reddy, H. Satish Kumar; Asthana, Saket; Patri, Tirupathi

    2018-05-01

    Eco friendly (Na0.5Bi0.48Eu0.02) Ti1-xNbxO3 ceramics were synthesized with help of conventional solid state reaction by using high energy ball milling. The room temperature XRD of Nb5+ substituted NBET ceramics were stabilized in single phase pervoskite structure without any secondary phase. Polarization study reflects long range ferroelectric order for pure NBET ceramics and coercive field enhance with the substitution of Nb5+ ion at Ti site. Further, the substitution of Nb5+ ≥ 0.02 composition induced relaxor future. The energy density calculation shows the maximum energy storage density of 1.02 J/cm3 for x=0.02 ceramics. These results confirms a small fraction of Nb5+ doped NBET ceramics should be good candidates for energy storage applications.

  11. Investigation of the Dissolution-Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

    NASA Astrophysics Data System (ADS)

    Uzer, B.; Birer, O.; Canadinc, D.

    2017-09-01

    Dissolution-reformation cycle of the passive oxide layer on the nickel-titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution-reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution-reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.

  12. The market effectiveness of electricity reform: A case of carbon emissions trading market of Shenzhen city

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Wang, Gang; Zuo, Yi; Fan, Lisha; Xiao, Yao

    2017-03-01

    In the 13th Five-Year Plan, the Chinese government proposed to achieve the national carbon emission trading market established by 2017. The establishment of carbon emission trading market is the most important one in power reform, which helps to promote the power reform and achieve the goal of energy saving and emission reduction. As the bond of connecting environment energy issues and the economic development, carbon emissions trading market has become a hot research topic in the related fields, by market means, it incentive the lower cost subject emissions to undertake more reductions and therefore to benefit, the body of the high cost finished the task by buying quota reduction, to achieve the effect of having the least social total cost. Shenzhen has become the first city in China to start carbon trading pilot formally on June 16, 2013, online trading on June 18. The paper analyzes the market effectiveness of electricity reform in China, which takes carbon emissions trading market of Shenzhen city for example, and gives some suggestions for future development.

  13. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mössbauer effect of 151Eu in europium oxalate and fluorides

    NASA Astrophysics Data System (ADS)

    Wynter, C. I.; Oliver, F. W.; Davis, Alfred; Spijkerman, J. J.; Stadelmaier, H.; Wolfe, E. A.

    1993-04-01

    In a short communication [C.I. Wynter et al., Radiochimica Acta 55 (1991) 111.] we reported "relative broadening factors" of europium fluoride (EuF 3), europium oxide (Eu 2O 3), europium oxalate decahydrate (Eu 2(C 2O 4) 3.10H 2O and europium benzoate tetrahydrate Eu(C 6H 5COO) 3.4H 2O. Indications of the "relative broadening factor" of the oxalate compared to the fluoride suggested that the oxalate may indeed be a better host for the 21.6-keV gamma ray transition than the fluoride. In a continuing search for a better host matrix for this Mössbauer transition, we have prepared additionally a systematic series of fluorides, namely. EuF 3, NaEuF 4, Na 3EuF 6, and K 3EuF 6 to measure the linewidths and compute the "true" broadening factor using the natural linewidth of 151Eu as 1.31 {mm}/{s}.

  15. University Governance Reforms: Potential Problems of More Autonomy?

    ERIC Educational Resources Information Center

    Christensen, Tom

    2011-01-01

    University governance reforms are very much a reflection of the broader New Public Management reforms that are focusing on increasing efficiency in public organizations. The article deals with how university reform ideas of a generic nature, emphasizing that universities should be treated and reformed like any other public organizations, are…

  16. Legal regulation of the production and trade of medical devices and medical equipment in the EU and US: experience for Ukraine.

    PubMed

    Pashkov, Vitalii; Kotvitska, Alla; Harkusha, Andrii

    2017-01-01

    The need for effective legal regulation of production and sale of medical products in Ukraine due to its social effect is obvious and requires a high level of clarity. The experience of more advanced countries in this area, given the way chosen by Ukraine to harmonize our laws with EU legislation, is certainly could be a useful source of information. The urgency of issues need further intensification of national legal reforms. Some key points on concept of legal regulation of abovementioned sphere is a base of this study. Legislation of Ukraine, European Union, United States of America, Guidelines, developed by European Commission & Food and Drug Administration's (FDA), recommendations represented by international voluntary group and scientific works. This article is based on dialectical, comparative, analytic, synthetic and comprehensive research methods. This study provide a possibility to state that main difference of regulatory systems in EU and US is that the legal framework of the EU is more flexible. This flexibility is grounded on main principle that only basic quality requirements for medical devices is defined by legislative acts however more detailed requirements are defined in standards, technical regulations, specifications, which are discretionary in nature. Contractors are free to choose any technical solution that provides compliance with the essential requirements, they can choose among different conformity assessment procedures and between accredited conformity assessment bodies to which they want to apply. The contractors themselves is interested to pass the conformity assessment procedure and have the right to put a conformity mark on their medical device because it will give them a real competitive advantage. In contrast, US State regulatory system provides strict control over business entities and law act establishes the quality requirements of medical products. The only body that can authorize the introduction of medical products and perform

  17. Pressure-induced valence change and moderate heavy fermion state in Eu-compounds

    NASA Astrophysics Data System (ADS)

    Honda, Fuminori; Okauchi, Keigo; Sato, Yoshiki; Nakamura, Ai; Akamine, Hiromu; Ashitomi, Yosuke; Hedo, Masato; Nakama, Takao; Takeuchi, Tetsuya; Valenta, Jaroslav; Prchal, Jiri; Sechovský, Vladimir; Aoki, Dai; Ōnuki, Yoshichika

    2018-05-01

    A pressure-induced valence transition has attracted much attention in Eu-compounds. Among them, EuRh2Si2, EuNi2Ge2, and EuCo2Ge2 reveal the valence transition around 1, 2, and 3 GPa, respectively. We have succeeded in growing single crystals of EuT2X2 (T: transition metal, X: Si, Ge) and studied electronic properties under pressure. EuRh2Si2 indicates a first-order valence transition between 1 and 2 GPa, with a large and prominent hysteresis in the electrical resistivity. At higher pressures, the first-order valence transition changes to a cross-over regime with an intermediate valence state. Tuning of the valence state with pressure is reflected in a drastic change of the temperature dependence of the electrical resistivity in EuRh2Si2 single crystals. Effect of pressure on the valence states on EuRh2Si2, EuIr2Si2, EuNi2Ge2, and EuCo2Ge2, as well as an isostructural related compound EuGa4, are reviewed.

  18. Sr(1.7)Zn(0.3)CeO4: Eu3+ novel red-emitting phosphors: synthesis and photoluminescence properties.

    PubMed

    Li, Haifeng; Zhao, Ran; Jia, Yonglei; Sun, Wenzhi; Fu, Jipeng; Jiang, Lihong; Zhang, Su; Pang, Ran; Li, Chengyu

    2014-03-12

    A series of novel red-emitting Sr1.7Zn0.3CeO4:Eu(3+) phosphors were synthesized through conventional solid-state reactions. The powder X-ray diffraction patterns and Rietveld refinement verified the similar phase of Sr1.7Zn0.3CeO4:Eu(3+) to that of Sr2CeO4. The photoluminescence spectrum exhibits that peak located at 614 nm ((5)D0-(7)F2) dominates the emission of Sr1.7Zn0.3CeO4:Eu(3+) phosphors. Because there are two regions in the excitation spectrum originating from the overlap of the Ce(4+)-O(2-) and Eu(3+)-O(2-) charge-transfer state band from 200 to 440 nm, and from the intra-4f transitions at 395 and 467 nm, the Sr1.7Zn0.3CeO4:Eu(3+) phosphors can be well excited by the near-UV light. The investigation of the concentration quenching behavior, luminescence decay curves, and lifetime implies that the dominant mechanism type leading to concentration quenching is the energy transfer among the nearest neighbor or next nearest neighbor activators. The discussion about the dependence of photoluminescence spectra on temperature shows the better thermal quenching properties of Sr1.7Zn0.3CeO4:0.3Eu(3+) than that of Sr2CeO4:Eu(3+). The experimental data indicates that Sr1.7Zn0.3CeO4:Eu(3+) phosphors have the potential as red phosphors for white light-emitting diodes.

  19. Immobilization of folic acid on Eu3+-doped nanoporous silica spheres.

    PubMed

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Xu, Zhefeng; Tanaka, Junzo

    2011-08-07

    Folic acid (FA) was immobilized on Eu(3+)-doped nanoporous silica spheres (Eu:NPSs) through mediation of the 3-aminopropyltriethoxysilane adlayer. The ordered nanopores of Eu:NPS were preserved by the immobilization. The FA-immobilized Eu:NPSs showed the characteristic photoluminescence peak due to interactions between the FA molecules and Eu(3+) ions, and highly dispersed stability in phosphate buffered saline.

  20. Eu3+-doped β-Ga2O3 nanophosphors: annealing effect, electronic structure and optical spectroscopy.

    PubMed

    Zhu, Haomiao; Li, Renfu; Luo, Wenqin; Chen, Xueyuan

    2011-03-14

    A comprehensive survey of electronic structure and optical properties of rare-earth ions-doped semiconductor is of vital importance for their potential applications. In this work, Eu(3+)-doped β-Ga(2)O(3) nanocrystals were synthesized via a combustion method. The evolution of the optical properties of nanophosphors with increasing the annealing temperature was investigated in detail by means of excitation and emission spectra at room temperature and 10 K. Eu(3+) ions were proved to be incorporated into the crystal lattice of the β-Ga(2)O(3) phase after annealing the as-prepared nanoparticles at 1100 °C. It was observed that the substitution of Eu(3+) for Ga(3+) occurred at merely single site, in spite of two crystallographically nonequivalent sites of Ga(3+) in β-Ga(2)O(3). Spectroscopic evidence corroborated and clarified the local symmetry of C(s) for Eu(3+) at this single site. From the high-resolution excitation and emission spectra, 71 crystal-field levels of Eu(3+) in β-Ga(2)O(3) were identified and analyzed in terms of 19 freely varied free-ions and crystal-field parameters based on C(s) symmetry. The standard deviation of the final fitting is as low as 12.9 cm(-1), indicating an excellent agreement between experimental and calculated energy levels. The temperature-dependent luminescence dynamics of the (5)D(0) multiplet for Eu(3+) in β-Ga(2)O(3) phosphors has also been revealed for the first time from 10 to 300 K.

  1. Health Financing And Insurance Reform In Morocco

    PubMed Central

    Ruger, Jennifer Prah; Kress, Daniel

    2010-01-01

    The government of Morocco approved two reforms in 2005 to expand health insurance coverage. The first is a payroll-based mandatory health insurance plan for public-and formal private–sector employees to extend coverage from the current 16 percent of the population to 30 percent. The second creates a publicly financed fund to cover services for the poor. Both reforms aim to improve access to high-quality care and reduce disparities in access and financing between income groups and between rural and urban dwellers. In this paper we analyze these reforms: the pre-reform debate, benefits covered, financing, administration, and oversight. We also examine prospects and future challenges for implementing the reforms. PMID:17630444

  2. Synthesis and Photoluminescent Properties of Nanorod Bundle Ln4O(OH)9NO3:Eu(Ln = Y, Lu) Prepared by Hydrothermal Method.

    PubMed

    Li, Ling; Noh, Hyeon Mi; Liu, Xiaoguang; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun

    2015-07-01

    Well-crystallized nanorod bundles Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu) have been successfully prepared by hydrothermal method. The crystalline phase, size and optical properties were characterized using powder X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), infrared (IR) spectrograph and photoluminescent (PL) spectra. Site occupations of Eu3+ in crystals Ln4O(OH)9NO3:Eu(Ln = Y, Lu) were discussed based on excitation spectra and the empirical relationship formula between the charge transfer (CT) energy and the environmental factor. The emission spectra exhibited that the strongest emission peaks with an excitation wavelength of 395 nm were at 617 and 626 nm in crystal Lu4O(OH)9NO3:1%Eu and Y4O(OH)9NO3:1%Eu, respectively, both of which come from 5D0-7F2 transition of the Eu3+ ions. The broad excitation peaks at about 254 and 255 nm were found when monitored at 617 and 628 nm in crystal Lu4O(OH)9NO3:1%Eu and Y4O(OH)9NO3:1%Eu, respectively, which were due to O-Eu CT transition. Based on the dielectric theory of complex crystal, the CT bands at about 254 and 255 nm in Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu) were assigned to the transition of O-Eu at Ln3(Ln = Y, Lu) site, from which we can conclude that Eu3+ ions occupied the site of Ln3(Ln = Y, Lu) in crystal Ln4O(OH)9NO3:1%Eu(Ln = Y, Lu). It put forward a new route to investigate site occupation of luminescent center ions in rare earth doped complex inorganic luminescence materials.

  3. Understanding Elementary Teachers' Different Responses to Reform: The Case of Implementation of an Assessment Reform in South Korea

    ERIC Educational Resources Information Center

    Choi, Jinyoung

    2017-01-01

    This study explores how teachers implemented an assessment reform in South Korea, with an analysis of different aspects of the reform. Using a mixed method design, this study reveals that the relation between policy and practice depends upon the nature of the changes that reform policies propose. Teachers' implementation varies in terms of…

  4. Method of steam reforming methanol to hydrogen

    DOEpatents

    Beshty, Bahjat S.

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  5. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    PubMed

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  6. Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)3:Eu3+ and Ca4EuO(BO3)3.

    PubMed

    Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Pang, Ran; Huang, Shaoming; Liu, Guokui

    2016-11-07

    In most Eu 3+ activated phosphors, only red luminescence from the 5 D 0 is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca 4 LaO(BO 3 ) 3 :Eu 3+ (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the 5 D 1,2 states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu 3+ doping concentration. More importantly, concentration quenching of Eu 3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca 4 EuO(BO 3 ) 3 emits stronger luminescence than the Eu 3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y 2 O 3 :Eu 3+ . Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (∼330 nm). The CT transitions significantly enhance Eu 3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu 3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications.

  7. Accelerators for society: succession of European infrastructural projects: CARE, EuCARD, TIARA, EuCARD2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, shown during the realization of CARE (Coordinated Accelerator R&D), EuCARD (European Coordination of Accelerator R&D) and during the national annual review meeting of the TIARA - Test Infrastructure of European Research Area in Accelerator R&D. The European projects on accelerator technology started in 2003 with CARE. TIARA is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of CARE, EuCARD and especially TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society. CARE, EuCARD and TIARA activities integrated the European accelerator community in a very effective way. These projects are expected very much to be continued.

  8. Effects of added dopants on various triboluminescent properties of europium dibenzoylmethide triethylammonium (EuD4TEA)

    NASA Astrophysics Data System (ADS)

    Owens, Constance; Fontenot, Ross S.; Bhat, Kamala N.; Aggarwal, Mohan D.

    2014-03-01

    A triboluminescent (TL) material is one that emits light upon pressure, impact, friction, or mechanical shock. TL materials are desirable for investigation because they have the potential to be used as the active element for smart impact sensors. While the material europium dibenzoylmethide triethylammonium (EuD4TEA) produces a TL emission yield that can be observed by the naked eye, it is still not sufficiently bright for use in smart sensor devices. Previous studies have shown that additional materials can be combined with EuD4TEA in order to improve the TL emission yield. In this paper, we discuss the effects of doping on EuD4TEA at different concentrations with a variety of materials on the TL emission yield and decay times. The dopants that were used in this study were nicotine, dibutyl phosphate (DBP), and magnesium. We also discuss both the effects of pH on EuD4TEA, and the doping effects on impact energy. For testing triboluminescent properties, we use a custom-built drop tower that generates triboluminescence by fracturing compounds through impact. Collected data is analyzed using specially written LabVIEW programs.

  9. EU energy policies achievement by industries in decentralized areas

    NASA Astrophysics Data System (ADS)

    Destro, Nicola; Stoppato, Anna; Benato, Alberto; Schiro, Fabio

    2017-11-01

    Energy Roadmap outlined by the European Commission sets out several routes for a more sustainable, competitive and secure energy system in 2050. All the outlined scenarios consider energy efficiency, renewable energy, nuclear energy and carbon capture and storage. In this paper, more attention has been devoted to the energy efficiency issue, by the identification of new micro and small networks opportunity fed by hybrid plants in the North-East of Italy. National energy balance and national transmission system operator data allowed to collect industrial energy consumptions data on the investigated area. Applying industrial statistics to the local energy needs allows to collect a dataset including consumption information by factory and by company structure (size and employees) for each industrial sector highlighting the factory density in the area. Preliminary outcomes from the model address to the exploitation of local by-product for energy purposes.

  10. Reformation and Resistance in American Nursing Education.

    ERIC Educational Resources Information Center

    Miller, Lucy Heim

    The American Nurses' Association's "First Position on Nursing" (1965), one instance of attempted reformation in American nursing education, recommends that nursing education should take place in institutions of higher education. Failures of this suggested reform seem to relate directly to the reform's incongruence with the continued or…

  11. Whole-School Reform. ERIC Digest, Number 124.

    ERIC Educational Resources Information Center

    McChesney, Jim

    This Digest describes several programs designed to foster successful school reform, and examines the Comprehensive School Reform Demonstration (CSRD) Program, recently approved by Congress. Whole-school (or comprehensive) reform includes a cross-disciplinary set of nationwide and local programs, dedicated to the intellectual and personal nurturing…

  12. General Education Reform: Opportunities for Institutional Alignment

    ERIC Educational Resources Information Center

    Fuess, Scott M., Jr.; Mitchell, Nancy D.

    2011-01-01

    General education reform provides strategic opportunities for departments. This article analyzes reform at the University of Nebraska-Lincoln, illustrating how departments could use the reform process to clarify their strategic planning, align with institutional goals, and steer the university closer to departmental objectives. (Contains 1 table.)

  13. Relativistic Atomic Data for Lines in Ge-Like Sm and Eu Ions

    NASA Astrophysics Data System (ADS)

    Nagy, O.; El Sayed, Fatma

    2012-11-01

    Energies, wavelengths, transition probabilities, and oscillator strengths have been calculated for the 4s24p2 - 4s4p3, 4s24p2 - 4s24p4d and 4s4p3 - 4p4 allowed transitions in heavy Ge-like Sm and Eu ions. The fully relativistic Multiconfiguration Dirac-Fock (MCDF) method taking into account both the correlations within the n = 4 complex and the quantum electrodynamic (QED) effects have been used in the calculations. MCDFGME code is used to calculate electron impact excitation cross sections for the 4s24p2 - 4s4p3, and 4s24p2 - 4s24p4d transitions with plane-wave Born approximation. The results of SmXXXI and Eu XXXII are compared with HFR method results.

  14. Interactions between Eu{sup 3+} ions in inorganic-organic hybrid materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelle, Fabienne, E-mail: fabienne-pelle@chimie-paristech.f; Aschehoug, Patrick; Surble, Suzy

    2010-04-15

    The optical properties of two-dimensional lanthanide dicarboxylates EuBDC or Eu{sub 2}(H{sub 2}O){sub 2}(O{sub 2}C-C{sub 6}H{sub 4}-CO{sub 2}){sub 3} and EuCDC (denoted also MIL94) or Eu{sub 2}(H{sub 2}O){sub 4}(O{sub 2}C-C{sub 6}H{sub 10}-CO{sub 2}){sub 3}.2H{sub 2}O are reported. The structures are built up from dimers of corner-sharing polyhedra and 1,3-benzenedicarboxylate (BDC) for EuBDC and from dimers of edge-sharing polyhedra and 1,3-benzenedicarboxylate (CDC) for EuCDC. The high Eu{sup 3+} concentration and the weak luminescence quenching allow the study of Eu{sup 3+} interactions. Anti-Stokes spectra from {sup 5}D{sub 1} are observed with excitation in {sup 5}D{sub 0}. These results are very unusual for Eu{supmore » 3+} ions and reflect strong interactions between ions within a dimer. Excitation spectrum of the Eu{sup 3+} luminescence strongly differs in both compounds in the UV range. In case of EuBDC, an efficient sensitization of the luminescence due to the ligand is observed between 250 and 350 nm while only 4f-4f transitions are recorded on the Eu{sup 3+} excitation spectrum in EuCDC. The efficiency of the sensitization of the rare earth by the host is discussed by taking into account the geometrical arrangement and the electronic delocalization of the ligands. - Graphical abstract: Excitation spectra monitoring the {sup 5}D{sub 0}->{sup 7}F{sub 2} transition with a dimer structure.« less

  15. Device for cooling and humidifying reformate

    DOEpatents

    Zhao, Jian Lian; Northrop, William F.

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  16. School Finance Reform: Past, Present and Future. Issuegram 26.

    ERIC Educational Resources Information Center

    Odden, Allan

    This paper examines past school finance reforms of the 1970's, current reforms in the 1980's, and future reforms in the 1990's. Fiscal inequities targeted in the reforms of the seventies resulted in major structural changes in the school finance systems of over 30 states. The reforms not only improved fiscal equity but helped increase…

  17. Hydrogen Generation Via Fuel Reforming

    NASA Astrophysics Data System (ADS)

    Krebs, John F.

    2003-07-01

    Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.

  18. Community Organizing as an Education Reform Strategy

    ERIC Educational Resources Information Center

    Renee, Michelle; McAlister, Sara

    2011-01-01

    Community organizing for school reform offers an urgently needed alternative to traditional approaches to school change. Many current reforms fail to thrive due to lack of trust, understanding, or cultural relevance to the community being targeted. The high turnover of reformers (superintendents, principals, or outside organizations) in high-need…

  19. Chapter 9: Wood Energy

    Treesearch

    Francisco X. Aguilar; Karen Abt; Branko Glavonjic; Eugene Lopatin; Warren  Mabee

    2016-01-01

    The availabilty of information on wood energy continues to improve, particularly for commoditized woodfuels.  Wood energy consumption and production vary in the UNECE region because demand is strngly affected by weather and the prices of competing energy sources.  There has been an increase in wood energy in the power-and-heat sector in the EU28 and North American...

  20. Internal reforming fuel cell assembly with simplified fuel feed

    DOEpatents

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  1. Integration of the ferromagnetic insulator EuO onto graphene.

    PubMed

    Swartz, Adrian G; Odenthal, Patrick M; Hao, Yufeng; Ruoff, Rodney S; Kawakami, Roland K

    2012-11-27

    We have demonstrated the deposition of EuO films on graphene by reactive molecular beam epitaxy in a special adsorption-controlled and oxygen-limited regime, which is a critical advance toward the realization of the exchange proximity interaction (EPI). It has been predicted that when the ferromagnetic insulator (FMI) EuO is brought into contact with graphene, an overlap of electronic wave functions at the FMI/graphene interface can induce a large spin splitting inside the graphene. Experimental realization of this effect could lead to new routes for spin manipulation, which is a necessary requirement for a functional spin transistor. Furthermore, EPI could lead to novel spintronic behavior such as controllable magnetoresistance, gate tunable exchange bias, and quantized anomalous Hall effect. However, experimentally, EuO has not yet been integrated onto graphene. Here we report the successful growth of high-quality crystalline EuO on highly oriented pyrolytic graphite and single-layer graphene. The epitaxial EuO layers have (001) orientation and do not induce an observable D peak (defect) in the Raman spectra. Magneto-optic measurements indicate ferromagnetism with a Curie temperature of 69 K, which is the value for bulk EuO. Transport measurements on exfoliated graphene before and after EuO deposition indicate only a slight decrease in mobility.

  2. New transparent flexible nanopaper as ultraviolet filter based on red emissive Eu(III) nanofibrillated cellulose

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Chang, Hui; Xue, Bailiang; Han, Qing; Lü, Xingqiang; Zhang, Sufeng; Li, Xinping; Zhu, Xunjin; Wong, Wai-kwok; Li, Kecheng

    2017-11-01

    A new kind of highly red emissive and transparent nanopapers as ultraviolet filter are produced from lanthanide complex Eu(TTA)3(H2O)2 grafted nanofibrillated cellulose (NFC) by a filtration process using a Buchner funnel. The nanopapers Eu-NFC 1-4 with different thickness (0.023 mm, 1; 0.04 mm, 2; 0.081 mm, 3 and 0.1 mm, 4) possess a fibres with dimensions of approximately 50 nm in diameter and several micrometres in length. Those nanopapers exhibit excellent ultraviolet A (UVA; 320-400 nm) filter property and high optical transmittance (>73% at wavelength of 600 nm). The presence of Eu(TTA)3(H2O)2 in Eu-NFC nanopapers can block 97% UVA (at 348 nm) light and convert it into pure red emission (CIE: x = 0.663, y = 0.333) through the efficient triplet-triplet energy transfer process. The efficient red emission can significantly improve the photo-stability of β-diketones type UVA filter. It can sustain for 10 h without decomposition under UV irradiation at 365 nm, which makes it possible to be applied in UVA filters. Moreover, its low coefficient of thermal expansion (CTE: 6.39 ppm K-1 of nanocellulose), is superior to petroleum-based materials for red organic light-emitting devices.

  3. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques.

    PubMed

    Tan, X L; Wang, X K; Geckeis, H; Rabung, Th

    2008-09-01

    To identify the effect of humic acid (HA) and fulvic acid (FA) on the sorption mechanism of Eu(III) on organic--inorganic colloids in the environment at a molecular level, surface adsorbed/ complexed Eu(III) on hydrous alumina, HA-, and FA-hydrous alumina hybrids were characterized by using X-ray photoelectron spectroscopy (XPS) and time-resolved laser fluorescence spectroscopy (TRLFS). The experiments were performed in 0.1 mol/L KNO3 or 0.1 mol/L NaClO4 under ambient conditions. The pH values were varied between 2 and 11 at a fixed Eu(III) concentration of 6.0 x 10(-7) mol/L and 4.3 x 10(-5) mol/L. The different Eu(III)/FA(HA)/hydrous alumina complexes were characterized by their fluorescence emission spectra ((5D0-F1)/ (5D0 --> 7F2)) and binding energy of Eu(III). Inner-sphere surface complexation may contribute mainly to Eu(III) sorption on hydrous alumina, and a ternary surface complex is formed at the HA/ FA-hydrous alumina hybrid surfaces. The sorption and species of Eu(III) in ternary Eu-HA/FA-hydrous alumina systems are not dominated by either HA/FA or hydrous alumina, but are dominated by both HA/FA and hydrous alumina. The results are important for understanding the sorption mechanisms and the nature of surface adsorbed Eu(III) species and trivalent chemical homologues of Eu(III) in the natural environment.

  4. Implementing Comprehensive Reform: Implications for Practice

    ERIC Educational Resources Information Center

    Stout, Karen A.

    2016-01-01

    This chapter describes the challenges and practical barriers community colleges face when implementing comprehensive reform, exploring how reforms are leading to some improvements but not often scaled improvements.

  5. Electricity market reforms: Institutional developments, investment dynamics and game modeling

    NASA Astrophysics Data System (ADS)

    Pineau, Pierre-Olivier

    The reform trend of the 1990's in electricity markets recreates, to some extent, the institutional framework from which they developed one century ago. Although these reforms do not endeavor to completely remove regulation, the basic objectives of deregulation dwell on limiting central and governmental control over the industry in order to promote free competition at all possible levels. To assess whether the electricity industry is or is not moving back to a 19th century structure is not the goal of this thesis. We will rather try to understand on what grounds deregulation reforms stand and review how different countries and large utilities have reacted to this trend. The special nature of electricity (non-storable basic good, centrally produced) creates different obstacles in the restructuring of electricity markets, compared to other industries like the airline or telecommunication ones. For example, the dominant positions of some utilities, the production structure and the importance of electricity in modern life could transform these reforms in a threatening move for consumers. Another specific issue arising from deregulation, now that national energy policy goals no longer rule the behavior of utilities, is how investment will be coordinated in the new market. A key element to keep in sight is the competition level targeted by these reforms. To which extent full competition can really occur in electricity markets remains an unanswered question. Indeed, the oligopolistic structure of the market could prevent such an outcome. An investigation of the investment dynamics in such a context seems therefore appropriate, and this will be an important theme of the thesis. This work offers an analysis of deregulated electricity markets and studies the oligopolistic market dynamics that could prevail in the new structure. Two complementary approaches are used for these purposes. The first is institutional and presents a thorough illustration of the economic arguments

  6. An Ecology of Academic Reform

    ERIC Educational Resources Information Center

    Grant, Gerald; Riesman, David

    1975-01-01

    This article contrasts the more popular educational reforms of the 1960's with reform movements occurring earlier in the century. Included in the article are discussions on the neo-classical university model, the aesthetic-expressive model, the communal-expressive model, and the activist-radical model. (Author/DE)

  7. Bright Lu2O3:Eu thin-film scintillators for high-resolution radioluminescence microscopy

    PubMed Central

    Sengupta, Debanti; Miller, Stuart; Marton, Zsolt; Chin, Frederick; Nagarkar, Vivek

    2015-01-01

    We investigate the performance of a new thin-film Lu2O3:Eu scintillator for single-cell radionuclide imaging. Imaging the metabolic properties of heterogeneous cell populations in real time is an important challenge with clinical implications. We have developed an innovative technique called radioluminescence microscopy, to quantitatively and sensitively measure radionuclide uptake in single cells. The most important component of this technique is the scintillator, which converts the energy released during radioactive decay into luminescent signals. The sensitivity and spatial resolution of the imaging system depend critically on the characteristics of the scintillator, i.e. the material used and its geometrical configuration. Scintillators fabricated using conventional methods are relatively thick, and therefore do not provide optimal spatial resolution. We compare a thin-film Lu2O3:Eu scintillator to a conventional 500 μm thick CdWO4 scintillator for radioluminescence imaging. Despite its thinness, the unique scintillation properties of the Lu2O3:Eu scintillator allow us to capture single positron decays with over fourfold higher sensitivity, a significant achievement. The thin-film Lu2O3:Eu scintillators also yield radioluminescence images where individual cells appear smaller and better resolved on average than with the CdWO4 scintillators. Coupled with the thin-film scintillator technology, radioluminescence microscopy can yield valuable and clinically relevant data on the metabolism of single cells. PMID:26183115

  8. Considerations for Education Reform in British Columbia

    ERIC Educational Resources Information Center

    Santos, Ana

    2012-01-01

    Countries around the world refer to twenty-first century education as essential to maintaining personal and national economic advantage and draw on this discourse to advocate for and embark on educational reform. This paper examines issues around education reform, particularly in British Columbia. It argues that reformers should give careful…

  9. Globalization and Educational Reform in Contemporary Japan

    ERIC Educational Resources Information Center

    Qi, Jie; Zhang, Sheng Ping

    2008-01-01

    This study explores the notions of globalization as embodied in Japanese educational reforms. Modern institutional discourses of educational reform in Japan have shifted over time and all of these reform movements have been constructed by particular social and historical trajectories. Generally speaking, it has been taken for granted that the…

  10. School Teachers' Experiences of Science Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Ryder, Jim; Banner, Indira

    2013-02-01

    We examine teachers' experiences of a major reform of the school science curriculum for 14-16-year olds in England. This statutory reform enhances the range of available science courses and emphasises the teaching of socio-scientific issues and the nature of science, alongside the teaching of canonical science knowledge. This paper examines teachers' experiences of the reform and the factors that condition these experiences. A designed sample of 22 teachers discussed their experiences of the reform within a semi-structured interview. Our analysis considers how the external and internal structures within which teachers work interact with the personal characteristics of teachers to condition their experiences of the curriculum reform. In many cases, personal/internal/external contexts of teachers' work align, resulting in an overall working context that is supportive of teacher change. However, in other cases, tensions within these contexts result in barriers to change. We also explore cases in which external curriculum reform has stimulated the development of new contexts for teachers' work. We argue that curriculum reformers need to recognise the inevitability of multiple teaching goals within a highly differentiated department and school workplace. We also show how experiences of curriculum reform can extend beyond the learning of new knowledge and associated pedagogies to involve challenges to teachers' professional identities. We argue for the extended use of teacher role models within local communities of practice to support such 'identity work'.

  11. Tuning cationic composition of La:EuTiO{sub 3−δ} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkabko, Andrey, E-mail: shkabko@gmail.com; Empa, Solid State Chemistry and Catalysis, CH-8600 Dübendorf; Xu, Chencheng

    2013-11-01

    Eu{sub 1−x}La{sub x}TiO{sub 3−δ} (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H{sub 2}(4%)) = 4 × 10{sup −4} mbar atmosphere on (LaAlO{sub 3}){sub 0.3}-(Sr{sub 2}AlTaO{sub 6}){sub 0.7} vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm{sup 2} independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the filmsmore » are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu{sup 3+} rich for films deposited at low laser fluence.« less

  12. Two decades of reforms. Appraisal of the financial reforms in the Russian public healthcare sector.

    PubMed

    Gordeev, Vladimir S; Pavlova, Milena; Groot, Wim

    2011-10-01

    This paper reviews the empirical evidence on the outcomes of the financial reforms in the Russian public healthcare sector. A systematic literature review identified 37 relevant publications that presented empirical evidence on changes in quality, equity, efficiency and sustainability in public healthcare provision due to the Russian public healthcare financial reforms. Evidence suggests that there are substantial inter-regional inequalities across income groups both in terms of financing and access to public healthcare services. There are large efficiency differences between regions, along with inter-regional variations in payment and reimbursement mechanisms. Informal and quasi-formal payments deteriorate access to public healthcare services and undermine the overall financing sustainability. The public healthcare sector is still underfinanced, although the implementation of health insurance gave some premises for future increases of efficiency. Overall, the available empirical data are not sufficient for an evidence-based evaluation of the reforms. More studies on the quality, equity, efficiency and sustainability impact of the reforms are needed. Future reforms should focus on the implementation of cost-efficiency and cost-control mechanisms; provide incentives for better allocation and distribution of resources; tackle problems in equity in access and financing; implement a system of quality controls; and stimulate healthy competition between insurance companies. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Linking Political Influence to School Reform with a Focus on the Performance Evaluation Reform Act and Senate Bill 7

    ERIC Educational Resources Information Center

    Fredericks, Juliane R.

    2015-01-01

    This study focused on the federal and Illinois State the reform legislation titled the Performance Evaluation Reform Act and Senate Bill 7. The Performance Evaluation Reform Act or "PERA" was created from collaboration between stakeholders as Illinois competed in a federal competition titled "Race to the Top." The legislation…

  14. Secondary School Reform, Inclusion, and Authentic Assessment. Research Institute on Secondary Education Reform (RISER) for Youth with Disabilities Brief.

    ERIC Educational Resources Information Center

    Braden, Jeffery P.; Schroeder, Jennifer L.; Buckley, Jacquelyn A.

    The Research Institute on Secondary Education Reform for Youth with Disabilities (RISER) has identified Schools of Authentic and Inclusive Learning (SAIL) to explore whether and how secondary students with disabilities are included in secondary education reform. In this brief, the literature describing the intersection of reform, inclusion, and…

  15. Time for TIGER to ROAR! Technology Informatics Guiding Education Reform.

    PubMed

    O'Connor, Siobhan; Hubner, Ursula; Shaw, Toria; Blake, Rachelle; Ball, Marion

    2017-11-01

    Information Technology (IT) continues to evolve and develop with electronic devices and systems becoming integral to healthcare in every country. This has led to an urgent need for all professions working in healthcare to be knowledgeable and skilled in informatics. The Technology Informatics Guiding Education Reform (TIGER) Initiative was established in 2006 in the United States to develop key areas of informatics in nursing. One of these was to integrate informatics competencies into nursing curricula and life-long learning. In 2009, TIGER developed an informatics competency framework which outlines numerous IT competencies required for professional practice and this work helped increase the emphasis of informatics in nursing education standards in the United States. In 2012, TIGER expanded to the international community to help synthesise informatics competencies for nurses and pool educational resources in health IT. This transition led to a new interprofessional, interdisciplinary approach, as health informatics education needs to expand to other clinical fields and beyond. In tandem, a European Union (EU) - United States (US) Collaboration on eHealth began a strand of work which focuses on developing the IT skills of the health workforce to ensure technology can be adopted and applied in healthcare. One initiative within this is the EU*US eHealth Work Project, which started in 2016 and is mapping the current structure and gaps in health IT skills and training needs globally. It aims to increase educational opportunities by developing a model for open and scalable access to eHealth training programmes. With this renewed initiative to incorporate informatics into the education and training of nurses and other health professionals globally, it is time for educators, researchers, practitioners and policy makers to join in and ROAR with TIGER. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Controllable site occupation of Eu in intricate superstructure of perovskite Sr3Al2O6: Eu, Dy, Li to produce red luminescence

    NASA Astrophysics Data System (ADS)

    Zhu, Mei; Tian, Yunfei; Chen, Jie; Fei, Mi; He, Liangrui; Chen, Lei; Peng, Fang; Zhang, Qingli; Chan, Ting-Shan

    An oxide red phosphor, with outstanding superiority in manufacturing cost, is particular desired for white light-emitting diodes (LEDs). In this work, a strategy to controllable site occupation of Eu in Sr3Al2O6 to give red light emission was employed with a three-step route: the combustion of sol-gel to prepare superfine precursor, the solid-sate reaction of precursor to incorporate Eu into small voids, and a second reduction in 25%H2+75%N2 atmosphere. Accordingly, a new red phosphor of Sr3Al2O6:Eu,Dy,Li was developed. The results shows the red luminescence of Sr3Al2O6:Eu could be improved by doping Dy3+ and be further improved by co-doping Li+. The red luminescence involves the 4f-5d transition of Eu2+ and the auto-ionization of electron from Eu2+ to conduction band. Dy3+ acts as a trap center of the thermally released electrons then with electrons returned to the 4f ground state of Eu2+, red light was emitted. The co-substitution of Sr2+-Sr2+ by Dy3+-Li+ is helpful to balance defects and improve crystallization.

  17. A top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets from commercial blocky phosphors

    NASA Astrophysics Data System (ADS)

    Zhang, Haoran; Xue, Zhiping; Lei, Bingfu; Dong, Hanwu; Zhang, Haiming; Deng, Suqing; Zheng, Mingtao; Liu, Yingliang; Xiao, Yong

    2014-09-01

    By using commercial SrAl2O4:Eu2+,Dy3+ phosphor as raw material, we have developed a novel and simple top-down method to fabricate SrAl2O4:Eu2+,Dy3+ nanosheets that are useful for potential practical applications, especially as fluorescent labels for biomolecules and mechano-optical nano-devices. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) results demonstrate that the treated samples are still pure-phase of SrAl2O4:Eu2+,Dy3+. The field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) results indicate that the treated SrAl2O4:Eu2+,Dy3+ phosphors are built up by nanosheets bundles. Excitation and emission spectra, afterglow emission spectra and decay curves are used to analyze the luminescence properties of SrAl2O4:Eu2+,Dy3+ nanosheets, and the results show that, compared with commercial samples, the treated samples show similar spectra characteristic including the spectra shapes and the band position. Furthermore, the fluorescence and afterglow intensity of SrAl2O4:Eu2+,Dy3+ nanosheets can be tuned linearly by changing the circumstance temperatures, which further indicates its potential applications in fiber-optical thermometer materials.

  18. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    NASA Astrophysics Data System (ADS)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  19. Free Speech and Campaign Reform.

    ERIC Educational Resources Information Center

    Sharp, Harry, Jr.

    The Federal Election Campaign Act of 1971, a political campaign reform measure, was enacted to limit campaign contributions and independent expenditures, to mandate disclosure of contributors, and to establish public financing of campaigns, all to minimize the opportunity for political corruption. Unfortunate implications of such reform on the…

  20. A potential single-phased emission-tunable silicate phosphor Ca3Si2O7:Ce3+,Eu2+ excited by ultraviolet light for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lv, Wenzhen; Guo, Ning; Jia, Yongchao; Zhao, Qi; You, Hongpeng

    2013-03-01

    Single-phased Ca3Si2O7:Ce3+,Eu2+ phosphor has been successfully prepared by the high temperature solid-state method. The phosphor shows efficient excitation bands from 200 to 400 nm and adjustable emission bands through the energy transfer from the Ce3+ to Eu2+ ions. The color hues can change from blue towards white ultimately to orange by adjusting the percentage content of doping ions. The investigation reveals that an electric dipole-dipole reaction mechanism should be responsible for the energy transfer from the Ce3+ to Eu2+ ions. The critical distance was obtained from the spectral overlap in terms of Dexter's theory. The developed phosphor Ca3Si2O7:Ce3+,Eu2+ exhibits two bands at 440 and 625 nm, respectively, which reveling that it has a great potentiality to be an UV-convertible phosphor for white-light emitting diodes with low color temperature.