Science.gov

Sample records for eukaryotic translation initiation

  1. Molecular mechanisms of translation initiation in eukaryotes

    PubMed Central

    Pestova, Tatyana V.; Kolupaeva, Victoria G.; Lomakin, Ivan B.; Pilipenko, Evgeny V.; Shatsky, Ivan N.; Agol, Vadim I.; Hellen, Christopher U. T.

    2001-01-01

    Translation initiation is a complex process in which initiator tRNA, 40S, and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs) into an 80S ribosome at the initiation codon of mRNA. The cap-binding complex eIF4F and the factors eIF4A and eIF4B are required for binding of 43S complexes (comprising a 40S subunit, eIF2/GTP/Met-tRNAi and eIF3) to the 5′ end of capped mRNA but are not sufficient to promote ribosomal scanning to the initiation codon. eIF1A enhances the ability of eIF1 to dissociate aberrantly assembled complexes from mRNA, and these factors synergistically mediate 48S complex assembly at the initiation codon. Joining of 48S complexes to 60S subunits to form 80S ribosomes requires eIF5B, which has an essential ribosome-dependent GTPase activity and hydrolysis of eIF2-bound GTP induced by eIF5. Initiation on a few mRNAs is cap-independent and occurs instead by internal ribosomal entry. Encephalomyocarditis virus (EMCV) and hepatitis C virus epitomize distinct mechanisms of internal ribosomal entry site (IRES)-mediated initiation. The eIF4A and eIF4G subunits of eIF4F bind immediately upstream of the EMCV initiation codon and promote binding of 43S complexes. EMCV initiation does not involve scanning and does not require eIF1, eIF1A, and the eIF4E subunit of eIF4F. Initiation on some EMCV-like IRESs requires additional noncanonical initiation factors, which alter IRES conformation and promote binding of eIF4A/4G. Initiation on the hepatitis C virus IRES is even simpler: 43S complexes containing only eIF2 and eIF3 bind directly to the initiation codon as a result of specific interaction of the IRES and the 40S subunit. PMID:11416183

  2. Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs

    PubMed Central

    Martínez-Salas, Encarnación; Piñeiro, David; Fernández, Noemí

    2012-01-01

    The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m7G(5′)ppp(5′)N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5′UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms. PMID:22536116

  3. Crystal structure of eukaryotic translation initiation factor 2B.

    PubMed

    Kashiwagi, Kazuhiro; Takahashi, Mari; Nishimoto, Madoka; Hiyama, Takuya B; Higo, Toshiaki; Umehara, Takashi; Sakamoto, Kensaku; Ito, Takuhiro; Yokoyama, Shigeyuki

    2016-03-01

    Eukaryotic cells restrict protein synthesis under various stress conditions, by inhibiting the eukaryotic translation initiation factor 2B (eIF2B). eIF2B is the guanine nucleotide exchange factor for eIF2, a heterotrimeric G protein consisting of α-, β- and γ-subunits. eIF2B exchanges GDP for GTP on the γ-subunit of eIF2 (eIF2γ), and is inhibited by stress-induced phosphorylation of eIF2α. eIF2B is a heterodecameric complex of two copies each of the α-, β-, γ-, δ- and ε-subunits; its α-, β- and δ-subunits constitute the regulatory subcomplex, while the γ- and ε-subunits form the catalytic subcomplex. The three-dimensional structure of the entire eIF2B complex has not been determined. Here we present the crystal structure of Schizosaccharomyces pombe eIF2B with an unprecedented subunit arrangement, in which the α2β2δ2 hexameric regulatory subcomplex binds two γε dimeric catalytic subcomplexes on its opposite sides. A structure-based in vitro analysis by a surface-scanning site-directed photo-cross-linking method identified the eIF2α-binding and eIF2γ-binding interfaces, located far apart on the regulatory and catalytic subcomplexes, respectively. The eIF2γ-binding interface is located close to the conserved 'NF motif', which is important for nucleotide exchange. A structural model was constructed for the complex of eIF2B with phosphorylated eIF2α, which binds to eIF2B more strongly than the unphosphorylated form. These results indicate that the eIF2α phosphorylation generates the 'nonproductive' eIF2-eIF2B complex, which prevents nucleotide exchange on eIF2γ, and thus provide a structural framework for the eIF2B-mediated mechanism of stress-induced translational control. PMID:26901872

  4. Computational modeling and analysis of insulin induced eukaryotic translation initiation.

    PubMed

    Lequieu, Joshua; Chakrabarti, Anirikh; Nayak, Satyaprakash; Varner, Jeffrey D

    2011-11-01

    Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow. PMID:22102801

  5. Archaeal translation initiation revisited: the initiation factor 2 and eukaryotic initiation factor 2B alpha-beta-delta subunit families

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Woese, C. R.

    1998-01-01

    As the amount of available sequence data increases, it becomes apparent that our understanding of translation initiation is far from comprehensive and that prior conclusions concerning the origin of the process are wrong. Contrary to earlier conclusions, key elements of translation initiation originated at the Universal Ancestor stage, for homologous counterparts exist in all three primary taxa. Herein, we explore the evolutionary relationships among the components of bacterial initiation factor 2 (IF-2) and eukaryotic IF-2 (eIF-2)/eIF-2B, i.e., the initiation factors involved in introducing the initiator tRNA into the translation mechanism and performing the first step in the peptide chain elongation cycle. All Archaea appear to posses a fully functional eIF-2 molecule, but they lack the associated GTP recycling function, eIF-2B (a five-subunit molecule). Yet, the Archaea do posses members of the gene family defined by the (related) eIF-2B subunits alpha, beta, and delta, although these are not specifically related to any of the three eukaryotic subunits. Additional members of this family also occur in some (but by no means all) Bacteria and even in some eukaryotes. The functional significance of the other members of this family is unclear and requires experimental resolution. Similarly, the occurrence of bacterial IF-2-like molecules in all Archaea and in some eukaryotes further complicates the picture of translation initiation. Overall, these data lend further support to the suggestion that the rudiments of translation initiation were present at the Universal Ancestor stage.

  6. Initiation of Translation in Bacteria by a Structured Eukaryotic IRES RNA

    PubMed Central

    Colussi, Timothy M.; Costantino, David A.; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A.; Jaafar, Zane A.; Plank, Terra-Dawn M.; Noller, Harry F.; Kieft, Jeffrey S.

    2015-01-01

    The central dogma of gene expression (DNA→RNA→protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive1,2. However, the core structures and conformational dynamics of ribosomes that are responsible for the steps of translation following initiation are ancient and conserved across the domains of life3,4. We asked whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here, we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by tRNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence as an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. PMID:25652826

  7. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    PubMed

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-01

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life. PMID:25652826

  8. Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo

    PubMed Central

    Kaiser, Constanze; Dobrikova, Elena Y.; Bradrick, Shelton S.; Shveygert, Mayya; Herbert, James T.; Gromeier, Matthias

    2008-01-01

    Protein synthesis is tightly controlled by assembly of an intricate ribonucleoprotein complex at the m7GTP-cap on eukaryotic mRNAs. Ensuing linear scanning of the 5′ untranslated region (UTR) is believed to transfer the preinitiation complex to the initiation codon. Eukaryotic mRNAs are characterized by significant 5′ UTR heterogeneity, raising the possibility of differential control of translation initiation rate at individual mRNAs. Curiously, many mRNAs with unconventional, highly structured 5′ UTRs encode proteins with central biological roles in growth control, metabolism, or stress response. The 5′ UTRs of such mRNAs may influence protein synthesis rate in multiple ways, but most significantly they have been implicated in mediating alternative means of translation initiation. Cap-independent initiation bypasses strict control over the formation of initiation intermediates at the m7GTP cap. However, the molecular mechanisms that favor alternative means of ribosome recruitment are not understood. Here we provide evidence that eukaryotic initiation factor (eIF) 4G controls cap-independent translation initiation at the c-myc and vascular endothelial growth factor (VEGF) 5′ UTRs in vivo. Cap-independent translation was investigated in tetracycline-inducible cell lines expressing either full-length eIF4G or a C-terminal fragment (Ct) lacking interaction with eIF4E and poly(A) binding protein. Expression of Ct, but not intact eIF4G, potently stimulated cap-independent initiation at the c-myc/VEGF 5′ UTRs. In vitro RNA-binding assays suggest that stimulation of cap-independent translation initiation by Ct is due to direct association with the c-myc/VEGF 5′ UTR, enabling 43S preinitiation complex recruitment. Our work demonstrates that variant translation initiation factors enable unconventional translation initiation at mRNA subsets with distinct structural features. PMID:18755839

  9. Inter-polysomal coupling of termination and initiation during translation in eukaryotic cell-free system.

    PubMed

    Sogorin, Evgeny A; Agalarov, Sultan Ch; Spirin, Alexander S

    2016-01-01

    The recording of the luciferase-generated luminescence in the eukaryotic cell-free translation system programmed with mRNA encoding firefly luciferase (Luc-mRNA) showed that the addition of free exogenous mRNAs into the translation reactor induces the immediate release of the functionally active protein from the polyribosomes of the translation system. The phenomenon did not depend on the coding specificity of the added free mRNA. At the same time it depended on the "initiation potential" of the added mRNA (including the features that ensure the successful initiation of translation, such as the presence of the cap structure and the sufficient concentration of the added mRNA in the translation mixture). The phenomenon also strictly depended on the presence of the stop codon in the translated mRNA. As the above-mentioned features of the added mRNA imply its activity in initiation of a new translation, the experimental data are found in agreement with the scenario where the molecules of the added mRNA interact by their 5'-ends with terminating and recycling ribosomes, stimulating the release of the complete polypeptides and providing for the initiation of a new translation. PMID:27075299

  10. Inter-polysomal coupling of termination and initiation during translation in eukaryotic cell-free system

    PubMed Central

    Sogorin, Evgeny A.; Agalarov, Sultan Ch.; Spirin, Alexander S.

    2016-01-01

    The recording of the luciferase-generated luminescence in the eukaryotic cell-free translation system programmed with mRNA encoding firefly luciferase (Luc-mRNA) showed that the addition of free exogenous mRNAs into the translation reactor induces the immediate release of the functionally active protein from the polyribosomes of the translation system. The phenomenon did not depend on the coding specificity of the added free mRNA. At the same time it depended on the “initiation potential” of the added mRNA (including the features that ensure the successful initiation of translation, such as the presence of the cap structure and the sufficient concentration of the added mRNA in the translation mixture). The phenomenon also strictly depended on the presence of the stop codon in the translated mRNA. As the above-mentioned features of the added mRNA imply its activity in initiation of a new translation, the experimental data are found in agreement with the scenario where the molecules of the added mRNA interact by their 5′-ends with terminating and recycling ribosomes, stimulating the release of the complete polypeptides and providing for the initiation of a new translation. PMID:27075299

  11. Kinetic proofreading scanning models for eukaryotic translational initiation: the cap and poly(A) tail dependency of translation.

    PubMed

    Bi, X; Goss, D J

    2000-11-21

    Two simplified kinetic proofreading scanning (KPS) models were proposed to describe the 5' cap and 3' poly(A) tail dependency of eukaryotic translation initiation. In Model I, the initiation factor complex starts scanning and unwinding the secondary structure of the 5' untranslated region (UTR) from the 5' terminus of mRNA. In Model II, the initiation factor complex starts scanning from any binding site in the 5' UTR. In both models, following ATP hydrolysis, the initiation factor complex either dissociates from mRNA or continues to scan and unwind RNA secondary structure in the 5' UTR. This step repeats n times until the AUG codon is reached. These two models show very different cap and/or poly(A) tail dependency of translation initiation. The models predict that both cap and poly(A) tail dependencies of translation, and translatability of mRNAs are coupled with the structure of 5' UTR: the translation of mRNA with structured 5' UTR is strongly cap- and poly(A) tail-dependent; while translation of mRNA with unstructured 5' UTR is less cap- and poly(A) tail-dependent. We use these two models to explain: (1) the cap and poly(A) tail dependence of translation; (2) the effect of exogenous poly(A) on translation; (3) repression of host mRNA and translation of late adenovirus mRNA in the late phase of adenovirus infection; (4) repression of host mRNA and translation of Vaccinia virus mRNA in virus-infected cell; (5) heat shock repression of translation of normal mRNA and stimulation of translation of hsp mRNA; and (6) the synergistic effect of cap and poly(A) tail on stimulating translation. The kinetic proofreading scanning models provide a coherent interpretation of those phenomena. PMID:11034826

  12. tRNA binding properties of eukaryotic translation initiation factor 2 from Encephalitozoon cuniculi.

    PubMed

    Naveau, Marie; Lazennec-Schurdevin, Christine; Panvert, Michel; Mechulam, Yves; Schmitt, Emmanuelle

    2010-10-12

    A critical consequence of the initiation of translation is the setting of the reading frame for mRNA decoding. In eukaryotic and archaeal cells, heterotrimeric initiation factor e/aIF2, in its GTP form, specifically binds Met-tRNA(i)(Met) throughout the translation initiation process. After start codon recognition, the factor, in its GDP-bound form, loses affinity for Met-tRNA(i)(Met) and eventually dissociates from the initiation complex. The role of each aIF2 subunit in tRNA binding has been extensively studied in archaeal systems. The isolated archaeal γ subunit is able to bind tRNA, but the α subunit is required for strong binding. Until now, difficulties during purification have hampered the study of the role of each of the three subunits of eukaryotic eIF2 in specific binding of the initiator tRNA. Here, we have produced the three subunits of eIF2 from Encephalitozoon cuniculi, isolated or assembled into heterodimers or into the full heterotrimer. Using assays following protection of Met-tRNA(i)(Met) against deacylation, we show that the eukaryotic γ subunit is able to bind by itself the initiator tRNA. However, the two peripheral α and β subunits are required for strong binding and contribute equally to tRNA binding affinity. The core domains of α and β probably act indirectly by stabilizing the tRNA binding site on the γ subunit. These results, together with those previously obtained with archaeal aIF2 and yeast eIF2, show species-specific distributions of the roles of the peripheral subunits of e/aIF2 in tRNA binding. PMID:20822097

  13. Collybistin and gephyrin are novel components of the eukaryotic translation initiation factor 3 complex

    PubMed Central

    2010-01-01

    Background Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABAA receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions. Findings Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain. Conclusions Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis. PMID:20858277

  14. ‘Ribozoomin’ – Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs)

    PubMed Central

    Valášek, Leoš Shivaya

    2012-01-01

    Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation. PMID:22708493

  15. Association of eukaryotic translation initiation factor eIF2B with fully solubilized CXCR4.

    PubMed

    Palmesino, Elena; Apuzzo, Tiziana; Thelen, Sylvia; Mueller, Bernd; Langen, Hanno; Thelen, Marcus

    2016-06-01

    Chemokine receptors are key regulators of leukocyte trafficking but also have an important role in development, tumor growth, and metastasis. Among the chemokine receptors, CXCR4 is the only one that leads to perinatal death when genetically ablated in mice, indicating a more-widespread function in development. To identify pathways that are activated downstream of CXCR4, a solubilization protocol was elaborated, which allows for the isolation of the endogenous receptor from human cells in its near-native conformation. Solubilized CXCR4 is recognized by the conformation-sensitive monoclonal antibody 12G5 and retains the ability to bind CXCL12 in solution, which was abolished in the presence of receptor antagonists. Mass spectrometry of CXCR4 immunoprecipitates revealed a specific interaction with the pentameric eukaryotic translation initiation factor 2B. The observation that the addition of CXCL12 leads to the dissociation of eukaryotic translation initiation factor 2B from CXCR4 suggests that stimulation of the receptor may trigger the local protein synthesis required for efficient cell movement. PMID:26609049

  16. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    SciTech Connect

    Guo, Jianjun; Jin, Zhaoqing; Yang, Xiaohan; Li, Jian-Feng; Chen, Jay

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  17. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression

    PubMed Central

    Homma, Miwako Kato; Wada, Ikuo; Suzuki, Toshiyuki; Yamaki, Junko; Krebs, Edwin G.; Homma, Yoshimi

    2005-01-01

    Casein kinase 2 (CK2) is a ubiquitous eukaryotic Ser/Thr protein kinase that plays an important role in cell cycle progression. Although its function in this process remains unclear, it is known to be required for the G1 and G2/M phase transitions in yeast. Here, we show that CK2 activity changes notably during cell cycle progression and is increased within 3 h of serum stimulation of quiescent cells. During the time period in which it exhibits high enzymatic activity, CK2 associates with and phosphorylates a key molecule for translation initiation, eukaryotic translation initiation factor (eIF) 5. Using MS, we show that Ser-389 and -390 of eIF5 are major sites of phosphorylation by CK2. This is confirmed using eIF5 mutants that lack CK2 sites; the phosphorylation levels of mutant eIF5 proteins are significantly reduced, relative to WT eIF5, both in vitro and in vivo. Expression of these mutants reveals that they have a dominant-negative effect on phosphorylation of endogenous eIF5, and that they perturb synchronous progression of cells through S to M phase, resulting in a significant reduction in growth rate. Furthermore, the formation of mature eIF5/eIF2/eIF3 complex is reduced in these cells, and, in fact, restricted diffusional motion of WT eIF5 was almost abolished in a GFP-tagged eIF5 mutant lacking CK2 phosphorylation sites, as measured by fluorescence correlation spectroscopy. These results suggest that CK2 may be involved in the regulation of cell cycle progression by associating with and phosphorylating a key molecule for translation initiation. PMID:16227438

  18. HSV Usurps Eukaryotic Initiation Factor 3 Subunit M for Viral Protein Translation: Novel Prevention Target

    PubMed Central

    Cheshenko, Natalia; Trepanier, Janie B.; Segarra, Theodore J.; Fuller, A. Oveta; Herold, Betsy C.

    2010-01-01

    Prevention of genital herpes is a global health priority. B5, a recently identified ubiquitous human protein, was proposed as a candidate HSV entry receptor. The current studies explored its role in HSV infection. Viral plaque formation was reduced by ∼90% in human cells transfected with small interfering RNA targeting B5 or nectin-1, an established entry receptor. However, the mechanisms were distinct. Silencing of nectin-1 prevented intracellular delivery of viral capsids, nuclear transport of a viral tegument protein, and release of calcium stores required for entry. In contrast, B5 silencing had no effect on these markers of entry, but inhibited viral protein translation. Specifically, viral immediate early genes, ICP0 and ICP4, were transcribed, polyadenylated and transported from the nucleus to the cytoplasm, but the viral transcripts did not associate with ribosomes or polysomes in B5-silenced cells. In contrast, immediate early gene viral transcripts were detected in polysome fractions isolated from control cells. These findings are consistent with sequencing studies demonstrating that B5 is eukaryotic initiation factor 3 subunit m (eIF3m). Although B5 silencing altered the polysome profile of cells, silencing had little effect on cellular RNA or protein expression and was not cytotoxic, suggesting that this subunit is not essential for host cellular protein synthesis. Together these results demonstrate that B5 plays a major role in the initiation of HSV protein translation and could provide a novel target for strategies to prevent primary and recurrent herpetic disease. PMID:20676407

  19. Isolation and mapping of the human eukaryotic translation initiation factor 5 to chromosome 14

    SciTech Connect

    Romano, D.M.; Wasco, W.; Murell, J.

    1994-09-01

    Eukaryotic translation initiation factor 5 (eIF-5) is essential for the initiation of protein synthesis. eIF-5 catalyzes the hydrolysis of GTP on the 40S ribosomal initiation complex. Subsequent to GTP hydrolysis and the release of eIF-2-GDP, the 60S ribosomal subunit is joined to the 40S subunit to form an 80S initiation complex which can engage in peptide transfer. In an effort to isolate the major early-onset familial Alzheimer`s disease (FAD) gene on chromosome 14, we have isolated expressed sequences from this autosome in the form of exons `trapped` from chromosome 14-specific cosmids (library provided by L. Deaven, Los Alamos, NM). One cosmid yielded multiple exons displaying strong DNA and amino acid homology (>90%) with the rat eIF-5 gene. These exons were used to isolate full-length cDNAs from a human brain library. The eIF-5 message is approximately 3.6 kB in size and is ubiquitously expressed. The predicted amino acid sequence reveals multiple phosphorylation sites which may be involved in regulation of activity of eIF-5 and regions with homology to the GTPase superfamily, consistent with eIF-5`s role in GTP hydrolysis. Further studies are underway to determine whether the eIF-5 gene resides within the FAD minimal candidate region on chromosome 14q24.3.

  20. Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex

    PubMed Central

    Hussain, Tanweer; Llácer, Jose L.; Fernández, Israel S.; Munoz, Antonio; Martin-Marcos, Pilar; Savva, Christos G.; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2014-01-01

    Summary During eukaryotic translation initiation, initiator tRNA does not insert fully into the P decoding site on the 40S ribosomal subunit. This conformation (POUT) is compatible with scanning mRNA for the AUG start codon. Base pairing with AUG is thought to promote isomerization to a more stable conformation (PIN) that arrests scanning and promotes dissociation of eIF1 from the 40S subunit. Here, we present a cryoEM reconstruction of a yeast preinitiation complex at 4.0 Å resolution with initiator tRNA in the PIN state, prior to eIF1 release. The structure reveals stabilization of the codon-anticodon duplex by the N-terminal tail of eIF1A, changes in the structure of eIF1 likely instrumental in its subsequent release, and changes in the conformation of eIF2. The mRNA traverses the entire mRNA cleft and makes connections to the regulatory domain of eIF2α, eIF1A, and ribosomal elements that allow recognition of context nucleotides surrounding the AUG codon. PMID:25417110

  1. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    SciTech Connect

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong; Cui, Chunhong; Liu, Dan; Li, Qiuping; Yang, Zhiyuan; Wu, Guoqiang; Sun, Shuhui; Gu, Jianxin; Wei, Yuanyan; Jiang, Jianhai

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was a positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.

  2. Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex

    PubMed Central

    Llácer, Jose L.; Hussain, Tanweer; Marler, Laura; Aitken, Colin Echeverría; Thakur, Anil; Lorsch, Jon R.; Hinnebusch, Alan G.; Ramakrishnan, V.

    2015-01-01

    Summary Translation initiation in eukaryotes begins with the formation of a pre-initiation complex (PIC) containing the 40S ribosomal subunit, eIF1, eIF1A, eIF3, ternary complex (eIF2-GTP-Met-tRNAi), and eIF5. The PIC, in an open conformation, attaches to the 5′ end of the mRNA and scans to locate the start codon, whereupon it closes to arrest scanning. We present single particle cryo-electron microscopy (cryo-EM) reconstructions of 48S PICs from yeast in these open and closed states, at 6.0 Å and 4.9 Å, respectively. These reconstructions show eIF2β as well as a configuration of eIF3 that appears to encircle the 40S, occupying part of the subunit interface. Comparison of the complexes reveals a large conformational change in the 40S head from an open mRNA latch conformation to a closed one that constricts the mRNA entry channel and narrows the P site to enclose tRNAi, thus elucidating key events in start codon recognition. PMID:26212456

  3. Human-Like Eukaryotic Translation Initiation Factor 3 from Neurospora crassa

    PubMed Central

    Smith, M. Duane; Gu, Yu; Querol-Audí, Jordi; Vogan, Jacob M.; Nitido, Adam; Cate, Jamie H. D.

    2013-01-01

    Eukaryotic translation initiation factor 3 (eIF3) is a key regulator of translation initiation, but its in vivo assembly and molecular functions remain unclear. Here we show that eIF3 from Neurospora crassa is structurally and compositionally similar to human eIF3. N. crassa eIF3 forms a stable 12-subunit complex linked genetically and biochemically to the 13th subunit, eIF3j, which in humans modulates mRNA start codon selection. Based on N. crassa genetic analysis, most subunits in eIF3 are essential. Subunits that can be deleted (e, h, k and l) map to the right side of the eIF3 complex, suggesting that they may coordinately regulate eIF3 function. Consistent with this model, subunits eIF3k and eIF3l are incorporated into the eIF3 complex as a pair, and their insertion depends on the presence of subunit eIF3h, a key regulator of vertebrate development. Comparisons to other eIF3 complexes suggest that eIF3 assembles around an eIF3a and eIF3c dimer, which may explain the coordinated regulation of human eIF3 levels. Taken together, these results show that Neurospora crassa eIF3 provides a tractable system for probing the structure and function of human-like eIF3 in the context of living cells. PMID:24250809

  4. The Transformation Suppressor Pdcd4 Is a Novel Eukaryotic Translation Initiation Factor 4A Binding Protein That Inhibits Translation

    PubMed Central

    Yang, Hsin-Sheng; Jansen, Aaron P.; Komar, Anton A.; Zheng, Xiaojing; Merrick, William C.; Costes, Sylvain; Lockett, Stephen J.; Sonenberg, Nahum; Colburn, Nancy H.

    2003-01-01

    Pdcd4 is a novel transformation suppressor that inhibits tumor promoter-induced neoplastic transformation and the activation of AP-1-dependent transcription required for transformation. A yeast two-hybrid analysis revealed that Pdcd4 associates with the eukaryotic translation initiation factors eIF4AI and eIF4AII. Immunofluorescent confocal microscopy showed that Pdcd4 colocalizes with eIF4A in the cytoplasm. eIF4A is an ATP-dependent RNA helicase needed to unwind 5′ mRNA secondary structure. Recombinant Pdcd4 specifically inhibited the helicase activity of eIF4A and eIF4F. In vivo translation assays showed that Pdcd4 inhibited cap-dependent but not internal ribosome entry site (IRES)-dependent translation. In contrast, Pdcd4D418A, a mutant inactivated for binding to eIF4A, failed to inhibit cap-dependent or IRES-dependent translation or AP-1 transactivation. Recombinant Pdcd4 prevented eIF4A from binding to the C-terminal region of eIF4G (amino acids 1040 to 1560) but not to the middle region of eIF4G(amino acids 635 to 1039). In addition, both Pdcd4 and Pdcd4D418A bound to the middle region of eIF4G. The mechanism by which Pdcd4 inhibits translation thus appears to involve inhibition of eIF4A helicase, interference with eIF4A association-dissociation from eIF4G, and inhibition of eIF4A binding to the C-terminal domain of eIF4G. Pdcd4 binding to eIF4A is linked to its transformation-suppressing activity, as Pdcd4-eIF4A binding and consequent inhibition of translation are required for Pdcd4 transrepression of AP-1. PMID:12482958

  5. Posttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence

    PubMed Central

    Martinez-Rocha, Ana Lilia; Woriedh, Mayada; Chemnitz, Jan; Willingmann, Peter; Kröger, Cathrin; Hadeler, Birgit; Hauber, Joachim; Schäfer, Wilhelm

    2016-01-01

    Activation of eukaryotic translation initiation factor eIF5A requires a posttranslational modification, forming the unique amino acid hypusine. This activation is mediated by two enzymes, deoxyhypusine synthase, DHS, and deoxyhypusine hydroxylase, DOHH. The impact of this enzymatic complex on the life cycle of a fungal pathogen is unknown. Plant pathogenic ascomycetes possess a single copy of the eIF5A activated by hypusination. We evaluated the importance of imbalances in eIF5A hypusination in Fusarium graminearum, a devastating fungal pathogen of cereals. Overexpression of DHS leads to increased virulence in wheat, elevated production of the mycotoxin deoxynivalenol, more infection structures, faster wheat tissue invasion in plants and increases vegetatively produced conidia. In contrast, overexpression of DOHH completely prevents infection structure formation, pathogenicity in wheat and maize, leads to overproduction of ROS, reduced DON production and increased sexual reproduction. Simultaneous overexpression of both genes restores wild type-like phenotypes. Analysis of eIF5A posttranslational modification displayed strongly increased hypusinated eIF5A in DOHH overexpression mutant in comparison to wild type, and the DHS overexpression mutants. These are the first results pointing to different functions of differently modified eIF5A. PMID:27098988

  6. Posttranslational hypusination of the eukaryotic translation initiation factor-5A regulates Fusarium graminearum virulence.

    PubMed

    Martinez-Rocha, Ana Lilia; Woriedh, Mayada; Chemnitz, Jan; Willingmann, Peter; Kröger, Cathrin; Hadeler, Birgit; Hauber, Joachim; Schäfer, Wilhelm

    2016-01-01

    Activation of eukaryotic translation initiation factor eIF5A requires a posttranslational modification, forming the unique amino acid hypusine. This activation is mediated by two enzymes, deoxyhypusine synthase, DHS, and deoxyhypusine hydroxylase, DOHH. The impact of this enzymatic complex on the life cycle of a fungal pathogen is unknown. Plant pathogenic ascomycetes possess a single copy of the eIF5A activated by hypusination. We evaluated the importance of imbalances in eIF5A hypusination in Fusarium graminearum, a devastating fungal pathogen of cereals. Overexpression of DHS leads to increased virulence in wheat, elevated production of the mycotoxin deoxynivalenol, more infection structures, faster wheat tissue invasion in plants and increases vegetatively produced conidia. In contrast, overexpression of DOHH completely prevents infection structure formation, pathogenicity in wheat and maize, leads to overproduction of ROS, reduced DON production and increased sexual reproduction. Simultaneous overexpression of both genes restores wild type-like phenotypes. Analysis of eIF5A posttranslational modification displayed strongly increased hypusinated eIF5A in DOHH overexpression mutant in comparison to wild type, and the DHS overexpression mutants. These are the first results pointing to different functions of differently modified eIF5A. PMID:27098988

  7. Minimum requirements for the function of eukaryotic translation initiation factor 2.

    PubMed Central

    Erickson, F L; Nika, J; Rippel, S; Hannig, E M

    2001-01-01

    Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo. PMID:11333223

  8. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond

    SciTech Connect

    Monzingo,A.; Dhaliwal, S.; Dutt-Chaudhuri, A.; Lyon, A.; Sadow, J.; Hoffman, D.; Robertus, J.; Browning, K.

    2007-01-01

    Eukaryotic translation initiation factor-4E (eIF4E) recognizes and binds the m{sup 7} guanosine nucleotide at the 5' end of eukaryotic messenger RNAs; this protein-RNA interaction is an essential step in the initiation of protein synthesis. The structure of eIF4E from wheat (Triticum aestivum) was investigated using a combination of x-ray crystallography and nuclear magnetic resonance (NMR) methods. The overall fold of the crystallized protein was similar to eIF4E from other species, with eight {beta}-strands, three {alpha}-helices, and three extended loops. Surprisingly, the wild-type protein did not crystallize with m{sup 7}GTP in its binding site, despite the ligand being present in solution; conformational changes in the cap-binding loops created a large cavity at the usual cap-binding site. The eIF4E crystallized in a dimeric form with one of the cap-binding loops of one monomer inserted into the cavity of the other. The protein also contained an intramolecular disulfide bridge between two cysteines (Cys) that are conserved only in plants. A Cys-to-serine mutant of wheat eIF4E, which lacked the ability to form the disulfide, crystallized with m{sup 7}GDP in its binding pocket, with a structure similar to that of the eIF4E-cap complex of other species. NMR spectroscopy was used to show that the Cys that form the disulfide in the crystal are reduced in solution but can be induced to form the disulfide under oxidizing conditions. The observation that the disulfide-forming Cys are conserved in plants raises the possibility that their oxidation state may have a role in regulating protein function. NMR provided evidence that in oxidized eIF4E, the loop that is open in the ligand-free crystal dimer is relatively flexible in solution. An NMR-based binding assay showed that the reduced wheat eIF4E, the oxidized form with the disulfide, and the Cys-to-serine mutant protein each bind m{sup 7}GTP in a similar and labile manner, with dissociation rates in the range of 20

  9. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis

    PubMed Central

    Zhang, Yuhua; Wang, Yifei; Kanyuka, Kostya; Parry, Martin A. J.; Powers, Stephen J.; Halford, Nigel G.

    2008-01-01

    The yeast regulatory protein kinase, general control non-derepressible-2 (GCN2) plays a key role in general amino acid control. GCN2 phosphorylates the α subunit of the trimeric eukaryotic translation initiation factor-2 (eIF2), bringing about a decrease in the general rate of protein synthesis but an increase in the synthesis of GCN4, a transcription factor that promotes the expression of genes encoding enzymes for amino acid biosynthesis. The present study concerned the phosphorylation of Arabidopsis eIF2α (AteIF2α) by the Arabidopsis homologue of GCN2, AtGCN2, and the role of AtGCN2 in regulating genes encoding enzymes of amino acid biosynthesis and responding to virus infection. A null mutant for AtGCN2 called GT8359 was obtained and western analysis confirmed that it lacked AtGCN2 protein. GT8359 was more sensitive than wild-type Arabidopsis to herbicides that affect amino acid biosynthesis. Phosphorylation of AteIF2α occurred in response to herbicide treatment but only in wild-type Arabidopsis, not GT8359, showing it to be AtGCN2-dependent. Expression analysis of genes encoding key enzymes for amino acid biosynthesis and nitrate assimilation revealed little effect of loss of AtGCN2 function in GT8359 except that expression of a nitrate reductase gene, NIA1, was decreased. Analysis of wild-type and GT8359 plants infected with Turnip yellow mosaic virus or Turnip crinkle virus showed that AteIF2α was not phosphorylated. PMID:18603615

  10. The Yeast Eukaryotic Translation Initiation Factor 2B Translation Initiation Complex Interacts with the Fatty Acid Synthesis Enzyme YBR159W and Endoplasmic Reticulum Membranes

    PubMed Central

    Browne, Christopher M.; Samir, Parimal; Fites, J. Scott; Villarreal, Seth A.

    2013-01-01

    Using affinity purifications coupled with mass spectrometry and yeast two-hybrid assays, we show the Saccharomyces cerevisiae translation initiation factor complex eukaryotic translation initiation factor 2B (eIF2B) and the very-long-chain fatty acid (VLCFA) synthesis keto-reductase enzyme YBR159W physically interact. The data show that the interaction is specifically between YBR159W and eIF2B and not between other members of the translation initiation or VLCFA pathways. A ybr159wΔ null strain has a slow-growth phenotype and a reduced translation rate but a normal GCN4 response to amino acid starvation. Although YBR159W localizes to the endoplasmic reticulum membrane, subcellular fractionation experiments show that a fraction of eIF2B cofractionates with lipid membranes in a YBR159W-independent manner. We show that a ybr159wΔ yeast strain and other strains with null mutations in the VLCFA pathway cause eIF2B to appear as numerous foci throughout the cytoplasm. PMID:23263984

  11. THE MECHANISM OF EUKARYOTIC TRANSLATION INITIATION AND PRINCIPLES OF ITS REGULATION

    PubMed Central

    Jackson, Richard J.; Hellen, Christopher U.T.; Pestova, Tatyana V.

    2015-01-01

    PREFACE Protein synthesis is principally regulated at the initiation stage (rather than during elongation or termination), allowing rapid, reversible and spatial control over gene expression. Progress over recent years in determining the structures and activities of initiation factors, and in mapping their interactions within ribosomal initiation complexes, has significantly advanced our understanding of the complex translation initiation process. These developments have provided a solid foundation for studies of regulation of initiation by mechanisms that include modulation of the activity of initiation factors (which affects almost all scanning-dependent initiation), or via sequence-specific RNA-binding proteins and microRNAs (which thus impact individual mRNAs). PMID:20094052

  12. Should I stay or should I go? Eukaryotic translation initiation factors 1 and 1A control start codon recognition.

    PubMed

    Mitchell, Sarah F; Lorsch, Jon R

    2008-10-10

    Start codon selection is a key step in translation initiation as it sets the reading frame for decoding. Two eukaryotic initiation factors, eIF1 and eIF1A, are key actors in this process. Recent work has elucidated many details of the mechanisms these factors use to control start site selection. eIF1 prevents the irreversible GTP hydrolysis that commits the ribosome to initiation at a particular codon. eIF1A both promotes and inhibits commitment through the competing influences of its two unstructured termini. Both factors perform their tasks through a variety of interactions with other components of the initiation machinery, in many cases mediated by the unstructured regions of the two proteins. PMID:18593708

  13. Alpha subunit of eukaryotic translational initiation factor-2 is a heat-shock protein.

    PubMed

    Colbert, R A; Hucul, J A; Scorsone, K A; Young, D A

    1987-12-15

    The use of ultra high resolution giant two-dimensional gel electrophoresis has expanded the number of recognizable heat-shock proteins to 68 inductions in rat thymic lymphocytes, many of which are among the less abundant cellular proteins (Maytin, E. V., Colbert, R. A., and Young, D. A. (1985) J. Biol. Chem. 260, 2384-2392). Previous studies also show that cells receiving a prior heat shock recover more rapidly from the inhibition of protein synthesis induced by a second heat shock. In this report we use a monoclonal antibody to identify the alpha subunit of eukaryotic initiation factor-2 (eIF-2 alpha) as a heat-shock protein. Its relative rate of synthesis increases approximately 40% in the 2nd h and 5-fold in the 4th h of a continuous heat shock and is stimulated more dramatically, 15-fold, in the 3rd h of recovery from a 1-h heat shock. These results suggest that the induction of eIF-2 alpha in the heat-shock response may be important for restoring the cell's ability to initiate protein synthesis. In addition to identifying a function for one of the heat-shock proteins, our findings draw attention to the likelihood that other low-abundance heat-shock proteins may play critical roles in the heat-shock response. PMID:3500171

  14. Lentivirus-mediated knockdown of eukaryotic translation initiation factor 3 subunit D inhibits proliferation of HCT116 colon cancer cells.

    PubMed

    Yu, Xiaojun; Zheng, Bo'an; Chai, Rui

    2014-01-01

    Dysregulation of protein synthesis is emerging as a major contributory factor in cancer development. eIF3D (eukaryotic translation initiation factor 3 subunit D) is one member of the eIF3 (eukaryotic translation initiation factor 3) family, which is essential for initiation of protein synthesis in eukaryotic cells. Acquaintance with eIF3D is little since it has been identified as a dispensable subunit of eIF3 complex. Recently, eIF3D was found to embed somatic mutations in human colorectal cancers, indicating its importance for tumour progression. To further probe into its action in colon cancer, we utilized lentivirus-mediated RNA interference to knock down eIF3D expression in one colon cancer cell line HCT116. Knockdown of eIF3D in HCT116 cells significantly inhibited cell proliferation and colony formation in vitro. Flow cytometry analysis indicated that depletion of eIF3D led to cell-cycle arrest in the G2/M phase, and induced an excess accumulation of HCT116 cells in the sub-G1 phase representing apoptotic cells. Signalling pathways responsible for cell growth and apoptosis have also been found altered after eIF3D silencing, such as AMPKα (AMP-activated protein kinase alpha), Bad, PRAS40 [proline-rich Akt (PKB) substrate of 40 kDa], SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase), GSK3β and PARP [poly(ADP-ribose) polymerase]. Taken together, these findings suggest that eIF3D might play an important role in colon cancer progression. PMID:25370813

  15. Translation Initiation on mRNAs Bound by Nuclear Cap-binding Protein Complex CBP80/20 Requires Interaction between CBP80/20-dependent Translation Initiation Factor and Eukaryotic Translation Initiation Factor 3g*

    PubMed Central

    Choe, Junho; Oh, Nara; Park, Sungjin; Lee, Ye Kyung; Song, Ok-Kyu; Locker, Nicolas; Chi, Sung-Gil; Kim, Yoon Ki

    2012-01-01

    In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET. PMID:22493286

  16. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists

    PubMed Central

    Jagus, Rosemary; Bachvaroff, Tsvetan R.; Joshi, Bhavesh; Place, Allen R.

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in “text-book” model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed. PMID:22778692

  17. Eukaryotic Translation Initiation Factor eIFiso4G Is Required to Regulate Violaxanthin De-epoxidase Expression in Arabidopsis*

    PubMed Central

    Chen, Zhong; Jolley, Blair; Caldwell, Christian; Gallie, Daniel R.

    2014-01-01

    The eukaryotic translation initiation factor (eIF) 4G is a scaffold protein that organizes the assembly of those initiation factors needed to recruit the 40 S ribosomal subunit to an mRNA. Plants, like many eukaryotes, express two eIF4G isoforms. eIFiso4G, one of the isoforms specific to plants, is unique among eukaryotic eIF4G proteins in that it is highly divergent and unusually small in size, raising the possibility of functional specialization. In this study, the role of eIFiso4G in plant growth was investigated using null mutants for the eIF4G isoforms in Arabidopsis. eIFiso4G loss of function mutants exhibited smaller cell, leaf, plant size, and biomass accumulation that correlated with its reduced photosynthetic activity, phenotypes not observed with the eIF4G loss of function mutant. Although no change in photorespiration or dark respiration was observed in the eIFiso4G loss of function mutant, a reduction in chlorophyll levels and an increase in the level of nonphotochemical quenching were observed. An increase in xanthophyll cycle activity and the generation of reactive oxygen species contributed to the qE and qI components of nonphotochemical quenching, respectively. An increase in the transcript and protein levels of violaxanthin de-epoxidase in the eIFiso4G loss of function mutant and an increase in its xanthophyll de-epoxidation state correlated with the higher qE associated with loss of eIFiso4G expression. These observations indicate that eIFiso4G expression is required to regulate violaxanthin de-epoxidase expression and to support photosynthetic activity. PMID:24706761

  18. Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans.

    PubMed

    Yu, Xiang; Vought, Valarie E; Conradt, Barbara; Maine, Eleanor M

    2006-09-01

    In C. elegans, a population of proliferating germ cells is maintained via GLP-1/Notch signaling; in the absence of GLP-1 signaling, germ cells prematurely enter meiosis and differentiate. We previously identified ego (enhancer of glp-1) genes that promote germline proliferation and interact genetically with the GLP-1 signaling pathway. Here, we report that iffb-1 (initiation factor five B) is an ego gene. iffb-1 encodes the sole C. elegans isoform of eukaryotic translation initiation factor 5B, a protein essential for translation. We have used RNA interference and a deletion mutation to determine the developmental consequences of reduced iffb-1 activity. Our data indicate that maternal iffb-1 gene expression is sufficient for embryogenesis, and zygotic iffb-1 expression is required for development beyond late L1/early L2 stage. Partial reduction in iffb-1 expression delays larval development and can severely disrupt proliferation and differentiation of germ cells. We hypothesize that germline development is particularly sensitive to iffb-1 expression level. PMID:16937415

  19. The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less traveled

    PubMed Central

    Osborne, Michael J.; Borden, Katherine L.B.

    2014-01-01

    Summary The eukaryotic translation initiation factor eIF4E is a potent oncogene. Although eIF4E has traditional roles in translation initiation in the cytoplasm, it is also found in the nucleus, suggesting that it has activities beyond its role in protein synthesis. The road less traveled has been taken to study these nuclear activities and to understand their contribution to the oncogenic potential of eIF4E. The molecular features and biological pathways underpinning eIF4E’s nuclear mRNA export are described. New classes of eIF4E regulators have been identified and their relevance to cancer shown. The studies presented here reveal the molecular, biophysical, and structural bases for eIF4E regulation. Finally, recent clinical work targeting eIF4E in acute myeloid leukemia patients with ribavirin is discussed. In summary, these findings provide a novel paradigm for eIF4E function and the molecular basis for targeting it in leukemia patients. PMID:25510279

  20. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    PubMed Central

    Guerrero, Santiago; Batisse, Julien; Libre, Camille; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication. PMID:25606970

  1. HIV-1 replication and the cellular eukaryotic translation apparatus.

    PubMed

    Guerrero, Santiago; Batisse, Julien; Libre, Camille; Bernacchi, Serena; Marquet, Roland; Paillart, Jean-Christophe

    2015-01-01

    Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication. PMID:25606970

  2. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation.

    PubMed

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S Kundhavai; Klaholz, Bruno P; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  3. Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation

    PubMed Central

    Martin, Franck; Ménétret, Jean-François; Simonetti, Angelita; Myasnikov, Alexander G.; Vicens, Quentin; Prongidi-Fix, Lydia; Natchiar, S. Kundhavai; Klaholz, Bruno P.; Eriani, Gilbert

    2016-01-01

    Eukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA). Toe-printing and mutational assays reveal that an interaction exists between a purine-rich sequence in h4 mRNA and a complementary UUUC sequence of helix h16. Together the present data establish that the h4 mRNA harbours a sequence complementary to an 18S rRNA sequence which tethers the mRNA to the ribosome to promote proper start codon positioning, complementing the interactions of the 40S subunit with the Kozak sequence that flanks the AUG start codon. PMID:27554013

  4. Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control.

    PubMed Central

    Sullivan, William J; Narasimhan, Jana; Bhatti, Micah M; Wek, Ronald C

    2004-01-01

    The ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts. PMID:14989696

  5. A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha.

    PubMed Central

    Sood, R; Porter, A C; Olsen, D A; Cavener, D R; Wek, R C

    2000-01-01

    A family of protein kinases regulates translation in response to different cellular stresses by phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2alpha). In yeast, an eIF-2alpha kinase, GCN2, functions in translational control in response to amino acid starvation. It is thought that uncharged tRNA that accumulates during amino acid limitation binds to sequences in GCN2 homologous to histidyl-tRNA synthetase (HisRS) enzymes, leading to enhanced kinase catalytic activity. Given that starvation for amino acids also stimulates phosphorylation of eIF-2alpha in mammalian cells, we searched for and identified a GCN2 homologue in mice. We cloned three different cDNAs encoding mouse GCN2 isoforms, derived from a single gene, that vary in their amino-terminal sequences. Like their yeast counterpart, the mouse GCN2 isoforms contain HisRS-related sequences juxtaposed to the kinase catalytic domain. While GCN2 mRNA was found in all mouse tissues examined, the isoforms appear to be differentially expressed. Mouse GCN2 expressed in yeast was found to inhibit growth by hyperphosphorylation of eIF-2alpha, requiring both the kinase catalytic domain and the HisRS-related sequences. Additionally, lysates prepared from yeast expressing mGCN2 were found to phosphorylate recombinant eIF-2alpha substrate. Mouse GCN2 activity in both the in vivo and in vitro assays required the presence of serine-51, the known regulatory phosphorylation site in eIF-2alpha. Together, our studies identify a new mammalian eIF-2alpha kinase, GCN2, that can mediate translational control. PMID:10655230

  6. Translation of a Small Subset of Caenorhabditis elegans mRNAs Is Dependent on a Specific Eukaryotic Translation Initiation Factor 4E Isoform

    PubMed Central

    Dinkova, Tzvetanka D.; Keiper, Brett D.; Korneeva, Nadejda L.; Aamodt, Eric J.; Rhoads, Robert E.

    2005-01-01

    The mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) participates in protein synthesis initiation, translational repression of specific mRNAs, and nucleocytoplasmic shuttling. Multiple isoforms of eIF4E are expressed in a variety of organisms, but their specific roles are poorly understood. We investigated one Caenorhabditis elegans isoform, IFE-4, which has homologues in plants and mammals. IFE-4::green fluorescent protein (GFP) was expressed in pharyngeal and tail neurons, body wall muscle, spermatheca, and vulva. Knockout of ife-4 by RNA interference (RNAi) or a null mutation produced a pleiotropic phenotype that included egg-laying defects. Sedimentation analysis demonstrated that IFE-4, but not IFE-1, was present in 48S initiation complexes, indicating that it participates in protein synthesis initiation. mRNAs affected by ife-4 knockout were determined by DNA microarray analysis of polysomal distribution. Polysome shifts, in the absence of total mRNA changes, were observed for only 33 of the 18,967 C. elegans mRNAs tested, of which a disproportionate number were related to egg laying and were expressed in neurons and/or muscle. Translational regulation was confirmed by reduced levels of DAF-12, EGL-15, and KIN-29. The functions of these proteins can explain some phenotypes observed in ife-4 knockout mutants. These results indicate that translation of a limited subset of mRNAs is dependent on a specific isoform of eIF4E. PMID:15601834

  7. Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases.

    PubMed

    Eiler, Daniel; Lin, Jinzhong; Simonetti, Angelita; Klaholz, Bruno P; Steitz, Thomas A

    2013-09-24

    The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes. PMID:24029018

  8. Inhibition of cell growth through inactivation of eukaryotic translation initiation factor 5A (eIF5A) by deoxyspergualin.

    PubMed Central

    Nishimura, Kazuhiro; Ohki, Yuji; Fukuchi-Shimogori, Tomomi; Sakata, Kaori; Saiga, Kan; Beppu, Takanobu; Shirahata, Akira; Kashiwagi, Keiko; Igarashi, Kazuei

    2002-01-01

    The mechanism of inhibition of cell growth by deoxyspergualin was studied using mouse mammary carcinoma FM3A cells. Results of studies using deoxyspergualin analogues showed that both the guanidinoheptanate amide and glyoxyspermidine moieties of deoxyspergualin were necessary to cause inhibition of cell growth. When deoxyspergualin was added to the medium, there was a strong inhibition of cell growth and formation of active eukaryotic translation initiation factor 5A (eIF5A) at the third day of culture. There was also a marked decrease in cellular putrescine content and a small decrease in spermidine content. Accumulation of decapped mRNA, which is typically associated with eIF5A deficiency in yeast, was also observed. The inhibition of cell growth and the formation of active eIF5A was not reversed by addition of spermidine. The activity of deoxyhypusine synthase, the first enzyme in the formation of active eIF5A, was inhibited by deoxyspergualin in a cell-free system. These results, taken together, indicate that inhibition of active eIF5A formation is strongly involved in the inhibition of cell growth by deoxyspergualin. PMID:11964177

  9. Externalization and recognition by macrophages of large subunit of eukaryotic translation initiation factor 3 in apoptotic cells

    SciTech Connect

    Nakai, Yuji; Shiratsuchi, Akiko; Manaka, Junko; Nakayama, Hiroshi; Takio, Koji; Zhang Jianting; Suganuma, Tatsuo; Nakanishi, Yoshinobu . E-mail: nakanaka@kenroku.kanazawa-u.ac.jp

    2005-09-10

    We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages [C. Fujii, A. Shiratsuchi, J. Manaka, S. Yonehara, Y. Nakanishi. Cell Death Differ. 8 (2001) 1113-1122]. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis.

  10. Investigation of the conserved glutamate immediately following the DEAD box in eukaryotic translation initiation factor 4AI.

    PubMed

    Patel, Krishnaben; Shah, Grishma K; Kommaraju, Sai Shilpa; Low, Woon-Kai

    2014-02-01

    The DExD-box family (DEAD-box) of proteins was surveyed for eukaryotic translation initiation factor 4A-specific sequences surrounding the DEAD box. An eIF4A-unique glutamate residue (E186 in eIF4AI) was identified immediately following the D-E-A-D sequence in eIF4AI, II, and III that was found to be conserved from yeast to Man. Mutation to a selection of alternative amino acids was performed within recombinant eIF4AI expressed in Escherichia coli and mutant proteins were surveyed for RNA-dependent ATPase activity. The mutants were also investigated for changes in activity in the presence of the two eIF4AI-binding domains of eIF4GI as well as for co-purification ability to these two domains. The E186 residue was found to be of significance for RNA-dependent ATPase activity for eIF4AI alone and in the presence of eIF4AI-binding domains of eIF4GI through point-mutation analysis. Furthermore, binding interactions between eIF4AI and eIF4GI domains were also significantly influenced by mutation of E186, as observed through co-purification assays. Thus, this residue appears to be of functional significance for eIF4A. PMID:24471916

  11. Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes Cell Proliferation and Motility in Pancreatic Cancer.

    PubMed

    Wang, Shu Qian; Liu, Yu; Yao, Min Ya; Jin, Jing

    2016-10-01

    Identifying a target molecule that is crucially involved in pancreatic tumor growth and metastasis is necessary in developing an effective treatment. The study aimed to investigate the role of the eukaryotic translation initiation factor 3a (eIF3a) in the cell proliferation and motility in pancreatic cancer. Our data showed that the expression of eIF3a was upregulated in pancreatic ductal adenocarcinoma as compared with its expression in normal pancreatic tissues. Knockdown of eIF3a by a specific shRNA caused significant decreases in cell proliferation and clonogenic abilities in pancreatic cancer SW1990 and Capan-1 cells. Consistently, the pancreatic cancer cell growth rates were also impaired in xenotransplanted mice. Moreover, wound-healing assay showed that depletion of eIF3a significantly slowed down the wound recovery processes in SW1990 and Capan-1 cells. Transwell migration and invasion assays further showed that cell migration and invasion abilities were significantly inhibited by knockdown of eIF3a in SW1990 and Capan-1 cells. Statistical analysis of eIF3a expression in 140 cases of pancreatic ductal adenocarcinoma samples revealed that eIF3a expression was significantly associated with tumor metastasis and TNM staging. These analyses suggest that eIF3a contributes to cell proliferation and motility in pancreatic ductal adenocarcinoma. PMID:27550487

  12. The Structure of Eukaryotic Translation Initiation Factor-4E from Wheat Reveals a Novel Disulfide Bond1[OA

    PubMed Central

    Monzingo, Arthur F.; Dhaliwal, Simrit; Dutt-Chaudhuri, Anirvan; Lyon, Angeline; Sadow, Jennifer H.; Hoffman, David W.; Robertus, Jon D.; Browning, Karen S.

    2007-01-01

    Eukaryotic translation initiation factor-4E (eIF4E) recognizes and binds the m7 guanosine nucleotide at the 5′ end of eukaryotic messenger RNAs; this protein-RNA interaction is an essential step in the initiation of protein synthesis. The structure of eIF4E from wheat (Triticum aestivum) was investigated using a combination of x-ray crystallography and nuclear magnetic resonance (NMR) methods. The overall fold of the crystallized protein was similar to eIF4E from other species, with eight β-strands, three α-helices, and three extended loops. Surprisingly, the wild-type protein did not crystallize with m7GTP in its binding site, despite the ligand being present in solution; conformational changes in the cap-binding loops created a large cavity at the usual cap-binding site. The eIF4E crystallized in a dimeric form with one of the cap-binding loops of one monomer inserted into the cavity of the other. The protein also contained an intramolecular disulfide bridge between two cysteines (Cys) that are conserved only in plants. A Cys-to-serine mutant of wheat eIF4E, which lacked the ability to form the disulfide, crystallized with m7GDP in its binding pocket, with a structure similar to that of the eIF4E-cap complex of other species. NMR spectroscopy was used to show that the Cys that form the disulfide in the crystal are reduced in solution but can be induced to form the disulfide under oxidizing conditions. The observation that the disulfide-forming Cys are conserved in plants raises the possibility that their oxidation state may have a role in regulating protein function. NMR provided evidence that in oxidized eIF4E, the loop that is open in the ligand-free crystal dimer is relatively flexible in solution. An NMR-based binding assay showed that the reduced wheat eIF4E, the oxidized form with the disulfide, and the Cys-to-serine mutant protein each bind m7GTP in a similar and labile manner, with dissociation rates in the range of 20 to 100 s−1. PMID:17322339

  13. Innate Immune Evasion Mediated by the Ambystoma tigrinum Virus Eukaryotic Translation Initiation Factor 2α Homologue ▿

    PubMed Central

    Jancovich, James K.; Jacobs, Bertram L.

    2011-01-01

    Ranaviruses (family Iridoviridae, genus Ranavirus) are large, double-stranded DNA (dsDNA) viruses whose replication is restricted to ectothermic vertebrates. Many highly pathogenic members of the genus Ranavirus encode a homologue of the eukaryotic translation initiation factor 2α (eIF2α). Data in a heterologous vaccinia virus system suggest that the Ambystoma tigrinum virus (ATV) eIF2α homologue (vIF2αH; open reading frame [ORF] 57R) is involved in evading the host innate immune response by degrading the interferon-inducible, dsRNA-activated protein kinase, PKR. To test this hypothesis directly, the ATV vIF2αH gene (ORF 57R) was deleted by homologous recombination, and a selectable marker was inserted in its place. The ATVΔ57R virus has a small plaque phenotype and is 8-fold more sensitive to interferon than wild-type ATV (wtATV). Infection of fish cells with the ATVΔ57R virus leads to eIF2α phosphorylation, in contrast to infection with wtATV, which actively inhibits eIF2α phosphorylation. The inability of ATVΔ57R to prevent phosphorylation of eIF2α correlates with degradation of fish PKZ, an interferon-inducible enzyme that is closely related to mammalian PKR. In addition, salamanders infected with ATVΔ57R displayed an increased time to death compared to that of wtATV-infected salamanders. Therefore, in a biologically relevant system, the ATV vIF2αH gene acts as an innate immune evasion factor, thereby enhancing virus pathogenesis. PMID:21389122

  14. Poly(A) binding protein abundance regulates eukaryotic translation initiation factor 4F assembly in human cytomegalovirus-infected cells.

    PubMed

    McKinney, Caleb; Perez, Cesar; Mohr, Ian

    2012-04-10

    By commandeering cellular translation initiation factors, or destroying those dispensable for viral mRNA translation, viruses often suppress host protein synthesis. In contrast, cellular protein synthesis proceeds in human cytomegalovirus (HCMV)-infected cells, forcing viral and cellular mRNAs to compete for limiting translation initiation factors. Curiously, inactivating the host translational repressor 4E-BP1 in HCMV-infected cells stimulates synthesis of the cellular poly(A) binding protein (PABP), significantly increasing PABP abundance. Here, we establish that new PABP synthesis is translationally controlled by the HCMV-encoded UL38 mammalian target of rapamycin complex 1-activator. The 5' UTR within the mRNA encoding PABP contains a terminal oligopyrimidine (TOP) element found in mRNAs, the translation of which is stimulated in response to mitogenic, growth, and nutritional stimuli, and proteins encoded by TOP-containing mRNAs accumulated in HCMV-infected cells. Furthermore, UL38 expression was necessary and sufficient to regulate expression of a PABP TOP-containing reporter. Remarkably, preventing the rise in PABP abundance by RNAi impaired eIF4E binding to eIF4G, thereby reducing assembly of the multisubunit initiation factor eIF4F, viral protein production, and replication. This finding demonstrates that viruses can increase host translation initiation factor concentration to foster their replication and defines a unique mechanism whereby control of PABP abundance regulates eIF4F assembly. PMID:22431630

  15. Internal translation initiation and eIF4F/ATP-independent scanning of mRNA by eukaryotic ribosomal particles

    PubMed Central

    Agalarov, Sultan Ch.; Sakharov, Pavel A.; Fattakhova, Dina Kh.; Sogorin, Evgeny A.; Spirin, Alexander S.

    2014-01-01

    The recombinant mRNAs with 5′-untranslated region, called omega leader, of tobacco mosaic virus RNA are known to be well translated in eukaryotic cell-free systems, even if deprived of cap structure. Using the method of primer extension inhibition (toe-printing), the ribosomal particles were shown to initiate translation at uncapped omega leader when its 5′-end was blocked by a stable RNA-DNA double helix, thus providing evidence for internal initiation. The scanning of the leader sequence and the formation of ribosomal 48S initiation complexes at the initiation AUG codon occurred in the absence of ATP-dependent initiation factor eIF4F, as well as without ATP. The latter results implied the ability of ribosomal initiation complexes for ATP-independent, diffusional wandering (also called bi-directional movement) along the leader sequence during scanning. PMID:24657959

  16. The Rice Eukaryotic Translation Initiation Factor 3 Subunit f (OseIF3f) Is Involved in Microgametogenesis

    PubMed Central

    Li, Qi; Deng, Zhuyun; Gong, Chunyan; Wang, Tai

    2016-01-01

    Microgametogenesis is the post-meiotic pollen developmental phase when unicellular microspores develop into mature tricellular pollen. In rice, microgametogenesis can influence grain yields to a great degree because pollen abortion occurs more easily during microgametogenesis than during other stages of pollen development. However, our knowledge of the genes involved in microgametogenesis in rice remains limited. Due to the dependence of pollen development on the regulatory mechanisms of protein expression, we identified the encoding gene of the eukaryotic translation initiation factor 3, subunit f in Oryza sativa (OseIF3f). Immunoprecipitation combined with mass spectrometry confirmed that OseIF3f was a subunit of rice eIF3, which consisted of at least 12 subunits including eIF3a, eIF3b, eIF3c, eIF3d, eIF3e, eIF3f, eIF3g, eIF3h, eIF3i, eIF3k, eIF3l, and eIF3m. OseIF3f showed high mRNA levels in immature florets and is highly abundant in developing anthers. Subcellular localization analysis showed that OseIF3f was localized to the cytosol and the endoplasmic reticulum in rice root cells. We further analyzed the biological function of OseIF3f using the double-stranded RNA-mediated interference (RNAi) approach. The OseIF3f-RNAi lines grew normally at the vegetative stage but displayed a large reduction in seed production and pollen viability, which is associated with the down-regulation of OseIF3f. Further cytological observations of pollen development revealed that the OseIF3f-RNAi lines showed no obvious abnormalities at the male meiotic stage and the unicellular microspore stage. However, compared to the wild-type, OseIF3f-RNAi lines contained a higher percentage of arrested unicellular pollen at the bicellular stage and a higher percentage of arrested unicellular and bicellular pollen, and aborted pollen at the tricellular stage. These results indicate that OseIF3f plays a role in microgametogenesis. PMID:27200010

  17. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation.

    PubMed

    Lokugamage, Kumari G; Narayanan, Krishna; Huang, Cheng; Makino, Shinji

    2012-12-01

    Severe acute respiratory syndrome (SARS) coronavirus nonstructural protein 1 (nsp1) binds to the 40S ribosomal subunit and inhibits translation, and it also induces a template-dependent endonucleolytic cleavage of host mRNAs. nsp1 inhibits the translation of cap-dependent and internal ribosome entry site (IRES)-driven mRNAs, including SARS coronavirus mRNAs, hepatitis C virus (HCV), and cricket paralysis virus (CrPV) IRES-driven mRNAs that are resistant to nsp1-induced RNA cleavage. We used an nsp1 mutant, nsp1-CD, lacking the RNA cleavage function, to delineate the mechanism of nsp1-mediated translation inhibition and identify the translation step(s) targeted by nsp1. nsp1 and nsp1-CD had identical inhibitory effects on mRNA templates that are resistant to nsp1-induced RNA cleavage, implying the validity of using nsp1-CD to dissect the translation inhibition function of nsp1. We provide evidence for a novel mode of action of nsp1. nsp1 inhibited the translation initiation step by targeting at least two separate stages: 48S initiation complex formation and the steps involved in the formation of the 80S initiation complex from the 48S complex. nsp1 had a differential, mRNA template-dependent, inhibitory effect on 48S and 80S initiation complex formation. nsp1 inhibited different steps of translation initiation on CrPV and HCV IRES, both of which initiate translation via an IRES-40S binary complex intermediate; nsp1 inhibited binary complex formation on CrPV IRES and 48S complex formation on HCV IRES. Collectively, the data revealed that nsp1 inhibited translation by exerting its effect on multiple stages of translation initiation, depending on the mechanism of initiation operating on the mRNA template. PMID:23035226

  18. Deoxyhypusine Modification of Eukaryotic Translation Initiation Factor 5A (eIF5A) Is Essential for Trypanosoma brucei Growth and for Expression of Polyprolyl-containing Proteins*

    PubMed Central

    Nguyen, Suong; Leija, Chrisopher; Kinch, Lisa; Regmi, Sandesh; Li, Qiong; Grishin, Nick V.; Phillips, Margaret A.

    2015-01-01

    The eukaryotic protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis. Polyamine biosynthesis is essential in T. brucei, and the polyamine spermidine is required for synthesis of a novel cofactor called trypanothione and for deoxyhypusine modification of eukaryotic translation initiation factor 5A (eIF5A). eIF5A promotes translation of proteins containing polyprolyl tracts in mammals and yeast. To evaluate the function of eIF5A in T. brucei, we used RNA interference (RNAi) to knock down eIF5A levels and found that it is essential for T. brucei growth. The RNAi-induced growth defect was complemented by expression of wild-type human eIF5A but not by a Lys-50 mutant that blocks modification by deoxyhypusine. Bioinformatics analysis showed that 15% of the T. brucei proteome contains 3 or more consecutive prolines and that actin-related proteins and cysteine proteases were highly enriched in the group. Steady-state protein levels of representative proteins containing 9 consecutive prolines that are involved in actin assembly (formin and CAP/Srv2p) were significantly reduced by knockdown of eIF5A. Several T. brucei polyprolyl proteins are involved in flagellar assembly. Knockdown of TbeIF5A led to abnormal cell morphologies and detached flagella, suggesting that eIF5A is important for translation of proteins needed for these processes. Potential specialized functions for eIF5A in T. brucei in translation of variable surface glycoproteins were also uncovered. Inhibitors of deoxyhypusination would be expected to cause a pleomorphic effect on multiple cell processes, suggesting that deoxyhypusine/hypusine biosynthesis could be a promising drug target in not just T. brucei but in other eukaryotic pathogens. PMID:26082486

  19. Identification of Intersubunit Domain Interactions within Eukaryotic Initiation Factor (eIF) 2B, the Nucleotide Exchange Factor for Translation Initiation*

    PubMed Central

    Reid, Peter J.; Mohammad-Qureshi, Sarah S.; Pavitt, Graham D.

    2012-01-01

    In eukaryotic translation initiation, eIF2B is the guanine nucleotide exchange factor (GEF) required for reactivation of the G protein eIF2 between rounds of protein synthesis initiation. eIF2B is unusually complex with five subunits (α–ϵ) necessary for GEF activity and its control by phosphorylation of eIF2α. In addition, inherited mutations in eIF2B cause a fatal leukoencephalopathy. Here we describe experiments examining domains of eIF2Bγ and ϵ that both share sequence and predicted tertiary structure similarity with a family of phospho-hexose sugar nucleotide pyrophosphorylases. Firstly, using a genetic approach, we find no evidence to support a significant role for a potential nucleotide-binding region within the pyrophosphorylase-like domain (PLD) of eIF2Bϵ for nucleotide exchange. These findings are at odds with one mechanism for nucleotide exchange proposed previously. By using a series of constructs and a co-expression and precipitation strategy, we find that the eIF2Bϵ and -γ PLDs and a shared second domain predicted to form a left-handed β helix are all critical for interprotein interactions between eIF2B subunits necessary for eIF2B complex formation. We have identified extensive interactions between the PLDs and left-handed β helix domains that form the eIF2Bγϵ subcomplex and propose a model for domain interactions between eIF2B subunits. PMID:22238343

  20. rRNA Suppressor of a Eukaryotic Translation Initiation Factor 5B/Initiation Factor 2 Mutant Reveals a Binding Site for Translational GTPases on the Small Ribosomal Subunit▿

    PubMed Central

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G.; Maher, Kathryn N.; Lorsch, Jon R.; Dever, Thomas E.

    2009-01-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit. PMID:19029250

  1. Polyribosome binding by GCN1 is required for full activation of eukaryotic translation initiation factor 2{alpha} kinase GCN2 during amino acid starvation.

    PubMed

    Sattlegger, Evelyn; Hinnebusch, Alan G

    2005-04-22

    The protein kinase GCN2 mediates translational control of gene expression in amino acid-starved cells by phosphorylating eukaryotic translation initiation factor 2alpha. In Saccharomyces cerevisiae, activation of GCN2 by uncharged tRNAs in starved cells requires its direct interaction with both the GCN1.GCN20 regulatory complex and ribosomes. GCN1 also interacts with ribosomes in cell extracts, but it was unknown whether this activity is crucial for its ability to stimulate GCN2 function in starved cells. We describe point mutations in two conserved, noncontiguous segments of GCN1 that lead to reduced polyribosome association by GCN1.GCN20 in living cells without reducing GCN1 expression or its interaction with GCN20. Mutating both segments simultaneously produced a greater reduction in polyribosome binding by GCN1.GCN20 and a stronger decrease in eukaryotic translation initiation factor 2alpha phosphorylation than did mutating in one segment alone. These findings provide strong evidence that ribosome binding by GCN1 is required for its role as a positive regulator of GCN2. A particular mutation in the GCN1 domain, related in sequence to translation elongation factor 3 (eEF3), decreased GCN2 activation much more than it reduced ribosome binding by GCN1. Hence, the eEF3-like domain appears to have an effector function in GCN2 activation. This conclusion supports the model that an eEF3-related activity of GCN1 influences occupancy of the ribosomal decoding site by uncharged tRNA in starved cells. PMID:15722345

  2. Tristetraprolin Recruits Eukaryotic Initiation Factor 4E2 To Repress Translation of AU-Rich Element-Containing mRNAs

    PubMed Central

    Tao, Xianzun

    2015-01-01

    Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpression of eIF4E2 enhanced TTP-mediated translational repression, and downregulation of endogenous eIF4E2 or overexpression of a truncation mutant of eIF4E2 impaired TTP-mediated translational repression. Overexpression of an eIF4E2 mutant that lost the cap-binding activity also impaired TTP's activity, suggesting that the cap-binding activity of eIF4E2 is important in TTP-mediated translational repression. We further show that TTP promoted eIF4E2 binding to target mRNA. These results imply that TTP recruits eIF4E2 to compete with eIF4E to repress the translation of target mRNA. This notion is supported by the finding that downregulation of endogenous eIF4E2 increased the production of tumor necrosis factor alpha (TNF-α) protein without affecting the mRNA levels in THP-1 cells. Collectively, these results uncover a novel mechanism by which TTP represses target mRNA translation. PMID:26370510

  3. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis.

    PubMed

    Gallie, Daniel R

    2016-01-15

    The eukaryotic translation initiation factor (eIF) 4G is required during protein synthesis to promote the assembly of several factors involved in the recruitment of a 40S ribosomal subunit to an mRNA. Although many eukaryotes express two eIF4G isoforms that are highly similar, the eIF4G isoforms in plants, referred to as eIF4G and eIFiso4G, are highly divergent in size, sequence, and domain organization but both can interact with eIF4A, eIF4B, eIF4E isoforms, and the poly(A)-binding protein. Nevertheless, eIF4G and eIFiso4G from wheat exhibit preferences in the mRNAs they translate optimally. For example, mRNA containing the 5'-leader (called Ω) of tobacco mosaic virus preferentially uses eIF4G in wheat germ lysate. In this study, the eIF4G isoform specificity of Ω was used to examine functional differences of the eIF4G isoforms in Arabidopsis. As in wheat, Ω-mediated translation was reduced in an eif4g null mutant. Loss of the eIFiso4G1 isoform, which is similar in sequence to wheat eIFiso4G, did not substantially affect Ω-mediated translation. However, loss of the eIFiso4G2 isoform substantially reduced Ω-mediated translation. eIFiso4G2 is substantially divergent from eIFiso4G1 and is present only in the Brassicaceae, suggesting a recent evolution. eIFiso4G2 isoforms exhibit sequence-specific differences in regions representing partner protein and RNA binding sites. Loss of any eIF4G isoform also resulted in a substantial reduction in reporter transcript level. These results suggest that eIFiso4G2 appeared late in plant evolution and exhibits more functional similarity with eIF4G than with eIFiso4G1 during Ω-mediated translation. PMID:26578519

  4. Molecular modeling of the human eukaryotic translation initiation factor 5A (eIF5A) based on spectroscopic and computational analyses

    SciTech Connect

    Costa-Neto, Claudio M. . E-mail: claudio@fmrp.usp.br; Parreiras-e-Silva, Lucas T.; Ruller, Roberto; Oliveira, Eduardo B.; Miranda, Antonio; Oliveira, Laerte; Ward, Richard J.

    2006-09-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a protein ubiquitously present in archaea and eukarya, which undergoes a unique two-step post-translational modification called hypusination. Several studies have shown that hypusination is essential for a variety of functional roles for eIF5A, including cell proliferation and synthesis of proteins involved in cell cycle control. Up to now neither a totally selective inhibitor of hypusination nor an inhibitor capable of directly binding to eIF5A has been reported in the literature. The discovery of such an inhibitor might be achieved by computer-aided drug design based on the 3D structure of the human eIF5A. In this study, we present a molecular model for the human eIF5A protein based on the crystal structure of the eIF5A from Leishmania brasiliensis, and compare the modeled conformation of the loop bearing the hypusination site with circular dichroism data obtained with a synthetic peptide of this loop. Furthermore, analysis of amino acid variability between different human eIF5A isoforms revealed peculiar structural characteristics that are of functional relevance.

  5. An eukaryotic translation initiation factor, AteIF5A-2, affects cadmium accumulation and sensitivity in Arabidopsis.

    PubMed

    Xu, Xiao-Yan; Ding, Zhong-Jie; Chen, Lei; Yan, Jin-Ying; Li, Gui-Xin; Zheng, Shao-Jian

    2015-10-01

    Cadmium (Cd) is one of the most toxic elements and can be accumulated in plants easily; meanwhile, eIF5A is a highly conserved protein in all eukaryotic organisms. The present work tried to investigate whether eIF5A is involved in Cd accumulation and sensitivity in Arabidopsis (Arabidopsis thaliana L.) by comparing the wild-type Columbia-0 (Col-0) with a knockdown mutant of AteIF5A-2, fbr12-3 under Cd stress conditions. The results showed that the mutant fbr12-3 accumulated more Cd in roots and shoots and had significantly lower chlorophyll content, shorter root length, and smaller biomass, suggesting that downregulation of AteIF5A-2 makes the mutant more Cd sensitive. Real-time polymerase chain reaction revealed that the expressions of metal transporters involved in Cd uptake and translocation including IRT1, ZIP1, AtNramp3, and AtHMA4 were significantly increased but the expressions of PCS1 and PCS2 related to Cd detoxification were decreased notably in fbr12-3 compared with Col-0. As a result, an increase in MDA and H2 O2 content but decrease in root trolox, glutathione and proline content under Cd stress was observed, indicating that a severer oxidative stress occurs in the mutant. All these results demonstrated for the first time that AteIF5A influences Cd sensitivity by affecting Cd uptake, accumulation, and detoxification in Arabidopsis. PMID:25559189

  6. Hsp90 Binds and Regulates the Ligand-Inducible α Subunit of Eukaryotic Translation Initiation Factor Kinase Gcn2

    PubMed Central

    Donzé, Olivier; Picard, Didier

    1999-01-01

    The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2. PMID:10567567

  7. Phosphorylation Stoichiometries of Human Eukaryotic Initiation Factors

    PubMed Central

    Andaya, Armann; Villa, Nancy; Jia, Weitao; Fraser, Christopher S.; Leary, Julie A.

    2014-01-01

    Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors), this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation. PMID:24979134

  8. Aerosol delivery of eukaryotic translation initiation factor 4E-binding protein 1 effectively suppresses lung tumorigenesis in K-rasLA1 mice.

    PubMed

    Chang, S-H; Kim, J-E; Lee, J-H; Minai-Tehrani, A; Han, K; Chae, C; Cho, Y-H; Yun, J-H; Park, K; Kim, Y-S; Cho, M-H

    2013-06-01

    Conventional radiotherapy or chemotherapy for the long-term survival of patients with lung cancer is still difficult for treatment in metastatic and advanced tumors. Therefore, the safe and effective approaches to the treatment of lung cancer are needed. In this study, the effect of delivered eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) on lung cancer progression was evaluated. Recombinant adeno-associated virus (rAAV)-M3/4E-BP1 was delivered into 6-week-old K-rasLA1 lung cancer model mice through a nose-only inhalation system twice a week for 4 weeks. Long-term repeated delivery of 4E-BP1 effectively reduced tumor progression in the lungs of K-rasLA1 mice. Reduction of eIF4E by overexpression of 4E-BP1 resulted in suppression of cap-dependent protein expression of basic fibroblast growth factor (bFGF or FGF-2) and vascular endothelial growth factor (VEGF). In addition, delivered 4E-BP1 inhibited the proliferation of lung cancer cells in K-rasLA1 mice model. Our results suggest that long-term repeated viral delivery of 4E-BP1 may provide a useful tool for designing lung cancer treatment. PMID:23640516

  9. Myxoma Virus Immunomodulatory Protein M156R is a Structural Mimic of Eukaryotic Translation Initiation Factor eIF2 alpha

    SciTech Connect

    Ramelot, Theresa A.; Cort, John R.; Yee, Adelinda; Liu, Furong; Goshe, Michael B.; Edwards, Aled M.; Smith, Richard D.; Arrowsmith, Cheryl H.; Dever, Thomas E.; Kennedy, Michael A.

    2002-10-04

    M156R, the product of the myxoma virus M156R open reading frame, is a protein of unknown function. However, several homologs of M156R from other viruses are immunomodulatory proteins that bind to interferon-induced protein kinase PKR and inhibit phosphorylation of the eukaryotic translation initiation factor eIF2a. In this study, we have determined the nuclear magnetic resonance (NMR) structure of M156R, the first structure of a myxoma virus protein. The fold consists of a five-stranded antiparallel b-barrel with two of the strands connected by a long loop and a short a-helix. The similarity between M156R and the predicted S1 motif structure of eIF2a suggests that the viral homologs are pseudosubstrate inhibitors of PKR that mimic eIF2a in order to compete for binding to PKR. A homology modeled structure of the well studied vaccinia virus K3L was generated based on alignment with M156R. Residues important for binding to PKR are conserved residues on the surface of the b-barrel and in the mobile loop, identifying the putative PKR recognition motif.

  10. Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance.

    PubMed

    Nellist, Charlotte F; Qian, Wei; Jenner, Carol E; Moore, Jonathan D; Zhang, Shujiang; Wang, Xiaowu; Briggs, William H; Barker, Guy C; Sun, Rifei; Walsh, John A

    2014-01-01

    Recessive strain-specific resistance to a number of plant viruses in the Potyvirus genus has been found to be based on mutations in the eukaryotic translation initiation factor 4E (eIF4E) and its isoform, eIF(iso)4E. We identified three copies of eIF(iso)4E in a number of Brassica rapa lines. Here we report broad-spectrum resistance to the potyvirus Turnip mosaic virus (TuMV) due to a natural mechanism based on the mis-splicing of the eIF(iso)4E allele in some TuMV-resistant B. rapa var. pekinensis lines. Of the splice variants, the most common results in a stop codon in intron 1 and a much truncated, non-functional protein. The existence of multiple copies has enabled redundancy in the host plant's translational machinery, resulting in diversification and emergence of the resistance. Deployment of the resistance is complicated by the presence of multiple copies of the gene. Our data suggest that in the B. rapa subspecies trilocularis, TuMV appears to be able to use copies of eIF(iso)4E at two loci. Transformation of different copies of eIF(iso)4E from a resistant B. rapa line into an eIF(iso)4E knockout line of Arabidopsis thaliana proved misleading because it showed that, when expressed ectopically, TuMV could use multiple copies which was not the case in the resistant B. rapa line. The inability of TuMV to access multiple copies of eIF(iso)4E in B. rapa and the broad spectrum of the resistance suggest it may be durable. PMID:24274163

  11. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E.

    PubMed

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Osborne, Michael J; Ramteke, Anup; Sun, Qingxiang; Niesman, Ashley; Chook, Yuh Min; Borden, Katherine L B

    2016-05-10

    Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m(7)G)-capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients' responses. During clinical responses to the m(7)G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m(7)G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8-eIF4E complex as a novel therapeutic target. PMID:27114554

  12. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication

    PubMed Central

    2013-01-01

    Background Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L

  13. The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-κB and is aberrantly regulated in acute myeloid leukemia.

    PubMed

    Hariri, F; Arguello, M; Volpon, L; Culjkovic-Kraljacic, B; Nielsen, T H; Hiscott, J; Mann, K K; Borden, K L B

    2013-10-01

    The eukaryotic translation initiation factor eIF4E is a potent oncogene elevated in many cancers, including the M4 and M5 subtypes of acute myeloid leukemia (AML). Although eIF4E RNA levels are elevated 3- to 10-fold in M4/M5 AML, the molecular underpinnings of this dysregulation were unknown. Here, we demonstrate that EIF4E is a direct transcriptional target of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) that is dysregulated preferentially in M4 and M5 AML. In primary hematopoietic cells and in cell lines, eIF4E levels are induced by NF-κB activating stimuli. Pharmacological or genetic inhibition of NF-κB represses this activation. The endogenous human EIF4E promoter recruits p65 and cRel to evolutionarily conserved κB sites in vitro and in vivo following NF-κB activation. Transcriptional activation is demonstrated by recruitment of p300 to the κB sites and phosphorylated Pol II to the coding region. In primary AML specimens, generally we observe that substantially more NF-κB complexes associate with eIF4E promoter elements in M4 and M5 AML specimens examined than in other subtypes or unstimulated normal primary hematopoietic cells. Consistently, genetic inhibition of NF-κB abrogates eIF4E RNA levels in this same population. These findings provide novel insights into the transcriptional control of eIF4E and a novel molecular basis for its dysregulation in at least a subset of M4/M5 AML specimens. PMID:23467026

  14. Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species.

    PubMed

    Liu, Rong-Rong; Lv, Ya-Su; Tang, Yue-Xiao; Wang, Yan-Fang; Chen, Xiao-Ling; Zheng, Xiao-Xiao; Xie, Shang-Zhi; Cai, Ying; Yu, Jun; Zhang, Xian-Ning

    2016-04-26

    Eukaryotic translation initiation factor 5A2 (eIF5A2) has been identified as a critical gene in tumor metastasis. Research has suggested that reactive oxygen species (ROS) serve as signaling molecules in cancer cell proliferation and migration. However, the mechanisms linking eIF5A2 and ROS are not fully understood. Here, we investigated the effects of ROS on the eIF5A2-induced epithelial-mesenchymal transition (EMT) and migration in six hepatocellular carcinoma (HCC) cell lines. Western hybridization, siRNA transfection, transwell migration assays, wound-healing assays, and immunofluorescence analysis were used. The protein levels of eIF5A2 in tumor and adjacent tissue samples from 90 HCC patients with detailed clinical, pathological, and clinical follow-up data were evaluated. Overexpression of eIF5A2 was found in cancerous tissues compared with adjacent tissues. We found that eIF5A2 overexpression in HCC was associated with reduced overall survival. Knockdown of eIF5A2 and intracellular reduction of ROS significantly suppressed the invasion and metastasis of HCC cells. Interestingly, N1-guanyl-1, 7-diaminoheptane (GC7) suppressed the intracellular ROS levels. After blocking the EMT, administration of GC7 or N-acetyl-L-cysteine did not reduce cell migration further. Based on the experimental data, we concluded that inhibition of eIF5A2 alters progression of the EMT to decrease the invasion and metastasis of HCC cells via ROS-related pathways. PMID:27028999

  15. Importin 8 mediates m7G cap-sensitive nuclear import of the eukaryotic translation initiation factor eIF4E

    PubMed Central

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Osborne, Michael J.; Ramteke, Anup; Sun, Qingxiang; Niesman, Ashley; Chook, Yuh Min; Borden, Katherine L. B.

    2016-01-01

    Regulation of nuclear-cytoplasmic trafficking of oncoproteins is critical for growth homeostasis. Dysregulated trafficking contributes to malignancy, whereas understanding the process can reveal unique therapeutic opportunities. Here, we focus on eukaryotic translation initiation factor 4E (eIF4E), a prooncogenic protein highly elevated in many cancers, including acute myeloid leukemia (AML). Typically, eIF4E is localized to both the nucleus and cytoplasm, where it acts in export and translation of specific methyl 7-guanosine (m7G)–capped mRNAs, respectively. Nuclear accumulation of eIF4E in patients who have AML is correlated with increased eIF4E-dependent export of transcripts encoding oncoproteins. The subcellular localization of eIF4E closely correlates with patients’ responses. During clinical responses to the m7G-cap competitor ribavirin, eIF4E is mainly cytoplasmic. At relapse, eIF4E reaccumulates in the nucleus, leading to elevated eIF4E-dependent mRNA export. We have identified importin 8 as a factor that directly imports eIF4E into the nucleus. We found that importin 8 is highly elevated in untreated patients with AML, leading to eIF4E nuclear accumulation. Importin 8 only imports cap-free eIF4E. Cap-dependent changes to the structure of eIF4E underpin this selectivity. Indeed, m7G cap analogs or ribavirin prevents nuclear entry of eIF4E, which mirrors the trafficking phenotypes observed in patients with AML. Our studies also suggest that nuclear entry is important for the prooncogenic activity of eIF4E, at least in this context. These findings position nuclear trafficking of eIF4E as a critical step in its regulation and position the importin 8–eIF4E complex as a novel therapeutic target. PMID:27114554

  16. Eukaryotic initiation factor 3 (eIF3) and 5’ mRNA leader sequences as agents of translational regulation in Arabidopsis. Final report

    SciTech Connect

    von Arnim, Albrecht G.

    2015-02-04

    Protein synthesis, or translation, consumes a sizable fraction of the cell’s energy budget, estimated at 5% and up to 50% in differentiated and growing cells, respectively. Plants also invest significant energy and biomass to construct and maintain the translation apparatus. Translation is regulated by a variety of external stimuli. Compared to transcriptional control, attributes of translational control include reduced sensitivity to stochastic fluctuation, a finer gauge of control, and more rapid responsiveness to environmental stimuli. Yet, our murky understanding of translational control allows few generalizations. Consequently, translational regulation is underutilized in the context of transgene regulation, although synthetic biologists are now beginning to appropriate RNA-level gene regulation into their regulatory circuits. We also know little about how translational control contributes to the diversity of plant form and function. This project explored how an emerging regulatory mRNA sequence element, upstream open reading frames (uORFs), is integrated with the general translation initiation machinery to permit translational regulation on specific mRNAs.

  17. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability

    PubMed Central

    Kernohan, Kristin D.; Tétreault, Martine; Liwak-Muir, Urszula; Geraghty, Michael T.; Qin, Wen; Venkateswaran, Sunita; Davila, Jorge; Holcik, Martin; Majewski, Jacek; Richer, Julie; Boycott, Kym M.

    2015-01-01

    Protein translation is an essential cellular process initiated by the association of a methionyl–tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B–PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases. PMID:26307080

  18. [Internal initiation of translation in eukaryotes. Chemical probing of the encephalomyocarditis virus RNA IRES-element in the 48S preinitiation complex].

    PubMed

    Boroviagin, A V; Ezrokhi, M V; Shatskiĭ, I N

    1995-01-01

    Using in vitro T7 polymerase system, the transcript containing the IRES-element (nts 315-833), and the initial part of the coding sequence of encephalomyocarditis virus (EMCV) RNA (nts 834-1155) was prepared. Its complex with the 40S ribosomal subunit (48S preinitiation complex) was then isolated by sucrose gradient sedimentation from ascites carcinoma Krebs2 cell extracts after preincubation with the transcript. The complex was treated with dimethylsulphate (DMS), a common reagent for chemical probing of A and C residues in single-stranded RNA regions. The modified nucleotides were identified by primer extension inhibition analysis in reverse transcription reaction. The pattern of modification of the 48S complex was compared with that for the corresponding free mRNP. Multiple protection of A residues against DMS modification was found in the domains of the IRES-element proximal to the initiation AUG codon (nt 834-836). The mechanism of internal translational initiation of EMCV RNA and other picornaviral RNAs is discussed. PMID:8552069

  19. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure.

    PubMed Central

    Svitkin, Y V; Pause, A; Haghighat, A; Pyronnet, S; Witherell, G; Belsham, G J; Sonenberg, N

    2001-01-01

    Eukaryotic initiation factor (elF) 4A functions as a subunit of the initiation factor complex elF4F, which mediates the binding of mRNA to the ribosome. elF4A possesses ATPase and RNA helicase activities and is the prototype for a large family of putative RNA helicases (the DEAD box family). It is thought that the function of elF4A during translation initiation is to unwind the mRNA secondary structure in the 5' UTR to facilitate ribosome binding. However, the evidence to support this hypothesis is rather indirect, and it was reported that elF4A is also required for the translation of mRNAs possessing minimal 5' UTR secondary structure. Were this hypothesis correct, the requirement for elF4A should correlate with the degree of mRNA secondary structure. To test this hypothesis, the effect of a dominant-negative mutant of mammalian elF4A on translation of mRNAs with various degrees of secondary structure was studied in vitro. Here, we show that mRNAs containing stable secondary structure in the 5' untranslated region are more susceptible to inhibition by the elF4A mutant. The mutant protein also strongly inhibits translation from several picornavirus internal ribosome entry sites (IRES), although to different extents. UV crosslinking of elF4F subunits and elF4B to the mRNA cap structure is dramatically reduced by the elF4A mutant and RNA secondary structure. Finally, the elF4A mutant forms a more stable complex with elF4G, as compared to the wild-type elF4A, thus explaining the mechanism by which substoichiometric amounts of mutant elF4A inhibit translation. PMID:11333019

  20. [Primary structure of mRNA and translation strategy of eukaryotes].

    PubMed

    Ugarova, T Iu

    1987-01-01

    The diversity of primary structures of cellular and virus mRNAs was considered from the standpoint of their functioning at the initial stops of translation. The number and reciprocal localization of the open translational frames along the mRNAs, and also the number, localization and nucleotides surroundings the initiation codons were analysed. The structural organizations of the polycistronic and other non-canonical forms of native mRNAs, translated in eukaryotic cells, were considered and classified. The possible mechanisms of translation initiation by different forms of mRNAs are discussed. PMID:3309622

  1. Translational control by 5'-untranslated regions of eukaryotic mRNAs.

    PubMed

    Hinnebusch, Alan G; Ivanov, Ivaylo P; Sonenberg, Nahum

    2016-06-17

    The eukaryotic 5' untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5' upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5'UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer. PMID:27313038

  2. Visualization of the Interaction between the Precursors of VPg, the Viral Protein Linked to the Genome of Turnip Mosaic Virus, and the Translation Eukaryotic Initiation Factor iso 4E In Planta▿

    PubMed Central

    Beauchemin, Chantal; Boutet, Nathalie; Laliberté, Jean-François

    2007-01-01

    The RNA genome of Turnip mosaic virus is covalently linked at its 5′ end to a viral protein known as VPg. This protein binds to the translation eukaryotic initiation factor iso 4E [eIF(iso)4E]. This interaction has been shown to be important for virus infection, although its exact biological function(s) has not been elucidated. In this study, we investigated the subcellular site of the VPg-eIF(iso)4E interaction using bimolecular fluorescence complementation (BiFC). As a first step, eIF(iso)4E, 6K-VPg-Pro, and VPg-Pro were expressed as full-length green fluorescent protein (GFP) fusions in Nicotiana benthamiana, and their subcellular localizations were visualized by confocal microscopy. eIF(iso)4E was predominantly associated with the endoplasmic reticulum (ER), and VPg-Pro was observed in the nucleus and possibly the nucleolus, while 6K-VPg-Pro-GFP induced the formation of cytoplasmic vesicles budding from the ER. In BiFC experiments, reconstituted green fluorescence was observed throughout the nucleus, with a preferential accumulation in subnuclear structures when the GFP split fragments were fused to VPg-Pro and eIF(iso)4E. On the other hand, the interaction of 6K-VPg-Pro with eIF(iso)4E was observed in cytoplasmic vesicles embedded in the ER. These data suggest that the association of VPg with the translation factor might be needed for two different functions, depending of the VPg precursor involved in the interaction. VPg-Pro interaction with eIF(iso)4E may be involved in perturbing normal cellular functions, while 6K-VPg-Pro interaction with the translation factor may be needed for viral RNA translation and/or replication. PMID:17079311

  3. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents.

    PubMed

    Low, Woon-Kai; Li, Jing; Zhu, Mingzhao; Kommaraju, Sai Shilpa; Shah-Mittal, Janki; Hull, Ken; Liu, Jun O; Romo, Daniel

    2014-01-01

    A series of pateamine A (1) derivatives were synthesized for structure/activity relationship (SAR) studies and a selection of previous generation analogs were re-evaluated based on current information regarding the mechanism of action of these translation inhibitors. Structural modifications in the new generation of derivatives focused on alterations to the C19-C22 Z,E-diene and the trienyl side chain of the previously described simplified, des-methyl, des-amino pateamine A (DMDAPatA, 2). Derivatives were tested for anti-proliferative activity in cell culture and for inhibition of mammalian cap-dependent translation in vitro. Activity was highly dependent on the rigidity and conformation of the macrolide and the functionality of the side chain. The only well tolerated substitutions were replacement of the N,N-dimethyl amino group found on the side chain of 2 with other tertiary amine groups. SAR reported here suggests that this site may be modified in future studies to improve serum stability, cell-type specificity, and/or specificity towards rapidly proliferating cells. PMID:24359706

  4. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha.

    PubMed

    Hong, Mi-Na; Nam, Ky-Youb; Kim, Kyung Kon; Kim, So-Young; Kim, InKi

    2016-05-01

    By environmental stresses, cells can initiate a signaling pathway in which eukaryotic translation initiation factor 2-alpha (eIF2-α) is involved to regulate the response. Phosphorylation of eIF2-α results in the reduction of overall protein neogenesis, which allows cells to conserve resources and to reprogram energy usage for effective stress control. To investigate the role of eIF2-α in cell stress responses, we conducted a viability-based compound screen under endoplasmic reticulum (ER) stress condition, and identified 1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate (AMC-01) and its derivatives as eIF2-α-inactivating chemical. Molecular characterization of this signaling pathway revealed that AMC-01 induced inactivation of eIF2-α by phosphorylating serine residue 51 in a dose- and time-dependent manner, while the negative control compounds did not affect eIF2-α phosphorylation. In contrast with ER stress induction by thapsigargin, phosphorylation of eIF2-α persisted for the duration of incubation with AMC-01. By pathway analysis, AMC-01 clearly induced the activation of protein kinase RNA-activated (PKR) kinase and nuclear factor-κB (NF-κB), whereas it did not modulate the activity of PERK or heme-regulated inhibitor (HRI). Finally, we could detect a lower protein translation rate in cells incubated with AMC-01, establishing AMC-01 as a potent chemical probe that can regulate eIF2-α activity. We suggest from these data that AMC-01 and its derivative compounds can be used as chemical probes in future studies of the role of eIF2-α in protein synthesis-related cell physiology. PMID:26873011

  5. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels.

    PubMed

    Fujimura, Ken; Choi, Sunkyu; Wyse, Meghan; Strnadel, Jan; Wright, Tracy; Klemke, Richard

    2015-12-11

    Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with an overall survival rate of less than 5%. The poor patient outcome in PDAC is largely due to the high prevalence of systemic metastasis at the time of diagnosis and lack of effective therapeutics that target disseminated cells. The fact that the underlying mechanisms driving PDAC cell migration and dissemination are poorly understood have hindered drug development and compounded the lack of clinical success in this disease. Recent evidence indicates that mutational activation of K-Ras up-regulates eIF5A, a component of the cellular translational machinery that is critical for PDAC progression. However, the role of eIF5A in PDAC cell migration and metastasis has not been investigated. We report here that pharmacological inhibition or genetic knockdown of eIF5A reduces PDAC cell migration, invasion, and metastasis in vitro and in vivo. Proteomic profiling and bioinformatic analyses revealed that eIF5A controls an integrated network of cytoskeleton-regulatory proteins involved in cell migration. Functional interrogation of this network uncovered a critical RhoA/ROCK signaling node that operates downstream of eIF5A in invasive PDAC cells. Importantly, eIF5A mediates PDAC cell migration and invasion by modulating RhoA/ROCK protein expression levels. Together our findings implicate eIF5A as a cytoskeletal rheostat controlling RhoA/ROCK protein expression during PDAC cell migration and metastasis. Our findings also implicate the eIF5A/RhoA/ROCK module as a potential new therapeutic target to treat metastatic PDAC cells. PMID:26483550

  6. Novel RNA-binding Protein P311 Binds Eukaryotic Translation Initiation Factor 3 Subunit b (eIF3b) to Promote Translation of Transforming Growth Factor β1-3 (TGF-β1-3)*

    PubMed Central

    Yue, Michael M.; Lv, Kaosheng; Meredith, Stephen C.; Martindale, Jennifer L.; Gorospe, Myriam; Schuger, Lucia

    2014-01-01

    P311, a conserved 8-kDa intracellular protein expressed in brain, smooth muscle, regenerating tissues, and malignant glioblastomas, represents the first documented stimulator of TGF-β1-3 translation in vitro and in vivo. Here we initiated efforts to define the mechanism underlying P311 function. PONDR® (Predictor Of Naturally Disordered Regions) analysis suggested and CD confirmed that P311 is an intrinsically disordered protein, therefore requiring an interacting partner to acquire tertiary structure and function. Immunoprecipitation coupled with mass spectroscopy identified eIF3 subunit b (eIF3b) as a novel P311 binding partner. Immunohistochemical colocalization, GST pulldown, and surface plasmon resonance studies revealed that P311-eIF3b interaction is direct and has a Kd of 1.26 μm. Binding sites were mapped to the non-canonical RNA recognition motif of eIF3b and a central 11-amino acid-long region of P311, here referred to as eIF3b binding motif. Disruption of P311-eIF3b binding inhibited translation of TGF-β1, 2, and 3, as indicated by luciferase reporter assays, polysome fractionation studies, and Western blot analysis. RNA precipitation assays after UV cross-linking and RNA-protein EMSA demonstrated that P311 binds directly to TGF-β 5′UTRs mRNAs through a previously unidentified RNA recognition motif-like motif. Our results demonstrate that P311 is a novel RNA-binding protein that, by interacting with TGF-βs 5′UTRs and eIF3b, stimulates the translation of TGF-β1, 2, and 3. PMID:25336651

  7. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy

    PubMed Central

    Loenarz, Christoph; Sekirnik, Rok; Thalhammer, Armin; Ge, Wei; Spivakovsky, Ekaterina; Mackeen, Mukram M.; McDonough, Michael A.; Cockman, Matthew E.; Kessler, Benedikt M.; Ratcliffe, Peter J.; Wolf, Alexander; Schofield, Christopher J.

    2014-01-01

    The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations. PMID:24550462

  8. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    PubMed

    Brödel, Andreas K; Sonnabend, Andrei; Roberts, Lisa O; Stech, Marlitt; Wüstenhagen, Doreen A; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  9. Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches.

    PubMed

    Anzalone, Andrew V; Lin, Annie J; Zairis, Sakellarios; Rabadan, Raul; Cornish, Virginia W

    2016-05-01

    Protein synthesis in eukaryotes is regulated by diverse reprogramming mechanisms that expand the coding capacity of individual genes. Here, we exploit one such mechanism, termed -1 programmed ribosomal frameshifting (-1 PRF), to engineer ligand-responsive RNA switches that regulate protein expression. First, efficient -1 PRF stimulatory RNA elements were discovered by in vitro selection; then, ligand-responsive switches were constructed by coupling -1 PRF stimulatory elements to RNA aptamers using rational design and directed evolution in Saccharomyces cerevisiae. We demonstrate that -1 PRF switches tightly control the relative stoichiometry of two distinct protein outputs from a single mRNA, exhibiting consistent ligand response across whole populations of cells. Furthermore, -1 PRF switches were applied to build single-mRNA logic gates and an apoptosis module in yeast. Together, these results showcase the potential for harnessing translation-reprogramming mechanisms for synthetic biology, and they establish -1 PRF switches as powerful RNA tools for controlling protein synthesis in eukaryotes. PMID:26999002

  10. Architecture of human translation initiation factor 3

    PubMed Central

    Querol-Audi, Jordi; Sun, Chaomin; Vogan, Jacob M.; Smith, Duane; Gu, Yu; Cate, Jamie; Nogales, Eva

    2013-01-01

    SUMMARY Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human eIF3 subunits, including an octameric core. The structure of eIF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that eIF3 subunits a and c interact with initiation factors eIF1 and eIF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the eIF3 octameric core. These results highlight the conserved architecture of eIF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans. PMID:23623729

  11. Translation initiation in colorectal cancer.

    PubMed

    Parsyan, Armen; Hernández, Greco; Meterissian, Sarkis

    2012-06-01

    Colorectal cancers (CRC) are one of the most common causes of morbidity and mortality in high-income countries. Targeted screening programs have resulted in early treatment and a substantial decrease in mortality. However, treatment strategies for CRC still require improvement. Understanding the etiology and pathogenesis of CRC would provide tools for improving treatment of patients with this disease. It is only recently that deregulation of the protein synthesis apparatus has begun to gain attention as a major player in cancer development and progression. Among the numerous steps of protein synthesis, deregulation of the process of translation initiation appears to play a key role in cancer growth and proliferation. This manuscript discusses a fascinating and rapidly growing field exploring translation initiation as a fundamental component in CRC development and progression and summarizing CRC treatment perspectives based on agents targeting translation initiation. PMID:22418835

  12. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E.

    PubMed Central

    Ohlmann, T; Rau, M; Pain, V M; Morley, S J

    1996-01-01

    The foot and mouth disease virus, a picornavirus, encodes two forms of a cysteine proteinase (leader or L protease) that bisects the EIF4G polypeptide of the initiation factor complex eIF4F into N-terminal (Nt) and C-terminal (Ct) domains. Previously we showed that, although in vitro cleavage of the translation initiation factor, eIF4G, with L protease decreases cap-dependent translation, the cleavage products themselves may directly promote cap-dependent protein synthesis. We now demonstrate that translation of uncapped mRNAs normally exhibits a strong requirement for eIF4F. However, this dependence is abolished when eIF4G is cleaved, with the Ct domain capable of supporting translation in the absence of the Nt domain. In contrast, the efficient translation of the second cistron of bicistronic mRNAs, directed by two distinct Internal Ribosome Entry Segments (IRES), exhibits no requirement for eIF4E but is dependent upon either intact eIF4G or the Ct domain. These results demonstrate that: (i) the apparent requirement for eIF4F for internal initiation on IRES-driven mRNAs can be fulfilled by the Ct proteolytic cleavage product; (ii) when eIF4G is cleaved, the Ct domain can also support cap-independent translation of cellular mRNAs not possessing an IRES element, in the absence of eIF4E; and (iii) when eIF4G is intact, translation of cellular mRNAs, whether capped or uncapped, is strictly dependent upon eIF4E. These data complement recent work in other laboratories defining the binding sites for other initiation factors on the eIF4G molecule. Images PMID:8635470

  13. Synaptic Plasticity and Translation Initiation

    ERIC Educational Resources Information Center

    Klann, Eric; Antion, Marcia D.; Banko, Jessica L.; Hou, Lingfei

    2004-01-01

    It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is…

  14. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    PubMed

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. PMID:19471103

  15. Mitochondrial translation initiation machinery: Conservation and diversification☆

    PubMed Central

    Kuzmenko, Anton; Atkinson, Gemma C.; Levitskii, Sergey; Zenkin, Nikolay; Tenson, Tanel; Hauryliuk, Vasili; Kamenski, Piotr

    2014-01-01

    The highly streamlined mitochondrial genome encodes almost exclusively a handful of transmembrane components of the respiratory chain complex. In order to ensure the correct assembly of the respiratory chain, the products of these genes must be produced in the correct stoichiometry and inserted into the membrane, posing a unique challenge to the mitochondrial translational system. In this review we describe the proteins orchestrating mitochondrial translation initiation: bacterial-like general initiation factors mIF2 and mIF3, as well as mitochondria-specific components – mRNA-specific translational activators and mRNA-nonspecific accessory initiation factors. We consider how the fast rate of evolution in these organelles has not only created a system that is divergent from that of its bacterial ancestors, but has led to a huge diversity in lineage specific mechanistic features of mitochondrial translation initiation among eukaryotes. PMID:23954798

  16. Hippuristanol - A potent steroid inhibitor of eukaryotic initiation factor 4A.

    PubMed

    Cencic, Regina; Pelletier, Jerry

    2016-01-01

    Protein synthesis and its regulatory signaling pathways play essential roles in the initiation and maintenance of the cancer phenotype. Insight obtained over the last 3 decades on the mechanisms regulating translation in normal and transformed cells have revealed that perturbed control in cancer cells may offer an Achilles' heel for the development of novel anti-neoplastic agents. Several small molecule inhibitors have been identified and characterized that target translation initiation - more specifically, the rate-limiting step where ribosomes are recruited to mRNA templates. Among these, hippuristanol, a polyhydroxysteroid from the gorgonian Isis hippuris has been found to inhibit translation initiation by blocking the activity of eukaryotic initiation factor (eIF) 4A, an essential RNA helicase involved in this process. Herein, we highlight the biological properties of this compound, its potential development as an anti-cancer agent, and its use to validate eIF4A as an anti-neoplastic target. PMID:27335721

  17. RNA-Binding Proteins Impacting on Internal Initiation of Translation

    PubMed Central

    Martínez-Salas, Encarnación; Lozano, Gloria; Fernandez-Chamorro, Javier; Francisco-Velilla, Rosario; Galan, Alfonso; Diaz, Rosa

    2013-01-01

    RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation. PMID:24189219

  18. Overexpression of Eukaryotic Translation Elongation Factor 3 Impairs Gcn2 Protein Activation*

    PubMed Central

    Visweswaraiah, Jyothsna; Lee, Su Jung; Hinnebusch, Alan G.; Sattlegger, Evelyn

    2012-01-01

    In eukaryotes, phosphorylation of translation initiation factor 2α (eIF2α) by the kinase Gcn2 (general control nonderepressible 2) is a key response to amino acid starvation. Sensing starvation requires that Gcn2 directly contacts its effector protein Gcn1, and both must contact the ribosome. We have proposed that Gcn2 is activated by uncharged tRNA bound to the ribosomal decoding (A) site, in a manner facilitated by ribosome-bound Gcn1. Protein synthesis requires cyclical association of eukaryotic elongation factors (eEFs) with the ribosome. Gcn1 and Gcn2 are large proteins, raising the question of whether translation and monitoring amino acid availability can occur on the same ribosome. Part of the ribosome-binding domain in Gcn1 has homology to one of the ribosome-binding domains in eEF3, suggesting that these proteins utilize overlapping binding sites on the ribosome and consequently cannot function simultaneously on the same ribosome. Supporting this idea, we found that eEF3 overexpression in Saccharomyces cerevisiae diminished growth on amino acid starvation medium (Gcn− phenotype) and decreased eIF2α phosphorylation, and that the growth defect associated with constitutively active Gcn2 was diminished by eEF3 overexpression. Overexpression of the eEF3 HEAT domain, or C terminus, was sufficient to confer a Gcn− phenotype, and both fragments have ribosome affinity. eEF3 overexpression did not significantly affect Gcn1-ribosome association, but it exacerbated the Gcn− phenotype of Gcn1-M7A that has reduced ribosome affinity. Together, this suggests that eEF3 blocks Gcn1 regulatory function on the ribosome. We propose that the Gcn1-Gcn2 complex only functions on ribosomes with A-site-bound uncharged tRNA, because eEF3 does not occupy these stalled complexes. PMID:22888004

  19. Overexpression of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation.

    PubMed

    Visweswaraiah, Jyothsna; Lee, Su Jung; Hinnebusch, Alan G; Sattlegger, Evelyn

    2012-11-01

    In eukaryotes, phosphorylation of translation initiation factor 2α (eIF2α) by the kinase Gcn2 (general control nonderepressible 2) is a key response to amino acid starvation. Sensing starvation requires that Gcn2 directly contacts its effector protein Gcn1, and both must contact the ribosome. We have proposed that Gcn2 is activated by uncharged tRNA bound to the ribosomal decoding (A) site, in a manner facilitated by ribosome-bound Gcn1. Protein synthesis requires cyclical association of eukaryotic elongation factors (eEFs) with the ribosome. Gcn1 and Gcn2 are large proteins, raising the question of whether translation and monitoring amino acid availability can occur on the same ribosome. Part of the ribosome-binding domain in Gcn1 has homology to one of the ribosome-binding domains in eEF3, suggesting that these proteins utilize overlapping binding sites on the ribosome and consequently cannot function simultaneously on the same ribosome. Supporting this idea, we found that eEF3 overexpression in Saccharomyces cerevisiae diminished growth on amino acid starvation medium (Gcn(-) phenotype) and decreased eIF2α phosphorylation, and that the growth defect associated with constitutively active Gcn2 was diminished by eEF3 overexpression. Overexpression of the eEF3 HEAT domain, or C terminus, was sufficient to confer a Gcn(-) phenotype, and both fragments have ribosome affinity. eEF3 overexpression did not significantly affect Gcn1-ribosome association, but it exacerbated the Gcn(-) phenotype of Gcn1-M7A that has reduced ribosome affinity. Together, this suggests that eEF3 blocks Gcn1 regulatory function on the ribosome. We propose that the Gcn1-Gcn2 complex only functions on ribosomes with A-site-bound uncharged tRNA, because eEF3 does not occupy these stalled complexes. PMID:22888004

  20. Alternative mechanisms of initiating translation of mammalian mRNAs.

    PubMed

    Jackson, R J

    2005-12-01

    Of all the steps in mRNA translation, initiation is the one that differs most radically between prokaryotes and eukaryotes. Not only is there no equivalent of the prokaryotic Shine-Dalgarno rRNA-mRNA interaction, but also what requires only three initiation factor proteins (aggregate size approximately 125 kDa) in eubacteria needs at least 28 different polypeptides (aggregate >1600 kDa) in mammalian cells, which is actually larger than the size of the 40 S ribosomal subunit. Translation of the overwhelming majority of mammalian mRNAs occurs by a scanning mechanism, in which the 40 S ribosomal subunit, primed for initiation by the binding of several initiation factors including the eIF2 (eukaryotic initiation factor 2)-GTP-MettRNA(i) complex, is loaded on the mRNA immediately downstream of the 5'-cap, and then scans the RNA in the 5'-->3' direction. On recognition of (usually) the first AUG triplet via base-pairing with the Met-tRNA(i) anticodon, scanning ceases, triggering GTP hydrolysis and release of eIF2-GDP. Finally, ribosomal subunit joining and the release of the other initiation factors completes the initiation process. This sketchy outline conceals the fact that the exact mechanism of scanning and the precise roles of the initiation factors remain enigmatic. However, the factor requirements for initiation site selection on some viral IRESs (internal ribosome entry sites/segments) are simpler, and investigations into these IRES-dependent mechanisms (particularly picornavirus, hepatitis C virus and insect dicistrovirus IRESs) have significantly enhanced our understanding of the standard scanning mechanism. This article surveys the various alternative mechanisms of initiation site selection on mammalian (and other eukaryotic) cellular and viral mRNAs, starting from the simplest (in terms of initiation factor requirements) and working towards the most complex, which paradoxically happens to be the reverse order of their discovery. PMID:16246087

  1. Nitric oxide: a regulator of eukaryotic initiation factor 2 kinases.

    PubMed

    Tong, Lingying; Heim, Rachel A; Wu, Shiyong

    2011-06-15

    Generation of nitric oxide (NO(•)) can upstream induce and downstream mediate the kinases that phosphorylate the α subunit of eukaryotic initiation factor 2 (eIF2α), which plays a critical role in regulating gene expression. There are four known eIF2α kinases (EIF2AKs), and NO(•) affects each one uniquely. Whereas NO(•) directly activates EIF2AK1 (HRI), it indirectly activates EIF2AK3 (PERK). EIF2AK4 (GCN2) is activated by depletion of l-arginine, which is used by nitric oxide synthase (NOS) during the production of NO(•). Finally EIF2AK2 (PKR), which can mediate inducible NOS expression and therefore NO(•) production, can also be activated by NO(•). The production of NO(•) and activation of EIF2AKs coordinately regulate physiological and pathological events such as innate immune response and cell apoptosis. PMID:21463677

  2. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome

    PubMed Central

    Schmidt, Christian; Becker, Thomas; Heuer, André; Braunger, Katharina; Shanmuganathan, Vivekanandan; Pech, Markus; Berninghausen, Otto; Wilson, Daniel N.; Beckmann, Roland

    2016-01-01

    During protein synthesis, ribosomes become stalled on polyproline-containing sequences, unless they are rescued in archaea and eukaryotes by the initiation factor 5A (a/eIF-5A) and in bacteria by the homologous protein EF-P. While a structure of EF-P bound to the 70S ribosome exists, structural insight into eIF-5A on the 80S ribosome has been lacking. Here we present a cryo-electron microscopy reconstruction of eIF-5A bound to the yeast 80S ribosome at 3.9 Å resolution. The structure reveals that the unique and functionally essential post-translational hypusine modification reaches toward the peptidyltransferase center of the ribosome, where the hypusine moiety contacts A76 of the CCA-end of the P-site tRNA. These findings would support a model whereby eIF-5A stimulates peptide bond formation on polyproline-stalled ribosomes by stabilizing and orienting the CCA-end of the P-tRNA, rather than by directly contributing to the catalysis. PMID:26715760

  3. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome.

    PubMed

    Schmidt, Christian; Becker, Thomas; Heuer, André; Braunger, Katharina; Shanmuganathan, Vivekanandan; Pech, Markus; Berninghausen, Otto; Wilson, Daniel N; Beckmann, Roland

    2016-02-29

    During protein synthesis, ribosomes become stalled on polyproline-containing sequences, unless they are rescued in archaea and eukaryotes by the initiation factor 5A (a/eIF-5A) and in bacteria by the homologous protein EF-P. While a structure of EF-P bound to the 70S ribosome exists, structural insight into eIF-5A on the 80S ribosome has been lacking. Here we present a cryo-electron microscopy reconstruction of eIF-5A bound to the yeast 80S ribosome at 3.9 Å resolution. The structure reveals that the unique and functionally essential post-translational hypusine modification reaches toward the peptidyltransferase center of the ribosome, where the hypusine moiety contacts A76 of the CCA-end of the P-site tRNA. These findings would support a model whereby eIF-5A stimulates peptide bond formation on polyproline-stalled ribosomes by stabilizing and orienting the CCA-end of the P-tRNA, rather than by directly contributing to the catalysis. PMID:26715760

  4. Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A

    PubMed Central

    Cencic, R; Robert, F; Galicia-Vázquez, G; Malina, A; Ravindar, K; Somaiah, R; Pierre, P; Tanaka, J; Deslongchamps, P; Pelletier, J

    2013-01-01

    Translation is regulated predominantly at the initiation phase by several signal transduction pathways that are often usurped in human cancers, including the PI3K/Akt/mTOR axis. mTOR exerts unique administration over translation by regulating assembly of eukaryotic initiation factor (eIF) 4F, a heterotrimeric complex responsible for recruiting 40S ribosomes (and associated factors) to mRNA 5′ cap structures. Hence, there is much interest in targeted therapies that block eIF4F activity to assess the consequences on tumor cell growth and chemotherapy response. We report here that hippuristanol (Hipp), a translation initiation inhibitor that selectively inhibits the eIF4F RNA helicase subunit, eIF4A, resensitizes Eμ-Myc lymphomas to DNA damaging agents, including those that overexpress eIF4E—a modifier of rapamycin responsiveness. As Mcl-1 levels are significantly affected by Hipp, combining its use with the Bcl-2 family inhibitor, ABT-737, leads to a potent synergistic response in triggering cell death in mouse and human lymphoma and leukemia cells. Suppression of eIF4AI using RNA interference also synergized with ABT-737 in murine lymphomas, highlighting eIF4AI as a therapeutic target for modulating tumor cell response to chemotherapy. PMID:23872707

  5. Granzyme B Inhibits Vaccinia Virus Production through Proteolytic Cleavage of Eukaryotic Initiation Factor 4 Gamma 3

    PubMed Central

    Marcet-Palacios, Marcelo; Duggan, Brenda Lee; Shostak, Irene; Barry, Michele; Geskes, Tracy; Wilkins, John A.; Yanagiya, Akiko; Sonenberg, Nahum; Bleackley, R. Chris

    2011-01-01

    Cytotoxic T lymphocytes (CTLs) are the major killer of virus-infected cells. Granzyme B (GrB) from CTLs induces apoptosis in target cells by cleavage and activation of substrates like caspase-3 and Bid. However, while undergoing apoptosis, cells are still capable of producing infectious viruses unless a mechanism exists to specifically inhibit viral production. Using proteomic approaches, we identified a novel GrB target that plays a major role in protein synthesis: eukaryotic initiation factor 4 gamma 3 (eIF4G3). We hypothesized a novel role for GrB in translation of viral proteins by targeting eIF4G3, and showed that GrB cleaves eIF4G3 specifically at the IESD1408S sequence. Both GrB and human CTL treatment resulted in degradation of eIF4G3 and reduced rates of translation. When Jurkat cells infected with vaccinia virus were treated with GrB, there was a halt in viral protein synthesis and a decrease in production of infectious new virions. The GrB-induced inhibition of viral translation was independent of the activation of caspases, as inhibition of protein synthesis still occurred with addition of the pan-caspase inhibitor zVAD-fmk. This demonstrated for the first time that GrB prevents the production of infectious vaccinia virus by targeting the host translational machinery. PMID:22194691

  6. Phosphorylated eukaryotic translation factor 4E is elevated in Alzheimer brain.

    PubMed

    Li, Xu; An, Wen-Lin; Alafuzoff, Irina; Soininen, Hilkka; Winblad, Bengt; Pei, Jin-Jing

    2004-10-01

    Eukaryotic translation factor 4E (eIF4E) plays a key role in regulating protein translation. It was thought that in order to maintain neuronal functions, tau protein is continuously generated to compensate those being hyperphosphorylated and compromised in its ability to promote and maintain microtubule assembly in Alzheimer's disease. If eIF4E is involved in tau mRNA translation, level of eIF4E phosphorylation should be changed. In the current study, we found a dramatic increase of phosphorylated eIF4E in Alzheimer's disease, especially in those cases with late stages of neurofibrillary changes. Level of eIF4E phosphorylation is significantly correlated with total- and Alzheimer hyperphosphorylated taus. These data suggest that the increase of eIF4E phosphorylation is involved in formation of Alzheimer neurofibrillary changes. PMID:15371741

  7. A universal strategy for regulating mRNA translation in prokaryotic and eukaryotic cells

    PubMed Central

    Cao, Jicong; Arha, Manish; Sudrik, Chaitanya; Mukherjee, Abhirup; Wu, Xia; Kane, Ravi S.

    2015-01-01

    We describe a simple strategy to control mRNA translation in both prokaryotic and eukaryotic cells which relies on a unique protein–RNA interaction. Specifically, we used the Pumilio/FBF (PUF) protein to repress translation by binding in between the ribosome binding site (RBS) and the start codon (in Escherichia coli), or by binding to the 5′ untranslated region of target mRNAs (in mammalian cells). The design principle is straightforward, the extent of translational repression can be tuned and the regulator is genetically encoded, enabling the construction of artificial signal cascades. We demonstrate that this approach can also be used to regulate polycistronic mRNAs; such regulation has rarely been achieved in previous reports. Since the regulator used in this study is a modular RNA-binding protein, which can be engineered to target different 8-nucleotide RNA sequences, our strategy could be used in the future to target endogenous mRNAs for regulating metabolic flows and signaling pathways in both prokaryotic and eukaryotic cells. PMID:25845589

  8. Inhibition of translation in living eukaryotic cells by an RNA G-quadruplex motif

    PubMed Central

    Arora, Amit; Dutkiewicz, Mariola; Scaria, Vinod; Hariharan, Manoj; Maiti, Souvik; Kurreck, Jens

    2008-01-01

    Guanine-rich sequences can adopt intramolecular four-stranded structures, called G-quadruplexes. These motifs have been intensively investigated on the DNA level, but their overall biological relevance remains elusive. Only recently has research concerning the function of G-quadruplexes in RNAs commenced. Here, we demonstrate for the first time, that an RNA G-quadruplex structure inhibits translation in vivo in eukaryotic cells. We investigated the function of a highly conserved, thermodynamically stable RNA G-quadruplex in the 5′-UTR of the mRNA of the human Zic-1 zinc-finger protein. Using dual luciferase reporter assay, we demonstrate that the Zic-1 RNA G-quadruplex represses protein synthesis inside eukaryotic cells. Quantitative RT-PCR assays confirmed that the reduction of protein synthesis is due to regulation of the translation process and not a consequence of reduced transcription. Western blot analysis revealed that expression of Zic-1 is strongly reduced by a 73 nucleotides-long fragment of the UTR containing the G-quadruplex motif. These structures might add to the more recently discovered elements in untranslated regions of mRNAs that regulate their translation. PMID:18515550

  9. Molecular characterization and functional analysis of subunit 7 of eukaryotic initiation factor 3 from Eimeria tenella.

    PubMed

    Han, Hongyu; Kong, Chunlin; Dong, Hui; Zhu, Shunhai; Zhao, Qiping; Zhai, Qi; Liang, Siting; Li, Sha; Yang, Shihan; Huang, Bing

    2015-07-01

    The initiation of translation in eukaryotic cells is stimulated by proteins known as initiation factors (eIFs). A structurally complex eIF composed of multiple subunits, eIF3 has been shown to have various functions in translation in a variety of eukaryotes. Until now, little is known about eIF3 in Eimeria tenella. Based on a previously identified expressed sequence tag(EST), we cloned the eIF3 subunit 7 gene (EteIF3s7) from E. tenella by rapid amplification of the cDNA ends(RACE). The 2278-bp full-length complementary DNA of EteIF3s7 contained a 1716-bp open reading frame (ORF) that encoded a 571-amino acid (aa) polypeptide. The EteIF3s7 protein contained the subunit 7 domain that is characteristic of members of the eIF3 zeta superfamily. The levels of EteIF3s7 messenger RNA and protein were higher in second generation merozoites than in sporulated oocysts, unsporulated oocysts, or sporozoites, and the EteIF3s7 protein was barely detectable in unsporulated oocysts. Our immunofluorescence analysis showed that the EteIF3s7 protein was uniformly distributed throughout the cytoplasm of sporozoites. After sporozoites were incubated in complete medium, the EteIF3s7 protein localized to the anterior region of the parasite. Following the first schizogenous division, the protein was uniformly dispersed in trophozoites, immature schizonts, and mature schizonts, and the EteIF3s7 protein was observed to be closely associated with the parasitophorous vacuole membrane. An anti-rEteIF3s7 polyclonal antibody inhibited the ability of E. tenella to invade DF-1 cells, which suggested that EteIF3s7 might be involved in host cell invasion and required for the growth of the parasite in the host. PMID:25888243

  10. Crystal structure of translation initiation factor 5B from the crenarchaeon Aeropyrum pernix.

    PubMed

    Murakami, Ryo; Miyoshi, Tomohiro; Uchiumi, Toshio; Ito, Kosuke

    2016-05-01

    Initiation factor 5B (IF5B) is a universally conserved translational GTPase that catalyzes ribosomal subunit joining. In eukaryotes, IF5B directly interacts via a groove in its domain IV with initiation factor 1A (IF1A), another universally conserved initiation factor, to accomplish efficient subunit joining. Here, we have determined the first structure of a crenarchaeal IF5B, which revealed that the archaea-specific region of IF5B (helix α15) binds and occludes the groove of domain IV. Therefore, archaeal IF5B cannot access IF1A in the same manner as eukaryotic IF5B. This fact suggests that different relationships between IF5B and IF1A exist in archaea and eukaryotes. Proteins 2016; 84:712-717. © 2016 Wiley Periodicals, Inc. PMID:26868175

  11. G-actin provides substrate-specificity to eukaryotic initiation factor 2α holophosphatases

    PubMed Central

    Chen, Ruming; Rato, Cláudia; Yan, Yahui; Crespillo-Casado, Ana; Clarke, Hanna J; Harding, Heather P; Marciniak, Stefan J; Read, Randy J; Ron, David

    2015-01-01

    Dephosphorylation of eukaryotic translation initiation factor 2a (eIF2a) restores protein synthesis at the waning of stress responses and requires a PP1 catalytic subunit and a regulatory subunit, PPP1R15A/GADD34 or PPP1R15B/CReP. Surprisingly, PPP1R15-PP1 binary complexes reconstituted in vitro lacked substrate selectivity. However, selectivity was restored by crude cell lysate or purified G-actin, which joined PPP1R15-PP1 to form a stable ternary complex. In crystal structures of the non-selective PPP1R15B-PP1G complex, the functional core of PPP1R15 made multiple surface contacts with PP1G, but at a distance from the active site, whereas in the substrate-selective ternary complex, actin contributes to one face of a platform encompassing the active site. Computational docking of the N-terminal lobe of eIF2a at this platform placed phosphorylated serine 51 near the active site. Mutagenesis of predicted surface-contacting residues enfeebled dephosphorylation, suggesting that avidity for the substrate plays an important role in imparting specificity on the PPP1R15B-PP1G-actin ternary complex. DOI: http://dx.doi.org/10.7554/eLife.04871.001 PMID:25774600

  12. Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

    PubMed Central

    Chambers, Joseph E; Dalton, Lucy E; Clarke, Hanna J; Malzer, Elke; Dominicus, Caia S; Patel, Vruti; Moorhead, Greg; Ron, David; Marciniak, Stefan J

    2015-01-01

    Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as a stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR. DOI: http://dx.doi.org/10.7554/eLife.04872.001 PMID:25774599

  13. Eukaryotic Initiation Factor 4G Suppresses Nonsense-Mediated mRNA Decay by Two Genetically Separable Mechanisms

    PubMed Central

    Joncourt, Raphael; Eberle, Andrea B.; Rufener, Simone C.; Mühlemann, Oliver

    2014-01-01

    Nonsense-mediated mRNA decay (NMD), which is best known for degrading mRNAs with premature termination codons (PTCs), is thought to be triggered by aberrant translation termination at stop codons located in an environment of the mRNP that is devoid of signals necessary for proper termination. In mammals, the cytoplasmic poly(A)-binding protein 1 (PABPC1) has been reported to promote correct termination and therewith antagonize NMD by interacting with the eukaryotic release factors 1 (eRF1) and 3 (eRF3). Using tethering assays in which proteins of interest are recruited as MS2 fusions to a NMD reporter transcript, we show that the three N-terminal RNA recognition motifs (RRMs) of PABPC1 are sufficient to antagonize NMD, while the eRF3-interacting C-terminal domain is dispensable. The RRM1-3 portion of PABPC1 interacts with eukaryotic initiation factor 4G (eIF4G) and tethering of eIF4G to the NMD reporter also suppresses NMD. We identified the interactions of the eIF4G N-terminus with PABPC1 and the eIF4G core domain with eIF3 as two genetically separable features that independently enable tethered eIF4G to inhibit NMD. Collectively, our results reveal a function of PABPC1, eIF4G and eIF3 in translation termination and NMD suppression, and they provide additional evidence for a tight coupling between translation termination and initiation. PMID:25148142

  14. Translation initiation factors are not required for Dicistroviridae IRES function in vivo

    PubMed Central

    Deniz, Nilsa; Lenarcic, Erik M.; Landry, Dori M.; Thompson, Sunnie R.

    2009-01-01

    The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo. PMID:19299549

  15. Eukaryotic Initiation Factor 5A Plays an Essential Role in Luteinizing Hormone Receptor Regulation

    PubMed Central

    Menon, Bindu; Gulappa, Thippeswamy

    2014-01-01

    Down-regulation of LH receptor (LHR) in the ovary by its ligand is mediated by a specific RNA-binding protein, designated LH receptor mRNA–binding protein (LRBP), through translational suppression and mRNA degradation. Using yeast 2-hybrid screens, we previously identified eukaryotic initiation factor 5A (eIF5A) as one of the proteins that interacts with LRBP during LHR mRNA down-regulation. The present study examined the role of eIF5A and its hypusination in the context of LHR mRNA down-regulation. The association of eIF5A with LRBP or LHR mRNA was determined using immunoprecipitation and RNA immunoprecipitation assays. The results showed that the association of eIF5A with the LHR mRNA-LRBP complex increased significantly during down-regulation. Furthermore, gel fractionation and the hypusination activity assay both showed increased hypusination of eIF5A during LHR mRNA down-regulation. Abolishment of hypusination by pretreatment with the chemical inhibitor GC7 prevented the association of eIF5A with LHR mRNA and LRBP. Inhibition of hypusination also reduced the extent of ligand-induced down-regulation of LHR mRNA as well as the expression of functional LHRs assessed by real-time PCR and 125I-human chorionic gonadotropin (hCG) binding assays, respectively. The loss of human chorionic gonadotropin–mediated downstream signaling during LHR down-regulation was also restored by inhibition of hypusination of eIF5A. Thus, the present study, for the first time, reveals the crucial role of eIF5A and its hypusination in the regulation of LHR expression in the ovary. PMID:25216047

  16. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3.

    PubMed

    Zhou, Min; Sandercock, Alan M; Fraser, Christopher S; Ridlova, Gabriela; Stephens, Elaine; Schenauer, Matthew R; Yokoi-Fong, Theresa; Barsky, Daniel; Leary, Julie A; Hershey, John W; Doudna, Jennifer A; Robinson, Carol V

    2008-11-25

    The eukaryotic initiation factor 3 (eIF3) plays an important role in translation initiation, acting as a docking site for several eIFs that assemble on the 40S ribosomal subunit. Here, we use mass spectrometry to probe the subunit interactions within the human eIF3 complex. Our results show that the 13-subunit complex can be maintained intact in the gas phase, enabling us to establish unambiguously its stoichiometry and its overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Dissociation takes place as a function of ionic strength to form three stable modules eIF3(c:d:e:l:k), eIF3(f:h:m), and eIF3(a:b:i:g). These modules are linked by interactions between subunits eIF3b:c and eIF3c:h. We confirmed our interaction map with the homologous yeast eIF3 complex that contains the five core subunits found in the human eIF3 and supplemented our data with results from immunoprecipitation. These results, together with the 27 subcomplexes identified with increasing ionic strength, enable us to define a comprehensive interaction map for this 800-kDa species. Our interaction map allows comparison of free eIF3 with that bound to the hepatitis C virus internal ribosome entry site (HCV-IRES) RNA. We also compare our eIF3 interaction map with related complexes, containing evolutionarily conserved protein domains, and reveal the location of subunits containing RNA recognition motifs proximal to the decoding center of the 40S subunit of the ribosome. PMID:18599441

  17. The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA.

    PubMed

    Luttermann, Christine; Meyers, Gregor

    2009-02-01

    Calicivirus structure proteins are expressed from a subgenomic mRNA with two overlapping cistrons. The first ORF of this RNA codes for the viral major capsid protein VP1, and the second for the minor capsid protein VP2. Translation of VP2 is mediated by a termination/reinitiation mechanism, which depends on an upstream sequence element of approximately 70 nucleotides denoted "termination upstream ribosomal binding site" (TURBS). Two short sequence motifs within the TURBS were found to be essential for reinitiation. By a whole set of single site mutations and reciprocal base exchanges we demonstrate here for the first time conclusive evidence for the necessity of mRNA/18S rRNA hybridization for translation reinitiation in an eukaryotic system. Moreover, we show that motif 2 exhibits intramolecular hybridization with a complementary region upstream of motif 1, thus forming a secondary structure that positions post-termination ribosomes in an optimal distance to the VP2 start codon. Analysis of the essential elements of the TURBS led to a better understanding of the requirements for translation termination/reinitiation in eukaryotes. PMID:19204118

  18. Rps5-Rps16 communication is essential for efficient translation initiation in yeast S. cerevisiae

    PubMed Central

    Ghosh, Arnab; Jindal, Supriya; Bentley, Amber A.; Hinnebusch, Alan G.; Komar, Anton A.

    2014-01-01

    Conserved ribosomal proteins frequently harbor additional segments in eukaryotes not found in bacteria, which could facilitate eukaryotic-specific reactions in the initiation phase of protein synthesis. Here we provide evidence showing that truncation of the N-terminal domain (NTD) of yeast Rps5 (absent in bacterial ortholog S7) impairs translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. Rps5 mutations evoke accumulation of factors on native 40S subunits normally released on conversion of 48S PICs to 80S initiation complexes (ICs) and this abnormality and related phenotypes are mitigated by the SUI5 variant of eIF5. Remarkably, similar effects are observed by substitution of Lys45 in the Rps5-NTD, involved in contact with Rps16, and by eliminating the last two residues of the C-terminal tail (CTT) of Rps16, believed to contact initiator tRNA base-paired to AUG in the P site. We propose that Rps5-NTD-Rps16-NTD interaction modulates Rps16-CTT association with Met-tRNAiMet to promote a functional 48S PIC. PMID:24948608

  19. Eukaryotic initiation factor 4B and the poly(A)-binding protein bind eIF4G competitively.

    PubMed

    Cheng, Shijun; Gallie, Daniel R

    2013-01-01

    The eukaryotic translation initiation factor (eIF) 4G functions as a scaffold protein that assembles components of the translation initiation complex required to recruit the 40S ribosomal subunit to an mRNA. Although many eukaryotes express two highly similar eIF4G isoforms, those in plants are highly divergent in size and sequence from one another and are referred to as eIF4G and eIFiso4G. Although the domain organization of eIFiso4G differs substantially from eIF4G orthologs in other species, the domain organization of plant eIF4G is largely unknown despite the fact that it is more similar in size and sequence to eIF4G of other eukaryotes. In this study, we show that eIF4G differs from eIFiso4G in that it contains two distinct interaction domains for the poly(A) binding protein (PABP) and eIF4B but is similar to eIFiso4G in having two eIF4A interaction domains. PABP and eIF4B bind the same N-terminal region of eIF4G as they do to a region C-proximal to the HEAT-1 domain in the middle domain of eIF4G, resulting in competitive binding between eIF4B and PABP to each site. eIF4G also differs from eIFiso4G in that no competitive binding was observed between PABP and eIF4A or between eIF4B and eIF4A to its HEAT-1-containing region. These results demonstrate that despite substantial differences in size, sequence, and domain organization, PABP and eIF4B bind to eIF4G and eIFiso4G competitively. PMID:26824014

  20. Secretome of human bone marrow mesenchymal stem cells: an emerging player in lung cancer progression and mechanisms of translation initiation.

    PubMed

    Attar-Schneider, Oshrat; Zismanov, Victoria; Drucker, Liat; Gottfried, Maya

    2016-04-01

    Non-small cell lung cancer (NSCLC) remains the most common cause of cancer-related death worldwide. Patients presenting with advanced-stage NSCLC have poor prognosis, while metastatic spread accounts for >70 % of patient's deaths. The major advances in the treatment of lung cancer have brought only minor improvements in survival; therefore, novel strategic treatment approaches are urgently needed. Accumulating data allocate a central role for the cancer microenvironment including mesenchymal stem cells (MSCs) in acquisition of drug resistance and disease relapse. Furthermore, studies indicate that translation initiation factors are over expressed in NSCLC and negatively impact its prognosis. Importantly, translation initiation is highly modulated by microenvironmental cues. Therefore, we decided to examine the effect of bone marrow MSCs (BM-MSCs) from normal donors on NSCLC cell lines with special emphasis on translation initiation mechanism in the crosstalk. We cultured NSCLC cell lines with BM-MSC conditioned media (i.e., secretome) and showed deleterious effects on the cells' proliferation, viability, death, and migration. We also demonstrated reduced levels of translation initiation factors implicated in cancer progression [eukaryotic translation initiation factor 4E (eIF4E) and eukaryotic translation initiation factor 4GI (eIF4GI)], their targets, and regulators. Finally, we outlined a mechanism by which BM-MSCs' secretome affected NSCLC's mitogen-activated protein kinase (MAPK) signaling pathway, downregulated the cell migration, and diminished translation initiation factors' levels. Taken together, our study demonstrates that there is direct dialogue between the BM-MSCs' secretome and NSCLC cells that manipulates translation initiation and critically affects cell fate. We suggest that therapeutic approach that will sabotage this dialogue, especially in the BM microenvironment, may diminish lung cancer metastatic spread and morbidity and improve the patient

  1. Evolutionary conservation of the CDK targets in eukaryotic DNA replication initiation.

    PubMed

    Zegerman, Philip

    2015-09-01

    A fundamental requirement for all organisms is the faithful duplication and transmission of the genetic material. Failure to accurately copy and segregate the genome during cell division leads to loss of genetic information and chromosomal abnormalities. Such genome instability is the hallmark of the earliest stages of tumour formation. Cyclin-dependent kinase (CDK) plays a vital role in regulating the duplication of the genome within the eukaryotic cell cycle. Importantly, this kinase is deregulated in many cancer types and is an emerging target of chemotherapeutics. In this review, I will consider recent advances concerning the role of CDK in replication initiation across eukaryotes. The implications for strict CDK-dependent regulation of genome duplication in the context of the cell cycle will be discussed. PMID:25575982

  2. Modifying the 5'-Cap for Click Reactions of Eukaryotic mRNA and To Tune Translation Efficiency in Living Cells.

    PubMed

    Holstein, Josephin M; Anhäuser, Lea; Rentmeister, Andrea

    2016-08-26

    The 5'-cap is a hallmark of eukaryotic mRNAs and plays fundamental roles in RNA metabolism, ranging from quality control to export and translation. Modifying the 5'-cap may thus enable modulation of the underlying processes and investigation or tuning of several biological functions. A straightforward approach is presented for the efficient production of a range of N7-modified caps based on the highly promiscuous methyltransferase Ecm1. We show that these, as well as N(2) -modified 5'-caps, can be used to tune translation of the respective mRNAs both in vitro and in cells. Appropriate modifications allow subsequent bioorthogonal chemistry, as demonstrated by intracellular live-cell labeling of a target mRNA. The efficient and versatile N7 manipulation of the mRNA cap makes mRNAs amenable to both modulation of their biological function and intracellular labeling, and represents a valuable addition to the chemical biology toolbox. PMID:27511141

  3. Predicting Translation Initiation Rates for Designing Synthetic Biology

    PubMed Central

    Reeve, Benjamin; Hargest, Thomas; Gilbert, Charlie; Ellis, Tom

    2013-01-01

    In synthetic biology, precise control over protein expression is required in order to construct functional biological systems. A core principle of the synthetic biology approach is a model-guided design and based on the biological understanding of the process, models of prokaryotic protein production have been described. Translation initiation rate is a rate-limiting step in protein production from mRNA and is dependent on the sequence of the 5′-untranslated region and the start of the coding sequence. Translation rate calculators are programs that estimate protein translation rates based on the sequence of these regions of an mRNA, and as protein expression is proportional to the rate of translation initiation, such calculators have been shown to give good approximations of protein expression levels. In this review, three currently available translation rate calculators developed for synthetic biology are considered, with limitations and possible future progress discussed. PMID:25152877

  4. TARGETING THE eIF4F TRANSLATION INITIATION COMPLEX: A CRITICAL NEXUS FOR CANCER DEVELOPMENT

    PubMed Central

    Pelletier, Jerry; Graff, Jeremy; Ruggero, Davide; Sonenberg, Nahum

    2014-01-01

    Elevated protein synthesis is an important feature of many cancer cells and often arises as a consequence of increased signaling flux channeled to eukaryotic initiation factor (eIF) 4F, the key regulator of the mRNA-ribosome recruitment phase of translation initiation. In many cellular and pre-clinical models of cancer, eIF4F deregulation results in changes in translational efficiency of specific mRNA classes. Importantly, many of these mRNAs code for proteins that potently regulate critical cellular processes such as cell growth and proliferation, enhanced cell survival, and cell migration that ultimately impinge on several hallmarks of cancer, including increased angiogenesis, deregulated growth control, enhanced cellular survival, epithelial-to-mesenchymal transition, invasion and metastasis. By being positioned as the molecular nexus downstream of key oncogenic signaling pathways (e.g. Ras, PI3K/AKT/TOR, and Myc), eIF4F serves as a direct link between important steps in cancer development and translation initiation. Identification of mRNAs particularly responsive to elevated eIF4F activity that typifies tumorigenesis underscores the critical role of eIF4F in cancer and raises the exciting possibility of developing new-in-class small molecules targeting translation initiation as anti-neoplastic agents. PMID:25593033

  5. How MCM loading and spreading specify eukaryotic DNA replication initiation sites

    PubMed Central

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  6. Production of initial-stage eukaryotic N-glycan and its protein glycosylation in Escherichia coli.

    PubMed

    Srichaisupakit, Akkaraphol; Ohashi, Takao; Misaki, Ryo; Fujiyama, Kazuhito

    2015-04-01

    N-Glycosylation is a ubiquitous protein post-translational modification mechanism in eukaryotes. In this work, a synthetic pathway containing glycosyltransferases from Saccharomyces cerevisiae was introduced to Escherichia coli to synthesize lipid-linked mannosyl-chitobiose (Man-GlcNAc2) and trimannosyl-chitobiose (Man3-GlcNAc2). Transfer of Man3-GlcNAc2 onto a model periplasmic protein occurred in the engineered E. coli cell using oligosaccharyltransferase PglB from Campylobacter jejuni. Mass spectrometric analysis of the fluorescently labeled N-glycan indicated a glycan signal composed of 2 HexNAc and 3 Hex residues. The reversed-phase HPLC analysis suggested that the Hex residues were α1,3-, α1,6- and β1,4-linked mannoses. These results indicated that the constructed system synthesizes a Man3-GlcNAc2, identical to that observed in an early eukaryotic dolichol pathway. Finally, glycopeptide mass spectrometry confirmed the transfer of the assembled glycan moiety onto an engineered glycosylation motif of recombinant maltose binding protein. Surprisingly, the Man3-GlcNAc2 structure but not Man-GlcNAc2 was transferred onto maltose binding protein. This work showed that PglB protein might be able to accommodate the transfer of the further engineered glycan with greater complexity. PMID:25449758

  7. Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis.

    PubMed

    Hodgman, C Eric; Jewett, Michael C

    2014-09-25

    Eukaryotic cell-free protein synthesis (CFPS) systems are limited, in part, by inefficient translation initiation. Here, we report three internal ribosome entry site (IRES) sequences from the Dicistroviridae family that are highly active in yeast CFPS. These include the intergenic region (IGR) IRES from cricket paralysis virus (CrPV), plautia stali intestine virus (PSIV) and Solenopsis invicta virus 1 (SINV1). Optimization of combined transcription and translation (Tx/Tl) CFPS reactions primed with linear DNA containing the CrPV IGR IRES resulted in batch synthesis yields of 0.92 ± 0.17 μg/mL luciferase. Further template engineering, such as including the first 12 nt of native CrPV gene, increased yields to 2.33 ± 0.11 μg/mL. We next observed that the inclusion of a 50 nt poly(A) to the 3' end of the IGR IRES-mediated message increased yields an additional 81% to 4.33 ± 0.37 μg/mL, without any effect on mRNA stability or copy number. This was surprising because the CrPV IGR IRES requires no known translation initiation factors. Lastly, we investigated a method to inhibit background expression through competitive inhibition by supplying the reaction with 5' cap structure analog. This study highlights the crucial role translation initiation plays in yeast CFPS and offers a simple platform to study IRES sequences. PMID:25017988

  8. Dynamic evolution of translation initiation mechanisms in prokaryotes

    PubMed Central

    Nakagawa, So; Niimura, Yoshihito; Miura, Kin-ichiro; Gojobori, Takashi

    2010-01-01

    It is generally believed that prokaryotic translation is initiated by the interaction between the Shine-Dalgarno (SD) sequence in the 5′ UTR of an mRNA and the anti-SD sequence in the 3′ end of a 16S ribosomal RNA. However, there are two exceptional mechanisms, which do not require the SD sequence for translation initiation: one is mediated by a ribosomal protein S1 (RPS1) and the other used leaderless mRNA that lacks its 5′ UTR. To understand the evolutionary changes of the mechanisms of translation initiation, we examined how universal the SD sequence is as an effective initiator for translation among prokaryotes. We identified the SD sequence from 277 species (249 eubacteria and 28 archaebacteria). We also devised an SD index that is a proportion of SD-containing genes in which the differences of GC contents are taken into account. We found that the SD indices varied among prokaryotic species, but were similar within each phylum. Although the anti-SD sequence is conserved among species, loss of the SD sequence seems to have occurred multiple times, independently, in different phyla. For those phyla, RPS1-mediated or leaderless mRNA-used mechanisms of translation initiation are considered to be working to a greater extent. Moreover, we also found that some species, such as Cyanobacteria, may acquire new mechanisms of translation initiation. Our findings indicate that, although translation initiation is indispensable for all protein-coding genes in the genome of every species, its mechanisms have dynamically changed during evolution. PMID:20308567

  9. Influence of Translation Initiation on Organellar Protein Targeting in Arabidopsis

    SciTech Connect

    Sally A. Mackenzie

    2011-04-18

    A primary focus of the Mackenzie laboratory is the elucidation of processes and machinery for mitochondrial genome maintenance and transmission in higher plants. We have found that numerous organellar DNA maintenance components in plants appear to be dual targeted to mitochondria and plastids. Of particular interest was the observation that some twin (tandemly arrayed) dual targeting presequences appeared to utilize non-AUG alternative translation initiation, allowing for multiple translation starts at a single gene. Two aspects of this phenomenon were of particular interest: (1) Alternative translation initiation might provide a mechanism to regulate protein targeting temporally and spatially, a possibility that had not been demonstrated previously, and (2) alternative translation initiation might occur in genes involved in nuclear-controlled mitochondrial genome recombination, thought to be exclusively mitochondrial in their function. During the course of this research, we pursued three aims, with an emphasis on two specific genes of interest: POLgamma2, an organellar DNA polymerase, and MSH1, a MutS homolog thought to participate in mitochondrial, but not plastid, genome recombination surveillance. Our aims were to (1) Identify additional genes within Arabidopsis and other genomes that employ non-AUG alternative translation initiation, (2) Locate sequences upstream to the annotated AUG that confer alternative non-AUG translation initiation activity, and (3) Identify cis and trans factors that influence start site selection in genes with non-AUG starts. Toward these ends, we have shown that non-AUG initiation occurs in a number of genes, likely influencing targeting behavior of the protein. We have also shown that start site selection is strongly influenced by Kozak consensus sequence environment, indicating that alternative translation initiation in plants occurs by relaxation of ribosome scanning.

  10. Translation initiation factor-dependent extracts from Saccharomyces cerevisiae.

    PubMed

    Altmann, M; Blum, S; Pelletier, J; Sonenberg, N; Wilson, T M; Trachsel, H

    1990-08-27

    Translation initiation factor 4A- and 4E-dependent extracts were developed from Saccharomyces cerevisiae and used to study factor requirements for translation of individual mRNAs in vitro. Whereas all mRNAs tested required eIF-4A, mRNAs devoid of secondary structure in their 5' untranslated region did not require exogenous eIF-4E for translation. The latter included alfalfa mosaic virus RNA4, mRNA containing the untranslated region of tobacco mosaic virus RNA and mRNA containing part of the untranslated region of poliovirus RNA. Furthermore, initiation of translation on mRNAs containing part of the untranslated region of poliovirus RNA is most likely internal. PMID:2169890

  11. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation

    PubMed Central

    Toribio, René; Díaz-López, Irene; Boskovic, Jasminka; Ventoso, Iván

    2016-01-01

    During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680–914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts. PMID:26984530

  12. An RNA trapping mechanism in Alphavirus mRNA promotes ribosome stalling and translation initiation.

    PubMed

    Toribio, René; Díaz-López, Irene; Boskovic, Jasminka; Ventoso, Iván

    2016-05-19

    During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680-914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts. PMID:26984530

  13. Intrauterine growth restriction inhibits expression of eukaryotic elongation factor 2 kinase, a regulator of protein translation.

    PubMed

    McKnight, Robert A; Yost, Christian C; Zinkhan, Erin K; Fu, Qi; Callaway, Christopher W; Fung, Camille M

    2016-08-01

    Nutrient deprivation suppresses protein synthesis by blocking peptide elongation. Transcriptional upregulation and activation of eukaryotic elongation factor 2 kinase (eEF2K) blocks peptide elongation by phosphorylating eukaryotic elongation factor 2. Previous studies examining placentas from intrauterine growth restricted (IUGR) newborn infants show decreased eEF2K expression and activity despite chronic nutrient deprivation. However, the effect of IUGR on hepatic eEF2K expression in the fetus is unknown. We, therefore, examined the transcriptional regulation of hepatic eEF2K gene expression in a Sprague-Dawley rat model of IUGR. We found decreased hepatic eEF2K mRNA and protein levels in IUGR offspring at birth compared with control, consistent with previous placental observations. Furthermore, the CpG island within the eEF2K promoter demonstrated increased methylation at a critical USF 1/2 transcription factor binding site. In vitro methylation of this binding site caused near complete loss of eEF2K promoter activity, designating this promoter as methylation sensitive. The eEF2K promotor in IUGR offspring also lost the protective histone covalent modifications associated with unmethylated CGIs. In addition, the +1 nucleosome was displaced 3' and RNA polymerase loading was reduced at the IUGR eEF2K promoter. Our findings provide evidence to explain why IUGR-induced chronic nutrient deprivation does not result in the upregulation of eEF2K gene transcription. PMID:27317589

  14. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP.

    PubMed

    Topisirovic, Ivan; Siddiqui, Nadeem; Lapointe, Vincent Leroux; Trost, Matthias; Thibault, Pierre; Bangeranye, Catherine; Piñol-Roma, Serafin; Borden, Katherine L B

    2009-04-22

    The eukaryotic translation initiation factor 4E (eIF4E) controls gene expression through its effects on mRNA export and cap-dependent translation, both of which contribute to its oncogenic potential. In contrast to its translation function, the mRNA export function of eIF4E is poorly understood. Using an RNP isolation/mass spectrometry approach, we identified candidate cofactors of eIF4E mRNA export including LRPPRC. This protein associates with mRNAs containing the eIF4E-sensitivity element (4E-SE), and its overexpression alters the nuclear export of several eIF4E-sensitive mRNAs. LRPPRC-mediated alteration of eIF4E's mRNA export function requires the integrity of its eIF4E-binding site and it coincides with the subcellular re-distribution of eIF4E. The eIF4E export RNP is distinct in composition from the bulk mRNA export pathway, in that eIF4E- and eIF4E-sensitive mRNAs do not associate with general mRNA export factors such as TAP/NXF1 or REF/Aly. Our data indicate that mRNA export pathways have evolved for specific mRNAs enabling the differential regulation of biochemical pathways by modulating the expression of groups of genes at the level of their export. PMID:19262567

  15. An Isoform of Eukaryotic Initiation Factor 4E from Chrysanthemum morifolium Interacts with Chrysanthemum Virus B Coat Protein

    PubMed Central

    Chen, Sumei; Sun, Zuxia; Guan, Zhiyong; Fang, Weimin; Teng, Nianjun; Chen, Fadi

    2013-01-01

    Background Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in plant virus infection as well as the regulation of gene translation. Methodology/Principal Findings Here, we describe the isolation of a cDNA encoding CmeIF(iso)4E (GenBank accession no. JQ904592), an isoform of eIF4E from chrysanthemum, using RACE PCR. We used the CmeIF(iso)4E cDNA for expression profiling and to analyze the interaction between CmeIF(iso)4E and the Chrysanthemum virus B coat protein (CVBCP). Multiple sequence alignment and phylogenetic tree analysis showed that the sequence similarity of CmeIF(iso)4E with other reported plant eIF(iso)4E sequences varied between 69.12% and 89.18%, indicating that CmeIF(iso)4E belongs to the eIF(iso)4E subfamily of the eIF4E family. CmeIF(iso)4E was present in all chrysanthemum organs, but was particularly abundant in the roots and flowers. Confocal microscopy showed that a transiently transfected CmeIF(iso)4E-GFP fusion protein distributed throughout the whole cell in onion epidermis cells. A yeast two hybrid assay showed CVBCP interacted with CmeIF(iso)4E but not with CmeIF4E. BiFC assay further demonstrated the interaction between CmeIF(iso)4E and CVBCP. Luminescence assay showed that CVBCP increased the RLU of Luc-CVB, suggesting CVBCP might participate in the translation of viral proteins. Conclusions/Significance These results inferred that CmeIF(iso)4E as the cap-binding subunit eIF(iso)4F may be involved in Chrysanthemum Virus B infection in chrysanthemum through its interaction with CVBCP in spatial. PMID:23505421

  16. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression.

    PubMed

    Gutu, Andrian; Nesbit, April D; Alverson, Andrew J; Palmer, Jeffrey D; Kehoe, David M

    2013-10-01

    Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes. PMID:24048028

  17. Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus.

    PubMed

    O'Keeffe, Grainne; Jöchl, Christoph; Kavanagh, Kevin; Doyle, Sean

    2013-11-01

    The opportunistic pathogen Aspergillus fumigatus is ubiquitous in the environment and predominantly infects immunocompromised patients. The functions of many genes remain unknown despite sequencing of the fungal genome. A putative translation elongation factor 1Bγ (eEF1Bγ, termed elfA; 750 bp) is expressed, and exhibits glutathione S-transferase activity, in A. fumigatus. Here, we demonstrate the role of ElfA in the oxidative stress response, as well as a possible involvement in translation and actin cytoskeleton organization, respectively. Comparative proteomics, in addition to phenotypic analysis, under basal and oxidative stress conditions, demonstrated a role for A. fumigatus elfA in the oxidative stress response. An elfA-deficient strain (A. fumigatus ΔelfA) was significantly more sensitive to the oxidants H2O2, diamide, and 4,4'-dipyridyl disulfide (DPS) than the wild-type. This was further supported with the identification of differentially expressed proteins of the oxidative stress response, including; mitochondrial peroxiredoxin Prx1, molecular chaperone Hsp70 and mitochondrial glycerol-3-phosphate dehydrogenase. Phenotypic analysis also revealed that A. fumigatus ΔelfA was significantly more tolerant to voriconazole than the wild-type. The differential expression of two aminoacyl-tRNA synthetases suggests a role for A. fumigatus elfA in translation, while the identification of actin-bundling protein Sac6 and vacuolar dynamin-like GTPase VpsA link A. fumigatus elfA to the actin cytoskeleton. Overall, this work highlights the diverse roles of A. fumigatus elfA, with respect to translation, oxidative stress and actin cytoskeleton organization. In addition to this, the strategy of combining targeted gene deletion with comparative proteomics for elucidating the role of proteins of unknown function is further revealed. PMID:24023013

  18. IMPACT Is a Developmentally Regulated Protein in Neurons That Opposes the Eukaryotic Initiation Factor 2α Kinase GCN2 in the modulation of Neurite Outgrowth*

    PubMed Central

    Roffé, Martín; Hajj, Glaucia N. M.; Azevedo, Hátylas F.; Alves, Viviane S.; Castilho, Beatriz A.

    2013-01-01

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system. PMID:23447528

  19. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth.

    PubMed

    Roffé, Martín; Hajj, Glaucia N M; Azevedo, Hátylas F; Alves, Viviane S; Castilho, Beatriz A

    2013-04-12

    The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system. PMID:23447528

  20. Eukaryotic initiator tRNA: finely tuned and ready for action.

    PubMed

    Kolitz, Sarah E; Lorsch, Jon R

    2010-01-21

    The initiator tRNA must serve functions distinct from those of other tRNAs, evading binding to elongation factors and instead binding directly to the ribosomal P site with the aid of initiation factors. It plays a key role in decoding the start codon, setting the frame for translation of the mRNA. Sequence elements and modifications of the initiator tRNA distinguish it from the elongator methionyl tRNA and help it to perform its varied tasks. These identity elements appear to finely tune the structure of the initiator tRNA, and growing evidence suggests that the body of the tRNA is involved in transmitting the signal that the start codon has been found to the rest of the pre-initiation complex. PMID:19925799

  1. Control of Paip1-eukayrotic translation initiation factor 3 interaction by amino acids through S6 kinase.

    PubMed

    Martineau, Yvan; Wang, Xiaoshan; Alain, Tommy; Petroulakis, Emmanuel; Shahbazian, David; Fabre, Bertrand; Bousquet-Dubouch, Marie-Pierre; Monsarrat, Bernard; Pyronnet, Stéphane; Sonenberg, Nahum

    2014-03-01

    The simultaneous interaction of poly(A)-binding protein (PABP) with eukaryotic translation initiation factor 4G (eIF4G) and the mRNA 3' poly(A) tail promotes translation initiation. We previously showed that the interaction of PABP-interacting protein 1 (Paip1) with PABP and eukaryotic translation initiation factor 3 (eIF3; via the eIF3g subunit) further stimulates translation. Here, we demonstrate that the interaction of eIF3 with Paip1 is regulated by amino acids through the mTORC1 signaling pathway. The Paip1-eIF3 interaction is impaired by the mTORC1 inhibitors, rapamycin and PP242. We show that ribosomal protein S6 kinases 1 and 2 (S6K1/2) promote the interaction of eIF3 with Paip1. The enhancement of Paip1-eIF3 interaction by amino acids is abrogated by an S6K inhibitor or shRNA against S6K1/2. S6K1 interacts with eIF3f and, in vitro, phosphorylates eIF3. Finally, we show that S6K inhibition leads to a reduction in translation by Paip1. We propose that S6K1/2 phosphorylate eIF3 to stimulate Paip1-eIF3 interaction and consequent translation initiation. Taken together, these data demonstrate that eIF3 is a new translation target of the mTOR/S6K pathway. PMID:24396066

  2. A role for eukaryotic initiation factor 4B overexpression in the pathogenesis of diffuse large B-cell lymphoma

    PubMed Central

    Horvilleur, E; Sbarrato, T; Hill, K; Spriggs, R V; Screen, M; Goodrem, P J; Sawicka, K; Chaplin, L C; Touriol, C; Packham, G; Potter, K N; Dirnhofer, S; Tzankov, A; Dyer, M J S; Bushell, M; MacFarlane, M; Willis, A E

    2014-01-01

    Dysregulated expression of factors that control protein synthesis is associated with poor prognosis of many cancers, but the underlying mechanisms are not well defined. Analysis of the diffuse large B-cell lymphoma (DLBCL) translatome revealed selective upregulation of mRNAs encoding anti-apoptotic and DNA repair proteins. We show that enhanced synthesis of these proteins in DLBCL is mediated by the relief of repression that is normally imposed by structure in the 5′-untranslated regions of their corresponding mRNAs. This process is driven by signaling through mammalian target of rapamycin, resulting in increased synthesis of eukaryotic initiation factor (eIF) 4B complex (eIF4B), a known activator of the RNA helicase eIF4A. Reducing eIF4B expression alone is sufficient to decrease synthesis of proteins associated with enhanced tumor cell survival, namely DAXX, BCL2 and ERCC5. Importantly, eIF4B-driven expression of these key survival proteins is directly correlated with patient outcome, and eIF4B, DAXX and ERCC5 are identified as novel prognostic markers for poor survival in DLBCL. Our work provides new insights into the mechanisms by which the cancer-promoting translational machinery drives lymphomagenesis. PMID:24135829

  3. Directional transition from initiation to elongation in bacterial translation

    PubMed Central

    Goyal, Akanksha; Belardinelli, Riccardo; Maracci, Cristina; Milón, Pohl; Rodnina, Marina V.

    2015-01-01

    The transition of the 30S initiation complex (IC) to the translating 70S ribosome after 50S subunit joining provides an important checkpoint for mRNA selection during translation in bacteria. Here, we study the timing and control of reactions that occur during 70S IC formation by rapid kinetic techniques, using a toolbox of fluorescence-labeled translation components. We present a kinetic model based on global fitting of time courses obtained with eight different reporters at increasing concentrations of 50S subunits. IF1 and IF3 together affect the kinetics of subunit joining, but do not alter the elemental rates of subsequent steps of 70S IC maturation. After 50S subunit joining, IF2-dependent reactions take place independent of the presence of IF1 or IF3. GTP hydrolysis triggers the efficient dissociation of fMet-tRNAfMet from IF2 and promotes the dissociation of IF2 and IF1 from the 70S IC, but does not affect IF3. The presence of non-hydrolyzable GTP analogs shifts the equilibrium towards a stable 70S–mRNA–IF1–IF2–fMet-tRNAfMet complex. Our kinetic analysis reveals the molecular choreography of the late stages in translation initiation. PMID:26338773

  4. Transient kinetics, fluorescence, and FRET in studies of initiation of translation in bacteria.

    PubMed

    Milon, Pohl; Konevega, Andrey L; Peske, Frank; Fabbretti, Attilio; Gualerzi, Claudio O; Rodnina, Marina V

    2007-01-01

    Initiation of mRNA translation in prokaryotes requires the small ribosomal subunit (30S), initiator fMet-tRNA(fMet), three initiation factors, IF1, IF2, and IF3, and the large ribosomal subunit (50S). During initiation, the 30S subunit, in a complex with IF3, binds mRNA, IF1, IF2.GTP, and fMet-tRNA(fMet) to form a 30S initiation complex which then recruits the 50S subunit to yield a 70S initiation complex, while the initiation factors are released. Here we describe a transient kinetic approach to study the timing of elemental steps of 30S initiation complex formation, 50S subunit joining, and the dissociation of the initiation factors from the 70S initiation complex. Labeling of ribosomal subunits, fMet-tRNA(fMet), mRNA, and initiation factors with fluorescent reporter groups allows for the direct observation of the formation or dissociation of complexes by monitoring changes in the fluorescence of single dyes or fluorescence resonance energy transfer (FRET) between two fluorophores. Subunit joining was monitored by light scattering or by FRET between dyes attached to the ribosomal subunits. The kinetics of chemical steps, that is, GTP hydrolysis by IF2 and peptide bond formation following the binding of aminoacyl-tRNA to the 70S initiation complex, were measured by the quench-flow technique. The methods described here are based on results obtained with initiation components from Escherichia coli but can be adopted for mechanistic studies of initiation in other prokaryotic or eukaryotic systems. PMID:17913632

  5. Eukaryotic Initiation Factors 4G and 4A Mediate Conformational Changes Downstream of the Initiation Codon of the Encephalomyocarditis Virus Internal Ribosomal Entry Site

    PubMed Central

    Kolupaeva, Victoria G.; Lomakin, Ivan B.; Pestova, Tatyana V.; Hellen, Christopher U. T.

    2003-01-01

    Initiation of translation of encephalomyocarditis virus mRNA is mediated by an internal ribosome entry site (IRES) comprising structural domains H, I, J-K, and L immediately upstream of the initiation codon AUG at nucleotide 834 (AUG834). Assembly of 48S ribosomal complexes on the IRES requires eukaryotic initiation factor 2 (eIF2), eIF3, eIF4A, and the central domain of eIF4G to which eIF4A binds. Footprinting experiments confirmed that eIF4G binds a three-way helical junction in the J-K domain and showed that it interacts extensively with RNA duplexes in the J-K and L domains. Deletion of apical hairpins in the J and K domains synergistically impaired the binding of eIF4G and IRES function. Directed hydroxyl radical probing, done by using Fe(II) tethered to surface residues in eIF4G's central domain, indicated that it is oriented with its N terminus towards the base of domain J and its C terminus towards the apex. eIF4G recruits eIF4A to a defined location on the IRES, and the eIF4G/eIF4A complex caused localized ATP-independent conformational changes in the eIF4G-binding region of the IRES. This complex also induced more extensive conformational rearrangements at the 3′ border of the ribosome binding site that required ATP and active eIF4A. We propose that these conformational changes prepare the region flanking AUG834 for productive binding of the ribosome. PMID:12509466

  6. Modulation of Translation Initiation Efficiency in Classical Swine Fever Virus

    PubMed Central

    Friis, Martin Barfred; Rasmussen, Thomas Bruun

    2012-01-01

    Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild-type (wt) or mutant forms of the IRES of CSFV strain Paderborn were amplified and inserted into dicistronic reporter plasmids encoding Fluc and Rluc under the control of a T7 promoter. The mutations were within domains II, IIId1, and IIIf of the IRES. The plasmids were transfected into baby hamster kidney (BHK) cells infected with recombinant vaccinia virus vTF7-3, which expresses the T7 RNA polymerase. IRES mutants with different levels of IRES activity were identified and then introduced by homologous recombination into bacterial artificial chromosomes (BACs) containing CSFV Paderborn cDNA downstream of a T7 promoter. From the wt and mutant BACs, full-length CSFV RNA transcripts were produced in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of the wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced changes within the IRES. The growth characteristics of each rescued mutant virus were compared to those of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES have reduced growth in cell culture compared to the wt virus. PMID:22674994

  7. Attenuated APC alleles produce functional protein from internal translation initiation

    PubMed Central

    Heppner Goss, Kathleen; Trzepacz, Chris; Tuohy, Thérèse M. F.; Groden, Joanna

    2002-01-01

    Some truncating mutations of the APC tumor suppressor gene are associated with an attenuated phenotype of familial adenomatous polyposis coli (AAPC). This work demonstrates that APC alleles with 5′ mutations produce APC protein that down-regulates β-catenin, inhibits β-catenin/T cell factor-mediated transactivation, and induces cell-cycle arrest. Transfection studies demonstrate that cap-independent translation is initiated internally at an AUG at codon 184 of APC. Furthermore, APC coding sequence between AAPC mutations and AUG 184 permits internal ribosome entry in a bicistronic vector. These data suggest that AAPC alleles in vivo may produce functional APC by internal initiation and establish a functional correlation between 5′ APC mutations and their associated clinical phenotype. PMID:12034871

  8. Alternative translation initiation augments the human mitochondrial proteome

    PubMed Central

    Kazak, Lawrence; Reyes, Aurelio; Duncan, Anna L.; Rorbach, Joanna; Wood, Stuart R.; Brea-Calvo, Gloria; Gammage, Payam A.; Robinson, Alan J.; Minczuk, Michal; Holt, Ian J.

    2013-01-01

    Alternative translation initiation (ATI) is a mechanism of producing multiple proteins from a single transcript, which in some cases regulates trafficking of proteins to different cellular compartments, including mitochondria. Application of a genome-wide computational screen predicts a cryptic mitochondrial targeting signal for 126 proteins in mouse and man that is revealed when an AUG codon located downstream from the canonical initiator methionine codon is used as a translation start site, which we term downstream ATI (dATI). Experimental evidence in support of dATI is provided by immunoblotting of endogenous truncated proteins enriched in mitochondrial cell fractions or of co-localization with mitochondria using immunocytochemistry. More detailed cellular localization studies establish mitochondrial targeting of a member of the cytosolic poly(A) binding protein family, PABPC5, and of the RNA/DNA helicase PIF1α. The mitochondrial isoform of PABPC5 co-immunoprecipitates with the mitochondrial poly(A) polymerase, and is markedly reduced in abundance when mitochondrial DNA and RNA are depleted, suggesting it plays a role in RNA metabolism in the organelle. Like PABPC5 and PIF1α, most of the candidates identified by the screen are not currently annotated as mitochondrial proteins, and so dATI expands the human mitochondrial proteome. PMID:23275553

  9. Translation Initiation Factors eIF3 and HCR1 Control Translation Termination and Stop Codon Read-Through in Yeast Cells

    PubMed Central

    Wagner, Susan; Shoemaker, Christopher J.; Gunišová, Stanislava; von der Haar, Tobias; Valášek, Leoš Shivaya

    2013-01-01

    Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined “initiation-specific” binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation. PMID:24278036

  10. Viral Genome-Linked Protein (VPg) Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV)

    PubMed Central

    Zhu, Jie; Wang, Binbin; Miao, Qiuhong; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Guo, Huimin; Liu, Guangqing

    2015-01-01

    Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation. PMID:26599265

  11. Viral Genome-Linked Protein (VPg) Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV).

    PubMed

    Zhu, Jie; Wang, Binbin; Miao, Qiuhong; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Guo, Huimin; Liu, Guangqing

    2015-01-01

    Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation. PMID:26599265

  12. Gene and translation initiation site prediction in metagenomic sequences

    SciTech Connect

    Hyatt, Philip Douglas; LoCascio, Philip F; Hauser, Loren John; Uberbacher, Edward C

    2012-01-01

    Gene prediction in metagenomic sequences remains a difficult problem. Current sequencing technologies do not achieve sufficient coverage to assemble the individual genomes in a typical sample; consequently, sequencing runs produce a large number of short sequences whose exact origin is unknown. Since these sequences are usually smaller than the average length of a gene, algorithms must make predictions based on very little data. We present MetaProdigal, a metagenomic version of the gene prediction program Prodigal, that can identify genes in short, anonymous coding sequences with a high degree of accuracy. The novel value of the method consists of enhanced translation initiation site identification, ability to identify sequences that use alternate genetic codes and confidence values for each gene call. We compare the results of MetaProdigal with other methods and conclude with a discussion of future improvements.

  13. Translation initiation in Drosophila melanogaster is reduced by mutations upstream of the AUG initiator codon

    SciTech Connect

    Feng, Yue; Gunter, L.E.; Organ, E.L.; Cavener, D.R. )

    1991-04-01

    The importance to in vivo translation of sequences immediately upstream of the Drosophila alcohol dehydrogenase (Adh) start codon was examined at two developmental stages. Mutations were introduced into the Adh gene in vitro, and the mutant gene was inserted into the genome via germ line transformation. An A-to-T substitution at the [minus]3 position did not affect relative translation of ADH at the adult stage. A second mutant gene, containing five mutations in the region [minus]1 to [minus]9, was designed to completely block translation initiation. However, transformant lines bearing these mutations still exhibit detectable ADH, albeit at substantially reduced levels. The average fold reduction at the second-instar larval stage was 5.9, while at the adult stage a 12.5-fold reduction was observed.

  14. N-terminal Proteomics and Ribosome Profiling Provide a Comprehensive View of the Alternative Translation Initiation Landscape in Mice and Men*

    PubMed Central

    Van Damme, Petra; Gawron, Daria; Van Criekinge, Wim; Menschaert, Gerben

    2014-01-01

    Usage of presumed 5′UTR or downstream in-frame AUG codons, next to non-AUG codons as translation start codons contributes to the diversity of a proteome as protein isoforms harboring different N-terminal extensions or truncations can serve different functions. Recent ribosome profiling data revealed a highly underestimated occurrence of database nonannotated, and thus alternative translation initiation sites (aTIS), at the mRNA level. N-terminomics data in addition showed that in higher eukaryotes around 20% of all identified protein N termini point to such aTIS, to incorrect assignments of the translation start codon, translation initiation at near-cognate start codons, or to alternative splicing. We here report on more than 1700 unique alternative protein N termini identified at the proteome level in human and murine cellular proteomes. Customized databases, created using the translation initiation mapping obtained from ribosome profiling data, additionally demonstrate the use of initiator methionine decoded near-cognate start codons besides the existence of N-terminal extended protein variants at the level of the proteome. Various newly identified aTIS were confirmed by mutagenesis, and meta-analyses demonstrated that aTIS reside in strong Kozak-like motifs and are conserved among eukaryotes, hinting to a possible biological impact. Finally, TargetP analysis predicted that the usage of aTIS often results in altered subcellular localization patterns, providing a mechanism for functional diversification. PMID:24623590

  15. Translation initiation factor 4A from Saccharomyces cerevisiae: analysis of residues conserved in the D-E-A-D family of RNA helicases.

    PubMed Central

    Schmid, S R; Linder, P

    1991-01-01

    The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products. Images PMID:2046664

  16. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation

    PubMed Central

    Ishimura, Ryuta; Nagy, Gabor; Dotu, Ivan; Chuang, Jeffrey H; Ackerman, Susan L

    2016-01-01

    Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNAArgUCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress. DOI: http://dx.doi.org/10.7554/eLife.14295.001 PMID:27085088

  17. Depletion of eIF2·GTP·Met-tRNAi translation initiation complex up-regulates BRCA1 expression in vitro and in vivo.

    PubMed

    Aktas, Bertal H; Bordelois, Paula; Peker, Selen; Merajver, Sophia; Halperin, Jose A

    2015-03-30

    Most sporadic breast and ovarian cancers express low levels of the breast cancer susceptibility gene, BRCA1. The BRCA1 gene produces two transcripts, mRNAa and mRNAb. mRNAb, present in breast cancer but not in normal mammary epithelial cells, contains three upstream open reading frames (uORFs) in its 5'UTR and is translationally repressed. Comparable tandem uORFs are characteristically seen in mRNAs whose translational efficiency paradoxically increases when the overall translation rate is decreased due to phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α). Here we show fish oil derived eicosopanthenoic acid (EPA) that induces eIF2α phosphorylation translationally up-regulates the expression of BRCA1 in human breast cancer cells. We demonstrate further that a diet rich in EPA strongly induces expression of BRCA1 in human breast cancer xenografts. PMID:25762631

  18. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay

    PubMed Central

    Fatscher, Tobias; Boehm, Volker; Weiche, Benjamin

    2014-01-01

    Nonsense-mediated mRNA decay (NMD) eliminates different classes of mRNA substrates including transcripts with long 3′ UTRs. Current models of NMD suggest that the long physical distance between the poly(A) tail and the termination codon reduces the interaction between cytoplasmic poly(A)-binding protein (PABPC1) and the eukaryotic release factor 3a (eRF3a) during translation termination. In the absence of PABPC1 binding, eRF3a recruits the NMD factor UPF1 to the terminating ribosome, triggering mRNA degradation. Here, we have used the MS2 tethering system to investigate the suppression of NMD by PABPC1. We show that tethering of PABPC1 between the termination codon and a long 3′ UTR specifically inhibits NMD-mediated mRNA degradation. Contrary to the current model, tethered PABPC1 mutants unable to interact with eRF3a still efficiently suppress NMD. We find that the interaction of PABPC1 with eukaryotic initiation factor 4G (eIF4G), which mediates the circularization of mRNAs, is essential for NMD inhibition by tethered PABPC1. Furthermore, recruiting either eRF3a or eIF4G in proximity to an upstream termination codon antagonizes NMD. While tethering of an eRF3a mutant unable to interact with PABPC1 fails to suppress NMD, tethered eIF4G inhibits NMD in a PABPC1-independent manner, indicating a sequential arrangement of NMD antagonizing factors. In conclusion, our results establish a previously unrecognized link between translation termination, mRNA circularization, and NMD suppression, thereby suggesting a revised model for the activation of NMD at termination codons upstream of long 3′ UTR. PMID:25147240

  19. Translation elongation factor 1A mutants with altered actin bundling activity show reduced aminoacyl-tRNA binding and alter initiation via eIF2α phosphorylation.

    PubMed

    Perez, Winder B; Kinzy, Terri Goss

    2014-07-25

    Apart from its canonical function in translation elongation, eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with the actin cytoskeleton. Amino acid substitutions in eEF1A that reduce its ability to bind and bundle actin in vitro cause improper actin organization in vivo and reduce total translation. Initial in vivo analysis indicated the reduced translation was through initiation. The mutant strains exhibit increased levels of phosphorylated initiation factor 2α (eIF2α) dependent on the presence of the general control non-derepressible 2 (Gcn2p) protein kinase. Gcn2p causes downregulation of total protein synthesis at initiation in response to increases in deacylated tRNA levels in the cell. Increased levels of eIF2α phosphorylation are not due to a general reduction in translation elongation as eEF2 and eEF3 mutants do not exhibit this effect. Deletion of GCN2 from the eEF1A actin bundling mutant strains revealed a second defect in translation. The eEF1A actin-bundling proteins exhibit changes in their elongation activity at the level of aminoacyl-tRNA binding in vitro. These findings implicate eEF1A in a feedback mechanism for regulating translation at initiation. PMID:24936063

  20. Mitotic phosphorylation of eukaryotic initiation factor 4G1 (eIF4G1) at Ser1232 by Cdk1:cyclin B inhibits eIF4A helicase complex binding with RNA.

    PubMed

    Dobrikov, Mikhail I; Shveygert, Mayya; Brown, Michael C; Gromeier, Matthias

    2014-02-01

    During mitosis, global translation is suppressed, while synthesis of proteins with vital mitotic roles must go on. Prior evidence suggests that the mitotic translation shift involves control of initiation. Yet, no signals specifically targeting translation initiation factors during mitosis have been identified. We used phosphoproteomics to investigate the central translation initiation scaffold and "ribosome adaptor," eukaryotic initiation factor 4G1 (eIF4G1) in interphase or nocodazole-arrested mitotic cells. This approach and kinase inhibition assays, in vitro phosphorylation with recombinant kinase, and kinase depletion-reconstitution experiments revealed that Ser1232 in eIF4G1 is phosphorylated by cyclin-dependent kinase 1 (Cdk1):cyclin B during mitosis. Ser1232 is located in an unstructured region of the C-terminal portion of eIF4G1 that coordinates assembly of the eIF4G/-4A/-4B helicase complex and binding of the mitogen-activated protein kinase (MAPK) signal-integrating kinase, Mnk. Intense phosphorylation of Ser1232 in mitosis strongly enhanced the interactions of eIF4A with HEAT domain 2 of eIF4G and decreased association of eIF4G/-4A with RNA. Our findings implicate phosphorylation of eIF4G1(Ser1232) by Cdk1:cyclin B and its inhibitory effects on eIF4A helicase activity in the mitotic translation initiation shift. PMID:24248602

  1. Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding.

    PubMed

    Mayberry, Laura K; Allen, M Leah; Nitka, Kelley R; Campbell, Lara; Murphy, Patricia A; Browning, Karen S

    2011-12-01

    The initiation of translation in eukaryotes requires a suite of eIFs that include the cap-binding complex, eIF4F. eIF4F is comprised of the subunits eIF4G and eIF4E and often the helicase, eIF4A. The eIF4G subunit serves as an assembly point for other initiation factors, whereas eIF4E binds to the 7-methyl guanosine cap of mRNA. Plants have an isozyme form of eIF4F (eIFiso4F) with comparable subunits, eIFiso4E and eIFiso4G. Plant eIF4A is very loosely associated with the plant cap-binding complexes. The specificity of interaction of the individual subunits of the two complexes was previously unknown. To address this issue, mixed complexes (eIF4E-eIFiso4G or eIFiso4E-eIF4G) were expressed and purified from Escherichia coli for biochemical analysis. The activity of the mixed complexes in in vitro translation assays correlated with the large subunit of the respective correct complex. These results suggest that the eIF4G or eIFiso4G subunits influence translational efficiency more than the cap-binding subunits. The translation assays also showed varying responses of the mRNA templates to eIF4F or eIFiso4F, suggesting that some level of mRNA discrimination is possible. The dissociation constants for the correct complexes have K(D) values in the subnanomolar range, whereas the mixed complexes were found to have K(D) values in the ∼10 nm range. Displacement assays showed that the correct binding partner readily displaces the incorrect binding partner in a manner consistent with the difference in K(D) values. These results show molecular specificity for the formation of plant eIF4F and eIFiso4F complexes and suggest a role in mRNA discrimination during initiation of translation. PMID:21965660

  2. Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid.

    PubMed

    Parkash, Jai; Vaidya, Tanmay; Kirti, Shruti; Dutt, Som

    2014-05-25

    Translation initiation, the first step of protein synthesis process is the principal regulatory step controlling translation and involves a pool of translation initiation factors. In plants, from recent studies it is becoming evident that these translation initiation factors impact various aspects of plant growth and development in addition to their role in protein synthesis. Eukaryotic translation initiation factor eIF5A is one such factor which functions in start site selection for the eIF2-GTP-tRNAi ternary complex within the ribosomal-bound preinitiation complex and also stabilizes the binding of GDP to eIF2. In the present study we have cloned and analysed a gene (eIF5a) encoding eIF5A from Picrorhiza (Picrorhiza kurrooa Royle ex Benth.) a medicinal plant of the western Himalayan region. The full length eIF5a cDNA consisted of 838 bp with an open reading frame of 480 bp, 88 bp 5' untranslated region and 270 bp 3' untranslated region. The deduced eIF5A protein contained 159 amino acids with a molecular weight of 17.359 kDa and an isoelectric point of 5.59. Secondary structure analysis revealed eIF5A having 24.53% α-helices, 8.81% β-turns, 23.27% extended strands and 43.40% random coils. pk-eIF5a transcript was found to be expressing during the active growth phase as well as during leaf senescence stage, however, highest expression was observed during leaf senescence stage. Further, its expression was up-regulated in response to exogenous application of abscisic acid. Both high intensity as well as low intensity light decreased the expression of pk-eIF5a. The findings suggest eIF5a to be an important candidate to develop genetic engineering based strategies for delaying leaf senescence. PMID:24656625

  3. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling

    PubMed Central

    Nag, Nabanita; Lin, Kai Ying; Edmonds, Katherine A.; Yu, Jielin; Nadkarni, Devika; Marintcheva, Boriana; Marintchev, Assen

    2016-01-01

    Eukaryotic translation initiation is a highly regulated process involving multiple steps, from 43S pre-initiation complex (PIC) assembly, to ribosomal subunit joining. Subunit joining is controlled by the G-protein eukaryotic translation initiation factor 5B (eIF5B). Another protein, eIF1A, is involved in virtually all steps, including subunit joining. The intrinsically disordered eIF1A C-terminal tail (eIF1A-CTT) binds to eIF5B Domain-4 (eIF5B-D4). The ribosomal complex undergoes conformational rearrangements at every step of translation initiation; however, the underlying molecular mechanisms are poorly understood. Here we report three novel interactions involving eIF5B and eIF1A: (i) a second binding interface between eIF5B and eIF1A; (ii) a dynamic intramolecular interaction in eIF1A between the folded domain and eIF1A-CTT; and (iii) an intramolecular interaction between eIF5B-D3 and -D4. The intramolecular interactions within eIF1A and eIF5B interfere with one or both eIF5B/eIF1A contact interfaces, but are disrupted on the ribosome at different stages of translation initiation. Therefore, our results indicate that the interactions between eIF1A and eIF5B are being continuously rearranged during translation initiation. We present a model how the dynamic eIF1A/eIF5B interaction network can promote remodeling of the translation initiation complexes, and the roles in the process played by intrinsically disordered protein segments. PMID:27325746

  4. Inhibition of translation initiation factors might be the potential therapeutic targets for HCV patients with hepatic iron overload.

    PubMed

    Liu, Yiping; An, Daizhi; Sun, Rubao; Jin, Lianqun; Wang, Qiang

    2012-01-01

    Standard therapy, interferon-alpha (IFN-α) and ribavirin, remains the only available option for treatment of patients with hepatitis C virus (HCV) infection. However, iron overload, a common finding among HCV patients, have a poor response to treatment with current therapy. These data suggest that both host and viral factors are involved in the determination of the outcome of the therapy. Currently, novel antiviral compounds focus on the development of indirect antiviral drugs. The process of the viral translation is considered as the potential therapeutic targets. Coincidentally, study has found that hepatic iron load enhances the levels of eukaryotic initiation factor 3 (eIF3), which is essential for HCV translation. Reversely, iron chelation could reduce eIF3 p170 translation. Our hypothesis is that iron overload may specifically enhance cellular eIFs. As a result, the cellular mechanisms, in patients with iron overload, are utilized for translating viral mRNA into protein. Thus, treatment strategies that target eIFs should be an exceptionally good candidate therapeutic method for HCV patients with hepatic iron overload. PMID:22047986

  5. Identification and Characterization of a Novel Evolutionarily Conserved Lysine-specific Methyltransferase Targeting Eukaryotic Translation Elongation Factor 2 (eEF2)*

    PubMed Central

    Davydova, Erna; Ho, Angela Y. Y.; Malecki, Jedrzej; Moen, Anders; Enserink, Jorrit M.; Jakobsson, Magnus E.; Loenarz, Christoph; Falnes, Pål Ø.

    2014-01-01

    The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively. PMID:25231979

  6. Structure of the protein core of translation initiation factor 2 in apo, GTP-bound and GDP-bound forms

    SciTech Connect

    Simonetti, Angelita; Fabbretti, Attilio; Hazemann, Isabelle; Jenner, Lasse; Gualerzi, Claudio O.; Klaholz, Bruno P.

    2013-06-01

    The crystal structures of the eubacterial translation initiation factor 2 in apo form and with bound GDP and GTP reveal conformational changes upon nucleotide binding and hydrolysis, notably of the catalytically important histidine in the switch II region. Translation initiation factor 2 (IF2) is involved in the early steps of bacterial protein synthesis. It promotes the stabilization of the initiator tRNA on the 30S initiation complex (IC) and triggers GTP hydrolysis upon ribosomal subunit joining. While the structure of an archaeal homologue (a/eIF5B) is known, there are significant sequence and functional differences in eubacterial IF2, while the trimeric eukaryotic IF2 is completely unrelated. Here, the crystal structure of the apo IF2 protein core from Thermus thermophilus has been determined by MAD phasing and the structures of GTP and GDP complexes were also obtained. The IF2–GTP complex was trapped by soaking with GTP in the cryoprotectant. The structures revealed conformational changes of the protein upon nucleotide binding, in particular in the P-loop region, which extend to the functionally relevant switch II region. The latter carries a catalytically important and conserved histidine residue which is observed in different conformations in the GTP and GDP complexes. Overall, this work provides the first crystal structure of a eubacterial IF2 and suggests that activation of GTP hydrolysis may occur by a conformational repositioning of the histidine residue.

  7. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus

    PubMed Central

    Asnani, Mukta; Pestova, Tatyana V.; Hellen, Christopher U.T.

    2016-01-01

    Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5′-terminal IRES. We report that the 982-nt long 5′UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341–950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction. PMID:26873921

  8. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus.

    PubMed

    Asnani, Mukta; Pestova, Tatyana V; Hellen, Christopher U T

    2016-04-20

    Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5'-terminal IRES. We report that the 982-nt long 5'UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341-950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12).In vitroreconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction. PMID:26873921

  9. Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.

    PubMed

    Marcus, H; Attar-Schneider, O; Dabbah, M; Zismanov, V; Tartakover-Matalon, S; Lishner, M; Drucker, L

    2016-06-01

    Bone marrow mesenchymal stem cells' (BM-MSCs) role in multiple myeloma (MM) pathogenesis is recognized. Recently, we have published that co-culture of MM cell lines with BM-MSCs results in mutual modulation of phenotype and proteome (via translation initiation (TI) factors eIF4E/eIF4GI) and that there are differences between normal donor BM-MSCs (ND-MSCs) and MM BM-MSCs (MM-MSCs) in this crosstalk. Here, we aimed to assess the involvement of soluble BM-MSCs' (ND, MM) components, more easily targeted, in manipulation of MM cell lines phenotype and TI with specific focus on microvesicles (MVs) capable of transferring critical biological material. We applied ND and MM-MSCs 72h secretomes to MM cell lines (U266 and ARP-1) for 12-72h and then assayed the cells' (viability, cell count, cell death, proliferation, cell cycle, autophagy) and TI (factors: eIF4E, teIF4GI; regulators: mTOR, MNK1/2, 4EBP; targets: cyclin D1, NFκB, SMAD5, cMyc, HIF1α). Furthermore, we dissected the secretome into >100kDa and <100kDa fractions and repeated the experiments. Finally, MVs were isolated from the ND and MM-MSCs secretomes and applied to MM cell lines. Phenotype and TI were assessed. Secretomes of BM-MSCs (ND, MM) significantly stimulated MM cell lines' TI, autophagy and proliferation. The dissected secretome yielded different effects on MM cell lines phenotype and TI according to fraction (>100kDa- repressed; <100kDa- stimulated) but with no association to source (ND, MM). Finally, in analyses of MVs extracted from BM-MSCs (ND, MM) we witnessed differences in accordance with source: ND-MSCs MVs inhibited proliferation, autophagy and TI whereas MM-MSCs MVs stimulated them. These observations highlight the very complex communication between MM and BM-MSCs and underscore its significance to major processes in the malignant cells. Studies into the influential MVs cargo are underway and expected to uncover targetable signals in the regulation of the TI/proliferation/autophagy cascade

  10. Molecular architecture of the 40S⋅eIF1⋅eIF3 translation initiation complex.

    PubMed

    Erzberger, Jan P; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H S; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad

    2014-08-28

    Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412

  11. Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex

    PubMed Central

    Erzberger, Jan P.; Stengel, Florian; Pellarin, Riccardo; Zhang, Suyang; Schaefer, Tanja; Aylett, Christopher H.S.; Cimermančič, Peter; Boehringer, Daniel; Sali, Andrej; Aebersold, Ruedi; Ban, Nenad

    2014-01-01

    Summary Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA. PMID:25171412

  12. 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria

    PubMed Central

    Yamamoto, Hiroshi; Wittek, Daniela; Gupta, Romi; Qin, Bo; Ueda, Takuya; Krause, Roland; Yamamoto, Kaori; Albrecht, Renate; Pech, Markus; Nierhaus, Knud H.

    2016-01-01

    According to the standard model of bacterial translation initiation, the small ribosomal 30S subunit binds to the initiation site of an mRNA with the help of three initiation factors (IF1–IF3). Here, we describe a novel type of initiation termed “70S-scanning initiation,” where the 70S ribosome does not necessarily dissociate after translation of a cistron, but rather scans to the initiation site of the downstream cistron. We detailed the mechanism of 70S-scanning initiation by designing unique monocistronic and polycistronic mRNAs harboring translation reporters, and by reconstituting systems to characterize each distinct mode of initiation. Results show that 70S scanning is triggered by fMet-tRNA and does not require energy; the Shine–Dalgarno sequence is an essential recognition element of the initiation site. IF1 and IF3 requirements for the various initiation modes were assessed by the formation of productive initiation complexes leading to synthesis of active proteins. IF3 is essential and IF1 is highly stimulating for the 70S-scanning mode. The task of IF1 appears to be the prevention of untimely interference by ternary aminoacyl (aa)-tRNA•elongation factor thermo unstable (EF-Tu)•GTP complexes. Evidence indicates that at least 50% of bacterial initiation events use the 70S-scanning mode, underscoring the relative importance of this translation initiation mechanism. PMID:26888283

  13. Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae.

    PubMed

    Coordes, Britta; Brünger, Katharina M; Burger, Kaspar; Soufi, Boumediene; Horenk, Juliane; Eick, Dirk; Olsen, Jesper V; Sträßer, Katja

    2015-01-01

    Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation. PMID:25416238

  14. DIETARY PROTEIN AND LACTOSE INCREASE TRANSLATION INITIATION FACTOR ACTIVATION AND TISSUE PROTEIN SYNTHESIS IN NEONATAL PIGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in muscle and liver of pigs parenterally infused with amino acids and insulin. To examine the effects of enteral protein and carbohydrate on protein synthesis, pigs (n = 42, 1.7 kg body wt) were fed isocaloric milk die...

  15. The Non-core Subunit eIF3h of Translation Initiation Factor eIF3 Regulates Zebrafish Embryonic Development

    PubMed Central

    Choudhuri, Avik; Evans, Todd; Maitra, Umadas

    2011-01-01

    Eukaryotic translation initiation factor eIF3, that plays a central role in translation initiation, consists of five core subunits that are present in both the budding yeast and higher eukaryotes. However, higher eukaryotic eIF3 contains additional (non-core) subunits that are absent in the budding yeast. We investigated the role of one such non-core eIF3 subunit eIF3h, encoded by two distinct genes – eif3ha and eif3hb, as a regulator of embryonic development in zebrafish. Both eif3h genes are expressed during early embryogenesis, and display overlapping yet distinct and highly dynamic spatial expression patterns. Loss of function analysis using specific morpholino oligomers indicates that each isoform has specific as well as redundant functions during early development. The morphant phenotypes correlate with their spatial expression patterns, indicating that eif3h regulates development of the brain, heart, vasculature, and lateral line. These results indicate that the non-core subunits of eIF3 regulate specific developmental programs during vertebrate embryogenesis. PMID:20503360

  16. Expression of human eukaryotic initiation factor 3f oscillates with cell cycle in A549 cells and is essential for cell viability

    PubMed Central

    2010-01-01

    Background Transcriptional and postranslational regulation of the cell cycle has been widely studied. However, there is scarce knowledge concerning translational control of this process. Several mammalian eukaryotic initiation factors (eIFs) seem to be implicated in controlling cell proliferation. In this work, we investigated if the human eIF3f expression and function is cell cycle related. Results The human eIF3f expression has been found to be upregulated in growth-stimulated A549 cells and downregulated in G0. Western blot analysis and eIF3f promotor-luciferase fusions revealed that eIF3f expression peaks twice in the cell cycle: in the S and the M phases. Deregulation of eIF3f expression negatively affects cell viability and induces apoptosis. Conclusions The expression pattern of human eIF3f during the cell cycle confirms that this gene is cell division related. The fact that eIF3f expression peaks in two cell cycle phases raises the possibility that this gene may exert a differential function in the S and M phases. Our results strongly suggest that eIF3f is essential for cell proliferation. PMID:20462454

  17. Alternative ferritin mRNA translation via internal initiation

    PubMed Central

    Daba, Alina; Koromilas, Antonis E.; Pantopoulos, Kostas

    2012-01-01

    Ferritin stores and detoxifies an excess of intracellular iron, and thereby plays an important role in the metabolism of this metal. As unshielded iron promotes oxidative stress, ferritin is crucial in maintaining cellular redox balance and may also modulate cell growth, survival, and apoptosis. The expression of ferritin is controlled by transcriptional and post-transcriptional mechanisms. In light of the well-established transcriptional induction of ferritin by inflammatory signals, we examined how ferritin mRNA translation responds to stress conditions. We first used HT1080 fibrosarcoma cells engineered for coumermycin-inducible expression of PKR, a stress kinase that inhibits protein synthesis in virus-infected cells by phosphorylating eIF2α. In this setting, iron triggered partial ferritin mRNA translation despite a PKR-induced global shutdown in protein synthesis. Moreover, iron-mediated ferritin synthesis was evident in cells infected with an attenuated strain of poliovirus; when eIF4GI was cleaved, eIF2α was phosphorylated, and host protein synthesis was inhibited. Under global inhibition of protein synthesis or specific inhibition of ferritin mRNA translation in cells overexpressing PKR or IRP1, respectively, we demonstrate association of ferritin mRNA with heavy polysomes. Further experiments revealed that the 5′ untranslated region (5′ UTR) of ferritin mRNA contains a bona fide internal ribosomal entry site (IRES). Our data are consistent with the existence of an alternative, noncanonical mechanism for ferritin mRNA translation, which may primarily operate under stress conditions to protect cells from oxidative stress. PMID:22271759

  18. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  19. Requirements for translation re-initiation in Escherichia coli: roles of initiator tRNA and initiation factors IF2 and IF3

    PubMed Central

    Yoo, Jae-Ho; RajBhandary, Uttam L

    2008-01-01

    Despite its importance in post-transcriptional regulation of polycistronic operons in Escherichia coli, little is known about the mechanism of translation re-initiation, which occurs when the same ribosome used to translate an upstream open reading frame (ORF) also translates a downstream ORF. To investigate translation re-initiation in Escherichia coli, we constructed a di-cistronic reporter in which a firefly luciferase gene was linked to a chloramphenicol acetyltransferase gene using a segment of the translationally coupled geneV–geneVII intercistronic region from M13 phage. With this reporter and mutant initiator tRNAs, we show that two of the unique properties of E. coli initiator tRNA – formylation of the amino acid attached to the tRNA and binding of the tRNA to the ribosomal P-site – are as important for re-initiation as for de novo initiation. Overexpression of IF2 or increasing the affinity of mutant initiator tRNA for IF2 enhanced re-initiation efficiency, suggesting that IF2 is required for efficient re-initiation. In contrast, overexpression of IF3 led to a marked decrease in re-initiation efficiency, suggesting that a 30S ribosome and not a 70S ribosome is used for translation re-initiation. Strikingly, overexpression of IF3 also blocked E. coli from acting as a host for propagation of M13 phage. PMID:18221266

  20. Supporting knowledge translation through collaborative translational research initiatives: ‘Bridging’ versus ‘blurring’ boundary-spanning approaches in the UK CLAHRC initiative

    PubMed Central

    Evans, Sarah; Scarbrough, Harry

    2014-01-01

    Recent policy initiatives in the UK and internationally have sought to promote knowledge translation between the ‘producers’ and ‘users’ of research. Within this paper we explore how boundary-spanning interventions used within such initiatives can support knowledge translation between diverse groups. Using qualitative data from a 3-year research study conducted from January 2010 to December 2012 of two case-sites drawn from the CLAHRC initiative in the UK, we distinguish two different approaches to supporting knowledge translation; a ‘bridging’ approach that involves designated roles, discrete events and activities to span the boundaries between communities, and a ‘blurring’ approach that de-emphasises the boundaries between groups, enabling a more continuous process of knowledge translation as part of day-to-day work-practices. In this paper, we identify and differentiate these boundary-spanning approaches and describe how they emerged from the context defined by the wider CLAHRC networks. This highlights the need to develop a more contextualised analysis of the boundary-spanning that underpins knowledge translation processes, relating this to the distinctive features of a particular case. PMID:24561773

  1. A departmental initiative for clinical and translational research.

    PubMed

    Colombo, Christopher J; Baer, Stephanie; Blake, Lindsay; Bollag, Wendy B; Colombo, Rhonda; Diamond, Matthew; George, Varghese; Huber, Lu; Merchen, Lee; Miles, Kathy; Yang, Frances; Nahman, N Stanley

    2016-06-01

    To encourage departmental research activities, the Department of Medicine of the Medical College of Georgia (MCG) introduced an internally funded Translational Research Program (TRP) in 2014. Patterned after the Vanderbilt Institute for Clinical and Translational Research, the program offers research studios for project guidance, research mentoring and the availability of limited financial support through research vouchers. Additional academic services include abstract reviewing, conducting research conferences, organizing departmental research programs for students, and offering courses in biostatistics. During the first 15 months of its existence, the TRP working group addressed 132 distinct activities. Research mentoring, publications, and the conduct of research studios or voucher approvals encompassed 49% of working group activities. Other academic services constituted the remaining 51%. Twenty-four per cent of TRP committee activities involved research mentoring of 32 investigators (25% faculty and 75% trainees). Mentored projects generated 17 abstracts, 2 manuscripts and $87,000 in funds. The TRP conducted 13 research studios; trainees presented 54%. The TRP reviewed 36 abstracts for local and state organizations. Monthly research conferences and statistical courses were conducted and well attended. Our experience thus far indicates that a departmental TRP may serve to facilitate the growth of patient-oriented research with minimal financial support. It requires active engagement of volunteer faculty and departmental leadership willing to balance research with the other demands of the academic mission. PMID:27073213

  2. Regulation of translation by upstream translation initiation codons of surfactant protein A1 splice variants

    PubMed Central

    Tsotakos, Nikolaos; Silveyra, Patricia; Lin, Zhenwu; Thomas, Neal; Vaid, Mudit

    2014-01-01

    Surfactant protein A (SP-A), a molecule with roles in lung innate immunity and surfactant-related functions, is encoded by two genes in humans: SFTPA1 (SP-A1) and SFTPA2 (SP-A2). The mRNAs from these genes differ in their 5′-untranslated regions (5′-UTR) due to differential splicing. The 5′-UTR variant ACD′ is exclusively found in transcripts of SP-A1, but not in those of SP-A2. Its unique exon C contains two upstream AUG codons (uAUGs) that may affect SP-A1 translation efficiency. The first uAUG (u1) is in frame with the primary start codon (p), but the second one (u2) is not. The purpose of this study was to assess the impact of uAUGs on SP-A1 expression. We employed RT-qPCR to determine the presence of exon C-containing SP-A1 transcripts in human RNA samples. We also used in vitro techniques including mutagenesis, reporter assays, and toeprinting analysis, as well as in silico analyses to determine the role of uAUGs. Exon C-containing mRNA is present in most human lung tissue samples and its expression can, under certain conditions, be regulated by factors such as dexamethasone or endotoxin. Mutating uAUGs resulted in increased luciferase activity. The mature protein size was not affected by the uAUGs, as shown by a combination of toeprint and in silico analysis for Kozak sequence, secondary structure, and signal peptide and in vitro translation in the presence of microsomes. In conclusion, alternative splicing may introduce uAUGs in SP-A1 transcripts, which in turn negatively affect SP-A1 translation, possibly affecting SP-A1/SP-A2 ratio, with potential for clinical implication. PMID:25326576

  3. The mechanism of translation initiation on Type 1 picornavirus IRESs

    PubMed Central

    Sweeney, Trevor R; Abaeva, Irina S; Pestova, Tatyana V; Hellen, Christopher U T

    2014-01-01

    Picornavirus Type 1 IRESs comprise five principal domains (dII–dVI). Whereas dV binds eIF4G, a conserved AUG in dVI was suggested to stimulate attachment of 43S ribosomal preinitiation complexes, which then scan to the initiation codon. Initiation on Type 1 IRESs also requires IRES trans-acting factors (ITAFs), and several candidates have been proposed. Here, we report the in vitro reconstitution of initiation on three Type 1 IRESs: poliovirus (PV), enterovirus 71 (EV71), and bovine enterovirus (BEV). All of them require eIF2, eIF3, eIF4A, eIF4G, eIF4B, eIF1A, and a single ITAF, poly(C) binding protein 2 (PCBP2). In each instance, initiation starts with binding of eIF4G/eIF4A. Subsequent recruitment of 43S complexes strictly requires direct interaction of their eIF3 constituent with eIF4G. The following events can differ between IRESs, depending on the stability of dVI. If it is unstructured (BEV), all ribosomes scan through dVI to the initiation codon, requiring eIF1 to bypass its AUG. If it is structured (PV, EV71), most initiation events occur without inspection of dVI, implying that its AUG does not determine ribosomal attachment. PMID:24357634

  4. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation

    PubMed Central

    Moura, Danielle MN; Reis, Christian RS; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  5. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation.

    PubMed

    Moura, Danielle M N; Reis, Christian R S; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  6. A var Gene Upstream Element Controls Protein Synthesis at the Level of Translation Initiation in Plasmodium falciparum

    PubMed Central

    Brancucci, Nicolas M. B.; Witmer, Kathrin; Schmid, Christoph; Voss, Till S.

    2014-01-01

    Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is encoded by the multicopy var gene family and only a single variant is expressed in individual parasites, a concept known as mutual exclusion or singular gene choice. var gene activation occurs in situ and is achieved through the escape of one locus from epigenetic silencing. Singular gene choice is controlled at the level of transcription initiation and var 5′ upstream (ups) sequences harbour regulatory information essential for mutually exclusive transcription as well as for the trans-generational inheritance of the var activity profile. An additional level of control has recently been identified for the var2csa gene, where an mRNA element in the 5′ untranslated region (5′ UTR) is involved in the reversible inhibition of translation of var2csa transcripts. Here, we extend the knowledge on post-transcriptional var gene regulation to the common upsC type. We identified a 5′ UTR sequence that inhibits translation of upsC-derived mRNAs. Importantly, this 5′ UTR element efficiently inhibits translation even in the context of a heterologous upstream region. Further, we found var 5′ UTRs to be significantly enriched in uAUGs which are known to impair the efficiency of protein translation in other eukaryotes. Our findings suggest that regulation at the post-transcriptional level is a common feature in the control of PfEMP1 expression in P. falciparum. PMID:24937593

  7. A var gene upstream element controls protein synthesis at the level of translation initiation in Plasmodium falciparum.

    PubMed

    Brancucci, Nicolas M B; Witmer, Kathrin; Schmid, Christoph; Voss, Till S

    2014-01-01

    Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is encoded by the multicopy var gene family and only a single variant is expressed in individual parasites, a concept known as mutual exclusion or singular gene choice. var gene activation occurs in situ and is achieved through the escape of one locus from epigenetic silencing. Singular gene choice is controlled at the level of transcription initiation and var 5' upstream (ups) sequences harbour regulatory information essential for mutually exclusive transcription as well as for the trans-generational inheritance of the var activity profile. An additional level of control has recently been identified for the var2csa gene, where an mRNA element in the 5' untranslated region (5' UTR) is involved in the reversible inhibition of translation of var2csa transcripts. Here, we extend the knowledge on post-transcriptional var gene regulation to the common upsC type. We identified a 5' UTR sequence that inhibits translation of upsC-derived mRNAs. Importantly, this 5' UTR element efficiently inhibits translation even in the context of a heterologous upstream region. Further, we found var 5' UTRs to be significantly enriched in uAUGs which are known to impair the efficiency of protein translation in other eukaryotes. Our findings suggest that regulation at the post-transcriptional level is a common feature in the control of PfEMP1 expression in P. falciparum. PMID:24937593

  8. Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors.

    PubMed

    Xue, Bing; Fitzgerald, Cole A; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2016-09-01

    Psychostimulants have an impact on protein synthesis, although underlying molecular mechanisms are unclear. Eukaryotic initiation factor 2α-subunit (eIF2α) is a key player in initiation of protein translation and is regulated by phosphorylation. While this factor is sensitive to changing synaptic input and is critical for synaptic plasticity, its sensitivity to stimulants is poorly understood. Here we systematically characterized responses of eIF2α to a systemic administration of the stimulant amphetamine (AMPH) in dopamine responsive regions of adult rat brains. Intraperitoneal injection of AMPH at 5mg/kg increased eIF2α phosphorylation at serine 51 in the striatum. This increase was transient. In the medial prefrontal cortex (mPFC), AMPH induced a relatively delayed phosphorylation of the factor. Pretreatment with a dopamine D1 receptor antagonist SCH23390 blocked the AMPH-stimulated eIF2α phosphorylation in both the striatum and mPFC. Similarly, a dopamine D2 receptor antagonist eticlopride reduced the effect of AMPH in the two regions. Two antagonists alone did not alter basal eIF2α phosphorylation. AMPH and two antagonists did not change the amount of total eIF2α proteins in both regions. These results demonstrate the sensitivity of eIF2α to stimulant exposure. AMPH possesses the ability to stimulate eIF2α phosphorylation in striatal and mPFC neurons in vivo in a D1 and D2 receptor-dependent manner. PMID:27338925

  9. An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation.

    PubMed

    Imai, Shunsuke; Kumar, Parimal; Hellen, Christopher U T; D'Souza, Victoria M; Wagner, Gerhard

    2016-09-01

    Many viruses bypass canonical cap-dependent translation in host cells by using internal ribosomal entry sites (IRESs) in their transcripts; IRESs hijack initiation factors for the assembly of initiation complexes. However, it is currently unknown how IRES RNAs recognize initiation factors that have no endogenous RNA binding partners; in a prominent example, the IRES of encephalomyocarditis virus (EMCV) interacts with the HEAT-1 domain of eukaryotic initiation factor 4G (eIF4G). Here we report the solution structure of the J-K region of this IRES and show that its stems are precisely organized to position protein-recognition bulges. This multisite interaction mechanism operates on an all-or-nothing principle in which all domains are required. This preorganization is accomplished by an 'adjuster module': a pentaloop motif that acts as a dual-sided docking station for base-pair receptors. Because subtle changes in the orientation abrogate protein capture, our study highlights how a viral RNA acquires affinity for a target protein. PMID:27525590

  10. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.

    PubMed

    Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark

    2015-12-15

    Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. PMID:26420881

  11. Deep sequencing reveals global patterns of mRNA recruitment during translation initiation

    PubMed Central

    Gao, Rong; Yu, Kai; Nie, Jukui; Lian, Tengfei; Jin, Jianshi; Liljas, Anders; Su, Xiao-Dong

    2016-01-01

    In this work, we developed a method to systematically study the sequence preference of mRNAs during translation initiation. Traditionally, the dynamic process of translation initiation has been studied at the single molecule level with limited sequencing possibility. Using deep sequencing techniques, we identified the sequence preference at different stages of the initiation complexes. Our results provide a comprehensive and dynamic view of the initiation elements in the translation initiation region (TIR), including the S1 binding sequence, the Shine-Dalgarno (SD)/anti-SD interaction and the second codon, at the equilibrium of different initiation complexes. Moreover, our experiments reveal the conformational changes and regional dynamics throughout the dynamic process of mRNA recruitment. PMID:27460773

  12. Protein synthesis in brine shrimp embryos and rabbit reticulocytes. The effect of Mg2+ on binary (eukaryotic initiation factor 2 X GDP) and ternary (eukaryotic initiation factor 2 X GTP X met-tRNAf) complex formation.

    PubMed

    Mehta, H B; Woodley, C L; Wahba, A J

    1983-03-25

    We have prepared eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes and Artemia embryos and studied the effect of Mg2+ on binary (eIF-2 X GDP) and ternary (eIF-2 X GTP X Met-tRNAf) complex formation. Under conditions where Mg2+ inhibits Met-tRNAf binding to reticulocyte eIF-2, ternary complex formation with Artemia eIF-2 is not inhibited. Similarly, the formation of eIF-2 X GDP with Artemia eIF-2 is stimulated by Mg2+, whereas the corresponding reticulocyte binary complex is strongly inhibited. In the presence of 1 mM Mg2+, the isolated Artemia eIF-2 X GDP complex is stable in the absence of any added nucleotide, but readily exchanges bound GDP for free GTP. However, the reticulocyte eIF-2 X GDP complex is significantly more stable in the presence of GTP, and nucleotide exchange is dependent upon the addition of a factor isolated from either the postribosomal supernatant or the high salt wash of rabbit reticulocyte ribosomes. This factor also stimulates Met-tRNAf binding to both Artemia and reticulocyte eIF-2. PMID:6550599

  13. Interaction of the HIV-1 Rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5

    PubMed Central

    Schatz, Octavian; Oft, Martin; Dascher, Christiane; Schebesta, Michael; Rosorius, Olaf; Jaksche, Herbert; Dobrovnik, Marika; Bevec, Dorian; Hauber, Joachim

    1998-01-01

    It has previously been shown that interaction of eukaryotic initiation factor 5A (eIF-5A) with the Rev trans-activator protein of HIV-1 mediates the transport of unspliced or incompletely spliced viral mRNAs across the nuclear envelope. Consequently, mutants of eIF-5A block Rev function and thereby replication of HIV-1 in trans, indicating that eIF-5A is a crucial protein that connects the viral Rev regulator with cellular RNA transport systems. Here we show that the ribosomal protein L5, which is the central protein component of the 5S rRNA export system, is a cellular interaction partner of eIF-5A. Functional studies demonstrate that overexpression of L5 protein significantly enhances Rev activity. Furthermore, Rev nuclear export activity is inhibited in human somatic cells by antibodies that recognize eIF-5A or L5. Our data suggest that the Rev export pathway shares components of a cellular transport system involved in the intracellular trafficking of polymerase III (5S rRNA) transcripts. PMID:9465063

  14. The Dynamics of Eukaryotic Replication Initiation: Origin Specificity, Licensing, and Firing at the Single-molecule Level

    PubMed Central

    Duzdevich, Daniel; Warner, Megan D.; Ticau, Simina; Ivica, Nikola A.; Bell, Stephen P.; Greene, Eric C.

    2015-01-01

    SUMMARY Eukaryotic replication initiation is highly regulated and dynamic. It begins with the Origin Recognition Complex (ORC) binding DNA sites called origins of replication. ORC, together with Cdc6 and Cdt1, mediate pre-Replicative Complex (pre-RC) assembly by loading a double hexamer of Mcm2-7: the core of the replicative helicase. Here, we use single-molecule imaging to directly visualize Saccharomyces cerevisiae pre-RC assembly and replisome firing in real time. We show that ORC can locate and stably bind origins within large tracts of non-origin DNA, and that Cdc6 drives ordered pre-RC assembly. We further show that the dynamics of the ORC-Cdc6 interaction dictate Mcm2-7 loading specificity and that Mcm2-7 double hexamers form preferentially at a native origin sequence. Finally, we demonstrate that single Mcm2-7 hexamers propagate bidirectionally, monotonically, and processively as constituents of active replisomes. PMID:25921072

  15. Sld3-MCM Interaction Facilitated by Dbf4-Dependent Kinase Defines an Essential Step in Eukaryotic DNA Replication Initiation

    PubMed Central

    Fang, Dingqiang; Cao, Qinhong; Lou, Huiqiang

    2016-01-01

    Sld3/Treslin is an evolutionarily conserved protein essential for activation of DNA helicase Mcm2-7 and replication initiation in all eukaryotes. Nevertheless, it remains elusive how Sld3 is recruited to origins. Here, we have identified the direct physical association of Sld3 with Mcm2 and Mcm6 subunits in vitro, which is significantly enhanced by DDK in vivo. The Sld3-binding domain (SBD) is mapped to the N-termini of Mcm2 and Mcm6, both of them are essential for cell viability and enriched with the DDK phosphorylation sites. Glutamic acid substitution of four conserved positively charged residues of Sld3 (sld3-4E), near the Cdc45-binding region, interrupts its interaction with Mcm2/6 and causes cell death. By using a temperature-inducible degron (td), we show that deletion of Mcm6 SBD (mcm6ΔN122) abolishes not only Sld3 enrichment at early origins in G1 phase, but also subsequent recruitment of GINS and RPA during S phase. These findings elucidate the in vivo molecular details of the DDK-dependent Sld3-MCM association, which plays a crucial role in MCM helicase activation and origin unwinding. PMID:27375603

  16. The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation.

    PubMed

    de Melo Neto, Osvaldo P; da Costa Lima, Tamara D C; Xavier, Camila C; Nascimento, Larissa M; Romão, Tatiany P; Assis, Ludmila A; Pereira, Mariana M C; Reis, Christian R S; Papadopoulou, Barbara

    2015-01-01

    The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa. PMID:26338184

  17. Viral and chloroplastic signals essential for initiation and efficiency of translation in Agrobacterium tumefaciens.

    PubMed

    Ahmad, Tauqeer; Venkataraman, Srividhya; Hefferon, Kathleen; AbouHaidar, Mounir G

    2014-09-12

    The construction of high-level protein expression vectors using the CaMV 35S promoter in concert with highly efficient translation initiation signals for Agrobacterium tumefaciens is a relatively less explored field compared to that of Escherichia coli. In the current study, we experimentally investigated the capacity of the CaMV 35S promoter to direct GFP gene expression in A. tumefaciens in the context of different viral and chloroplastic translation initiation signals. GFP expression and concomitant translational efficiency was monitored by confocal microscopy and Western blot analysis. Among all of the constructs, the highest level of translation was observed for the construct containing the phage T7 translation initiation region followed by the chloroplastic Rubisco Large Subunit (rbcL) 58-nucleotide 5' leader region including its SD-like sequence (GGGAGGG). Replacing the SD-like (GGGAGGG) with non SD-like (TTTATTT) or replacing the remaining 52 nucleotides of rbcL with nonspecific sequence completely abolished translation. In addition, this 58 nucleotide region of rbcL serves as a translational enhancer in plants when located within the 5' UTR of mRNA corresponding to GFP. Other constructs, including those containing sequences upstream of the coat proteins of Alfalfa Mosaic Virus, or the GAGG sequence of T4 phage or the chloroplastic atpI and/or PsbA 5' UTR sequence, supported low levels of GFP expression or none at all. From these studies, we propose that we have created high expression vectors in A. tumefaciens and/or plants which contain the CaMV 35S promoter, followed by the translationally strong T7 SD plus RBS translation initiation region or the rbcL 58-nucleotide 5' leader region upstream of the gene of interest. PMID:25117444

  18. Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells.

    PubMed Central

    Senthil, D; Faulkner, J L; Choudhury, G G; Abboud, H E; Kasinath, B S

    2001-01-01

    Interaction between angiotensin II, which binds a G-protein-coupled receptor, and insulin, a ligand for receptor tyrosine kinase, was examined in renal proximal tubular epithelial cells. Augmented protein translation by insulin involves activation of eukaryotic initiation factor 4E (eIF4E) which follows the release of the factor from a heterodimeric complex by phosphorylation of its binding protein, 4E-BP1. Angiotensin II (1 nM) or insulin (1 nM) individually stimulated 4E-BP1 phosphorylation. However, pre-incubation with angiotensin II abrogated insulin-induced phosphorylation of 4E-BP1, resulting in persistent binding to eIF4E. Although angiotensin II and insulin individually activated phosphoinositide 3-kinase and extracellular signal-regulated kinase (ERK)-1/-2-type mitogen-activated protein (MAP) kinase, pre-incubation with angiotensin II abolished insulin-induced stimulation of these kinases, suggesting more proximal events in insulin signalling may be intercepted. Pretreatment with angiotensin II markedly inhibited insulin-stimulated tyrosine phosphorylation of insulin-receptor beta-chain and insulin-receptor substrate 1. Losartan prevented angiotensin II inhibition of insulin-induced ERK-1/-2-type MAP kinase activation and 4E-BP1 phosphorylation, suggesting mediation of the effect of angiotensin II by its type 1 receptor. Insulin-stimulated de novo protein synthesis was also abolished by pre-incubation with angiotensin II. These data show that angiotensin II inhibits 4E-BP1 phosphorylation and stimulation of protein synthesis induced by insulin by interfering with proximal events in insulin signalling. Our data provide a mechanistic basis for insulin insensitivity induced by angiotensin II. PMID:11695995

  19. Phosphoinositide 3-Kinases Upregulate System xc− via Eukaryotic Initiation Factor 2α and Activating Transcription Factor 4 – A Pathway Active in Glioblastomas and Epilepsy

    PubMed Central

    Baxter, Paul; Kassubek, Rebecca; Albrecht, Philipp; Van Liefferinge, Joeri; Westhoff, Mike-Andrew; Halatsch, Marc-Eric; Karpel-Massler, Georg; Meakin, Paul J.; Hayes, John D.; Aronica, Eleonora; Smolders, Ilse; Ludolph, Albert C.; Methner, Axel; Conrad, Marcus; Massie, Ann; Hardingham, Giles E.

    2014-01-01

    Abstract Aims: Phosphoinositide 3-kinases (PI3Ks) relay growth factor signaling and mediate cytoprotection and cell growth. The cystine/glutamate antiporter system xc− imports cystine while exporting glutamate, thereby promoting glutathione synthesis while increasing extracellular cerebral glutamate. The aim of this study was to analyze the pathway through which growth factor and PI3K signaling induce the cystine/glutamate antiporter system xc− and to demonstrate its biological significance for neuroprotection, cell growth, and epilepsy. Results: PI3Ks induce system xc− through glycogen synthase kinase 3β (GSK-3β) inhibition, general control non-derepressible-2-mediated eukaryotic initiation factor 2α phosphorylation, and the subsequent translational up-regulation of activating transcription factor 4. This pathway is essential for PI3Ks to modulate oxidative stress resistance of nerve cells and insulin-induced growth in fibroblasts. Moreover, the pathway is active in human glioblastoma cells. In addition, it is induced in primary cortical neurons in response to robust neuronal activity and in hippocampi from patients with temporal lobe epilepsy. Innovation: Our findings further extend the concepts of how growth factors and PI3Ks induce neuroprotection and cell growth by adding a new branch to the signaling network downstream of GSK-3β, which, ultimately, leads to the induction of the cystine/glutamate antiporter system xc−. Importantly, the induction of this pathway by neuronal activity and in epileptic hippocampi points to a potential role in epilepsy. Conclusion: PI3K-regulated system xc− activity is not only involved in the stress resistance of neuronal cells and in cell growth by increasing the cysteine supply and glutathione synthesis, but also plays a role in the pathophysiology of tumor- and non-tumor-associated epilepsy by up-regulating extracellular cerebral glutamate. Antioxid. Redox Signal. 20: 2907–2922. PMID:24219064

  20. CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1

    PubMed Central

    Murooka, Thomas T.; Rahbar, Ramtin; Platanias, Leonidas C.

    2008-01-01

    The multistep, coordinated process of T-cell chemotaxis requires chemokines, and their chemokine receptors, to invoke signaling events to direct cell migration. Here, we examined the role for CCL5-mediated initiation of mRNA translation in CD4+ T-cell chemotaxis. Using rapamycin, an inhibitor of mTOR, our data show the importance of mTOR in CCL5-mediated T-cell migration. Cycloheximide, but not actinomycin D, significantly reduced chemotaxis, suggesting a possible role for mRNA translation in T-cell migration. CCL5 induced phosphorylation/activation of mTOR, p70 S6K1, and ribosomal protein S6. In addition, CCL5 induced PI-3′K–, phospholipase D (PLD)–, and mTOR-dependent phosphorylation and deactivation of the transcriptional repressor 4E-BP1, which resulted in its dissociation from the eukaryotic initiation factor-4E (eIF4E). Subsequently, eIF4E associated with scaffold protein eIF4G, forming the eIF4F translation initiation complex. Indeed, CCL5 initiated active translation of mRNA, shown by the increased presence of high-molecular-weight polysomes that were significantly reduced by rapamycin treatment. Notably, CCL5 induced protein translation of cyclin D1 and MMP-9, known mediators of migration. Taken together, we describe a novel mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs and “primes” CD4+ T cells for efficient chemotaxis. PMID:18337562

  1. Translation of reovirus RNA species m1 can initiate at either of the first two in-frame initiation codons.

    PubMed Central

    Roner, M R; Roner, L A; Joklik, W K

    1993-01-01

    The m1 species of reovirus RNA, which encodes the minor protein component mu 2, possesses two initiation codons, one "strong" according to Kozak rules and preceded by 13 residues (IC1), the other "weak" and located 49 codons downstream of the first (IC2). In reovirus-infected cells only IC2 is used, but initiation from IC1 can be activated, and efficiency of initiation from either initiation codon modulated over a wide range, by coupling unrelated sequences to either or both ends of m1 RNA. For example, when the M1 genome segment is cloned into the thymidine kinase gene of vaccinia virus in such a way that various "irrelevant" stretches of nucleotides comprising restriction endonuclease cleavage sites or promoter remnants are coupled to the 5' end of m1 RNA, translation of the resultant transcripts is also initiated at IC2, with frequencies controlled by the nature of the attached sequences. However, in rabbit reticulocyte lysates these same transcripts are translated from IC1 as well as from IC2, and transcripts in which m1 RNA is preceded by long sequences of encephalomyocarditis virus RNA (from the T7 polymerase-controlled pTM1 vector) are translated exclusively from IC1. By contrast, m1 RNA itself is translated only from IC2. It appears that the most important factor that controls the extent to which translation is initiated from IC1 and IC2 is their "availability," which is likely to be a function of the extent to which the regions on either side of them interact with each other (and also, to a lesser extent, with the 3' untranslated region) either directly or via interaction with host cell proteins. The effects described here are of considerable potential significance when genetic material is rearranged as a result of translocations, insertions, deletions, and amplifications--that is, when sequences that are normally separated are brought into apposition. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415636

  2. MicroRNA-33a-5p Modulates Japanese Encephalitis Virus Replication by Targeting Eukaryotic Translation Elongation Factor 1A1

    PubMed Central

    Chen, Zheng; Ye, Jing; Ashraf, Usama; Li, Yunchuan; Wei, Siqi; Wan, Shengfeng; Zohaib, Ali; Song, Yunfeng; Chen, Huanchun

    2016-01-01

    ABSTRACT Japanese encephalitis virus (JEV) is a typical mosquito-borne flavivirus responsible for acute encephalitis and meningitis in humans. However, the molecular mechanism for JEV pathogenesis is still unclear. MicroRNAs (miRNAs) are small noncoding RNAs that act as gene regulators. They are directly or indirectly involved in many cellular functions owing to their ability to target mRNAs for degradation or translational repression. However, how cellular miRNAs are regulated and their functions during JEV infection are largely unknown. In the present study, we found that JEV infection downregulated the expression of endogenous cellular miR-33a-5p. Notably, artificially transfecting with miR-33a-5p mimics led to a significant decrease in viral replication, suggesting that miR-33a-5p acts as a negative regulator of JEV replication. A dual-luciferase reporter assay identified eukaryotic translation elongation factor 1A1 (EEF1A1) as one of the miR-33a-5p target genes. Our study further demonstrated that EEF1A1 can interact with the JEV proteins NS3 and NS5 in replicase complex. Through this interaction, EEF1A1 can stabilize the components of viral replicase complex and thus facilitates viral replication during JEV infection. Taken together, these results suggest that miR-33a-5p is downregulated during JEV infection, which contributes to viral replication by increasing the intracellular level of EEF1A1, an interaction partner of JEV NS3 and NS5. This study provides a better understanding of the molecular mechanisms of JEV pathogenesis. IMPORTANCE MiRNAs are critical regulators of gene expression that utilize sequence complementarity to bind to and modulate the stability or translation efficiency of target mRNAs. Accumulating data suggest that miRNAs regulate a wide variety of molecular mechanisms in the host cells during viral infections. JEV, a neurotropic flavivirus, is one of the major causes of acute encephalitis in humans worldwide. The roles of cellular mi

  3. Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs.

    PubMed

    Mayberry, Laura K; Allen, M Leah; Dennis, Michael D; Browning, Karen S

    2009-08-01

    Eukaryotic initiation factor (eIF) 4B is known to interact with multiple initiation factors, mRNA, rRNA, and poly(A) binding protein (PABP). To gain a better understanding of the function of eIF4B, the two isoforms from Arabidopsis (Arabidopsis thaliana) were expressed and analyzed using biophysical and biochemical methods. Plant eIF4B was found by ultracentrifugation and light scattering analysis to most likely be a monomer with an extended structure. An extended structure would facilitate the multiple interactions of eIF4B with mRNA as well as other initiation factors (eIF4A, eIF4G, PABP, and eIF3). Eight mRNAs, barley (Hordeum vulgare) alpha-amylase mRNA, rabbit beta-hemoglobin mRNA, Arabidopsis heat shock protein 21 (HSP21) mRNA, oat (Avena sativa) globulin, wheat (Triticum aestivum) germin, maize (Zea mays) alcohol dehydrogenase, satellite tobacco necrosis virus RNA, and alfalfa mosaic virus (AMV) 4, were used in wheat germ in vitro translation assays to measure their dependence on eIF4B and eIF4F isoforms. The two Arabidopsis eIF4B isoforms, as well as native and recombinant wheat eIF4B, showed similar responses in the translation assay. AMV RNA 4 and Arabidopsis HSP21 showed only a slight dependence on the presence of eIF4B isoforms, whereas rabbit beta-hemoglobin mRNA and wheat germin mRNA showed modest dependence. Barley alpha-amylase, oat globulin, and satellite tobacco necrosis virus RNA displayed the strongest dependence on eIF4B. These results suggest that eIF4B has some effects on mRNA discrimination during initiation of translation. Barley alpha-amylase, oat globulin, and rabbit beta-hemoglobin mRNA showed the highest activity with eIF4F, whereas Arabidopsis HSP21 and AMV RNA 4 used both eIF4F and eIF(iso)4F equally well. These results suggest that differential or optimal translation of mRNAs may require initiation complexes composed of specific isoforms of initiation factor gene products. Thus, individual mRNAs or classes of mRNAs may respond to the

  4. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.

    PubMed

    Dowling, Ryan J O; Zakikhani, Mahvash; Fantus, I George; Pollak, Michael; Sonenberg, Nahum

    2007-11-15

    Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth. PMID:18006825

  5. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-11-17

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-02-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  8. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G

    2015-02-03

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  9. Expanding the eukaryotic genetic code

    SciTech Connect

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2012-05-08

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  10. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-12-01

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  11. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2009-10-27

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  12. Expanding the eukaryotic genetic code

    DOEpatents

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2010-09-14

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  13. Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli.

    PubMed Central

    Stormo, G D; Schneider, T D; Gold, L; Ehrenfeucht, A

    1982-01-01

    We have used a "Perceptron" algorithm to find a weighting function which distinguishes E. coli translational initiation sites from all other sites in a library of over 78,000 nucleotides of mRNA sequence. The "Perceptron" examined sequences as linear representations. The "Perceptron" is more successful at finding gene beginnings than our previous searches using "rules" (see previous paper). We note that the weighting function can find translational initiation sites within sequences that were not included in the training set. PMID:7048259

  14. Involvement of the eukaryotic initiation factor 6 and kermit2/gipc2 in Xenopus laevis pronephros formation.

    PubMed

    Tussellino, Margherita; De Marco, Nadia; Campanella, Chiara; Carotenuto, Rosa

    2012-01-01

    The translation initiation factor Eif6 has been implicated as a regulator of ribosome assembly, selective mRNA translation and apoptosis. Many of these activities depend upon the phosphorylation of eif6 Serine 235 by protein kinase C (PKC). Eif6-60S is probably part of the RNA-induced silencing complex (RISC). eif6 over-expression in Xenopus embryos causes aberrant eye development. kermit2/gipc2 morphants have an eye phenotype similar to that of the eif6 overexpressors. Eye formation is regulated by insulin growth factor (IGF) signalling. eif6 interacts with the IGF receptor (IGFR) and kermit2/gipc2, which also binds to igfr. eif6 over-expression in Xenopus causes also the formation of antero-ventral oedema, suggesting a malfunction of the excretory system. Here we evaluated the pronephros phenotype. The oedema grows into the nephrocoel, expanding its boundary and is accompanied by a strong reduction of the pronephros. The three main components of the pronephros are severely impaired in eif6 over-expressors, while are not affected in eif6 morphants. Conversely, gipc2 depletion induces the oedema phenotype and reduction of the pronephros, while gipc2 overexpression does not. p110*, a constitutively active p110 subunit of the PI3 kinase partially recovers the oedema phenotype. We also determined that PKC-dependent phosphorylation of Ser235 in eif6 is not required to produce defective pronephroi. These results indicate that the levels of eif6 are highly regulated during development and instrumental for proper morphogenesis of the pronephros. Moreover, it appears that for proper pronephros development the gipc2 level should be kept within or over the physiological range and that the oedema phenotype is partly due to the inhibition of IGF signalling. PMID:22689378

  15. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  16. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation.

    PubMed

    Lu, Junyan; Jiang, Chenxiao; Li, Xiaojing; Jiang, Lizhi; Li, Zengxia; Schneider-Poetsch, Tilman; Liu, Jianwei; Yu, Kunqian; Liu, Jun O; Jiang, Hualiang; Luo, Cheng; Dang, Yongjun

    2015-12-01

    Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases. PMID:26464436

  17. The 5′ Untranslated Region of the Human T-Cell Lymphotropic Virus Type 1 mRNA Enables Cap-Independent Translation Initiation

    PubMed Central

    Olivares, Eduardo; Landry, Dori M.; Cáceres, C. Joaquín; Pino, Karla; Rossi, Federico; Navarrete, Camilo; Huidobro-Toro, Juan Pablo; Thompson, Sunnie R.

    2014-01-01

    ABSTRACT The human T-cell leukemia virus type 1 (HTLV-1) is a complex human retrovirus that causes adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis. The mRNA of some complex retroviruses, including the human and simian immunodeficiency viruses (HIV and SIV), can initiate translation using a canonical cap-dependent mechanism or through an internal ribosome entry site (IRES). In this study, we present strong evidence showing that like HIV-1 and SIV, the 5′-untranslated region (5′UTR) of the HTLV-1 full-length mRNA harbors an IRES. Cap-independent translational activity was evaluated and demonstrated using dual luciferase bicistronic mRNAs in rabbit reticulocyte lysate, in mammalian cell culture, and in Xenopus laevis oocytes. Characterization of the HTLV-1 IRES shows that its activity is dependent on the ribosomal protein S25 (RPS25) and that its function is highly sensitive to the drug edeine. Together, these findings suggest that the 5′UTR of the HTLV-1 full-length mRNA enables internal recruitment of the eukaryotic translation initiation complex. However, the recognition of the initiation codon requires ribosome scanning. These results suggest that, after internal recruitment by the HTLV-1 IRES, a scanning step takes place for the 40S ribosomal subunit to be positioned at the translation initiation codon. IMPORTANCE The mechanism by which retroviral mRNAs recruit the 40S ribosomal subunit internally is not understood. This study provides new insights into the mechanism of translation initiation used by the human T-cell lymphotropic virus type 1 (HTLV-1). The results show that the HTLV-1 mRNA can initiate translation via a noncanonical mechanism mediated by an internal ribosome entry site (IRES). This study also provides evidence showing the involvement of cellular proteins in HTLV-1 IRES-mediated translation initiation. Together, the data presented in this report significantly contribute to the understanding of HTLV-1 gene

  18. The same allele of translation initiation factor 4E mediates resistance against two Potyvirus spp. in Pisum sativum.

    PubMed

    Bruun-Rasmussen, M; Møller, I S; Tulinius, G; Hansen, J K R; Lund, O S; Johansen, I E

    2007-09-01

    Pathogenicity of two sequenced isolates of Bean yellow mosaic virus (BYMV) was established on genotypes of Pisum sativum L. reported to carry resistance genes to BYMV and other potyviruses. Resistance to the white lupin strain of BYMV (BYMV-W) is inherited as a recessive gene named wlv that maps to linkage group VI together with other Potyvirus resistances. One of these, sbm1, confers resistance to strains of Pea seedborne mosaic virus and previously has been identified as a mutant allele of the eukaryotic translation initiation factor 4E gene (eIF4E). Sequence comparison of eIF4E from BYMV-W-susceptible and -resistant P. sativum genotypes revealed a polymorphism correlating with the resistance profile. Expression of eIF4E from susceptible plants in resistant plants facilitated BYMV-W infection in inoculated leaves. When cDNA of BYMV-W was agroinoculated, resistance mediated by the wlv gene frequently was overcome, and virus from these plants had a codon change causing an Arg to His change at position 116 of the predicted viral genome-linked protein (VPg). Accordingly, plants carrying the wlv resistance gene were infected upon inoculation with BYMV-W derived from cDNA with a His codon at position 116 of the VPg coding region. These results suggested that VPg determined pathogenicity on plants carrying the wlv resistance gene and that wlv corresponded to the sbm1 allele of eIF4E. PMID:17849710

  19. Feeding rapidly stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing translation initiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food consumption increases protein synthesis in most tissues by promoting translation initiation, and in the neonate, this increase is greatest in skeletal muscle. In this study, we aimed to identify the currently unknown time course of changes in the rate of protein synthesis and the activation of ...

  20. Rewarding Excellent Teaching: The Translation of a Policy Initiative in the United Kingdom

    ERIC Educational Resources Information Center

    Turner, Rebecca; Gosling, David

    2012-01-01

    The need to provide more significant rewards for "teaching excellence" in order to provide parity of status with research in higher education has often been asserted. This paper examines ways in which the idea of rewarding excellent teaching has been understood and translated within a large teaching and learning initiative that was overtly based…

  1. Comparative analysis of contextual bias around the translation initiation sites in plant genomes.

    PubMed

    Gupta, Paras; Rangan, Latha; Ramesh, T Venkata; Gupta, Mudit

    2016-09-01

    Nucleotide distribution around translation initiation site (TIS) is thought to play an important role in determining translation efficiency. Kozak in vertebrates and later Joshi et al. in plants identified context sequence having a key role in translation efficiency, but a great variation regarding this context sequence has been observed among different taxa. The present study aims to refine the context sequence around initiation codon in plants and addresses the sampling error problem by using complete genomes of 7 monocots and 7 dicots separately. Besides positions -3 and +4, significant conservation at -2 and +5 positions was also found and nucleotide bias at the latter two positions was shown to directly influence translation efficiency in the taxon studied. About 1.8% (monocots) and 2.4% (dicots) of the total sequences fit the context sequence from positions -3 to +5, which might be indicative of lower number of housekeeping genes in the transcriptome. A three base periodicity was observed in 5' UTR and CDS of monocots and only in CDS of dicots as confirmed against random occurrence and annotation errors. Deterministic enrichment of GCNAUGGC in monocots, AANAUGGC in dicots and GCNAUGGC in plants around TIS was also established (where AUG denotes the start codon), which can serve as an arbiter of putative TIS with efficient translation in plants. PMID:27316311

  2. The characteristics of synonymous codon usage in the initial and terminal translation regions of encephalomyocarditis virus.

    PubMed

    Ma, X-X; Feng, Y-P; Liu, J-L; Zhao, Y-Q; Chen, L; Guo, P-H; Guo, J-Z; Ma, Z-R

    2014-01-01

    The synonymous codon usage patterns in the initial and terminal translation regions (ITR, TTR) of the whole coding sequence of encephalomyocarditis virus (EMCV) were analyzed in relation to those in its natural hosts using the sequences accessible in databases. In general, some low-usage host codons were found over-represented in the ITR and TTR of the virus, while some high-usage host codons were found under-represented in the two viral regions. These relationships are thought to participate in the regulation of the speed of translation of viral proteins and in the suppression of ribosomal traffic jams, both aiming at the increase of virus yields. PMID:24720745

  3. Elimination of truncated recombinant protein expressed in Escherichia coli by removing cryptic translation initiation site.

    PubMed

    Jennings, Matthew J; Barrios, Adam F; Tan, Song

    2016-05-01

    Undesirable truncated recombinant protein products pose a special expression and purification challenge because such products often share similar chromatographic properties as the desired full length protein. We describe here our observation of both full length and a truncated form of a yeast protein (Gcn5) expressed in Escherichia coli, and the reduction or elimination of the truncated form by mutating a cryptic Shine-Dalgarno or START codon within the Gcn5 coding region. Unsuccessful attempts to engineer in a cryptic translation initiation site into other recombinant proteins suggest that cryptic Shine-Dalgarno or START codon sequences are necessary but not sufficient for cryptic translation in E. coli. PMID:26739786

  4. Noncanonical Translation Initiation of the Arabidopsis Flowering Time and Alternative Polyadenylation Regulator FCA[C][W

    PubMed Central

    Simpson, Gordon G.; Laurie, Rebecca E.; Dijkwel, Paul P.; Quesada, Victor; Stockwell, Peter A.; Dean, Caroline; Macknight, Richard C.

    2010-01-01

    The RNA binding protein FCA regulates the floral transition and is required for silencing RNAs corresponding to specific noncoding sequences in the Arabidopsis thaliana genome. Through interaction with the canonical RNA 3′ processing machinery, FCA affects alternative polyadenylation of many transcripts, including antisense RNAs at the locus encoding the floral repressor FLC. This potential for widespread alteration of gene regulation clearly needs to be tightly regulated, and we have previously shown that FCA expression is autoregulated through poly(A) site choice. Here, we show distinct layers of FCA regulation that involve sequences within the 5′ region that regulate noncanonical translation initiation and alter the expression profile. FCA translation in vivo occurs exclusively at a noncanonical CUG codon upstream of the first in-frame AUG. We fully define the upstream flanking sequences essential for its selection, revealing features that distinguish this from other non-AUG start site mechanisms. Bioinformatic analysis identified 10 additional Arabidopsis genes that likely initiate translation at a CUG codon. Our findings reveal further unexpected complexity in the regulation of FCA expression with implications for its roles in regulating flowering time and gene expression and more generally show plant mRNA exceptions to AUG translation initiation. PMID:21075770

  5. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity

    PubMed Central

    Friday, Andrew J.; Keiper, Brett D.

    2015-01-01

    Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis. PMID:26357652

  6. Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet.

    PubMed

    Deng, Dun; Yao, Kang; Chu, Wuying; Li, Tiejun; Huang, Ruiling; Yin, Yulong; Liu, Zhiqiang; Zhang, Jianshe; Wu, Guoyao

    2009-07-01

    Weanling mammals (including infants) often experience intestinal dysfunction when fed a high-protein diet. Recent work with the piglet (an animal model for studying human infant nutrition) shows that reducing protein intake can improve gut function during weaning but compromises the provision of essential amino acids (EAA) for muscle growth. The present study was conducted with weaned pigs to test the hypothesis that supplementing deficient EAA (Lys, Met, Thr, Trp, Leu, Ile and Val) to a low-protein diet may maintain the activation of translation initiation factors and adequate protein synthesis in tissues. Pigs were weaned at 21 days of age and fed diets containing 20.7, 16.7 or 12.7% crude protein (CP), with the low-CP diets supplemented with EAA to achieve the levels in the high-CP diet. On Day 14 of the trial, tissue protein synthesis was determined using the phenylalanine flooding dose method. Reducing dietary CP levels decreased protein synthesis in pancreas, liver, kidney and longissimus muscle. A low-CP diet reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein-1 (4E-BP1) in skeletal muscle and liver while increasing the formation of an inactive eIF4E.4E-BP1 complex in muscle. Dietary protein deficiency also decreased the phosphorylation of mammalian target of rapamycin (mTOR) and the formation of an active eIF4E.eIF4G complex in liver. These results demonstrate for the first time that chronic feeding of a low-CP diet suppresses protein synthesis in animals partly by inhibiting mTOR signaling. Additionally, our findings indicate that supplementing deficient EAA to low-protein diets is not highly effective in restoring protein synthesis or whole-body growth in piglets. We suggest that conditionally essential amino acids (e.g., glutamine and arginine) may be required to maintain the activation of translation initiation factors and optimal protein synthesis in neonates. PMID:18789668

  7. Roles of helix H69 of 23S rRNA in translation initiation

    PubMed Central

    Liu, Qi; Fredrick, Kurt

    2015-01-01

    Initiation of translation involves the assembly of a ribosome complex with initiator tRNA bound to the peptidyl site and paired to the start codon of the mRNA. In bacteria, this process is kinetically controlled by three initiation factors—IF1, IF2, and IF3. Here, we show that deletion of helix H69 (∆H69) of 23S rRNA allows rapid 50S docking without concomitant IF3 release and virtually eliminates the dependence of subunit joining on start codon identity. Despite this, overall accuracy of start codon selection, based on rates of formation of elongation-competent 70S ribosomes, is largely uncompromised in the absence of H69. Thus, the fidelity function of IF3 stems primarily from its interplay with initiator tRNA rather than its anti-subunit association activity. While retaining fidelity, ∆H69 ribosomes exhibit much slower rates of overall initiation, due to the delay in IF3 release and impedance of an IF3-independent step, presumably initiator tRNA positioning. These findings clarify the roles of H69 and IF3 in the mechanism of translation initiation and explain the dominant lethal phenotype of the ∆H69 mutation. PMID:26324939

  8. Translation Initiation is Controlled by RNA Folding Kinetics via a Ribosome Drafting Mechanism.

    PubMed

    Espah Borujeni, Amin; Salis, Howard M

    2016-06-01

    RNA folding plays an important role in controlling protein synthesis as well as other cellular processes. Existing models have focused on how RNA folding energetics control translation initiation rate under equilibrium conditions but have largely ignored the effects of nonequilibrium RNA folding. We introduce a new mechanism, called "ribosome drafting", that explains how a mRNA's folding kinetics and the ribosome's binding rate collectively control its translation initiation rate. During cycles of translation, ribosome drafting emerges whenever successive ribosomes bind to a mRNA faster than the mRNA can refold, maintaining it in a nonequilibrium state with an acceleration of protein synthesis. Using computational design, time-correlated single photon counting, and expression measurements, we demonstrate that slow-folding and fast-folding RNA structures with equivalent folding energetics can vary protein synthesis rates by 1000-fold. We determine the necessary conditions for ribosome drafting by characterizing mRNAs with rationally designed ribosome binding rates, folding kinetics, and folding energetics, confirming the predictions of a nonequilibrium Markov model of translation. Our results have widespread implications, illustrating how competitive folding and assembly kinetics can shape the gene expression machinery's sequence-structure-function relationship inside cells. PMID:27199273

  9. Human insulin-like growth factor II leader 2 mediates internal initiation of translation.

    PubMed Central

    Pedersen, Susanne K; Christiansen, Jan; Hansen, Thomas v O; Larsen, Martin R; Nielsen, Finn C

    2002-01-01

    Insulin-like growth factor II (IGF-II) is a fetal growth factor, which belongs to the family of insulin-like peptides. During fetal life, the IGF-II gene generates three mRNAs with different 5' untranslated regions (UTRs), but identical coding regions and 3' UTRs. We have shown previously that IGF-II leader 3 mRNA translation is regulated by a rapamycin-sensitive pathway, whereas leader 4 mRNA is constitutively translated, but so far the significance of leader 2 mRNA has been unclear. Here, we show that leader 2 mRNA is translated efficiently in an eIF4E-independent manner. In a bicistronic vector system, the 411 nt leader 2 was capable of internal initiation via a phylogenetically conserved internal ribosome entry site (IRES), located in the 3' half of the leader. The IRES is composed of an approx. 120 nt ribosome recruitment element, followed by an 80 nt spacer region, which is scanned by the ribosomal pre-initiation complex. Since cap-dependent translation is down-regulated during cell division, leader 2 might facilitate a continuous IGF-II production in rapidly dividing cells during development. PMID:11903044

  10. Similarities between the DNA replication initiators of Gram-negative bacteria plasmids (RepA) and eukaryotes (Orc4p)/archaea (Cdc6p).

    PubMed

    Giraldo, R; Diaz-Orejas, R

    2001-04-24

    The proteins responsible for the initiation of DNA replication are thought to be essentially unrelated in bacteria and archaea/eukaryotes. Here we show that RepA, the initiator from the Pseudomonas plasmid pPS10, and the C-terminal domain of ScOrc4p, a subunit of Saccharomyces cerevisiae (Sc) origin recognition complex (ORC), share sequence similarities. Based on biochemical and spectroscopic evidence, these similarities include common structural elements, such as a winged-helix domain and a leucine-zipper dimerization motif. We have also found that ScOrc4p, as previously described for RepA-type initiators, interacts with chaperones of the Hsp70 family both in vitro and in vivo, most probably to regulate the assembly of active ORC. In evolutionary terms, our results are compatible with the recruitment of the same protein module for initiation of DNA replication by the ancestors of present-day Gram-negative bacteria plasmids, archaea, and eukaryotes. PMID:11296251

  11. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis.

    PubMed

    Chaker-Margot, Malik; Hunziker, Mirjam; Barandun, Jonas; Dill, Brian D; Klinge, Sebastian

    2015-11-01

    Eukaryotic ribosome biogenesis involves a plethora of ribosome-assembly factors, and their temporal order of association with preribosomal RNA is largely unknown. By using Saccharomyces cerevisiae as a model organism, we developed a system that recapitulates and arrests ribosome assembly at early stages, thus providing in vivo snapshots of nascent preribosomal particles. Here we report the stage-specific order in which 70 ribosome-assembly factors associate with preribosomal RNA domains, thereby forming the 6-MDa small-subunit processome. PMID:26479197

  12. tRNA-mRNA mimicry drives translation initiation from a viral IRES.

    PubMed

    Costantino, David A; Pfingsten, Jennifer S; Rambo, Robert P; Kieft, Jeffrey S

    2008-01-01

    Internal ribosome entry site (IRES) RNAs initiate protein synthesis in eukaryotic cells by a noncanonical cap-independent mechanism. IRESes are critical for many pathogenic viruses, but efforts to understand their function are complicated by the diversity of IRES sequences as well as by limited high-resolution structural information. The intergenic region (IGR) IRESes of the Dicistroviridae viruses are powerful model systems to begin to understand IRES function. Here we present the crystal structure of a Dicistroviridae IGR IRES domain that interacts with the ribosome's decoding groove. We find that this RNA domain precisely mimics the transfer RNA anticodon-messenger RNA codon interaction, and its modeled orientation on the ribosome helps explain translocation without peptide bond formation. When combined with a previous structure, this work completes the first high-resolution description of an IRES RNA and provides insight into how RNAs can manipulate complex biological machines. PMID:18157151

  13. The translation initiation factor 3 subunit eIF3K interacts with PML and associates with PML nuclear bodies

    SciTech Connect

    Salsman, Jayme; Pinder, Jordan; Tse, Brenda; Corkery, Dale; Dellaire, Graham

    2013-10-15

    The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein–protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoform I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs. - Highlights: • The PML-I C-terminus, encoded by exon 9, interacts with translation factor eIF3K. • We identify a novel eIF3K isoform that excludes exon 2 (eIF3K-2). • eIF3K-2 preferentially associates with PML bodies enriched in PML-I vs. PML-IV. • Alternative splicing of eIF3K regulates association with PML bodies.

  14. Eukaryotic origins

    PubMed Central

    Lake, James A.

    2015-01-01

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endoplasmic reticula, and other organelles all of which may hint at their origins. It is the evolutionary history of the nucleus and their other organelles that have intrigued molecular evolutionists, myself included, for the past 30 years and which continues to hold our interest as increasingly compelling evidence favours the eocyte tree. As with any orthodoxy, it takes time to embrace new concepts and techniques. PMID:26323753

  15. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation.

    PubMed

    Attar-Schneider, Oshrat; Zismanov, Victoria; Dabbah, Mahmoud; Tartakover-Matalon, Shelly; Drucker, Liat; Lishner, Michael

    2016-09-01

    Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc. PMID:26293751

  16. Coding theory based models for protein translation initiation in prokaryotic organisms.

    SciTech Connect

    May, Elebeoba Eni; Bitzer, Donald L. (North Carolina State University, Raleigh, NC); Rosnick, David I. (North Carolina State University, Raleigh, NC); Vouk, Mladen A.

    2003-03-01

    Our research explores the feasibility of using communication theory, error control (EC) coding theory specifically, for quantitatively modeling the protein translation initiation mechanism. The messenger RNA (mRNA) of Escherichia coli K-12 is modeled as a noisy (errored), encoded signal and the ribosome as a minimum Hamming distance decoder, where the 16S ribosomal RNA (rRNA) serves as a template for generating a set of valid codewords (the codebook). We tested the E. coli based coding models on 5' untranslated leader sequences of prokaryotic organisms of varying taxonomical relation to E. coli including: Salmonella typhimurium LT2, Bacillus subtilis, and Staphylococcus aureus Mu50. The model identified regions on the 5' untranslated leader where the minimum Hamming distance values of translated mRNA sub-sequences and non-translated genomic sequences differ the most. These regions correspond to the Shine-Dalgarno domain and the non-random domain. Applying the EC coding-based models to B. subtilis, and S. aureus Mu50 yielded results similar to those for E. coli K-12. Contrary to our expectations, the behavior of S. typhimurium LT2, the more taxonomically related to E. coli, resembled that of the non-translated sequence group.

  17. Inhibition of Influenza Virus Replication by DNA Aptamers Targeting a Cellular Component of Translation Initiation.

    PubMed

    Rodriguez, Paloma; Pérez-Morgado, M Isabel; Gonzalez, Víctor M; Martín, M Elena; Nieto, Amelia

    2016-01-01

    The genetic diversity of the influenza virus hinders the use of broad spectrum antiviral drugs and favors the appearance of resistant strains. Single-stranded DNA aptamers represent an innovative approach with potential application as antiviral compounds. The mRNAs of influenza virus possess a 5'cap structure and a 3'poly(A) tail that makes them structurally indistinguishable from cellular mRNAs. However, selective translation of viral mRNAs occurs in infected cells through a discriminatory mechanism, whereby viral polymerase and NS1 interact with components of the translation initiation complex, such as the eIF4GI and PABP1 proteins. We have studied the potential of two specific aptamers that recognize PABP1 (ApPABP7 and ApPABP11) to act as anti-influenza drugs. Both aptamers reduce viral genome expression and the production of infective influenza virus particles. The interaction of viral polymerase with the eIF4GI translation initiation factor is hindered by transfection of infected cells with both PABP1 aptamers, and ApPABP11 also inhibits the association of NS1 with PABP1 and eIF4GI. These results indicate that aptamers targeting the host factors that interact with viral proteins may potentially have a broad therapeutic spectrum, reducing the appearance of escape mutants and resistant subtypes. PMID:27070300

  18. L-serine deficiency caused by genetic Phgdh deletion leads to robust induction of 4E-BP1 and subsequent repression of translation initiation in the developing central nervous system.

    PubMed

    Sayano, Tomoko; Kawakami, Yuriko; Kusada, Wataru; Suzuki, Takeshi; Kawano, Yuki; Watanabe, Akihiro; Takashima, Kana; Arimoto, Yashiho; Esaki, Kayoko; Wada, Akira; Yoshizawa, Fumiaki; Watanabe, Masahiko; Okamoto, Masahiro; Hirabayashi, Yoshio; Furuya, Shigeki

    2013-03-01

    Targeted disruption in mice of the gene encoding D-3-phosphoglycerate dehydrogenase (Phgdh) results in embryonic lethality associated with a striking reduction in free L-serine and growth retardation including severe brain malformation. We previously observed a severe impairment in neurogenesis of the central nervous system of Phgdh knockout (KO) embryos and a reduction in the protein content of their brains. Although these findings suggest that L-serine deficiency links attenuation of mRNA translation to severe developmental malformation of the central nervous system, the underlying key molecular event remains unexplored. Here we demonstrate that mRNA of Eif4ebp1 encoding eukaryotic initiation factor 4 binding protein 1 and its protein, 4E-BP1, are markedly induced in the central nervous system of Phgdh KO embryos, whereas a modest induction is observed in the liver. The increase in 4E-BP1 was associated with a decrease in the cap initiation complex in the brain, as shown by lower levels of eukaryotic translation initiation factor 4G bound to eukaryotic translation initiation factor 4E (eIF4E) and increased eIF4E interaction with 4E-BP1 based on 7-methyl-GTP chromatography. eIF4E protein and polysomes were also diminished in Phgdh KO embryos. Induction of Eif4ebp1 mRNA and of 4E-BP1 was reproduced in mouse embryonic fibroblasts established from Phgdh KO embryos under the condition of L-serine deprivation. Induction of Eif4ebp1 mRNA was suppressed only when L-serine was supplemented in the culture medium, indicating that reduced L-serine availability regulates the induction of Eif4ebp1/4E-BP1. These data suggest that elevated levels of 4E-BP1 may be involved in a mechanism to arrest brain development in Phgdh KO embryos. PMID:23350942

  19. Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1.

    PubMed

    Tellier, Géraldine; Lenne, Astrid; Cailliau-Maggio, Katia; Cabezas-Cruz, Alejandro; Valdés, James J; Martoriati, Alain; Aliouat, El M; Gosset, Pierre; Delaire, Baptiste; Fréville, Aline; Pierrot, Christine; Khalife, Jamal

    2016-01-01

    Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2β of Plasmodium falciparum (PfeIF2β) is an interactor of PfPP1c. Sequence analysis of PfeIF2β revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 ((29)FGEKKK(34), (103)KVAW(106)). As expected, we showed that PfeIF2β binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2β-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2β revealed that both binding motifs are critical. We next showed that PfeIF2β is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2β seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2β in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2β in the nucleus. Hence, the role played by PfeIF2β in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1. PMID:27303372

  20. Identification of Plasmodium falciparum Translation Initiation eIF2β Subunit: Direct Interaction with Protein Phosphatase Type 1

    PubMed Central

    Tellier, Géraldine; Lenne, Astrid; Cailliau-Maggio, Katia; Cabezas-Cruz, Alejandro; Valdés, James J.; Martoriati, Alain; Aliouat, El M.; Gosset, Pierre; Delaire, Baptiste; Fréville, Aline; Pierrot, Christine; Khalife, Jamal

    2016-01-01

    Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2β of Plasmodium falciparum (PfeIF2β) is an interactor of PfPP1c. Sequence analysis of PfeIF2β revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 (29FGEKKK34, 103KVAW106). As expected, we showed that PfeIF2β binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2β-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2β revealed that both binding motifs are critical. We next showed that PfeIF2β is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2β seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2β in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2β in the nucleus. Hence, the role played by PfeIF2β in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1. PMID:27303372

  1. Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome

    PubMed Central

    Fernández, Israel S.; Bai, Xiao-Chen; Murshudov, Garib; Scheres, Sjors H.W.; Ramakrishnan, V.

    2014-01-01

    Summary The cricket paralysis virus internal ribosome entry site (CrPV-IRES) is a folded structure in a viral mRNA that allows initiation of translation in the absence of any host initiation factors. By using recent advances in single-particle electron cryomicroscopy, we have solved the structure of CrPV-IRES bound to the ribosome of the yeast Kluyveromyces lactis in both the canonical and rotated states at overall resolutions of 3.7 and 3.8 Å, respectively. In both states, the pseudoknot PKI of the CrPV-IRES mimics a tRNA/mRNA interaction in the decoding center of the A site of the 40S ribosomal subunit. The structure and accompanying factor-binding data show that CrPV-IRES binding mimics a pretranslocation rather than initiation state of the ribosome. Translocation of the IRES by elongation factor 2 (eEF2) is required to bring the first codon of the mRNA into the A site and to allow the start of translation. PMID:24792965

  2. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

    PubMed Central

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R.; Kim, Kelly H.; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T.; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-01-01

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes—UtpA and UtpB—interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA–protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5′ end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5′ ETS and U3 snoRNA as well as the 3′ boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly. PMID:27354316

  3. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly

    NASA Astrophysics Data System (ADS)

    Hunziker, Mirjam; Barandun, Jonas; Petfalski, Elisabeth; Tan, Dongyan; Delan-Forino, Clémentine; Molloy, Kelly R.; Kim, Kelly H.; Dunn-Davies, Hywel; Shi, Yi; Chaker-Margot, Malik; Chait, Brian T.; Walz, Thomas; Tollervey, David; Klinge, Sebastian

    2016-06-01

    Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes--UtpA and UtpB--interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 5' end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 5' ETS and U3 snoRNA as well as the 3' boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.

  4. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli.

    PubMed

    Julián, Patricia; Milon, Pohl; Agirrezabala, Xabier; Lasso, Gorka; Gil, David; Rodnina, Marina V; Valle, Mikel

    2011-07-01

    Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNA(fMet) requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNA(fMet). Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNA(fMet), IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNA(fMet), which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNA(fMet) induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation. PMID:21750663

  5. The Cryo-EM Structure of a Complete 30S Translation Initiation Complex from Escherichia coli

    PubMed Central

    Julián, Patricia; Milon, Pohl; Agirrezabala, Xabier; Lasso, Gorka; Gil, David; Rodnina, Marina V.; Valle, Mikel

    2011-01-01

    Formation of the 30S initiation complex (30S IC) is an important checkpoint in regulation of gene expression. The selection of mRNA, correct start codon, and the initiator fMet-tRNAfMet requires the presence of three initiation factors (IF1, IF2, IF3) of which IF3 and IF1 control the fidelity of the process, while IF2 recruits fMet-tRNAfMet. Here we present a cryo-EM reconstruction of the complete 30S IC, containing mRNA, fMet-tRNAfMet, IF1, IF2, and IF3. In the 30S IC, IF2 contacts IF1, the 30S subunit shoulder, and the CCA end of fMet-tRNAfMet, which occupies a novel P/I position (P/I1). The N-terminal domain of IF3 contacts the tRNA, whereas the C-terminal domain is bound to the platform of the 30S subunit. Binding of initiation factors and fMet-tRNAfMet induces a rotation of the head relative to the body of the 30S subunit, which is likely to prevail through 50S subunit joining until GTP hydrolysis and dissociation of IF2 take place. The structure provides insights into the mechanism of mRNA selection during translation initiation. PMID:21750663

  6. Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation

    PubMed Central

    Andreev, Dmitri E.; Hirnet, Juliane; Terenin, Ilya M.; Dmitriev, Sergey E.; Niepmann, Michael; Shatsky, Ivan N.

    2012-01-01

    Adaptation to the host cell environment to efficiently take-over the host cell's machinery is crucial in particular for small RNA viruses like picornaviruses that come with only small RNA genomes and replicate exclusively in the cytosol. Their Internal Ribosome Entry Site (IRES) elements are specific RNA structures that facilitate the 5′ end-independent internal initiation of translation both under normal conditions and when the cap-dependent host protein synthesis is shut-down in infected cells. A longstanding issue is which host factors play a major role in this internal initiation. Here, we show that the functionally most important domain V of the poliovirus IRES uses tRNAGly anticodon stem–loop mimicry to recruit glycyl-tRNA synthetase (GARS) to the apical part of domain V, adjacent to the binding site of the key initiation factor eIF4G. The binding of GARS promotes the accommodation of the initiation region of the IRES in the mRNA binding site of the ribosome, thereby greatly enhancing the activity of the IRES at the step of the 48S initiation complex formation. Moonlighting functions of GARS that may be additionally needed for other events of the virus–host cell interaction are discussed. PMID:22373920

  7. Absence of N-terminal acetyltransferase diversification during evolution of eukaryotic organisms

    PubMed Central

    Rathore, Om Singh; Faustino, Alexandra; Prudêncio, Pedro; Van Damme, Petra; Cox, Cymon J.; Martinho, Rui Gonçalo

    2016-01-01

    Protein N-terminal acetylation is an ancient and ubiquitous co-translational modification catalyzed by a highly conserved family of N-terminal acetyltransferases (NATs). Prokaryotes have at least 3 NATs, whereas humans have six distinct but highly conserved NATs, suggesting an increase in regulatory complexity of this modification during eukaryotic evolution. Despite this, and against our initial expectations, we determined that NAT diversification did not occur in the eukaryotes, as all six major human NATs were most likely present in the Last Eukaryotic Common Ancestor (LECA). Furthermore, we also observed that some NATs were actually secondarily lost during evolution of major eukaryotic lineages; therefore, the increased complexity of the higher eukaryotic proteome occurred without a concomitant diversification of NAT complexes. PMID:26861501

  8. The 5′ untranslated region of the soybean cytosolic glutamine synthetase β1 gene contains prokaryotic translation initiation signals and acts as a translational enhancer in plants

    PubMed Central

    Ortega, Jose Luis; Wilson, Olivia L.

    2013-01-01

    Glutamine synthetase (GS) catalyzes the synthesis of glutamine from glutamate and ammonia. In plants, it occurs as two major isoforms, a cytosolic form (GS1) and a nuclear encoded chloroplastic form. The focus of this paper is to determine the role of the 5′UTR of a GS1 gene. GS1 gene constructs with and without its 5′ and 3′ UTRs, driven by a constitutive promoter, were agroinfiltrated into tobacco leaves and the tissues were analyzed for both transgene transcript and protein accumulation. The constructs were also tested in an in vitro transcription/translation system and in Escherichia coli. Our results showed that while the 3′ UTR functioned in the destabilization of the transcript, the 5′ UTR acted as a translation enhancer in plant cells but not in the in vitro translation system. The 5′UTR of the GS1 gene when placed in front of a reporter gene (uidA), showed a 20-fold increase in the level of GUS expression in agroinfiltrated leaves when compared to the same gene construct without the 5′UTR. The 5′UTR-mediated translational enhancement is probably another step in the regulation of GS in plants. The presence of the GS1 5′ UTR in front of the GS1 coding region allowed for its translation in E. coli suggesting the commonality of the translation initiation mechanism for this gene between plants and bacteria. PMID:23080263

  9. The role of the poly(A) binding protein in the assembly of the Cap-binding complex during translation initiation in plants.

    PubMed

    Gallie, Daniel R

    2014-09-01

    Translation initiation in eukaryotes requires the involvement of multiple initiation factors (eIFs) that facilitate the binding of the 40 S ribosomal subunit to an mRNA and assemble the 80 S ribosome at the correct initiation codon. eIF4F, composed of eIF4E, eIF4A, and eIF4G, binds to the 5'-cap structure of an mRNA and prepares an mRNA for recruitment of a 40 S subunit. eIF4B promotes the ATP-dependent RNA helicase activity of eIF4A and eIF4F needed to unwind secondary structure present in a 5'-leader that would otherwise impede scanning of the 40 S subunit during initiation. The poly(A) binding protein (PABP), which binds the poly(A) tail, interacts with eIF4G and eIF4B to promote circularization of an mRNA and stimulates translation by promoting 40 S subunit recruitment. Thus, these factors serve essential functions in the early steps of protein synthesis. Their assembly and function requires multiple interactions that are competitive in nature and determine the nature of interactions between the termini of an mRNA. In this review, the domain organization and partner protein interactions are presented for the factors in plants which share similarities with those in animals and yeast but differ in several important respects. The functional consequences of their interactions on factor activity are also discussed. PMID:26779409

  10. Human Eukaryotic Initiation Factor 4G (eIF4G) Protein Binds to eIF3c, -d, and -e to Promote mRNA Recruitment to the Ribosome*

    PubMed Central

    Villa, Nancy; Do, Angelie; Hershey, John W. B.; Fraser, Christopher S.

    2013-01-01

    Recruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear. The eIF3e subunit has been shown to directly bind eIF4G, but the potential role of other eIF3 subunits in stabilizing this interaction has not been investigated. It is also not clear if the eIF4A helicase plays a role in stabilizing the interaction between eIF4G and eIF3. Here, we have used a fluorescence anisotropy assay to demonstrate that eIF4G binds to eIF3 independently of eIF4A binding to the middle region of eIF4G. By using a site-specific cross-linking approach, we unexpectedly show that the eIF4G-binding surface in eIF3 is comprised of the -c, -d and -e subunits. Screening multiple cross-linker positions reveals that eIF4G contains two distinct eIF3-binding subdomains within the previously identified eIF3-binding domain. Finally, by employing an eIF4G-dependent translation assay, we establish that both of these subdomains are required for efficient mRNA recruitment to the ribosome and stimulate translation. Our study reveals unexpected complexity to the eIF3-eIF4G interaction that provides new insight into the regulation of mRNA recruitment to the human ribosome. PMID:24092755