Science.gov

Sample records for evaporative cooling systems

  1. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  2. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  3. Atmospheric impacts of evaporative cooling systems

    SciTech Connect

    Carson, J.E.

    1980-01-01

    The observed atmospheric impacts resulting from the use of evaporative cooling systems are minor and usually environmentally acceptable. Although these impacts are also considerably smaller than those usually predicted a few years ago, regulatory agency requirements are such that these effects must be identified and quantified.

  4. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  5. Design evaluation of an improved indirect evaporative cooling system

    NASA Astrophysics Data System (ADS)

    Dunn, J. R.

    1982-04-01

    The results of an investigation of an improved indirect evaporative cooling (TRC) system are presented. A cooling system concept which combines an indirect evaporative cooling unit with a conventional vapor compression refrigeration system was studied. In this system, initial cooling of outside air is performed in the IEC unit with additional cooling taking place across the evaporator coil of the conventional refrigeration unit before delivery to the conditioned space. The condenser coil rejects heat to the secondary (humidified) air stream of the IEC before it is discharged outdoors. A simulation model was developed to predict the performance characteristics of the concept for additional conditions beyond those used in the experimental test program. Principal output parameters from both the test program and simulation model included delivery air temperature, cooling capacity, and system COP.

  6. EVA space suit Evaporative Cooling/Heating Glove System (ECHGS)

    NASA Technical Reports Server (NTRS)

    Coss, F. A.

    1976-01-01

    A new astronaut glove, the Evaporative Cooling/Heating Glove System (ECHGS), was designed and developed to allow the handling of objects between -200 F and +200 F. Active heating elements, positioned at each finger pad, provide additional heat to the finger pads from the rest of the finger. A water evaporative cooling system provides cooling by the injection of water to the finger areas and the subsequent direct evaporation to space. Thin, flexible insulation has been developed for the finger areas to limit thermal conductivity. Component and full glove tests have shown that the glove meets and exceeds the requirements to hold a 11/2 inch diameter bar at + or - 200 F for three minutes within comfort limits. The ECHGS is flexible, lightweight and comfortable. Tactility is reasonable and small objects can be identified especially by the fingertips beyond the one half width active elements.

  7. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  8. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  9. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  10. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  11. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  12. Optimization of evaporative cooling

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Bradley, C. C.; Hulet, R. G.

    1997-05-01

    Recent experiments have used forced evaporative cooling to produce Bose-Einstein condensation in dilute gases. The evaporative cooling process can be optimized to provide the maximum phase-space density with a specified number of atoms remaining. We show that this global optimization is approximately achieved by locally optimizing the cooling efficiency at each instant. We discuss how this method can be implemented, and present the results for our 7Li trap. The predicted behavior of the gas is found to agree well with experiment.

  13. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Wilkes, Robert; Kuehnel, Eric

    2014-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the Generation 4 Spacesuit Water Membrane Evaporator (Gen4 SWME). The SWME offers several advantages when compared with prior crewmember cooling technologies, including the ability to reject heat at increased atmospheric pressures, reduced loop infrastructure, and higher tolerance to fouling. Like its predecessors, Gen4 SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Test results from the backup cooling system which is based on a similar design and the subject of a companion paper, suggested that further volume reductions could be achieved through fiber density optimization. Testing was performed with four fiber bundle configurations ranging from 35,850 fibers to 41,180 fibers. The optimal configuration reduced the Gen4 SWME envelope volume by 15% from that of Gen3 while dramatically increasing the performance margin of the system. A rectangular block design was chosen over the Gen3 cylindrical design, for packaging configurations within the AEMU PLSS envelope. Several important innovations were made in the redesign of the backpressure valve which is used to control evaporation. A twin-port pivot concept was selected from among three low profile valve designs for superior robustness, control and packaging. The backpressure valve motor, the thermal control valve, delta pressure sensors and temperature sensors were incorporated into the manifold endcaps, also for packaging considerations. Flight-like materials including a titanium housing were used for all components. Performance testing

  14. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    NASA Astrophysics Data System (ADS)

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  15. Projected Benefits of New Residential Evaporative Cooling Systems: Progress Report #2

    SciTech Connect

    Kutscher, C.; Eastment, M.; Hancock, E.; Reeves, P.

    2006-10-01

    The use of conventional evaporative cooling has rapidly declined in the United States despite the fact that it has high potential for energy savings in dry climates. Evaporative systems are very competitive in terms of first cost and provide significant reductions in operating energy use, as well as peak-load reduction benefits. Significant market barriers still remain and can be addressed through improved systems integration. This report investigates the first of these approaches, exploring innovative components. The U.S. Department of Energy (DOE) Building America research teams are investigating the use of two promising new pieces of residential cooling equipment that employ evaporative cooling as a part of their system design. The OASys unit, which is a combination of direct and indirect evaporative cooling stages developed by Davis Energy Group (DEG) and manufactured by Speakman CRS, is used to ultimately provide outside air to the living space. The outdoor air provided is indirectly and directly evaporatively cooled in two stages to a condition that can be below the wet-bulb (wb) temperature of the outside air, thus outperforming a conventional single-stage direct evaporative cooler.

  16. Evaporative cooling in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Maltezos, George; Rajagopal, Aditya; Scherer, Axel

    2006-08-01

    Evaporative cooling is an effective and energy efficient way to rapidly remove heat from a system. Specifically, evaporative cooling in microfluidic channels can provide a cost-effective solution for the cooling of electronic devices and chemical reactors. Here we present microfluidic devices fabricated by using soft-lithography techniques to form simple fluidic junctions between channels carrying refrigerant and channels carrying N2 gas. The effects of channel geometry and delivery pressure on the performance of refrigeration through vaporization of acetone, isopropyl alcohol, and ethyl ether were characterized. By varying gas inlet pressures, refrigerants, and angles of the microfluidic junctions, optimal cooling conditions were found. Refrigeration rates in excess of 40°C/s were measured, and long lasting subzero cooling in the junction could be observed.

  17. Experimental study on the double-evaporator thermosiphon for cooling HTS (high temperature superconductor) system

    NASA Astrophysics Data System (ADS)

    Lee, Junghyun; Ko, Junseok; Kim, Youngkwon; Jeong, Sangkwon; Sung, Taehyun; Han, Younghee; Lee, Jeong-Phil; Jung, Seyong

    2009-08-01

    A cryogenic thermosiphons is an efficient heat transfer device between a cryocooler and a thermal load that is to be cooled. This paper presents an idea of thermosiphon which contains two vertically-separated evaporators. This unique configuration of the thermosiphon is suitable for the purpose of cooling simultaneously two superconducting bearings of the HTS (high temperature superconducting) flywheel system at the same temperature. A so-called double-evaporator thermosiphon was designed, fabricated and tested using nitrogen as the working fluid under sub-atmospheric pressure condition. The interior thermal condition of the double-evaporator thermosiphon was examined in detail during its cool-down process according to the internal thermal states. The double-evaporator thermosiphon has operated successfully at steady-state operation under sub-atmospheric pressure. At the heat flow of 10.6 W, the total temperature difference of the thermosiphon was only 1.59 K and the temperature difference between the evaporators was 0.64 K. The temperature difference of two evaporators is attributed to the conductive thermal resistance of the adiabatic section between the evaporators. The method to reduce this temperature difference has been investigated and presented in this paper. The proper area selection of condenser, evaporator 1, and evaporator 2 was studied by using thermal resistance model to optimize the performance of a thermosiphon. The superior heat transfer characteristic of the double-evaporator thermosiphon without involving any cryogenic pump can be a great potential advantage for cooling HTS bulk modules that are separated vertically.

  18. Reduced Volume Prototype Spacesuit Water Membrane Evaporator; A Next-Generation Evaporative Cooling System for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2013-01-01

    Development of the Advanced Extravehicular Mobility Unit (AEMU) portable life support subsystem (PLSS) is currently under way at NASA Johnson Space Center. The AEMU PLSS features a new evaporative cooling system, the reduced volume prototype (RVP) spacesuit water membrane evaporator (SWME). The RVP SWME is the third generation of hollow fiber SWME hardware. Like its predecessors, RVP SWME provides nominal crew member and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crew member and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and a more flight-like backpressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. The development of these evaporative cooling systems will contribute to a more robust and comprehensive AEMU PLSS.

  19. Evaporative cooling system for storage of fruits and vegetables - a review.

    PubMed

    Lal Basediya, Amrat; Samuel, D V K; Beera, Vimala

    2013-06-01

    Horticultural produce are stored at lower temperature because of their highly perishable nature. There are many methods to cool the environment. Hence, preserving these types of foods in their fresh form demands that the chemical, bio-chemical and physiological changes are restricted to a minimum by close control of space temperature and humidity. The high cost involved in developing cold storage or controlled atmosphere storage is a pressing problem in several developing countries. Evaporative cooling is a well-known system to be an efficient and economical means for reducing the temperature and increasing the relative humidity in an enclosure and this effect has been extensively tried for increasing the shelf life of horticultural produce in some tropical and subtropical countries. In this review paper, basic concept and principle, methods of evaporative cooling and their application for the preservation of fruits and vegetables and economy are also reported. Thus, the evaporative cooler has prospect for use for short term preservation of vegetables and fruits soon after harvest. Zero energy cooling system could be used effectively for short-duration storage of fruits and vegetables even in hilly region. It not only reduces the storage temperature but also increases the relative humidity of the storage which is essential for maintaining the freshness of the commodities. PMID:24425938

  20. Nonmagnetic impellers improve evaporative cooling

    SciTech Connect

    Hausman, T. )

    1993-03-01

    This article describes how nonmagnetic impeller flow sensors help improve efficiency of open evaporative cooling water systems. Open evaporative cooling water systems provide economical heat sinks with efficient reuse of water. However, their water loss through evaporation, though minimal, results in an increased concentration of dissolved and suspended impurities in the remaining water. To deconcentrate the water and minimize impurities, the system water is bled off and replaced with fresh makeup water. Bleedoff helps, but to maintain efficient operation and protect the system from water-related catastrophes, various chemical treatments are required for the control of corrosion, deposition, and biological growth. Efficient addition of makeup water and chemical additives can be achieved by a system design employing multiple data points, using flow sensors having high reproducibility for good trend data. In such a system, nonmagnetic flow sensors provide 1% accuracy and excellent reproducibility. In addition, their low initial cost and long service life mean that they can be used cost effectively at multiple data collection points to eliminate approximations.

  1. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    NASA Astrophysics Data System (ADS)

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  2. Evaporative cooling of potassium atoms

    NASA Astrophysics Data System (ADS)

    Inouye, Shin; Kishimoto, Tetsuo; Kobayashi, Jun; Aikawa, Kiyotaka; Noda, Kai; Arae, Takuto; Ueda, Masahito

    2007-06-01

    Recent advances in manipulating interactions between ultracold atoms opened up various new possibilities. One of the major goal of the field is to produce ultracold polar molecules. By utilizing a magnetic field induced Feshbach resonance, it is possible to produce heteronuclear molecules from a degenerate gas mixture. We are setting up an experiment to produce a degenerate gas mixture of fermionic alkali atoms, lithium-6 and potassium-40. Fermionic atoms are good candidate for minimizing the expected inelastic loss at the Feshbach resonance. For keeping the system as simple as possible, we decided to use bosonic potassium (potassium-41) as a coolant, and sympathetically cool the fermionic species. We will present our experimental setup and initial results for evaporatively cooling bosonic potassium atoms.

  3. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1976-01-01

    A one-dimensional loop model for the evaporative cooling of the coronal flare plasma was investigated. Conductive losses dominated radiative cooling, and the evaporative velocities were small compared to the sound speed. The profile and evolution of the temperature were calculated. The model was in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation was to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  4. Evaporative cooling of flare plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1978-01-01

    We investigate a one-dimensional loop model for the evaporative cooling of the coronal flare plasma. The important assumptions are that conductive losses dominate radiative cooling and that the evaporative velocities are small compared with the sound speed. We calculate the profile and evolution of the temperature and verify the accuracy of our assumptions for plasma parameters typical of flare regions. The model is in agreement with soft X-ray observations on the evolution of flare temperatures and emission measures. The effect of evaporation is to greatly reduce the conductive heat flux into the chromosphere and to enhance the EUV emission from the coronal flare plasma.

  5. Effect of an evaporative cooling and dust control system on rearing environment and performance of male broiler chickens.

    PubMed

    Willis, W L; Ouart, M D; Quarles, C L

    1987-10-01

    An experiment was conducted to determine the effect of a micromist, high pressure, evaporative cooling and dust control system on rearing environment characteristics and performance of broiler chickens. Air of rearing chambers with the cooling and dust control system had significantly lower dust concentrations than that of chambers without the system. Birds reared with the cooling and dust control system were 45 and 165 g heavier at 4 and 7 wk of age, respectively, and had significantly higher 7-wk bursa weights than those reared without the system. Presence of the cooling and dust control system had no effect on mortality or lung weights. PMID:3432185

  6. Evaporative cooling of the dipolar hydroxyl radical.

    PubMed

    Stuhl, Benjamin K; Hummon, Matthew T; Yeo, Mark; Quéméner, Goulven; Bohn, John L; Ye, Jun

    2012-12-20

    Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach. PMID:23257881

  7. Rate of runaway evaporative cooling

    SciTech Connect

    Groep, J. van de; Straten, P. van der; Vogels, J. M.

    2011-09-15

    Evaporative cooling is a process that is essential in creating Bose-Einstein condensates in dilute atomic gasses. This process has often been simulated based on a model using a truncated Boltzmann distribution. This model assumes that the energy distribution up to the threshold energy can still be described by a Boltzmann distribution: it assumes detailed balance up to the threshold energy. However, the evolution of the distribution function in time is not taken into account. Here we solve the kinetic Boltzmann equation for a gas undergoing evaporative cooling in a harmonic and linear trap in order to determine the evolution of the energy distribution. The magnitude of the discrepancy with the truncated Boltzmannmodel is calculated by including a polynomial expansion of the distribution function. We find that up to 35% fewer particles are found in the high-energy tail of the distribution with respect to the truncated Boltzmann distribution and up to 15% more collisions are needed to reach quantum degeneracy. Supported by a detailed investigation of the particle loss rate at different energies, we conclude that the limited occupation of high-energy states during the evaporation process causes the lowering of the evaporation speed and efficiency.

  8. Mergers, cooling flows, and evaporation

    NASA Technical Reports Server (NTRS)

    Sparks, W. B.

    1993-01-01

    Mergers (the capture of cold gas, especially) can have a profound influence on the hot coronal gas of early-type galaxies and clusters, potentially inducing symptoms hitherto attributed to a cooling flow, if thermal conduction is operative in the coronal plasma. Heat can be conducted from the hot phase into the cold phase, simultaneously ionizing the cold gas to make optical filaments, while locally cooling the coronal gas to mimic a cooling-flow. If there is heat conduction, though, there is no standard cooling-flow since radiative losses are balanced by conduction and not mass deposition. Amongst the strongest observational support for the existence of cooling-flows is the presence of intermediate temperature gas with x-ray emission-line strengths in agreement with cooling-flow models. Here, x-ray line strengths are calculated for this alternative model, in which mergers are responsible for the observed optical and x-ray properties. Since gas around 10(exp 4) K is thermally stable, the cold cloud need not necessarily evaporate and hydrostatic solutions exist. Good agreement with the x-ray data is obtained. The relative strengths of intermediate temperature x-ray emission lines are in significantly better agreement with a simple conduction model than with published cooling-flow models. The good agreement of the conduction model with optical, infrared and x-ray data indicates that significantly more theoretical effort into this type of solution would be profitable.

  9. A comparison of 2 evaporative cooling systems on a commercial dairy farm in Saudi Arabia.

    PubMed

    Ortiz, X A; Smith, J F; Villar, F; Hall, L; Allen, J; Oddy, A; Al-Haddad, A; Lyle, P; Collier, R J

    2015-12-01

    Efficacy of 2 cooling systems (Korral Kool, KK, Korral Kool Inc., Mesa, AZ; FlipFan dairy system, FF, Schaefer Ventilation Equipment LLC, Sauk Rapids, MN) was estimated utilizing 400 multiparous Holstein dairy cows randomly assigned to 1 of 4 cooled California-style shade pens (2 shade pens per cooling system). Each shaded pen contained 100 cows (days in milk=58±39, milk production=56±18 kg/d, and lactation=3±1). Production data (milk yield and reproductive performance) were collected during 3mo (June-August, 2013) and physiological responses (core body temperature, respiration rates, surface temperatures, and resting time) were measured in June and July to estimate responses of cows to the 2 different cooling systems. Water and electricity consumption were recorded for each system. Cows in the KK system displayed slightly lower respiration rates in the month of June and lower surface temperatures in June and July. However, no differences were observed in the core body temperature of cows, resting time, feed intake, milk yield, services/cow, and conception rate between systems. The FF system used less water and electricity during this study. In conclusion, both cooling systems (KK and FF) were effective in mitigating the negative effects of heat stress on cows housed in arid environments, whereas the FF system consumed less water and electricity and did not require use of curtains on the shade structure. PMID:26409968

  10. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Evaporatively cooled chiller for solar air conditioning systems design and field test

    NASA Astrophysics Data System (ADS)

    Merrick, R. H.; Murray, J. G.

    1984-06-01

    Design changes to improve reliability, part load performance, and manufacturability characteristics of the chiller are focused upon. Low heat flux was achieved by large transfer area allows scale formation without being a thermal barrier: 80 mils = 1 deg. The scaling rate is minimized by keeping surface temperatures below 100 F and a generous water recirculation flow rate. By integrating the cooling tower function into the chiller itself parasitic power consumption was reduced 35%. This system also provided the winter freeze protection without the specific manual shut down procedures required by separate water cooled units and their towers. The severe reduction in cumulative coefficient of performance (COP) due to cycling conditions has been substantially reduced using the spin down control scheme. The major disappointment was the failure to develop a satisfactory inexpensive protective coating. Hot dip galvanizing was demonstrated to be effective but costly, partially due to transportation expense.

  12. Evaporation-Cooled Protective Suits for Firefighters

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard Murray

    2007-01-01

    Suits cooled by evaporation of water have been proposed as improved means of temporary protection against high temperatures near fires. When air temperature exceeds 600 F (316 C) or in the presence of radiative heating from nearby sources at temperatures of 1,200 F (649 C) or more, outer suits now used by firefighters afford protection for only a few seconds. The proposed suits would exploit the high latent heat of vaporization of water to satisfy a need to protect against higher air temperatures and against radiant heating for significantly longer times. These suits would be fabricated and operated in conjunction with breathing and cooling systems like those with which firefighting suits are now equipped

  13. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A.; Madsen, N.; Werf, D. P. van der; Wilding, D.; Cesar, C. L.; Lambo, R.

    2010-07-02

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  14. Evaporative cooling of antiprotons to cryogenic temperatures.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-07-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal. PMID:20867439

  15. Evaporative Cooling in a Holographic Atom Trap

    NASA Technical Reports Server (NTRS)

    Newell, Raymond

    2003-01-01

    We present progress on evaporative cooling of Rb-87 atoms in our Holographic Atom Trap (HAT). The HAT is formed by the interference of five intersecting YAG laser beams: atoms are loaded from a vapor-cell MOT into the bright fringes of the interference pattern through the dipole force. The interference pattern is composed of Talbot fringes along the direction of propagation of the YAG beams, prior to evaporative cooling each Talbot fringe contains 300,000 atoms at 50 micro-K and peak densities of 2 x 10(exp 14)/cu cm. Evaporative cooling is achieved through adiabatically decreasing the intensity of the YAG laser. We present data and calculations covering a range of HAT geometries and cooling procedures.

  16. An Evaporative Cooling Model for Teaching Applied Psychrometrics

    ERIC Educational Resources Information Center

    Johnson, Donald M.

    2004-01-01

    Evaporative cooling systems are commonly used in controlled environment plant and animal production. These cooling systems operate based on well defined psychrometric principles. However, students often experience considerable difficulty in learning these principles when they are taught in an abstract, verbal manner. This article describes an…

  17. Does groundwater enhance evaporative cooling?

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.

    2015-12-01

    Evaporation is a key process in land-climate interactions, not only because it directly regulates the hydrological cycle, but also because it contributes to the Earth's energy balance. Due to its feedbacks on large-scale water processes and its impact on the dynamics of the atmosphere, it has been considered as a driver of droughts and heatwaves1-3. While evaporation from ocean surfaces is likely to increase with rising temperatures, it is unclear whether evapotranspiration from land surfaces could similarly increase, due to possible limitations imposed by soil moisture and vegetation physiology4. Observations suggest that groundwater (hereafter GW) has an important role in hydrological budgets and soil moisture variability in many regions, supplying moisture for evapotranspiration during dry seasons5, 6. Although modeling studies suggest that GW is often close enough to the surface to interact with the atmosphere7, 8, the soil water storage is often underestimated by land surface models. This is most likely due to neglecting the lateral movement of water from topographically higher altitudes to valley bottoms and its convergence close to the land surface, as well as the upward movement of water in the capillary fringe.The focus of this study is to understand where and when GW may significantly enhance the availability of soil water for evapotranspiration. We also quantified the potential contribution of GW to evapotranspiration in the areas where GW is a major supply. We used the global network of eddy covariance observations9 (FLUXNET) along with global modeled GW depth10 and GLEAM ET model estimates11 to address the current gap in modelling ET due to neglecting GW supply. Having identified areas where GW is tightly coupled with the atmosphere through evaporation processes, the study provides the basis to examine the "air conditioning effect" of GW and test the idea if GW enhances evaporation to the extent that leads to a cooler temperatures and wetter climates.

  18. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  19. Infrared thermography of dropwise evaporative cooling

    NASA Astrophysics Data System (ADS)

    Klassen, Michael; di Marzo, Marino; Sirkis, James

    1992-01-01

    An infrared thermographic technique is developed to obtain the transient solid surface temperature distribution in the neighborhood of an evaporating droplet. This technique is nonintrusive and is not affected by the time response of the measuring device (i.e., thermocouple). The entire surface is monitored at any instant of time, and information on the area influenced by the evaporative cooling process is easily derived. A detailed description of the image processing based data reduction is provided. A water droplet in the range of 10-50 microliter is deposited on an opaque glasslike material that has an initial surface temperature between 100 and 165 deg C. The evaporative cooling process is fully documented, and these new findings are contrasted with the published literature to gain a better understanding of the phenomena involved.

  20. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2015-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  1. Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    NASA Technical Reports Server (NTRS)

    Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew

    2014-01-01

    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini- ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.

  2. The characteristic of evaporative cooling magnet for ECRIS

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.

  3. The characteristic of evaporative cooling magnet for ECRIS.

    PubMed

    Xiong, B; Ruan, L; Gu, G B; Lu, W; Zhang, X Z; Zhan, W L

    2016-02-01

    Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm(2). On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious. PMID:26931937

  4. Evaporative cooling and the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Vynnycky, M.; Mitchell, S. L.

    2010-10-01

    The Mpemba effect is popularly summarized by the statement that “hot water can freeze faster than cold”, and has been observed experimentally since the time of Aristotle; however, there exist almost no theoretical models that predict the effect. With a view to initiating rigorous modelling activity on this topic, this paper analyzes in some depth the only available model in literature, which considers the potential role of evaporative cooling and treats the cooling water as a lumped mass. Certain omissions in the original work are highlighted and corrected, and results are obtained for a wide range of operating conditions—in particular, initial liquid temperature and cooling temperature. The implications and importance of the results of the model for experimental design are discussed, as are extensions of the model to handle more realistic 1-, 2- and 3-dimensional configurations.

  5. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  6. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  7. Evaporative cooling at low trap depth

    SciTech Connect

    Carvalho, Robert de; Doyle, John

    2004-11-01

    A quantitative, analytic model of evaporative cooling covering both the small- (<4) and large- (>4) {eta} regimes is presented. {eta} is the dimensionless parameter defined as the trap depth divided by the temperature of the trapped sample. Although some of the same general properties present at large {eta} are also present at small {eta}, there are significant quantitative differences. These differences must be taken into account in order to accurately extract from the trapping data quantitative measurements of, for example, collisional atomic cross sections.

  8. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed. PMID:23329814

  9. Evaporative cooling of speleothem drip water

    PubMed Central

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  10. Evaporative cooling of speleothem drip water.

    PubMed

    Cuthbert, M O; Rau, G C; Andersen, M S; Roshan, H; Rutlidge, H; Marjo, C E; Markowska, M; Jex, C N; Graham, P W; Mariethoz, G; Acworth, R I; Baker, A

    2014-01-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ(18)O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change. PMID:24895139

  11. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

    NASA Astrophysics Data System (ADS)

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year ( P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter ( P < 0.05) and IGF-I was higher during spring-summer ( P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF ( P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer ( P < 0.01).

  12. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  13. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2015-07-28

    The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporation depends largely on the strength of the evaporative cooling. When the evaporative cooling is weak, the influence of substrate is also weak. As the strength of evaporative cooling increases, the influence of the substrate becomes more and more pronounced. Further analyses indicated that it is the cooling at the droplet surface and the temperature dependence of the saturation vapor concentration that relate the droplet evaporation to the underlying substrate. This indicates that the evaporative cooling number, Ec, can be used to identify the influence of the substrate on the droplet evaporation. The theoretical predictions by the present model are compared and found to be in good agreement with the experimental measurements. The present work may contribute to the body of knowledge concerning droplet evaporation and may have applications in a wide range of industrial and scientific processes. PMID:26059590

  14. Green Data Center Cooling: Achieving 90% Reduction: Airside Economization and Unique Indirect Evaporative Cooling

    SciTech Connect

    Weerts, B. A.; Gallaher, D.; Weaver, R.; Van Geet, O.

    2012-01-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC). Through a full retrofit of a traditional air conditioning system, the cooling energy required to meet the data center's constant load has been reduced by over 70% for summer months and over 90% for cooler winter months. This significant change is achievable through the use of airside economization and a new indirect evaporative cooling system. One of the goals of this project was to create awareness of simple and effective energy reduction strategies for data centers. This project's geographic location allowed maximizing the positive effects of airside economization and indirect evaporative cooling, but these strategies may also be relevant for many other sites and data centers in the U.S.

  15. Experimental evaluation of a breadboard heat and product-water removal system for a space-power fuel cell designed with static water removal and evaporative cooling

    NASA Technical Reports Server (NTRS)

    Hagedorn, N. H.; Prokipius, P. R.

    1977-01-01

    A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.

  16. Energy savings from indirect evaporative pre-cooling: Control strategies and commissioning

    SciTech Connect

    Felts, D.; Jump, D.A.

    1998-07-01

    Package rooftop air conditioning units (RTU) with evaporative pre-cooling systems were installed at an Agricultural History Museum and conference center in the northern Sacramento Valley in California, a hot and dry summer climate region. The evaporative pre-coolers serve to extend the economizer range of the RTU's. A commissioning team monitored the performance of the RTU evaporative pre-coolers. The purpose of the monitoring was to determine if changes were warranted to optimize the system's energy efficiency. The commissioning process revealed that the RTU evaporative pre-coolers were being controlled by the economizer control cycle. With this control cycle, the evaporative pre-cooler operates when the outdoor air temperature is falling below the space return air temperature. This means that the pre-cooler will never operate at peak load conditions. The conference center is an assembly occupancy. Building codes require significant levels of outdoor air for ventilation. The evaporative pre-cooler system provides the means to significantly offset the energy requirements for cooling down and heating up this ventilation air. A DOE2 energy simulation analysis indicated that the evaporative pre-cooler could cut energy use by over 50% if it were working correctly. Investigation concludes that in buildings with high outdoor air requirements, evaporative pre-cooling, using building exhaust air as the indirect evaporative cooling source, significantly reduce building energy consumption. This evaporative pre-cooling technology works in any climate, regardless of outdoor conditions, since the return air stream exhausted from the building provides a relatively constant temperature and humidity source for evaporative cooling. An added benefit is that the evaporative pre-cooler heat exchanger recovers heat from the exhausted air stream in cold weather.

  17. Evaporative cooling of antiprotons for the production of trappable antihydrogen

    SciTech Connect

    Silveira, D. M.; Cesar, C. L.; Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Madsen, N.; Werf, D. P. van der; Friesen, T.; Hydomako, R.; and others

    2013-03-19

    We describe the implementation of evaporative cooling of charged particles in the ALPHA apparatus. Forced evaporation has been applied to cold samples of antiprotons held in Malmberg-Penning traps. Temperatures on the order of 10 K were obtained, while retaining a significant fraction of the initial number of particles. We have developed a model for the evaporation process based on simple rate equations and applied it succesfully to the experimental data. We have also observed radial re-distribution of the clouds following evaporation, explained by simple conservation laws. We discuss the relevance of this technique for the recent demonstration of magnetic trapping of antihydrogen.

  18. Passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

    1985-01-01

    Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

  19. Evaporator Development for an Evaporative Heat Pipe System

    NASA Technical Reports Server (NTRS)

    Peters, Leigh C.

    2004-01-01

    As fossil fuel resources continue to deplete, research for alternate power sources continues to develop. One of these alternate technologies is fuel cells. They are a practical fuel source able to provide significant amounts of power for applications from laptops to automobiles and their only byproduct is water. However, although this technology is over a century old and NASA has been working with it since the early 1960 s there is still room for improvement. The research I am involved in at NASA's Glenn Research Center is focusing on what is called a regenerative fuel cell system. The unique characteristic of this type of system is that it used an outside power source to create electrolysis of the water it produces and it then reuses the hydrogen and oxygen to continue producing power. The advantage of this type of system is that, for example, on space missions it can use solar power to recharge its gas supplies between periods when the object being orbited blocks out the sun. This particular system however is far from completion. This is because of the many components that are required to make up a fuel cell that need to be tested individually. The specific part of the system that is being worked on this summer of 2004 is the cooling system. The fuel cell stack, that is the part that actually creates the power, also produces a lot of heat. When not properly cooled, it has been known to cause fires which, needless to say are not conducive to the type of power that is trying to be created. In order to cool the fuel cell stack in this system we are developing a heat pipe cooling system. One of the main components of a heat pipe cooling system is what is known as the evaporator, and that is what happens to be the part of the system we are developing this summer. In most heat pipe systems the evaporator is a tube in which the working fluid is cooled and then re-circulated through the system to absorb more heat energy from the fuel cell stack. For this system, instead

  20. EXPERIMENTAL EVALUATION OF A NOVEL FULL-SCALE EVAPORATIVELY COOLED CONDENSER

    EPA Science Inventory

    The report compares the performance of a novel evaporatively cooled condenser with that of a conventional air-cooled condenser for a split-system heat pump. The system was tested in an environmentally controlled test chamber that is able to simulate test conditions as specified b...

  1. Three-wire magnetic trap for direct forced evaporative cooling

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Oh, Eun

    2009-01-01

    We propose a simple three-wire-based magnetic trap potential for direct forced evaporative cooling of neutral atoms without using induced spin-flip technologies. We have devised a method for controlling the trap depth without sacrificing its frequencies by only varying wire currents and external magnetic fields. By having multiples of these wires on different levels integrated into an atom chip, it is possible to attain Bose-Einstein condensation without the conventional forced evaporation technique.

  2. Correlations for Saturation Efficiency of Evaporative Cooling Pads

    NASA Astrophysics Data System (ADS)

    Jain, J. K.; Hindoliya, D. A.

    2014-01-01

    This paper presents some experimental investigations to obtain correlations for saturation efficiency of evaporative cooling pads. Two commonly used materials namely aspen and khus fibers along with new materials namely coconut fibers and palash fibers were tested in a laboratory using suitably fabricated test setup. Simple mathematical correlations have been developed for calculating saturation efficiency of evaporating cooling pads which can be used to predict their performance at any desired mass flow rate. Performances of four different pad materials were also compared using developed correlations. An attempt was made to test two new materials (i.e. fibers of palash wood and coconut) to check their suitability as wetted media for evaporative cooling pads. It was found that Palash wood fibers offered highest saturation efficiency compared to that of other existing materials such as aspen and khus fibers at different mass flow rate of air.

  3. A numerical simulation of heat transfer in evaporative cooling towers

    NASA Astrophysics Data System (ADS)

    Benton, D. J.

    1983-09-01

    A phenomenological analysis was developed for the processes which occur within an evaporative cooling tower. The analysis includes the basic principles of mass, momentum, and energy conservation and empirical elationships for component characteristics such as transfer and pressure drop coefficients. A computer model which simulates the processes occurring in evaporative cooling towers was developed. The results of this computer model are compared to field data to verify the analysis and the computer modeling. The computer model may be used to analyze the performance of existing towers or to predict the performance of alternative tower designs.

  4. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  5. A study of diamond laminated surfaces in evaporative spray cooling

    NASA Astrophysics Data System (ADS)

    Sehmbey, M. S.; Pais, M. R.; Chow, L. C.

    This effort is directed towards studying the performance of diamond laminated surfaces under conditions of evaporative spray cooling of high-heat-flux electronic components. The experimental results presented illustrate the robustness of the surface, as well as its heat transfer characteristics, wettability and roughness. Exceptional heat flux rates of over 1100 W/sq cm were obtained within superheats of 40 C.

  6. 49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. LOOKING NORTH AT EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS, WITH BLOW ENGINE HOUSE No. 3 ON RIGHT, AND FILTER CAKE HOUSE IN FOREGROUND. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. Kinetics of the evaporative cooling of an atomic beam

    SciTech Connect

    Lahaye, Thierry; Guery-Odelin, David

    2006-06-15

    We compare two distinct models of evaporative cooling of a magnetically guided atomic beam: a continuous one, consisting in approximating the atomic distribution function by a truncated equilibrium distribution, and a discrete-step one, in which the evaporation process is described in terms of successive steps consisting in a truncation of the distribution followed by rethermalization. Calculations are performed for the semilinear potential relevant for experiments. We show that it is possible to map one model onto the other, allowing us to infer, for the discrete-step model, the rethermalization kinetics, which turns out to be strongly dependent upon the shape of the confining potential.

  8. Evaporative spray cooling of plain and microporous coated surfaces.

    SciTech Connect

    Kim, J. H.; You, S. M.; Choi, S. U.-S.; Energy Technology; Univ. of Texas at Arlington

    2004-07-01

    Experiments were performed on air and evaporative spray cooling of plain and microporous coated surfaces on flat and cylindrical heaters. Micron-size aluminum particles were used to build the microporous structures on the heated surfaces. To analyze the evaporative cooling, heat transfer curves were obtained in the form of the wall temperature difference versus heat flux. The heat transfer coefficients were also determined as a function of heat flux. Three water flow rates (1.25, 1.75 and 2.40 ml/min) were tested for the flat heater and one rate (3.0 ml/min) for the cylindrical heater, maintaining the air pressure of 7 psig (48 kPa) at the inlet of the nozzle. The effect of different particle sizes in the coating was also tested to optimize the microporous coating technique. Spraying water droplets on the microporous coating surface enhanced the heat removal due to the capillary pumping phenomenon through the microporous cavities connecting each other. The evaporative spray cooling increased the heat transfer coefficient by up to 400% relative to that of the uncoated surface cooled by dry air, and this enhancement was maintained at high heat fluxes by using microporous surfaces.

  9. Solitons as the Early Stage of Quasicondensate Formation during Evaporative Cooling

    SciTech Connect

    Witkowska, E.; Deuar, P.; Gajda, M.; RzaPzewski, K.

    2011-04-01

    We calculate the evaporative cooling dynamics of trapped one-dimensional Bose-Einstein condensates for parameters leading to a range of condensates and quasicondensates in the final equilibrium state, using the classical fields method. We confirm that solitons are created during the evaporation process by the Kibble-Zurek mechanism, but subsequently dissipate during thermalization. However, their signature remains in the phase coherence length, which is approximately conserved during dissipation in this system.

  10. Evaporative cooling on a grooved surface. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Yoder, D.

    1979-01-01

    The transition point where water begins to accumulate on the surface during spray evaporative cooling was investigated experimentally to determine the temperatures and corresponding heat flux at which this transition occurs. Several pressure ranges were considered including one below the triple point of water. Additionally, the results using a grooved surface were compared to those using a smooth surface. It was determined that a grooved surface has no effect on the heat transfer.

  11. Influence of electron evaporative cooling on ultracold plasma expansion

    SciTech Connect

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-07-15

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10{sup 8}/cm{sup 3}). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma.

  12. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.

    PubMed

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-07-28

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  13. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    PubMed Central

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  14. The energy saving potential of precooling incoming outdoor air by indirect evaporative cooling

    SciTech Connect

    Chen, P.; Qin, H.; Huang, Y.J.; Wu, H.; Blumstein, C.

    1992-09-01

    This paper investigates the energy saving potentials of using indirect evaporative coolers to precool incoming outdoor air as the first stage of a standard cooling system. For dry and moderately humid locations, either exhaust room air or outdoor air can be used as the secondary air to the indirect evaporative precooler with similar energy savings. Under these conditions, the use of outdoor air is recommended due to the simplicity in installing the duct system. For humid locations, the use of exhaust room air is recommended because the precooling capacity and energy savings will be greatly increased. For locations with short cooling seasons, the use of indirect evaporative coolers for precooling may not be worthwhile. The paper also gives some simplified indices for easily predicting the precooling capacity, energy savings and water consumption of an indirect evaporative precooler. These indices can be used for cooling systems with continuous operation, but further work is needed to determine whether the same indices are also suitable for cooling systems with intermittent operations.

  15. Evaporative cooling in a radio-frequency trap

    SciTech Connect

    Garrido Alzar, Carlos L.; Perrin, Helene; Lorent, Vincent; Garraway, Barry M.

    2006-11-15

    A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency (rf) adiabatic potentials is presented. Supposing the atoms to be trapped in a combination of a dc magnetic field and a rf field at frequency {omega}{sub 1}, the cooling procedure is facilitated using a second rf source at frequency {omega}{sub 2}. This second rf field produces a controlled coupling between the spin states dressed by {omega}{sub 1}. The evaporation is then possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into untrapped dressed states by abruptly switching off the {omega}{sub 2} coupling. In the continuous case, it is possible for energetic atoms to adiabatically follow the doubly dressed states and escape out of the trap. Our results also show that when {omega}{sub 1} and {omega}{sub 2} are separated by at least the Rabi frequency associated with {omega}{sub 1}, additional evaporation zones appear which can make this process more efficient.

  16. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  17. Evaporative cooling and water balance during flight in birds.

    PubMed

    Torre-Bueno, J R

    1978-08-01

    The rate of evaporative cooling was calculated from the rate of mass loss in starlings (Sturnus vulgaris) during 90 min flights in a wind-tunnel. Evaporative heat loss ranged from 5% of the metabolic rate at -5 degrees C to 19% of the metabolic rate at 29 degrees C. Radiation and convection accounted for the balance of the heat loss. On average, starlings dehydrated during flights at all temperatures above 7 degrees C. The comparison of these results with data from field studies, which indicate that long-distance migrants do not dehydrate, suggests that migrants may maintain water balance by ascending to colder air in which convection carries off most of the heat produced. PMID:702042

  18. Strategies for increasing evaporative cooling during simulated desert patrol mission.

    PubMed

    Ciuha, Ursa; Grönkvist, Mikael; Mekjavic, Igor B; Eiken, Ola

    2016-02-01

    The study evaluated the efficiency of two heat dissipation strategies under simulated desert patrol missions. Ten men participated in four trials, during which they walked on a treadmill (45°C, 20% relative humidity), carrying a load of 35 kg; two 50-min walks were separated by a 20-min rest. Cooling strategies, provided by an ambient air-ventilated vest (active cooling condition, AC), or water spraying of the skin during the rest (passive cooling condition, PC), in addition to reduced clothing and open zippers, were compared to conditions with full protective (FP) clothing and naked condition (NC). Skin temperature was higher during NC (37.9 ± 0.4°C; p < 0.001), and rectal temperature and heart rate were higher during FP (38.6 ± 0.4°C, p < 0.001 and 145 ± 12, p < 0.001, respectively), compared to other conditions. Four subjects terminated the trial prematurely due to signs of heat exhaustion in FP. Both cooling strategies substantially improved evaporative cooling. PMID:26094700

  19. The effect of simulated evaporative cooling on thermal entrainment

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Cotel, Aline

    1998-11-01

    The effect of simulated evaporative cooling on the entrainment of a thermal impinging on a stratified interface is investigated experimentally. Evaporative cooling in atmospheric clouds results in buoyancy reversal, where the mixed fluid is denser than either parent parcel. This is realized in the laboratory by using a mixture of ethyl alcohol and ethylene glycohol in aqueous solution. A thermal is formed by releasing a small volume of buoyant fluid from the bottom of a lucite tank. It rises first through a relatively dense lower layer and then impinges on a thin stratified interface, above which is a relatively light layer. The entrainment of upper layer across the interface is measured optically. The entrainment rate is found to obey a Ri-3/2 power law for values of the buoyancy reversal parameter, D*, between 0 and 0.5. The entrainment rate is independent of D* for a certain range of Ri. This is consistent with the behavior of the buoyancy-reversing thermal in an unstratified environment observed by Johari.

  20. Analysis of the effects of evaporative cooling on the evaporation of liquid droplets using a combined field approach.

    PubMed

    Xu, Xuefeng; Ma, Liran

    2015-01-01

    During liquid evaporation, the equations for the vapor concentration in the atmosphere and for the temperature in the liquid are coupled and must be solved in an iterative manner. In the present paper, a combined field approach which unifies the coupled fields into one single hybrid field and thus makes the iteration unnecessary is proposed. By using this approach, the influences of the evaporative cooling on the evaporation of pinned sessile droplets are investigated, and its predictions are found in good agreement with the previous theoretical and experimental results. A dimensionless number Ec which can evaluate the strength of the evaporative cooling is then introduced, and the results show that both the evaporation flux along the droplet surface and the total evaporation rate of the droplet decrease as the evaporative cooling number Ec increases. For drying droplets, there exists a critical value EcCrit below which the evaporative cooling effect can be neglected and above which the significance of the effect increases dramatically. The present work may also have more general applications to coupled field problems in which all the fields have the same governing equation. PMID:25721987

  1. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment.

    PubMed

    Wang, F; Annaheim, S; Morrissey, M; Rossi, R M

    2014-06-01

    Real evaporative cooling efficiency, the ratio of real evaporative heat loss to evaporative cooling potential, is an important parameter to characterize the real cooling benefit for the human body. Previous studies on protective clothing showed that the cooling efficiency decreases with increasing distance between the evaporation locations and the human skin. However, it is still unclear how evaporative cooling efficiency decreases as the moisture is transported from the skin to the clothing layer. In this study, we performed experiments with a sweating torso manikin to mimic three different phases of moisture absorption in one-layer tight-fitting sportswear. Clothing materials Coolmax(®) (CM; INVISTA, Wichita, Kansas, USA; 100%, profiled cross-section polyester fiber), merino wool (MW; 100%), sports wool (SW; 50% wool, 50% polyester), and cotton (CO; 100%) were selected for the study. The results demonstrated that, for the sportswear materials tested, the real evaporative cooling efficiency linearly decreases with the increasing ratio of moisture being transported away from skin surface to clothing layer (adjusted R(2) >0.97). In addition, clothing fabric thickness has a negative effect on the real evaporative cooling efficiency. Clothing CM and SW showed a good ability in maintaining evaporative cooling efficiency. In contrast, clothing MW made from thicker fabric had the worst performance in maintaining evaporative cooling efficiency. It is thus suggested that thin fabric materials such as CM and SW should be used to manufacture one-layer tight-fitting sportswear. PMID:24033668

  2. Analyzing the possibility of achieving more efficient cooling of water in the evaporative cooling towers of the Armenian NPP

    NASA Astrophysics Data System (ADS)

    Petrosyan, V. G.; Yeghoyan, E. A.

    2015-10-01

    The specific features of the service cooling water system used at the Armenian NPP and modifications made in the arrangement for supplying water to the water coolers in order to achieve more efficient cooling are presented. The mathematical model applied in carrying out the analyses is described, the use of which makes it possible to investigate the operation of parallel-connected cooling towers having different hydraulic and thermal loads. When the third standby cooling tower is put into operation (with the same flow rate of water supplied to the water coolers), the cooled water temperature is decreased by around 2-3°C in the range of atmospheric air temperatures 0-35°C. However, the introduced water distribution arrangement with a decreased spraying density has limitation on its use at negative outdoor air temperatures due to the hazard intense freezing of the fill in the cooling tower peripheral zone. The availability of standby cooling towers in the shutdown Armenian NPP power unit along with the planned full replacement of the cooling tower process equipment create good possibilities for achieving a deeper water cooling extent and better efficiency of the NPP. The present work was carried out with the aim of achieving maximally efficient use of existing possibilities and for elaborating the optimal cooling tower modernization version. Individual specific heat-andmass transfer processes in the chimney-type evaporative cooling towers are analyzed. An improved arrangement for distributing cooled water over the cooling tower spraying area (during its operation with a decreased flow rate) is proposed with the aim of cooling water to a deeper extent and preserving the possibility of using the cooling towers in winter. The main idea behind improving the existing arrangement is to exclude certain zones of the cooling tower featuring inefficient cooling from operation. The effectiveness of introducing the proposed design is proven by calculations (taking as an

  3. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    absence of isotopic fractionation in a volatile element-depleted condensed phase is more a measure of the degree to which the system maintained thermodynamic equilibrium than a diagnostic of whether the path involved condensation or evaporation.The pervasive volatile element depletion of inner solar system planets and the asteroidal parent bodies of most meteorites is a major, but by no means the only reason to consider evaporation and condensation processes in the early history of the solar system. Chondrules appear to have been rapidly heated and then cooled over a period of minutes to hours (see Chapter 1.07). If this occurred in a gas of solar composition under nonequilibrium conditions, chondrules should have partially evaporated and an isotopic fractionation record should remain. The absence of such effects can be used to chonstrain the conditions of chondrule formation (e.g., Alexander et al., 2000; Alexander and Wang, 2001). There is good petrologic, chemical, and isotopic evidence suggesting that certain solar system materials such as the coarse-grained CAIs are likely evaporation residues. For example, the type B CAIs are often found to have correlated enrichments in the heavy isotopes of silicon and magnesium ( Figure 1), and these isotopic fractionations are very much like those of evaporation residues produced in laboratory experiments. Condensation also appears to be a major control of elemental zoning patterns in metal grains in CH chondrites (Meibom et al., 1999, 2001; Campbell et al., 2001; Petaev et al., 2001; Campbell et al., 2002). A more contemporary example is the isotopic and chemical compositions of deep-sea spherules that have been significantly affected by evaporative loss during atmospheric entry ( Davis et al., 1991a; Davis and Brownlee, 1993; Herzog et al., 1994, 1999; Xue et al., 1995; Alexander et al., 2002). (7K)Figure 1. Isotopic mass fractionation effects in CAIs. Most coarse-grained CAIs have enrichments of a few ‰ amu-1 in magnesium

  4. Optical depletion spectroscopy for probing evaporatively cooled OH

    NASA Astrophysics Data System (ADS)

    Hummon, Matthew; Wu, Hao; Stuhl, Benjamin; Reens, David; Yeo, Mark; Ye, Jun

    2013-05-01

    Pulsed laser induced fluorescence (PLIF) measurements provide a sensitive probe for the detection of molecular species. However, the broad linewidth of the pulsed lasers used for molecular excitation obscures spectral information useful for determination of molecule temperature. This limitation can be overcome by the use of a second, narrowband source of radiation that can deplete a subset of the molecules detected using PLIF, and a high resolution depletion spectrum can be obtained. In the past, we have demonstrated the use of microwave depletion spectroscopy to measure magnetically trapped, evaporatively cooled OH temperatures in the range of 5-50 mK. The lower limit of 5 mK is set by the details of the microwave transition. Here we present temperature measurements of trapped OH using an optical depletion technique, which is in principle capable of probing temperatures as low as 50 microkelvin. We acknowledge funding from the NSF Physics Frontier Center, NIST, DOE, and the AFOSR MURI on Cold Molecules.

  5. Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.

    1986-01-01

    At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

  6. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  7. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    PubMed

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator. PMID:18701113

  8. CO2 evaporative cooling: The future for tracking detector thermal management

    NASA Astrophysics Data System (ADS)

    Tropea, P.; Daguin, J.; Petagna, P.; Postema, H.; Verlaat, B.; Zwalinski, L.

    2016-07-01

    In the last few years, CO2 evaporative cooling has been one of the favourite technologies chosen for the thermal management of tracking detectors at LHC. ATLAS Insertable B-Layer and CMS Pixel phase 1 upgrade have adopted it and their systems are now operational or under commissioning. The CERN PH-DT team is now merging the lessons learnt on these two systems in order to prepare the design and construction of the cooling systems for the new Upstream Tracker and the Velo upgrade in LHCb, due by 2018. Meanwhile, the preliminary design of the ATLAS and CMS full tracker upgrades is started, and both concepts heavily rely on CO2 evaporative cooling. This paper highlights the performances of the systems now in operation and the challenges to overcome in order to scale them up to the requirements of the future generations of trackers. In particular, it focuses on the conceptual design of a new cooling system suited for the large phase 2 upgrade programmes, which will be validated with the construction of a common prototype in the next years.

  9. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Desiccant cooling processes can supply dry air by using lower temperature heat energy such as waste heat or solar heat. Especially, solar heat is useful heat source for the desiccant cooling since solar heat in summer tends to be surplus. This paper discusses the hourly cooling performance of the solar assisted desiccant cooling system, which consists of a desiccant wheel, a thermal wheel, two evaporative coolers, a cooling coil and flat plate solar water heater, assuming that the cooling system is applied to an office room of 250m3 in volume. The estimation indicated that the surface area needed to satisfy the dehumidifying performance in a sunny day was at least 30m2. Furthermore, surface area of 40m2 or larger provided a surplus dehumidifying performance causing a sensible cooling effect in evaporative cooler. Surface area of 30 m2 did not satisfy the dehumidifying performance required for high humidity condition, over 18.0g/kg(DA). The cooling demand of the cooling coil increased in such humidity condition due to the decrease in the sensible cooling effect of evaporative cooler. Auxiliary heater was required in a cloudy day since the temperature of water supplied from solar water heater of 40m2 did not reach sufficient level.

  10. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  11. Prehospital intranasal evaporative cooling for out-of-hospital cardiac arrest: a pilot, feasibility study.

    PubMed

    Lyon, Richard M; Van Antwerp, Jerry; Henderson, Charles; Weaver, Anne; Davies, Gareth; Lockey, David

    2014-10-01

    Intranasal evaporative cooling presents a novel means of initiating therapeutic hypothermia after an out-of-hospital cardiac arrest (OHCA). Few studies have evaluated the use of intranasal therapeutic hypothermia using the Rhinochill device in the prehospital setting. We sought to evaluate the use of Rhinochill in the Physician Response Unit of London's Air Ambulance, aiming to describe the feasibility of employing it during prehospital resuscitation for OHCA. We prospectively evaluated the Rhinochill device over a 7-month period. Inclusion criteria for deployment included: age above 18 years, Physician Response Unit on-scene within maximum of 10 min after return-of-spontaneous circulation (ROSC), witnessed OHCA or unwitnessed downtime of less than 10 min, pregnancy not suspected, normal nasal anatomy, and likely ICU candidate if ROSC were to be achieved. Thirteen patients were included in the evaluation. The average time from the 999 call to initiation of cooling was 39.5 min (range 22-61 min). The average prehospital temperature change in patients who achieved ROSC was -1.9°C. Patients were cooled for an average of 38 min prehospital. In all cases, the doctor and paramedic involved with the resuscitation reported that the Rhinochill was easy to set up and use during resuscitation and that it did not interfere with standard resuscitation practice. Intranasal evaporative cooling using the Rhinochill system is feasible in an urban, prehospital, doctor/paramedic response unit. Cooling with Rhinochill was not found to interfere with prehospital resuscitation and resulted in significant core body temperature reduction. Further research on the potential benefit of intra-arrest and early initiation of intranasal evaporative cooling is warranted. PMID:24300245

  12. Temperature and humidity control during cooling and dehumidifying by compressor and evaporator fan speed variation

    SciTech Connect

    Krakow, K.I.; Lin, S.; Zeng, Z.S.

    1995-08-01

    The accurate control of temperature and relative humidity during cooling and dehumidifying air-conditioning processes may be achieved by compressor and evaporator fan speed variation. Proportional-integral-differential (PID) control methods are shown to be suitable for attaining compressor and evaporator fan speeds such that the sensible and latent components of the refrigeration system capacity equal the sensible and latent components of the system load. The feasibility of the control method has been verified experimentally. A numerical model of an environmental control system, including refrigeration, space, and PID control subsystems, has been developed. The model is suitable for determining system response to variations of PID coefficient values and to variations of system loads.

  13. Optimization of evaporative cooling towards a large number of Bose-Einstein-condensed atoms

    SciTech Connect

    Yamashita, Makoto; Mukai, Tetsuya; Mukai, Takaaki; Koashi, Masato; Mitsunaga, Masaharu; Imoto, Nobuyuki

    2003-02-01

    We study the optimization of evaporative cooling in trapped bosonic atoms on the basis of quantum kinetic theory of a Bose gas. The optimized cooling trajectory for {sup 87}Rb atoms indicates that the acceleration of evaporative cooling around the transition point of Bose-Einstein condensation is very effective against loss of trapped atoms caused by three-body recombination. The number of condensed atoms is largely enhanced by the optimization, more than two orders of magnitude in our present calculation using relevant experimental parameters, as compared with the typical value given by the conventional evaporative cooling where the frequency of radio-frequency magnetic field is swept exponentially. In addition to this optimized cooling, it is also shown that highly efficient evaporative cooling can be achieved by an initial exponential and then a rapid linear sweep of frequency.

  14. Evaporative CO2 microchannel cooling for the LHCb VELO pixel upgrade

    NASA Astrophysics Data System (ADS)

    de Aguiar Francisco, O. A.; Buytaert, J.; Collins, P.; Dumps, R.; John, M.; Mapelli, A.; Romagnoli, G.

    2015-05-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO2 circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO2, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO2 cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use of restrictions implemented before the entrance to a race track like layout of the main cooling channels. The coolant flow and pressure drop have been simulated as well as the thermal performance of the device. This proceeding describes the design and optimization of the cooling system for LHCb and the latest prototyping results.

  15. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  16. Passive cooling system for a vehicle

    DOEpatents

    Hendricks, Terry Joseph; Thoensen, Thomas

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  17. Passive Cooling System for a Vehicle

    DOEpatents

    Hendricks, T. J.; Thoensen, T.

    2005-11-15

    A passive cooling system for a vehicle (114) transfers heat from an overheated internal component, for example, an instrument panel (100), to an external portion (116) of the vehicle (114), for example, a side body panel (126). The passive cooling system includes one or more heat pipes (112) having an evaporator section (118) embedded in the overheated internal component and a condenser section (120) at the external portion (116) of the vehicle (114). The evaporator (118) and condenser (120) sections are in fluid communication. The passive cooling system may also include a thermally conductive film (140) for thermally connecting the evaporator sections (118) of the heat pipes (112) to each other and to the instrument panel (100).

  18. Dual-purpose chamber-cooling system

    NASA Technical Reports Server (NTRS)

    Fraze, R. E.

    1968-01-01

    Inexpensive, portable system was designed for cooling small environmental test chambers with a temperature-controlled gas stream evaporated from a cryogenic liquid. The system reduces the temperature of a chamber to any desired point in a fraction of the time required by previous systems.

  19. Thin-Film Evaporative Cooling for Side-Pumped Laser

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2010-01-01

    A system and method are provided for cooling a crystal rod of a side-pumped laser. A transparent housing receives the crystal rod therethrough so that an annular gap is defined between the housing and the radial surface of the crystal rod. A fluid coolant is injected into the annular gap such the annular gap is partially filled with the fluid coolant while the radial surface of the crystal rod is wetted as a thin film all along the axial length thereof.

  20. Optimized evaporative cooling for sodium Bose-Einstein condensation against three-body loss

    SciTech Connect

    Shobu, Takahiko; Yamaoka, Hironobu; Imai, Hiromitsu; Morinaga, Atsuo; Yamashita, Makoto

    2011-09-15

    We report on a highly efficient evaporative cooling optimized experimentally. We successfully created sodium Bose-Einstein condensates with 6.4x10{sup 7} atoms starting from 6.6x10{sup 9} thermal atoms trapped in a magnetic trap by employing a fast linear sweep of radio frequency at the final stage of evaporative cooling so as to overcome the serious three-body losses. The experimental results such as the cooling trajectory and the condensate growth quantitatively agree with the numerical simulations of evaporative cooling on the basis of the kinetic theory of a Bose gas carefully taking into account our specific experimental conditions. We further discuss theoretically a possibility of producing large condensates, more than 10{sup 8} sodium atoms, by simply increasing the number of initial thermal trapped atoms and the corresponding optimization of evaporative cooling.

  1. Stabilization of the number of Bose-Einstein-condensed atoms in evaporative cooling via three-body recombination loss

    SciTech Connect

    Yamashita, Makoto; Mukai, Tetsuya

    2003-12-01

    The dynamics of evaporative cooling of magnetically trapped {sup 87}Rb atoms is studied on the basis of the quantum kinetic theory of a Bose gas. We carried out the quantitative calculations of the time evolution of conventional evaporative cooling where the frequency of the radio-frequency magnetic field is swept exponentially. This ''exponential-sweep cooling'' is known to become inefficient at the final stage of the cooling process due to a serious three-body recombination loss. We precisely examine how the growth of a Bose-Einstein condensate depends on the experimental parameters of evaporative cooling, such as the initial number of trapped atoms, the initial temperature, and the bias field of a magnetic trap. It is shown that three-body recombination drastically depletes the trapped {sup 87}Rb atoms as the system approaches the quantum degenerate region and the number of condensed atoms finally becomes insensitive to these experimental parameters. This result indicates that the final number of condensed atoms is well stabilized by a large nonlinear three-body loss against the fluctuations of experimental conditions in evaporative cooling.

  2. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  3. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  4. Thermal characteristics of a medium-level concentration photovoltaic unit with evaporation cooling

    NASA Astrophysics Data System (ADS)

    Kokotov, Yuri V.; Reyz, Michael A.; Fisher, Yossi

    2009-08-01

    The results of thermal analysis and experiments are presented for a 1-kW brand new medium-level (8X) concentration photovoltaic (CPV) unit that is cooled by evaporation and built as an elongated floating solar unit. The unit keeps the silicon PV elements at low and stable temperature around the clock, significantly outperforms competitors' systems in terms of the power output and the life span of identical PV elements. It is demonstrated theoretically and experimentally that the PV element temperature level exceeds the temperature level of water in the water basin (used as a heat sink) by just a few degrees.

  5. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  6. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-01-01

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  7. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets.

    PubMed

    Song, Jin; Chung, Minsub; Kim, Dohyun

    2015-01-01

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (-5.1 °C/s) and a low freezing temperature (-14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing. PMID:25638130

  8. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    NASA Astrophysics Data System (ADS)

    Song, Jin; Chung, Minsub; Kim, Dohyun

    2015-01-01

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (-5.1 °C/s) and a low freezing temperature (-14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  9. Note: A microfluidic freezer based on evaporative cooling of atomized aqueous microdroplets

    SciTech Connect

    Song, Jin; Kim, Dohyun; Chung, Minsub

    2015-01-15

    We report for the first time water-based evaporative cooling integrated into a microfluidic chip for temperature control and freezing of biological solution. We opt for water as a nontoxic, effective refrigerant. Aqueous solutions are atomized in our device and evaporation of microdroplets under vacuum removes heat effectively. We achieve rapid cooling (−5.1 °C/s) and a low freezing temperature (−14.1 °C). Using this approach, we demonstrate freezing of deionized water and protein solution. Our simple, yet effective cooling device may improve many microfluidic applications currently relying on external power-hungry instruments for cooling and freezing.

  10. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  11. Personal Cooling System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Cool Head, a personal cooling system for use in heat stress occupations, is a spinoff of a channeled cooling garment for space wear. It is portable and includes a heat exchanger, control display unit, liquid reservoir and temperature control unit. The user can eliminate 40 to 60 percent of his body's heat storage and lower heart rate by 50 to 80 beats a minute. The system is used by the Army, Navy, crop dusting pilots, heavy equipment operators and auto racing drivers and is marketed by Life Enhancement Technologies, LLC. Further applications are under consideration.

  12. Passive cooling systems in residential buildings

    NASA Astrophysics Data System (ADS)

    Ingersoll, John G.; Givoni, Baruch

    1985-11-01

    The performance of four passive cooling systems, nocturnal convective cooling, nocturnal radiative cooling, direct evaporative cooling and conductive earth-coupled cooling, is evaluated for representative environmental conditions in the temperate, hot-humid and hot-arid climatic zones of the United States. The analysis indicates that substantial portion of the cooling load of a typical energy-efficient single family residential building can be eliminated with any of these passive systems. Depending on system type and climatic zone, the building cooling load can be reduced by 1/3 to over 4/5 of its original value. The corresponding energy savings would amount to a minimum of 25 TWh/yr and could potentially exceed 50 TWh/yr, if proper passive cooling systems were to be employed throughout the country. Incorporation of passive cooling models in building energy analysis codes will be necessary to determine more precisely the potential of each system. Field testing will also be required to further evaluate this potential. Moreover, the extension of analytical modeling to include additional passive cooling systems and the research of advanced building—natural environment coupling systems and materials constitute tasks requiring further effort.

  13. Effect of evaporative surface cooling on thermographic assessment of burn depth

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Zawacki, B. E.

    1977-01-01

    Differences in surface temperature between evaporating and nonevaporating, partial- and full-thickness burn injuries were studied in 20 male, white guinea pigs. Evaporative cooling can disguise the temperature differential of the partial-thickness injury and lead to a false full-thickness diagnosis. A full-thickness burn with blister intact may retain enough heat to result in a false partial-thickness diagnosis. By the fourth postburn day, formation of a dry eschar may allow a surface temperature measurement without the complication of differential evaporation. For earlier use of thermographic information, evaporation effects must be accounted for or eliminated.

  14. Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law

    NASA Technical Reports Server (NTRS)

    Xiong, Yong-Liang; Hewins, Roger H.

    2003-01-01

    Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.

  15. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  16. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  17. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications.

    PubMed

    Chen, Jian-Nan; Zhang, Zhen; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-12-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation. PMID:27003427

  18. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications

    NASA Astrophysics Data System (ADS)

    Chen, Jian-nan; Zhang, Zhen; Ouyang, Xiao-long; Jiang, Pei-xue

    2016-03-01

    A numerical and experimental investigation was conducted to analyze dropwise evaporative cooling of heated surfaces with various wettability characteristics. The surface wettability was tuned by nanostructure modifications. Spray-cooling experiments on these surfaces show that surfaces with better wettability have better heat transfer rate and higher critical heat flux (CHF). Single droplet impingement evaporative cooling of a heated surface was then investigated numerically with various wettability conditions to characterize the effect of contact angle on spray-cooling heat transfer. The volume of fluid (VOF) model with variable-time stepping was used to capture the time-dependent liquid-gas interface motion throughout the computational domain with the kinetic theory model used to predict the evaporation rate at the liquid-gas interface. The numerical results agree with the spray-cooling experiments that dropwise evaporative cooling is much better on surfaces with better wettability because of the better liquid spreading and convection, better liquid-solid contact, and stronger liquid evaporation.

  19. Investigation of annular flow at high evaporation rates in view of liquid film cooling

    NASA Astrophysics Data System (ADS)

    Nahstoll, Juergen

    1988-01-01

    The process of liquid film cooling of combustion chamber walls which are subjected to extremely high heat rates was investigated. A theoretical model was developed for a reliable prediction of the film cooling length. The mass transfer at the liquid-gas interface results from evaporated liquid and entrained liquid droplets. The film cooling length analysis, which includes the physical effects in detail, is separated into two regions: heating the liquid and evaporating the liquid. The theoretical results were experimentally verified at high pressures and temperatures using a modified H2/O2-rocket motor. There is a good agreement between the theoretical and the experimental results over the experimental range.

  20. Monitoring Cray Cooling Systems

    SciTech Connect

    Maxwell, Don E; Ezell, Matthew A; Becklehimer, Jeff; Donovan, Matthew J; Layton, Christopher C

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  1. Waveguide cooling system

    NASA Technical Reports Server (NTRS)

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  2. Solar-powered cooling system

    SciTech Connect

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  3. A laboratory study of thermals with evaporative cooling

    NASA Astrophysics Data System (ADS)

    Johari, Hamid

    In order to study thermals with buoyancy reversals, various mixtures of ethylene glycol and ethyl alcohol were released at the bottom of a water tank, generating thermals. Thermals were found to have a minimum flame length of 3.5 de. The thermal dynamics were shown to depend on a density reversal parameter. The results have application to the study of the dynamic effects of evaporation in cumulus clouds.

  4. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  5. Increased efficiency of rf-induced evaporative cooling by utilizing gravity

    NASA Astrophysics Data System (ADS)

    Klinner, Julian; Wolke, Matthias; Hemmerich, Andreas

    2010-04-01

    We report on an efficient rf-induced forced evaporative cooling of an ensemble of Rb87 atoms in state |F=2,mF=2> magnetically trapped in a quadrupole-Ioffe configuration trap. The cigar-shaped trap is oriented with its weak confining axis along the direction of gravity leading to, first, a significant separation of the trapping positions for low-field-seeking atoms with different mF value and, second, a reduced resonance volume for rf-induced evaporation confined to a small region around the lower tip of the cigar-shaped ensemble. This results in an enhancement of the evaporation efficiency α≡dlnT/(dlnN) due to either reduced or completely vanishing scattering events between cooled and evaporated atoms. We present data illustrating this effect.

  6. Increased efficiency of rf-induced evaporative cooling by utilizing gravity

    SciTech Connect

    Klinner, Julian; Wolke, Matthias; Hemmerich, Andreas

    2010-04-15

    We report on an efficient rf-induced forced evaporative cooling of an ensemble of {sup 87}Rb atoms in state |F=2,m{sub F}=2> magnetically trapped in a quadrupole-Ioffe configuration trap. The cigar-shaped trap is oriented with its weak confining axis along the direction of gravity leading to, first, a significant separation of the trapping positions for low-field-seeking atoms with different m{sub F} value and, second, a reduced resonance volume for rf-induced evaporation confined to a small region around the lower tip of the cigar-shaped ensemble. This results in an enhancement of the evaporation efficiency {alpha}{identical_to}dlnT/(dlnN) due to either reduced or completely vanishing scattering events between cooled and evaporated atoms. We present data illustrating this effect.

  7. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  8. Passive containment cooling system

    DOEpatents

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  9. Trends in evaporation and surface cooling in the Mississippi River basin

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.

    2001-01-01

    A synthesis of available data for the Mississippi River basin (area 3 ?? 106 km2) reveals an upward trend in evaporation during recent decades, driven primarily by increases in precipitation and secondarily by human water use. A cloud-related decrease in surface net radiation appears to have accompanied the precipitation trend. Resultant evaporative and radiative cooling of the land and lower atmosphere quantitatively explains downward trends in observed pan evaporation. These cooling tendencies also reconcile the observed regional atmospheric cooling with the anticipated regional "greenhouse warming." If recent high levels of precipitation (which correlate with the North Atlantic Oscillation) are mainly caused by an internal climatic fluctuation, an eventual return to normal precipitation could reveal heretofore-unrealized warming in the basin. If, instead, they are caused by some unidentified forcing that will continue to grow in the future, then continued intensification of water cycling and suppression of warming in the basin could result.

  10. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures.

    PubMed

    Gerson, Alexander R; Smith, Eric Krabbe; Smit, Ben; McKechnie, Andrew E; Wolf, Blair O

    2014-01-01

    Environmental temperatures that exceed body temperature (Tb) force endothermic animals to rely solely on evaporative cooling to dissipate heat. However, evaporative heat dissipation can be drastically reduced by environmental humidity, imposing a thermoregulatory challenge. The goal of this study was to investigate the effects of humidity on the thermoregulation of desert birds and to compare the sensitivity of cutaneous and respiratory evaporation to reduced vapor density gradients. Rates of evaporative water loss, metabolic rate, and Tb were measured in birds exposed to humidities ranging from ∼2 to 30 g H2O m(-3) (0%-100% relative humidity at 30°C) at air temperatures between 44° and 56°C. In sociable weavers, a species that dissipates heat primarily through panting, rates of evaporative water loss were inhibited by as much as 36% by high humidity at 48°C, and these birds showed a high degree of hyperthermia. At lower temperatures (40°-44°C), evaporative water loss was largely unaffected by humidity in this species. In Namaqua doves, which primarily use cutaneous evaporation, increasing humidity reduced rates of evaporative water loss, but overall rates of water loss were lower than those observed in sociable weavers. Our data suggest that cutaneous evaporation is more efficient than panting, requiring less water to maintain Tb at a given temperature, but panting appears less sensitive to humidity over the air temperature range investigated here. PMID:25461643

  11. Mild evaporative cooling applied to the torso provides thermoregulatory benefits during running in the heat.

    PubMed

    Filingeri, D; Fournet, D; Hodder, S; Havenith, G

    2015-06-01

    We investigated the effects of mild evaporative cooling applied to the torso, before or during running in the heat. Nine male participants performed three trials: control-no cooling (CTR), pre-exercise cooling (PRE-COOL), and during-exercise cooling (COOL). Trials consisted of 10-min neutral exposure and 50-min heat exposure (30 °C; 44% humidity), during which a 30-min running protocol (70% VO2max ) was performed. An evaporative cooling t-shirt was worn before the heat exposure (PRE-COOL) or 15 min after the exercise was started (COOL). PRE-COOL significantly lowered local skin temperature (Tsk ) (up to -5.3 ± 0.3 °C) (P < 0.001), mean Tsk (up to -2 ± 0.1 °C) (P < 0.001), sweat losses (-143 ± 40 g) (P = 0.002), and improved thermal comfort (P = 0.001). COOL suddenly lowered local Tsk (up to -3.8 ± 0.2 °C) (P < 0.001), mean Tsk (up to -1 ± 0.1 °C) (P < 0.001), heart rate (up to -11 ± 2 bpm) (P = 0.03), perceived exertion (P = 0.001), and improved thermal comfort (P = 0.001). We conclude that the mild evaporative cooling provided significant thermoregulatory benefits during exercise in the heat. However, the timing of application was critical in inducing different thermoregulatory responses. These findings provide novel insights on the thermoregulatory role of Tsk during exercise in the heat. PMID:25943671

  12. Dew Point Evaporative Comfort Cooling: Report and Summary Report

    SciTech Connect

    Dean, J.; Herrmann, L.; Kozubal, E.; Geiger, J.; Eastment, M.; Slayzak, S.

    2012-11-01

    The project objective was to demonstrate the capabilities of the high-performance multi-staged IEC technology and its ability to enhance energy efficiency and interior comfort in dry climates, while substantially reducing electric-peak demand. The project was designed to test 24 cooling units in five commercial building types at Fort Carson Army Base in Colorado Springs, Colorado.

  13. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory.

    PubMed

    Schlesinger, Daniel; Sellberg, Jonas A; Nilsson, Anders; Pettersson, Lars G M

    2016-03-28

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics. PMID:27036456

  14. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    NASA Astrophysics Data System (ADS)

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-01

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  15. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE PAGESBeta

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  16. Implementation of natural down-draft evaporative cooling devices in commercial buildings: The international experience

    SciTech Connect

    Chalfoun, N.V.

    1998-07-01

    Conventional evaporative coolers are high-pressure high-volume devices that deliver cool air by water evaporation wetted pads. Natural down-draft evaporative coolers, or Cool Towers, are devices developed at The University of Arizona's Environmental Research Laboratory. Similar to conventional coolers, these devices are equipped with wetted pads and sprays at the top which provide cool air by evaporation but the air is moved by gravity flow saving the energy required by the blower. In arid regions, cool towers are useful for cooling buildings and outdoor private and public areas. This paper focuses on recent implementation of cool towers in two international projects in arid regions. It also demonstrates CoolT{copyright}, a software developed by the author, which was used for sizing and designing the cool towers used in these projects. The two demonstrated projects are: (1) The Botswana Technology Center (BTC), a Headquarters office building in Bostswana, South Africa. The building energy loads were first optimized through energy conservation measures where the heating load, as predicted by computer simulation, was reduced by 89.9% and the cooling load by 24%. The cooling load was further addressed by the use of a series of integrated cool towers. (2) The Ministry of Municipal and Rural Affairs (MOMRA) Environmental Rowdah project in Riyadh, Saudi Arabia is the second, recently built, project which demonstrates the use of cool towers in outdoor spaces. The Rowdah is equipped with a 76 feet high cool tower, the biggest in the world, which provides cool air to the surrounding outdoor space. The tower performance, as predicted by the CoolT program, demonstrated that on a typical June day in Riyadh, at 3:00 p.m. the ambient air temperature of 107.1 F (41.7 C) will be cooled down to 73.9 F (23.2 C) i.e., 33.2 F (18.4 C) lower, but the 13% relative humidity of air is increased to 75% at the tower discharge.

  17. Cooling Floor AC Systems

    NASA Astrophysics Data System (ADS)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  18. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar; Moghaddam, Saeed

    2014-01-01

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the

  19. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  20. Get the most out of your cooling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Warm weather poses management challenges to maintain production efficiency in broiler chickens. Proper maintenance and operation of ventilation and cooling system components is essential to maintain the proper thermal environment and efficient use of energy. Fan and evaporative cooling system clea...

  1. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    PubMed

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. PMID:26787477

  2. Deep mine cooling system

    SciTech Connect

    Conan, J.

    1984-11-06

    A deep mine cooling system comprising a compressor supplied with air and rotatively driven by a motor and an expansion turbine supplied with compressed air from said compressor and driving an actuating unit, wherein the compressed air, after leaving the compressor but prior to reaching the expansion turbine, passes through a steam generator whose output provides the energy required to operate an absorption refrigeration machine used to cool utility water for mining, said compressed air on leaving the steam generator going to a first heat exchanger in which it yields calories to a water circuit comprising a second heat exchanger, said second heat exchanger giving off the calories absorbed by the water in the first heat exchanger to the air fed by the second heat exchanger to a drying cell that is regenerated by said air from the second heat exchanger, said drying cell being part of a set of two cells working in alternation, the other cell in the set receiving the compressed air from the first heat exchanger, such that the compressed air is fed to said expansion turbine after leaving said drying unit, and wherein the air exhausted from said expansion turbine is sent to a third heat exchanger after which it is distributed according to the needs of the mine, said third exchanger being traversed by the water collected in the mine, cooled in said exchanger and circulated upon leaving said exchanger to meet the cool water requirements of the mine.

  3. Preoperational test report, recirculation condenser cooling systems

    SciTech Connect

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  4. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  5. Cold {sup 52}Cr elastic and inelastic collision-rate determination using evaporative cooling analysis

    SciTech Connect

    Nguyen, Scott V.; Carvalho, Robert de; Doyle, John M.

    2007-06-15

    Elastic and inelastic collision-rate constants of {sup 52}Cr in the temperature range of 20 mK to 1 K are inferred from the evaporative cooling of buffer gas loaded atomic chromium. Using a model that describes the dynamics of the trapped chromium cloud during evaporation, we find g{sub el}=2.15(+2.5,-1.2)x10{sup -10} cm{sup 3}/s and g{sub in}=1.36(+1.2,-0.7)x10{sup -12} cm{sup 3}/s, consistent with theory but in disagreement with previously reported measurements.

  6. Emergency core cooling system

    DOEpatents

    Schenewerk, William E.; Glasgow, Lyle E.

    1983-01-01

    A liquid metal cooled fast breeder reactor provided with an emergency core cooling system includes a reactor vessel which contains a reactor core comprising an array of fuel assemblies and a plurality of blanket assemblies. The reactor core is immersed in a pool of liquid metal coolant. The reactor also includes a primary coolant system comprising a pump and conduits for circulating liquid metal coolant to the reactor core and through the fuel and blanket assemblies of the core. A converging-diverging venturi nozzle with an intermediate throat section is provided in between the assemblies and the pump. The intermediate throat section of the nozzle is provided with at least one opening which is in fluid communication with the pool of liquid sodium. In normal operation, coolant flows from the pump through the nozzle to the assemblies with very little fluid flowing through the opening in the throat. However, when the pump is not running, residual heat in the core causes fluid from the pool to flow through the opening in the throat of the nozzle and outwardly through the nozzle to the assemblies, thus providing a means of removing decay heat.

  7. Experimental study on the evaporative cooling of an air-cooled condenser with humidifying air

    NASA Astrophysics Data System (ADS)

    Wen, Mao-Yu; Ho, Ching-Yen; Jang, Kuang-Jang; Yeh, Cheng-Hsiung

    2014-02-01

    Using six different materials to construct a water curtain, this study aims to determine the most effective spray cooling of an air cooled heat exchanger under wet conditions. The experiments were carried out at a mass flow rate of 0.005-0.01 kg/s (spraying water), an airspeed of 0.6-2.4 m/s and a run time of 0-72 h for the material degradation tests. The experimental results indicate that the cooling efficiency, the heat rejection, and the sprinkling density increase as the amount of spraying water increases, but, the air-flow of the condenser is reduced at the same time. In addition, the cooling efficiency of the pads decreases with an increase of the inlet air velocity. In terms of experimental range, the natural wood pulp fiberscan can reach 42.7-66 % for cooling efficiency and 17.17-24.48 % for increases of heat rejection. This means that the natural wood pulp fiberscan pad most effectively enhances cooling performance, followed in terms of cooling effectiveness by the special non-woven rayon pad, the woollen blanket, biochemistry cotton and kapok, non-woven cloth of rayon cotton and kapok, and white cotton pad, respectively. However, the natural wood pulp fiberscan and special non-woven rayon display a relatively greater degradation of the cooling efficiency than the other test pads used in the material degradation tests.

  8. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  9. A tabulated chemistry approach for numerical modeling of diesel spray evaporation in a 'stabilized cool flame' environment

    SciTech Connect

    Kolaitis, D.I.; Founti, M.A.

    2006-04-15

    Droplet evaporation in a 'stabilized cool flame' environment leads to a homogeneous, heated air-fuel vapor mixture that can be subsequently either burnt or utilized in fuel-reforming applications for fuel cell systems. The paper investigates the locally occurring physico-chemical phenomena in an atmospheric pressure, diesel spray, stabilized cool flame reactor, utilizing a tabulated chemistry approach in conjunction with a two-phase, Eulerian-Lagrangian computational fluid dynamics code. Actual diesel oil physical properties are used to model spray evaporation in the two-phase simulations, whereas the corresponding chemistry is represented by n-heptane. A lookup table is constructed by performing a plethora of perfectly stirred reactor simulations, utilizing a semidetailed n-heptane oxidation chemical kinetics mechanism. The overall exothermicity of the preignition n-heptane oxidation chemistry and the fuel consumption rates are examined as a function of selected independent parameters, namely temperature, fuel concentration, and residence time; their influence on cool flame reactivity is thoroughly studied. It is shown that the tabulated chemistry approach allows accurate investigation of the chemical phenomena with low computational cost. The two-phase flow inside the stabilized cool flame reactor is simulated, utilizing the developed lookup table. Predictions are presented for a variety of test cases and are compared to available experimental data, with satisfactory agreement. Model validation tests indicate that prediction quality improves with increasing values of air temperature at the reactor's inlet. (author)

  10. Thermal panting in dogs: the lateral nasal gland, a source of water for evaporative cooling.

    PubMed

    Blatt, C M; Taylor, C R; Habal, M B

    1972-09-01

    Two lateral nasal glands appear to provide a large part of the water for evaporative cooling in the panting dog; their function is analogous to that of sweat glands in man. Each gland drains through a single duct which opens about 2 centimeters inside the opening of the nostril. This location may be essential to avoid desiccation of the nasal mucosa during thermal panting. The rate of secretion from one gland increased from 0 to an average of 9.6 g (gland . hour)(-1) as air temperature was increased from 10 degrees to 50 degrees C. Evaporation of the fluid from the paired glands could account for between 19 and 36 percent of the increase in respiratory evaporation associated with thermal panting. The fluid secreted by the gland was hypoosmotic to plasma. PMID:5052734

  11. Three-dimensional Marangoni cell in self-induced evaporating cooling unveiled by digital holographic microscopy.

    PubMed

    Minetti, Christophe; Buffone, Cosimo

    2014-01-01

    A digital holographic microscope has been used to trace the trajectory of a tracer particle inside the liquid phase of an evaporating meniscus formed at the mouth of a 1-mm2 borosilicate tube filled with ethanol. The Marangoni flow cells are generated by the self-induced differential evaporating cooling along the meniscus interface that creates gradients of surface tension which drive the convection. The competition between surface tension and gravity forces along the curved meniscus interface disrupts the symmetry due to surface tension alone. This distorts the shape of the toroidal Marangoni vortex. Thermocapillary instabilities of the evaporating meniscus are reported by analyzing the trajectories of the tracer particle. It is found that the trajectory of the tracer particle makes different three-dimensional loops and every four loops it returns to the first loop. By analyzing several loops it was found that the characteristic frequency of the periodic oscillatory motion is around 0.125 Hz. PMID:24580320

  12. Heating and cooling system

    SciTech Connect

    Imig, L.A.; Gardner, M.R.

    1982-08-01

    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes. Official Gazette of the U.S. Patent and Trademark Office.

  13. Effect of Water Spray Evaporative Cooling at the Inlet of Regeneration Air Stream on the Performance of an Adsorption Desiccant Cooling Process

    NASA Astrophysics Data System (ADS)

    Ando, Kosuke; Kodama, Akio; Hirose, Tsutomu; Goto, Motonobu; Okano, Hiroshi

    This paper shows an influence of evaporative cooler at the inlet of regeneration air stream of an adsorptive desiccant cooling process on the cooling/dehumidifying performance. This evaporative cooling was expected to cause humidity increase in regeneration air reducing the dehumidifying performance of the honeycomb absorber, while the evaporative cooling plays an important role to produce a lower temperature in supply air. Two different airs to be used for the regeneration of the desiccant wheel were considered. One was fresh outside air (OA mode) and the other was air ventilated from the room (RA mode). Experimental results showed that the amount of dehumidified water obtained at the process without water spray evaporative cooler was actually larger than that of process with water spray evaporative cooler. This behavior was mainly due to increase of humidity or relative humidity in the regeneration air as expected. However, temperature of supply air produced by the process with the evaporator was rather lower than that of the other because of the cooled return air, resulting higher CE value. Regarding the operating mode, the evaporative cooler at the OA-mode was no longer useful at higher ambient humidity because of the difficulty of the evaporation of the water in such high humidity. It was also found that its dehumidifying performance was remarkably decreased at higher ambient humidity and lower regeneration temperature since the effective adsorption capacity at the resulting high relative humidity of the regeneration air decreased.

  14. Organic ferroelectric evaporator with substrate cooling and in situ transport capabilities

    NASA Astrophysics Data System (ADS)

    Foreman, K.; Labedz, C.; Shearer, M.; Adenwalla, S.

    2014-04-01

    We report on the design, operation, and performance of a thermal evaporation chamber capable of evaporating organic thin films. Organic thin films are employed in a diverse range of devices and can provide insight into fundamental physical phenomena. However, growing organic thin films is often challenging and requires very specific deposition parameters. The chamber presented here is capable of cooling sample substrates to temperatures below 130 K and allows for the detachment of the sample from the cooling stage and in situ transport. This permits the use of multiple deposition techniques in separate, but connected, deposition chambers without breaking vacuum and therefore provides clean, well characterized interfaces between the organic thin film and any adjoining layers. We also demonstrate a successful thin film deposition of an organic material with a demanding set of deposition parameters, showcasing the success of this design.

  15. Evaporative Cooling and Coherent Axial Oscillations of Highly Charged Ions in a Penning Trap

    SciTech Connect

    Hobein, M.; Solders, A.; Suhonen, M.; Schuch, R.; Liu, Y.

    2011-01-07

    Externally, in an electron beam ion trap, generated Ar{sup 16+} ions were retrapped in a Penning trap and evaporatively cooled in their axial motion. The cooling was observed by a novel extraction technique based on the excitation of a coherent axial oscillation which yields short ion bunches of well-defined energies. The initial temperature of the ion cloud was decreased by a factor of more than 140 within 1 s, while the phase-space density of the coldest extracted ion pulses was increased by a factor of up to about 9.

  16. Solid Desiccant Cooling System Employed with Ventilation Cycle: A Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Parmar, H.; Hindoliya, D. A.

    2012-10-01

    For better use of evaporative cooling techniques in humid climate, employment of desiccant cooling system (DCS) can be a suitable option. Desiccant augmented evaporative cooling system may be employed for energy saving in buildings in place of conventional vapour compression based cooling system. This article presents a sensitive analysis of DCS simulated under the humid climate of Mumbai, India. Mathematical computations have been performed using outdoor specific humidity, ambient dry bulb temperature and room supply temperature. A sensitive analysis considering some important forcing parameters was conducted. It was observed that the "effectiveness" of direct evaporative cooler to be predominantly high influencing parameter compared to others, for the performance of DCS.

  17. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS.

    PubMed

    Lu, W; Qian, C; Sun, L T; Zhang, X Z; Fang, X; Guo, J W; Yang, Y; Feng, Y C; Ma, B H; Xiong, B; Ruan, L; Zhao, H W; Zhan, W L; Xie, D

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O(7+), 620 eμA of Ar(11+), 430 eμA of Ar(12+), 430 eμA of Xe(20+), and so on. The comparison will be discussed in the paper. PMID:26931956

  18. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    NASA Astrophysics Data System (ADS)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  19. Automotive Cooling and Lubricating Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  20. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  1. Direct evaporative cooling of 39K atoms to Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Landini, M.; Roy, S.; Roati, G.; Simoni, A.; Inguscio, M.; Modugno, G.; Fattori, M.

    2012-09-01

    We report the realization of a Bose-Einstein condensate of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises sub-Doppler laser cooling of large atomic clouds with more than 1010 atoms and evaporative cooling in an optical dipole trap where the collisional cross section can be increased using magnetic Feshbach resonances. Large condensates with almost 106 atoms can be produced in less than 15 s. Our achievements eliminate the need for sympathetic cooling with Rb atoms, which was the usual route implemented until now due to the unfavorable collisional property of 39K. Our findings simplify the experimental setup for producing Bose-Einstein condensates of 39K atoms with tunable interactions, which have a wide variety of promising applications, including atom interferometry to studies on the interplay of disorder and interactions in quantum gases.

  2. Theory of evaporative cooling with energy-dependent elastic scattering cross section and application to metastable helium

    SciTech Connect

    Tol, Paul J.J.; Hogervorst, Wim; Vassen, Wim

    2004-07-01

    The kinetic theory of evaporative cooling developed by Luiten et al. [Phys. Rev. A 53, 381 (1996)] is extended to include the dependence of the elastic scattering cross section on collision energy. We introduce a simple approximation by which the transition range between the low-temperature limit and the unitarity limit is described as well. Applying the modified theory to our measurements on evaporative cooling of metastable helium, we find a scattering length a=10(5) nm.

  3. Disk to dual ring deposition transformation in evaporating nanofluid droplets from substrate cooling to heating.

    PubMed

    Zhong, Xin; Duan, Fei

    2016-07-27

    Substrate temperature plays an important role in deposited morphologies formed after the evaporation of nanofluid droplets. The deposited patterns are shown to vary from a uniform disk-like profile to a dual ring from cooling to heating of the substrate. The droplet on the substrate with a relatively low temperature reveals three primary stages. Stage I features an outward transport of nanoparticles along the liquid-air interface near the droplet edge. Meanwhile some nanoparticles form sediment on the solid surface with a certain distance to the contact line. In the central region nanoparticles are dominated by Brownian motion so they fluctuate around their positions. Stage II is characterized by an increasing outward transport of nanoparticles in the bulk so the coffee ring is gradually enhanced. Most particles in Stages I and II are central-concentrated, leaving an annular gap sparsely covered adjacent to the outer ring. In Stage III, the pattern is homogenized by filling the gap with the arrival of the interior nanoparticles. Upon increasing the substrate temperature, the accompanied flow pattern exhibits a transition when the substrate still remains cooler than the atmosphere. It is resulted from the evaporative cooling at the droplet apex counteractive to the applied temperature gradient by substrate cooling. Above the transition temperature, the induced inward Marangoni flow takes place earlier at a higher substrate temperature, and in conjunction with the outward radial flow a dual ring pattern is formed. PMID:27411495

  4. Modeling of the Evaporative Cooling of Running-Down Liquid Films in the Slit Channel of the Spraying Device of a Cooling Tower

    NASA Astrophysics Data System (ADS)

    Dashkov, G. V.; Malenko, G. L.; Solodukhin, A. D.; Tyutyuma, V. D.

    2014-11-01

    This paper presents the results of computational modeling of the nonstationary evaporative cooling of a liquid film running down a vertical surface cooled by a turbulent vapor-air counterflow. The heat and mass transfer problem has been formulated in conjugate form. The calculation data on the total heat flow density at the interface for various instants of time are given.

  5. Direct Numerical Simulation of Evaporative Cooling at the Lateral Boundary of Shallow Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Heus, T.; Abma, D.; Mellado, J.

    2012-12-01

    This study investigates the dynamics of a narrow region of subsiding air at the lateral boundary of cumulus clouds, focusing on the role of evaporative cooling. Previous observational and large-eddy simulations showed the relevance of this subsiding shell in cloud dynamics, but have also showed that the size of this shell is well below what large-eddy simulations can resolve. Therefore, we have performed direct numerical simulations of an idealized subsiding shell to investigate accurately the complete turbulent field. The system develops a self-similar, Reynolds number independent flow which allows for the determination of explicit scaling laws relating the characteristic length, time and velocity scales of the shell. In particular, it is found that the shell width grows quadratically in time, and linearly with decreasing height. The magnitude of these growth rates confirm the importance of the subsiding shell because of the relatively fast development of entrainment-determining scales: for typical thermodynamic conditions in cumulus clouds, a velocity of the order of 1~m~s-1 and a thickness of the order of 10 meters are established in about 2 minutes. This fits well within the typical cloud life time, suggesting that our idealization is an adequate framework for the analysis of relevant aspects in the subsiding shell associated with buoyancy reversal. It also indicates that the scaling laws derived here can be used to estimate the potential strength of a subsiding shell and the mean lateral entrainment associated with it, provided an estimate of the local thermodynamical state of the cloud boundary. It is shown that the dominant parameter of this system is the saturation buoyancy, whereas the effect of the saturation mixing fraction is minor.uoyancy field in the subsiding shell. Blue colors are low values, red colors are high values.

  6. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  7. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  8. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper. PMID:24593505

  9. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a...

  10. 46 CFR 153.432 - Cooling systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a...

  11. Enhanced metastable population through evaporation cooling and recombination in the argon afterglow

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe; Celik, Yusuf; Tsankov, Tsanko; Aramaki, Mitsutoshi; Yoshimura, Shinji; Luggenholscher, Dirk

    2011-10-01

    Measurements, modelling and numerical simulations performed in a pulsed inductively coupled argon plasma at low pressures (1-5 Pa) show that very low electron temperatures are achieved on a characteristic time scale of a few tens of micro seconds through evaporation cooling. This allows for recombination resulting in the observed increase of the metastable density in the afterglow phase. The previously observed super-linear scaling with the electron density of the electron decay time is well reproduced analytically by assuming that microfield limited electron-stabilized three-body recombination into highly excited Rydberg states takes place. This hypothesis is strongly supported by experimental results from various diagnostic techniques.

  12. Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985

    SciTech Connect

    Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

    1985-12-31

    Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

  13. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  14. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  15. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  16. Non-intrusive cooling system

    DOEpatents

    Morrison, Edward F.; Bergman, John W.

    2001-05-22

    A readily replaceable heat exchange cooling jacket for applying fluid to a system conduit pipe. The cooling jacket comprises at least two members, separable into upper and lower portions. A chamber is formed between the conduit pipe and cooling jacket once the members are positioned about the pipe. The upper portion includes a fluid spray means positioned above the pipe and the bottom portion includes a fluid removal means. The heat exchange cooling jacket is adaptable with a drain tank, a heat exchanger, a pump and other standard equipment to provide a system for removing heat from a pipe. A method to remove heat from a pipe, includes the steps of enclosing a portion of the pipe with a jacket to form a chamber between an outside surface of the pipe and the cooling jacket; spraying cooling fluid at low pressure from an upper portion of the cooling jacket, allowing the fluid to flow downwardly by gravity along the surface of the pipe toward a bottom portion of the chamber; and removing the fluid at the bottom portion of the chamber.

  17. Solar Assisted Adsorptive Desiccant Cooling System

    NASA Astrophysics Data System (ADS)

    Ohkura, Masashi; Kodama, Akio

    Solar assisted desiccant coo1ing process is an effective means to reduce a latent heat load of the ventilation air. This paper describes the influences of ambient humidity and sensible heat factor (SHF) of the indoor room on the performance and scale of the desiccant cooling system. Two process configurations termed “ambient air mode” and “mixed air mode” were assumed. At “ambient air mode”, only ambient air is dehumidified and cooled in the desiccant process. The dehumidified air stream is mixed with return air and further cooled in the cooling coil. At “mixed air mode”, ambient air is mixed with return air and this mixed air stream is dehumidified in the desiccant process and cooled at the cooling coil. At “ambient air mode”, ambient air humidity had a significant impact on required amount of dehumidification since humid ambient air entered the desiccant process directly. In this case, higher temperature level and quantity, which is impossible to be supplied from commonly commercialized flat panel solar collectors, was required. At “mixed air mode”, the influence of increase of ambient humidity was not significant since humidity of the air entering the desiccant process became low by mixing with return air. At this mode, it was expected that 70°C of the circulating water and 37m2 of surface area of solar collector could produce a sufficient dehumidifying performance even in high latent heat condition. The contributing ratio of the desiccant wheel was also estimated. The ratio increased in higher latent heat condition due to increase of required amount of dehumidification. The contributing ratio of the thermal wheel became lower due to increase of saturated air temperature in the evaporative cooler.

  18. Closed cycle desiccant cooling system

    NASA Astrophysics Data System (ADS)

    Tchernev, D. I.; Emerson, D. T.

    1986-10-01

    The breadboard prototype of a closed cycle desiccant cooling system was designed, constructed and its performance tested. The system combines the sorption properties of solid zeolite/refrigerant vapor pairs with the principle of regenerative heat exchangers. Since solid zeolites are difficult to move in vacuum tight containers and in order to avoid intermittent operation, the desiccant is housed in two separate containers which are alternately heated and cooled by a heat transfer fluid. Using the principle of energy regeneration, the heat removed from the container being cooled is recycled in the container being heated. The breadboard system, with 90 pounds of zeolite, demonstrated a recycling efficiency of 75%, while the system capacity was 2,000 Btu/hr. This significantly increased the system thermal Coefficient of Performance (COP) to 1.1 at ARI conditions from the single container thermal COP of 0.4.

  19. Incorporation of an evaporative cooling scheme into a dynamic model of orographic precipitation

    NASA Technical Reports Server (NTRS)

    Barros, Ana Paula; Lettenmaier, Dennis P.

    1994-01-01

    A simple evaporative cooling scheme was incorporated into a dynamic model to estimate orographic precipitation in mountainous regions. The orographic precipitation model is based on the transport of atmospheric moisture and the quantification of preciptable water across a 3D representation of the terrain from the surface up to 250 hPa. Advective wind fields are computed independently and boundary conditions are extracted from radiosonde data. Precipitation rates are obtained through calibration of a spatially distributed precipitation efficiency parameter. The model was applied to the central Sierra Nevada. Results show a gain of the order of 20% in threat-score coefficients designed to measure the forecast ability of the model. Accuracy gains are largest at high elevations and during intense storms associated with warm air masses.

  20. Effects of evaporative cooling on reproductive performance and milk production of dairy cows in hot wet conditions

    NASA Astrophysics Data System (ADS)

    Khongdee, S.; Chaiyabutr, N.; Hinch, G.; Markvichitr, K.; Vajrabukka, C.

    2006-05-01

    Fourteen animals of second and third lactation of Thai Friesian crossbred cows (87.5% Friesian × 12.5% Bos indicus) located at Sakol Nakhon Research and Breeding Centre, Department of Livestock Development, Ministry of Agriculture and Cooperatives, were divided randomly into two groups of seven each to evaluate the effects of evaporative cooling on reproductive and physiological traits under hot, humid conditions. Results indicated that installation of evaporating cooling in the open shed gave a further improvement in ameliorating heat stress in dairy cows in hot-wet environments by utilising the low humidity conditions that naturally occur during the day. The cows housed in an evaporatively cooled environment had both a rectal temperature and respiration rate (39.09°C, 61.39 breaths/min, respectively) significantly lower than that of the non-cooled cows (41.21°C; 86.87 breaths/min). The former group also had higher milk yield and more efficient reproductive performance (pregnancy rate and reduced days open) than the latter group. It is suggested that the non-evaporatively cooled cows did not gain benefit from the naturally lower heat stress during night time.

  1. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  2. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment

    NASA Astrophysics Data System (ADS)

    Chaiyabutr, N.; Chanpongsang, S.; Suadsong, S.

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33°C and 61%, with the corresponding values for the evaporatively cooled barn being 28°C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher ( P < 0.05) than that in the cooled barn. Rectal temperatures and respiration rates of non-cooled animals were higher ( P < 0.05) than those of cooled animals. Daily dry matter intake (DMI) of cooled animals was higher while water intakes were lower ( P < 0.05) than those of non-cooled animals. The mean absolute values of plasma volume, blood volume, and extracellular fluid (ECF) of cooled animals were significantly higher ( P < 0.05) than those of non-cooled animals throughout all stages of lactation. Milk yields of cooled animals were higher by 42%, 36% and 79% on average than those of non-cooled animals during early-, mid- and late-lactation, respectively. The decline in milk yields as lactation advances was markedly apparent in late-lactating non-cooled animals, while no significant changes in milk composition at different stages of lactation were observed in either group. Mean arterial plasma concentrations, arteriovenous concentration differences (A-V differences) and the extraction ratio across the mammary gland for acetate, glucose and triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T3) and insulin-like growth factor-1 (IGF-1), but

  3. Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment.

    PubMed

    Chaiyabutr, N; Chanpongsang, S; Suadsong, S

    2008-09-01

    The aim of this study was to determine how evaporative cooling modifies body function with respect to water metabolism and other variables relevant to milk synthesis in crossbred cattle. The study was conducted on two groups of 0.875HF:0.125RS crossbred Holstein cattle (87.5%) housed in an open-sided barn with a tiled roof (non-cooled animals) and in a close-sided barn under an evaporative cooling system (cooled animals). The maximum ambient temperature and relative humidity for the non-cooled group were 33 degrees C and 61%, with the corresponding values for the evaporatively cooled barn being 28 degrees C and 84%, respectively. The temperature humidity index (THI) of under non-cooled conditions was higher (P < 0.05) than that in the cooled barn. Rectal temperatures and respiration rates of non-cooled animals were higher (P < 0.05) than those of cooled animals. Daily dry matter intake (DMI) of cooled animals was higher while water intakes were lower (P < 0.05) than those of non-cooled animals. The mean absolute values of plasma volume, blood volume, and extracellular fluid (ECF) of cooled animals were significantly higher (P < 0.05) than those of non-cooled animals throughout all stages of lactation. Milk yields of cooled animals were higher by 42%, 36% and 79% on average than those of non-cooled animals during early-, mid- and late-lactation, respectively. The decline in milk yields as lactation advances was markedly apparent in late-lactating non-cooled animals, while no significant changes in milk composition at different stages of lactation were observed in either group. Mean arterial plasma concentrations, arteriovenous concentration differences (A-V differences) and the extraction ratio across the mammary gland for acetate, glucose and triglyceride of cooled animals were not significantly different compared with values for non-cooled animals. No differences were seen in plasma hormonal levels for triiodotyronine (T(3)) and insulin-like growth factor-1 (IGF-1

  4. Compressor bleed cooling fluid feed system

    DOEpatents

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  5. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  6. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  7. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  8. Cooling system for electronic components

    SciTech Connect

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  9. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms.

    PubMed

    Chen, Jian-Nan; Zhang, Zhen; Xu, Rui-Na; Ouyang, Xiao-Long; Jiang, Pei-Xue

    2016-09-13

    Numerical investigations of the dynamics and evaporative cooling of water droplets impinging onto heated surfaces can be used to identify spray cooling mechanisms. Droplet impingement dynamics and evaporation are simulated using the presented numerical model. Volume-of-fluid method is used in the model to track the free surface. The contact line dynamics was predicted from a dynamic contact angle model with the evaporation rate predicted by a kinetic theory model. A species transport equation was solved in the gas phase to describe the vapor convection and diffusion. The numerical model was validated by experimental data. The physical effects including the contact angle hysteresis and the thermocapillary effect are analyzed to offer guidance for future numerical models of droplet impingement cooling. The effects of various parameters including surface wettability, surface temperature, droplet velocity, droplet size, and droplet temperature were numerically studied from the standpoint of spray cooling. The numerical simulations offer profound analysis and deep insight into the spray cooling heat transfer mechanisms. PMID:27531256

  10. Evaporative cooling in late-gestation Murrah buffaloes potentiates immunity around transition period and overcomes reproductive disorders.

    PubMed

    Aarif, Ovais; Aggarwal, Anjali

    2015-10-15

    The objective of the study was to observe the effect of evaporative cooling during late gestation on immunity around the transition period and the probable outcome on reproductive disorders in Murrah buffaloes. Sixteen pregnant dry Murrah buffaloes at 60 days prepartum were selected and divided into two groups of eight animals each. Group 1 buffaloes remained without the provision of cooling, whereas the second group of buffaloes was managed under fans and mist cooling during the dry period. After parturition, all the animals were managed under evaporative cooling. Dry matter intake was significantly (P < 0.05) higher in cooled relative to noncooled animals at -15, 0, and +20 days of parturition. Cortisol and prolactin levels were significantly (P < 0.05) higher in noncooled relative to cooled animals at -15 and 0 days of parturition. However, prolactin was significantly (P < 0.05) higher in cooled animals at +20 days. Messenger RNA expression of prolactin receptor gene (PRL-R) was upregulated and suppressor of cytokine signaling gene 1 (SOCS-1) was downregulated in cooled animals at -20, 0, and +20 days of parturition. Tumor necrosis factor α and interleukin 4 levels remained significantly (P < 0.05) higher in cooled animals at -20, 0, and +20 days of parturition. Interleukin 6 was significantly (P < 0.05) lower in cooled animals at -20 and 0 days. Interferon γ levels were significantly higher at -20 and +20 days of parturition in cooled relative to noncooled animals. The reproductive disorders such as retention of placenta, metritis, and endometritis occurred at the rate of 37.25%, 25%, and 12.25% in the noncooled group, whereas only retention of placenta was observed in the cooled (12.5%) group. PMID:26211430

  11. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    NASA Astrophysics Data System (ADS)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  12. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, Joseph C.

    1997-01-01

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

  13. Heat pump system with selective space cooling

    DOEpatents

    Pendergrass, J.C.

    1997-05-13

    A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

  14. Dust formation, growth and evaporation in a cool pulsating circumstellar shell

    NASA Astrophysics Data System (ADS)

    Gauger, A.; Sedlmayr, E.; Gail, H.-P.

    1990-08-01

    The variability of the dust forming environment in circumstellar shell of long-period variables requires both, a treatment of dust formation and growth, and a treatment of the destruction of dust due to thermal evaporation. Therefore, a system of moment equations which describes the time evolution of the dust component in both situations is derived. A special representation for the size distribution of dust particles is developed which comprises the actual distribution function and its history at every instant during the calculation. As a consequence, the computational effort for a time-dependent treatment of dust destruction by thermal evaporation reduces substantially. The method is applied to the formation and destruction of carbon dust in an adiabatic gas undergoing sinusoidal time variations of the temperature. It turns out, that thermal destruction of dust particles requires temperatures much higher than the temperature of condensation. Nevertheless, evaporation is important already at lower temperatures, because the particle radius and therefore the amount of condensed material is reduced significantly before the dust particles are destroyed.

  15. Gas hydrate cool storage system

    DOEpatents

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  16. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  17. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling

    NASA Astrophysics Data System (ADS)

    Chandrasekar, M.; Senthilkumar, T.

    2016-07-01

    A passive thermal regulation technique with fins in conjunction with cotton wicks is developed in the present work for controlling the temperature of PV module during its operation. Experiments were conducted with the developed technique in the location of Tiruchirappalli (78.6°E and 10.8°N), Tamil Nadu, India with flat 25 Wp PV module and its viability was confirmed. The PV module temperature got reduced by 12 % while the electrical yield is increased by 14 % with the help of the developed cooling system. Basic energy balance equation applicable for PV module was used to evaluate the module temperatures and a fair agreement was obtained between the theoretical and experimental values for the cases of with cooling and without cooling.

  18. Passive thermal regulation of flat PV modules by coupling the mechanisms of evaporative and fin cooling

    NASA Astrophysics Data System (ADS)

    Chandrasekar, M.; Senthilkumar, T.

    2015-08-01

    A passive thermal regulation technique with fins in conjunction with cotton wicks is developed in the present work for controlling the temperature of PV module during its operation. Experiments were conducted with the developed technique in the location of Tiruchirappalli (78.6°E and 10.8°N), Tamil Nadu, India with flat 25 Wp PV module and its viability was confirmed. The PV module temperature got reduced by 12 % while the electrical yield is increased by 14 % with the help of the developed cooling system. Basic energy balance equation applicable for PV module was used to evaluate the module temperatures and a fair agreement was obtained between the theoretical and experimental values for the cases of with cooling and without cooling.

  19. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    SciTech Connect

    Sharma, Anuj; Mathur, Jyotirmay; Bhandari, Mahabir S

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  20. Open cycle lithium chloride cooling system

    NASA Astrophysics Data System (ADS)

    Lenz, T. G.; Loef, G. O. G.; Iyer, R.; Wenger, J.

    1983-05-01

    A lithium chloride open cycle absorption chiller has been designed, built and tested. Solution reconcentration takes place in a small counter current packed column supplied with solar heated air. Removal of noncondensable gases that enter the chiller dissolved in the strong solution and the make-up refrigerant streams is accomplished by a liquid-jet ejector and a small vacuum pump. Cooling capacities approaching 1.4 tons and COP levels of 0.58 have been achieved at non-optimum operating conditions. Test results from preliminary system operation suggest that mass transfer processes in both the packed column reconcentrator and the absorber are controlled by concentration gradients in the lithium chloride solution. Liquid phase controlled mass transfer dictates an operating strategy different from the previously assumed gas phase controlled process to obtain maximum rates of evaporation in the packed column. Determination of optimal operating conditions leading to decreased electrical power consumption and improved cooling capacity and coefficient of performance will require further analysis and testing.

  1. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  2. Cooling systems for satellite remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Oren, J. A.

    1974-01-01

    The characteristics of a cryogenic cooling system for the Pollution Monitoring Satellite (PMS) are discussed. Studies were conducted to make the following determinations: (1) the characteristics and use of proven and state-of-the-art cryogenic cooling systems for six specified ranges of performance, (2) the system most applicable for each of the six cooling categories, and (3) conceptual designs for candidate system for each of the six representative cooling categories. The six cooling categories of electrical loads are defined. The desired mission life for the cooling system is two years with both continuous and intermittent operating conditions.

  3. Information technology equipment cooling system

    DOEpatents

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  4. Cooling system for superconducting magnet

    DOEpatents

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  5. Cooling system for superconducting magnet

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed

    1998-01-01

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir.

  6. Vehicle hydraulic cooling fan system

    SciTech Connect

    Nilson, C.A.

    1993-06-08

    A hydraulic cooling system for vehicles having an internal combustion engine cooled by a radiator and a coolant is described, comprising, in combination, a shroud adapted to be mounted adjacent the radiator having a wall forming an air passage and defining a first port disposed adjacent the radiator and a second port spaced from the first port, a fan located within the second port, a hydraulic fan motor operatively connected to the fan, a hydraulic pump operatively connected to the engine for producing a pressurized hydraulic fluid flow, a hydraulic circuit interconnecting the pump to the fan motor, the circuit including a control valve, a hydraulic fluid reservoir and a heat exchanger, the heat exchanger being mounted within the shroud air passage.

  7. Avian thermoregulation in the heat: evaporative cooling capacity in an archetypal desert specialist, Burchell's sandgrouse (Pterocles burchelli).

    PubMed

    McKechnie, Andrew E; Smit, Ben; Whitfield, Maxine C; Noakes, Matthew J; Talbot, William A; Garcia, Mateo; Gerson, Alexander R; Wolf, Blair O

    2016-07-15

    Sandgrouse (Pterocliformes) are quintessential examples of avian adaptation to desert environments, but relatively little is known about the limits to their heat tolerance and evaporative cooling capacity. We predicted that evaporative cooling in Burchell's sandgrouse (Pterocles burchelli) is highly efficient and provides the basis for tolerance of very high air temperature (Ta). We measured body temperature (Tb), resting metabolic rate (RMR) and evaporative water loss (EWL) at Ta between 25°C and ∼58°C in birds exposed to successive increments in Ta Normothermic Tb averaged 39.0°C, lower than typical avian values. At Ta>34.5°C, Tb increased linearly to a maximum of 43.6°C at Ta=56°C. The upper critical limit of thermoneutrality (Tuc) was Ta=43.8°C, closely coinciding with the onset of panting and gular flutter. Above the Tuc, RMR increased 2.5-fold to 2.89 W at Ta=56°C, a fractional increase far exceeding that of many other species under comparable conditions. Rates of EWL increased rapidly at Ta>42.9°C to 7.84±0.90 g h(-1) at Ta=56°C, an 11-fold increase above minimal levels. Maximum evaporative cooling efficiency (ratio of evaporative heat loss to metabolic heat production) was 2.03, but could be as high as 2.70 if our assumption that the birds were metabolising lipids is incorrect. Thermoregulation at very high Ta in P. burchelli was characterised by large increases in RMR and EWL, and is much less efficient than in taxa such as columbids and caprimulgids. PMID:27207634

  8. Turbine airfoil with ambient cooling system

    DOEpatents

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  9. Study of batch maltitol (4- O-α- D-glucopyranosyl- D-glucitol) crystallization by cooling and water evaporation

    NASA Astrophysics Data System (ADS)

    Gharsallaoui, Adem; Rogé, Barbara; Mathlouthi, Mohamed

    2010-10-01

    It is obvious that maltitol, like other disaccharides, owes some of its functional properties to structural features such as the flexibility of the glycosidic bond and hydrogen bonding and to its aqueous solution physicochemical properties, especially solubility and metastable zone width. This is particularly the case for molecular arrangements, which take place before and during crystallization process. We have previously used FTIR spectra to study structural properties of the maltitol molecule in concentrated solution like molecular associations or changes in conformation [1]. To complement these molecular properties, the different maltitol solution physicochemical properties having a relationship with maltitol-water or maltitol-maltitol interactions like solubility, metastable zone width, viscosity, and density were determined [2]. In this work we used these physicochemical results to optimize maltitol crystallization both by reducing the process duration and by improving the obtained crystal quality. Two strategies have been tested: the optimization of the time/temperature profile during the classical cooling crystallization and the application to maltitol of evaporative crystallization, a process usually used for sucrose preparation. The obtained results mainly showed remarkable difference in crystal mean size and crystal size distribution when the cooling profile was modified. On the other hand, evaporative crystallization was shown to make it possible to lower considerably the crystallization time compared to the cooling process but crystal morphological properties seem to be considerably modified by evaporation.

  10. Performance Assessment of a Desiccant Cooling System in a CHP Application with an IC Engine

    SciTech Connect

    Jalalzadeh-Azar, A. A.; Slayzak, S.; Judkoff, R.; Schaffhauser, T.; DeBlasio, R.

    2005-04-01

    Performance of a desiccant cooling system was evaluated in the context of combined heat and power (CHP). The baseline system incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The desiccant unit was regenerated through heat recovery from a gas-fired reciprocating internal combustion engine. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic conditions, while allowing influx of outside air in excess of what is typically required for commercial buildings. Energy and water efficiencies of the desiccant cooling system were also evaluated and compared with those of a conventional system. The results of parametric assessments revealed the importance of using a heat exchanger for concurrent desiccant post cooling and regeneration air preheating. These functions resulted in enhancement of both the cooling performance and the thermal efficiency, which are essential for fuel utilization improvement. Two approaches for mixing of the return air and outside air were examined, and their impact on the system cooling performance and thermal efficiency was demonstrated. The scope of the parametric analyses also encompassed the impact of improving the indirect evaporative cooling effectiveness on the overall cooling system performance.

  11. Heat exchanger with auxiliary cooling system

    DOEpatents

    Coleman, John H.

    1980-01-01

    A heat exchanger with an auxiliary cooling system capable of cooling a nuclear reactor should the normal cooling mechanism become inoperable. A cooling coil is disposed around vertical heat transfer tubes that carry secondary coolant therethrough and is located in a downward flow of primary coolant that passes in heat transfer relationship with both the cooling coil and the vertical heat transfer tubes. A third coolant is pumped through the cooling coil which absorbs heat from the primary coolant which increases the downward flow of the primary coolant thereby increasing the natural circulation of the primary coolant through the nuclear reactor.

  12. Radiant vessel auxiliary cooling system

    DOEpatents

    Germer, John H.

    1987-01-01

    In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.

  13. Cool systems for hot cities

    SciTech Connect

    Akbari, Hashem; Bretz, Sarah

    1998-09-02

    On a hot summer day, Los Angeles, CA, like Baltimore, MD, Phoenix, AZ, Washington, D.C., and Tokyo, Japan, is c. 6-8 degrees F hotter than its surrounding areas. Dark buildings and pavement have replaced urban vegetation in these cities, absorbing more solar heat. The urban heat islands that are created result in increased air-conditioning costs, energy use, and pollution. Scientists at the Lawrence Berkeley National Laboratory have been studying the effects of roof system color and type on the energy used to cool a building. The results of this research indicate that roofing professionals should consider the reflectance (albedo) and emittance (release of absorbed heat) of the roof systems they install.

  14. Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

  15. Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987

    SciTech Connect

    Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

    1987-12-31

    Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

  16. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  17. High temperature cooling system and method

    DOEpatents

    Loewen, Eric P.

    2006-12-12

    A method for cooling a heat source, a method for preventing chemical interaction between a vessel and a cooling composition therein, and a cooling system. The method for cooling employs a containment vessel with an oxidizable interior wall. The interior wall is oxidized to form an oxide barrier layer thereon, the cooling composition is monitored for excess oxidizing agent, and a reducing agent is provided to eliminate excess oxidation. The method for preventing chemical interaction between a vessel and a cooling composition involves introducing a sufficient quantity of a reactant which is reactive with the vessel in order to produce a barrier layer therein that is non-reactive with the cooling composition. The cooling system includes a containment vessel with oxidizing agent and reducing agent delivery conveyances and a monitor of oxidation and reduction states so that proper maintenance of a vessel wall oxidation layer occurs.

  18. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-02-27

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  19. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    SciTech Connect

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  20. Avian thermoregulation in the heat: efficient evaporative cooling allows for extreme heat tolerance in four southern hemisphere columbids.

    PubMed

    McKechnie, Andrew E; Whitfield, Maxine C; Smit, Ben; Gerson, Alexander R; Smith, Eric Krabbe; Talbot, William A; McWhorter, Todd J; Wolf, Blair O

    2016-07-15

    Birds show phylogenetic variation in the relative importance of respiratory versus cutaneous evaporation, but the consequences for heat tolerance and evaporative cooling capacity remain unclear. We measured evaporative water loss (EWL), resting metabolic rate (RMR) and body temperature (Tb) in four arid-zone columbids from southern Africa [Namaqua dove (Oena capensis, ∼37 g), laughing dove (Spilopelia senegalensis, ∼89 g) and Cape turtle dove (Streptopelia capicola, ∼148 g)] and Australia [crested pigeon (Ocyphaps lophotes), ∼186 g] at air temperatures (Ta) of up to 62°C. There was no clear relationship between body mass and maximum Ta tolerated during acute heat exposure. Maximum Tb at very high Ta was 43.1±1.0, 43.7±0.8, 44.7±0.3 and 44.3±0.8°C in Namaqua doves, laughing doves, Cape turtle doves and crested pigeons, respectively. In all four species, RMR increased significantly at Ta above thermoneutrality, but the increases were relatively modest with RMR at Ta=56°C being 32, 60, 99 and 11% higher, respectively, than at Ta=35°C. At the highest Ta values reached, evaporative heat loss was equivalent to 466, 227, 230 and 275% of metabolic heat production. The maximum ratio of evaporative heat loss to metabolic production observed in Namaqua doves, 4.66, exceeds by a substantial margin previous values reported for birds. Our results support the notion that cutaneous evaporation provides a highly efficient mechanism of heat dissipation and an enhanced ability to tolerate extremely high Ta. PMID:27207640

  1. Reactor core isolation cooling system

    DOEpatents

    Cooke, F.E.

    1992-12-08

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom. 1 figure.

  2. Reactor core isolation cooling system

    DOEpatents

    Cooke, Franklin E.

    1992-01-01

    A reactor core isolation cooling system includes a reactor pressure vessel containing a reactor core, a drywell vessel, a containment vessel, and an isolation pool containing an isolation condenser. A turbine is operatively joined to the pressure vessel outlet steamline and powers a pump operatively joined to the pressure vessel feedwater line. In operation, steam from the pressure vessel powers the turbine which in turn powers the pump to pump makeup water from a pool to the feedwater line into the pressure vessel for maintaining water level over the reactor core. Steam discharged from the turbine is channeled to the isolation condenser and is condensed therein. The resulting heat is discharged into the isolation pool and vented to the atmosphere outside the containment vessel for removing heat therefrom.

  3. Emergency cooling system and method

    DOEpatents

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  4. Capillary Action may Cool Systems and Precisely balance Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Kriske, Richard

    2011-10-01

    It is well known that it takes no work for Water to rise in a Capillary tube against the force of Gravity. There is a precise balance in this system that resembles Robert Millikan's ``Oil Drop'' experiment, where mass was balanced against the electrostatic force. If at the top of the capillary tube there is evaporation, one can see that the system is cooled as another water molecule has room to move up the column. Furthermore, if the evaporation process can be controlled one photon at a time, a precise balance is created between a photon, and the height/mass of the column. If other molecules are place in the column, they can be moved up and down the column, in a chromatograph way, in a fairly precise manner, by controlling evaporation and molecular weight. If in addition to all of this, the interface of the solution against the walls of the column have Fermi levels, it can be seen as a very precise Electrochemical Device. In the situation of nanotubes, as opposed to trees and plants, these properties can be used to create measure environmental properties and to Balance Chemical Reactions. Forests, and Plants may cool themselves and their environment using this process, and using this process coupled with more energetic photons through photosynthesis.

  5. A new cylinder cooling system using oil

    SciTech Connect

    Harashina, Kenichi; Murata, Katsuhiro; Satoh, Hiroshi; Shimizu, Yasuo; Hamamura, Masahiro

    1995-12-31

    The design of engine cylinders must satisfy two conflicting requirements, good cooling performance and ease of manufacture. A cooling system was designed to permit the circulation of engine lubricating oil as a coolant at high speed through grooves provided on the external periphery of the cylinder liner. Testing in an actual operating engine confirmed that this cooling system design not only provides better heat transfer and higher cooling performance but also simplifies the manufacturing of the cylinder since external cooling fins are not required. In this paper, the authors will discuss the cylinder cooling effect of the new cylinder cooling system, referring mainly to the test results of a single-cylinder motorcycle engine with lubricating oil from the crankcase used as the coolant.

  6. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  7. A device for recharging evaporation sources in ultrahigh vacuum systems

    NASA Astrophysics Data System (ADS)

    Fuenzalida, V. M.; Grahmann, C. R.; Herrera, C.

    1998-08-01

    We describe a device capable of recharging the evaporation sources of ultrahigh vacuum systems without breaking the vacuum. The device is operated through the same load lock used for the introduction of the substrates and is able to place grains of materials on resistively heated boats.

  8. End-evaporation kinetics in living-polymer systems

    NASA Astrophysics Data System (ADS)

    Marques, C. M.; Turner, M. S.; Cates, M. E.

    1993-11-01

    We study theoretically the process of ``end-evaporation'' in living polymer systems, such as wormlike surfactant micelles. End-evaporation occurs when single monomers either break away from, or join onto, a chain end, the rates being described by the (mean-field) rate constants k and k', respectively. Thus the chains can exchange material with one-another via a bath of free monomers. The relaxation of a system of living polymers after a small temperature jump (T-jump) is studied theoretically. The effect of a T-jump is to prepare the system with the wrong mean chain length, which relaxes to its equilibrium value L¯ by end-evaporation. It is found that the number of free monomers in the system relaxes almost completely in a time of order 1/kL¯, while the weight-average chain length, which is the quantity measured in light scattering experiments, relaxes on a time scale τD=4L¯2/k, which is three powers of L¯ longer. We also predict that the stress relaxation after a step strain is dominated by end-evaporation whenever τD≲τrep, where τrep is the reptation (disengagement) time for a chain of length L¯. In this case the stress relaxation is found to be ``stretched exponential'' for times smaller than τD and single exponential for longer times.

  9. Effects of intensive evaporative cooling on performance characteristics of land-based gas turbine

    SciTech Connect

    Utamura, Motoaki; Kuwahara, Takaaki; Murata, Hidetaro; Horii, Nobuyuki

    1999-07-01

    Injection of finely-atomized water droplets at inlet to compressor is demonstrated to increase the power and augment the efficiency of gas turbine using a 115MW simple cycle commercial power plant. Power-up mechanism of the present system is identified to be a composite of three existing methods. Design requirement on droplet diameter is discussed in view of blade erosion as well as evaporation efficiency within the compressor. Special spray nozzle to generate water droplets with sauter mean diameter of 10 {micro} m is developed and applied to demonstration test. Experiments show that injection of spray water of 1% to air mass ratio would increase power output by about 10% and thermal efficiency by 3% (relative) respectively. A newly introduced incremental efficiency defined as the ratio of incremental power to additional fuel energy is found to be in excess of 10% (absolute) over thermal efficiency in case without water injection and to be independent of spray amount. It is also revealed that the operation of water spraying suppresses dust deposition on compressor blades under proper control of water quality, which mitigates the deterioration of compressor adiabatic efficiency.

  10. Rankine-cycle heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design for domestic or commercial solar heating and cooling system based on rankine heat pump cycle includes detailed drawings, performance data, equipment specifications, and other pertinent information.

  11. Safety and feasibility of the RhinoChill immediate transnasal evaporative cooling device during out-of-hospital cardiopulmonary resuscitation: A single-center, observational study.

    PubMed

    Grave, Marie-Sophie; Sterz, Fritz; Nürnberger, Alexander; Fykatas, Stergios; Gatterbauer, Mathias; Stättermayer, Albert Friedrich; Zajicek, Andreas; Malzer, Reinhard; Sebald, Dieter; van Tulder, Raphael

    2016-08-01

    We investigated feasibility and safety of the RhinoChill (RC) transnasal cooling system initiated before achieving a protected airway during cardiopulmonary resuscitation (CPR) in a prehospital setting.In out-of-hospital cardiac arrest (OHCA), transnasal evaporative cooling was initiated during CPR, before a protected airway was established and continued until either the patient was declared dead, standard institutional systemic cooling methods were implemented or cooling supply was empty. Patients were monitored throughout the hypothermia period until either death or hospital discharge. Clinical assessments and relevant adverse events (AEs) were documented over this period of time.In total 21 patients were included. Four were excluded due to user errors or meeting exclusion criteria. Finally, 17 patients (f = 6; mean age 65.5 years, CI95%: 57.7-73.4) were analyzed. Device-related AEs, like epistaxis or nose whitening, occurred in 2 patients. They were mild and had no consequence on the patient's outcome. According to the field reports of the emergency medical services (EMS) personnel, no severe technical problems occurred by using the RC device that led to a delay or the impairment of quality of the CPR.Early application of the RC device, during OHCA is feasible, safe, easy to handle, and does not delay or hinder CPR, or establishment of a secure intubation. For efficacy and further safety data additional studies will be needed. PMID:27559978

  12. An experimental and numerical investigation of thermocapillary driven phenomena for evaporating menisci in capillary tubes related to microelectronics cooling

    NASA Astrophysics Data System (ADS)

    Buffone, Cosimo

    The present work is an experimental and numerical investigation of the hydrodynamics of a meniscus formed by a liquid in capillary tubes undergoing phase change. The non uniform evaporation process along the liquid-vapour interface leads to self-induced temperature field that in turn generates surface tension gradients along the meniscus. The interfacial stress so created drives a vigorous liquid convection that is measured by using a micro-Particle Image Velocimetry (micro-PIV) technique. Temperature measurements using advanced Infra Red (IR) and Thermochromic Liquid Crystal (TLC) techniques allowed us to measure the interfacial temperature profile (IR) and external capillary tube temperature (TLC). Measuring velocity and temperature at such scales is not trivial because conventional techniques such as thermocouples cannot be used. Therefore, efforts have been made to compare the measurements gathered from different techniques: TLC and IR external wall measurements for the temperature field and micro-PIV measurements and numerical analysis for the velocity field. The TLC temperature measurements show the important sink effect close to the meniscus near contact line region. By measuring the evaporation mass flux and performing a heat transfer analysis based on the measured wall temperature of the system, a very good agreement was found, giving confidence to the temperature measurements performed with TLC. IR measurement of the external capillary tube wall was also taken and compares well with the TLC ones. Tube sizes ranging from 200 to 1,630 mm and four volatile liquids were investigated. Different experimental studies were conducted with both vertically and horizontally oriented capillaries, with and without external heating. It is observed that symmetrical flow patterns found in horizontal diametrical sections of the tube are dramatically distorted in vertical diametrical sections, presumably due to gravity. The IR measurements of the liquid-vapour interface

  13. Liquid metal cooled nuclear reactor plant system

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1993-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

  14. Quantifying Evaporation and Evaluating Runoff Estimation Methods in a Permeable Pavement System - abstract

    EPA Science Inventory

    Studies on quantifying evaporation in permeable pavement systems are limited to few laboratory studies that used a scale to weigh evaporative losses and a field application with a tunnel-evaporation gauge. A primary objective of this research was to quantify evaporation for a la...

  15. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  16. Radiant vessel auxiliary cooling system

    SciTech Connect

    Germer, J.H.

    1987-07-07

    This patent describes an improved radiant vessel passive cooling system for liquid-metal poor-type modular nuclear reactors having a reactor vessel and a surrounding containment vessel spaced apart from the reactor vessel to form a first interstitial region containing an inert gas, the improvement comprising: a shell spaced apart from and surrounding the containment vessel to form a second interstitial region comprising a circulatory air passage. The circulatory air passage has an air inlet at a first position and an air outlet at a second position which is vertically higher than the first position. The second interstitial region lies between the shell and the containment vessel; and surface area extension means in the shell is longitudinally disposed from the shell into the second interstitial region towards the containment vessel to receive thermal radiation from the containment vessel. The surface area extension means is spaced apart from the external surface of the containment vessel where heat radiated form the containment vessel is received at the surface extension means for convection, conduction and radiation to air in the circulatory passage.

  17. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  18. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  19. Feasibility of cool storage systems in refrigeration

    NASA Astrophysics Data System (ADS)

    Elmahgary, Yehia; Kekkonen, Veikko; Laitinen, Ari; Pihala, Hannu

    1989-05-01

    In the present report, the economic viability and technical feasibility of selected cool storage systems are considered. Cool storage has clear potential for several applications: in connection with air-conditioning systems, domestic refrigerating and freezing systems; commercially e.g., in the dairy and vegetable industries; and in deep freezing, as in the meat industry. Air-conditioning has limited significance in Finland. For this reason it was not investigated in this study. In domestic refrigeration and freezing two systems were investigated; a controlled cooling/heating system and a simple built-in system in individual refrigerators and freezers. The central cooling/heating system in houses was found to be economically unattractive. It also has several technical drawbacks. The simple built-in system appeared to be promising. The amount of savings is rationally a function of the difference between day and night tariffs and the costs of installing an automatic switch and storage media. In the vegetable and dairy industries cool storage also has considerable potential. Several systems were investigated in this respect and compared to the conventional system. The cool storage system using Cristopia balls, one of the most common commercial systems available in Europe, was not economical at a tariff difference of 10 p/k Wh or more. Cool storage for freezing in meat plants was also investigated.

  20. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  1. Desiccant cooling system performance: A simple approach

    NASA Astrophysics Data System (ADS)

    Epstein, M.; Grolmes, M. A.

    1982-10-01

    The wave nature of heat and mass transfer in fixed desiccant bed adsorption is explained. A simple algebraic model of wave motion under single low desiccant bed operation is developed and applied to the prediction of the performance potential of the overall desiccant cooling system. The model is used to explain the increase in cooling system performance that is realized through the use of mixed inert desiccant material adsorption beds. The response of cooling system performance to changes in external process conditions is examined and conclusions are drawn relative to optimization of system characteristics.

  2. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  3. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  4. Gas hydrate cool storage system

    DOEpatents

    Ternes, Mark P.; Kedl, Robert J.

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  5. Elastocaloric cooling materials and systems

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  6. Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

    SciTech Connect

    Goldsborough, S.S.; Johnson, M.V.; Zhu, G.S.; Aggarwal, S.K.

    2011-01-15

    Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g., {proportional_to}0.1 mL{sub fuel}/L{sub gas}, {proportional_to}1 x 10{sup 9} droplets/L{sub gas} for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vaporization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O{sub 2} and 79% N{sub 2}. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d{sub 0}{proportional_to} 2-3 {mu}m) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d{sub 0}{proportional_to} 14 {mu}m) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed

  7. Evaporation as a diagnostic test for hydrodynamic cooling of laser-ablated clusters

    SciTech Connect

    Klots, C.E.

    1991-01-01

    The properties of materials laser-ablated from a surface are of considerable interest. The interrogation of these properties inevitably occurs at a point some distance from the surface. One might then ask what processes have occurred in the intervening path length. Immediately, for example, one wonders whether the material was released as such from the surface or was formed as a result of collisions at a distant point. Similarly, one might ask if an observed temperature'' of the materials is characteristic of the ablation process of of subsequent events. We will indicate here how measurements of metastable evaporation rates can provide clues which are pertinent to these questions. 7 refs.

  8. Biomedical Application of Aerospace Personal Cooling Systems

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx. 0.2 - 0.5C, for both men and women wearing any of the four different garments. The corresponding ear temperatures were significantly (P<0.05) decreased approx.0.2 - 0.4C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and

  9. Analysis of Dehumidification Effects on Cooling Capacity of an Evaporative Cooler

    NASA Astrophysics Data System (ADS)

    Saidi, Mohammad Hassan; Aghanajafi, Cyrus; Mohammadian, Masoud

    In this study, effect of desiccant wheel, heat exchanger and cooling coil will be evaluated on decreasing the wet bulb temperature of entering air to cooling tower and decreasing the outlet cold water temperature. For this purpose, change effect of desiccant wheel parameters will be investigated on wet bulb temperature of outlet air from heat exchanger. After that, optimum parameters and minimum wet bulb temperature will be selected. Then, outlet cold water temperature will be achieved for various cooling coil surface temperature with definition of by pass factor and also by using optimum desiccant wheel parameters and entrance air wet bulb temperature to tower related to cooling coil surface temperature. To calculate wet bulb temperature, a mathematical model will be used that shows physical properties of air. After that a nomograph will be used to predict effect of decrease of entrance air wet bulb temperature on reducing the outlet water temperature and it will be done for several cities in Iran. At the end, an equation will be used to calculate required water to air mass flow rate for each outlet cold water temperature. With considering of known circulating water mass flow rate, required air for tower would be calculated and suitable desiccant wheel can be selected.

  10. Cooling system for cooling the bits of a cutting machine

    SciTech Connect

    Wrulich, H.; Gekle, S.; Schetina, O.; Zitz, A.

    1984-06-26

    The invention refers to a system for cooling the bits of a cutting machine and comprising a nozzle for the cooling water to be ejected under pressure, said nozzle being arranged at the area of the bit, the water supply to said nozzle being closable by means of a shutoff valve and the bit being supported on the bit holder for limited axial shifting movement under the action of the cutting pressure against the force of a spring and against the hydraulic pressure of the cooling water and the shutoff valve being coupled with the bit by means of a coupling member such that the shutoff valve is opened on shifting movement of the bit in direction of the cutting pressure. In this system the arrangement is such that the bit (6) has in a manner known per se the shape of a cap and is enclosing a bit shaft (3) adapted to be inserted into the bit holder (1), in that the cap-shaped bit (6) is supported on the shaft (3) for shifting movement in axial direction and in that the shutoff valve (11) and the coupling member (10) are arranged within the bit shaft (3). The coupling member is formed of a push rod (10) acting on the closure member (11) of the valve, said push rod being guided within a central bore (9) of the bit shaft and the closure member (11) closing the valve in opposite direction to the action of the cutting pressure and being moved in open position by the push rod (10) in direction of the acting cutting pressure.